Renewable Electricity Futures

Trieu Mai
Electricity Modeling Supervisor
National Renewables Energy Lab

PSERC Public Webinar
Tuesday, September 4, 2012
2:00-3:00 p.m. Eastern Time (11:00-12:00 p.m. Pacific)

Description

RE Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and uncertainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/re_futures/.

Biography: Dr. Trieu Mai is one of the lead authors and analysts for the Renewable Electricity Futures study, an NREL report that explores the technical issues and implications of high renewable electricity deployment in the U.S. Dr. Mai is currently the supervisor for the electricity modeling section of the Strategic Energy Analysis Center at the National Renewable Energy Laboratory. His particular interest is in capacity expansion and dispatch modeling of the electricity sector. Before coming to NREL, Dr. Mai worked in the intellectual property field in Silicon Valley. He earned his PhD in theoretical physics from the University of California Santa Cruz.

Speaker Contact Information: Trieu Mai, Trieu.Mai@nrel.gov

Registration for Webinar Participation: None required. There is no charge for participating!
Participation by Webinar: We will be using the Adobe Connect 8 webinar platform. You will be able to watch the presentation slides on your computer from the designated site http://asu.adobeconnect.com/pserc/ and listen to the webinar through your computer’s speakers or headphones. Click here for the connection details and instructions for testing your connection. If you cannot hear the presenter, check to make sure your speaker is not muted in Adobe Connect. Access is limited. However, the webinar will be archived so it can be watched later. You can also get the audio over the public phone bridge at 712-432-0800 (passcode: 937250#).

Professional Development Hour Certification: PDH certification is available for PSERC members (only). Send an email requesting PDH certification to pserc@asu.edu with the subject “PDH” after the seminar. Include the name and title of each participant.

Assistance: If you have any questions, please call 480-965-1643 or email pserc@asu.edu.

PSERC’s Webinar Coordinator
Ward Jewell, Wichita State University
Email: ward.jewell@wichita.edu
Ward welcomes feedback on the webinars and suggestions for future ones.