Adaptive and Intelligent PMUs for Smarter Applications

Executive Summary

Power Systems Engineering Research Center

Empowering Minds to Engineer the Future Electric Energy System
Adaptive and Intelligent PMU for Smarter Applications

Executive Summary

Project Team
Anurag K. Srivastava, Project Leader
HyoJong Lee, Graduate Student
Saugata Biswas, Graduate Student
Washington State University

A. P. Sakis Meliopoulos
George Cokkinides
Zhenyu Tan, Graduate Student
Rui Fan, Graduate Student
Georgia Institute of Technology

Peter W. Sauer
Karl Reinhard, Graduate Student
Kenta Kirihara, Graduate Student
Bogdan Pinte, Graduate Student
Michael Quinlan, Graduate Student
Yang Liu, Undergraduate Student
University of Illinois at Urbana-Champaign

PSERC Publication 16-01

January 2016
For information about this project, contact

Anurag K Srivastava, Project Leader
Associate Professor, School of Electrical Engineering and Computer Science
Director, Smart Grid Demonstration and Research Investigation Lab (SGDRIL)
Energy Systems Innovation Center (ESIC)
Washington State University
355 Spokane St
Pullman, WA 99164-2752
Phone: 509-335-2348
Fax: 509-335-3818
Email: asrivast@eecs.wsu.edu

Power Systems Engineering Research Center

The Power Systems Engineering Research Center (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry and educating the next generation of power engineers. More information about PSERC can be found at the Center’s website: http://www.pserc.org.

For additional information, contact:

Power Systems Engineering Research Center
Arizona State University
527 Engineering Research Center
Tempe, Arizona 85287-5706
Phone: 480-965-1643
Fax: 480-965-0745

Notice Concerning Copyright Material

PSERC members are given permission to copy without fee all or part of this publication for internal use if appropriate attribution is given to this document as the source material. This report is available for downloading from the PSERC website.

© 2016 Washington State University, Georgia Institute of Technology, and University of Illinois at Urbana-Champaign
All rights reserved.
Acknowledgements

This is the final report for the Power Systems Engineering Research Center (PSERC) research project titled “Adaptive and Intelligent PMU for Smarter Applications” (project S-57). We express our appreciation for the support provided by PSERC’s industry members and by the National Science Foundation under the Industry / University Cooperative Research Center program.

We wish to thank our industry advisors for their support and help: Evangelos Farantatos (EPRI), Paul Myrda (EPRI), Farrokh Habibiashrafi (Southern California Edison), Innocent Kamwa (Hydro-Québec), Xiaoming Feng (ABB), Reynaldo Nuqui (ABB), Qiang Zhang (ISO-New England), William Kamwa (AEP), Giuseppe Stanciulescu, (BC Hydro), and Jim Kleitsch (American Transmission Company, ATC).

Additionally, we are grateful to National Instruments and RTDS, Inc. for their support.
Executive Summary

Performance of Phasor Measurement Units (PMUs) varies with operating conditions such as dynamic system states, harmonics, off-nominal frequency and changes due to load changes and/or faults. Phasor based applications may utilize only part of the PMU measurements like frequency, voltage magnitude or angles. Accuracy of these specific measurements depends on estimation and filtering algorithms within PMU, which can be switched between different algorithms to adopt with specific applications and operating conditions for higher performance. The PMU can self-report critical data quality information such as estimation error and GPS status using user-defined bits to provide better decision support for operators.

Distributed applications using PMU data may require some of the computation to be done within PMU. Data management can be done in intelligent manner to minimize the computational and communication burden centrally as well as to enable enhanced applications. Additionally, user defined bits can be used in flexible and intelligent manner to realize enhanced capability of PMU for smarter applications. PMU data quality and interchangeability of PMU with changing applications is another important issue.

This project focuses on all the above aspects to develop ‘adaptive’ and ‘intelligent’ PMU for smarter applications and believes that ‘one PMU does not fit all applications and all operating conditions’. In this project, we have developed several versions of advanced PMU with different features: the adaptive PMU, the standard PMU, virtual PMUs and the distribution PMU. In addition, improved testing methods to characterize the accuracy of these PMUs are also reported.

For the adaptive PMU algorithm, wavelet transform (WT) based phasor estimation is proposed as an alternative estimation technique for dynamic system condition like off-nominal frequency. The system frequency is updated by WT based estimation of target frequency. Also, multiple filtering techniques have been developed to provide options for different operating conditions. Switching techniques is proposed to identify system-operating conditions and choose suitable estimation algorithm within PMU. The standard PMU algorithm performs discrete Fourier transform (DFT) utilizing a variable time window so as the frequency changes the integration interval always contains an integer number of cycles. Thus, spectral leakage and other known errors of the Fourier transform for a signal of changing frequency are eliminated. We have also developed a virtual PMU using the DFT based Standard PMU algorithm. The performance of Standard PMU algorithm is evaluated with variable sampling rates and several different interpolation methods. Performance results are provided in the report for all these PMUs using PMU Performance Analyzer (PPA) and WinXFM platform as well as upgraded test beds. Distribution PMU is designed as a single-phase low cost PMU using National Instruments Platform.

Synchrophasor data quality is another important issue. PMU data can be dropped by communication system, have high noise, or have errors attributable to GPS signal errors. We had access to industry provided field PMU data and developed techniques to identify defective synchrophasor data using statistical techniques.

This work is opening up various possibilities for more intelligent applications as well as more intelligent automation of power system functions. One of the applications is dynamic state
estimation based protection, a.k.a. setting-less protection. Experimental results show that the setting-less protection method provides better performance than traditional protective schemes.

The report highlights challenges of using synchrophasor data collected during power system equilibrium state transitions to understand and characterize dynamic behavior. Interoperability and interchangeability is an important issue for intelligent PMUs. We propose an interoperability standard for intelligent PMUs in terms of power device model data exchange.

This project resulted in following publications:

Student Theses:

