Security Enhancement through Direct Non-Disruptive Load Control

Ian Hiskens (UW – Madison)
Vijay Vittal (ASU)
Security Enhancement through Direct Non-Disruptive Load Control

PROJECT NUMBER: S-16

PROJECT TEAM MEMBERS
- Ian Hiskens (University of Wisconsin – Madison) : Lead
- Vijay Vittal (Arizona State University)

INDUSTRY TEAM MEMBERS
- Innocent Kamwa (Hydro Quebec, IREQ)
- Nick Miller (GE Power Systems)
- Sharma Kolluri (Entergy)

PROJECT PERIOD
- May 1, 2002 to April 30, 2005

TOTAL BUDGET BY YEAR
- $65,000

PSERC
Objective

• Examine benefits and analytical issues in utilizing direct non-disruptive load control to enhance power system dynamic performance.

• Design candidate control schemes for direct load control.
Non-Disruptive Load Control

- Many loads are partially controllable (switchable.)
 - Air-conditioning, lighting.
 - Distributed generation augments demand regulation.
- A hierarchical control structure is required.
Motivation:

- Undervoltage load shedding does not always provide the correct action.
- Special protection schemes are typically designed for specific outage scenarios.
 - Difficult to alter or extend.

Model predictive control offers a possible alternative.
Undervoltage Load Shedding

Simple two bus example

Bus 1 load shedding

Bus 2 load shedding
Model Predictive Control (MPC)

- System state is estimated.
- Predict system dynamic response.
 - Optimal control problem that determines the minimum load changes required for stabilization.
- Telemeter load setpoints to lower-level load controllers.
- Obtain new state estimate, and repeat process.

- Extensively used in chemical/process industries since 1970s
Trajectory Sensitivities

• Most MPC applications and analysis build on a linear systems framework.
 • Chemical processes are not linear, but perturbations are relatively small.

• However voltage stability enhancement cannot avoid large disturbance, nonlinear behaviour.

• Trajectory sensitivities are used to provide a “linearization” around the nonlinear trajectory.
 • This is NOT the usual linearization around an equilibrium point.
 • Provides a first-order approximation of the change in the nonlinear trajectory induced by a change in each controllable load.
Trajectory Sensitivities for the Two Bus Example
MPC Strategy

1. Estimate the current system state.

2. Calculate load control action:
 1) Obtain an initial guess of load control action using a strategy such as undervoltage load shedding or closest bifurcation boundary concepts.
 2) Predict the corresponding system response (and calculate sensitivities.)
 3) Use trajectory sensitivities to optimally correct the initial guess of the load-shedding requirements.

3. Enact load control action.

4. Return to step 1.
MPC Optimization

Objective: Determine the minimum load shedding required to restore voltages to acceptable levels.

- The influence of loads on voltages is given (to first order) by trajectory sensitivities.
- Using this approximation, the optimization problem can be formulated as a linear program.
- Errors introduced through the linearization are corrected at the subsequent MPC iteration.
- Errors in load response are similarly corrected.
- The MPC model of the system does not have to be precise.
 - On-going research to determine the appropriate level of accuracy.
MPC Example

No load control
MPC Example

MPC-based load control
Conclusions and Future Work

• MPC provides an effective load control strategy
 • Predictive rather than responsive.

• Numerous open questions are being addressed through ongoing research
 • Stability: What conditions are required to ensure stability?
 • Robustness: What level of accuracy is required for the internal MPC model?

• Distributed control
 • Centralized decision-making is unreasonable.
 • Distributed control strategies can achieve equivalent performance, provided interactions between area controllers are cooperative.
Analysis of Stability Robustness and Design of Control Schemes for Angle Stability Enhancement (Iowa State)

- Application of Structured Singular Value (SSV or μ) theory in developing underlying analysis framework for load modulation
 - Powerful tools and techniques for analyzing and designing control systems in the presence of uncertainties
 - Steadily matured to a level suitable for application to large engineering problems
Design of Control Strategies

