ASSESSMENT OF TRANSMISSION CONGESTION IMPACTS ON ELECTRICITY MARKETS

presentation by

George Gross

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

PSERC 2003 Seminars

Tuesday, November 4, 2003
OUTLINE

- Transmission-unconstrained markets
- Transmission-constrained markets
- Market performance metrics
- Measures of congestion impacts
- Congestion and local market power
- Congestion impact evaluation examples in various systems
THE TIME FRAME FOR MARKETS

- We define one hour as the smallest indecomposable unit of time and focus on a specified hour h.
- We discuss the market decisions for that specified hour.

Markets decisions:

- Year-ahead (h-year)
- Month-ahead (h-month)
- Day-ahead (h-day)
- Specified hour
- Settlement time ($h + \text{month}$)
THE CENTRALIZED ELECTRICITY MARKET (CEM)

- We discuss the structure of the forward market by examining the day-ahead centralized electricity market.
- In fact, the day-ahead market is a collection of 24 separate commodity markets, one for each hour of the day; we focus on the market corresponding to the specified hour h and suppress the hour h in our notation.

$h - year$ $h - month$ $h - day$ h $h + month$
CEM STRUCTURE

seller 1 \[M\text{Wh} \] \[\$ \] \[M\text{Wh} \] \[\$ \] \[M\text{Wh} \] \[\$ \] seller \(i \)

buyer 1

buyer \(j \)

buyer \(N \)

CEM operator
CEM PARTICIPANTS

- The CEM *operator* is in charge of this market and uses auctions to determine the prices and quantities bought and sold for each hour.
- Sellers are generation entities and brokers/marketers.
- Buyers are consumers, brokers/marketers, distribution entities and generation entities.
THE COMPETITIVE ELECTRICITY MARKET

- Sellers and buyers in the market submit sealed offers and bids, respectively, describing the price and quantity at which they are willing to sell/buy energy.
- The CEM operator determines the successful offers and bids and the market clearing price by maximizing the social surplus.
- The auction results determine the unit commitment and dispatch of the physical units.
SELLER \(i \) OFFER AND COSTS

The costs of seller \(i \) are given by the area under the curve:

\[
C_i(p_{S_i}) = \int_0^{p_{S_i}} \alpha_i(\xi) d\xi
\]

With offer curve \(\alpha_i(p_{S_i}) \) and price range \([p_{S_i}^{\min}, p_{S_i}^{\max}] \).
BUYER j BID AND BENEFITS

The benefits of buyer j are given by the area under the curve

$$\mathcal{B}_j(p_{Bj}) = \int_0^{p_{Bj}} \beta_j(\xi) d\xi$$
THE SOCIAL WELFARE

The social welfare is defined as the total benefits of the buyers minus the total costs of the sellers:

\[S \triangleq \sum_{j=1}^{N} B_j(P^{B_j}) - \sum_{i=1}^{M} C_i(P^{S_i}) \]

- **social welfare**
- **total benefits**
- **total costs**
MAXIMIZATION OF THE SOCIAL WELFARE

- The objective in markets is to maximize the social welfare, so as to determine the maximum net benefits for society.
- We neglect the transmission network constraints.
- The CEM operator solves the resulting optimization problem to determine the successful offers and bids.

\[
\begin{align*}
\text{max } & \quad S = \sum_{j=1}^{N} B_j(p_{B_j}) - \sum_{i=1}^{M} C_i(p_{S_i}) \\
\text{s.t. } & \quad \sum_{j=1}^{N} p_{B_j} = \sum_{i=1}^{M} p_{S_i} \quad \text{supply-demand balance}
\end{align*}
\]
MAXIMIZATION OF THE SOCIAL WELFARE

$/MWh

demand curve

market clearing price

social welfare

supply curve

market clearing equilibrium point

MWh/h

market clearing quantity
The market clearing price ρ^* (system marginal price) is the change in the social welfare for a unit change in the market clearing quantity.

Each seller receives ρ^* from the CEM operator for each MWh sold.

Each buyer pays ρ^* to the CEM for each MWh bought.

