Real Time Control of Power Grids

Anjan Bose
Kevin Tomsovic
Mani Venkatasubramanian
Washington State University

Pacific Gas & Electric Co.
June 20, 2003
Control of the Power Grid

- Load Following – Frequency Control
 - Area-wise
 - Slow (secs)
- Voltage Control
 - Local
 - Slow to fast
- Protection
 - Local (but remote tripping possible)
 - Fast
- Stability Control
 - Local machine stabilizers
 - Remote special protection schemes
 - Fast
Communication for Power System

- Analog measurements
- Digital states

Control Center

Third Party

RTU

RTU

...
Monitoring the Power Grid

• Alarms
 • Check for overloaded lines
 • Check for out-of-limit voltages
 • Loss of equipment (lines, generators, feeders)
 • Loss of communication channels
• State estimator
• Security alerts
 • Contingencies (loading, voltage, dynamic limits)
 • Corrective or preventive actions
Substation Automation

• Many substations have
 • Data acquisition systems at faster rates
 • Intelligent electronic devices (IED)
 • Coordinated protection and control systems
 • Remote setting capabilities

• Data can be time-stamped by satellite
Evolution of Communication System

- Utilizing existing system
- Building a new one
Communication for Power System (future)
WSU Real Time Control Project

• Study feasibility of different levels of area-wide real time controls for the restructured power system
 • Slow controls
 • Automatic Generation Control (AGC)
 • Voltage control
 • Adapting special protective schemes (SPS) or remedial action schemes (RAS) for stability
 • Real time stability control using soft-computing – neural networks, pattern recognition, etc.
 • Real time stability control (the holy grail)
Slow Controls

• Load Frequency Control (Load Following)
 • Present method adequate
 • Single-buyer or Bilateral
 • Who pays for control performance?

• Voltage Control
 • Only local control in No America
 • Do we need area-wide control?
 • Again, who pays?
Example System - AGC

- CA1
- G1
- G2
- CA2
- G3
- CA3
- G4

10s, 0.1pu load deviation
50s delay
20s delay
20s delay
Example AGC Results

Simulations for three control areas various configurations

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Traditional AGC</th>
<th>Bilateral</th>
<th>Mixed AGC and Bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random delay</td>
<td>Unstable in certain situations with random delay in all generators.</td>
<td>Fail to meet customer demand and may become unstable.</td>
<td>System not adversely affected if in bilateral units only but those parties cannot meet the contractual schedule.</td>
</tr>
<tr>
<td></td>
<td>No adverse affects from random delay in single generator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both fixed and random delays</td>
<td>--</td>
<td>--</td>
<td>System may become unstable for short delays.</td>
</tr>
</tbody>
</table>
Area Voltage Control Framework

- EMS SCADA
- STATE ESTIMATOR
- LOAD FOECASTING
- MEASUREMENTS
 - DEVICE
 - STATUS
 - ALARMS
- SLOW VOLTAGE CONTROLLER
 - MODEL
 - STATE
 - LOAD
 - TREND
 - SWITCHING
 - COMMANDS
 - OPERATOR
 - ALARMS
An automatic voltage control scheme would dynamically manage the reactive power available in a certain geographic region called Voltage Control Area (VCA).

A local ancillary service market for reactive power can consequently be developed in that specific VCA, granted that generation-based voltage control is the only voltage control recognized as an ancillary service by NERC.
IEEE 39bus system divided in VCAs
RAS/SPS

• Present Day State-of-the-Art
 • Hard-wired
 • Parameters set by off-line studies
 • Armed in real time according to system condition
 • Mainly activates switching (circuit breakers)
 • Can activate FACTS controllers

• Possibilities
 • Soft-wired (set according to system condition)
 • Parameters set by on-line computation
 • Continuous control
Real Time Control for Stability

• Oscillatory Stability
 • Number of modes finite and detectable
 • Possible control in hundreds of ms
 • Possible area-wide control of system stabilizers

• Transient Stability
 • Control needed in tens of ms
 • Fast detection is difficult

• Soft-computing
 • Use ANNs, pattern recognizers, etc instead of model-based computation
Oscillation Damping Controller

WIDE AREA MEASUREMENTS

Multi-input Prony Analysis
FFT Analysis

INTERAREA AND LOCAL MODES

PSDL STATUS
From Area 1
From Area 2
From Area n

EXTERNAL TRIGGERS
To Area 1
To Area 2
To Area n
Proportional Voltage Controller

• Real-time switching of remote generation, shunt and series capacitor banks coordinated by the controller.

• Control actions typically during the first swing of large disturbances.

• Improved version of the controller being implemented at BPA – Wide Area Control System.
Some Research Issues

- Theoretical basis for control issues that incorporate communication and computation
- Simulation tools that incorporate control, communication and computation
- What is a reasonable framework of the communication system for the power grid
- What controllers (FACTS) will be readily available to consider in such wide-area control
- We should be ready with practical control schemes in anticipation of the technology