• Development of a linear model for direct load control problem
 • Part of the active power load modeled as system input
 • Comprehensive modal analysis for selection of load buses for control implementation
 • Validated with MASS
• Characterization of uncertainty in the linear model in Linear Fractional Transformation (LFT) form
• Development of a framework for analyzing the amount of load modulation through the application of robust performance theorem (μ theory)
 • Skewed – μ framework in the context of μ theory
 • Building block for control strategies
Design of Control Strategies

- Two conceptually different control strategies for load modulation based on skewed-\(\mu \) framework
 - Objective is to determine amount of load modulation to perform to satisfy desired small-signal stability performance in the presence of uncertainties
 - Approach I – Determination of worst-case load levels for given performance
 - Approach II – Determination of worst-case performance for given uncertainty (in load, generation or any parameter), modulation of load to satisfy desired performance
 - Selection and modulation of loads based on Eigenvalue sensitivities (Linear model for direct load control)
 - Test systems – CIGRE Nordic system (augmented with distribution feeders) & WECC system
Load Control Algorithms (Iowa State)

- Pre-study of direct load control programs recently executed by utilities and state-of-the-art in load control systems
- Developed different algorithms for control of thermostatic loads with minimum disruption/discomfort
 - Optimization framework
 - Loads modeled using physical models to take into account “Cold load pickup” phenomenon
 - Dynamic Programming algorithms for air-conditioner loads, decision-tree based algorithm for water-heater loads
 - Monte Carlo simulation of the effect of different constraints and variables on the effectiveness of control
LFT Representation of A and B Matrices
Approach I – Worst-Case Uncertainty for Given Performance

- Load buses for control selected based on Eigen value sensitivities
- Uncertainty assumed to exist in the controllable part of active power loads at selected buses
- Uncertainty levels varied until the desired performance is satisfied
- Analytical proof of the concept
 - Choice of a performance level less stringent than nominal performance (with no uncertainty) can be satisfied through scaling of parametric uncertainty
 - Factoring of performance weight, application of Schur’s formula, and definition of μ
Approach I: Algorithm

Start

Execute Power-flow corresponding to minimum, nominal and maximum load level combinations in the uncertainty range considered

Form A and B matrices for each of those operating points

Calculate linear curve-fitting coefficients for each varying element of A and B matrices

Express the system in \(N-\Delta \) form. Compute upper bound of \(\mu \) for the system

Compute performance \(\mu \) upper bound

\[1-\varepsilon < \mu < 1+\varepsilon \]

Yes

Stop

No

\(\mu > 1 +\varepsilon \)

Yes

Scale-down uncertainty range of controllable loads by factor of \(\mu \)

No

Scale-up uncertainty range of controllable loads by factor of \(\mu \)
Results – Approach I – Nordic System

Nordic32 System
20 generators, 41 buses

141 state variables in this model
Numerous modes of oscillations
Critical mode around 2.6 rad/s
Results – Approach I – Nordic System

• Loads for control
 • N51 and N61 at 130 kV
 • S51_1 – S51_5 and S61_1 – S61_5 at 46.5 kV
 • D51_1 – D51_5 and D61_1 – D61_5 at 13 kV

• Error signal chosen is the inertia-weighted average of angular speeds of generators 6, 8, 9, 10 and 12 (Verified using SIMGUI – Section 4.8.2.1)

• Objective is to demonstrate
 • Accuracy of the overall analysis framework and the analysis approach
 • Correctness of uncertainty characterization
 • Correctness of the error signal and performance weight for performance characterization
 • Robustness of the scheme

• Choose arbitrary nominal as well as uncertain ranges for controllable loads and show that when performance μ is one, overall system damping performance is what was desired (in terms of Damping ratio).

