Toward Optimal Operations

Paul Hines
Sarosh Talukdar
3 October 2006

Work funded in part by
PSERC project S-26, “The Risk Of Cascading Failures.”
and in part by ABB Corporate Research
Outline

- Motivation and Concepts
 - Cascading Failures in the US
 - Teams and Electricity Networks
 - Optimum Operations
- Toward Optimal Operations via Distributed MPC
 - Method overview
 - Agent problem formulation
 - Cooperation
- Simulation method and results
- Ongoing Work and Conclusions
Motivation:
Large Blackouts & Cascading Failures in the United States
System stress is not decreasing

Sizes are adjusted for demand growth to year-2000 MW.
Contribution of Large Blackouts to Overall Risk
Contribution of Large Blackouts to Overall Risk

![Bar chart showing the relative contribution to the total risk for different Log10 of blackout sizes. The x-axis represents Log10 of blackout size, and the y-axis represents the relative contribution to the total risk. The bars show a significant increase in contribution at Log10 of 4.5 and 5.]
The Top 25 US Blackouts on Record

<table>
<thead>
<tr>
<th>Date</th>
<th>MW</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 14, 2003</td>
<td>70,000</td>
<td>Northeast</td>
<td>Cascading Failure</td>
</tr>
<tr>
<td>Aug 20, 2004</td>
<td>22,700</td>
<td>NPCC</td>
<td>Major Transmission Line Tripped due to Lightning Strike</td>
</tr>
<tr>
<td>Mar 13, 1989</td>
<td>19,400</td>
<td>NPCC</td>
<td>Solar flare, XFMR fails, 5 lines trip, cascade</td>
</tr>
<tr>
<td>Apr 18, 1988</td>
<td>18,500</td>
<td>NPCC</td>
<td>Ice Storm</td>
</tr>
<tr>
<td>Jul 8, 2003</td>
<td>11,000</td>
<td>ECAR</td>
<td>Severe Thunderstorms</td>
</tr>
<tr>
<td>Oct 23, 2005</td>
<td>10,000</td>
<td>FRC</td>
<td>Hurricane Wilma</td>
</tr>
<tr>
<td>Feb 29, 1984</td>
<td>7,901</td>
<td>WSCC</td>
<td>One Pacific AC Intertie circuit tripped due to relay misoperation</td>
</tr>
<tr>
<td>Dec 4, 2002</td>
<td>7,200</td>
<td>SERC</td>
<td>Snow/ice storm</td>
</tr>
<tr>
<td>Sep 18, 2003</td>
<td>6,512</td>
<td>SERC</td>
<td>Hurricane Isabel</td>
</tr>
<tr>
<td>Sep 18, 2003</td>
<td>6,512</td>
<td>SERC</td>
<td>Hurricane Isabel</td>
</tr>
<tr>
<td>Sep 4, 2004</td>
<td>6,000</td>
<td>FRC</td>
<td>Hurricane Frances</td>
</tr>
<tr>
<td>Aug 29, 2005</td>
<td>5,120</td>
<td>SERC</td>
<td>Hurricane Katrina</td>
</tr>
<tr>
<td>Dec 14, 1994</td>
<td>5,020</td>
<td>WSCC</td>
<td>Cascading failure</td>
</tr>
<tr>
<td>Feb 28, 1995</td>
<td>4,500</td>
<td>NPCC</td>
<td>Line faults, overload, gen loss, cascade</td>
</tr>
<tr>
<td>Aug 19, 1991</td>
<td>4,400</td>
<td>NPCC</td>
<td>Hurricane Bob</td>
</tr>
<tr>
<td>May 17, 1985</td>
<td>4,300</td>
<td>SERC</td>
<td>Fire near substation</td>
</tr>
<tr>
<td>Jan 17, 1994</td>
<td>4,235</td>
<td>WSCC</td>
<td>Earthquake, 6.6 magnitude</td>
</tr>
<tr>
<td>Nov 16, 1988</td>
<td>4,200</td>
<td>NPCC</td>
<td>Circuit breaker fault, cascade</td>
</tr>
<tr>
<td>Sep 19, 1990</td>
<td>4,000</td>
<td>NPCC</td>
<td>Deliberate transformer failure by employee, 7 735 lines lost</td>
</tr>
<tr>
<td>Oct 2, 1984</td>
<td>3,868</td>
<td>WSCC</td>
<td>Mis-operation of a phase comparison relay</td>
</tr>
<tr>
<td>Aug 5, 1997</td>
<td>3,525</td>
<td>WSCC</td>
<td>Plane hit line, demand tripped on low voltage,</td>
</tr>
<tr>
<td>Dec 15, 2005</td>
<td>3,500</td>
<td>SERC</td>
<td>Ice Storm</td>
</tr>
<tr>
<td>Mar 12, 1996</td>
<td>3,440</td>
<td>SERC</td>
<td>Transmission problems, cascade</td>
</tr>
<tr>
<td>Dec 23, 1989</td>
<td>3,100</td>
<td>SERC</td>
<td>Supply shortage due to unexpected high demand</td>
</tr>
<tr>
<td>Sep 18, 2003</td>
<td>3,085</td>
<td>MAAC</td>
<td>Hurricane Isabel</td>
</tr>
</tbody>
</table>

