Estimation of synchronous generator parameters using an observer for damper currents and a graphical user interface

Elias Kyriakides, Gerald T. Heydt*

Department of Electrical Engineering, Arizona State University, P.O. Box 875706, Tempe, AZ 85287-5706, USA

Received 21 June 2003; accepted 1 July 2003

Abstract

This paper presents a method to identify synchronous generator parameters from on-line data. An observer for estimation of synchronous machine damper currents is designed. The observer-estimator is used in a graphical user interface (GUI) application. Possible internal machine fault conditions can be detected and remedial action can be undertaken. It is desired that an algorithm be developed such that it will enable bad measurement detection and rejection so as to increase the reliability of the results. Secondary objectives include calculation of the error characteristics of the estimation; development of an index of confidence; study of which machine parameters can be estimated, and which cannot; and evaluation of alternative GUI features.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Adaptive observers; Damper currents; Graphical user interface; Modeling; Observer; On-line measurements; Parameter estimation; Pseudoinverse; State estimation; Synchronous generator

1. Introduction

Synchronous generator parameter identification is a problem that has attracted the attention of many researchers since the late sixties. Knowledge of the operational parameters of generators is necessary for performing stability studies and post mortem analysis of power systems. Traditionally, synchronous machine parameters are obtained by off-line tests as described in IEEE Standards [1]. Several researchers between 1969 and 1971 developed methods to find additional parameter values based on the existing classic synchronous machine models [2–5]. Off-line methods may not be practical and parameters obtained by these methods may not be accurate. Decommiting a machine for parameter measurement may not be convenient especially if the machine is a base loaded unit. The parameters of a synchronous machine vary under different loading conditions because of changes of the machine internal temperature, magnetic saturation, aging, and coupling between the machine and external systems.

Researchers have attempted to tackle the parameter estimation problem using various methods: one of the methods used by Keyhani was the estimation of parameters from standstill frequency response (SSFR) test data [6,7]. In this approach, curve fitting techniques are used to derive the transfer functions of the d-axis and q-axis using available test data. The parameters of the model are then calculated from nonlinear equations. Other methods for parameter identification are presented in [8–11]. Various estimation techniques have been proposed in the literature. Least squares, infinite-norm and one-norm are some of these methods. Reference [12] offers an overview and some examples of these methods. In [13], a new approach is presented, where the authors use a Park’s transformation model and synthetic data to estimate synchronous machine parameters by employing least squares minimization techniques. The paper also demonstrates a graphical user interface (GUI) that enables fast and user friendly estimation. The method suffers from the fact that measurements for the damper currents are unavailable. Therefore,
in order to use this technique, it is necessary to develop a method to estimate the unmeasurable states using known information.

2. Modeling of synchronous machines

In order to formulate the state estimation equation for a synchronous generator, it is necessary to employ a mathematical model which represents the synchronous generator in the conditions under study. This model will comprise three stator windings, one field winding and two damper windings as shown in Fig. 1. Magnetic coupling is a function of the rotor position and therefore, the flux linking each winding is also a function of the rotor position [14]. The instantaneous terminal voltage of any winding takes the form,

$$v = -ri - \dot{\lambda}$$

where r is the winding resistance, i the current and λ the flux linkage. It should be noted that in this notation it is assumed that the direction of positive stator currents is out of the terminals, since the synchronous machine under consideration is a generator.

In Eq. (1), the voltage is expressed in terms of both currents and flux linkages. This is not desirable and therefore one of the two variables has to be replaced. The flux linkage equations for the synchronous generator are given by,

$$\begin{bmatrix}
\lambda_a \\
\lambda_b \\
\lambda_c \\
\lambda_F \\
\lambda_D \\
\lambda_Q
\end{bmatrix} =
\begin{bmatrix}
L_{aa} & L_{ab} & L_{ac} & L_{aF} & L_{aD} & L_{aQ} \\
L_{ba} & L_{bb} & L_{bc} & L_{bF} & L_{bD} & L_{bQ} \\
L_{ca} & L_{cb} & L_{cc} & L_{cF} & L_{cD} & L_{cQ} \\
L_{Fa} & L_{Fb} & L_{Fc} & L_{FF} & L_{FD} & L_{FQ} \\
L_{Da} & L_{Db} & L_{Dc} & L_{DF} & L_{DD} & L_{DQ} \\
L_{Qa} & L_{Qb} & L_{Qc} & L_{QF} & L_{QD} & L_{QQ}
\end{bmatrix}
\begin{bmatrix}
i_a \\
i_b \\
i_c \\
i_F \\
i_D \\
i_Q
\end{bmatrix}$$