• $W_{\text{perf}} = 0.0145 \frac{s + 1}{s + 20}$

 Desired least damping is 2%
Results – Approach I – Nordic System

<table>
<thead>
<tr>
<th>Load(s)</th>
<th>Uncontrollable load in MW</th>
<th>Uncertain range of controllable load in MW</th>
<th>Uncertain range for the total load in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>N51</td>
<td>60</td>
<td>[-40 – 40]</td>
<td>[20 – 100]</td>
</tr>
<tr>
<td>N61</td>
<td>120</td>
<td>[-90 – 90]</td>
<td>[30 – 210]</td>
</tr>
<tr>
<td>S51_1 – S51_5</td>
<td>40</td>
<td>[-15 – 15]</td>
<td>[25 – 55]</td>
</tr>
<tr>
<td>D51_1 – D51_5</td>
<td>20</td>
<td>[-5 – 5]</td>
<td>[15 – 25]</td>
</tr>
<tr>
<td>S61_1 – S61_5</td>
<td>40</td>
<td>[-15 – 15]</td>
<td>[25 – 55]</td>
</tr>
<tr>
<td>D61_1 – D61_5</td>
<td>20</td>
<td>[-5 – 5]</td>
<td>[15 – 25]</td>
</tr>
</tbody>
</table>

- Least damped critical inter-area mode for nominal load levels:
 - 0.1179 ± j2.9403 (Damping ratio = 4%)

- Critical mode for worst-case load levels: 0.1198±j2.4003
 (Damping ratio = -5%) **Robustly unstable**

- Results of algorithm I:
 - N51 = 88.29 MW, N61 = 183.67 MW, S51_1 – S51_5 = 50.61 MW
 D51_1 – D51_5 = 23.54 MW, S61_1 – S61_5 = 50.61 MW
 D61_1 – D61_5 = 23.54 MW

- Inter-area mode for the above load levels: -0.053 ±j2.65
- Corresponding damping ratio : 2%
Response of active power generated at N4072 for 0.1 p.u. change in excitation input of generator 12 at bus N1012
Results – Approach I – WECC System

- Number of state variables 260

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mode frequency in rad/s</th>
<th>Participating generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.83</td>
<td>4, 8, 9, 15, 18, 24</td>
</tr>
<tr>
<td>2</td>
<td>5.52</td>
<td>8, 17, 18, 22</td>
</tr>
<tr>
<td>3</td>
<td>6.59</td>
<td>17, 18, 22</td>
</tr>
</tbody>
</table>

- Error signal selected is the inertia weighted average of angular speeds of generators 8, 15, 17, 18 and 22

- Performance weight \[\frac{0.89s^2}{4.5s^2 + 34s + 189}\]

- Results in 2% damping for mode 1, 1% damping for mode 2 and 0.9% damping for mode 3
Results – Approach I – WECC System

<table>
<thead>
<tr>
<th>Load bus</th>
<th>Uncontrollable load in MW</th>
<th>Uncertain range of controllable load in MW (15% of total load)</th>
<th>Uncertain range of total load in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1248</td>
<td>[-239.2 – 239.2]</td>
<td>[1008.8 – 1487.2]</td>
</tr>
<tr>
<td>5</td>
<td>1310.4</td>
<td>[-251.16 – 251.16]</td>
<td>[1059.2 – 1561.6]</td>
</tr>
<tr>
<td>106</td>
<td>102.92</td>
<td>[-19.73 – 19.73]</td>
<td>[83.195 – 122.65]</td>
</tr>
<tr>
<td>107</td>
<td>228.96</td>
<td>[-43.88 – 43.88]</td>
<td>[185.08 – 272.84]</td>
</tr>
<tr>
<td>117</td>
<td>773.38</td>
<td>[-148.23 – 148.23]</td>
<td>[625.15 – 921.61]</td>
</tr>
<tr>
<td>137</td>
<td>151.2</td>
<td>[-28.98 – 28.98]</td>
<td>[122.22 – 180.18]</td>
</tr>
<tr>
<td>141</td>
<td>2757</td>
<td>[-528.43 – 528.43]</td>
<td>[2228.6 – 3285.5]</td>
</tr>
<tr>
<td>145</td>
<td>2388.7</td>
<td>[-457.83 – 457.83]</td>
<td>[1930.8 – 2846.5]</td>
</tr>
<tr>
<td>166</td>
<td>327.46</td>
<td>[-62.762 – 62.762]</td>
<td>[264.69 – 390.22]</td>
</tr>
<tr>
<td>167</td>
<td>159.84</td>
<td>[-30.64 – 30.64]</td>
<td>[129.2 – 190.48]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bus</th>
<th>Basecase generation in MW</th>
<th>Modified Generation in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>748</td>
<td>708</td>
</tr>
<tr>
<td>65</td>
<td>2210</td>
<td>2610</td>
</tr>
<tr>
<td>103</td>
<td>765</td>
<td>465</td>
</tr>
<tr>
<td>116</td>
<td>594</td>
<td>294</td>
</tr>
<tr>
<td>118</td>
<td>3267</td>
<td>2867</td>
</tr>
<tr>
<td>140</td>
<td>3195</td>
<td>3295</td>
</tr>
<tr>
<td>144</td>
<td>1290</td>
<td>1190</td>
</tr>
</tbody>
</table>
Results – Approach I – WECC System