Data from the US Dept. of Energy (EIA 417) and NERC (DAWG)
Observations

- Blackouts are costly
 - Large blackouts contribute more than their share to overall risk
- If we look at a given cascading event it is possible to calculate a small set of control actions that greatly reduce the social costs of the disturbance
 - Aug. 14 – Shed load in Cleveland
 - WSCC/WECC events – Shed load/generation along the Intertie
Is it possible to have optimal operations, under stressed conditions, in real time?
Teams

Power systems are run by autonomous agents: human operators, energy traders, IPP’s, customers, thousands of mechanical controllers, ...

These agents can be divided into teams, such that the agents in a team have common goals. That is, each team works on its own problem: unit commitment or dispatch or protection or energy trading or the reaction to cascading failures or...

Teams can have as few as one agent or as many as thousands of agents. Some agents can belong to several teams.
By “operations” we mean the streams of decisions made by the teams in real-time.

By “optimum operations” we mean the stream-of-decisions that, in hindsight, are the best possible decisions the team could have made.

It is not enough to base decisions on a snapshot of the system, nor to examine each decision separately. Rather, it is the interactions of the elements of the stream, and their effects, both near and far, that are important.
A power system is a dynamic hybrid system.

Its variables change with time.

Some change continuously.
Others change discontinuously.
The decision-space of a power system (the set of all the decisions—changes— that agents can make) is large and rich. It includes thousands of continuous and discrete variables.

- Breaker positions
- Tap changer positions
- Generator excitation
- Prices of energy offers
- FACTS device set points
- Reactive power resources
Bigger decision spaces contain better decisions

For instance:

\[
\text{Minimum } f(X, Y) \leq \text{Minimum } f(X, Y) \\
X, Y \quad X
\]

Each team of agents searches for its decisions through a sub-space of the system’s decision-space.

→ To find the very best decisions, each team of agents must use as large a sub-space as it can.
Summary: Necessary conditions for a team of autonomous agents to make optimum decisions

1. The problem must be well posed:
 • clear, precise and comprehensive goals over
 • a time horizon long enough to allow for dynamics

3. A decision-space large enough to contain the best decisions.

5. A decomposition of the problem into sub-problems, one for each agent.

7. A coordination scheme to keep the agents working coherently, not at cross-purposes.
Our approach to meeting the necessary conditions

