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Executive Summary 
 
In many restructured electricity markets, transactions occur through 
frequently-repeated uniform-price auctions.  For example, the Electric Reliability 
Council of Texas (ERCOT) balancing market, and the day-ahead and real-time 
markets in the Northeast and Midwest U.S. use uniform-price auctions.  Such market 
mechanisms are justified, in part, by theoretical models that suggest these auctions 
facilitate efficient dispatch and send “correct” signals for future investment.   
 
However, empirical analyses of offers into electricity spot auctions have uncovered 
evidence that actual offers by some market players can deviate significantly from 
theoretical models of profit-maximizing offers.  In particular, smaller players face 
considerable uncertainty and appear to avoid participation in these markets, even 
when participation would increase profits and reduce system dispatch costs.  
Existing evidence from ERCOT suggests that these “sub-optimalities” lead to 
dispatch inefficiency in the balancing market.  Unfortunately, these inefficiencies 
propagate outside the balancing market – many bilateral transactions are linked to the 
balancing price, and the balancing price affects investment signals.  
 
This project developed a computational tool for analyzing offers into auctions.  The 
tool has two major applications.  First, market monitors can employ it to assess the 
competitiveness and efficiency of offers by comparing the actual offer of a market 
participant to a hypothetical perfectly competitive offer and to an ex post profit 
maximizing offer.  Such analysis can be useful to market monitors who seek to 
evaluate the behavior of a particular market participant.  Second, the tool can assist 
market participants, especially the smaller ones, in the formulation of offers in the 
face of the strategic complexity facing them.  The tool and associated graphical user 
interface allows the ex post profit maximizing offer for a firm to be constructed on the 
basis of information about the aggregate offers of other market participants, the firm’s 
own cost function, and zonal transmission constraints. 
 
This project brings together work from both the economics and electrical engineering 
literatures.  The tool operationalizes some of the recent theoretical developments in 
auction theory in a prototype tool that is available in the public domain to analyze 
offers.  Moreover, the tool incorporates the effects of transmission constraints, 
providing a unique combination of economic and engineering analyses that is not 
available elsewhere.  Finally, we sought to make the tool “user friendly” so an 
analyst or market participant can exploit the insights of recent academic analysis in 
the “real-time” time horizon that such analysts typically make decisions. 
 
The academic grade tool is written in the Java language, and is released as 
open-source software under the terms of the GNU General Public License (GPL). If 
you are a PSERC industry member and would like to receive a copy of the tool in 
a .zip file, please send an email to either puller@econmail.tamu.edu 
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or Ross.Baldick@engr.utexas.edu and we will be happy to send it to you.  In the 
future, the tool may be publicly available. The example case study is based on the 
ERCOT zonal electricity balancing market.   
 
Future work could add features to the existing tool that analyze other outcomes that 
are important to the efficient design of restructured electricity markets.  For example, 
the tool could be expanded to calculate prices under scenarios such as: (a) firms 
exercise market power but there is a small expansion in transmission capacity, and (b) 
firms bid competitively.  In addition, the tool could be modified to estimate the effect 
of a single firm’s bids on the overall dispatch costs.  Yet another area for future 
research is to tailor the tool to other markets with similar features in the procurement 
process.  While the tool is specifically tailored to ERCOT’s zonal market, the 
analytical technique below can be applied elsewhere.  Finally, future research could 
extend the theoretical underpinnings to consider nodal markets.     
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1 Introduction 

In many restructured electricity markets, transactions occur through 
frequently-repeated uniform-price auctions.  For example, the ERCOT balancing 
market and the day-ahead and real-time markets in the Northeast and Midwest US use 
uniform-price auctions.  Day-ahead nodal markets with uniform-pricing are planned 
for California and for ERCOT.  Such market mechanisms are justified, in part, by 
theoretical models that suggest these auctions facilitate efficient dispatch and send 
“correct” signals for future investment.   
 
There has been considerable theoretical work aimed at modeling such markets, 
including Green (1999) Borenstein, Bushnell, and Stoft (2000), Baldick, Grant and 
Kahn (2004), Baldick and Hogan (2002 and 2004), and Hortacsu and Puller (2008).  
Empirical work includes Wolak (2003), Hortacsu and Puller (2008), Niu, Baldick and 
Zhu (2005), and Sioshansi and Oren (2006). 
 