The market clearing price is different from the offer/bid price of nearly every player.
THE THREE-BUS SYSTEM EXAMPLE

lossless system

S_1 ~ S_2

bus 1 ~ bus 2

B_1 ~ B_2

B_3

S_3

$\mathbf{f}_{13}^{\text{max}} = 200 \text{ MW}$

$\mathbf{j} 0.1$

$\mathbf{j} 0.1$

$\mathbf{j} 0.1$

© 2003 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
THREE-BUS SYSTEM: OFFERS AND BIDS

\[S_1 \]
\[\begin{array}{c}
10 \\
5 \\
\end{array} \]
\[\begin{array}{c}
300 \\
600 \\
\end{array} \]

\[B_1 \]
\[\begin{array}{c}
70 \\
50 \\
\end{array} \]
\[\begin{array}{c}
200 \\
300 \\
\end{array} \]

\[S_2 \]
\[\begin{array}{c}
20 \\
10 \\
\end{array} \]
\[\begin{array}{c}
200 \\
600 \\
\end{array} \]

\[B_2 \]
\[\begin{array}{c}
80 \\
60 \\
\end{array} \]
\[\begin{array}{c}
200 \\
400 \\
\end{array} \]

\[S_3 \]
\[\begin{array}{c}
29 \\
20 \\
\end{array} \]
\[\begin{array}{c}
200 \\
450 \\
\end{array} \]

\[B_3 \]
\[\begin{array}{c}
300 \\
\end{array} \]
\[\begin{array}{c}
800 \\
\end{array} \]

© 2003 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
THREE-BUS SYSTEM: TRANSMISSION UNCONSTRAINED EQUILIBRIUM

\[S = 265,600 \]

\[\lambda^* = 29 \]

<table>
<thead>
<tr>
<th>MWh/h</th>
<th>$/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 @ 5</td>
<td>300 @ 10</td>
</tr>
<tr>
<td>200 @ 10</td>
<td>400 @ 20</td>
</tr>
<tr>
<td>200 @ 20</td>
<td>100 @ 50</td>
</tr>
<tr>
<td>100 @ 29</td>
<td>1500</td>
</tr>
</tbody>
</table>

© 2003 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
UNCONSTRAINED SYSTEM REVENUES AND PAYMENTS

<table>
<thead>
<tr>
<th>participant</th>
<th>quantity [MWh]</th>
<th>price [$/MWh]</th>
<th>revenue [$]</th>
<th>payments [$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>600</td>
<td>29</td>
<td>17400</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>600</td>
<td>29</td>
<td>17400</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>300</td>
<td>29</td>
<td>8700</td>
<td>-</td>
</tr>
<tr>
<td>B1</td>
<td>300</td>
<td>29</td>
<td>-</td>
<td>8700</td>
</tr>
<tr>
<td>B2</td>
<td>400</td>
<td>29</td>
<td>-</td>
<td>11600</td>
</tr>
<tr>
<td>B3</td>
<td>800</td>
<td>29</td>
<td>-</td>
<td>23200</td>
</tr>
<tr>
<td>total</td>
<td>1500</td>
<td>29</td>
<td>43500</td>
<td>43500</td>
</tr>
</tbody>
</table>
MARKET PERFORMANCE BASIC MEASURES

- The social welfare is a measure of the performance of the market as a whole but it does not provide insights about the performance of the individual players.

- We define two components of social welfare:
 - producer surplus
 - consumer surplus
For a seller i, the *individual producer surplus* measures the difference between the revenues received for the sale at the *market clearing price* and those that would be received at the offer price:

$$S_i^S = \rho^* \cdot p_{S_i} - C_i(p_{S_i}) \quad i = 1, \ldots, M$$

The total *producer surplus* is

$$S^S = \sum_{i=1}^{M} S_i^S$$
CONSUMER SURPLUS

For each buyer \(j \), the *individual consumer surplus* measures the difference between the payments for the commodity at the bid prices of the buyer and those at the *market clearing price*

\[
S_j^B = B_j(p_{B_j}) - \rho^* \cdot p_{B_j} \quad j = 1, \ldots, N
\]

