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Executive Summary 

With the stringent fleet challenges introduced by renewable resources, the need for 
flexible resources in power systems is higher than ever. Since energy storage has energy 
shifting and fast-ramping capabilities, it provides an attractive solution to facilitate the 
integration of high levels of renewable resources. While there are growing interests in 
energy storage in recent years, the existing market structure does not always account for 
the characteristics of energy storage. As a result, the full flexibility of energy storage is 
not being used by the existing energy management systems and market management 
systems. In this report, the primary goal is to develop commitment and dispatch 
optimization models that optimally utilize large-scale storage at multiple time scales and 
horizons as well as to have scalable formulations and algorithms. Due to its significance 
as the most common form of large-scale energy storage, the work is focused on pumped 
hydro storage (PHS). The report is presented in two parts. 

 

Part I:  A Study of Adjustable-Speed Pumped Storage Hydro Operation in the US 
Day-ahead Market 
 

The 40 open-loop fixed-speed PHS facilities operating in the U.S. total more than 20 GW 
of storage capacity, approximately 2% of U.S. generating capacity. In today’s market 
regions, the generation and pumping of PHS follow consistent daily patterns, pumping at 
night and generating on peak. With increasing levels of new technologies, like wind, 
solar, and distributed generation,, it may be that these are not always the periods of time 
that require these modes of operation. However, advanced optimization of commitment 
and dispatch schedules is needed in order to determine the optimal operation of these 
plants. In addition, PHS plants that utilize adjustable speed (AS) pumping technology 
will provide further flexibility. Full optimization of PHS and other energy storage is 
computationally difficult and requires additional data, and AS capability adds additional 
complexity to the optimization.  

Part I presents a day-ahead unit commitment and economic dispatch model that allows 
for the optimization of AS PHS. The model is implemented in open-source optimal 
power flow software. It is then demonstrated on a reduced 240-bus model of the WECC 
system to study the future operation of AS technology under two variable renewable 
penetrations, 6% and 14%, and two different optimization scenarios. The cycling costs 
for conventional generation are included in the models.  

The results show that AS PHS provides benefits in all cases. Energy arbitrage alone, 
however, may not provide the needed financial incentives for AS PHS, especially when 
high renewable penetrations are present in the system. Ancillary services markets may 
provide the additional needed incentives. When the cycling costs of conventional 
generators are considered, even more cost savings can be obtained by optimizing PHS 
operations.  

Increasing the penetration level of renewables significantly increased the complexity in 
the system, and this was shown in higher solution times. Optimizing PHS while 
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considering the cycling cost reduces the total system operating cost and improves the DA 
market operation. Full optimization of AS PHS while considering the cycling cost 
resulted in the best total system cost savings, solving time, and PHS revenues. More AS 
PHS needs to be present in the system as renewable penetrations increase to provide fast 
ramping to follow renewable variations and thus reduce the cycling of coal and gas 
generators. 

 

Part II: Enhanced Pumped Hydro Storage Model in Real-Time Operations 
 
This part of the report investigates the modeling of different PHS technologies and 
develops an improved approach to enhance the utilization of the PHS in real-time 
operation.  

Two types of PHS technologies are studied in the report, namely the traditional fixed-
speed PHS and the adjustable-speed PHS. For the fixed-speed PHS, the pumping power 
is fixed and cannot be varied in the pumping mode. Therefore, the fixed-speed PHS can 
only provide regulation reserves in the generation mode. However, for the adjustable-
speed PHS, the power is adjustable in the pumping mode. With this improvement, the 
adjustable-speed PHS is able to provide regulation and load following reserves in both 
the pumping and generation mode. It also has higher round-trip efficiencies compared to 
the fixed-speed PHS. A two-step approach is proposed to evaluate and compare the 
attractiveness of the fixed-speed and the adjustable-speed PHS in integrating variable 
renewable generation. The two-step approach simulates the scheduling and the 
deployment of regulation reserves via AGC. The result shows that the adjustable-speed 
PHS is able to provide large quantities of regulation reserves in both the generation and 
the pumping mode. By having the capability to provide regulation reserves in both the 
generation and pumping mode, the adjustable-speed is a more effective solution to 
manage the uncertainty and variability introduced by renewable resources.  

While energy storage has been considered as an attractive resource to meet the increasing 
need for flexible resources, existing market structure does not adequately account for the 
characteristics of energy storage. Today, the existing real-time market has a limited look-
ahead time window and do not look hours in advance. As the value of energy storage is 
dependent on the future value of the resource at a later time stage, the flexibility of 
energy storage is not being fully utilized by the existing market structure. To enhance the 
utilization of the PHS in real-time operation, a policy function based approach is 
proposed in the report. A policy function is a rule that describes the control action as a 
function of the state. In the report, the policy function is generated using random forest 
classification algorithms. Given an operating state, the policy function can return a 
dispatch decision for the PHS taking into account both the current and future operating 
conditions. By shifting computational complexity to offline analysis, the policy function 
based approach has minimal added computational difficulty to the existing energy 
management systems in real-time. In the case study, the result shows that the policy 
function based approach has better performance compared to the existing approach, 
where the PHS is operated based schedules that are determined through a prior look-
ahead planning stage. The result in the case study also indicates that the policy function 
based approach has close performance to the stochastic programming model based 
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benchmark and the perfect-foresight benchmark. By using the proposed approach, the 
utilization of the PHS is enhanced with minimal added computational difficulty to the 
existing energy management systems and market management systems.  

In summary, the key takeaway points of this project are, 

• The fixed-speed PHS and the adjustable-speed PHS are investigated in the report. 
With increasing renewable penetrations, the case study shows that the adjustable-
speed PHS is a more attractive and effective solution to balance the uncertainties 
introduced by renewable resources.  

• In this report, a policy function based approach is proposed to enhance the 
utilization of the PHS in systems with renewable resources.  

• The policy function is generated using a data mining approach, referred to as a 
classification technique.  

• In real-time operations, the policy function can return a decision for the PHS 
given the system operational conditions, while also taking into account future 
uncertainties in the system. 

• The result shows that the proposed policy function based approach has 
performance close to a stochastic programming model based benchmark while 
having minimal added computational difficulty to the existing energy 
management systems and market management systems.  

• While a classification technique is used to generate the policy function in this 
report, the policy function can also be derived using other techniques or be 
designed in other forms. The policy function based approach has tractable 
computational complexity for a large-scale power system and can also effectively 
enhance the utilization of PHS. The policy function based approach is a scalable 
approach that can be applied to a “real-world” power system and energy market.  

 

Project Publications: 
 
N. Li, C. Uckun, E. Constantinescu, J. R. Birge, K. W. Hedman, and A. Botterud, 
“Flexible operation of batteries in power system with renewable energy,” IEEE 
Transactions on Sustainable Energy, under review. 
 
N. Li, and K. W. Hedman, “Enhanced utilization of pumped hydro storage in power 
system operation using policy functions,” IEEE Transactions on Power System, in 
preparation. 
 
N. Li, M. Hedayati and K. W. Hedman, “Using flywheels to provide regulation services 
for systems with renewable resources,” 2015 IEEE Power and Energy Society General 
Meeting, accepted. 
 



 

 v 

H. Aburub and W. Jewell, "Optimal Generation Planning to Improve Storage Cost and 
System Conditions," IEEE Power and Energy Society General Meeting, Washington, 
July 2014. 

H. Aburub and W. Jewell, “A Study of Adjustable-Speed Pumped Storage Hydro 
Operation in the US Day-ahead Market,” to be submitted to IEEE Transactions on 
Sustainability.  

Student Theses: 
 
Nan Li. Let Wind Rise – Harnessing Bulk Energy Storage under High Renewable 
Penetration Levels. PhD dissertation, Arizona State University, Tempe AZ, expected in 
January 2016. 
 
Haneen Aburub, Electric Energy Storage for High Penetration Renewables, PhD 
Dissertation, Wichita State University, Wichita, Kansas, USA, expected May 2016.



 
 
 
 
 
 

Part I 
 

A Study of Adjustable-Speed Pumped Hydro Storage 
Operation in the US Day-ahead Market 

 
 
 
 

Haneen Aburub 
Ward Jewell 

 
Wichita State University 

 
 

  



 

 

For information about this project, contact 
 
Ward Jewell 
Wichita State University 
Department of Electrical Engineering and Computer Science 
Wichita, Kansas, USA 67260-0083 
Phone: 316-978-6340 
Email: ward.jewell@wichita.edu 
 
 
Power Systems Engineering Research Center 
 
The Power Systems Engineering Research Center (PSERC) is a multi-university Center 
conducting research on challenges facing the electric power industry and educating the 
next generation of power engineers. More information about PSERC can be found at the 
Center’s website: http://www.pserc.org. 
 
 
For additional information, contact: 
 
Power Systems Engineering Research Center 
Arizona State University 
527 Engineering Research Center 
Tempe, Arizona 85287-5706 
Phone: 480-965-1643 
Fax: 480-965-0745 
 
 
Notice Concerning Copyright Material 
 
PSERC members are given permission to copy without fee all or part of this publication 
for internal use if appropriate attribution is given to this document as the source material. 
This report is available for downloading from the PSERC website. 
 
 

 2015 Wichita State University. All rights reserved. 



 

i 

Table of Contents 

Table of Contents ................................................................................................................. i 

List of Figures ..................................................................................................................... ii 

List of Tables ..................................................................................................................... iii 

Nomenclature ..................................................................................................................... iv 

1. Introduction ................................................................................................................... 1 

1.1 Background ........................................................................................................... 1 

1.2 Summary of Chapters ........................................................................................... 2 

2. Problem Formulation: Optimization Model.................................................................. 3 

3. WECC System Data and Assumptions ......................................................................... 6 

3.1 Simulation Time Period ........................................................................................ 6 

3.2 WECC PHS Plants ............................................................................................... 6 

3.3 WECC Conventional Generators ......................................................................... 7 

3.4 Generator Cycling Costs ....................................................................................... 8 

3.5 WECC Renewables .............................................................................................. 9 

4. Results ......................................................................................................................... 11 

4.1 Conventional Generator Cycling Costs Included ............................................... 11 

4.2 Conventional Generator Cycling Costs Not Included ........................................ 12 

4.3 Effects of Including Conventional Generator Cycling Costs ............................. 13 

4.4 Solution Time and PHS Revenues ..................................................................... 14 

4.5 Conventional Generator Cycling ........................................................................ 16 

5. Conclusions ................................................................................................................. 18 

6. Future Work ................................................................................................................ 19 

References ......................................................................................................................... 20 

 



 

ii 

List of Figures 

Fig. 3.1. WECC model generation mix [8] ......................................................................... 6 

Fig. 3.2. Renewables and load generation within the 672-hour simulation horizon. ....... 10 

Fig. 4.1. Coal and gas generation for fully-optimized PHS and cycling cost considered 
under low and high renewables penetration level. ............................................................ 16 

Fig. 4.2. Coal and gas generation for no PHS and cycling cost considered under low and 
high renewables penetration level ..................................................................................... 17 



 

iii 

List of Tables 

Table 3.1. WECC PHS Plant Specifications ....................................................................... 7 

Table 3.2. WECC Conventional Generator Costs .............................................................. 8 

Table 3.3. WECC Generator Variable Costs ...................................................................... 9 

Table 4.1. High Renewable with Cycling Cost Relative to No PHS Model Case ............ 11 

Table 4.2. Low Renewable with Cycling Cost Relative to No PHS Model Case ............ 12 

Table 4.3. High Renewable with No Cycling Cost Relative to No PHS Model Case ...... 13 

Table 4.4. Low Renewable with No Cycling Cost Relative to No PHS Model Case ...... 13 

Table 4.5. High Renewable, effects of considering cycling costs .................................... 14 

Table 4.6. Low Renewable, effects of considering cycling costs ..................................... 14 

Table 4.7. Solving Time and PHS Revenues .................................................................... 15 

 
  



 

iv 

Nomenclature 
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𝐸𝑠𝑠𝑠𝑠𝑖  Maximum energy capacity of PHS plant at time t 

𝐸𝑠𝑠𝑠𝑠𝑖  Minimum energy capacity of PHS plant at time t 

𝐹𝑚𝑚𝑚 Vector of branch flow limit 

𝐺𝑠ℎ Vector of approximated active power consumed by shunt 
elements  
 

𝑃𝑑𝑏 Active power demand at bus b 

𝑃𝑔𝑏 Active power generation at bus b 

𝑃𝑠ℎ𝑖𝑖𝑖𝑏  Active power shift at bus b 

𝑃𝑔𝑖𝑖 Active power output of generator i at time t 

𝑃𝑔𝑔𝑖𝑖 Consumed active power of virtual PHS dispatchable load at 
time t 
 

𝑃𝑔𝑔𝑖𝑖  Produced active power of virtual PHS generator i at time t  

𝑃𝑚𝑚𝑚𝑖  Maximum active power output of generator i 

𝑃𝑚𝑖𝑛𝑖  Minimum active power output of generator i 

𝑃𝑟𝑖 Active power ramping limit of PHS plant i 

𝑃𝑠𝑖𝑖 Active power output of PHS plant i at time t 

𝑃𝑠𝑠𝑠𝑠𝑖  Maximum active power output of PHS plant i at time t 

𝑃𝑠𝑠𝑠𝑠𝑖  Minimum active power output of PHS plant i at time t 

𝑢𝑔𝑖𝑖 Commitment status of generator i at time t 
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𝑣𝑔𝑔𝑔𝑖𝑖  Shut-down status of generator i at time t 

𝑣𝑔𝑔𝑔𝑖𝑖  Start-up status of generator i at time t 
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𝜂𝑑𝑖  Discharging efficiency of PHS plant i 

𝜂𝑐𝑖  Charging efficiency of PHS plant i 
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1. Introduction 

1.1 Background 

Energy storage technologies play an increasingly important role in improving the 
reliability and reducing the production cost of the electric power system by providing 
energy and ancillary services to the grid. The most common utility-sized energy storage 
technology is the pumped hydro storage (PHS) [1]. Currently, there are 40 open-loop 
(using a naturally-flowing stream or reservoir) fixed-speed (FS) PHS plants operating in 
the U.S. totaling more than 20 GW of storage capacity (approximately 2% of U.S. 
generating capacity) [2]. In 1929, the Rocky River facility was the first PHS plant 
constructed in North America on the Housatonic River in Connecticut with a capacity of 
31 MW [3]. During the mid- to late 1970s, the significant increase in oil and gas prices 
and concerns about the security of fuel supplies resulted in building the majority of PHS 
capacity [1]. Recently, the Federal Energy Regulatory Commission (FERC) had granted 
preliminary permits for 50 PHS projects with a total of 34 GW capacity over 22 states, 
which would more than double the existing capacity [2,3]. Many of these projects are for 
closed-loop sites, and are considering the use of adjustable speed (AS) technology [3,4]. 
A preliminary permit does not authorize construction; however it strongly indicates the 
interest in PHS development [4]. The flexibility of PHS, especially with its AS 
technology, will play an important role in integrating high penetration level of variable 
renewables due to its fast ramping capability, low operating cost, and the ability of AS 
technology to vary the power consumed in the pumping and generating modes over a 
range of values [3,5].  
 
In the U.S. deregulated markets, except for PJM, the PHS operation is sub-optimized by 
the independent system operators (ISOs) [3]. ISOs require that PHS choose the 
generation and pumping mode periods in advance of the day-ahead (DA) market, and 
then the ISO decides the commitment status, energy and ancillary services schedules of 
the plant in that operation mode. Unlike other ISOs, PJM fully optimizes the PHS in its 
DA market by also deciding generation and pumping periods [3].  
 

Full optimization of PHS is computationally very difficult and requires additional data 
sets. This could be seen when the solution time of PJM’s system optimizer was increased 
5 to 10 times by the addition of a single PHS plant [3]. In today’s market regions the PHS 
generation and pumping follow consistent daily patterns (e.g. pumping at night and 
generation in peak load periods). The unique characteristics of PHS with full 
optimization will be more needed when there are higher penetrations of variable 
generation because at that time, the marginal prices have much more volatility throughout 
the day [3].  Since currently there are no AS PHS plants in the U.S., the work proposed in 
this paper developed an open-loop AS PHS DA unit commitment and economic dispatch 
optimization model, which is demonstrated on a reduced 240-bus WECC system to study 
the future operation of AS technology under different penetration levels of renewables 
and different optimization scenarios. 
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1.2 Summary of Chapters 

This report is structured as follows. In chapter 2, the optimization models are developed. 
There is one model for full optimization, and another one for a suboptimal solution. Both 
include AS operation of PHS in both generation and pumping modes.  

Chapter 3 presents the data and assumptions used to model the WECC system. New 
information, including cycling costs for conventional generators, was needed for this 
research, and is presented in chapter 3.  

Chapter 4 presents the results of running the optimization models on the WECC system. 
Chapter 5 is the conclusions drawn from the work, and chapter 6 presents ideas for 
continuing work on this subject.  
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2. Problem Formulation: Optimization Model 

In this chapter, the optimization model is presented in equations (1) through (24). This 
model was built in the MATPOWER environment [7] using its standard and extensible 
optimal power flow (OPF) structure. MATPOWER is a package of MATLAB M-files for 
solving power flow and optimal power flow problems [7]. For simplicity, DC OPF 
formulations were used in the model because of its faster solution time. Many industrial 
and commercial OPF formulations use the DC equations to get satisfactory results [6]. 
The techniques developed will also apply to ac OPF, but the use of ac OPF in this paper 
would increase the complexity and solutions times to impractical levels.  

