Security assessment: decision support tools for power system operators

James D. McCalley, jdm@iastate.edu
Iowa State University, Ames, Iowa
September 5, 2000
Overview

- Security-related decisions
- Current approach and what’s wrong with it
- Security assessment using probabilistic risk
- Illustrations
- Risk-based decision-making
- Cumulative risk assessment
- Conclusions
Security-related decisions

<table>
<thead>
<tr>
<th>Time-frame</th>
<th>Decision maker</th>
<th>Decision</th>
<th>Basis for decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line assessment (min-hours)</td>
<td>Operator</td>
<td>How to constrain the economic operation to maintain the normal state?</td>
<td>Operating rules, on-line assessment, and $$$$</td>
</tr>
<tr>
<td>Operational planning (hrs-months)</td>
<td>Analyst</td>
<td>What should be the operating rules?</td>
<td>Minimum operating criteria, reliability, and $$$$</td>
</tr>
<tr>
<td>Planning (months-years)</td>
<td>Analyst</td>
<td>How to reinforce/maintain the transmission system?</td>
<td>Reliability criteria for system design, and $$$$</td>
</tr>
</tbody>
</table>
Decision-Drivers

- Security
 - Overload security
 - Transformer Overload
 - Line Overload
 - Voltage Security
 - Low Voltage
 - Unstable Voltage
 - Dynamic Security
 - Transient (early-swing) instability
 - Oscillatory (damping) instability
Number of operating studies for determining security limits
National Grid Company, UK

1985: 3/quarter

1990: 120/week

2000: 1300/week
A Stressed System

Operator’s view at 2:10 pm, 8/12/99

200 MW flow

110%

0.95 pu volts

93%

94%
Simulation Results of a Preventive Action

Bus 1 500

Bus 1 230

Bus 1 115

Bus 2 500

Bus 2 230

Bus 2 115

103%

0 MW flow

101%

0.91 pu volts

104%
Power system “states” and actions

- Normal (secure)
 - Restorative
 - Extreme emergency. Separation, cascading delivery point interruption, load shedding
 - Alert, Not secure
 - Emergency
 - Other actions (e.g. switching)
 - Off-economic dispatch
 - Transmission loading relief procedures
 - Controlled load curtailment
Assessment and decision today

- Model current conditions
- Select contingencies
- Compute post-contingency performance
- Determine if alert (the action-trigger)
- Identify possible actions
- Select action

Perform assessment a-priori

Determine if alert (the action-trigger)

Identify possible actions

Select action

Assessment and decision today

- Model current conditions
- Select contingencies
- Compute post-contingency performance
- Determine if alert (the action-trigger)
- Identify possible actions
- Select action

Perform assessment a-priori

Determine if alert (the action-trigger)

Identify possible actions

Select action
What is wrong with this approach?

#1 Assessment is made of the past but the decision is made for the future.

#2 The decision is driven by the most severe credible contingency.
What is wrong with this approach?

- actions can come too late
- un-quantified future uncertainties requires large margin

#1
Assessment is made of the past but the decision is made for the future.
Actions can come too late;
Un-quantified uncertainties require large margin

Contingency-based flow limit

Line flow

MW

Time

Assess Action trigger Identify action set Select action

Based on the previous condition
What is wrong with this approach?

- Inaccurate assessment and consequently an inconsistent action trigger
- Selection of less effective actions
Five-bus test system for illustrating concepts

Loss of cct 1 overloads cct 2

Loss of cct 6 overloads cct 7

Loss of cct 5 creates low voltage at bus 4.
What causes the inconsistency?

- Assumption that all contingencies in selected set are of equal probability

- Ignoring risk contribution from problems that are not most constraining

- Discrete quantification of severity
What do we do then?

Model a forecasted future

using probabilistic modeling of uncertainties

and assess it with

quantitative evaluation of contingency severity
for each possible condition
Forecast the future load and transactions

- Forecasted line flow
- 95% confidence limits
- Actual line flow

Time ➔

MW Loading

Assess ➔ Action trigger ➔ Identify action set ➔ Select action ➔ (Based on future Conditions)
On-line risk-based assessment

\[
Risk(Sev \mid X_{t,f}) = \sum_i \sum_j \Pr(E_i) \Pr(X_{t,j} \mid X_{t,f}) \times Sev(E_i, X_{t,j})
\]

- Forecasted operating conditions for future time \(t \)
- Uncertainty in outage conditions
- Uncertainty in operating conditions
- Severity function
Forecasted operating conditions

Possible near-future operating conditions (bus injections)

Selected near-future contingency states

- Determine voltage instability severity for the system
- Determine low voltage severity for each bus
- Determine overload severity for each circuit
- Determine cascading severity for each circuit
Uncertainty in operating conditions...