Empirical analyses of bidding in electricity spot auctions has uncovered evidence that 
actual bidding by some market participants leads to prices that distort the proper price 
signal.  Generators that offer to generate at significantly above the incremental 
marginal cost of generation can inflate prices and send distorted signals as to the 
proper amount and location of new investment.  Similarly, in balancing markets, 
firms that bid to reduce generation at prices that are below marginal cost can suppress 
energy prices and can therefore discourage investment.  Evidence of both types of 
behavior has been found in several markets.   
 
This report describes the development of theory and an academic grade tool that 
market monitors can utilize to access the degree to which specific market participants 
distort the efficient price signal.  The tool calculates, for any individual market 
participant, what would have been the “best response” by the participant to the offers 
of all other market participants.  “Best response” is from the perspective of 
maximizing the operating profit of the market participant, assuming that the offers of 
the other market participants are known to this market participant.  The tool is not 
dependent on the way that the market participant would estimate the offers of its 
competitors. For simplicity, in this project, we use historical data and assume that the 
offers of the competitors remain the same. In this case, the tool can calculate, for each 
individual market participant, its ex post profit maximizing offer into the market.  
The ex post maximum profit is therefore an upper bound on the profit that could have 
been achieved in practice without the perfect foresight of knowing the offers of the 
other market participants. 
 
The tool improves the ability of market monitors to test for market power, by enabling 
the market monitor to measure both the ability of a market participant to exercise 
market power and, through comparison with the actual offer, the exercise of that 
potential market power.  That is, comparison of an actual offer to the polar extremes 
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of a competitive offer and to the ex post profit maximizing offer allows assessment of 
the degree to which a market participant is exercising its market power.  (In some 
cases, as discussed in Hortacsu and Puller (2008), offers may involve lower profits 
than a competitive offer, with the participant effectively offering in such a manner as 
to stay out of the market.)  This tool is an improvement over current methods such as 
tests of whether certain generators are pivotal suppliers in the market because it 
explicitly considers the incentives to distort prices and explicitly considers the 
variability of realized demand.   
 
Moreover, the tool aids in determining whether high prices reflect market power or 
scarcity rents by distinguishing competitive from supra-competitive profits.  It is 
important that market monitors be able to make this distinction for several reasons.  
In particular, identifying and mitigating market power is important to ensure markets 
are competitive; however, allowing generators to recover true scarcity rents is 
necessary to promote resource adequacy.  
 
A secondary benefit of this project is that the tool can increase market efficiency by 
facilitating increased participation in the balancing market.  Analysis of the ERCOT 
balancing market has found that system dispatch costs in the balancing market are 
significantly increased because some small players do not participate in the balancing 
market.  This lack of participation makes the market less competitive and causes 
efficient generators to be underutilized.   
 
Hortacsu and Puller (2008), Sioshansi and Oren (2006), and Niu, Baldick, and Zhu 
(2005) identify the extent to which smaller generators avoid the ERCOT balancing 
market.  For example, Hortacsu and Puller (2008) find that the considerable amount 
of price uncertainty in the market combined with a lack of trading experience 
discourage bidding even when participation would increase profits and reduce system 
dispatch costs.  Hortacsu and Puller estimate that limited participation by smaller 
generators increases the dispatch costs in the balancing market by 22%.  
Unfortunately, these inefficiencies propagate outside the balancing market since many 
bilateral transactions are linked to the balancing price, and the balancing price affects 
investment signals. 
 
The tool developed in this project can encourage smaller market participants to 
participate in the market by providing a conceptual and practical framework to 
formulate offers, evaluate offer strategies, and reduce uncertainty about market prices.  
Increased participation by smaller players can yield a “double dividend” – by better 
utilizing efficient generation owned by small firms and by reducing the potential 
market power of larger firms. 
 
To summarize, the tool developed in this project provides market monitors with a 
framework to evaluate the offer behavior of individual market participants.  It can 
measure the effect of specific behavior on prices and on the cost of dispatch.  Also, it 
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can help to decompose prices into market power and scarcity rents.  Such a tool 
could be applied to many auction-based markets such as PJM, ISO-NE, NYISO, 
MISO and ERCOT.   
 
The tool also provides smaller market participants with a framework to assess their 
offers into the market and so potentially increase their willingness to participate in 
auction-based electricity markets.  Increased participation by small bidders is very 
likely to increase the competitiveness of these markets.   
 