The optimization model is formed as a quadratic programming problem that approximate 
the DA unit commitment (UC) and economic dispatch (ED) market behavior. Quadratic 
programming is used because MATPOWER does not support defining binary variables 
that reflect the commitment, start-up, and shut-down status. Quadratic programming is a 
special form of nonlinear programming in which the objective function is quadratic and 
all constraints are linear [6].  

The objective function developed specifically for this work is shown in equation (1). It 
includes the conventional quadratic and linear generation cost function 𝐶𝑔, and linear 
start-up cost function 𝐶𝑆𝑆. It adds to these a linear cycling cost function 𝐶𝑐, which is 
needed because generators are cycling more to follow variable generation as penetrations 
of variable generation increase. This is an important contribution of this work and it is 
discussed in more detail in part B of this section. 

Equations (2) through (6) represent the standard DC OPF variables and constraints 
applied in MATPOWER and other DC OPF models such as [12]. This formulation 
includes angle 𝜃, active power 𝑃𝑔, branch, and bus power limits [7]. Hydro optimization 
is presented by equation (7). In Equation (7), all hydro units are assumed to have the 
same capacity factor (CF) value during the simulation horizon.  

The next important contribution of this work is equations (8) through (17), which  
represent the AS PHS optimization model. In this model, the storage is modeled as 
dispatchable load 𝑃𝑔𝑔 and generation 𝑃𝑔𝑔, in which the summation of their outputs results 
in the storage output. Equations (16) and (17) show the full and sub-optimization cases of 
AS PHS respectively. In equation (16) the PHS can flexibly change its pumping output 
between the minimum and maximum capacity of the virtual dispatchable load that 
represents the pumping mode of PHS. In addition, equation (16) allows the full 
optimization by committing and dispatching the pumping and generating schedules. 
Unlike equation (16), in equation (17) the pumping and generating times are provided by 
the PHS owner, which results in a sub-optimal solution.  

The UC optimization model is represented by equations (19) through (24). The 
MATPOWER capability to run an OPF combined with a unit de-commitment for a single 
time period was applied in this paper. This capability allows it to shut down the most 
expensive units and thus find the least cost commitment and dispatch [7]. This work 
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extends the work developed in [9] and [13] by adding a detailed ramping model in 
equation (15) for AS PHS, and its  optimization options in equations (16) and (17). The 
generation UC commitment and cycling operation of conventional generators are 
important additions to the previous work done in [9] and [13]. These are used to study the 
benefits of AS PHS in the future variable DA market in the US. 

𝑚𝑚𝑚𝜃,𝑃𝑔,𝑃𝑠,𝐸𝑠,𝑢,𝑣𝑆𝑆,𝑣𝑆𝑆 ∑ 𝐶𝑔𝑖 (𝑃𝑔𝑖𝑖)𝑡 +    ∑ 𝐶𝑐𝑖(𝑡 𝑃𝑔𝑖𝑖 − 𝑃𝑔
𝑖(𝑡+1)) + ∑ 𝐶𝑆𝑆𝑖 (𝑣𝑆𝑆𝑖𝑖 )𝑡    (1) 

𝜃𝑚𝑚𝑚𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑚𝑚𝑚𝑖           (2) 

𝑃𝑚𝑚𝑚𝑖 ≤ 𝑃𝑔𝑖𝑖 ≤ 𝑃𝑚𝑚𝑚𝑖           (3) 

𝐵𝑓𝜃 + 𝑃𝑓,𝑠ℎ𝑖𝑖𝑖 − 𝐹𝑚𝑚𝑚 ≤ 0         (4) 

−𝐵𝑓𝜃 − 𝑃𝑓,𝑠ℎ𝑖𝑖𝑖 − 𝐹𝑚𝑚𝑚 ≤ 0         (5) 

𝐵𝑏𝜃 + 𝑃𝑠ℎ𝑖𝑖𝑖𝑏 + 𝑃𝑑𝑏 + 𝐺𝑠ℎ − 𝑃𝑔𝑏 ≤ 0        (6) 

∑ 𝑃𝑔𝑖 ≤ 𝐶𝐶 ∑ 𝑃max𝑖
𝑡𝑡           (7) 

−𝑃𝑠𝑠𝑠𝑠𝑖 ≤ 𝑃𝑠𝑖𝑖 ≤ 𝑃𝑠𝑠𝑠𝑠𝑖          (8) 

−𝐸𝑠𝑠𝑠𝑠𝑖 ≤ 𝐸𝑠𝑖𝑖 ≤ 𝐸𝑠𝑠𝑠𝑠𝑖          (9) 

0 ≤ 𝑃𝑔𝑔𝑖𝑖 ≤
𝐸𝑠𝑠𝑠𝑠
𝑖 −𝐸𝑠

𝑖(𝑡−1)

𝜂𝑐𝑖
        (10) 

0 ≤ 𝑃𝑔𝑔𝑖𝑖 ≤  𝐸𝑠
𝑖(𝑡−1)𝜂𝑑𝑖           (11) 

0 ≤ ∑ 𝑃𝑔𝑔𝑖𝑡 ≤ 𝐸𝑠𝑠𝑠𝑠
𝑖 −𝐸𝑠

𝑖(𝑡−1)

𝜂𝑐𝑖
−

𝑃𝑔𝑔
𝑖(𝑡−1)

𝜂𝑐𝑖𝜂𝑑
𝑖        (12) 

0 ≤ ∑ 𝑃𝑔𝑔𝑖𝑡 ≤ 𝐸𝑠
𝑖(𝑡−1)𝜂𝑑𝑖 − 𝜂𝑐𝑖 𝜂𝑑𝑖 𝑃𝑔𝑔

𝑖(𝑡−1)      (13) 

∑ 𝑃𝑔𝑔𝑖𝑡 + ∑ 𝑃𝑔𝑔𝑖𝑡 = 0         (14) 

−𝑃𝑟𝑖 ≤ [𝑃𝑔𝑔𝑖𝑖 + 𝑃𝑔𝑔𝑖𝑖 ] − �𝑃𝑔𝑔
𝑖(𝑡+1) + 𝑃𝑔𝑔

𝑖(𝑡+1)� ≤ 𝑃𝑟𝑖     (15) 

Full optimization: 

−𝑃𝑠𝑖𝑖 ≤ 𝑃𝑔𝑔𝑖𝑖 + 𝑃𝑔𝑔𝑖𝑖 ≤ 𝑃𝑠𝑖𝑖         (16) 

Sub-optimal solution: 
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−𝑃𝑠𝑠𝑠𝑠𝑖𝑖 ≤ 𝑃𝑔𝑔𝑖𝑖 + 𝑃𝑔𝑔𝑖𝑖 ≤ 𝑃𝑠𝑠𝑠𝑠𝑖𝑖         (17) 

−𝑃𝑟𝑖 ≤ 𝑃𝑔𝑖𝑖 − 𝑃𝑔
𝑖(𝑡+1) ≤ 𝑃𝑟𝑖        (18) 

𝑢𝑔𝑖𝑖 ∈ {0,1}          (19) 

𝑣𝑔𝑔𝑔𝑖𝑡 ∈ {0,1}          (20) 

𝑣𝑔𝑔𝑔𝑖𝑖 ∈ {0,1}           (21) 

𝑢𝑔𝑖𝑖𝑃𝑚𝑚𝑚𝑖 ≤ 𝑃𝑔𝑖𝑖 ≤ 𝑢𝑔𝑖𝑖𝑃𝑚𝑚𝑚𝑖         (22) 

𝑢𝑔𝑖𝑖 − 𝑢𝑔
𝑖(𝑡−1) = 𝑣𝑔𝑔𝑔𝑖𝑖 − 𝑣𝑔𝑔𝑔𝑖𝑖         (23) 

𝑣𝑔𝑔𝑔𝑖𝑖 + 𝑣𝑔𝑔𝑔𝑖𝑖 ≤ 1         (24) 
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3. WECC System Data and Assumptions 

This chapter presents the WECC model that was used as a test system for the 
optimization model developed in part A. The WECC 240-bus model is a realistic test 
system for the WECC market [8]. The WECC model was reduced to 240-buses by 
aggregating the bulk transmission system and generators, and estimating the transmission 
line parameters [8]. The generation mix in the original model is shown in Fig. 3.1. 

 
 

 Fig. 3.1. WECC model generation mix [8] 

3.1 Simulation Time Period 

The system was simulated to represent the operation of the DA market for 28 days, a total 
of 672 hours. These represent one typical week in each of the spring, summer, fall, and 
winter seasons.  

3.2 WECC PHS Plants 

The reduced WECC system includes four PHS plants aggregated at buses 2638, 3432, 
7031, and 7032. Bus 7031 is also connected to a wind plant with 597 MW capacity [8]. 
Table 3.1 shows the data for the PHS plants. The original model [8] included the data 
shown in the first four columns of Table 3.1, but did not include variable O&M costs. 
Variable O&M costs are needed in this optimization work to allow accurate 
representations of the ramping capability of AS PHS in the optimization model. Variable 
O&M costs were estimated from data in [10]. Some of the PHS plants had O&M cost 
data in [10], but others did not. Therefore, the costs for plants in [10] that had similar 
capacities to the plants in the WECC system were used to represent the WECC plants, 
The variable O&M costs and the round-trip efficiency of PHS in Table 3.1 are based on a 
Pacific Northwest National Laboratory (PNNL) report [15]. 

Coal 
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38% 
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5% 
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Table 3.1. WECC PHS Plant Specifications 

PHS Plant 
Max 

Capacity 
(MW) 

Storage 
Volume 
(GWh) 

Round-
trip 

Efficiency 
(%) 

Ramp 
Rate 

(MW/min) 

Variable 
O&M 
Cost 

($/MWh) 

CASTAI4G 1272 12.72 81 10.6 4 

COLOEAST 333 1.332 81 2.78 4 

CRAIG 200 1 81 1.67 4 

HELMS 1218 186.354 81 10.15 4 

 

3.3 WECC Conventional Generators 

Startup costs for generators were not included in the original model [8] because the 
model was not originally used for unit commitment. They are needed for this work 
because units will be committed and de-committed. To calculate startup costs, the 
conventional coal and gas generators from the original model [8] were divided into the 
following types [11]: 
 
• Large coal- sub-critical steam (300-900 MW).  

• Large coal- supercritical steam (500-1300 MW).  

• Gas- combined cycle  

• Gas- simple cycle large frame combustion turbine  

• Gas-fired steam (50-700 MW)  
 
All the generators were assumed to be in hot start-up status. The total start-up cost of the 
conventional generators, shown in Table 3.2, includes the cost of starting auxiliary power 
and operations (chemicals, water, additives, etc.) and cost of startup fuel [11].  
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Table 3.2. WECC Conventional Generator Costs 

Generator Type Start-up Cost ($) Cycling Cost 
($/MWcap) 

Large coal- sub-critical steam 56.16 1.99 

Large coal- supercritical steam 59.36 1.72 

Gas- combined cycle 31.95 0.33 

Gas- simple cycle large frame 
combustion turbine 23.85 0.88 

Gas-fired steam 48.34 1.56 

 

3.4 Generator Cycling Costs  

As the penetrations of variable generation have increased, aging fossil units that were 
originally designed for base load operation [11] have at times been forced to cycle. 
Cycling refers to the operation of power plants at varying load levels, including on/off, 
load following, and minimum load operation, in response to changes in system load 
requirements [11]. When a power plant is turned off and on, the boiler, steam lines, 
turbine, and auxiliary components face large thermal and pressure stresses, which cause 
damage [11]. This damage is expected to increase with the increased cycling as future 
penetration levels of variable renewables continue to increase. AS PHS plants can help in 
reducing the cycling from conventional generators, but considering the cycling costs of 
conventional generators will allow more accurate optimization. But cycling cost 
estimates are needed for this, and were not included in the original model [8]. To address 
this issue, WECC has been working with software vendors to allow for the consideration 
of cycling costs, but commercial software is not yet available.  

A recent NREL report [11] provided the data for generation cycling costs that are needed 
to implement the optimization developed in Chapter 2. Flexible conventional generators 
are built for quick start and fast ramping capabilities, but they are not inexpensive to 
cycle. The cycling costs used are presented in Table 3.2, in which they were chosen 
depending on the conventional generation type presented previously in this section. 

All generators are assumed to have first order cost functions except gas generators, which 
were considered to have second order cost functions. The generators’ variable costs, 
which include variable O&M costs and fuel costs, are shown in Table 3.3 [9]. All coal 
generators are assumed to have the same 10.414 (MMBTU/MWh) heat rate as in [9], 
while it differs from one gas generator to another based on the data provided by J. E. 
Price, and J. Goodin in [8]. 
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Table 3.3. WECC Generator Variable Costs 

Generator Type Variable Cost ($/MWh) 

Coal 25.24 

* Gas 5 ($/MMBTU) 

Nuclear 21.94 

Hydro 10 

Wind 8.08 

Solar 5.76 

Geothermal 23 

Biomass 49.08 

 

3.5 WECC Renewables 

Fig. 3.2 shows, for the 672-hour simulation period, the hourly renewable generation 
profiles for low and high penetration levels based on [8]. For the low penetration case 6% 
of the annual load energy is provided by renewables. The high penetration is 14%. The 
renewable generation includes wind, solar, biomass, and geothermal generation. Fig. 3.2 
also shows the hourly load profiles for the four weeks based on [8]. It can be seen from 
Fig. 3.2 that that load was high during summer and fall seasons, and it reached its annual 
peak in fall. On the other hand, renewables were generating more during spring and 
winter seasons, and they reached to their peak generation in winter. 
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Fig. 3.2. Renewables and load generation within the 672-hour simulation horizon. 
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4. Results 

This section presents the results of different study cases for the PHS model, with and 
without cycling costs, and at the two renewable penetration levels. Results are compared 
with the base case, which has no PHS.  

4.1 Conventional Generator Cycling Costs Included 

Tables 4.1 and 4.2 show the results of the cases when cycling costs were considered for 
high and low renewables penetration levels respectively. The sub-optimized case uses 
equation (17), in which the pumping and generating times are provided by the PHS 
owner, but the PHS is dispatched by the ISO within those times. The optimized case uses 
equation (16), in which the PHS is both committed and dispatched by the ISO. This 
allows the PHS to flexibly change its pumping output to optimize the pumping and 
generating schedules. 

Table 4.1. High Renewable with Cycling Cost Relative to No PHS Model Case 

Renewables 
Penetration 
Level (%) 

PHS Model Cycling 
Cost 

Total System 
Cost ($) 

Relative Reduction to 
Without PHS model 

(%) 

 

 

14 % 

------------ Considered 
 
1,043,140,602 

 
------------ 

Sub-
optimized Considered 1,040,535,361 0.25% 

Fully- 
optimized Considered 1,006,555,221 3.51% 

 

The results shown in Table 4.1 show a significant reduction in the sub- and fully-
optimized operating costs relative to the case with no PHS. The relative reductions are  
considered significant since the total amount of storage, 3.02 GW/201 GWh, is low 
relative to the total renewable penetration of 29.14 GW. Table 4.1 shows that the PHS 
value (the difference between the operating cost and the cost without PHS) in the fully 
optimized case ($36,585,381) is much higher than its value in the sub-optimized case 
($2,605,241). The total energy in the four-week period is 65.3 GWh, making the average 
energy costs $15.98/MWh for the case with no PHS, $15.94/MWh for the sub-optimized 
case, and $15.42/MWh for the fully- optimized case.  
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Table 4.2. Low Renewable with Cycling Cost Relative to No PHS Model Case 

Renewables 
Penetration 
Level (%) 

PHS Model Cycling 
Cost 

Total System 
Cost ($) 

Relative Reduction to 
Without PHS model 

(%) 

 

 

        6 % 

------------ Considered 
 

1,133,079,936 
 

------------ 

Sub-
optimized Considered 

 
1,129,850,198 

 

 
0.29% 

 

Fully- 
optimized  Considered 

 
1,094,895,374 

 

 
3.08% 

 
 

The lower renewable penetration results shown in Table 4.2 again show significant 
reductions in the sub- and fully optimized operating costs relative to the case without 
PHS. In this case the total renewable generation was 3.55 GW. Table 4.2 shows that the 
PHS value in the fully optimized case ($34,954,824) is much higher than its value in the 
sub-optimized case ($3,229,739). The average energy costs are $17.36/MWh for the case 
with no PHS, $17.31/MWh for the sub-optimized case, and $16.78/MWh for the fully- 
optimized case. Full optimization of PHS provided more operating cost savings in the 
higher renewables case than the lower renewables. However, the opposite happened with 
the sub-optimization of PHS in which the savings were more in the low renewables case. 
Thus, as the renewable penetration level increases, fully optimizing the PHS provides 
greater benefits to the system.   

