Data-Enabled Modern Resource Management: From Risk Management to Socially-aware Solutions

Mojdeh Khorsand Hedman
Arizona State University
(Mojdeh.Khorsand@asu.edu)

PSERC Webinar
November 15, 2019
Presentation Outline

• Introduction
• A Data-Driven Approach for Analysis of Demand Response
• State-of-the-Art Artificial Intelligence for DER Management
• Chance Constrained Distribution System Scheduling
• Conclusions
• Key Notes
• Research Questions
The Midcontinent Independent System Operator (MISO) defined 3 Ds for the future grid:
There are, in fact, 5 Ds:
Distributed Energy Resources

- Increasing penetration level of DERs:
 - Renewables: Global movement towards clean, affordable, and sustainable energy
 - Energy democracy move: A person’s desire to possess his or her own energy system

Energy democracy move is increasing the DER penetration level despite economies of scales for bulk generation.
Distributed Energy Resources

The key question is NOT: why move to a DER based system?

THE TRAIN HAS LEFT THE STATION!

The key question is: how to do it in a way that will continue to provide reliable service at affordable prices?
How to leverage DERs?

The potential of collective participation of prosumers has yet to be thoroughly achieved. Its pursuit is nontrivial as the reliability, guarantees, and quality of grid services by end-users are not well understood and are more difficult to quantify than through conventional bulk generators.

Disruptive opportunities are achievable when engineering solutions encapsulate the dynamic characteristics of prosumers via socially-aware and risk-aware methods.
Existing challenges

• The existing strategy to manage the challenges of bulk renewables and DERs: more infrastructure and conventional generators.

In May 2019, CAISO curtailed 225GWh of solar and wind energy.
How to leverage DERs?

Benefits of DERs for grid services (both energy and ancillary services):

- Prime location:
 - Infrastructure deferrals
 - Flexibility closest to demand

- Diversity in characteristics, capability, probability of defaulting on obligation, flexibility, geographical location

- Often seen as a hindrance
- But diversity is key to hedging when managing a system with stochastic resources
Design of operational plans to include DERs

- Expanded ISO/RTO to the distribution level
 - Not enough visibility
 - Computationally infeasible

- DERs aggregation through DSO and third party aggregators

- Scheduling, reliability, and retail settlements handled at DSO
 - Distribution markets
 - Trading platforms for peer to peer transactions
DER aggregation

- Aggregation has been discussed as a holistic approach to get rid of all complexities: large number of small resources, controllability, and scheduling

Indiscriminate aggregation makes the prediction of aggregated net load non-trivial.

Energy as a technological, economical, and social phenomenon

• Social science research shows that energy is not merely a technological and economical phenomenon but is deeply embedded within social, geopolitical landscapes.

• It is critical to account for social aspect of energy in design and operation of smart grids. Examples:
 • DER adoption
 • Different rate of EV adoption and use; higher trends in particular neighborhoods
 • Demand response participation
 • Distribution system upgrades
 • Uncertainty of participation in smart grid operation

Design of socially-aware solutions

• Analysis of customers’ behavior has been classified to the domain of behavioral economics in research communities.

• Recent advances in AI algorithms empower characterizing prosumers’ behaviors to enable design of socially-aware engineering solutions without modeling the behavior itself.

Advanced artificial intelligence algorithms, which account for demographic characteristics of prosumers, are required to enable accurate classification, aggregation, prediction, and uncertainty characterization of prosumers and their DERs.
A Data-Driven Approach for Analysis of Demand Response
Smart meter data study

- Data from an electric utility:
- Over 15,000 customers
- Demographic data includes income, household size, dwelling, start date of price plan, home ownership and family composition (e.g., age, marital status, children)
- Consumption, solar production, and DR
- 15-minute to 1-hour intervals for 1-2 years.
- Two Time-of-Use Plans:

<table>
<thead>
<tr>
<th>DR Programs</th>
<th>On-Peak Time</th>
<th>On-Peak Price ($/kWh)</th>
<th>Off-Peak Price ($/kWh)</th>
<th>No. of Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>E21 (Jul Aug)</td>
<td>3 - 6 p.m.</td>
<td>0.3588</td>
<td>0.0864</td>
<td>1776</td>
</tr>
<tr>
<td>E21 (May Jun Sep Oct)</td>
<td>3 - 6 p.m.</td>
<td>0.3033</td>
<td>0.084</td>
<td>1776</td>
</tr>
<tr>
<td>E26 (Jul Aug)</td>
<td>1 - 8 p.m.</td>
<td>0.2226</td>
<td>0.0741</td>
<td>1974</td>
</tr>
<tr>
<td>E26 (May Jun Sep Oct)</td>
<td>1 - 8 p.m.</td>
<td>0.1957</td>
<td>0.0738</td>
<td>1974</td>
</tr>
</tbody>
</table>

- Note: E21 has shorter on-peak period, more expensive on-peak price, and larger difference between on-peak and off-peak prices.
Conducted analysis

01
Form categories based on customers’ demographic data

02
Group customers based on categories and leverage machine learning to predict their base consumption

03
Calculate on-peak consumption reduction

04
Evaluation of response of customers from the same category to different price structure

Predicted Consumption Baseline and Measured Data Comparison
"HighIncome + 3~5 Occupants + No Child' (E21 July 3rd)
Machine Learning algorithms

Three well-established machine learning algorithms are utilized to obtain customers’ consumption baseline.