The tool is implemented in Java and requires information about offers into the market, 
a generation firm’s costs, and the transmission constraints.  It analyzes and displays 
the ex post optimal offer by the firm into the market, providing a summary of market 
outcomes.  If you are a PSERC industry member and would like to receive a copy of 
the tool in a .zip file, please send an email to either puller@econmail.tamu.edu 
or Ross.Baldick@engr.utexas.edu and we will be happy to send it to you.  In the 
future, the tool may be publicly available.   
 
The example case study is based on the ERCOT zonal electricity balancing market.  
Future work includes improvements to the graphical user interface to improve 
usability and the extension of the theoretical underpinnings to consider nodal markets.  
The Java code is tailored to the formats for data on the ERCOT website.  Future 
application in other markets would require some modification of this code.  
 
The outline of the rest of this report is as follows.  Section 2 describes the theoretical 
approach to calculating the ex post optimal offer.  Section 3 describes the 
implementation in Java, including details about input and outputs.  Section 4 
presents a case study based on ERCOT.  Section 5 contains the conclusions. 
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2 Theoretical approach to ex post optimal offer calculation 

In this section, the theoretical approach to ex post optimal offer calculation is outlined, 
first in the absence of transmission constraints.  Then the extension to consider 
transmission constraints is considered, including the detailed theoretical analysis in 
the case of transmission constraints. 

2.1 No transmission constraints 

In the absence of transmission constraints, the calculation of the ex post optimal offer 
of each firm is conceptually straightforward.  We will discuss the situation from the 
perspective of a market monitor that wants to assess the offer of each market 
participant in turn.  Suppose that the market monitor has access to data on system 
load, the offers of each generator, and an estimate of each firm’s marginal cost of 
generation.  Marginal cost data can be gathered from commercially available data on 
heat rates and the spot price of fuel.1  (The situation for a particular firm assessing its 
own ex post optimal offer is similar, and only requires industry-wide offer data, the 
offer data relevant to the particular firm, the forward contract position, and the 
marginal cost data that is relevant to the particular firm.)   
 
Using these data, the market monitor can use economic theory to predict each firm’s 
offer if the firm were exercising unilateral market power.  Comparing this theoretical 
offer to the actual offer and to a hypothetical competitive offer based on marginal 
costs provides an assessment of the competitiveness of the actual offer.   
 
Figure 1 illustrates the economics of constructing these theoretical offer functions in 
detail.  Firm i's marginal cost curve is given by MCi(q), and its forward contract 
position is labeled at QCi. 

                                                 
1 For example, Platts and Henwood provide these data and some market monitors subscribe to such services. 
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Figure 1 Example of constructing optimal offer function. 

 
Referring to Figure 1, suppose that Firm i is observed to submit the supply schedule 
Si

observed (p,QCi) in the balancing market.  As explained in Hortacsu and Puller 
(2008), the forward contract position can be estimated as the quantity corresponding 
to the intersection of the observed supply and the marginal cost curve.  
 
The market clearing price in the balancing market, and the actual amount of electricity 
that firm i will be called upon to generate, will be determined by the intersection of 
Si

observed (p,QCi) and the residual demand (RD) curve faced by firm i. The RD curve is 
the sum of the supply schedules submitted by firms other than i, subtracted from the 
total market demand for electricity. The RD curve is uncertain from the perspective of 
firm i (since it depends on the realization of aggregate demand and rivals’ bids).  
 
Given a particular realization, RD1, and given its actual supply schedule, Si

observed 
(p,QCi), firm i would supply the quantity at the price given at point D. At this quantity, 
the firm would supply more electricity than it was previously contracted to sell (D is 
to the right of A), and its profits can be calculated as the profits from meeting its 
contract position, plus the profit made from providing additional power to the market. 
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However, firm i could have increased its profits if it had instead submitted a different 
offer.  For the residual demand curve RD1, firm i could calculate the marginal 
revenue curve given by MR1.  By equating marginal revenue and marginal cost (the 
solution to the first-order necessary condition for profit-maximization), the firm could 
then select point B, which maximizes its profits.  This, of course, is what would 
happen if firm i knew that residual demand would be RD1.  
 
