New angles for monitoring power system area stress with synchrophasors

Ian Dobson
University of Wisconsin-Madison

PSerc Webinar
September 2010

Funding in part from California Energy Commission and coordinated by DOE CERTS is gratefully acknowledged

© Ian Dobson 2010
We combine together phasor measurements along the border of an area to get angles across the area that measure total, internal, and external stress of area.
Some overall objectives

• Improve on measuring stress with synchrophasor voltage angle difference between 2 buses

• Distill meaningful and actionable information about a specific area of a large power system from synchrophasor monitoring.
Angle for a single line in DC load flow

电压相量
角度垂线

角度垂线

线性电感

实际功率通过线路

We want to get angle across an area to work in the same way
Area R with border buses

- Phasor measurements at *all* the buses that are on the border of area
- Border buses are divided into sets M_a and M_b
- We will define angle across area from M_a to M_b
- Use DC load flow model of area
Reduction of area R to single line equivalent

Define: angle across area $\hat{\theta}_{ab}$
area susceptance b_{ab}

Power through area $= b_{ab} \hat{\theta}_{ab}$
Kron reduction retaining border buses

Equivalent susceptance matrix

\[= B_{mm} - B_{mn} B_{nn}^{-1} B_{nm} \]

Border bus power injections equivalent to all powers injected in R

\[P_R = P_m - B_{mn} B_{nn}^{-1} P_n \]
Angle $\hat{\theta}_{ab}$ across cutset is a weighted linear combination of border bus voltage angles.

Cutset susceptance is sum of cutset line susceptances.
Cutset power flow is sum of cutset line powers.
Defining cutset angle: 2 lines in cutset

Power through cutset = \(8(\theta_1 - \theta_2) + 2(\theta_3 - \theta_4)\)

\[
\hat{\theta}_{ab} = 0.8(\theta_1 - \theta_2) + 0.2(\theta_3 - \theta_4)
\]

\[
\text{Power} = 10 \hat{\theta}_{ab}
\]

circuit law

line 1-2 susceptance = 8
line 3-4 susceptance = 2

cutset susceptance = 10
total angle $\hat{\theta}_{ab}$ across area

Measures stress across area

Satisfies circuit law $\text{Power} = b_{ab} \hat{\theta}_{ab}$

... angle proportional to effective power flow through area

... angle inversely proportional to area susceptance ... responds to line trips
An area R in 225 bus WECC

Area angle $\theta_{ab} = 0.80 \theta_{ELDORADO} + 0.20 \theta_{PALOVRDE} - 1.00 \theta_{VINCENT}$

= weighted combination of border bus angles

thanks to C-C Liu for 225 bus model
Area angle base case

\[\hat{\theta}_{ab} = 10.9 \text{ degree} \]

\[b_{ab} = 91.6 \text{ p.u.} \]

100 MW transfer inside area gives +0.25 degree

100 MW transfer through area gives +0.60 degree

Line trip inside area gives +2.51 degree

Line trip outside area gives +0.38 degree
Kron reduction adds power injections P_R

Pinto is external power flowing into area R

P_R is equivalent to all powers injected in area R
total stress = external + internal stress

total power through area = \(P_{\text{into}} + Pr \)
Divide by area susceptance \(bab \) to get

total angle across area \(\hat{\theta}_{ab} = \hat{\theta}_{\text{into}} + \hat{\theta}_{R} \)

\[\hat{\theta}_{\text{into}} = \text{external stress angle} \]
\[\hat{\theta}_{R} = \text{internal stress angle} \]

Monitor \(\hat{\theta}_{ab} \) and \(P_{\text{into}} \) with synchrophasors.
Then

\[\hat{\theta}_{R} = \hat{\theta}_{ab} - \frac{P_{\text{into}}}{bab} \]
Properties of internal area angle $\hat{\theta}_R$

- Reacts to changes in injections inside area. Insensitive to injections or redispach outside area.
- Reacts to line trips inside the area. Insensitive to line trips outside area.

Internal area angle monitors specific area
Internal area angle
base case
$\theta_R = 1.07 \text{ degree}$

100 MW transfer inside area
gives $+0.24 \text{ degree}$

100 MW transfer through area
gives $+0 \text{ degree}$

line trip inside area
gives $+2.63 \text{ degree}$

line trip outside area
gives $+0 \text{ degree}$
Conclusions

• angle across area is a weighted combination of phasor measurements at boundary of area; easy to compute but needs DC load flow model to compute weights
• derived from Kron reduction and cutset angle
• area angle obeys circuit laws and monitors stress in specific area
• area angle = internal angle due to power injections inside area + angle due to power flows into area
• internal angle only responds to changes in area
Future directions

• Move towards practical application: choice of areas and PMU locations, model detail needed
• Multiple areas and model reduction
• Monitor line trips, generation changes in area
• AC load flow; complex voltages and currents
• Supply area-specific quantities for data-mining

For details, google Ian Dobson papers and download synchrophasor conference papers at 2010 HICSS, PESGM, and IREP