Response of active power generated at bus # 30
for 50 ms 3-phase fault at bus # 44

<table>
<thead>
<tr>
<th>Mode</th>
<th>Eigen value</th>
<th>Damping ratio in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.037 ± j1.84</td>
<td>2.01</td>
</tr>
<tr>
<td>2</td>
<td>−0.097 ± j5.54</td>
<td>1.75</td>
</tr>
<tr>
<td>3</td>
<td>−0.155 ± j6.73</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Approach II – Worst-case Performance for Given Uncertainty

• Uncertainty could exist in load, generation or any model parameter
• System required to satisfy the chosen performance specifications over the range of uncertainty
• Fundamental premise – Strong correlation between performance μ upper bound peaking frequencies and critical mode frequencies
• Overall damping performance enhancement through modulation of loads for each critical mode identified
• Load modulation performed based on sensitivities of controllable active power loads to critical Eigen values
• Load modulation is iterative and is performed until the worst-case performance satisfies desired performance
• Skewed - μ of \mathbf{N} evaluated for determining worst-case performance by varying just the performance part of the augmented uncertainty
 • Defining $K_n = \begin{bmatrix} I & 0 \\ 0 & k_n I \end{bmatrix}$ and iterate on k_n until performance μ is unity
Start

Execute Power-flow corresponding to minimum, nominal and maximum load level combinations in the uncertainty range considered

Form A and B matrices for each of those operating points

Calculate linear curve-fitting coefficients for each varying element of A and B matrices

Express the system in M-Δ form. Compute upper bound of \(\mu \) for the system

Compute worst-case performance

Yes

Desired perf satisfied?

No

Calculate Eigen value sensitivities from active power load inputs

Rank load buses based on Eigen value sensitivities

Select load buses for control implementation from the ranking

Modulate loads based on the ranking

Stop
Results – Approach II – WECC System

- **Uncertainty in generation at buses 140 and 144**

<table>
<thead>
<tr>
<th>Generation</th>
<th>Nominal generation in MW</th>
<th>Uncertain in generation levels in MW (8% uncertainty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>3195</td>
<td>[2939.4 – 3450.6]</td>
</tr>
<tr>
<td>144</td>
<td>1290</td>
<td>[1186.8 – 1393.2]</td>
</tr>
</tbody>
</table>

- **Eigen value sensitivities**
 - 2, 141, 143, 145, 136, 150, 50, 51 (All –ve for Mode 1)
 - 143, 51, 154, 50, 55, 109, 150, 41 (All +ve for Mode 2)
 - 113, 66, 109, 50, 51, 55, 65, 41 (All +ve for Mode 3)

- **Performance weight**

\[
\frac{0.73s^2}{6s^2 + 21s + 189}
\]

- **Based on ranking and amount of load available for modulation**
 - 2, 5, 16, 17, 51, 136, 139, 141, 143, and 152
Results – Approach II – WECC System

Performance μ bounds with 5.9% of each load modulated

Response of active power generated at bus # 65 for 50 ms 3-phase fault at bus # 44

<table>
<thead>
<tr>
<th>Mode</th>
<th>Eigen value</th>
<th>Damping ratio in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$-0.0378 \pm j1.89$</td>
<td>2.00</td>
</tr>
<tr>
<td>2</td>
<td>$-0.0554 \pm j5.54$</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>$-0.0793 \pm j6.61$</td>
<td>1.19</td>
</tr>
</tbody>
</table>
Load Control Algorithms