1. MPC (Model Predictive Control) to provide a (rolling) time-horizon in the problem formulation
2. Mixed integer formulations to allow for continuous and discrete decision variables
3. A problem-decomposition with some unusual properties
4. Cooperation (exchange of information) among neighboring agents that allows agents to work at their own speeds, so humans can cooperate with much faster computers.
Preliminary results for the curtailment of cascading failures demonstrate some, but not all, the features of our approach.
Method:

Model Predictive Control
Problem Decomposition
Cooperation
Model Predictive Control

- Take a control problem
 \[u_1 = Control(x_0, u_0) \]
- Extend the time horizon (prediction)
 \[t_0 \ldots t_k \ldots t_K \]
- Explicitly specify objective and constraints
 - Costs, discrete variables, hard/soft limits
- Solve iteratively (feedback) using optimization tools
Global MPC Formulation

- Given the state of the network find a set of control actions that result in minimal social costs

Given: A time horizon: $t_0 \ldots t_k \ldots t_K$, and state measurements: x_0

Find: An optimal control plan $u_0 \ldots u_K$ according to

Minimize: $\text{Cost} \left(u_0 \ldots u_K, x_0 \ldots x_K \right)$

s.t.: $\text{Predictor} \left(u_k, x_k, x_{k+1} \right) = 0$

$x_{min} \leq x_K \leq x_{max}$

A mixed integer MPC optimization problem
This problem is far too large to solve in real time.

How close can we get with existing technology?
Multiple Horizons and Teams

Operators repeatedly solve a large MINLP MPC problem to manage long-range plans

Software agents distributed throughout the grid solve extreme problems with shorter time-horizons

Minutes +

~ 1 sec
A feasibility test case

- Can a network of software agents control load and generation such that stress from excessive branch currents do not initiate cascading failures?
Method

- **Problem decomposition**
 - Assign the calculation and implementation tasks to agents distributed through the network

- **Cooperation**
 - Allow agents to exchange useful information

- **Feedback**
 - Formulate the problem to prefer incremental actions, thus compensating for model inaccuracies
Problem decomposition

- Our method
 - Decompose the decision vector disjointly to one agent per node
 - Allow agents to work with overlapping network models, maintaining the models with only as much data as it can collect from its neighbors (truncate the problem at the edges).
 - Allow the agents to use linearized network models (approximate 1st order Taylor series)
 - Actual system constraints are kept intact, though distributed to many overlapping models
Agent i's decision space

Local neighborhood, Accurate models

Extended neighborhood, rough models

External network. Minimal data.
Agent Tasks

- Maintain network model(s)
 - Collect local data from equipment
 - Share local variables with local neighbors (1x / ~0.1 sec)
 - Request data infrequently from extended neighbors (~daily) to maintain a rough network model (prediction/forecast?)
 - Respond to data requests

- Make local control decisions
 - 1x at the given time interval (0.5-1.0 sec), according to the agreed goals.
 - Cooperate with neighbors to improve solutions
 - Implement actions on the fixed schedule
Operator tasks

- Operate a longer time scale (minutes) MPC problem(s) to manage system
 - Mixed integer formulation to calculate switching actions
 - Coordinate with neighbor operators
- Choose and assign variable weights to agents
 - How costly are control actions (load shedding, fast valving, etc)?
 - How aggressively should agents react to stress (voltages, currents)?
 - How quickly should agents respond to stress events?
Agent MPC Problem

\[
\min_{u_0 \cdots u_{K-1}} \sum_{k=1}^{K} \rho^k \left(c_u^T u_k + c_y^T E_k(x_k) \right)
\]

\[
x_{k+1} = x_k + B u_k
\]

\[
x_{\min} \leq x_k \leq x_{\max}
\]

\[
u_{\min} \leq u_k \leq u_{\max}
\]

\[
k = 0, \ldots, K - 1
\]

\[
k = 0, \ldots, K
\]

where \(E \) is a function that approximates the cost of stress for the state.
Eliminating the non-linearities of E