• $X_{t,f}$ is forecasted severity measures: flows, voltages, loadability

• $X_{t,j}$ is small deviation from forecasted value due to variation (or uncertainty) in parameters k:

\[
X_{t,j} = X_{t,f} + \frac{\partial X}{\partial k} \Delta k
\]

Then, the pdf on X_{t+1} can be obtained as:

\[
\Pr(X_{t,j} \mid X_{t,f}) \sim \text{Normal}(X_{t,f}, \left[\frac{\partial X}{\partial k} \right] C \left[\frac{\partial X}{\partial k} \right]^T)
\]

C is the covariance matrix for the vector of uncertain parameters k.

22
Severity modeling

Identified by CIGRE TF 38.02.21 Task Force as most difficult problem in probabilistic security assessment.

It’s modeling should NOT depend on a pre-supposed decision as this constrains the decision space, which is the space of investigation.

LOLP, EUE, Cost of re-dispatch, as indices for use in security-related decision-making, each pre-suppose a decision and are therefore inappropriate.
Severity modeling: essential features

Definition: Severity is an unavoidable consequence of a specified condition.

It provides a quantitative evaluation of what would happen to the power system in the specified condition.

One uses it, together with probability of the condition, to decide whether to re-dispatch, call for TLR, or interrupt load.
Severity modeling

Essential features

• Simple.
• Reasonable reflection of relative severity between outcomes to enable calculation of a composite index.
• Increase continuously as the performance indicator (e.g., flow, voltage, loading margin, cascaded lines) gets worse.
• Interpretable in physical and deterministic terms.

Economic quantification is attractive but difficult and can give a false sense of precision.
Because all severity functions evaluate to 1.0 at the deterministic threshold, a risk level \(R \) may be *roughly* thought of as the expectation of the number of violations in the next hour.
Decomposability

\[
Risk(Sev \mid X_t) = \sum_i \sum_j \Pr(E_i) \Pr(X_{t+1,j} \mid X_t) \times \\
\left\{ \sum_c Sev_c(\text{Flow}_c(E_i, X_{t+1,j})) + \sum_b Sev_b(\text{Voltage}_b(E_i, X_{t+1,j})) + Sev_{VC}(\text{VCMargin}(E_i, X_{t+1,j})) + Sev_{Cas}(\text{CasNum}(E_i, X_{t+1,j})) \right\}
\]

The above expresses system risk.

Interchanging summations allows us to obtain:

• **What incurs risk**: total risk for a single component (bus or branch risk) or a set of them (regional risk)

• **What causes risk**:
 ✓ system, regional, or component risk for a specific contingency
 ✓ system, regional, or component risk for a specific problem type
RBSA Result Visualization
- Serial Cases

Composite 2 (VC+CC+LV+OL)

- 0.19 C1
- 0.469 C2
- 0.922 C3
- 1.547 C4
- 1.537 C5
- 1.276 C6
- 0.937 C7
- 0.84 C8
- 8.697 C9
- 0.366 C10
- 0.677 C11
- 2.265 C12
- 2.939 C13
- 4.07 C14
- 4.862 C15
- 2.18 C16
- 1.304 C17
- 0.588 C18
RBSA Result Visualization - Single Case

Overall Security Level [Fair]

Current View: SBR

Voltage Collapse: Fair
Cascading: Fair
Low Voltage: Fair
Overload: Fair
Composite 1: Fair

System Risk

- VC: 0.009
- CC: 0.021
- LV: 0.019
- OL: 0.019
- Comp1: 0.019
Decision-making by RBOPF

Traditional OPF:

Minimize: generation cost

Subject to:
Power flow equations
Generation limits
Branch flow & bus voltage constraints
Other security constraints

A variation:

Minimize: \(a(\text{generation cost}) + b(\text{total system risk}) \)

Subject to:
Power flow equations
Generation limits
Regional risk constraints
Cumulative risk assessment

Graph: Load unbalance risk due to voltage lower limit

Y-axis: Expected Risk ($)
X-axis: Time (hour)
Final Comments

The “secure” and “alert” states only differ in terms of how insecure they are, and we need a measurable index to reflect this.

Risk is a computable quantity that can be used to integrate security with economics in formal decision-making algorithms.