Objectives
- Quantify resilience to cascading failure
- Deliverable: Case studies of monitoring or mitigating cascading

Importance
- Keep the lights on as we transform the grid
- Any new technology that causes blackouts will be curtailed

Uses
- Monitoring & managing risk of cascading blackouts

Monitor resilience from standard TADS utility data reported to NERC
- Cascading = initial outages + propagation
- Estimate propagation λ from \sim1 year of line outage times

Monitor area stress by combining PMU measurements along border
- New concept: angle across area

Probability distribution of total number of line outages assuming 5 initial line outages

Probability distribution of total number of outages

An area R in 225 bus WECC

Area angle
- Base case $\hat{\theta}_{ab} = 10.9$ degree
- $b_{ab} = 91.6$ p.u.

100 MW transfer inside area gives +0.25 degree

100 MW transfer through area gives +0.60 degree

100 MW transfer line trip inside area gives +2.51 degree

100 MW transfer line trip outside area gives +0.38 degree

Notes
- Branching Process Calculation