4.2 Conventional Generator Cycling Costs Not Included 

Tables 4.3 and 4.4 show the results of the cases when cycling costs were not considered 
for high and low renewables penetration level respectively. Costs in each case are lower 
than the comparable Table 4.1 and 4.2 cases because cycling costs are not included. This 
comparison is discussed further in Tables 4.5 and 4.6. Both sub- and full-optimization 
still results in reduced operating costs, with full-optimization providing significantly 
higher reductions.  
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Table 4.3. High Renewable with No Cycling Cost Relative to No PHS Model Case 

Renewables 
Penetration 
Level (%) 

PHS Model Cycling Cost Total System 
Cost ($) 

Relative 
Reduction to 
Without PHS 

model (%) 

 

 

14 % 

------------ Not Considered 
 

1,043,140,276 
 

------------ 

Sub-
optimized Not Considered 

 
1,040,535,097 

 

 
0.25% 

 

Fully- 
optimized  Not Considered 

 
1,006,554,889 

 

 
3.26% 

 

 

Table 4.4. Low Renewable with No Cycling Cost Relative to No PHS Model Case 

Renewables 
Penetration 
Level (%) 

PHS Model Cycling Cost Total System 
Cost ($) 

Relative 
Reduction to 
Without PHS 

model (%) 

 

6 % 

------------ Not Considered 1,132,538,377 ------------ 

Sub-
optimized Not Considered 1,129,850,088 0.24% 

Fully- 
optimized  Not Considered 1,094,895,249 3.09% 

4.3 Effects of Including Conventional Generator Cycling Costs 

Tables 4.5 and 4.6 detail the effects of considering cycling costs in scheduling generation 
with and without PHS. In all cases the total system cost is higher when cycling costs are 
considered, simply because those costs are added to the base operating cost. The 
differences are small, however, because for these cases the cycling costs were low 
compared to total operating costs. They did cause some changes in conventional 
generator and PHS scheduling, however, so they should be included in future studies.  
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Table 4.5. High Renewable, effects of considering cycling costs 

Renewables 
Penetration 
Level (%) 

PHS 
Model 

Total System Cost 
($), cycling cost 

considered 

Total System Cost 
($), cycling cost not 

considered 

Difference 
in Cost 

(%) 

 

 

     14 % 

------------  
1,043,140,602 

 
1,043,140,276 0.000031 

Sub-
optimized 1,040,535,361  

1,040,535,097 
 

0.000025 

Fully- 
optimized 1,006,555,221 1,006,554,889 

 
0.000033 

 

Table 4.6. Low Renewable, effects of considering cycling costs 

Renewables 
Penetration 
Level (%) 

PHS 
Model 

Total System Cost 
($), cycling cost 

considered 

Total System Cost 
($), cycling cost not 

considered 

Difference 
in Cost 

(%) 

6 % 

------------ 
 

1,133,079,936 
 

1,132,538,377 0.048 

Sub-
optimized 

 
1,129,850,198 

 
1,129,850,088 0.000010 

Fully- 
optimized 

 
1,094,895,374 

 
1,094,895,249 0.000011 

 

4.4 Solution Time and PHS Revenues 

Table 4.7 presents the solving time and the PHS revenues for different cases. Table 4.7 
shows that adding four PHS units with either sub- or full- optimization to the system 
increases the solving time between 121 and 223 percent. PHS revenue was calculated by 
subtracting the pumping cost from the generation revenue. As shown in Table X, the PHS 
generated revenue in all cases. The revenue may be supplemented by ancillary services 
markets or other incentives as renewable penetrations increase. Full-optimization 
increases revenues by more than ten times the sub-optimized revenues.  
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Table 4.7. Solving Time and PHS Revenues  

Renewables 
Penetration 
Level (%) 

PHS Model Cycling Cost Solving Time (sec) PHS Revenue 
($) 

14 % ------------ Considered 2045.14  

Sub-optimized Considered 4119.78 3,096,400 

Fully- 
optimized  Considered 4674.73 43,554,546 

6 % ------------ Considered 2045.04  

Sub-optimized Considered 4727.19 3,172,113 

Fully- 
optimized  Considered 4770.74 44,637,755 

14 % ------------ Not 
Considered 1947.48  

Sub-optimized Not 
Considered 19514.52 3,096,376 

Fully- 
optimized  

Not 
Considered 5699.64 43,554,439 

6 % ------------ Not 
Considered 1936.49  

Sub-optimized Not 
Considered 

7421.85 
 

3,172,094 

Fully- 
optimized  

Not 
Considered 

 
4371.45 

 

 
50,276,202 
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4.5 Conventional Generator Cycling  

Fig. 4.1 shows the operation of coal and gas generators for both low and high renewable 
penetrations with the fully-optimized PHS model and cycling costs considered. Most of 
the load and variable generation following is done by gas-fired generation, but in times of 
high load and high variability, coal-fired generation is also cycled. This again 
underscores the importance of considering cycling costs in dispatch calculations. Optimal 
dispatch of PHS also provides some of load and variable generation following that is 
needed, reducing the need for such cycling of conventional generation. Fig. 4.2 shows 
that more AS PHS units will be needed in the future to help with the cycling cost in 
reducing coal and gas generators cycling when high renewable penetrations are present in 
the system. 

 

 

Fig. 4.1. Coal and gas generation for fully-optimized PHS and cycling cost considered 
under low and high renewables penetration level. 
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Fig. 4.2. Coal and gas generation for no PHS and cycling cost considered under low and 
high renewables penetration level 
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5. Conclusions 

Simulations of the WECC system show that the conventional sub-optimized case, in 
which pumping and generation schedules are set by the PHS owner, provides revenue for 
the PHS owner and reduced system operating costs in both the 6% and 14% renewable 
penetration cases. The full optimization technique presented in section 2 provides a 
significant, greater than ten-fold, increase in PHS revenue and decrease in operating cost 
for all cases.  

As renewable penetrations increase, conventional generation will cycle more to follow 
the variations in renewables. The cost associated with conventional generator cycling was 
estimated and included in the simulations. While this resulted in a very small change in 
total operating cost, it did change the dispatch of the generators. PHS mitigated some of 
the conventional generator cycling.  

Increasing the penetration level of renewables increased the complexity of the system, 
and resulted in higher solution times. Optimizing PHS while considering the cycling cost 
reduces the total system operating cost and improves the DA market operation. Full 
optimization of AS PHS while considering the cycling cost resulted in the best total 
system cost savings, solving time, and PHS revenues. As renewable penetrations 
increase, more AS PHS can provide fast ramping to follow renewable variations and thus 
reduce the cycling of coal and gas generators.  
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6. Future Work 

The proposed model in this paper will be extended to address modeling AS PHS, both 
open- and closed-loop, in real-time. The model will be applied on a large-scale system 
while considering the full-optimization case since none of the ISOs now fully optimize 
PHS in the real-time market.  

A study for penetration levels of renewables higher than the ones presented in this paper, 
while considering the proposed CO2 emissions standards by the US Environmental 
Protection Agency (EPA) will be presented in future work. 

PHS, especially with its AS capability, will have other applications in the future such as 
voltage control. A pricing structure will be developed to show the benefit of PHS in this 
and other ancillary services. 

As penetrations of AS PHS increase, comparing modeling the PHS commitment in unit 
level (as it is modeled today) and plant level will be important to obtain faster 
convergence times when solving the mixed-integer programming (MIP) problem for unit 
commitment in the DA market. MIP problems involve the optimization of a linear 
objective function, subject to linear equality and inequality constraints. Some or all of the 
variables are required to be integer. One of the main factors that affects the performance 
of MIP is the number of binary variables and the constraints associated with them [14]. 
Therefore reducing the computation time and memory size allows more complexity to be 
added into the UC in the future, such as increasing the number of PHS plants [14]. This 
idea was based on [14], which provided a new plant level commitment model for FS 
PHS. The work in [14] has not been published yet. 

  

http://www.epa.gov/
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1. Introduction 

1.1 Background 

Due to the increasing environmental concerns and the need for a more sustainable power 
grid, power systems have seen a fast expansion of renewable resources in recent years. In 
the U.S, thirty states have enforced Renewable Portfolio Standards (RPS) or other 
mandated renewable capacities policies by January 2012. In California, the RPS requires 
that electric utilities should have 33% of their retail sales derived from eligible renewable 
energy resources by 2020 [4]. By the end of 2012, 60 GW of wind power capacity and 
7.2 GW of solar power capacity have been installed in the U.S. [5]. The growing 
renewable penetration has increased the challenges to balance load with generation and to 
maintain the reliability of the system. To meet the stringent ramping requirement, more 
flexible resources are needed in the system. 

Driven by the need to integrate high penetration levels of renewable resources and to 
reduce the costs for serving peak demands, recent interests have been focused on energy 
storage technologies. Energy storage can shift energy from peak-demand hours to off-
peak-demand hours, or absorb excess renewable energy to provide it back to the grid 
when desired. The fast-ramping capability also makes energy storage a competitive 
resource to balance the variability and uncertainty in renewable generation. By using 
energy storage, the cycling of thermal units can be reduced, which is an advantage since 
many thermal units are not designed to be ramped up and down frequently [6]. 

As the most commercially matured large-scale energy storage technology, pumped hydro 
storage (PHS) has the largest installed capacity around the world, which is about 127 GW 
by 2010 [7]. Compared with other storage technologies, the PHS has the advantages of 
low capital cost, low maintenance cost and long life expectancies. Traditionally, studies 
are focused on the price-arbitrage value of PHS [8]-[10]. With the fast expansion of 
renewable generation during the last decade, new interests have been spent on the 
application of the PHS to facilitate the integration high levels of renewable resources 
[11]-[14].  

While there are growing interests in energy storage in recent years, existing energy 
management systems and market management systems do not make full use of the 
flexibility of storage. One common approach for the utilization of storage is to determine 
schedules for a future time horizon based on a prior look-ahead time stage. The 
production and consumption schedule may then be fixed during this time, with limited 
adjustments. One example of such a strategy is peak shaving. Such approaches do not 
fully utilize the flexibility of storage as the actual characteristics of the storage are not 
fully modeled when solving (simultaneously) for the generation dispatch schedule across 
multiple time horizons while also accounting for uncertainties. With the introduction of 
high levels of variable renewable resources, it is much more advantageous to operate 
energy storage with more flexibility. 

In this report, the challenges associated with utilizing the PHS in real-time operation are 
addressed. Distinct from thermal units, the dispatch of energy storage is constrained by 
their storage levels. The operation of the PHS in current stage has a large impact on the 
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future value of the resource at a later time stage. An inappropriate decision made for the 
PHS in the current time period could potentially result in insufficient capacity to produce 
or consume in future time periods. To improve the utilization of the PHS, a policy 
function based approach is proposed in the report. The proposed approach is aimed at 
improving the utilization of the PHS in real-time operations while having minimal added 
computational difficulty to the existing energy and market management systems. 

At the same time, the report investigates two types of prevailing PHS technologies, 
namely the traditional fixed-speed technology and the more advanced adjustable-speed 
technology. Mathematical models are developed for the two PHS technologies. A two-
step approach is proposed to simulate the scheduling and deployment of regulation 
reserves in systems with renewable resources. The capability of the two PHS 
technologies to provide regulation reserves are evaluated and compared using the 
proposed two-step approach. 

1.2 Summary of Chapters 

This report is structured as follows. In chapter 2, mathematical models are developed for 
the fixed-speed PHS and the adjustable-speed PHS. A two-step approach is proposed to 
evaluate and compare the attractiveness of the two PHS technologies in managing the 
renewable uncertainties in the system.  

In chapter 3, a policy function based approach is proposed to enhance the utilization of 
the PHS in real-time operation. A classification algorithm is used to generate the policy 
function. The performance of the policy function based approach is compared with other 
benchmark approaches.  

In chapter 4, the conclusions to this report are presented. 
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2. Evaluation of the Fixed-Speed and the Adjustable-Speed Pumped 
Hydro Storage Technologies in Systems with Renewable 
Resources 

In this chapter, two different PHS technologies are studied, namely the traditional fixed-
speed technology and the adjustable-speed technology. The technology principles and 
operational characteristics are introduced. Mathematical models are developed for the 
two types of PHS technologies. The capabilities of the two PHS technologies to provide 
regulation reserves are evaluated and compared using a two-step approach.  

2.1 Introduction  

The first use of pumped hydroelectric energy storage can be traced back to 1890 in Italy 
and Switzerland. Today, there are more than two hundred PHS facilities in operation or 
under planning around the world. As the most widely used bulk energy storage, PHS 
technologies have been advanced significantly since their first introduction, such as the 
inclusion of the use of reversible pump-turbines, the integration of power electronic 
devices, and the improvement of energy-conversion efficiencies. Since the 1990s, a 
newer PHS technology has been developed and used in commercial operation, which is 
named the adjustable-speed PHS technology.  

For traditional fixed-speed technology, the input power is fixed during the pumping 
process and the fixed-speed PHS can only provide regulation reserves in the generation 
mode. However, the adjustable-speed technology provides the PHS the capability to 
adjust its input power in the pumping mode. With this improvement, the adjustable-speed 
PHS is able to provide regulation reserves in both the pumping and generation mode. By 
using the adjustable-speed design, round-trip efficiencies are also improved for the PHS 
[15]. As renewable penetration increases, the capability to provide regulation reserves in 
both the pumping and generation model will make the adjustable-speed PHS a more 
valuable generation resource. Globally, there are about 270 PHS stations currently either 
in operation or under construction. Among them, 36 facilities are equipped with 
adjustable-speed machines. Most of the existing adjustable-speed PHS projects are 
located in China, Japan, India and Europe. In the U.S., none of the existing PHS facilities 
are equipped with adjustable-speed units. However, several projects in the design or 
planning stage in the U.S. are considering and evaluating the use of adjustable-speed 
design.  

In this chapter, fixed-speed PHS technologies and adjustable-speed PHS technologies are 
studied. The technology principles are introduced for the two PHS designs. Mathematical 
models are developed for the two PHS technologies. A two-step approach is proposed to 
evaluate and compare the benefits of using the fixed-speed and the adjustable-speed PHS 
in systems with renewable resources. 
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2.2 Mathematical Modeling of Pumped Hydro Storage 

In this subsection, mathematical models are derived for the PHS with fixed-speed design 
and adjustable-speed design. The focus of the formulations is to capture the differences in 
the capability of the two PHS technologies to provide ancillary services.  

2.2.1 Traditional Fixed-Speed Pumped Hydro Storage 

In the U.S., most of the traditional PHS facilities use a pump-turbine equipment design 
named reversible single-stage Francis pump-turbine, where the machine works as a pump 
in one direction and acts as a turbine in the other [16]. For this technology, the input 
power is fixed and cannot be varied in the pumping mode. Therefore, the pumping power 
for the PHS with fixed-speed technology is either 0 or 100% of the maximum pumping 
power rating. Depending on the design of the plant, some fixed-speed PHS facilities may 
be able to increase pumping power in a “block” manner, which is to turn on the motors 
one by one to increase the pumping power. The mathematical model for a PHS facility 
with a traditional fixed-speed design can be formulated as  

𝑟𝑏𝑏𝑆 + 𝑟𝑏𝑏𝑅+ ≤ 𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝑂𝑂𝑂 + 𝑃𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡   (2.1) 

𝑟𝑏𝑏𝑅+ ≤ 𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚(1 − 𝑧𝑏𝑏𝐼𝐼) − 𝑃𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (2.2) 

𝛼𝑏𝑆𝑟𝑏𝑏𝑆 + 𝛼𝑏𝑅𝑟𝑏𝑏𝑅+ ≤ 𝜂𝑏𝑂𝑂𝑂(𝐸𝑏𝑏 − 𝐸𝑏𝑀𝑀𝑀), ∀𝑏, 𝑡   (2.3) 

𝑟𝑏𝑏𝑅− ≤ 𝑃𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (2.4) 

𝐸𝑏𝑏 = 𝐸𝑏,𝑡−1 + 𝑃𝑏𝑏𝐼𝐼𝜂𝑏𝐼𝐼 − 𝑃𝑏𝑏𝑂𝑂𝑂 𝜂𝑏𝑂𝑂𝑂⁄ , ∀𝑏, 𝑡   (2.5) 

𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏

𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (2.6) 

𝑃𝑏𝑏𝐼𝐼 = 𝑃𝑏
𝐼𝐼_𝑒𝑒 ∑ 𝑧𝑏,𝑚,𝑡

𝐼𝐼
𝑚 , ∀𝑏, 𝑡   (2.7) 

𝐸𝑏𝑀𝑀𝑀 ≤ 𝐸𝑏𝑏 ≤ 𝐸𝑏𝑀𝑀𝑀, ∀𝑏, 𝑡   (2.8) 

𝑧𝑏𝑏𝐼𝐼 ≥ 𝑧𝑏,𝑚,𝑡
𝐼𝐼 , ∀𝑏,𝑚, 𝑡   (2.9) 

𝑧𝑏𝑏𝑂𝑂𝑂 + 𝑧𝑏𝑏𝐼𝐼 ≤ 1, ∀𝑏, 𝑡   (2.10) 

𝑧𝑏,𝑚,𝑡
𝐼𝐼 , 𝑧𝑏𝑏𝑂𝑂𝑂, 𝑧𝑏𝑏𝐼𝐼 ∈ {0,1}, ∀𝑏,𝑚, 𝑡.   (2.11) 

In the above formulation, constraints (2.1)-(2.4) represent the ancillary serves provided 
by the PHS. Constraint (2.1) and (2.2) indicates that if the PHS is in the idle or generation 
mode, the sum of spinning and up regulation reserves the PHS can provide is 𝑃𝑏

𝑂𝑂𝑂_𝑚𝑚𝑚 −
𝑃𝑏𝑏𝑂𝑂𝑂; if the PHS is in the pumping mode, then the PHS cannot provide up regulation 
reserve. The maximum spinning reserve the PHS can provide in the pumping mode is 
𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 + 𝑃𝑏𝑏𝐼𝑛, which means the PHS can stop pumping and transition to generation 
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mode to provide spinning reserve. Constraint (2.4) indicates that the fixed-speed PHS can 
only provide down regulation reserves in the generation mode. Constraints (2.3) 
guarantees that the PHS has enough energy to provide spinning and regulation reserves. 
Constraint (2.5) is the energy balance constraint and (2.6) represent the limits on the 
generation power. The limit on the pumping power is presented in (2.7). In (2.7), 𝑃𝑏

𝐼𝐼_𝑒𝑒 
is the maximum pumping power rating for each motor in the PHS facility b, and m is the 
index for the motors at the facility b. This constraint indicates that if multiple motors are 
installed at the PHS facility, the pumping power can be increased in a “block” manner. 
Constraint (2.8) represents the minimum and maximum capacities of the water reservoir 
of the PHS facility. Constraint (2.9) and (2.10) formulate the relationships between the 
binary variables. Constraint (2.11) indicates that 𝑧𝑏,𝑚,𝑡

𝐼𝐼 , 𝑧𝑏𝑏𝑂𝑂𝑂 and 𝑧𝑏𝑏𝐼𝐼 are binary variables. 

