Fault-Tolerant Substations for the Smart Grid Vision

Alejandro D. Dominguez-Garcia
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Mladen Kezunovic
Department of Electrical and Computer Engineering
Texas A&M University

PSERC Summer Planning Workshop
Lake Tahoe, CA
August 4-7, 2008
The Smart Grid

• The **Smart grid** can be defined as using communications and modern computing to enable the current power grid to operate more efficiently, **reliably** and **safely**.

• Substations are key to achieving reliable and safe operation:
 – They serve as communication gateways
 – They are nodes that interconnect parts of the system
 – They host data acquisition and control equipment

• A fault in a substation can jeopardize the reliable and safe operation of the whole system.
Fault Tolerant Systems

- Fault tolerance \equiv Robustness \equiv Self-repair \equiv Resilience:
 - The ability of a system to adapt and compensate in a planned, systematic way to random faults of components that can cause the overall system to fail to deliver its function.

- Fault tolerance is usually achieved by redundancy and fault detection, isolation and reconfiguration (FDIR) mechanisms.

- Fault tolerance is key in safety-critical and mission-critical systems, where continuous operation is paramount.

- There is a great body of work in fault-tolerant system design in:
 - Aircraft/Aerospace
 - Computer
 - Nuclear
 - Automotive

- The establishment of rigorous foundations for Fault-tolerant system design began in the late 1960’s:
 - The Apollo spacecraft was mainly a single-string system.
 - The Space Shuttle has triple and quadruple redundancy in many of its systems, and very sophisticated FDIR mechanisms.
Legacy Substation Design

- **Switchyard architectures:**
 - Single bus-single breaker
 - Double bus with bus tie-single breaker
 - Main and Transfer bus-single breaker
 - Double bus-single breaker
 - Double bus-double breaker
 - Ring bus
 - Breaker-and-a-half bus
 - Bus and Transformer-single breaker

- **Control and protection architectures:**
 - Remote and local Back-up protection
 - Breaker failure initiate
 - Bus transfer
 - Each IED wired directly

- **Communication architecture**
 - Intrastation, interstation, station-to-control-center
 - dedicated wires for IEDs
 - Wide area protection
 - Separate communications for each enterprise system
Issues with legacy substation design (examples)

• Breaker failure initiate action results in a serious degradation of the substation functionality
• Remote back-up protection also trips healthy parts of the system
• Failure of communications between relays at line ends disables unit protection
• Process bus failure is a common mode failure for the entire substation protection and control
• RTU/SCADA failure leaves no other means for effective system control
Questions to be answered

• How fault tolerance can be combined with predictive maintenance and control to assure significantly higher level of the overall system resilience
• How fault tolerance may be used for achieving highly reliable and safe operation of the substations under N-1 contingencies
• How fault tolerance can assure substation resilience under N-m contingencies due to simultaneous faults in primary, secondary and communication systems
• How the design of fault tolerant systems may be implemented through a cost-effective retrofit and green-field approaches
• What would be the benefit over existing designs and how the impact on the overall system performance may be quantified