Verifying Interoperability and Application Performance of PMUs and PMU-Enabled IEDs at the Device and System Level

Final Project Report

Power Systems Engineering Research Center

Empowering Minds to Engineer the Future Electric Energy System
Verifying Interoperability and Application Performance of PMUs and PMU-Enabled IEDs at the Device and System Level

Final Project Report

Project Team

Mladen Kezunovic, Alex Sprintson, Yufan Guan, Jinfeng Ren, Muxi Yan, Christopher Jasson Casey
Texas A&M University

Ali Abur, Liuxi Zhang
Northeastern University

PSERC Publication 12-21

August 2012
For information about this project, contact:

Mladen Kezunovic, Ph.D., P.E.
Texas A&M University
Department of Electrical Engineering
College Station, TX 77843-3128
Tel: 979-845-7509
Fax: 979-845-9887
Email: kezunov@ece.tamu.edu

Power Systems Engineering Research Center

The Power Systems Engineering Research Center (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry and educating the next generation of power engineers. More information about PSERC can be found at the Center’s website: http://www.pserc.org.

For additional information, contact:

Power Systems Engineering Research Center
Arizona State University
527 Engineering Research Center
Tempe, Arizona 85287-5706
P.O. Box 875706
Phone: 480-965-1643
Fax: 480-965-0745

Notice Concerning Copyright Material

PSERC members are given permission to copy without fee all or part of this publication for internal use if appropriate attribution is given to this document as the source material. This report is available for downloading from the PSERC website.

© 2012 Texas A&M University and Northeastern University.

All rights reserved.
Acknowledgements

This is the final report for the Power Systems Engineering Research Center (PSERC) research project titled “Verifying Interoperability and Application Performance of PMUs and PMU-enabled IEDs at the Device and System Level.” We express our appreciation for the support provided by PSERC’s industrial members and by the National Science Foundation under grant NSF IIP-0968847 received under the Industry / University Cooperative Research Center program.

We wish to thank the industrial advisors to this project for their contributions:

- C. R. Black, Southern Company
- Dan Brotzman, ComEd
- Ali Cowdhury, California ISO (formerly)
- Simon Chiang, PG&E
- Rahmatian Farnoosh, Quanta
- Floyd Galvan, Entergy
- Jay Giri, AREVA T&D
- Anthony Johnson, Southern California Edison
- Bill Middaugh, Tri-State G&T
- Paul Myrda, EPRI
- Reynaldo Nuqui, ABB
- Dejan Sobajic, New York ISO (formerly)

We also gratefully acknowledge the donation of the equipment for conducting tests from:

- ABB
- Ametek
- Alstom
- GE
- NI
- RuggedCom
- SEL
- Simens
- Symetricom
- USI
Executive Summary

The project report presents a new test methodology for verifying the conformance, interoperability and application performance of Phasor Measurement Units (PMUs), PMU-enabled IEDs and Phasor Data Concentrator (PDCs) at the device and system level. Two types of tests are defined to evaluate the performance of synchrophasor devices verifying two different aspects: design and application. Discussion of the results from performing the Design Test and Application Test is also provided. The test platform, such as the test equipment and tools, and the configuration of the device under test, are also included for the purpose of making the procedure repetitive should a third party wish to verify the results.

The tests were performed using a synchrophasor testing and calibration system. The system has an uncertainty of less than 0.08% TVE (Total Vector Error). It consists of a GPS receiver used to synchronize the system to UTC (Coordinated Universal Time), a signal acquisition system used to generate and sample test signals up to 500 kHz, three voltage and current amplifiers connected to PMUs and PMU enabled IEDs providing test signals at typical level, three voltage attenuators and three current shunts. Both GPS signal, time codes (IRIG-B) and IEEE 1588 are available for various synchrophasor devices. A series of software models is developed in LabVIEW for implementing two types of tests. The software is capable of automating test procedures and analyzing test results. A communication network toolbox called “Impairator” is developed and implemented in a newly implemented synchrophasor testbed.