2.2.2 Adjustable-Speed Pumped Hydro Storage 

The first adjustable-speed PHS facility was built by Tokyo Electric in Japan in 1990 [17]. 
One common design for the adjustable-speed PHS is to use a double-fed induction motor-
generator. Compared to traditional fixed-speed design, the primary advantage of 
adjustable-speed technology is that the input power can be varied in the pumping mode. 
The mathematical model for a PHS facility with an adjustable-speed design is formulated 
as 

𝑟𝑏𝑏𝑆 + 𝑟𝑏𝑏𝑅+ ≤ 𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝑂𝑂𝑂 + 𝑃𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡   (2.12) 

𝛼𝑏𝑆𝑟𝑏𝑏𝑆 + 𝛼𝑏𝑅𝑟𝑏𝑏𝑅+ ≤ 𝜂𝑏𝑂𝑂𝑂(𝐸𝑏𝑏𝑏 − 𝐸𝑏𝑀𝑀𝑀), ∀𝑏, 𝑡   (2.13) 

𝑟𝑏𝑏𝑅− ≤ 𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝐼𝐼 + 𝑃𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (2.14) 

𝛼𝑏𝑅𝑟𝑏𝑏𝑅− ≤ (𝐸𝑏𝑀𝑀𝑀 − 𝐸𝑏,𝑡)/𝜂𝑏𝐼𝐼, ∀𝑏, 𝑡   (2.15) 

𝐸𝑏𝑏 = 𝐸𝑏,𝑡−1 + 𝑃𝑏𝑏𝐼𝐼𝜂𝑏𝐼𝐼 − 𝑃𝑏𝑏𝑂𝑂𝑂 𝜂𝑏𝑂𝑂𝑂⁄ , ∀𝑏, 𝑡   (2.16) 

𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏

𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (2.17) 

𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡   (2.18) 

𝑧𝑏𝑏𝑂𝑂𝑂 + 𝑧𝑏𝑏𝐼𝐼 ≤ 1, ∀𝑏, 𝑡   (2.19) 

𝐸𝑏𝑀𝑀𝑀 ≤ 𝐸𝑏𝑏 ≤ 𝐸𝑏𝑀𝑀𝑀, ∀𝑏, 𝑡   (2.20) 

𝑧𝑏𝑏𝑂𝑂𝑂, 𝑧𝑏𝑏𝐼𝐼 ∈ {0,1}, ∀𝑏, 𝑡.   (2.21) 

In the above formulation, constraints (2.12)-(2.15) represent the ancillary services 
provided by the adjustable-speed PHS. Constraint (2.12)-(2.15) indicate that the 
regulation reserves can be provided in both the generation and pumping mode. The 
energy balance constraint is presented in (2.16). Constraints (2.17) and (2.18) represent 
the limits on the generation and pumping power of the PHS. Constraint (2.19) indicates 
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that the PHS can only be in one mode at the same time. The minimum and maximum 
limits on the water reservoir are presented in (2.20).  

2.3 Mathematical Formulations of the Two-Step Approach 

A two-step approach is proposed to evaluate the capability of the fixed-speed and the 
adjustable-speed PHS to provide regulation reserves. The proposed approach represents 
the scheduling and deployment of the regulation reserves. In the first-step, a unit 
commitment model is used to determine the generation and reserve schedules. In the 
second-step, a 6-hour dispatch model is used to simulate the activation of the regulation 
reserves. The mathematical models used in the two-step approach are described in the 
following subsections. It should be noted that the regulation reserve studied in this 
chapter can be more accurately categorized as the load following reserve product, since in 
this study, the regulation reserves are primarily used to address the renewable variability 
and uncertainty at 10-minute intervals. However, to keep the terminology consistent, the 
term “regulation reserve” are used instead of “load following reserves” in this chapter. 

2.3.1 The First-Step and the 6-Hour Ahead Unit Commitment Model 

A 6-hour ahead deterministic unit commitment (UC) problem is formulated in the first-
step of the proposed approach. The UC represents a short-term generation scheduling 
problem, which is typically solved between the day-ahead UC and the real-time 
economic dispatch. The UC is formulated as a mixed integer linear program (MILP). The 
UC is modeled with 36 time periods, with each to be a 10-minute interval; note that a 10-
minute interval was chosen since the wind data has a 10-minute resolution. Many real-
time markets operate on a 5-minute basis; the proposed model can easily accommodate 5-
minute intervals. The objective of the UC is to minimize the total system operating cost 
and the costs to correct system security violations. The system security violation costs 
include the costs to correct system involuntary load shedding and system reserve 
requirement violations. The complete formulation is shown in (2.22)-(2.47).  

Minimize: 

∑ ∑ �𝐶𝑔�𝑃𝑔𝑔� + 𝑐𝑔𝑁𝑁𝑢𝑔𝑔 + 𝑐𝑔𝑆𝑆𝑣𝑔𝑔�𝑡𝑔 + ∑ �𝑐𝑣𝑣+𝑠𝑡𝑅+ + 𝑐𝑣𝑣−𝑠𝑡𝑅− + 𝑐𝑣𝑣𝑣𝑠𝑡𝑆𝑆 + 𝑐𝑣𝑣𝑣𝑠𝑡𝑂𝑂�𝑡 +
∑ ∑ 𝑐𝑣𝑣𝑣_Max�𝑠𝑔𝑔

𝑆_𝑀𝑀𝑀 + 𝑠𝑔𝑔
𝑅+_𝑀𝑀𝑀 + 𝑠𝑔𝑔

𝑅−_𝑀𝑀𝑀�𝑡𝑔 + ∑ ∑ 𝑐𝑣𝑣𝑣_Max�𝑠𝑏𝑏
𝑆_𝑀𝑀𝑀 + 𝑠𝑏𝑏

𝑅+_𝑀𝑀𝑀 +𝑡𝑏

𝑠𝑏𝑏
𝑅−_𝑀𝑀𝑀� + ∑ ∑ 𝑐𝑣𝑣𝑠𝑛𝑛𝐿𝑡𝑛  (2.22) 

Subject to: 

∑ 𝑃𝑔𝑔∀𝑔(𝑛) + ∑ 𝑃𝑘𝑘𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘𝑘𝑘∈𝛿−(𝑛) + ∑ (𝑃𝑏𝑏𝑂𝑂𝑂 − 𝑃𝑏𝑏𝐼𝐼)∀𝑏(𝑛) = 𝑑𝑛𝑛 − 𝑠𝑛𝑛𝐿 −
∑ (𝑃𝑤𝑤𝑊𝑊𝑊𝑊 − 𝑠𝑤𝑤𝑊 )∀𝑤(𝑛) , ∀𝑛, 𝑡  (2.23) 

𝑃𝑘𝑘 − 𝐵𝑘(𝜃𝑘𝑘+ − 𝜃𝑘𝑘− ) = 0, ∀𝑘, 𝑡   (2.24) 

−𝑃𝑘𝑚𝑚𝑚 ≤  𝑃𝑘𝑘 ≤ 𝑃𝑘𝑚𝑚𝑚, ∀𝑘, 𝑡   (2.25) 
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𝑃𝑔𝑔 + 𝑟𝑔𝑔𝑅+ + 𝑟𝑔𝑔𝑆 ≤ 𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔, ∀𝑔, 𝑡   (2.26) 

𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔 ≤ 𝑃𝑔𝑔 − 𝑟𝑔𝑔𝑅−, ∀𝑔, 𝑡  (2.27) 

∑ 𝑣𝑔𝑔𝑡
𝑞=𝑡−𝑈𝑈𝑔+1 ≤ 𝑢𝑔𝑔, ∀𝑔, 𝑡 ∈ �𝑈𝑈𝑔, … , 𝑇�   (2.28) 

 ∑ 𝑤𝑔𝑔𝑡
𝑞=𝑡−𝐷𝐷𝑔+1 ≤ 1 − 𝑢𝑔𝑔, ∀𝑔, 𝑡 ∈ �𝐷𝐷𝑔, … , 𝑇�   (2.29) 

𝑣𝑔𝑔 − 𝑤𝑔𝑔 = 𝑢𝑔𝑔 − 𝑢𝑔,𝑡−1,   ∀𝑔, 𝑡  (2.30) 

𝑟𝑔𝑔𝑅+ ≤ 𝑅𝑔5+𝑢𝑔𝑔, 𝑟𝑔𝑔𝑅− ≤ 𝑅𝑔5−𝑢𝑔𝑔, ∀𝑔, 𝑡   (2.31) 

𝑟𝑔𝑔𝑆 ≤ 𝑅𝑔10+𝑢𝑔𝑔, ∀𝑔, 𝑡   (2.32) 

𝑟𝑔𝑔𝑁𝑁 ≤ 𝑅𝑔𝑁𝑁(1 − 𝑢𝑔𝑔), ∀𝑔, 𝑡   (2.33) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔10+𝑢𝑔,𝑡−1 + 𝑅𝑔𝑆𝑆𝑣𝑔𝑔, ∀𝑔, 𝑡   (2.34) 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔10−𝑢𝑔𝑔 + 𝑅𝑔𝑆𝑆𝑤𝑔𝑔, ∀𝑔, 𝑡   (2.35) 

∑ 𝑟𝑔𝑔𝑅+𝑔 + ∑ 𝑟𝑏𝑏𝑅+𝑏 ≥  0.02∑ 𝑑𝑛𝑛𝑛 − 𝑠𝑡𝑅+, ∀𝑡   (2.36) 

∑ 𝑟𝑔𝑔𝑅−𝑔 + ∑ 𝑟𝑏𝑏𝑅−𝑏 ≥  0.02∑ 𝑑𝑛𝑛𝑛 − 𝑠𝑡𝑅−, ∀𝑡   (2.37) 

𝑄𝑡𝑂𝑂 ≥ 𝑃𝑔𝑔 + 𝑟𝑔𝑔𝑆 , ∀𝑔, 𝑡  (2.38) 

𝑄𝑡𝑂𝑂 ≥ 0.03∑ 𝑑𝑛𝑛𝑛 + 0.05∑ 𝑃𝑤𝑤𝑊𝑊𝑊𝑊
𝑤 , ∀𝑡  (2.39) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 + ∑ 𝑟𝑔𝑔𝑁𝑁𝑔 ≥ 𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑂𝑂, ∀𝑡   (2.40) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 ≥ 0.5𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑆𝑆, ∀𝑡   (2.41) 

𝑟𝑔𝑔𝑆 ≤ 𝑄𝑡
𝑆_𝑀𝑀𝑀 − 𝑠𝑔𝑔

𝑆_𝑀𝑀𝑀, ∀𝑔, 𝑡   (2.42) 

𝑟𝑏𝑏𝑆 ≤ 𝑄𝑡
𝑆_𝑀𝑀𝑀 − 𝑠𝑏𝑏

𝑆_𝑀𝑀𝑀, ∀𝑏, 𝑡   (2.43) 

𝑟𝑔𝑔𝑅+ ≤ 𝑄𝑡
𝑅+_𝑀𝑀𝑀 − 𝑠𝑔𝑔

𝑅+_𝑀𝑀𝑀, ∀𝑔, 𝑡   (2.44) 

𝑟𝑏𝑏𝑅+ ≤ 𝑄𝑡
𝑅+_𝑀𝑀𝑀 − 𝑠𝑏𝑏

𝑅+_𝑀𝑀𝑀, ∀𝑏, 𝑡   (2.45) 

𝑟𝑔𝑔𝑅− ≤ 𝑄𝑡
𝑅−_𝑀𝑀𝑀 − 𝑠𝑔𝑔

𝑅−_𝑀𝑀𝑀, ∀𝑔, 𝑡   (2.46) 

𝑟𝑏𝑏𝑅− ≤ 𝑄𝑡
𝑅−𝑀𝑀𝑀 − 𝑠𝑏𝑏

𝑅−_𝑀𝑀𝑀, ∀𝑏, 𝑡   (2.47) 
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Constraint (2.23) guarantees the power balance at every bus. Constraint (2.24) represents 
the dc power flow on each line and (2.25) is the line-flow limit constraint. Limits on the 
power output for each generator are presented in (2.26) and (2.27). The minimum up and 
down time constraints are shown in (2.28)-(2.30). Constraints (2.31)-(2.33) represent the 
ramp rates for regulation, spinning and non-spinning reserves for the thermal units. The 
ramp rate constraints are shown in (2.34) and (2.35).  

The system-wide reserve requirement constraints are presented in (2.36)-(2.47). The 
regulation reserve requirement is set to be 2% of the hourly load, as shown in (2.36) and 
(2.37). Constraints (2.38)-(2.40) require that the system operating reserve (sum of 
spinning and non-spinning reserves) should be greater or equal to the single largest 
generator contingency, or the NREL’s “3+5” reserve rule [18], whichever is greater. The 
NREL’s “3+5” reserve rule is used to address the renewable uncertainties. Constraint 
(2.41) indicates that half of the system operating reserve should come from spinning 
reserve. Constraint (2.42)-(2.47) limit the maximum spinning and regulation reserve that 
each unit can provide. Similar constraints are also used in [19] and [20]. If too much 
reserve is scheduled on a single unit, the reserves may not be deliverable due to 
transmission congestions. The use of constraints (2.42)-(2.47) in this work can be seen as 
a simple rule to improve the deliverability of the reserves. In constraints (2.42)-(2.47), it 
is required that the maximum reserve from any single resource should be less or equal to 
50% of the reserve requirement. The reserve requirement constraints can be violated for a 
predetermined penalty price.  

For the PHS, the model presented in the previous subsection is used. If the fixed-speed 
PHS is considered, constraints (2.1)-(2.11) are used in combination with the unit 
commitment model (2.22)-(2.47). If the adjustable-speed PHS is considered, constraints 
(2.12)-(2.21) are included in the unit commitment model.  

2.3.2 The Second-Step and the 6-Hour Dispatch Model 

In the second-step, a 6-hour dispatch problem is formulated to test the UC solution 
against a large number of wind scenarios. The scheduled regulation reserves are activated 
in the second-step to address the renewable uncertainties. For the 6-hour dispatch model, 
thirty-six time periods are included, with each time period representing a 10-minute 
interval. The 6-hour dispatch problem is an approximation to the real-time dispatch 
problem with the simplification that all the time periods are solved in one optimization 
program rather than using a rolling horizon approach; this horizon is chosen to 
approximate the benefits of adjustable speed PHS. The complete formulation of the 6-
hour dispatch problem is presented in (2.48)-(2.70). 