where L_{jk} is a self-inductance when $j = k$ and a mutual inductance when $j \neq k$. The inductances in the above matrix are given by well known expressions [14].

It is observed that (2) has time-varying terms which will cause complication when their derivatives are taken. Thus, it is convenient to refer all quantities to a rotor frame of reference through a Park’s transformation [15,16],

$$P = \sqrt{\frac{2}{3}} \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\cos \theta & \cos \left(\theta - \frac{2\pi}{3}\right) & \cos \left(\theta + \frac{2\pi}{3}\right) \\
\sin \theta & \sin \left(\theta - \frac{2\pi}{3}\right) & \sin \left(\theta + \frac{2\pi}{3}\right)
\end{bmatrix}$$

The angle θ is given by,

$$\theta = \omega_R t + \delta + \frac{\pi}{2}$$

where ω_R is the rated (synchronous) angular frequency in rad/s and δ is the synchronous torque angle in electrical radians. The transformed currents are,

$$i_{0dq} = P i_{abc}$$

where the current vectors are defined as,

$$i_{0dq} = \begin{bmatrix} i_d \\ i_q \end{bmatrix} \quad \text{and} \quad i_{abc} = \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$

Similarly, to transform the voltages and flux linkages,

$$v_{0dq} = P v_{abc} \quad \text{and} \quad \lambda_{0dq} = P \lambda_{abc}$$
Park’s transformation leads to
\[
\begin{bmatrix}
 v_d \\
v_q \\
-v_F \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
r + 3r_n & 0 & 0 & 0 & 0 \\
0 & r & \omega L_q & 0 & 0 & \omega k MQ \\
0 & -\omega L_d & r & -\omega k MF & -\omega k MD & 0 \\
0 & 0 & 0 & 0 & r_F & 0 \\
0 & 0 & 0 & 0 & 0 & r_Q
\end{bmatrix} \begin{bmatrix}
i_d \\
i_q \\
i_F \\
i_D \\
i_Q
\end{bmatrix} = \begin{bmatrix}
L_d + 3L_n & 0 & 0 & 0 & 0 \\
0 & L_d & k MF & k MD & 0 \\
0 & 0 & L_q & 0 & 0 & k MQ \\
0 & k MF & 0 & L_F & M_R & 0 \\
0 & k MD & 0 & M_R & L_D & 0 \\
0 & 0 & k MQ & 0 & 0 & L_Q
\end{bmatrix} \begin{bmatrix}
i_d \\
i_q \\
i_F \\
i_D \\
i_Q
\end{bmatrix}
\] (8)

where all parameters in the coefficient matrices are constant [13,17]. Further, since the synchronous speed is constant if small time periods are studied, then Eq. (8) can be considered as a linear time invariant equation.

3. Development of an observer for the damper winding currents

Usually, available data for synchronous generators are the stator phase currents and voltages at the terminals of the machine, and the field voltage and current. Often, it is possible to measure the rotor torque angle \(\delta \), using commercially available instruments. The torque angle enables the transformation of abc quantities to dq quantities as they appear in Eq. (8). In order to set up the parameter estimation problem, it is necessary to have measurements for the damper currents \(i_D \) and \(i_Q \). Otherwise, it is not possible to transform the system into the form \(H \cdot x = z \). An alternative approach would have been the transformation of Eq. (8) in the form \(\dot{x} = Ax + Bu \) and the use of adaptive observers to estimate both the unavailable states and the unknown parameters [18,19]. This is not very practical in this case, since transformation of the system into observer canonical form leads to a system that is nonlinear in the parameters and thus makes the estimation process more involved. Furthermore, the parameters of the system are not exactly constant due to inductance saturation and changes of parameters according to the operating point. It is also desired to keep the estimation method as simple as possible so as to enable a development of a graphical user interface that will perform the estimation in a fast and reliable manner. Observation of the synchronous generator model as was derived in Eq. (8), shows that it is possible to use the last two equations and rearrange them so as to obtain expressions for the damper winding currents. The parameters that are involved in this process are not operational parameters of the machine, but parameters of the damper windings. These are constant and well known from manufacturers’ data. Further, there is no interest in estimating those parameters, and hence one can separate the two equations from the rest of the model. Rewriting the last two equations of Eq. (8),