- The total *consumer surplus* is

\[
S^B = \sum_{j=1}^{N} S_j^B
\]
THREE-BUS SYSTEM: TRANSMISSION UNCONSTRAINED EQUILIBRIUM

$/MWh

$MWh/h

$\lambda^* = 29$

© 2003 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
THREE-BUS SYSTEM: TRANSMISSION UNCONSTRAINED DISPATCH

\[f_{13}^{\text{max}} = 200 \text{ MW} \]

\[B_1 = 300 \text{ MW} \]

\[S_1 \sim 600 \text{ MW} \]

\[B_2 = 400 \text{ MW} \]

\[S_2 \sim 600 \text{ MW} \]

\[B_3 \]

\[S_3 \sim \]

\[800 \text{ MW} \]

\[300 \text{ MW} \]

IGO

lossless system

\[\lambda^* = 29 \]
THREE-BUS SYSTEM: PTDFs
THREE-BUS SYSTEM: TRANSMISSION UNCONSTRAINED DISPATCH

\[f_{13} = \frac{2}{3} \cdot 300 + \frac{1}{3} \cdot 200 = 266.67 \]

violation of the line constraint since \(f_{13} > f_{13}^{\text{max}} \)

\[\lambda^* = 29 \]
THREE-BUS SYSTEM: TRANSMISSION UNCONSTRAINED DISPATCH

- The transmission unconstrained dispatch is infeasible because the line flow f_{13} violates limit f_{13}^{max}.

- The net injections at buses 1 and 2 have to be modified to drive the network to feasibility.

- The only choice of buyer B_3 is to bid sufficiently high to induce seller S_3 to provide supply to meet his load.
SOCIAL WELFARE MAXIMIZATION UNDER TRANSMISSION CONSTRAINTS

\[
\text{max } S = \sum_{j=1}^{N} B_j(p_{B_j}) - \sum_{i=1}^{M} C_i(p_{S_i})
\]

s.t.
\[
g_n(p_{S_1}, \ldots, p_{S_M}; p_{B_1}, \ldots, p_{B_N}) = 0 \quad \forall \text{ node } n
\]

\[
f_\ell(p_{S_1}, \ldots, p_{S_M}; p_{B_1}, \ldots, p_{B_N}) \leq f_\ell^{\text{max}} \quad \forall \text{ line } \ell
\]
CONGESTED LINE AND SYSTEM

- We call a transmission line \(\ell \) congested if the real power line flow violates the line limit, i.e., the corresponding inequality constraint becomes binding:

\[
f_\ell(p_{S_1}, \ldots, p_{S_M}; p_{B_1}, \ldots, p_{B_N}) = f_\ell^{\text{max}}
\]

- We call the transmission system congested if there are one or more congested lines in the network.
CONGESTION

- Power system reliability considerations require secure operations not only under base case conditions but also under the set of postulated contingency cases.
- Congestion occurs if one or more limit violations are detected either under the base case or in any of the contingency cases.
- The incorporation of transmission considerations requires the representation of the base case and all the postulated contingency cases.
THREE-BUS SYSTEM: TRANSMISSION UNCONSTRAINED DISPATCH

- The transmission unconstrained dispatch is infeasible because the line flow f_{13} violates limit f_{13}^{max}.

- The net injections at buses 1 and 2 have to be modified to drive the network to feasibility.

- The only choice of buyer B_3 is to bid sufficiently high to induce seller S_3 to provide supply to meet his load.
THREE-BUS SYSTEM: ENSURING TRANSMISSION FEASIBILITY

\[
(300 - x) \, MW \quad \rightarrow \quad 1 \quad \rightarrow \quad 2 \quad \rightarrow \quad (200 - 2x) \, MW
\]

\[
(500 - 3x) \, MW
\]

\[
\frac{2}{3} \cdot (300 - x) + \frac{1}{3} \cdot (200 - 2x) = 200 \, MW
\]
THREE-BUS SYSTEM: REDISPATCH OF SUPPLY

- x is the amount of redispatch due to the impacts of the f_{13}^{max} constraint on seller S_1.
- $2x$ is the amount of redispatch due to the impacts of the f_{13}^{max} constraint on seller S_2.