Minimize: 

∑ ∑ �𝐶𝑔�𝑃𝑔𝑔� + 𝑐𝑔𝑁𝑁𝑢𝑔𝑔 + 𝑐𝑔𝑆𝑆𝑣𝑔𝑔�𝑡𝑔 + ∑ �𝑐𝑣𝑣+𝑠𝑡𝑅+ + 𝑐𝑣𝑣−𝑠𝑡𝑅− + 𝑐𝑣𝑣𝑣𝑠𝑡𝑆𝑆 + 𝑐𝑣𝑣𝑣𝑠𝑡𝑂𝑂�𝑡 +
∑ ∑ 𝑐𝑣𝑣𝑣_Max𝑠𝑔𝑔

𝑆_𝑀𝑀𝑀
𝑡𝑔 + ∑ ∑ 𝑐𝑣𝑣𝑣_Max𝑠𝑏𝑏

𝑆_𝑀𝑀𝑀
𝑡𝑏 + ∑ ∑ 𝑐𝑣𝑣𝑠𝑛𝑛𝐿𝑡𝑛  (2.48) 

Subject to: 
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∑ 𝑃𝑔𝑔∀𝑔(𝑛) + ∑ 𝑃𝑘𝑘𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘𝑘𝑘∈𝛿−(𝑛) + ∑ (𝑃𝑏𝑏𝑂𝑂𝑂 − 𝑃𝑏𝑏𝐼𝐼)∀𝑏(𝑛) = 𝑑𝑛𝑛 − 𝑠𝑛𝑛𝐿 −
∑ (𝑃𝑤𝑤𝑊𝑊𝑊𝑊 − 𝑠𝑤𝑤𝑊 )∀𝑤(𝑛) , ∀𝑛, 𝑡  (2.49) 

𝑃𝑘𝑘 − 𝐵𝑘(𝜃𝑘𝑘+ − 𝜃𝑘𝑘− ) = 0, ∀𝑘, 𝑡   (2.50) 

−𝑃𝑘𝑚𝑚𝑚 ≤  𝑃𝑘𝑘 ≤ 𝑃𝑘𝑚𝑚𝑚, ∀𝑘, 𝑡   (2.51) 

𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔 ≤ 𝑃𝑔𝑔 ≤ 𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔 − 𝑟𝑔𝑔𝑆 , ∀𝑔, 𝑡   (2.52) 

(𝑃�𝑔𝑔 − 𝑟̅𝑔𝑔𝑅−)𝑢𝑔𝑔 ≤ 𝑃𝑔𝑔 ≤ (𝑃�𝑔𝑔 + 𝑟̅𝑔𝑔𝑅+)𝑢𝑔𝑔, ∀𝑔 ∈ 𝛺𝐺, 𝑡  (2.53) 

𝑟𝑔𝑔𝑆 ≤ 𝑅𝑔10+𝑢𝑔𝑔, ∀𝑔, 𝑡   (2.54) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔10+𝑢𝑔,𝑡−1 + 𝑅𝑔𝑆𝑆𝑣𝑔𝑔, ∀𝑔, 𝑡   (2.55) 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔10−𝑢𝑔𝑔 + 𝑅𝑔𝑆𝑆𝑤𝑔𝑔, ∀𝑔, 𝑡   (2.56) 

𝑢𝑔𝑔 = 𝑢𝑔𝑔, 𝑣𝑔𝑔 = 𝑣𝑔𝑔, 𝑤𝑔𝑔 = 𝑤𝑔𝑔, ∀𝑔 ∈ Ω𝐺, 𝑡  (2.57) 

𝑟𝑏𝑏𝑆 ≤ 𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝑂𝑂𝑂 + 𝑃𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡   (2.58) 

𝛼𝑏𝑆𝑟𝑏𝑏𝑆 ≤ 𝜂𝑏𝑂𝑂𝑂(𝐸𝑏𝑏 − 𝐸𝑏𝑀𝑀𝑀), ∀𝑏, 𝑡   (2.59) 

𝐸𝑏𝑏 = 𝐸𝑏,𝑡−1 + 𝑃𝑏𝑏𝐼𝐼𝜂𝑏𝐼𝐼 − 𝑃𝑏𝑏𝑂𝑂𝑂 𝜂𝑏𝑂𝑂𝑂⁄ , ∀𝑏, 𝑡   (2.60) 

𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏

𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (2.61) 

𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡   (2.62) 

𝑃�𝑏𝑏𝐸𝐸 − 𝑟̅𝑏𝑏𝑅− ≤ 𝑃𝑏𝑏𝐸𝐸 ≤ 𝑃�𝑏𝑏𝐸𝐸 + 𝑟̅𝑔𝑔𝑅+, ∀𝑏, 𝑡  (2.63) 

𝑧𝑏𝑏𝑂𝑂𝑂 + 𝑧𝑏𝑏𝐼𝐼 ≤ 1, ∀𝑏, 𝑡   (2.64) 

𝐸𝑏𝑀𝑀𝑀 ≤ 𝐸𝑏𝑏 ≤ 𝐸𝑏𝑀𝑀𝑀, ∀𝑏, 𝑡   (2.65) 

𝑄𝑡𝑂𝑂 ≥ 𝑃𝑔𝑔 + 𝑟𝑔𝑔𝑆 , ∀𝑔, 𝑡  (2.66) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 + ∑ 𝑟𝑔𝑔𝑁𝑁𝑔 ≥ 𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑂𝑂, ∀𝑡   (2.67) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 ≥ 0.5𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑆𝑆, ∀𝑡   (2.68) 

𝑟𝑔𝑔𝑆 ≤ 𝑄𝑡
𝑆_𝑀𝑀𝑀 − 𝑠𝑔𝑔

𝑆_𝑀𝑀𝑀, ∀𝑔, 𝑡   (2.69) 

𝑟𝑏𝑏𝑆 ≤ 𝑄𝑡
𝑆_𝑀𝑀𝑀 − 𝑠𝑏𝑏

𝑆_𝑀𝑀𝑀, ∀𝑏, 𝑡   (2.70) 
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In the 6-hour dispatch problem, all the generator commitment statuses are fixed the same 
as the ones determined from the first-step, as shown in (2.57). A desired dispatch point is 
provided for each generator and each PHS unit. In the second-step, the regulation 
reserves are activated to address the deviations in the wind generation. The generators 
and the PHS units are allowed to deviate from the desired dispatch points by the 
regulation capacities scheduled in the first-step. The desired dispatch point and the 
deployment of regulation reserve are formulated as shown in (2.53) and (2.63) for 
thermal units and the PHS units respectively. The other constraints used in the 6-hour 
dispatch problem are similar to those used in the 6-hour ahead UC.  

2.4 Case Studies 

2.4.1 IEEE 118-Bus System 

The analysis is conducted using a modified IEEE 118-bus system [21]. The system has 
54 generators, 186 lines, and 91 loads. The generator information is obtained from the 
IEEE RTS 96 test system [21], [22]. The line ratings are reduced to create congestion in 
the initial network. Three PHS units are included in the system, which are located at bus 
#15, #24, and #111. The parameters used for the fixed-speed and the adjustable-speed 
PHS units are summarized in Table 2.1. The minimum production level for the PHS is 
assumed to be 30% of the maximum generation capacity [17]. In the UC and the 6-hour 
dispatch problem, the water storage level in the last time period is required to be the same 
as the initial water storage level. Parameters 𝛼𝑏𝑆 and 𝛼𝑏𝑅 are assumed to be 0.5 and 
0.16667 respectively. This is based on the assumptions that a unit should be able to 
maintain the output for 30 minutes and 10 minutes to be qualified to provide spinning 
reserve and regulation reserve respectively. The reserve violation costs are assumed to be 
1100 $/MWh. The cost to correct involuntary load shedding is assumed to be 3000 
$/MWh.  

Table 2.1. Parameters Used for the PHS Units 

Fixed-Speed PHS  

𝜂𝑏𝐼𝐼, 𝜂𝑏𝑂𝑂𝑂 
𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 
(MW) 

𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚 

(MW) 
𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚, 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚  
(MW) 

𝐸𝑏𝑀𝑀𝑀 
(MWh) 

𝐸𝑏𝑀𝑀𝑀 
(MWh) 

0.85 30 100 100 100 500 
Adjustable-Speed PHS 

𝜂𝑏𝐼𝐼, 𝜂𝑏𝑂𝑂𝑂 
𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 
(MW) 

𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚 

(MW) 
𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚, 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚  
(MW) 

𝐸𝑏𝑀𝑀𝑀 
(MWh) 

𝐸𝑏𝑀𝑀𝑀 
(MWh) 

0.85 30 70 100 100 500 

2.4.2 Renewable Scenario Generation 

The scenario generation methodology described in [23] and [24] is used to generate the 
wind scenarios in this chapter. Historical wind data for March 2006 is obtained from 
NREL Wind Integration Datasets [25]. Wind speed data from three different areas are 
used to produce three wind farms in the system (bus #34, #66, and #100). The 10-minute 
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autoregressive integrated moving average (ARIMA) models are used to fit the wind 
speed data and produce the time series models for each wind farm location. The wind 
scenarios are then generated for each location using the obtained time series models and 
an estimate of the aggregate power curves. The generated wind scenarios are normalized 
with the average such that the resulted forecast error is about 5% to 8%. The mean value 
of the time series is used in the 6-hour ahead UC as the actual wind forecast.  

Using the approach described above, 150 wind scenarios are generated. The case study is 
conducted for 20% wind penetration level. The wind penetration level is defined as the 
ratio of total daily wind generation to the total daily demand.  

2.4.3 Simulation Setup 

The simulation is conducted as follows. Wind scenarios are generated using the approach 
described in the previous subsection. The 6-hour ahead UC is solved in the first-step 
using the load and wind data for the first six hours in a day. After the UC is solved, the 
UC solution is tested against 150 wind scenarios in the second-step to see if the 
scheduled reserves are able to balance the uncertainty in wind generation. The above 
process is repeated two times with the fixed-speed PHS and the adjustable-speed PHS in 
the system respectively. Metrics are reported to evaluate and compare the effectiveness of 
the fixed-speed PHS and the adjustable-speed PHS in providing regulation reserves.  

2.4.4 The First-Step and the 6-Hour Ahead Unit Commitment 

In the first-step, the UC is solved with the fixed-speed and the adjustable-speed PHS 
units in the system respectively. In Table 2.2, the total system cost, involuntary load 
shedding, wind curtailment and reserve violations are reported for the 6-hour ahead UC. 
The reserve violations in Table 2.2 represent the sum of all the violations in reserve 
requirements in the system. In Table 2.3, the average regulation reserve capacity 
scheduled for the fixed-speed PHS and the adjustable-speed PHS in each time period is 
presented. The average regulation reserve capacity is calculated as  

AURRC = ∑ ∑ 𝑟𝑏𝑏
𝑅+

𝑏𝑡
𝑁𝑇

  (2.71) 

ADRRC = ∑ ∑ 𝑟𝑏𝑏
𝑅−

𝑏𝑡
𝑁𝑇

  (2.72) 

where AURRC (ADRRC) represents the mean value of the up (down) regulation reserve 
capacities scheduled for the PHS units in each time period. The parameter 𝑁𝑇 represents 
the number of time periods included in the 6-hour ahead UC problem. In Table 2.3, the 
first and the second columns present the average up and down regulation reserve 
capacities scheduled for the PHS units, while the third and the fourth column show the 
scheduled regulation reserve capacities for the PHS units in the pumping mode.  

As shown in Table 2.2, the total system costs are very close for the cases with the fixed-
speed and the adjustable-speed PHS. This is because only the capacities of the reserves 
are scheduled in the first-step. From Table 2.3, it can be seen that more up regulation 
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reserves are scheduled for the fixed-speed PHS and the adjustable-speed PHS has more 
down regulation reserves scheduled in each time period. For the adjustable-speed PHS, in 
average 2.9 MW of up regulation reserves are scheduled in the pumping mode in each 
time period, which accounts for about 50% of the total up regulation reserves scheduled 
for the adjustable-speed PHS. For the fixed-speed PHS, since the input power cannot be 
adjusted during the pumping process, no regulation reserves are scheduled for the fixed-
speed PHS while in pumping mode. Since only the reserve capacities are determined in 
the first-step, the performance of the two PHS technologies is not fully assessed. 

 

Table 2.2. System Results for the 6-Hour Ahead Unit Commitment 

PHS Type Total System 
Cost ($) 

Involuntary 
Load Shedding 

(MWh) 

Wind 
Curtailment 

(MWh) 

Reserve 
Violations 

(MWh) 
Fixed-Speed 397885 0 4 0 

Adjustable-Speed 397848 0 0 0 
 

Table 2.3. Average Regulation Reserve Capacities Scheduled for the Fixed-Speed and the 
Adjustable-Speed PHS in Each Time Period 

PHS Type Average 
𝑟𝑏𝑏𝑅+ (MW) 

Average 
𝑟𝑏𝑏𝑅− (MW) 

𝑟𝑏𝑏𝑅+ Provided in 
the Pumping 
Mode (MW) 

𝑟𝑏𝑏𝑅− Provided in 
the Pumping 
Mode (MW) 

Fixed-Speed 8.0 8.0 0 0 
Adjustable-Speed 5.7 35.5 2.9 0 

2.4.5 The Second-Step and the 6-Hour Dispatch  

In the second-step, the 6-hour dispatch problem is solved to simulate the activation of the 
regulation reserves. The expected total system cost, expected involuntary load shedding, 
expected wind curtailment, and expected reserve violations are reported in Table 2.4 for 
the cases with the fixed-speed and the adjustable-speed PHS respectively. As shown in 
Table 2.4, the cases with the adjustable-speed PHS have less involuntary load shedding 
and lower total system cost compared to the case with the fixed-speed PHS. The relative 
cost saving by using the adjustable-speed PHS is about $8127, or 1.9% compared to the 
cases with the fixed-speed PHS.  

In Table 2.5, the regulation reserves provided by the PHS in the second-step are 
presented. The result in Table 2.5 represents the expected value of sum of the regulation 
reserves provided by all the PHS units in the system across six hours. It can be noted 
from Table 2.5 that both the up and down regulation reserves provided by the adjustable-
speed PHS are higher than the ones provided by the fixed-speed PHS. For adjustable-
speed PHS, 6.8 MWh of regulation reserves are provided in the pumping mode, which 
accounts for about 72% of the total up regulation reserves it provides. This result 
indicates that the capability of the adjustable-speed PHS to provide regulation reserves is 
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significantly enhanced by being able to vary the input power in the pumping mode. The 
result in the second-step demonstrates that the adjustable-speed PHS is more flexible and 
effective in providing regulation reserves in systems with renewable resources than the 
traditional fixed-speed PHS.  

Table 2.4. Expected System Results for the 6-hour Dispatch Problem 

PHS Type Total System 
Cost ($) 

Involuntary Load 
Shedding (MWh) 

Wind 
Curtailment 

(MWh) 

Reserve 
Violations 

(MWh) 
Fixed-Speed 427849 9 16 0 

Adjustable-Speed 419722 7 23 0 
 

Table 2.5. Expected Total Regulation Reserves Provided by the Fixed-Speed and 
Adjustable-Speed PHS in the 6-Hour Dispatch Problem 

PHS Type Total 𝑟𝑏𝑏𝑅+ 
(MWh) 

Total 𝑟𝑏𝑏𝑅− 
(MWh) 

𝑟𝑏𝑏𝑅+ Provided in 
Pumping Mode 

(MWh) 

𝑟𝑏𝑏𝑅− Provided in 
Pumping Mode 

(MWh) 
Fixed-Speed 1.3 1.3 0 0 

Adjustable-Speed 9.4 7.6 6.8 0 
 

A statistical description of the total system cost in the second-step is presented in Table 
2.6. From Table 2.6, it can be noted that for the cases with the adjustable-speed PHS, the 
standard deviation is reduced compared with the cases with the fixed-speed PHS. The 
minimum values are close for the cases with the fixed-speed and the adjustable-speed 
PHS. However, the maximum value is lower for the cases with the adjustable-speed PHS. 
The result in Table 2.6 demonstrates that the adjustable-speed PHS is more effective in 
managing the uncertainties in renewable resources than the fixed-speed PHS.  

Table 2.6. Statistical Description of the Total System Cost in the 6-Hour Dispatch 
Problem ($) 

 
Fixed-Speed Adjustable-Speed 

Mean 427849 419722 
Median 413485 411330 

Standard Deviation 38127 26490 
Minimum 397470 397720 
Maximum 571878 516949 

2.5 Conclusion 

Pumped hydro storage has been considered as an attractive storage solution to facilitate 
the integration of high levels of renewable resources. Two PHS technologies are 
introduced and compared in this chapter, namely the fixed-speed and the adjustable-speed 
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PHS. The mathematical models are developed for the two PHS technologies. A two-step 
approach is proposed to evaluate the performance of the fixed-speed and the adjustable-
speed PHS in systems with renewable resources. In the first-step, the scheduling costs 
and the scheduled regulation reserve capacities are compared for the cases with the fixed-
speed and the adjustable-speed PHS. The result shows that for the adjustable-speed PHS, 
a substantial proportion of regulation reserves are scheduled in the pumping mode. In the 
second-step, a 6-hour dispatch problem is formulated to simulate the activation of the 
regulation reserves. It is shown in the second-step that by using the adjustable-speed 
PHS, the total system costs and the involuntary load shedding are reduced.  The 
regulation reserve provided by the adjustable-speed PHS is much larger than that 
provided by the fixed-speed PHS. For the adjustable-speed PHS, about 72% of its 
regulation reserves are provided in the pumping mode. This result demonstrates that by 
having the capability to vary the input power in the pumping mode, the adjustable-speed 
PHS is more effective than the fixed-speed PHS in balancing renewable uncertainties in 
the system.  
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3. Enhanced Utilization of Pumped Hydro Storage in Power System 
Operation using Policy Functions 

Despite the growing interests in energy storage, the existing energy and market 
management systems do not make full use of the flexibility of the PHS. In this chapter, a 
policy function based approach is proposed to enhance the utilization of the PHS with 
minimal added computational difficulty. The study is focused on the real-time operation 
of the PHS. The performance of the approach is evaluated and compared with other 
benchmark approaches using the IEEE RTS 24-bus system.  

3.1 Introduction 

Driven by the rapid integration of high levels of renewable energy, power system has 
experienced an increasing need for flexible generation resources. As energy storage 
technologies have the capability to shift energy across hours and follow fast-ramping 
signal, it provides an attractive solution to facilitate high levels of renewable resources in 
power systems. In California, an energy storage mandate has been adopted to require the 
utility companies to install 1325 MW of energy storage by 2020 [26]. As renewable 
penetration level increases, energy storage is expected to be more valuable to the grid. As 
the most commercially matured large-scale energy storage technology, the PHS has been 
widely used around the world. With the fast expansion of renewable generation, new 
interests have been focused on using the PHS to facilitate the integration of high levels of 
renewable resources [11]-[14].  

While there are growing interests in energy storage in recent years, the existing energy 
and market management systems do not adequately account for the characteristics of 
energy storage. Today, a typical way to operate the PHS is to provide an operational 
schedule based on a prior look-ahead planning stage. As the real-time model has a limited 
look-ahead timeframe and the operators wish to ensure the PHS has the expected 
capability in future time periods, the consumption and production of the PHS are fixed 
during real-time operation, or left with limited room for adjustments. However, as 
renewable penetration increases, the uncertainties introduced by renewable resources may 
reduce the effectiveness of such operation approach. By using such a look-ahead 
planning strategy, the flexibility of the PHS cannot be fully utilized.  

In this chapter, the challenges associated with utilizing the PHS in real-time operation 
with renewable resources are addressed. For storage technologies, the consumption and 
production capabilities are constrained by their storage levels. As real-time operation has 
limited look-ahead functionalities, a decision made for the current time period may 
potentially influence the consumption and production capabilities in future time periods. 
Therefore, a decision tool is needed to optimally operate the PHS across multiple time 
periods. The decision tool should be able to make optimal decisions for energy storage in 
current time period while taking into account future uncertainties. In this chapter, a policy 
function based approach is proposed to enhance the utilization of the PHS in real-time 
operation. The policy function based approach is able to address the challenges with 
uncertainty and limited look-ahead functionality in real-time operation, while having 
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minimal added computational difficulty to the existing energy and market management 
systems.  