\[
0 = \begin{cases}
 -r_D i_D - k M P i'_q - M_R i'_F - L_D i'_D \\
 -r_Q i_Q - k M Q i'_Q - L_Q i'_Q
\end{cases}
\] (9)

In general, the current derivatives can be approximated by the forward difference formula,

\[
i'(t) \approx \frac{i(t + \Delta t) - i(t)}{\Delta t}.
\] (10)

Therefore, Eq. (9) can be rearranged in discrete form as,

\[
i_D(n + 1) = \left[1 - \frac{r_D}{L_D} \Delta t \right] i_D(n) - \frac{k M Q}{L_D} \Delta t'_Q(n)
- M_R \frac{\Delta t'_F(n)}{L_D} + \frac{r_Q}{L_Q} \Delta t'_Q(n)
\] (11)

Eq. (11) enables the calculation of the damper currents. All parameters can be accurately calculated using manufacturer’s data, while the time varying quantities are available measurements. The only ambiguity in Eq. (11) is the value of \(i_D(0) \) and \(i_Q(0) \). These are needed to initiate the observation process. Nevertheless, the initial conditions can be assumed to be 0 without loss of accuracy as will be shown in the two case studies in the next section.

4. Case studies for damper winding currents observer

In order to ascertain the validity of the proposed method, it is desired to perform a number of case studies comparing the estimated damper currents to damper currents generated using the Electromagnetic Transients Program (EMTP). Two of the conducted case studies are presented.

A synchronous generator was simulated in EMTP both in steady state and in transient mode. The machine under consideration is a cross-compound generator located in the southwest USA. The generator contains a high pressure unit rated at 483 MVA and a low pressure generator rated at 426 MVA. Table 1 shows the parameters for this generator as calculated by manufacturer’s data. These parameters are used in the EMTP program for generation of the required measurements.

In the first case study, the machine is operating nearly in steady state. The starting point for the simulation is not exactly in the steady state, and there is a small transient that results in a small damper current. Observation of the damper current for a longer period of time shows that it damps out to
The mean square error (MSE) of the two signals is 8.7 × 10^{-13} p.u. The observed state is in phase with the actual value for the damper current. There is some difference between the two states, but this is insignificant since the MSE was calculated to be 2.4 × 10^{-10} p.u. As it will be shown later, this difference does not affect the accuracy of the estimated parameters.

In the second case study, transient data were considered. A permanent line to line fault was applied at 0.25 s between phases b and c. The observed damper currents as compared to the actual damper currents for each axis can be seen in Figs. 5 and 6. The same trend appears in each case. The direct-axis damper model seems to offer an exact observed state. The MSE is calculated to be 0.0147 p.u. On the other hand, the quadrature-axis damper current has a more significant error. The MSE is calculated to be 0.705 p.u., but still the observed current is in phase with the actual current.

5. Configuration of the state estimator

State estimation is a process during which a number of unknown system state variables or parameters are assigned a value based on measurements from that system [18]. Typically, the number of measurements (or number of equations) is greater than the parameters to be estimated. In this case the system is overdetermined and the solution is found in a least squares sense. That is, it is desired that the sum of the squares of the differences between the estimated and the measured parameters to be minimized.