- To modulate different controllable loads in real-time
- Controllable loads
 - Residential and commercial air-conditioners
 - Residential water-heaters
- Cold-load pickup
 - Sudden surge of load in a distribution feeder after a planned or unplanned outage when supply is restored
 - Caused as a result of loss of diversity among thermostatic loads
 - Well studied in distribution system design
 - Need for continuous control and an optimization approach
 - Load control problem rather than a load shedding problem
Load Control Algorithms – High-level Overview

1. Weather forecast
2. Telemetered Internal Temperature measurements
3. Short-term Load Forecast
4. Load Control?
 - Yes: Initiate Load Control
 - No: Actual operation of loads
5. Short-term load scheduler (DP-based / Decision-tree based)
6. Determine load modulation levels for desired performance
7. Load control termination?
 - Yes: Terminate Load Control
 - No: Actual operation of loads
Regarding the Results

• Typical scenarios for control at the distribution level with emphasis on the framework developed, type of studies and conclusions drawn

• Optimization problem
 • Minimize amount of load modulation
 • Effective cycling of loads
 • DP based optimization for air-conditioner, Decision-tree algorithm for water-heaters

• Optimization framework for performing Monte Carlo simulations
 • Impact of artificial constraints introduced for effective cycling
 • Impact of different uncertain parameters on the effectiveness of control
 • Thermostat set point distribution, parameters of the model for air-conditioners, and internal temperature distribution
DP Optimization Problem

- There are multiple feeders for control
- A feeder is assumed to supply several large air-conditioner loads or groups of air-conditioner loads
- A group of air-conditioner load is an aggregation of several individual smaller air-conditioners that have the same thermostat setting and similar duty cycles
- Dynamic model for air-conditioner loads applied in optimization algorithm (proposed by Schweppe and Ihara in 1982)
- Small-signal stability boundary for Nordic system at the distribution level

\[
0.50953 (P_{51_1} + P_{51_2} + P_{51_3} + P_{51_4} + P_{51_5}) = 100 - 0.51715 (P_{61_1} + P_{61_2} + P_{61_3} + P_{61_4} + P_{61_5})
\]

- Add artificial constraints that ensure effective cycling among different load circuits
 - A) Maximum Off-time and Minimum On-time
 - B) Constraint on internal temperature excursion
 (LIPAEEdge direct load control program in 2002)
DP Results – Cycling Time Constraints

Without control

Max. OFF time = 4 min, Min. ON time = 2 min

Max. OFF time = 2 min, Min. ON time = 2 min
DP Results – Cycling Time Constraints

Maximum off-time = 3 min
Minimum on-time = 2 min

Maximum off-time = 5 min
Minimum on-time = 2 min

With no cycling time constraints

No on/off time constraint for Circuit 10
DP Results – Effect of Diversity

- **Initial temp. N(79,4)**
 - Thermostat N(72,2)

- **Initial temp. N(79,20)**
 - Thermostat N(72,2)

- **Initial temp. N(79,4)**
 - Thermostat N(72,5)
DP Results – Temperature Excursion Constraints

Avg. temp constraint of 78 F for all circuits

Avg. temp constraint of 75 F for all circuits
Water Heater Control Decision Tree Algorithm

At time t

- Check perf. boundary violation at $t+1$
 - No violation
 - Check if any group was previously off due to control in ascending order of time
 - Yes
 - Switch on groups previously off
 - Check perf. boundary violation at $t+1$
 - No violation
 - All groups switched on?
 - Yes
 - All previous time intervals taken care of?
 - No
 - Stop
 - Yes
 - Increment time
 - No
 - Stop
 - No
 - Violated
 - Switch off groups of water heaters that would be switched on at $t+1$
 - No violation
 - All groups tried?
 - No
 - Decrement time
 - Yes
 - Check perf. boundary violation at $t+1$
 - No violation
 - All groups tried?
 - No
 - Stop
 - Yes
 - All previous time intervals tried?
 - No
 - Stop
 - Yes
 - Violated
 - Yes
 - Switch off groups of water heaters previously switched on and that contribute to load at $t+1$
 - No violation
 - All groups tried?
 - No
 - Stop
 - Yes
 - All previous time intervals tried?
 - No
 - Stop
 - Yes
 - Violated
 - No
 - Check perf. boundary violation at $t+1$
 - No violation
 - All groups tried?
 - No
 - Stop
 - Yes
 - All previous time intervals tried?
 - No
 - Stop
 - Yes
 - No