3.2 Policy Functions and the Proposed Framework 

A policy function is a rule that describes the control action as a function of the state [28]. 
In power systems, the application of policy functions is not new, such as the use of 
reserve policies. For example, contingency reserve (quantity) requirement is one kind of 
reserve policies that is used to ensure the N-1 reliability of the system. However, such 
contingency reserve requirement only functions as an approximation to the N-1 reliability 
criterion, since the reserves may not be delivered due to transmission congestions. While 
stochastic programming models can explicitly formulate the N-1 reliability and implicitly 
determine both the quantity and location of the reserves, such models are not 
computational tractable for large-scale power systems. In order to improve the 
deliverability of reserves with tractable computational complexity, reserve zones are used 
along with reserve requirements to construct an enhanced reserve policy. The use of 
reserve requirement and reserve zone can be recognized as a strategy to approximate the 
function of stochastic programming models while keeping the computational complexity 
scalable for large-scale power systems. 

Following the similar philosophy behind reserve policies, a policy function based 
approach is developed in this chapter. As policy functions have different forms, the one 
implemented in this chapter is referred to as the policy function approximation (PFA). 
For a given state, a PFA returns an action without using the information of future forecast 
or resorting to any form of imbedded optimization [29]. Different from stochastic 
programming models, which determine a decision by explicitly considering multiple 
future realizations, a PFA returns an action for a given state based on the knowledge 
extracted from prior state and action pairs. Therefore, by using the PFA based approach, 
computational burden is shifted from real-time to offline-study stages. The proposed PFA 
is to be utilized along with deterministic models to achieve what could be otherwise 
accomplished by stochastic programing models, but with tractable computation 
complexity. While the policy function is primarily developed for the operation of the 
PHS, the same design philosophy could be generalized to other power system 
applications.  

An overview of the PFA based approach is illustrated in Fig. 3.1. The proposed approach 
consists of three phases. The first phase is the derivation of the PFAs. In the first phase, a 
Monte-Carlo based simulation, which is referred to as the stochastic simulation, is 
performed to obtain optimal schedules for the PHS with possible realizations of the wind 
generation next day. The data obtained from the stochastic simulation is then used to 
derive the PFAs. The generation of PFAs is carried out prior to the actual operating stage. 
It can be conducted as an offline analysis which utilizes historical wind data, or as a day-
ahead analysis that relies on day-ahead wind forecasts. The second phase is the selection 
of the PFAs. This phase is implemented between the day-ahead market (DAM) and the 
real-time market (RTM). In the second phase, updated wind forecasts are obtained and 
the derived PFAs are tested against the updated wind forecasts. The policy function that 
has the best performance is selected. In the third phase, the PFA selected in the second 
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phase is implemented in the real-time market to improve the operational scheme of the 
PHS.  

Enhanced 
Real-time Market

Day-ahead 
Market

Test and Choose  
the Best Policy 
Function to Use

Monte-Carlo Simulation to 
Obtain Optimal PHS Schedules

Obtain Policy Functions for 
PHS

Generate 
Scenarios

Wind Forecast

1

2
3

Adjustment teriod after 
Day-ahead aarket

Derive tolicy Cunctions (hffline or Day-ahead Analysis )

 
Fig. 3.1. Overview of the proposed approach 

3.3 Simulation Setup 

In this work, the proposed PFA is generated using the day-ahead wind forecasts. A 
flowchart describing the simulation process is presented in Fig. 3.2. Wind scenarios are 
first generated and the day-ahead UC is solved. Once the commitment schedule is 
obtained, stochastic simulation is performed to determine the optimal schedules for the 
PHS with different wind scenarios. The data obtained from the stochastic simulation is 
used to generate the PFA. After the PFA is obtained, the performance of the derived PFA 
is evaluated and compared with other benchmark approaches. The mathematical models 
involved in the simulation process are described in the following subsections.  
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Generate Renewable Scenarios based 
on Forecast

Solve Day-Ahead Deterministic Unit 
Commitment

Perform Stochastic Simulation

Obtain Policy Functions for the PHS

 Test Policy Function and Compare with 
Benchmark Methods

 
Fig. 3.2. Flowchart for the simulation process 

3.4 Day-Ahead Unit Commitment  

The day-ahead UC model is formulated as a mixed integer linear program (MILP). It is 
assumed that the PHS unit is a system asset. The formulation of the UC model is shown 
in (3.1)-(3.28), where the objective (3.1) is to minimize total system operating costs and 
violation costs. The violation costs include the costs of involuntary load shedding and the 
costs of not meeting the reserve requirements. Constraint (3.2) guarantees the power 
balance at every bus. Constraint (3.3) represents the dc power flow on each line and (3.4) 
is the line-flow limit constraint. Limits on the power output for each generator are 
presented in (3.5) and (3.6). The minimum up and down time constraints are shown in 
(3.7)-(3.9). Constraints (3.10)-(3.12) represent the ramp rates for regulation, spinning and 
non-spinning reserves for the thermal units. The hourly ramp rate constraints are shown 
in (3.13) and (3.14). The model for the PHS is shown in constraints (3.15)-(3.23). The 
PHS included in the study is assumed to be an adjustable-speed PHS. Constraints (3.15)-
(3.18) represent the limits on regulation and spinning reserves provided by the PHS. 
Constraint (3.19) is the energy balance constraint. The limits on consumption and 
production for the PHS are presented in (3.20) and (3.21). Constraint (3.22) requires that 
the PHS can only be in one mode at one time period. Constraint (3.23) formulates the 
limits on the water reservoir of the PHS. The system-wide regulation and spinning 
reserve requirements constraints are presented in (3.24)-(3.28). The regulation reserve 
requirement is set to be 2% of the hourly load. The operating reserve (sum of spinning 
and non-spinning reserves) is required to be greater or equal to the single largest 
generator contingency plus the NREL’s “3+5” reserve rule [18]. The NREL’s “3+5” 
reserve rule is used to address the uncertainty in renewable resources. The reserve 
requirements can be violated for a predetermined penalty price.  

Minimize: 
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∑ ∑ �𝐶𝑔�𝑃𝑔𝑔� + 𝑐𝑔𝑁𝑁𝑢𝑔𝑔 + 𝑐𝑔𝑆𝑆𝑣𝑔𝑔�𝑡𝑔 + ∑ �𝑐𝑣𝑣+𝑠𝑡𝑅+ + 𝑐𝑣𝑣−𝑠𝑡𝑅− + 𝑐𝑣𝑣𝑣𝑠𝑡𝑆𝑆 + 𝑐𝑣𝑣𝑣𝑠𝑡𝑂𝑂�𝑡 +
∑ ∑ 𝑐𝑣𝑣𝑠𝑛𝑛𝐿𝑡𝑛  (3.1) 

Subject to: 

∑ 𝑃𝑔𝑔∀𝑔(𝑛) + ∑ 𝑃𝑘𝑘𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘𝑘𝑘∈𝛿−(𝑛) + ∑ (𝑃𝑏𝑏𝑂𝑂𝑂 − 𝑃𝑏𝑏𝐼𝐼)∀𝑏(𝑛) = 𝑑𝑛𝑛 − 𝑠𝑛𝑛𝐿 −
∑ (𝑃𝑤𝑤𝑊𝑊𝑊𝑊 − 𝑠𝑤𝑤𝑊 )∀𝑤(𝑛) , ∀𝑛, 𝑡  (3.2) 

𝑃𝑘𝑘 − 𝐵𝑘(𝜃𝑘𝑘+ − 𝜃𝑘𝑘− ) = 0, ∀𝑘, 𝑡   (3.3) 

−𝑃𝑘𝑚𝑚𝑚 ≤  𝑃𝑘𝑘 ≤ 𝑃𝑘𝑚𝑚𝑚, ∀𝑘, 𝑡   (3.4) 

𝑃𝑔𝑔 + 𝑟𝑔𝑔𝑅+ + 𝑟𝑔𝑔𝑆 ≤ 𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔, ∀𝑔, 𝑡   (3.5) 

𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔 ≤ 𝑃𝑔𝑔 − 𝑟𝑔𝑔𝑅−, ∀𝑔, 𝑡  (3.6) 

∑ 𝑣𝑔𝑔𝑡
𝑞=𝑡−𝑈𝑈𝑔+1 ≤ 𝑢𝑔𝑔, ∀𝑔, 𝑡 ∈ �𝑈𝑈𝑔, … , 𝑇�   (3.7) 

 ∑ 𝑤𝑔𝑔𝑡
𝑞=𝑡−𝐷𝐷𝑔+1 ≤ 1 − 𝑢𝑔𝑔, ∀𝑔, 𝑡 ∈ �𝐷𝐷𝑔, … , 𝑇�   (3.8) 

𝑣𝑔𝑔 − 𝑤𝑔𝑔 = 𝑢𝑔𝑔 − 𝑢𝑔,𝑡−1,   ∀𝑔, 𝑡  (3.9) 

𝑟𝑔𝑔𝑅+ ≤ 𝑅𝑔5+𝑢𝑔𝑔, 𝑟𝑔𝑔𝑅− ≤ 𝑅𝑔5−𝑢𝑔𝑔, ∀𝑔, 𝑡   (3.10) 

𝑟𝑔𝑔𝑆 ≤ 𝑅𝑔10+𝑢𝑔𝑔, ∀𝑔, 𝑡   (3.11) 

𝑟𝑔𝑔𝑁𝑁 ≤ 𝑅𝑔𝑁𝑁(1 − 𝑢𝑔𝑔), ∀𝑔, 𝑡   (3.12) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔60+𝑢𝑔,𝑡−1 + 𝑅𝑔𝑆𝑆𝑣𝑔𝑔, ∀𝑔, 𝑡   (3.13) 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔60−𝑢𝑔𝑔 + 𝑅𝑔𝑆𝑆𝑤𝑔𝑔, ∀𝑔, 𝑡   (3.14) 

𝑟𝑏𝑏𝑆 + 𝑟𝑏𝑏𝑅+ ≤ 𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝑂𝑂𝑂 + 𝑃𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡   (3.15) 

𝛼𝑏𝑆𝑟𝑏𝑏𝑆 + 𝛼𝑏𝑅𝑟𝑏𝑏𝑅+ ≤ 𝜂𝑏𝑂𝑂𝑂(𝐸𝑏𝑏 − 𝐸𝑏𝑀𝑀𝑀), ∀𝑏, 𝑡   (3.16) 

𝑟𝑏𝑏𝑅− ≤ 𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝐼𝐼 + 𝑃𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (3.17) 

𝛼𝑏𝑅𝑟𝑏𝑏𝑅− ≤ (𝐸𝑏𝑀𝑀𝑀 − 𝐸𝑏,𝑡)/𝜂𝑏𝐼𝐼, ∀𝑏, 𝑡   (3.18) 

𝐸𝑏𝑏 = 𝐸𝑏,𝑡−1 + 𝑃𝑏𝑏𝐼𝐼𝜂𝑏𝐼𝐼 − 𝑃𝑏𝑏𝑂𝑂𝑂 𝜂𝑏𝑂𝑂𝑂⁄ , ∀𝑏, 𝑡   (3.19) 

𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏

𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡   (3.20) 

𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡   (3.21) 
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𝑧𝑏𝑏𝑂𝑂𝑂 + 𝑧𝑏𝑏𝐼𝐼 ≤ 1, ∀𝑏, 𝑡   (3.22) 

𝐸𝑏𝑀𝑀𝑀 ≤ 𝐸𝑏𝑏 ≤ 𝐸𝑏𝑀𝑀𝑀, ∀𝑏, 𝑡   (3.23) 

∑ 𝑟𝑔𝑔𝑅+𝑔 + ∑ 𝑟𝑏𝑏𝑅+𝑏 ≥  0.02∑ 𝑑𝑛𝑛𝑛 − 𝑠𝑡𝑅+, ∀𝑡   (3.24) 

∑ 𝑟𝑔𝑔𝑅−𝑔 + ∑ 𝑟𝑏𝑏𝑅−𝑏 ≥  0.02∑ 𝑑𝑛𝑛𝑛 − 𝑠𝑡𝑅−, ∀𝑡   (3.25) 

𝑄𝑡𝑂𝑂 ≥ 𝑃𝑔𝑔 + 𝑟𝑔𝑔𝑆 + 0.03∑ 𝑑𝑛𝑛𝑛 + 0.05∑ 𝑃𝑤𝑤𝑊𝑊𝑊𝑊
𝑤 , ∀𝑔, 𝑡  (3.26) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 + ∑ 𝑟𝑔𝑔𝑁𝑁𝑔 ≥ 𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑂𝑂, ∀𝑡   (3.27) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 ≥ 0.5𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑆𝑆, ∀𝑡   (3.28) 

3.5 Stochastic Simulation and the 24-Hour Dispatch Model 

After the day-ahead UC is solved, the stochastic simulation is performed to obtain the 
optimal schedules of the PHS with different wind scenarios. In the stochastic simulation, 
each wind scenario is solved using a 24-hour dispatch model. In the 24-hour dispatch 
model, the 24 time periods are solved together in one optimization program. The primary 
function of the stochastic simulation is to obtain PHS schedules with different wind 
scenarios assuming that the entire path of the wind scenario is known. After the 
stochastic simulation is performed, an optimal PHS schedule is determined for each wind 
scenario. The obtained PHS schedules are then used to generate the PFA that returns an 
action for the given operating conditions. 

The formulation of the 24-hour dispatch model is presented in (3.29)-(3.53). The 
commitment status for slow units is fixed the same as the ones from day-ahead solution, 
as shown in (3.33). Also, as shown in (3.35), a desired dispatch point is provided for each 
slow unit and the slow units can deviate from the desired dispatch point within the 10-
minute ramp rate. In the 24-hour dispatch problem, only the generator contingency 
reserve requirement is modeled (3.40). The other constraints used in the 24-hour dispatch 
model are similar to those used in the day-ahead UC model. 

Minimize: 

∑ ∑ �𝐶𝑔�𝑃𝑔𝑔� + 𝑐𝑔𝑁𝑁𝑢𝑔𝑔 + 𝑐𝑔𝑆𝑆𝑣𝑔𝑔�𝑡𝑔 + ∑ ∑ 𝑐𝑣𝑣𝑠𝑛𝑛𝐿𝑡𝑛 + ∑ �𝑐𝑣𝑣+𝑠𝑡𝑅+ + 𝑐𝑣𝑣−𝑠𝑡𝑅− +𝑡
𝑐𝑣𝑣𝑣𝑠𝑡𝑆𝑆 + 𝑐𝑣𝑣𝑣𝑠𝑡𝑂𝑂�   (3.29) 

Subject to: 

∑ 𝑃𝑔𝑔∀𝑔(𝑛) + ∑ 𝑃𝑘𝑘𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘𝑘𝑘∈𝛿−(𝑛) + ∑ (𝑃𝑏𝑏𝑂𝑂𝑂 − 𝑃𝑏𝑏𝐼𝐼)∀𝑏(𝑛) = 𝑑𝑛𝑛 − 𝑠𝑛𝑛𝐿 −
∑ (𝑃𝑤𝑤𝑊𝑊𝑊𝑊 − 𝑠𝑤𝑤𝑊 )∀𝑤(𝑛) , ∀𝑛, 𝑡  (3.30) 

𝑃𝑘𝑘 − 𝐵𝑘(𝜃𝑘𝑘+ − 𝜃𝑘𝑘− ) = 0, ∀𝑘, 𝑡  (3.31) 

−𝑃𝑘𝑚𝑚𝑚 ≤  𝑃𝑘𝑘 ≤ 𝑃𝑘𝑚𝑚𝑚, ∀𝑘, 𝑡  (3.32) 
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𝑢𝑔𝑔 = 𝑢𝑔𝑔, 𝑣𝑔𝑔 = 𝑣𝑔𝑔, 𝑤𝑔𝑔 = 𝑤𝑔𝑔, ∀𝑔 ∈ Ω𝐺𝐺, 𝑡  (3.33) 

𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔 + 𝑟𝑔𝑔𝑅− ≤ 𝑃𝑔𝑔 ≤ 𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔 − 𝑟𝑔𝑔𝑅+ − 𝑟𝑔𝑔𝑆 , ∀𝑔, 𝑡  (3.34) 

(𝑃�𝑔𝑔 − 𝑅𝑔10−)𝑢𝑔𝑔 ≤ 𝑃𝑔𝑔 ≤ (𝑃�𝑔𝑔 + 𝑅𝑔10+)𝑢𝑔𝑔, ∀𝑔 ∈ 𝛺𝐺𝐺, 𝑡  (3.35) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔60+𝑢𝑔,𝑡−1 + 𝑅𝑔𝑆𝑆𝑣𝑔𝑔, ∀𝑔, 𝑡  (3.36) 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔60−𝑢𝑔𝑔 + 𝑅𝑔𝑆𝑆𝑤𝑔𝑔, ∀𝑔, 𝑡  (3.37) 

𝑟𝑔𝑔𝑅+ ≤ 𝑅𝑔5+𝑢𝑔𝑔, 𝑟𝑔𝑔𝑅− ≤ 𝑅𝑔5−𝑢𝑔𝑔, ∀𝑔, 𝑡  (3.38) 

𝑟𝑔𝑔𝑆 ≤ 𝑅𝑔10+𝑢𝑔𝑔, ∀𝑔, 𝑡  (3.39) 

𝑄𝑡𝑂𝑂 ≥ 𝑃𝑔𝑔 + 𝑟𝑔𝑔𝑆 , ∀𝑔, 𝑡  (3.40) 

