The Future of Distribution Systems in the Deregulated Environment:
Opportunities and Challenges

S. S. Venkata
Iowa State University

PSERC Internet Seminar Series
March 6, 2001

© 2001 Iowa State University. All rights reserved.
Presentation Outline

- Historical Perspective
- Current Dilemma
- Emerging Future: Driving forces
- Creative Responses to Changing Culture
- Crystal Ball Predictions for Future
Historical Perspective

- Most Attention on Bulk Systems
- Capital Intensive
- Benign Neglect
- Poor Planning
- Inefficient Operation
- No Respect for Cost
Current Dilemma

- Deregulation or Re-regulation is a Fact
- Electricity is Expensive
- Global Demand Increasing
- National Economic Growth
- Population Growth
- Better Awareness of Public
- Higher Expectations from Customers
Emerging Future

- Driving Forces
 - Market Needs
 - Regulatory Agencies
 - Technological Issues
Emerging Future - Markets

Markets: Keyword is - Need

- Diverse needs of Markets
 - Large Industrial Customers
 - Residential Customers
 - Generation and Transmission Companies
 - Distribution Companies
Market Needs

- **Large Industrial Customers Need**
 - Highly Reliable Power Supply
 - High Power Quality
 - Controllability of:
 - Frequency (For Variable-speed drives)
 - Wave Shape (As in Rectifiers/Inverters)

- **Residential Customers Want**
 - Low-Cost Energy
Market Needs

- **Generation and Transmission Companies Need:**
 - **Local Support**
 - Peak Load, Stand-by Reserve
 - Ancillary Services
 - Power Quality
 - Reliability
 - Reactive Power
 - **Distribution Companies Need:**
 - **Reduced O&M Costs**
 - Improved Reliability
 - System-wide SCADA
 - Performance Based Rate Making
Emerging Future - Regulation

Regulators: Keyword is - Ensure

- Obligation to Protect Interests of
 - People
 - Safety of personnel and equipment
 - Small and Large Businesses
 - Fair-play
 - Environment
 - Clean/Green Technologies

- Federal Energy Regulatory Commission
- Public Utility Commissions (State)
Regulatory Issues

- Uncoordinated proliferation of distributed generation equipment can lead to serious safety problems.

- Typically, development of market and engineering infrastructure precedes "regulation".
 - Use experiences from other countries.
Regulatory Challenges

- Develop procedures for installation and operation of distributed resources

- Develop measures and calculation methods for assessing reliability and power quality of new distribution technologies
Emerging Future - Technology

- Technology: Keyword is - Facilitate

- Technological Break-throughs
 - Power Generation
 - Optimization Techniques for Resource Utilization
 - Communication Technologies
 - Power Electronic Devices
Technological Solutions

Distributed Generation
- Micro Turbines
- Fuel Cells

High Power Electronics
- Controllers for Drives
- Power Supplies
- Power Quality Modulators

Communication and Information
- Micro-sensors
- Metering Technology

Economics of Reliability
- Reliability Centered Maintenance Techniques
Distributed Generation

- **EPRI Estimate**
 - 25% of the new generation facilities by the year *2010* Distributed would be Distributed resources

- **Distributed Generation Technologies**
 - Micro turbine
 - Fuel Cell
 - Battery
 - Flywheel
Distributed Generation Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Size</th>
<th>Efficiency</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Turbine</td>
<td>25-100 kW</td>
<td>25-30%</td>
<td>$350 / kW</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>20-2,000 kW</td>
<td>30-45%</td>
<td>$2,000 / kW</td>
</tr>
<tr>
<td>Micro Turbine + Fuel Cell</td>
<td>100-2,000 kW</td>
<td>60-70%</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>10-500 kWh</td>
<td>70-80%</td>
<td>$500 / kWh</td>
</tr>
<tr>
<td>Fly-wheel</td>
<td>2-100 kWh</td>
<td>70-80%</td>
<td></td>
</tr>
</tbody>
</table>
Problem Areas

- **Speed of response**
 - Most systems are sluggish
 - Need back-up storage devices

- **Control and dispatch** a large number of distributed generators

- **Protection coordination**
 - Fault location
 - Isolation
 - Restoration coordination
Resource Utilization

Economics of Reliability

* Budgeting for preventive maintenance is mostly by heuristics*

* Optimization principles must be used right from planning stage*

* Optimum planning requires knowledge of*
 - fault cause models,
 - utility and customer cost of outages, and
 - cost of maintenance
Resource Utilization

- **Problem of aging equipment:** Need-
 - Accurate models for failure mechanisms
 - Realistic estimates of cost of outages

- **A program very much in use is:**
 - RCM and Condition Monitoring for substation transformers

- **Need to develop similar techniques for other distribution system equipment**
 - Example: Monitor exposure of:
 - overhead lines to trees
 - insulators to pollution
Resource Allocation

- **Economics of Reliability**
 - Performance based rate making (PBR)
 - Customer pays less for power that is expected to be “a little less reliable”!
 - “A little less reliable” ≠ Unreliable!!
 - Helps the utility to **focus planning-resources** on the more “critical” customers
Communication Technologies

- Advanced *micro-sensors* for *distribution system* SCADA

- Benefits include
 - Enhanced *fault-location* and isolation
 - *Condition-monitoring* of field equipment
 - *Real-time* customer loads

- *Cost* is still a concern
Power Electronics Solutions

- **Power Electronic (PE) Devices**
 - Large number of PE controllers installed on customer premises
 - Variable speed drives
 - Phase-angle regulators in fans
 - Rectifiers and inverters
Problem Areas

- Seen from line side, most PE devices are highly non-linear loads

- They generate a wide variety of:
 - Power Quality (PQ) harmonics
 - Voltage sag
 - Flicker problems

- What is the impact of PQ on performance of:
 - Distribution protection equipment?
 - Distribution SCADA systems?
Concluding Remarks

Creative and innovative ways to organize DISCO’s role to bundle the service that best fits the customer needs:

- Radical cultural change
- Flexibility

Customer satisfaction:

- Rate based price structure vs. Power quality and reliability based pricing

Distributed generation
Concluding Remarks

- **Innovation is the key**
 - There is always a **use** and a **need** for an **innovative product**

- **Regulators should** **preserve** the **incentive for innovators** of technology
Concluding Remarks

- Tremendous engineering innovation is currently involved in shaping the future.

- There are a wide variety of market players facilitating this development.

- Independent regulatory effort is needed for a smooth and coordinated transition into the future.
Concluding Remarks

- We are faced with a significant number of open questions.

- With all these changes distribution systems have become a fertile ground for:
 - Innovators
 - Investors
 - Investigators
Crystal Ball Predictions for Future

- Systems will become More Complex
- Optimum Planning & Operation is Imminent for Efficiency Improvement
- Adopt New Technologies
- Adapt to Changing Culture
- Why Sinusoidal Systems?
- Totally Independent Customer Owned Systems?
- Why Distribution be Radial?