However, the residual demand may instead be RD2.  Firm i could then calculate the 
marginal revenue curve corresponding to this realization of residual demand, and find 
the profit-maximizing point C.  This process can be repeated for various possible 
realizations of the residual demand, under the assumption that the different 
realizations are due to variation in demand quantity that are independent of price; that 
is, under the assumptions that the various realizations correspond to parallel shifts in 
the residual demand curve.  By calculating the set of profit-maximizing points for all 
such parallel shifts in the residual demand curve, corresponding to various possible 
realizations of the demand, a bid function can be constructed that connects each of the 
points and maximizes profits under each possible realization of uncertainty, Si

optimal.2   
 
This theoretical bid function Si

optimal serves as a benchmark for exercising unilateral 
market power.  If a specific firm is bidding very close to this benchmark, the market 
monitor can identify the firm as exercising market power.  If the firms are bidding 
closer to marginal cost, the firm is behaving more competitively.  For example, the 
firm in Figure 1 (with bid given by Si

observed) is bidding above marginal cost but not 
fully exercising market power.   

2.2 Transmission constraints 

The methodology described in the last section can be expanded to incorporate 
transmission congestion, so it can be applied to markets with either zonal or nodal 
pricing.  In particular, if the residual demand in the discussion so far is replaced by a 
calculation of the transmission-constrained residual demand at a zone or a bus, then a 
profit-maximizing offer can be calculated for firm i located in that zone or bus.  As 
will be discussed below, the transmission-constrained residual demand can be 
calculated if the supply bids in each zone together with the demand in each zone are 
known.  The residual demand for firm i, evaluated at a particular market clearing 
condition, can be calculated from the results of transmission-constrained economic 

                                                 
2 See Hortacsu and Puller (2008) for a proof that this bid function is a solution to the equilibrium bid of a multi-unit, 

uniform-price auction under uncertainty regarding total load and rival contract positions.  They prove that under 

reasonable assumptions about uncertainty, the set of profit-maximizing points can be connected with a monotonic 

function.  Empirical tests using historical bid data suggest that this assumption very nearly holds for the ERCOT 

balancing market. 

6 
 



dispatch.  The full residual demand function can be traced out by varying the power 
injected by firm i at its zone or bus.   
 
There are some complications in practice, however.  The first is that as injection at a 
zone (or bus) varies, the congestion status of a line in the system may vary.  For 
example, suppose that a zone is a net importer.  Then for small values of injection by 
the firm in that zone it may be the case that there is a binding transmission constraint 
on imports.  In this case, the residual demand for the zone will be steep: small 
changes in injected quantity lead to large changes in price.  At higher levels of 
injection the line will be unconstrained and the residual demand will be less steep.  
The implication is that the profit-maximizing optimal offer may not be monotonically 
increasing.  That is, due to the endogenous congestion status, there may be no single 
monotonic supply function that can be constructed ex ante from the bids of the other 
firms that will maximize profits under all realized outcomes of the market. 
 
The lack of a monotonic best response is a significant issue from a theoretical 
perspective.  However, experience with generator capacity constraints, which in 
several ways are analogous to transmission capacity constraints in this context, 
suggests that this issue may not be very significant in practice (see Baldick and Hogan 
(2002)).  As will be discussed below, the empirical results of the ERCOT example 
case bear this out. 
 
The second practical complication is that if a firm owns generation capacity in 
multiple zones or at multiple buses, then the residual demands depend on injections 
by the firm in these multiple zones or buses.  This complicates the calculation by 
requiring calculations of what are, essentially, cross-elasticities between various zones 
or buses.  In a nodal market, it is likely that most firms would own generators at 
several buses.  In the context of a tool for small firms in the ERCOT zonal market, 
however, the assumption of a firm being wholly within a particular zone is not 
unrealistic.  The development in the balance of this report assumes that a firm is 
wholly within a zone. 
 
To summarize, the calculation of the optimal response for the case of no transmission 
congestion can be extended to the case of congestion under assumptions that are 
likely to be reasonable for ERCOT in practice.  The analysis under these 
assumptions is carried out in the following subsections. 

2.3 Transmission-constrained optimal offer  

For simplicity, assume the market participant under consideration does not have any 
forward bilateral contracts. The transmission-unconstrained optimal offer in a supply 
function model is characterized as: 

( ) ( )( )( ) ( ) ,i i i i i i i iS p p C S p R p′′= − −       (1) 
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where: 

 ip  is the locational marginal price for the generation firm located at bus , i

  is the marginal cost function of the generation firm located at bus , ( )iC ′ • i

  is the optimal supply function of the generation firm located at bus ; that 

is, the inverse of its optimal offer, 

( )iS • i

  is the residual demand derivative faced by the generation firm located at 

bus . 