It is desired to rearrange Eq. (8) into the form \(H \cdot x = z \) and obtain the estimated parameters by \(\hat{x} = H^+ z \), where \(H^+ \) is the pseudoinverse of \(H \) [13,20]. \(H \) is a matrix of dimension \(m \times n \) and contains the coefficients of the unknowns, which are either obtained by direct measurements of current and voltages, or via the observer in the case of the damper currents, or via calculation in the case of the derivatives. The formula for the derivatives is the forward difference formula (10). The vector \(z \) has dimension \(m \) and it contains known parameters, or measurements or a combination of the two. Fig. 7 illustrates in block diagram form the idea of the observer, the data manipulation and the parameter estimation algorithm.

6. Estimation of machine parameters and testing of the algorithm

The machine parameter estimation algorithm was tested using the available steady state EMTP data where the exact parameters are those listed in Table 1.

It is desired to estimate each one of the parameters in Eq. (8) and to verify the validity of the program, as well as to ascertain which parameters are possible to be estimated. In case that a parameter is not estimated within an acceptable error using noise free data, then its estimation using noise

Table 1: Synchronous generator parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (p.u.)</th>
<th>Parameter name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>0.0027</td>
<td>Stator phase resistance</td>
</tr>
<tr>
<td>(r_n)</td>
<td>100</td>
<td>Equivalent neutral resistance</td>
</tr>
<tr>
<td>(L_q)</td>
<td>1.72</td>
<td>Equivalent quadrature-axis reactance</td>
</tr>
<tr>
<td>(L_d)</td>
<td>1.80</td>
<td>Equivalent direct-axis reactance</td>
</tr>
<tr>
<td>(M_F)</td>
<td>1.339</td>
<td>Stator to field mutual inductance</td>
</tr>
<tr>
<td>(M_D)</td>
<td>1.339</td>
<td>Stator to damper winding D mutual inductance</td>
</tr>
<tr>
<td>(M_Q)</td>
<td>1.2737</td>
<td>Stator to damper winding Q mutual inductance</td>
</tr>
<tr>
<td>(r_F)</td>
<td>9.722 × 10^{-4}</td>
<td>Equivalent field resistance</td>
</tr>
<tr>
<td>(r_D)</td>
<td>8.823 × 10^{-3}</td>
<td>Equivalent resistance of damper winding D</td>
</tr>
<tr>
<td>(r_Q)</td>
<td>0.07151</td>
<td>Equivalent resistance of damper winding Q</td>
</tr>
<tr>
<td>(L_0)</td>
<td>0.15</td>
<td>Equivalent zero-sequence inductance</td>
</tr>
<tr>
<td>(L_n)</td>
<td>100</td>
<td>Equivalent neutral inductance</td>
</tr>
<tr>
<td>(L_F)</td>
<td>1.7579</td>
<td>Field winding self inductance</td>
</tr>
<tr>
<td>(M_R)</td>
<td>1.64</td>
<td>Rotor mutual inductance</td>
</tr>
<tr>
<td>(L_D)</td>
<td>1.68124</td>
<td>Self inductance of damper winding D</td>
</tr>
<tr>
<td>(L_Q)</td>
<td>1.59059</td>
<td>Self inductance of damper winding Q</td>
</tr>
</tbody>
</table>

Fig. 2. Concept of an observer for a dynamic system.
corrupted data will not be feasible. There are six parameters that are desired to be estimated in the two matrices of Eq. (8). Most of these parameters appear two or three times in the two matrices.