Redispatch calculation:

\[
\frac{2}{3} \cdot (300 - x) + \frac{1}{3} \cdot (200 - 2x) = 200 \text{ MW}
\]

so that

\[
x = 50 \text{ MW}
\]
THREE-BUS SYSTEM: REDISPATCH OF SUPPLY

- Then, the IGO reduces the output of seller S_1 by 50 MW and that of seller S_2 by 100 MW.
- Since there is a willingness to pay by the buyer B_3, the IGO increases the output of seller S_3 by 150 MW.
- The constrained dispatch changes the output of each seller and may impact the load supplied to buyer B_3.
THREE-BUS SYSTEM: TRANSMISSION CONSTRAINED DISPATCH

\[S_1 \sim 550 \text{ MW} \]

\[S_2 \sim 500 \text{ MW} \]

\[b_{13}^{\text{max}} = 200 \text{ MW} \]

\[B_1 \sim 300 \text{ MW} \]

\[B_2 \sim 400 \text{ MW} \]

\[B_3 \sim 800 \text{ MW} \]

\[S_3 \sim 450 \text{ MW} \]

lossless system
THREE-BUS SYSTEM: \textit{LMPs}

\[\begin{align*}
\lambda_1^* &= 10 \\
\lambda_2^* &= 20
\end{align*} \]

\textit{lossless system}
THREE-BUS SYSTEM: \(LMPs \)

\[
S_1 \sim 550 + \Delta P_1 \text{ MW} \quad 500 + \Delta P_2 \text{ MW} \sim S_2
\]

\[
\lambda_1^* = 10 \quad \lambda_2^* = 20
\]

Lossless system

\[
\begin{align*}
B_1 & = 300 \text{ MW} \\
B_2 & = 400 \text{ MW}
\end{align*}
\]

\[
\begin{align*}
\Delta P_1 + \Delta P_2 & = 1 \\
\frac{2}{3} \cdot \Delta P_1 + \frac{1}{3} \cdot \Delta P_2 & = 0 \\
\Delta P_1 & = -1 \\
\Delta P_2 & = 2
\end{align*}
\]
THREE-BUS SYSTEM: $LMPs$

$S_1 \sim 550 \text{ MW}$
$S_2 \sim 500 \text{ MW}$

$\lambda_1^* = 10$
$\lambda_2^* = 20$

$B_1 = 300 \text{ MW}$
$B_2 = 400 \text{ MW}$

Ico

$\lambda_3^* = 2 \cdot 20 + (-1) \cdot 10 = 30$

$B_3 = 800 \text{ MW}$
$S_3 \sim 450 \text{ MW}$

lossless system
THREE-BUS SYSTEM: \(\text{LMPs} \)

\[
\begin{align*}
\lambda_1^* &= 10 \\
\lambda_2^* &= 20 \\
\lambda_3^* &= 30
\end{align*}
\]

\[
\begin{align*}
S_1 &\sim 550 \text{ MW} \\
S_2 &\sim 500 \text{ MW} \\
B_1 &\sim 300 \text{ MW} \\
B_2 &\sim 400 \text{ MW} \\
f_{13}^{\text{max}} &= 200 \text{ MW} \\
B_3 &\sim 800 \text{ MW} \\
S_3 &\sim 450 \text{ MW}
\end{align*}
\]

lossless system
SOCIAL WELFARE AND SURPLUSES

$/MWh

consumer surplus

producer surplus

MWh/h
SOCIAL WELFARE AND SURPLUSES

$/MWh

consumer surplus

$/MWh

ρ_B

congestion rents

ρ_S

market efficiency loss

dead-weight loss

producer surplus
IMPACTS OF CONGESTION

- Congestion in the system leads to a change from the single market equilibrium point to different nodal equilibrium points.
- Change in the preferred schedule for the required generation – demand balance may lead to possible curtailment in production or consumption.
- The individual surpluses of the players change from the unconstrained market values to those in the markets at each bus under constrained conditions.
CONGESTION MEASURES

- The impacts of congestion may be measured in terms of the energy that needs to be redispached and/or the financial costs on the various players.