( )iR ′ •

i

For generation firms, an individual generation firm’s optimal supply (and offer) 

function depends on its residual demand derivative (RDD) ( )i iR p′  as characterized 

in (1), so the residual demand derivative plays a key role in constructing optimal 
bidding strategies. If the residual demand derivative is available, the optimal offer 

strategy can be constructed based on (1) by evaluating at price ip  the supply 

quantity  that satisfies (1).  By evaluating the residual demand derivative at 

various prices, the optimal supply function can be found.  The inverse of the optimal 
supply function is the optimal offer function.  

( )iS •

2.4 Residual demand derivative calculation 

The theoretical underpinning of the transmission-constrained residual demand 
calculation was carried out as part of this project and reported in Xu and Baldick 
(2007).  The following paraphrases the analysis in Xu and Baldick (2007).  Further 
details, including illustrative examples, are reported in Xu and Baldick (2007).  
 
The offer-based market is cleared by solving the following simplified DC Optimal 
Power Flow (OPF) problem: 

( )
1

min ,
n

i i
i

O q
=
∑q

          (2) 

s.t. ,≤Hq Z           (3) 

                (4) min max ,n n nq q q≤ ≤

   T1 q 0= ,            (5) 

where: 
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  is the net offer function at bus i; that is, to simplify notation, we have 

combined each generation firm’s offer function with the demand curve at the 
same bus by treating demand as negative supply, 

( )i iO q

 bus  is the slack bus, n

 [ ]1 2
T

nq q q=q K  is the nodal power injection quantity vector, 

 (3) consists of the transmission constraints and the generation capacity constraints 
for non-slack buses (suppose there are totally  of them), m

  is an  matrix consisting of the submatrix of power transfer distribution 
factors (PTDFs) corresponding to the transmission constraints and the submatrix 
representing the capacity constraints for non-slack buses,  

H m n×

  consists of the transmission capacity limits and the generation capacity limits 
for non-slack buses, 
Z

 [ ]1 1 1 ,T

n

=1 K
1442443

 

 (4) is the generation capacity constraint, that specifies the upper and lower limits 
of the domain of the offer cost function at the slack bus, and 

 (5) is the energy balance constraint.  

Without loss of generality, we calculate the RDD for the slack bus, n, as a whole, i.e. 
the local actual demand at bus  has been combined with the supply at the same 
bus. 

n

The RDD is a function of the LMP at the slack bus, λ̂ , 

( ) ( ) 1T T T T
b b b

ˆ ,n
b

dR
d

λ
λ

−
= − +1 Λ1 1 ΛH H ΛH H Λ1

%
    (29) 

where bH  is the PTDF matrix for binding transmission constraints and generation 

capacity constraints evaluated at the solved DC OPF.  By varying load at bus i, the 
RDD at various prices can be evaluated, providing the data needed for constructing 
the optimal offer. 
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3 Implementation of the Java tool 

This section discusses the implementation of the Java tool.  Figure 2 shows the 
overall architecture of the tool.  Offer data and transmission data is obtained from 
web sources.  This data is used as input for the DC OPF calculation, which provides 
information for calculating the residual demand derivative.  Then the residual 
demand derivative together with marginal cost and contract data is used to construct 
the ex post optimal offer, which is then displayed on the graphical user interface. 
 

 Λ

Web based  Optimal 
responseData acquisition 

& processing 

Loads 
offers 

DCOPF Transmission-
bH

constrained 
RDD 

calculation 

RDD

Self costs 
contracts 

Ex-post 
optimal 
offers Applet 

GUI 

line capacities 
PTDFs 

Figure 2 Overview of tool design 

 
The Java tool can be run both in server mode, with web based inputs and outputs, and 
in stand-alone application mode using text data files for input and output together 
with an applet for graphing the ex post optimal response.  As well as developing 
Java specific to this project, we also utilized and modified the DCOPFJ package 
developed at Iowa State University for solving the DC OPF and the PTPLOT plotting 
package developed at the University of California, Berkeley to plot the ex-post best 
offers, and cost functions. 
 
In the following sections, the processing of the input data, the calculation of the OPF, 
modifications to the residual demand derivative calculation to enhance efficiency, and 
the output data and graphical user interface will be described. 
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3.1 Input data 

The various inputs for the calculation of the optimal response are as follows. 