Table 2 depicts the actual and estimated parameters and the percent error for each parameter. The estimation was performed using EMTP steady state data. Two of the parameters in Eq. (8), \(r + 3r_n \) and \(L_0 + 3L_n \), cannot be estimated with good accuracy in the steady state. This is expected since these quantities are located in the first equation of (8), which is decoupled from the others. All the voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Actual value (p.u.)</th>
<th>Estimated value (p.u.)</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>0.0027</td>
<td>0.00261</td>
<td>3.3</td>
</tr>
<tr>
<td>(L_d)</td>
<td>1.80</td>
<td>1.7999</td>
<td>5.6 \times 10^{-3}</td>
</tr>
<tr>
<td>(L_q)</td>
<td>1.72</td>
<td>1.72009</td>
<td>5.2 \times 10^{-3}</td>
</tr>
<tr>
<td>(r_F)</td>
<td>(9.722 \times 10^{-4})</td>
<td>(9.7994 \times 10^{-4})</td>
<td>0.8</td>
</tr>
<tr>
<td>(L_F)</td>
<td>1.75791</td>
<td>1.746998</td>
<td>0.62</td>
</tr>
<tr>
<td>(M_F)</td>
<td>1.33905</td>
<td>1.33908</td>
<td>2.2 \times 10^{-3}</td>
</tr>
</tbody>
</table>
and current states in this equation are 0 in the steady state and it is not possible to calculate these parameters. These two quantities are possible to be estimated in the transient case, as the zero-axis quantities will not be 0. Observation of the other parameters in Table 2 shows that it is possible to estimate all parameters with satisfactory results. The maximum error observed was 3.3% and it occurred for the stator resistance r. The field resistance r_F, which is significant for studies performed by utilities, was estimated with an accuracy of 0.8% which is considered satisfactory.

It is also useful to study the effect of estimating more than one parameter at a time. This will indicate whether multiple parameter estimation is feasible and it will enable the user to avoid multiple program executions. For this purpose it was decided to estimate three parameters simultaneously. These parameters are L_d, L_q and r_F. Table 3 shows the estimated quantities and the percent error for each of the parameters. It can be seen that the estimated parameters and the percent error are identical to the previous case study (Table 2),
where these parameters were estimated individually. This shows that more than one generator parameters can be estimated at the same time, and it will be particularly useful in case that there is uncertainty about two or more parameters.

7. Graphical user interface implementation using Visual C++

One of the major objectives of this research work is to develop a visual graphical user interface in the form of a Windows application for a synchronous machine state estimator. This application will enable the practicing engineer and interested utilities to estimate the parameters of a synchronous machine without having to decommit the unit or get involved in time consuming methods of estimation. The application developed during this research work is unique due to three main characteristics: on-line operation, portability and user friendly interaction.

On-line operation is the distinguishing characteristic of this application. It enables on-line and expeditious estimation of any given synchronous machine based on measurements of the field and stator voltages and currents. Such measurements are readily available and in large quantities in every utility. Moreover, the application developed is portable, since it can be installed in any personal computer operating under Windows. The application does not require a Visual C++ environment, since it is a stand-alone application, able to operate without the support of external C++ libraries. User friendly interaction is achieved by means of the dialogs and context-sensitive help provided on request. The input and output dialogs are self explanatory and will be described in Section 8.

8. Input/output dialog and estimator configuration

The main window of the program offers a variety of options on its toolbar, like any other Windows program. To begin the process of estimating machine parameters, the user must open the input screen as shown in Fig. 8. This is achieved by selecting the option Estimator on the toolbar of the main window, and then selecting the Set up Estimator option.

The user can set up the Estimator and calculate the parameters of the synchronous machine that is to be studied, in three steps. The first step is to enter the name of the data file in the edit box as shown in Fig. 8. This can be done by clicking on the Browse button and navigating through the hard disk of the computer until the desired file is located. The file should be of type .txt to be eligible for usage by the application. Text files can be created either by using the Windows Notepad or any other software with similar capabilities. Another option is to create text files using Microsoft Excel and save the file as a text—tab delimited—format.

The second step on behalf of the user is to input the known parameters of the synchronous machine. These parameters may be known either from previous off-line tests or from manufacturer’s data. Sample values are shown in Fig. 8 and these are the default values for the generator that is being studied for this application. The existence of default values does not require the user to enter the values anew every time it is desired to execute the application. The fact that all values are set to default values should not be confusing to the user. If the user desires the estimation of a certain parameter, then the default value of that specific parameter does not interfere in any way in the estimation. The third and final step of this process is to select the parameters that are desired to be estimated. The user has the opportunity to
select up to five parameters for estimation. This selection can be done by simply clicking on the check box corresponding to the parameter to be estimated as shown in Fig. 8.

Finally, the software offers a number of options to the user, such as the estimation method (least squares or least absolute deviation), the data type (abc or 0dq quantities) and whether the output should be written in a history data file or not.