∑ 𝑟𝑔𝑔𝑅+𝑔 + ∑ 𝑟𝑏𝑏𝑅+𝑏 ≥  𝑄𝑡𝑅+ − 𝑠𝑡𝑅+, ∀𝑡  (3.41) 

∑ 𝑟𝑔𝑔𝑅−𝑔 + ∑ 𝑟𝑏𝑏𝑅−𝑏 ≥  𝑄𝑡𝑅− − 𝑠𝑡𝑅−, ∀𝑡  (3.42) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 ≥  0.5𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑆𝑆, ∀𝑡  (3.43) 

∑ 𝑟𝑔𝑔𝑆𝑔 + ∑ 𝑟𝑏𝑏𝑆𝑏 + ∑ 𝑟𝑔𝑔𝑁𝑁𝑔 ≥  𝑄𝑡𝑂𝑂 − 𝑠𝑡𝑂𝑂, ∀𝑔, 𝑡  (3.44) 

𝑟𝑏𝑆 + 𝑟𝑏𝑏𝑅+ ≤ 𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝑂𝑂𝑂 + 𝑃𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡  (3.45) 

𝛽𝑏𝑆𝑟𝑏𝑏𝑆 + 𝛽𝑏𝑅𝑟𝑏𝑏𝑅+ ≤ 𝜂𝑏𝑂𝑂𝑂(𝐸𝑏𝑏 − 𝐸𝑏𝑀𝑀𝑀), ∀𝑏, 𝑡  (3.46) 

𝑟𝑏𝑅− ≤ 𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚 − 𝑃𝑏𝑏𝐼𝐼 + 𝑃𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡  (3.47) 

𝛽𝑏𝑅𝑟𝑏𝑏𝑅− ≤ (𝐸𝑏𝑀𝑀𝑀 − 𝐸𝑏𝑏)/𝜂𝑏𝐼𝐼, ∀𝑏, 𝑡  (3.48) 

𝐸𝑏𝑏 = 𝐸𝑏,𝑡−1 + 𝑃𝑏𝑏𝐼𝐼𝜂𝑏𝐼𝐼 − 𝑃𝑏𝑏𝑂𝑂𝑂 𝜂𝑏𝑂𝑂𝑂⁄ , ∀𝑏, 𝑡  (3.49) 

𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏𝑏𝑂𝑂𝑂 ≤ 𝑃𝑏

𝑂𝑂𝑂_𝑚𝑚𝑚𝑧𝑏𝑏𝑂𝑂𝑂, ∀𝑏, 𝑡  (3.50) 

𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏𝑏𝐼𝐼 ≤ 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚𝑧𝑏𝑏𝐼𝐼, ∀𝑏, 𝑡  (3.51) 

𝑧𝑏𝑏𝑂𝑂𝑂 + 𝑧𝑏𝑏𝐼𝐼 ≤ 1, ∀𝑏, 𝑡   (3.52) 

𝐸𝑏𝑀𝑀𝑀 ≤ 𝐸𝑏𝑏 ≤ 𝐸𝑏𝑀𝑀𝑀, ∀𝑏, 𝑡  (3.53) 
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3.6 Generating Policy Function Approximation  

3.6.1 Classification Model  

After the stochastic simulation is performed, the optimal PHS schedules and the 
corresponding operating conditions are used to generate the PFA. The PFA is generated 
using classification techniques. Classification is a task to learn a classification model, 
also called a classifier, which maps each input attribute set to one of the predicted output 
class labels [30]. Previously, classification techniques have been applied in a number of 
power system applications. In [31], decision trees are implemented to provide online 
security assessment and preventive control guidelines. In [32], support vector machine 
classification algorithm is used to improve the performance of the smart relays. In [33], 
neural network based classification models are used for nonintrusive harmonic source 
identification.  

By using the data obtained from the stochastic simulation, classifiers are built to identify 
the pattern between the system operating conditions and the corresponding PHS actions. 
Once the classification model is built, it can be used to determine the dispatch decisions 
for the PHS for the given operating states. The structure of the classifier is illustrated in 
Fig. 3.3. The input of the classifier is a set of attributes describing the system operating 
conditions in time period t, and the output is the generation/absorbing power for the PHS 
in time period t. As the output of the classifiers is a class label which is a discrete value, 
the generation and pumping power capacity of the PHS are discretized into several 
segments.  

The attributes used to describe the system operating conditions are summarized in Table 
3.1. Attribute 𝐴1 is the coming operating period. Attributes 𝐴2 and 𝐴3 are the differences 
between system-wide available capacity to provide up (down) reserves and system up 
(down) reserve requirement. Attributes 𝐴4 and 𝐴5 are the ratios of the system-wide 
available capacity to provide up (down) reserves to system up (down) reserve 
requirement. Attributes 𝐴6 and 𝐴7 are the available pumping and generation capacity of 
the PHS. Attribute 𝐴8 is the water storage level of the PHS at the end of time period t-1. 
Attributes 𝐴9 and 𝐴10 are the number of online generators in time period t-1 and t. 
Attributes 𝐴11 is the difference between the water level in current scenario and that in the 
day-ahead UC solution. Attribute 𝐴12 is the distance between the current wind scenario 
and the scenario used in the day-ahead UC, where the distance between the scenarios is 
computed using Euclidian distance. The motivation of including attributes 𝐴11 and 𝐴12 is 
to use the day-ahead UC solution as a reference case to describe the relative state of the 
system operating condition. The inclusion of attributes 𝐴11 and 𝐴12 adds another 
dimension of information to the input attribute set to describe the pattern between the 
operating conditions and the actions of the PHS. In Table 3.1, variables 𝑅𝑠𝑠𝑠+  and 𝑅𝑠𝑠𝑠−  
represent the system-wide available capacity to provide up and down reserves, which are 
computed as: 

𝑅𝑠𝑠𝑠+ = 𝑚𝑚𝑚(∑ 𝑃𝑔𝑚𝑚𝑚𝑢𝑔𝑔𝑔 − ∑ 𝑑𝑛𝑛𝑛 + ∑ 𝑃𝑤𝑤𝑊𝑊𝑊𝑊
𝑤 , ∑ (𝑅𝑔10+ + 𝑅𝑔5+)𝑢𝑔𝑔𝑔 )   (3.54) 

𝑅𝑠𝑠𝑠− = 𝑚𝑚𝑚(∑ 𝑑𝑛𝑛𝑛 − ∑ 𝑃𝑤𝑤𝑊𝑊𝑊𝑊
𝑤 − ∑ 𝑃𝑔𝑚𝑚𝑚𝑔 𝑢𝑔𝑔, ∑ 𝑅𝑔−𝑢𝑔𝑔𝑔 ).   (3.55) 
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Classification 
Model 

Attribute A1 for t

Attribute A2 for t

Attribute An for t

...

Output Range for 
tHS in t

 
Fig. 3.3. Illustration of the classifier 

Table 3.1. Summary of the Input Attributes to the Classifier 

Attribute Formulation to Calculate the Attribute 
𝐴1  𝑡  
𝐴2  𝑅𝑠𝑠𝑠+ − (𝑄𝑡𝑅+ + 𝑄𝑡𝑂𝑂)  
𝐴3   𝑅𝑠𝑠𝑠− − 𝑄𝑡𝑅−  
𝐴4  𝑅𝑠𝑠𝑠+ /(𝑄𝑡𝑅+ + 𝑄𝑡𝑂𝑂)  
𝐴5  𝑅𝑠𝑠𝑠− /𝑄𝑡𝑅−  
𝐴6  min ((𝐸𝑚𝑚𝑚 − 𝐸𝑔,𝑡−1)/𝜂𝑏𝐼𝐼, 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚)  
𝐴7  min (�𝐸𝑔,𝑡−1 − 𝐸𝑚𝑚𝑚�𝜂𝑏𝑂𝑂𝑂, 𝑃𝑏

𝑂𝑂𝑂_𝑚𝑚𝑚)  
𝐴8  𝐸𝑔,𝑡−1  
𝐴9  ∑ 𝑢𝑔𝑔𝑔   
𝐴10  ∑ 𝑢𝑔,𝑡−1𝑔   
𝐴11  𝐸𝑔,𝑡−1 − 𝐸𝑔0,𝑡−1  

𝐴12  �∑ (𝑥𝑠,𝑡 − 𝑥0,𝑡)2
𝑇𝑓
𝑡=1   

3.6.2 Hierarchical Classification 

The classifier is used to determine the range of the generation/pumping power of the 
PHS. The classification problem involved is a multi-class problem, in which case the data 
records have more than two class labels. To improve the performance of the multi-class 
classification, a hierarchical classification approach is implemented. Hierarchical 
classification is a technique to deal with multi-class classification problems. Hierarchical 
classification takes advantage of a pre-established class taxonomy and builds classifiers 
at different levels in the hierarchical structure [34]. Fig. 3.4 illustrates the hierarchical 
structure of the classification problem involved in this chapter. As shown in Fig. 3.4, the 
involved problem consists of two levels of classification. At the first level, one classifier 
is constructed to determine the operational mode of the PHS in time period t. This 
classifier is built using all the data records obtained from the stochastic simulation. At the 
second level, one classifier is built for the generation and pumping mode respectively. 
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Given the operation mode determined at the first level, the classifiers at the second level 
are used to determine the generation/pumping power range for the PHS. For the 
classifiers at the second level, they are built using only the data records that belong to the 
corresponding operation mode.  

PHS Output

Generation 
Range1

Generation 
Range2 … Generation 

Range N
Pumping
Range1

Pumping 
Range2 … Pumping 

Range M

PumpingGeneration Idle

 
Fig. 3.4. Illustration of the hierarchical class structure 

3.6.3 Classification Algorithm 

The random forest classification algorithm is used to construct the classifiers. Random 
forest is a class of ensemble classifiers, which combines the prediction outcomes of 
multiple base learners. In a random forest classifier, the base learners are decision trees. 
Each decision tree in the random forest classifier is built differently by using different 
data records or attributes. Therefore, to classify an unseen data record, the data record is 
run down all the trees in the random forest classifier and each tree makes a prediction. A 
“voting” scheme is then used to determine the class label for the data record. The base 
learners in a random forest can be trained using different strategies, such as random input 
selection or random attribute selection. A detailed discussion of random forests and their 
variant algorithms are left for the reader to explore in [35]. In this chapter, the random 
forest algorithm with random attribute selection is used. 

Prior to the construction of the classifier, the best combination of parameters should be 
selected for the classifier. For random forest classifiers, the parameters to be determined 
are the number of attributes 𝐹𝑅𝑅 used for each base learner, and the number of trees Nt 
used in the random forest classifier. Parameter 𝐹𝑅𝑅 decides the strength and correlation of 
random forests. A small value of 𝐹𝑅𝑅 can decrease the correlation between the base 
learners in the random forest, but at the cost of reducing the strength of the random forest. 
This is because each base learner is built using a small portion of the input attribute set 
and may not be able to capture the entire pattern between the input attributes and the 
output classes. On the other hand, a large value of 𝐹𝑅𝑅 may increase the strength of the 
base learners, but at the cost of increasing the correlation between the base learners. The 
selection of the parameter is conducted using a grid-search approach [36].  
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3.7 Evaluation of the Performance of the PFA 

After the PFA is built, the performance of the PFA is evaluated and compared with other 
benchmark approaches. An hourly-dispatch model is formulated for the performance 
evaluation process. Each hourly-dispatch problem is solved for two consecutive time 
periods: the current time period and the look-ahead time period. Each time period 
represents a one-hour interval. The look-ahead period is included primarily to ensure the 
feasibility of the problem, since generators are required to ramp to the desired dispatch 
point in the next time period. The hourly-dispatch problem is solved sequentially with a 
rolling horizon for 24 hours. The hourly-dispatch model is formulated to approximate the 
real-time operation, but with a lower time resolution than what is typically used by 
industry today. The formulation of the hourly-dispatch problem is similar to that used for 
the 24-hour dispatch model (3.29)-(3.53), with the only difference that only two time 
periods are included in the hourly-dispatch model. For the proposed PFA based approach, 
an additional constraint is included in the hourly-dispatch problem to represent the 
generation/pumping power range determined by the PFA. The generation/pumping power 
range determined by the PFA is converted into a pair of proxy bounds on the water 
storage level of the PHS, which is formulated as  

𝐸𝑏,𝑡
𝐿𝐿𝐿 − 𝑠𝑏,𝑡

𝐿𝐿𝐿 ≤ 𝐸𝑏,𝑡 ≤ 𝐸𝑏,𝑡
𝑈𝑈 + 𝑠𝑏,𝑡

𝑈𝑈, ∀𝑏, 𝑡.  (3.56) 

In (3.56), 𝐸𝑏,𝑡
𝐿𝐿𝐿 and 𝐸𝑏,𝑡

𝑈𝑈 are the proxy lower and upper limits determined by the PFA, 
and 𝑠𝑏,𝑡

𝐿𝐿𝐿 and 𝑠𝑏,𝑡
𝑈𝑈 are the slack variables used to relax the proxy limits when necessary. 

The relaxation of the proxy limits are penalized in the objective function. The objective 
function of the hourly-dispatch problem is formulated as  

𝑚𝑚𝑚∑ ∑ �𝐶𝑔�𝑃𝑔𝑔� + 𝑐𝑔𝑁𝑁𝑢𝑔𝑔 + 𝑐𝑔𝑆𝑆𝑣𝑔𝑔�𝑡𝑔 + ∑ ∑ 𝑐𝑣𝑣𝑠𝑛𝑛𝐿𝑡𝑛 + ∑ �𝑐𝑣𝑣+𝑠𝑡𝑅+ + 𝑐𝑣𝑣−𝑠𝑡𝑅− +𝑡

𝑐𝑣𝑣𝑣𝑠𝑡𝑆𝑆 + 𝑐𝑣𝑣𝑣𝑠𝑡𝑂𝑂 + ∑ ∑ (𝑐𝑏𝑏𝐿𝐿𝐿𝑠𝑏,𝑡
𝐿𝐿𝐿𝜂𝑏𝑂𝑂𝑂 + 𝑐𝑏𝑏

𝑈𝑈𝑠𝑏,𝑡
𝑈𝑈/𝜂𝑏𝐼𝐼)𝑡𝑏 �  (3.57) 

where the last summation term in (3.57) represents the penalty costs of relaxing the proxy 
limits on the water storage level. The penalty prices 𝑐𝑏𝑏𝐿𝐿𝐿 and 𝑐𝑏𝑏

𝑈𝑈 are assumed to be the 
highest marginal cost of the slow unit that is online in time period t. The reasoning of 
choosing such a penalty price is based on the intuition that constraint (3.56) should be 
relaxed if all the committed slow units are operating at their maximum output level or do 
not have any available ramp-up capability; otherwise, a fast unit may have to be 
committed. The incurred no-load cost and start-up cost for committing an additional fast 
unit are expected to be more expensive than the future value of the water stored by the 
PHS.  

3.8 Case Study and Result Analysis 

3.8.1 Data Preparation 

The case study is conducted using the IEEE RTS 24-bus system [21]. The 24-bus system 
has 35 branches, 32 generators, and 21 loads. The total generation capacity in the system 
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is 3402 MW and the system peak load is 2850 MW. The capacity of line (14-16) is 
reduced to 350 MW to create congestions in the system. One 100 MW, 500 MWh 
adjustable-speed PHS unit is located at bus 22. The parameters used for the PHS are 
summarized in Table 3.2. Due to rough zones, the minimum production level for the PHS 
is assumed to be 30% of the maximum generation capacity [17]. In the day-ahead UC, an 
initial water storage level of 200 MWh is assumed for the PHS. It is required in the day-
ahead UC and 24-hour dispatch model that at the end of the day, the water storage level 
should be the same as the initial value. Parameters 𝛼𝑏𝑆 and 𝛼𝑏𝑅 are assumed to be 0.5, with 
the assumption that a unit should be able to maintain its output for half an hour in order to 
be qualified to provide spinning and regulation reserves. The cost for correcting 
involuntary load shedding is assumed to be 3000 $/MWh and the cost for correcting 
violations in reserve requirement is assumed to be 1100$/MWh.  

Table 3.2. Summary of the Parameters for the PHS  

𝜂𝑏𝐼𝐼, 𝜂𝑏𝑂𝑂𝑂 
𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚 
(MW) 

𝑃𝑏
𝐼𝐼_𝑚𝑚𝑚 

(MW) 
𝑃𝑏
𝑂𝑂𝑂_𝑚𝑚𝑚, 𝑃𝑏

𝐼𝐼_𝑚𝑚𝑚  
(MW) 

𝐸𝑏𝑀𝑀𝑀 
(MWh) 

𝐸𝑏𝑀𝑀𝑀 
(MWh) 

0.85 30 70 100 100 500 

3.8.2 Modeling of Renewable Scenarios 

Following the methodology described in [23], an autoregressive integrated moving 
average (ARIMA) model based approach [24] is used to generate the wind scenarios. 
Historical wind data for April 2006 is taken from NREL Wind Integration Datasets [25]. 
The wind data for three different areas are obtained to produce three different wind farms 
in the system (bus #13, #21 and #23). The original 10-mintue wind speed data is 
aggregated to produce the hourly wind speed. The hourly ARIMA models are fit for each 
wind farm and the corresponding scenarios are generated. To reflect the typical day-
ahead wind forecast errors reported in [37] and [38], the generated wind scenarios are 
normalized with the average such that the resulted forecast error is about 20%. The wind 
data obtained from NREL database is normalized using the same method and is used for 
the day-ahead UC. 