• Line Capacity Data 
• PTDF Data 
• Generation Offer Data 
• Self-offer Data 
• Self-cost Data 

The line capacity data and PTDF data are assumed to be available from a public 
website.  In the context of the ERCOT case study, we developed Java code to 
retrieve branch capacity data and PTDFs from the ERCOT website that was then 
written to a file.  For other sources of data, the Java could be modified as necessary 
to retrieve data in another format. 
 
Generator aggregate offer data is also assumed to be available, but is typically 
released after a delay.  We built a Java tool to download zipped files of historical 
aggregated data from the ERCOT website for particular days and hours.  Since the 
offer data typically consists of many segments that have very similar prices or very 
similar quantities, the data is sampled according to user-specified tolerances to 
generate a summarized version. The user-specified tolerances are on the minimum: 

• difference of adjacent offer curve slope (delta_slope), and 

• difference of adjacent quantity (delta_MW).  

The purpose of data sampling is to summarize the aggregate offer data in order to 
speed up downstream software running time.   
 
Figure 3 shows the user interface for acquiring the generator aggregate offer data and 
summarizing it based on the user-specified tolerances. The user can choose the date, 
hour, and tolerance values. Clicking the “run” button generates the summarized 
aggregate offer data, writing it to a file. 
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Figure 3 Interface for downloading generator aggregate offer data 

To analyze the residual demand faced by a firm, its own offer, that is, its “self-offer” 
must be removed from the aggregate offers of the other firms.  A firm’s own costs, 
its “self-costs,” are also needed for the calculation.  It is assumed that self-offer and 
self-cost data is available in convenient format or can be entered by the user through 
the graphical user interface. 

3.2 DC optimal power flow engine 

The calculation of the residual demand derivative requires a solved OPF.  DCOPFJ 
is a Java-based DC OPF solver developed at Iowa State University 
(http://www.econ.iastate.edu/tesfatsi/DCOPFJHome.htm).  The operation of the Java 
code is outlined in Figure 4. 
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Figure 4 Operation of Java Based DC optimal power flow. 

(Source: This image is taken 
m fro http://www.econ.iastate.edu/tesfatsi/DCOPFJHome.htm. ) 

 
The Jave code can solve a DC OPF model with full DC power flow equations as 
constraints. It is common that advanced OPF solvers separate the optimization and the 
power flow for the purpose of calculation efficiency and speed. In the optimization 
part, the power flow equations are represented by PTDFs relating to possibly binding 
transmission constraints, and in the power flow part, the power flow is solved to find 
possibly binding transmission constraints and calculate the PTDFs for them. The 
optimization part and the power flow part iterate until the process converges. 
 
For the purposes of RDD calculation, it is also more convenient to separate the 
optimization and power flow.  This is because, for a zonal electricity market like 
ERCOT, zonal PTDFs are calculated by the ISO in advance and are used to clear the 
market.  Moreover, the PTDF data are available publicly. For example, ERCOT 
publishes the PTDFs at 
http://mospublic.ercot.com/ercot/jsp/commercially_significant_constraints.jsp.  
 
To deal with the PTDFs directly, the DCOPFJ solver was modified so that it has the 
capability to take PTDFs as inputs to solve the optimization problem.  For each RDD 
calculation for firm i, its zone is singled out and a value of net demand or generation 
is specified in place of the firm’s offer at that zone. The DCOPF is then solved for this 
net demand or generation, together with the branch capacities, the PTDFs, and other 
offer data. 

3.3 Performance enhancement 

Although the discussion in the previous sections is theoretically correct, in practice 
the performance of the algorithm would be slow if it were applied literally as 
described.  The reason for this is that the offer functions are described as piecewise 
linear functions. Practically, any offer function can be reasonably approximated by a 
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piecewise linear function; however, in practice this means that there are a large 
number of segments describing each offer, even when the summarized offer data is 
used. 
 
The Hb matrix does not only contain the binding transmission constraints but also 
includes the binding generation capacity constraints. For a piecewise linear offer 
function representation there are effectively a large number of individual generation 
capacity constraints, one corresponding to each segment.  Moreover, for each 
physical generator, there is at most one such linear segment that is not binding.  That 
is, we expect a large number of binding generation capacity “segment” constraints. 

The matrix ( T )b bH ΛH  includes all of these constraints and so can be very large, 

depending on the number of binding segments, making it difficult to invert.  