Upon execution of the main program of the application, which contains the state estimator, the values of the estimated parameters and the rms error for this estimation are returned to the graphical user interface for output. The resulting output window can be seen in Fig. 9. On the left side of the output window, the user can see the parameters selected previously and their estimated value in per unit. The rms error on the lower right side of the estimator is a measure of confidence on the estimated parameters and is given by,

\[
\text{rms error} = \sqrt{\frac{\text{residual}}{\text{number of measurements}}} \tag{12}
\]

where \((\text{residual})^2 = ([H] \cdot [x] - [z])^T ([H] \cdot [x] - [z])\), and \(\hat{x}\) is the vector of the estimated parameters.

9. Conclusions

In this paper, a method to identify synchronous machine parameters from on-line measurements is shown. The method is based on least squares estimation and a simple formula for the derivative operator. The method is developed to be used with a Visual C++ engine and graphical user interface, so that the practicing power engineer may link machine measurements taken in an on-line environment with the Estimator. An observer for identification of the unmeasurable damper winding currents is also presented. The two case studies show that the observed currents are in good agreement with the actual currents in both steady state and transient operation. Parameter estimation results show that the machine parameters are estimated accurately, with
a maximum error of 3.3% for the stator resistance, while all other errors are less than 1%. Multiple parameters at a time were also estimated accurately. This enables estimation of more than one machine parameter in the real data case, when more than one parameter is unknown. The accuracy of estimation was shown not to degrade with multiple parameter estimation.

The GUI was developed in Visual C++ and its correct operation was verified. The GUI is user friendly and self-guiding. Calculation time is in the order of a few seconds, while the results are presented on the computer screen automatically.

Acknowledgements

The authors acknowledge the financial support of Arizona Public Service and of PSERC, as well as the technical support of Drs. B. Agrawal, A. Keyhani, and J. Rico.

Appendix A. List of Symbols

dq0 stator transformation to direct, quadrature and zero-axis parameters
abc stator per-phase quantities on conventional a, b, c axes
i0 stationary current, proportional to zero-sequence current
ia current through stator phase a
ib current through stator phase b
ic current through stator phase c
id current through rotor axis d
iD current through damper winding D
iF current through field winding
i in current through rotor axis q
L0 equivalent zero-sequence inductance (L0 = x0 in p.u.)
Laa stator phase winding a self inductance
Lab = Lba stator phase winding a to b mutual inductance
Lac = Lca stator phase winding a to c mutual inductance
Laf = LFa stator phase winding a to field winding mutual inductance
Lad = LDa = Lmd = LAD stator phase winding a to damper winding mutual inductance
Lbb stator phase winding b self inductance
Lbc = Lcb stator phase winding b to c mutual inductance
Lbf = LFB stator phase winding b to field winding mutual inductance
Lbd = LDb stator phase winding b to damper winding mutual inductance
Lcc stator phase winding c self inductance
Lcf = LFc stator phase winding c to field winding mutual inductance
LcD = LDe stator phase winding c to damper winding mutual inductance
Ld equivalent direct-axis reactance
LDD = LD stator phase winding D self inductance
LDF = LFD damper winding to field winding inductance
LF stator phase winding magnetizing inductance
LQ stator phase winding Q self inductance
LQQ = LQ stator to damper winding D mutual inductance
MD stator to field winding mutual inductance
MF stator to damper winding Q mutual inductance
MR rotor mutual inductance
Mδ stator phase winding mutual inductance
P Park’s transformation matrix
r = ra = rb = rc stator phase resistance
RD equivalent resistance of damper winding D
RF equivalent field winding resistance
RQ equivalent resistance of damper winding Q
Rn equivalent neutral resistance
v0 zero-axis voltage, proportional to zero-sequence voltage
va stator phase a voltage
vb stator phase b voltage
vc stator phase c voltage
vd direct-axis voltage
vq quadrature-axis voltage
δ synchronous machine torque angle in electrical radians
Δt time step
θ angular displacement of d axis from a axis in mechanical radians
λ flux linkage
ω synchronous angular frequency in radians per second
ωR rated synchronous angular frequency in radians per second

References