- Measures of congestion impacts in $
 - redispach costs
 - congestion rents
 - market efficiency loss
CONGESTION RENTS

- In the constrained case we have different prices at the different zones, so the players may face different clearing prices depending on their locations.

- The social welfare in this case is given by

\[
S^\ast = S^S + S^B + \sum_{j=1}^{N} \rho_j \cdot p_{Bj} - \sum_{i=1}^{M} \rho_i \cdot p_{Si} + \kappa
\]

where **\kappa** represents the congestion rents.
CONGESTION RENTS

- In the constrained case, the congestion rents are part of the social welfare
 \[S^\hat{} = S^{\hat{}B} + S^{\hat{}S} + \kappa \]

- The congestion rents are also known as *merchandising surplus* and correspond to the difference between the amounts paid by buyers and the amounts received by sellers; the congestion rents are collected by the IGO.
Market Efficiency Loss

- Congestion may produce a reduction in the social welfare of the market due to the physical network constraints.

- This reduction is called *market efficiency loss* and is defined by

\[
\tilde{E} = - (S_c - S_u)
\]

- In economics, the *market efficiency loss* is also known as *deadweight loss*.
THREE - BUS SYSTEM: MARKET EFFICIENCY LOSS

- For the unconstrained case we have

\[S \bigg|_u = 265,600 \]

- For the constrained case we have

\[S \bigg|_c = 263,750 \]

- The market efficiency loss is

\[\mathcal{E} = - \left(S \bigg|_c - S \bigg|_u \right) = 1,850 \]
THREE - BUS SYSTEM: CONSTRAINED CASE

<table>
<thead>
<tr>
<th>seller</th>
<th>surplus ($)</th>
<th>buyer</th>
<th>surplus ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B_1</td>
<td>16,000</td>
</tr>
<tr>
<td>S_1</td>
<td>1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td>2,000</td>
<td>B_2</td>
<td>20,000</td>
</tr>
<tr>
<td>S_3</td>
<td>2,250</td>
<td>B_3</td>
<td>216,000</td>
</tr>
<tr>
<td>total</td>
<td>5,750</td>
<td>total</td>
<td>252,000</td>
</tr>
</tbody>
</table>

| congestion rents ($) | 6,000 |
| social welfare ($) | 263,750 |
CAUSES OF SOCIAL WELFARE REDUCTION

- The redispatch of higher-priced units to replace the output of the lower-priced generation
- The decrease in market efficiency
- The decrease in the producer surplus of some sellers
- The decrease in the consumer surplus of some buyers
- The needs for ancillary services provided by sellers charging higher prices
- The creation of situations that may lead to the exercise of market power
ADDITIONAL CONGESTION IMPACTS

- Increase of costs for delayed connection of new generation
- Reduction in reliability
- Pollution from older and less efficient plants that must be operated only for reliability purposes
THREE-BUS SYSTEM: \(LMPs \)

\[
\begin{align*}
S_1 &\sim 550 \text{ MW} \\
\lambda_1^* &= 10 \\
S_2 &\sim 500 \text{ MW} \\
\lambda_2^* &= 20 \\
B_1 &\sim 300 \text{ MW} \\
\lambda_3^* &= 30 \\
S_3 &\sim 450 \text{ MW} \\
B_2 &\sim 400 \text{ MW} \\
\end{align*}
\]

LOSSLESS SYSTEM
We investigate the impacts of changing the offer of seller S_3 for his second block by varying the offer price from 29 to 330 \$/MWh; the other offers/bids remain unchanged.

