Grid Effects of Cloud-Induced Variation in Solar Photovoltaic Generation

Ward Jewell
Wichita State University
Power Systems Engineering Research Center
wardj@ieee.org
September 2010:

- Modules: $4.08 / W
- Inverters: $0.715 / W

PV vs. demand

Full sun

load

solar

Load (MW)

Solar (MW)

Time Period (hour)

Wind vs. Demand

Sunlight varies

Operating Reserves

Typical capacity credits

- Coal, nuclear, natural gas, oil, hydro: 100%
- Solar 60-90%
- Geothermal 80-100%
- Wind 20-40%
Cloud Modeling
Statistical model, small cumulus clouds

Simulated cloud pattern for 50% shadow cover

Distributed PV Systems

Resulting Insolation

When a squall line moves across an area with PV, all PV generation is lost.

When clouds are moving over an area with PV, PV generation varies rapidly.

Maximum PV Variability (% per minute)

Service area (km2)
When clouds are moving over an area with PV, PV generation varies rapidly.

Example:
- 1000 km² (about 400 mi²) service area
- 200 MW distributed PV
- 200 MW x 3%/minute = 6 MW/minute change

Power Flow Modeling
Public Service of Oklahoma (AEP) southeast Tulsa area
(450 square kilometers)

Power Flow Results

Public Service of Oklahoma (AEP) southeast Tulsa area

Spring, 15% Penetration

Maximum change in Power Flow

(% of Nominal Power Flow in 1 Minute)

<table>
<thead>
<tr>
<th>Cumulus Clouds</th>
<th>Squall Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>4</td>
</tr>
<tr>
<td>Ties</td>
<td>5</td>
</tr>
<tr>
<td>Lines</td>
<td>22</td>
</tr>
</tbody>
</table>

Spring, 30% Penetration

Maximum change in Power Flow

(% of Nominal Power Flow in 1 Minute)

<table>
<thead>
<tr>
<th>Cumulus Cloud</th>
<th>Squall Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>8</td>
</tr>
<tr>
<td>Ties</td>
<td>14</td>
</tr>
<tr>
<td>Lines</td>
<td>44</td>
</tr>
</tbody>
</table>

Summer, 30% Penetration

Maximum change in Power Flow

(% of Nominal Power Flow in 1 Minute)

<table>
<thead>
<tr>
<th>Squall Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Ties</td>
</tr>
<tr>
<td>Lines</td>
</tr>
</tbody>
</table>

Summer, 50% Penetration

Maximum change in Power Flow

(% of Nominal Power Flow in 1 Minute)

<table>
<thead>
<tr>
<th>Squall Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Ties</td>
</tr>
<tr>
<td>Lines</td>
</tr>
</tbody>
</table>

Power Flow Results
Public Service of Oklahoma (AEP) southeast Tulsa area

15 % distributed PV can cause:

• Transmission power flow reversal
• Transmission overloads

under certain conditions
Production Cost
Unit commitment and economic dispatch

For a system that is ramp-rate limited to 1% of load per minute:

One PV generator with capacity = 1.3% of load may exceed system ramp rate under certain cloud conditions.

Ramp rate limited system
1% of load per minute

Fluctuation in PV Output (% of installed PV capacity per minute)

PV Penetration (% of installed generation)

Marginal Prices at PV bus

- No PV
 - CO₂ $0/ton

- 300 MW (9%) PV
 - CO₂ $0/ton
 - CO₂ $50/ton
Changes in system operating cost

CO₂ $0/ton

CO₂ $50/ton

Changes in CO$_2$ emissions

Energy Storage to Relieve Congestion

Operations with storage

Research supported by
Power Systems Engineering Research Center
(pserc.org)
Kansas Electric Utilities Research Program
Public Service of Oklahoma (AEP)

Ward Jewell
Wichita State University
Power Systems Engineering Research Center
wardj@ieee.org