Using the approach described above, 450 wind scenarios are generated. Three hundred 
scenarios are randomly selected to be used in the stochastic simulation. The other 150 
scenarios are used to evaluate the performance of the PFA based approach. The 
simulation is conducted for 20% wind penetration level. The wind penetration level is 
defined as the ratio of total daily wind generation to the total daily demand. Wind 
curtailment is allowed when the system cannot accommodate all of the available wind 
production. 

3.8.3 Construction of the Classifiers 

As the output of a classifier is a categorical value, the generation/pumping power 
capacity of the PHS should be discretized into intervals. In Table 3.3, the discretization of 
the generation/pumping power capacity is summarized. Note that the power capacity of 
the PHS is discretized into intervals with medium width. This is to strike a balance 
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between the computational complexity and the performance of the PFA. A finer 
discretization strategy will require a larger amount of data records, since a small amount 
of data records may not guarantee that enough data is provided for each of the discretized 
interval. Another reason to not use a fine discretization strategy is because the 
classification technique is one kind of data driven methods which utilizes observed data 
to predict the class label for the unseen data records. Therefore, a classifier is not 
expected to have an accuracy of 100%. If the generation and pumping capacity of the 
PHS are discretized into very fine segments, it may increase the possibilities that the 
dispatch decision of the PHS is misclassified. Therefore, it is reasonable to use a 
discretization strategy with medium intervals.  

Table 3.3. Discretization of the Generation/Pumping Capacity of the PHS 

Generation Mode Pumping Mode 
Range 1 0 - 40% Range 1 0 - 85% 
Range 2 40% - 70% Range 2 85% - 100% 
Range 3 70% - 100% – – 

 

For the PFA based approach, three classifiers should be built. One classifier is built to 
predict the operation mode of the PHS, and the other two classifiers are used to determine 
the range of generation and pumping power respectively. The parameters used for the 
three classifiers are selected using the grid-search approach.  

The fundamental idea of grid-search is to test various pairs of parameter values and select 
the parameter pair that provides the best performance. For the grid-search approach, a 
coarse grid is first used to narrow down the range of the parameter values to a smaller 
region. Then a finer grid-search is performed in the selected region to identify the best 
value of the parameters. The grid-search has been proved to be a straightforward and 
effective approach [36]. For random forest classifiers, the parameters 𝐹𝑅𝑅 and Nt are 
searched in the range of [3, 4, 5, 6, 7] and [50, 300] respectively. The best parameters 
obtained for the classifiers are reported in Table 3.4. In Table 3.4, the RF-1 classifier is 
the first-level classifier used to predict the operation mode of the PHS. Classifiers RF-2P 
and RF-2G are used to determine the pumping/generation power range of the PHS in 
pumping and generation mode respectively. 

During the grid-search process, cross-validation technique is used to evaluate the 
performance of the classifiers. Cross-validation is a technique used to estimate the 
accuracy of a classifier using the training data. In a k-fold cross-validation, the training 
data is first divided into k subsets of equal size. Each time one subset is used as the 
unknown data and tested on the classifier built using the rest k-1 subsets. This process is 
repeated for k times. The final prediction error is obtained by summing up the errors for 
the k runs. In this approach, each data record is used the same of time for training and 
exactly once for testing. The cross-validation accuracy provides a fair estimation of the 
performance of the classification algorithm on unseen data set.  
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Table 3.4. Summary of the Final Parameters Obtained by Grid-Search 

Parameter RF-1 RF-2P RF-2G 
𝐹𝑅𝑅 125 70 70 
Nt 6 4 6 

 

Using the parameters shown in Table 3.5, three classifiers are constructed. The accuracies 
of the classifiers are estimated using a 10-fold cross-validation and are reported in Table 
3.5. The accuracy is defined as the ratio of the correctly classified data records to the total 
number of data records used in the classifier training process. The grid-search and the 
construction of the classifiers are implemented using the Scikit-learn machine learning 
package [39]. 

Table 3.5. Accuracies Estimated for Each Classifier using 10-Fold Cross-Validation 

RF-1 RF-2P RF-2G 
84.7% 88.6% 72.7% 

3.8.4 Performance Evaluation of the Proposed PFA 

After the PFA is obtained, the performance of the PFA based approach is evaluated and 
compared with the other four benchmarks using 150 wind scenarios. The first benchmark 
is referred to as the fixed-schedule approach, where the PHS schedule determined by the 
day-ahead UC is used for the PHS. In this benchmark, a water storage target is provided 
for the PHS in each time period and the PHS is not allowed to deviate from the water 
storage target. This benchmark represents a common approach to operate PHS units 
today, which is to determine a schedule for the PHS through look-ahead policies, such as 
a look-ahead scheduling stage. The second benchmark is referred to as the fixed-mode 
approach. In this benchmark, the operation mode of the PHS in each time period is fixed 
the same as the one from the UC solution. No constraint is enforced on the 
generation/pumping power of the PHS in each time period. The fixed-mode approach 
represents a relaxed operational strategy of the fixed-schedule approach, since only the 
operation mode is fixed in each time period but not the generation/pumping power. Both 
the fixed-schedule and the fixed-mode approach are solved using the hourly-dispatch 
problem. 

The third benchmark is referred to as the perfect-foresight benchmark. In the perfect-
foresight benchmark, all the time periods are solved together using the 24-hour dispatch 
model. The perfect-foresight benchmark represents an ideal case where all the 
uncertainties can be perfectly forecasted. The solution obtained by the perfect-foresight 
benchmark is the best lower bound solution of the 150 wind scenarios tested.  

The fourth benchmark is a stochastic programming model based approach. In this 
benchmark, a two-stage stochastic program is formulated and 60 wind scenarios are 
included. The 60 wind scenarios are selected from the 300 scenarios used in the 
stochastic simulation using scenario reduction technique [40]. In the two-stage stochastic 
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program, the water storage level 𝐸𝑏𝑏 is modeled as a first-stage decision and, thus, only 
one schedule is returned for the PHS after the stochastic program is solved. The 
stochastic program is formulated similar to the 24-hour dispatch model, with the only 
differences that multiple scenarios are included and the non-anticipativity constraints are 
enforced on the water storage level 𝐸𝑏𝑏 in the stochastic program. The duality gap of the 
stochastic program is set to be 0.4%. After the stochastic program is solved, the 
determined PHS schedule is used for the PHS in the hourly dispatch problem. The 
solution obtained by the stochastic programming model based benchmark represents a 
“competitive” lower bound solution. As the perfect-foresight benchmark represents an 
ideal situation, which cannot be realized in real life, the stochastic programming 
benchmark provides a solution that is more realistic but still attractive enough. The same 
commitment schedule is used for the slow units in the four benchmarks and the PFA 
based approach. 

The expected system results for each approach are summarized in Table 3.6. Four metrics 
are reported, which are the expected total system costs, expected involuntary load 
shedding, expected wind curtailment, and expected reserve requirement violations. As 
shown in Table 3.6, the proposed PFA approach can reduce the involuntary load 
shedding and the system total costs compared to the fixed-schedule and fixed-mode 
approaches. The cost savings obtained by using the proposed approach are reported in 
Table 3.7. Comparing to the fixed-schedule and the fixed-mode benchmarks, the 
proposed approach can provide cost savings of 1.4% and 2.7% respectively. It should be 
noted that only one PHS unit is included in the system and the capacity of the PHS is 
relative small compared to the system peak load and wind generation. As the capacity of 
the PHS increases and more PHS units are included, the benefit provided by the proposed 
PFA based approach is expected to increase.  

Table 3.6. Expected System Results for each Method 

Method Total System 
Cost ($) 

Involuntary 
Load Shedding 

(MWh) 

Wind 
Curtailment 

(MWh) 

Reserve 
Requirement 

Violations (MWh) 
PFA 821862 0 213 8 
Fixed 

Schedule 833134 6 208 3 

Fixed 
Mode  844565 6 155 11 

Stochastic 
Program 819713 0 208 8 

Perfect 
Foresight 817488 0 115 8 

 

Table 3.7. Cost Savings by Using the Proposed PFA Approach 

Method Relative Savings to Fixed Schedule  Relative Savings to Fixed Mode  
PFA 1.4% 2.7% 
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In Fig. 3.5, the relative performance of the PFA based approach compared to the 
stochastic program and the perfect foresight is presented. The relative performance is 
computed as  

𝑅𝑅𝑅𝑅𝑖% = 𝐶𝑟𝑟𝑟−𝐶𝑃𝑃𝑃
𝐶𝑟𝑟𝑟−𝐶𝑏𝑏

∙ 100%. (58) 

where 𝐶𝑃𝑃𝑃 is the expected system total cost for the PFA based approach, 𝐶𝑏𝑏 is the 
expected system cost for the benchmark approach that the PFA approach is compared 
with, and 𝐶𝑟𝑟𝑟 is the expected system total cost for the reference approach. The fixed-
schedule and fixed-mode benchmarks are used as the reference approaches. In Fig. 3.5, 
the blue bars represent the relative performance with the fixed schedule as the reference 
and the red bars show the relative performance of the proposed approach with the fixed 
mode as the reference.  

The relative performance measures the percentage of the potential cost savings that the 
proposed approach achieves. This metric is also an indication of how close the 
performance of the proposed approach is to the stochastic-program and the perfect-
foresight benchmarks. A relative performance of 100% means that the proposed PFA 
based approach has the same performance as the benchmark approach. As shown in Fig. 
3.5, compared to the stochastic programming benchmark, the proposed approach 
achieves about 82% and 90% of the relative performance with fixed-schedule and fixed-
model approaches as the references respectively. This result shows that the performance 
of the proposed PFA approach comes close to that of the stochastic programming model 
based approach. Meanwhile, the PFA based approach does not have added computational 
complexity to the existing real-time dispatch process, which is an advantage compared to 
stochastic programming models. Compared to the perfect-foresight approach, the relative 
performance of the proposed approach is about 70% and 82% with respect to the 
reference approaches of fixed schedule and fixed mode. This observation indicates that 
the PFA based approach can achieve the bulk part of the cost savings obtained by the 
perfect-foresight approach, even when the perfect-foresight approach is not realistic and 
will produce a cost target that is lower than possible due to its assumption that there is no 
uncertainty.  
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Fig. 3.5. Relative performance of the proposed PFA based approach 

The average computational time to solve one hourly-dispatch problem for the fixed-
schedule benchmark and the policy function based approach are reported in Table 3.8. In 
Table 3.8, the preprocessing time represents the time to build the optimization model. For 
the policy function based approach, the preprocessing time also includes the time to 
calculate the input attributes and the time to run the policy function (the classifier) to 
obtain the operation decision for the PHS. The solver time in Table 3.8 represents the 
execution time for the solver to solve the optimization program.  

Table 3.8. Average Computational Time for the Fixed-Schedule and the Policy Function 
Based Approach (s) 

  Fixed-Schedule PFA 
Preprocessing Time 0.02 0.19 

Solver Time 0.12 0.14 
Total Time 0.14 0.33 

 

As shown in Table 3.8, the time to solve the optimization program is very close for the 
two approaches, which are 0.12 seconds and 0.14 seconds respectively. Note that the 
preprocessing time for the PFA approach is time that is done offline and, thus, that time 
should not be considered when evaluating the time it takes the PFA method to solve in 
the real-time market.  

For the PFA approach, the bulk part of the preprocessing time is spent on running the 
classifier to get the operation decision for the PHS. However, the time to run the 
classifier only depends on the type of the classifier, the number of data records used 
during training stage, and the number of attributes used, but not the size of the system. 
Even for a large-scale power system, the preprocessing time of the PFA approach will not 
increase much if the same classification strategy described in this paper is used. 
Therefore, the relative long preprocessing time is not an indication that the PFA approach 
will increase the computational complexity of the real-time market.  
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The results in Fig. 3.5 and Table 3.8 demonstrate that the proposed PFA approach is 
effective in enhancing the utilization of the PHS in system with renewable resources.  

Note that any such investigation is case specific; we do not anticipate that policy 
functions will have such performance for all the cases. With that said, the result has 
achieved our primary objective and agrees with our initial insight: while stochastic 
programming approaches are beneficial, they are computationally challenging, especially 
for real-time applications whereas policy functions are very effective and do not increase 
the computational complexity.  

Finally, while the cost savings are not that high, note that this is for a single PHS facility, 
which is why it is important to acknowledge that we have saved roughly 70% to 90% of 
the overall potential cost savings. For systems with more PHS resources, the overall 
impact of this approach will be more profound. 

Besides the benchmark approaches tested and compared in the case study, there are also 
other existing approaches that manage the state of charge (SOC) of energy storage across 
multiple time periods in real-time market. In [17] and [41],  

3.9 Conclusion and Future Work 

With the rapid expansion of renewable resources, there is a growing need for flexible 
resources in power systems. While energy storage has been considered a potential 
solution to manage the intermittency of renewable resources, the flexibility of energy 
storage is not being fully utilized by existing energy and market management systems. In 
this chapter, a policy function approximation based approach is proposed to enhance the 
utilization of pumped hydro storage in operation with limited look-ahead functionalities. 
The proposed PFA base approach is shown to be effective in improving the utilization of 
the PHS and have performance close to stochastic programming based methods. 
Meanwhile, compared to stochastic programming, the PFA based approach has minimal 
added computational difficulty.  

While the policy function is developed for the operation of the PHS, the same design 
philosophy can be generalized to other power systems applications. As stochastic 
programming is still not scalable for large-scale power system today, the policy functions 
provide a solution to achieve the main functions of stochastic programming. The policy 
function has two primary merits:1) address the system uncertainties using the knowledge 
obtained during prior stages, and 2) has minimal added computational complexity to the 
existing management system. 

Future work may extend the PFA based approach to a large-scale power system. For 
large-scale power systems, zonal partition techniques can be applied to divide the system 
into several zones based on congestion information, location of the PHS or the location of 
the wind farms. The PFA based approach can then be applied on a locational base to 
obtain the input attributes using the information within each zone.  

Another direction is to compare the performance of the policy function based approach 
with other existing benchmark approaches that are not included in this chapter. One such 
benchmark approach is reported in [17] and [41]. In [17] and [41], a three-stage (day-
ahead stage, hour-ahead stage and real-time stage) sequential simulation approach is 
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implemented to evaluate the benefits of adjustable-speed PHS. In each stage, the storage 
volume of a PHS at the end of the optimization window is constrained to the one 
determined from the previous stage. The storage volume constraint can be violated by a 
penalty price. The approach in [17] and [41] allows the PHS to deviate from the schedule 
determined from a previous stage by paying a penalty cost. As the policy function based 
approach is designed to be a practical method that can be implemented by the ISOs, a 
more comprehensive performance assessment can be obtained for the policy function 
based approach by comparing it with more benchmark approaches. 

Directions for future work could also include extending the day-ahead stochastic 
simulation to an offline approach. With such strategies, PFAs can be generated on a 
weekly base or monthly base. By using historical data, the computational requirement is 
further reduced for the day-ahead stage. However, the shortcoming of generating PFAs 
based on historical data is that the performance of the PFA may be deteriorated, since the 
historical data may have less similarity and correlation with the future system operating 
conditions.  

There is also potential to incorporate the PFAs into market structure. In deregulated 
energy markets, PHS entities are market participants who bid into the market and try to 
maximize their profits. To utilize PFAs in such market settings, the existing market 
structure may need to be redesigned such that enough incentive is provided for the PHS 
units to follow the dispatch instructions provided by the system operator.  
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4. Conclusions 

In this report, the operation of pumped hydro storage (PHS) in systems with renewable 
resources is investigated. The report studies the attractiveness of two PHS technologies in 
balancing renewable uncertainties. A policy function based approach is proposed to 
improve the operational scheme of the PHS in real-time operation.  

Two types of PHS technologies are studied in the report, which are the traditional fixed-
speed PHS and the adjustable-speed PHS. As an advanced PHS technology, the 
adjustable-speed PHS is able to change its input power in the pumping mode, which 
provides it the capability to provide regulation reserves in both the generation and 
pumping mode. For the fixed-speed PHS, as the input power cannot be varied during the 
pumping process, the fixed-speed PHS can only provide regulation reserves in the 
generation mode. In the case study, the result shows that the adjustable-speed PHS is 
more effective in providing regulation reserves and reducing total system costs compared 
to the fixed-speed PHS. It is demonstrated in this report that the adjustable-speed PHS is 
a more attractive and valuable resource than the fixed-speed PHS to facilitate the 
integration of renewable resources 

While studies have demonstrated the attractiveness of the PHS in managing the 
renewable uncertainties in the system, existing energy management systems and market 
management systems do not make full use of the flexibility of storage. In this report, a 
policy function based approach is proposed to enhance the utilization of the PHS in real-
time operation. In the proposed approach, the policy function is generated on a daily base 
using the day-ahead wind forecasts. As stochastic programming models are not 
computational tractable for large-scale power systems, policy functions provide a 
scalable solution to address the challenges with the uncertainty and the limited look-
ahead functionality in real-time operation. By shifting computational complexity to 
offline analysis, policy functions have minimal added computational difficulty to the 
existing energy management system. In the report, random forest classification technique 
is used to generate the policy function. The policy function is used to determine the 
pattern between the system operating conditions and the optimal decisions for the PHS. 
Compared to the existing approach where a fixed operational schedule is used, the result 
shows that the policy function based approach can effectively enhance the utilization of 
the PHS in real-time operation. The result also indicates that the policy function based 
approach has close performance to the stochastic programming model based benchmark 
and the perfect-foresight benchmark. By using the proposed approach, the PHS can be 
utilized more efficiently and more effectively to facilitate the integration of increasing 
penetrations of renewable resources. 
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