- Yes
 - Switch on groups previously off
 - Check perf. boundary violation at $t+1$
 - No violation
 - All groups switched on?
 - Yes
 - All previous time intervals taken care of?
 - No
 - Stop
 - Yes
 - Increment time
 - No
 - Stop
 - No
 - Violated
 - Switch off groups of water heaters that would be switched on at $t+1$
 - No violation
 - All groups tried?
 - No
 - Decrement time
 - Yes
 - Check perf. boundary violation at $t+1$
 - No violation
 - All groups tried?
 - No
 - Stop
 - Yes
 - All previous time intervals tried?
 - No
 - Stop
 - Yes
 - No

- Stop
Example: Water Heater Usage Pattern

<table>
<thead>
<tr>
<th>Time interval (in minutes)</th>
<th>Usage (in Numbers)</th>
<th>Cumulative usage considering on time (= 60 minutes)</th>
<th>Water heater load (controllable load) in MW (Avg. heater rating = 4 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20 – 40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40 – 60</td>
<td>400</td>
<td>400</td>
<td>1.6</td>
</tr>
<tr>
<td>60 – 80</td>
<td>600</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>80 – 100</td>
<td>750</td>
<td>1750</td>
<td>7</td>
</tr>
<tr>
<td>100 – 120</td>
<td>900</td>
<td>2250</td>
<td>9</td>
</tr>
<tr>
<td>120 – 140</td>
<td>1000</td>
<td>2650</td>
<td>10.6</td>
</tr>
<tr>
<td>140 – 160</td>
<td>850</td>
<td>2750</td>
<td>11.0</td>
</tr>
<tr>
<td>160 – 180</td>
<td>800</td>
<td>2650</td>
<td>10.6</td>
</tr>
<tr>
<td>180 – 200</td>
<td>600</td>
<td>2250</td>
<td>9</td>
</tr>
<tr>
<td>200 – 220</td>
<td>480</td>
<td>1880</td>
<td>7.52</td>
</tr>
<tr>
<td>220 – 240</td>
<td>200</td>
<td>1280</td>
<td>5.12</td>
</tr>
<tr>
<td>240 – 260</td>
<td>0</td>
<td>680</td>
<td>2.72</td>
</tr>
<tr>
<td>260 – 280</td>
<td>0</td>
<td>200</td>
<td>0.8</td>
</tr>
<tr>
<td>280 – 300</td>
<td>0</td>
<td>200</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Example: Control Algorithm

Performance boundary

![Graph showing performance boundary](image-url)
Conclusions

- Direct load control for stability enhancement
 - Robustness
 - Ease of coordination
 - Technology has evolved to make control of distributed resources feasible
 - Economic viability as DA infrastructure can be utilized
 - Market-based operation resolves issues related to security costs
 - Institutional framework being developed
 - Good potential to utilize market framework developed for other load control programs
Conclusions – Contributions of this Work

• Comprehensive effort to examine the feasibility, framework and issues for the application of direct load control for stability enhancement

• Direct load control on power system dynamic security
 - Development of analysis framework for preventive load modulation
 - Development of two fundamentally different approaches for analyzing amount of load modulation for desired stability performance
 - Demonstrated accuracy of framework, analysis approaches, robustness of the scheme

• Specialized algorithms for implementing real-time control of thermal loads
 - Optimization approach for load modulation in real-time
 - Detailed study of the impact of constraints and parameters involved using Monte Carlo simulations
 - Useful insights for demand side management with minimum disruption
 - In line with recent direct load control programs executed recently