The Design Test aims at verifying the conformance and interoperability compliance of PMUs and PMU-enabled IEDs, time synchronization methods and PDCs against standards. The standards’ conformance under specific test conditions was evaluated by comparing the amplitude, phase angle, frequency, and rate of change of frequency (ROCOF) estimates to corresponding reference values. The test conditions, including steady state and dynamic state, are defined in IEEE C37.118-2005, C37.118.1, C37.118.2 and draft “Guide for Phasor Data Concentrator Requirements for Power System Protection, Control, and Monitoring”. The interoperability compliance between synchrophasor devices, time clock and PMU, and PMU and PDC, was verified by interchanging equivalent parts. The compliance was evaluated using the function outcome and numerical indices defined in the standards.

- Nine commercial PMUs and PMU-enabled IEDs from eight different vendors were selected to perform the conformance test. From the conformance test results we concluded that most PMUs meet the steady state performance requirement, but all of them failed to provide conformance under some dynamic conditions.
- The interoperability test results indicated that issues between PMUs and time synchronizations options, PMUs and PDCs exist and can be identified using the test method.
The Application Test aims at verifying performances of specific applications (fault location and state estimation are selected to perform the application test) under variations of PMUs, time synchronization options, PDCs and communication protocols. The application test results indicate the following:

- Fault location errors using different pairs of PMUs vary from 0.4% to 2.9%, and it has larger errors and uncertainties as the packet loss grows in the communication network. However, this impact may be alleviated by increasing the PMUs’ reporting rate.

- The variances of PMU errors and tuning weights can be estimated by the state estimation system using a recursive tuning algorithm. The impact on bad data detection of PMU measurements was investigated. In addition, an improved method was proposed to integrate existing WLS state estimators and enhances the robustness of error detection and identification for PMU measurements.

Future work related to this project should include:

- Development of a virtual PMU testbed to store and play back PMU source data. This method will be able to emulate network with a large number of PMUs while leveraging a small number of physical devices. Such set-up will allow evaluation of the performance of the entire synchrophasor system solution.

- Assessment of cyber security issues in the synchrophasor data transfer. This will entail definition of vulnerabilities, assessment of conformance with cyber security standards and penetration testing to verify cyber security interoperability and impacts of cyber security breaches on application performance.
Project Publications

Student Dissertations

[3] Zhang, L., Not decided yet. This doctoral dissertation is in the process of being completed. Anticipated completed and graduation from Northeastern University: N/A.
Table of Contents

1 Introduction .. 1
 1.1 Summary of the Statement of Work ... 1
 1.2 Project Objectives ... 2
 1.3 Application Context ... 2

2 Test Classification and Technical Background ... 4
 2.1 Test Classification .. 4
 2.2 Technical Background .. 4
 2.2.1 Fault Location Accuracy Characterization and Assessment 4
 2.2.2 State Estimation Accuracy Characterization and Assessment 5

3 Part I: Interoperability Test .. 6
 3.1 Verifying Compliances Performance of PMUs ... 6
 3.1.1 Steady State ... 7
 3.1.2 Dynamic State ... 7
 3.1.3 Result Analysis and Summary .. 9
 3.2 Interoperability of PMUs with Time Synchronization Options 10
 3.2.1 Test Description .. 10
 3.2.2 Result Analysis and Summary .. 11
 3.3 Verifying Compliances Performance of PDCs ... 12
 3.4 Interoperability of PMUs with PDC .. 13
 3.5 Interoperability of PMUs, PDCs and Communication Network 14
 3.5.1 Testbed Design .. 14
 3.5.2 Impairator Design and Implementation ... 15
 3.5.3 PDC Data Processing Time Measurement .. 17
 3.5.4 Virtual PMU .. 18

4 Part II: Application Performance Test .. 19
 4.1 Fault Location ... 19
 4.1.1 PMUs and PMU-Enabled IEDs ... 20
 4.1.2 PMUs and Time Synchronizations ... 21
 4.1.3 PMUs, PDCs and Communication Network 24
 4.2 State Estimation .. 27
 4.2.1 State Estimator Tuning for PMU Measurements 27
Table of Contents (continued)

4.2.2 Impact of Tuning on Bad Data Detection of PMU Measurements 39
5 Conclusions... 45
References... 46
Appendix A: Test Configurations.. 48
Appendix B: Test Results ... 50
 B.1: Design Test... 50
 B.1.1: Conformance Test Results... 50
 B.1.2: Interoperability Test Results... 72
 B.2: Application Tests.. 82
 B.2.1: PMUs and PMU-Enabled IEDs.. 82
 B.2.2: PMUs and Time Synchronization Clocks .. 86
Revision History ... 95