We evaluate the resulting surpluses for the various values of the offers submitted.
THREE-BUS SYSTEM: λ_3^* AND S_{S_3}

The graph shows the offer for the last block of seller S_3 in $$/MWh. The price interval where increasing price does not impact the market outcomes is highlighted. The graph also indicates λ_3^* and S_{S_3}. © 2003 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
THREE-BUS SYSTEM: PRODUCER SURPLUS

offer for the last block of seller S_3 in $$/MWh

S_1, S_2, S_3
THREE-BUS SYSTEM: CONSUMER SURPLUS

offer for the last block of seller S_3 in $$/MWh

S_{B_1}

S_{B_2}

S_{B_3}
THREE-BUS SYSTEM: MARKET PERFORMANCE MEASURES

congestion rents

market efficiency losses

offer for the last block of seller S_3 in $$/MWh$
LOCAL MARKET POWER

Market power is the ability of a firm to profitably raise the price of a product.

The exercise of market power may be carried out by:

- the physical withholding of units
- the financial withholding of units

Transmission constraints may create locational market power since they may set up area markets with limited importing capability.
SIMULATION STUDIES

- A seller changes his offer prices by varying the offer price for the last block offered.
- We study the resulting variations of the producer surplus, consumer surplus, congestion rents and market efficiency loss.
- The simulations performed on different systems of various sizes are reported.
THE SEVEN-BUS SYSTEM EXAMPLE

<table>
<thead>
<tr>
<th>offers</th>
<th>S_1</th>
<th>200@5</th>
<th>600@10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_3</td>
<td>200@40</td>
<td>100@60</td>
</tr>
<tr>
<td></td>
<td>S_4</td>
<td>200@10</td>
<td>300@15</td>
</tr>
<tr>
<td></td>
<td>S_5</td>
<td>100@20</td>
<td>300@40</td>
</tr>
<tr>
<td></td>
<td>S_7</td>
<td>200@30</td>
<td>200@40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bids</th>
<th>B_1</th>
<th>100@80</th>
<th>100@50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B_2</td>
<td>200@100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>B_3</td>
<td>800@500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>B_4</td>
<td>200@140</td>
<td>200@120</td>
</tr>
<tr>
<td></td>
<td>B_5</td>
<td>100@80</td>
<td>200@50</td>
</tr>
<tr>
<td></td>
<td>B_6</td>
<td>200@120</td>
<td>200@110</td>
</tr>
<tr>
<td></td>
<td>B_7</td>
<td>100@90</td>
<td>100@50</td>
</tr>
</tbody>
</table>
SEVEN-BUS SYSTEM: PRODUCER SURPLUS

impacts of changes in the flow directions

offer for the last block of seller S_3 in $$/MWh
SEVEN-BUS SYSTEM: CONSUMER SURPLUS

Offer for the last block of seller S_3 in $\$/MWh
SEVEN-BUS SYSTEM SENSITIVITY

congestion rents

market efficiency losses

offer for the last block of seller S_3 in $\$/MWh
THE 57-BUS SYSTEM
THE 57-BUS SYSTEM: CONGESTION RENTS

offer of seller S_2 in $$/MWh
THE 57-BUS SYSTEM:
MARKET EFFICIENCY LOSS

$ \text{offer of seller } S_2 \text{ in } \$/\text{MWh}$
SIMULATION RESULTS

- Congestion situations produce, typically, changes in the consumer and social surpluses, the additional *congestion rents* component of the *social welfare*, and the market efficiency loss with respect to the unconstrained case.

- Congestion creates situations which are conducive to the exercise of market power.

- Under price-responsive demand, when a particular seller increases his offer prices, the impacts of congestion on the individual players and the entire market are bounded due to the asymptotic nature of the outcomes.
SIMULATION RESULTS

- We observe the existence of *free-riders* in the market on both the supply- and demand-sides.
- There are also players that are negatively impacted by the exercise of market power.
- The simulations underline the critical role of the network topology and the relative location of the market players in determining who are the losers and the gainers as a result in such a market power exercise attempt.
RTO CONGESTION COSTS

CAISO data excludes intra-zonal congestion ISO-NE data represents mitigated congestion costs
FUTURE WORK

- Modeling
 - incorporation of real power losses
 - detailed representation of additional constraints
 - incorporation of contingency case analysis

- Parametric analysis
 - demand-side variation
 - multiple players variation of offer/bid prices

- Study of the market efficiency loss composition
AN ALTERNATE VIEW OF CONGESTION