To handle this problem, we partition bH  into b,tran

b,gen

⎡ ⎤
⎢ ⎥
⎣ ⎦

H
H

, where b,tranH  represents the 

binding transmission constraints, and b,genH  represents the binding generation 

capacity segment constraints. Also, partition q  into v

f

⎡ ⎤
⎢ ⎥
⎣ ⎦

q
q

, where vq  represents the 

generation outputs that are not at their segment bounds, and fq  represents the 

tran⎡ ⎤μ
generation outputs that are at their segment bounds. Accordingly, partition 

, and 

gen

= ⎢ ⎥
⎣ ⎦

μ
μ

, 

v

f

′′⎡ ⎤′′ = ⎢ ⎥′′⎣ ⎦

O 0
O

0 O
b,tran,v b,tran,f

b
b,gen,v b,gen,f

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H H
H

H H
.  We have: 

v v

b,tran,v b,tran,fv v

b,gen,v b,gen,ff ff f

dq d
d d
dq d
d d

μ
λ λ

μ
λ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′′ ⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥− =⎢ ⎥⎢ ⎥ ⎢′′ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

H HO 0 1
H H0 O 1

% %

% %
 

⎤
⎥
⎦

v

tranb,tran,v b,tran,f

genb,gen,v b,gen,f f

λ

dq
d
dq
d

λ
⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥⎣ ⎦

0H H
0H H

%

%
 

where b,tran,f =H 0 , b,gen,v =H 0 , and b,gen,f =H I . 

Therefore,  

vdq
dλ

= 0
%

, 
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v v
v b,tran,v

dq d
d d

μ
λ λ

′′ v− =O H
% %

1 , 

( ) ( ) 1T T T T
v v v v b,trans,v b,trans,v v b,trans,v b,trans,v v

ˆ .ndR
d

λ
λ

−
= − +1 Λ 1 1 ΛH H Λ H H Λ 1

%
 

Note that the new RDD formula only depends on binding transmission constraints and 

the non-binding generation outputs. The matrix ( )T
b,trans,v v b,trans,vH Λ H  is much smaller 

and easier to invert than ( T )b bH ΛH , so the performance of RDD calculation is 

improved. 

3.4 Graphical user interface and output 

Users operate the bidding tool via a user-friendly graphical user interface.  Upon 
opening the tool, the previously compiled values for Branch Capacity Data, PTDF 
Data, and Generation Offer Data are read in.  The user has the option to change one 
or all of these values together with the data specifying the self-offer and self-costs.  
 
The self-offer can be represented by a large number of “offer points” that specify 
break-points in the offer curve.  First, choose the number of offer points at the top of 
the left column “No. of Observations.”  The tool will create a set of fields to enter 
each offer point on the right side of the interface.  For each offer point, enter the 
generator and node identifier.  (If the “Enforce Same ID” box is checked, these two 
fields are automatically filled with the generator and node ID).  Then enter the offer 
price ($/MWh) and incremental quantity of power offered at that price (MW).  For 
example, if a 100MW generator submits two (price, quantity) pairs: ($100/MWh, 25 
MWh) and ($150/MWh, 75 MW), then the bid function is interpreted as a piecewise 
linear function that connects each of the bidpoints. 
 
After all parameters are entered, the user can save the parameters to an external file.  
Then, the tool calculates the optimal offer functions and presents the output in both 
graphical and numerical form.  The outputs produced by the calculation engine are 
as follows: 

• Generation Dispatch 
• Locational marginal prices 
• Residual demand derivative. 
• Optimal offer 
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4 ERCOT case study 

In this section, we describe a case study based on the ERCOT balancing market, 
demonstrating the use of publicly available information to calculate the ex post 
optimal offer in the ERCOT electricity market. 

4.1 Branch and PTDF data 

ERCOT currently implements a zonal electricity balancing market. The zones are 
redefined annually. There are four zones in 2008, namely Houston, North, South, and 
West. There are five inter zonal transmission constraints, namely North-Houston, 
North-South, North-West, South-North, and West-North. 
 
To represent the zonal balancing market, we define a 5-node system using data 
downloaded from the ERCOT website.  Nodes 1 to node 4 correspond to the four 
zones, and the node 5 corresponds to the slack bus.  The format in the data file to 
repesent these zones is as follows: 
 
// ERCOT Node Definition: 
// Node  Zone 
// 1   Houston 
// 2   North 
// 3   South 
// 4   West 
 
The corresponding branch definition is as follows. Branches 1 to 5 correspond to the 5 
inter zonal constraints. 
 
