Smart Grid Introduction
PSERC Executive Forum
General agreement was reached among the major “thought leading” groups – GridWise Alliance, Electric Power Research Institute, Edison Electric Institute, Galvin Initiative, and the Modern Grid Strategy – on the seven major characteristics.

A properly planned, designed, implemented, and operated smart grid will:

1. Optimize asset utilization and operating efficiency
2. Accommodate all generation and storage options
3. Provide power quality for the range of needs in a digital economy
4. Anticipate and respond to system disturbances in a self-healing manner
5. Operate resiliently against physical and cyber attack and natural disasters
6. Enable active participation by consumers
7. Enable new products, services, and markets

Sample U.S. SG Programs

Sempra
OpEx 20/20 reinvents key systems (GIS, OMS, DMS, CBM, customer), and processes (work management, dispatch). Also drives new initiatives (PHEV, meter automation, SG design, advanced conductor R&D)

Oncor
Advanced metering with a comprehensive consumer education program and in home displays. Also installing world’s largest cluster of Static Var Compensators (SVCs) to provide high-speed voltage support and increased transmission capacity and efficiency, enabling generation options

AEP
gridSMART is a strategic initiative to address environment concerns, aging workforce, customer service and programs, and operational effectiveness. A three model city program will demonstrate viability of smart grid and AMI technologies, build regulatory and consumer acceptance an confidence, verify the cost-benefit model, and establish a foundation for integrating technologies.
What drives the introduction of smart grids?

Increasing electricity consumption

Environmental concerns - Reduction of CO₂

Security of energy supply
Reduced dependency on fossil fuels from sensitive regions

Growing share of renewable power generation
Wind will grow from 111TWh in 2005 to 1’300-1’800TWh in 2030
Solar will grow from 3TWh in 2005 to 160-350TWh in 2030

Significant shares of the renewable power will be distributed and intermittent

Energy efficiency
T&D losses – target reduction of 2% in 2020 (EU)

Open energy market
Consumer pricing to foster Demand response

Impact on grid stability and efficiency

Introduction of Smart Grids
- Information & control technologies to achieve required stability
- Requires regulatory support (only exceptional business cases) and development of standards

Reliability of electricity supply
- Aging infrastructure
- Aging workforce
- IT security
Smart Grid includes applications supporting the whole electricity supply chain

- Renewable energy integration
- Consumer gateway, home automation
- Energy storage integration
- Increasing grid reliability: fault management
- Efficient long distance transmission
- Plug-in vehicles for grid
- Decision support for operations
- Grid operation with distributed generation
- Load management/demand response
- Local balancing of distributed resources
- Conventional power generation: increased flexibility
- Increasing grid capacity: asset utilization, power flow control
Impact of smart grids – main challenges

General
- **Efficient operation** in line with new and changing regulatory framework
- **Reliable power system** with both centralized and decentralized generation
- Increased **integration** with maintained security
- **Energy efficiency** with improved power quality
- Manage **consumer choice** and increased service requirements
- Improve **asset utilization** with aging infrastructure
- Maintain **system integrity** with aging workforce

Generation
- Optimize ‘spinning reserves’ with increased amount of renewable energy and demand response

Transmission grids
- Maintain grid stability with increased amount of renewables
- Reduce transmission losses

Distribution grids
- Maintain protection system integrity with increased amount of distributed renewable energy
- Demand response (regulatory demand) - Real time price information

Consumers
- Demand Management
- Optimize electricity consumption – home automation
Smart Grid Maturity Model – Levels, Descriptions and Results

Level 1: Exploring and Initiating
- Contemplating Smart Grid transformation. May have vision, but no strategy yet. Exploring options. Evaluating business cases, technologies. Might have elements already deployed.

Level 2: Functional Investing
- Making decisions, at least at functional level. Business cases in place, investments being made. One or more functional deployments under way with value being realized. Strategy in place.

Level 3: Integrating – Cross Functional
- Smart Grid spreads. Operational linkages established between two or more functional areas. Management ensures decisions span functional interests, resulting in cross functional benefits.

Level 4: Optimizing – Enterprise Wide
- Smart Grid functionality and benefits realized. Management and operational systems rely on and take full advantage of observability and integrated control across and between enterprise functions.

Level 5: Innovating – Next Wave of Improvements
- New business, operational, environmental and societal opportunities present themselves, and the capability exists to take advantage of them.

Vision
- Experiments

Strategy
- Proof of Concepts

Transformation
- Real time corrections
- Broad reuse

Systemization
- Repeatable practices
- Shared information

Cross LOB Champions
- Innovators

Perpetual Innovation
- Self-healing operations
- Autonomic business

Missionaries

Innovators

Prophets, Heroes

An evolution through a phased-in approach
The Smart Grid Will Provide Opportunity for the Utility to Achieve Their Key Business Strategic Goals

- Optimize CAPEX Spend
- Optimize OPEX Spend
- Improve Reliability
- Improve Operating Efficiency
- Reduce Operating Risk
- Improve Security & Compliance
- Improve Customer Satisfaction
- Increase Shareholder Value
Smart Grid Value

- **System Reliability**
 - Maximize customer service quality
 - Maximize grid reliability

- **Operational Efficiency**
 - Minimize distribution system line losses
 - Maximize network performance
 - Optimize resources, time and repair actions

- **Asset Utilization**
 - Minimize risk of failures
 - Deferred capital spending
 - Prioritize equipment and facility for repairs

- **Generation Flexibility**
 - Renewables
 - Energy storage
 - Demand response
 - Distributed generation
 - Transmission technologies