$$\min_{u_0 \ldots u_{K-1}} \sum_{k=1}^{K} \rho^k (c_u^T u_k + c_y^T (y_k^+ + y_k^-))$$

$$x_{k+1} = x_k + Bu_k$$

$$y_k + y_k^+ - y_k^- = Cx_k$$

$$y_k^+ \geq 0, \quad y_k^- \geq 0$$

$$y_{min} - \alpha_k \leq y_k \leq y_{max} + \alpha_k$$

$$x_{min} \leq x_k \leq x_{max}$$

$$u_{min} \leq u_k \leq u_{max}$$

$k = 0, \ldots, K - 1$

$k = 0, \ldots, K$
Properties of this formulation

- Guaranteed feasibility
 - $u = 0$ (no action) is always feasible

- Flexibility
 - Preferences between eliminating stress and minimizing control actions can be adjusted

- Interesting LP properties
 - Complimentary slackness: $y^+_k \ast y^-_k = 0$
Cooperation scheme

- Several schemes are under investigation. Our current scheme is as follows:
 - Each agent calculation results in a (very sparse) control vector for the entire network: \(u[n] \)
 - After calculating a control vector, agent \(n \) sends the vector to a set of its neighbors, along with the time at which the action will be taken.
 - Agent \(m \) obtains the vector and compares it with its locally calculated action set: \(\| u_t^n - u_t^m \| < \epsilon \)
 - When significant differences exist, agent \(m \) chooses a sub-set of its measurements that could be important to agent \(n \)'s solution and sends them to \(n \).
Previous Simulation Method

- Agents simulated in MATLAB, operating in a synchronous loop
- Agents interact with an AC load flow model of the IEEE 118 bus network
- Randomly chosen double branch outages are injected into the system
- Agent reactions are recorded
Typical result

Branch outages 8, 40
$r_l=2$, $r_e=10$

- Agents acting unilaterally
- Control goal
- Agents acting cooperatively
Social cost vs. Communication capital cost

- Choose a measure of the social cost

- Run many simulations varied disturbances

- Vary the size of the internal neighborhood
Vary size of this area
Social cost vs. Communications cost

Excess Social Cost vs. Local Neighborhood Size

- **Unilateral 95%**
- **Unilateral Mean**
- **Cooperative 95%**
- **Cooperative Mean**
Simulating Communications

- Electronic communications can be slow.
- Is this approach feasible given reasonable comm. constraints?
- A more accurate simulation method
 - Agents run in separate processes on a (linux/beowulf) computer cluster
 - One agent acts as the operator, maintains an AC load flow network model
 - Agents pass messages via MPI
Design/Program Flow

Simulator Agent (rank 0)

DMPC Agent 1

DMPC Agent 2

DMPC Agent N

MPI

Output csv file

log

log

log

log
Test case

- 39 bus system
 - 4 branch outages
- Simple AC load flow based cascading failure simulation
Result without control (sub-optimal)
Results with MPC control
Observations on communications

- Time between control steps ~ 0.5 – 1.0 sec to allow for communications

- Agent communication burden is about 10 kB / sec.
 - Message sizes are small
 - Latency more important than bandwidth

- About 3 cooperation iterations are possible in 0.5 second time span
Ongoing work

- Refine and test mixed integer (hybrid) versions of our problem for centralized application
- Compare cooperation methods
 - Existing method (based on data exchange to correct for model errors)
 - Peer pressure (assign a penalty to non-conforming actions)
 - Obedience (do what my neighbor tells me to do)
- Study a sparse implementation of the agent problems
Conclusions

- Large blackouts are too costly
 - The system reacts (is operated) sub-optimally

- Optimum Operations
 - Good solutions are likely to include:
 - **Decentralization** - Problem too large / complicated for centralized solutions
 - **Cooperation** – Agents often perform better when cooperating
 - **Complete problem formulations** -- Include more variables

- Experimental results indicate that it is possible to decompose the operations problem in time and space, with vastly reduced social costs.