// Branch Definition 
// Branch  ZoneFrom  ZoneTo 
// 1   North   Houston 
// 2   North   South 
// 3   North   West 
// 4   South   North 
// 5   West   North 
 
The geographical arrangement of the zones is depicted in Figure 5.  
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Figure 5 ERCOT zones and inter-zonal constraints 

 
he inter zonal transmission constraint limits can be found T

at http://mospublic.ercot.com/ercot/jsp/csc_cre.jsp.  A snapshot from that web page 
is shown in Figure 6.  The Java code described in Section 3.1 downloads this page 
and extracts the constraint data. 
 

Figure 6 Web page showing inter-zonal transmission limits 
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ERCOT also publishes the PTDFs corresponding to these inter-zonal limits at: 
ttp://mospublic.ercot.com/ercot/jsp/commercially_significant_constraints.jsph .  

ibed in 

4.2 Offe

In the current ERCOT zonal market, each generation company makes a portfolio offer 
for all its generation in each zone. ERCOT publishes historical aggregated zonal 

A snapshot for September 9, 2008 is shown in Figure 7. The Java code descr
Section 3.1 downloads this page and extracts the constraint data. 
 

 

 

Figure 7 Web page showing PTDFs for inter-zonal constraints 

 

r data 

offers from all generation companies at http://ercot.com/mktinfo/agg_bid/. 
 
A snapshot is shown in Figure 8. The Java code described in Section 3.1 downloads 

is page and extracts the constraint data. th
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Figure 8 Web page showing offer data 

 
Each generation company should know its own portfolio self-offers, its self-costs, and 
its own contracts.  An independent system operator performing this calculation also 
has access to offers and can estimate costs and contracts.  For the purposes of the 
cases study, generic cost data based on historical information was used.  Finally, a 
range of various net generation and demand situations can be used to “explore” the ex 
post optimal offer. 

4.3 Results of ERCOT case 

Transmission and offer data based on April 2, 2008 was used in the case study.  At 
that time, the North-Houston inter-zonal constraint was binding.  The optimal offer 
for a large firm in the Houston zone was analyzed.  The optimal offer was calculated 
and is shown in Figure 9 for the case of Houston load varying from 500 MW to 2150 
MW.  The optimal offer is coarse in the price range from $130/MWh to $200/MWh. 
To have a better view of the optimal offer in this price range, we plot the case of 
Houston load varying from 1250 MW to 2090 MW with smaller step sizes in Figure 
10. The actual offer in this case study deviates significantly from the optimal offer and 
from marginal costs. 
 
In section 2.2, it was observed that due to changes in the congestion status as injection 
changes, it might be the case that the constructed offer was not monotonic.  However, 
in this case, as shown in Figures 9 and 10, the offer is monotonic and so it could be 
submitted as a valid offer. 
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Figure 9 Optimal offer for April 2, 2008, Houston zone  
(load 500 MW – 2150 MW) 
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Figure 10 Optimal offer for April 2, 2008, Houston zone  
(load 1250 MW – 2090 MW) 
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5 Conclusion 

In this report we have described the theory underlying the calculation of the ex post 
optimal offer by a generating firm in the presence of transmission constraints.  The 
principal contribution is the calculation of the transmission-constrained residual 
demand derivative and the incorporation of this calculation into a profit maximization 
framework.  A Java based tool was built to implement the calculations and display 
them and a case study of ERCOT performed. 
 
We believe this tool to be an important first step to allowing market participants to 
assess the impact of bidding decisions on a variety of outcomes including profits, 
prices, and economic efficiency.  In future research, this tool can be expanded along 
several dimensions. 
 
One area for future research is to calibrate the tool for other markets with similar 
features of the procurement process.  While the tool is specifically calibrated to 
ERCOT’s zonal market, the analytical technique described in sections 2.3-2.4 can be 
applied elsewhere. 
 
In addition, the tool could include additional diagnostics that may be useful to a 
market monitor in assessing the impact of a bidder’s decisions on the overall 
functioning of the market.  In particular, the tool could calculate prices under several 
counterfactual scenarios including a scenario where the firm in question submitted 
perfectly competitive offers.  Alternatively, one could compute prices that would 
arise under alternative transmission capacity scenarios (with firms exercising market 
power).  Such an analysis would serve as a means to assess the outcome of (small) 
grid expansions on expected market outcomes while accounting for possible market 
power.  Finally, the tool could be expanded to estimate the effect of a single firm’s 
bids on the overall dispatch costs. 
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