- Artificial Neural Network (ANN)
- K Nearest Neighbors (KNN)
- Ridge Regression (RR)

Evaluation Metrics:

\[
R^2 = 1 - \frac{\sum_i (y_i^{true} - y_i^{predict})^2}{\sum_i (y_i^{true} - y_i^{mean})^2}
\]

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{T} (y_i^{true} - y_i^{predict})}{T}}
\]

- Coefficient of determination
- Root-mean-square error
Artificial Neural Network

- A strong ability to fit into highly nonlinear functions
- Use Backpropagation to train the model
- Activation function: ReLu
- Number of layers: 3 hidden layers
- 85% Training set and 15% Testing set
K-nearest Neighbors

- Non-parametric method
- Uses k data points that are closest to the new data to predict the response
- Number of neighbors: 3
- Distance metric: Euclidean distance
- 85% Training set and 15% Testing set
Ridge Regression

This ML algorithm solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm.

$$\text{Min} \sum_{n=1}^{N} [Y_n - W^T \phi(X_n)]^2 + \lambda W^T W$$

Minimize error l2-norm

Strictly convex!

Guarantee Global Optimal
Consumption baseline

Trained model performances for testing samples.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Number of Customers</th>
<th>ANN</th>
<th>KNN</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>30</td>
<td>0.943</td>
<td>0.932</td>
<td>0.948</td>
</tr>
<tr>
<td>RMSE (kW)</td>
<td>30</td>
<td>7.26</td>
<td>7.9</td>
<td>6.88</td>
</tr>
<tr>
<td>R2</td>
<td>50</td>
<td>0.959</td>
<td>0.944</td>
<td>0.962</td>
</tr>
<tr>
<td>RMSE (kW)</td>
<td>50</td>
<td>10</td>
<td>11.7</td>
<td>9.64</td>
</tr>
<tr>
<td>R2</td>
<td>100</td>
<td>0.982</td>
<td>0.974</td>
<td>0.983</td>
</tr>
<tr>
<td>RMSE (kW)</td>
<td>100</td>
<td>14.33</td>
<td>17</td>
<td>13.96</td>
</tr>
</tbody>
</table>

Accuracy of baseline load prediction model is high. The customers’ consumption baselines predicted by these trained models are considered as their true baseline load in this study.
Trained model performances

Ridge Regression 'MediumIncome + 1~2 Occupants + No Child'
(E21 Summer Peak 50 Households)

$R^2 = 0.962$ \hspace{1cm} \text{RMSE} = 9.644 \text{ kW}$
On-peak load reduction

E21 price plan:
On-peak hours: 3 p.m. to 6 p.m.
Summer Peak: On-peak: $0.3588/kWh; Off-peak: $0.0864/kWh

E26 price plan:
On-peak hours: 1 p.m. to 8 p.m. from Summer Peak:
On-peak: $0.2226/kWh; Off-peak: $0.0741/kWh

Clear load reduction and load shifting effect

Long on-peak period and smaller price gap.
On-peak consumption reductions (E21)

Energy (kWh)

1: HighIncome, 1~2 people, no kid
2: HighIncome, 3~5 people, no kid
3: HighIncome, 3-5 people, kid
4: MediumIncome, 1~2 people, no kid
5: MediumIncome, 3~5 people, no kid
6: MediumIncome, 3-5 people, kid
7: LowIncome, 1~2 people, no kid
On-peak load reduction

- Each point represents 15-min load reduction for the specified group.

E21:

Scatter Plot for Load Reduction
High Income + 1–2 occupants + no kid
During on-Peak Period in E21 Summer Peak

E26:

Scatter Plot for Load Reduction
High Income + 1–2 occupants + no kid
During on-Peak Period in E26 Summer Peak
Emergency Demand Response

- We received the dataset contains the customers who participate in emergency demand response (EDR) program.
- Nest thermostat
- Maximum of 15 EDR per year
- The electric utility pre-cools the customers’ house one hour in advance.
- Customers have the right to readjust their air-conditioner setting during the event.
Emergency Demand Response

Here is an example showing the consumption baseline and actual consumption in the DR event day, Jun/22/2018.
Emergency Demand Response

- Average percentage load reduction results for each income level and the number of occupants

![Average Load Reduction Graphs]

<table>
<thead>
<tr>
<th>Income Level</th>
<th>Low Income</th>
<th>Medium Income</th>
<th>High Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>38.3%</td>
<td>38.4%</td>
<td>40.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupant Count</th>
<th>1~2 Occupants</th>
<th>3~5 Occupants</th>
<th>6~9 Occupants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>37.8%</td>
<td>39.4%</td>
<td>43.8%</td>
</tr>
</tbody>
</table>
Uncertainty characteristics

- These differences will be more severe when other smart grid technologies are integrated.
- If methods indiscriminately aggregate prosumers and use the same uncertainty model for all, then they fail to accurately capture prosumer behavior and response.
State-of-the-Art Artificial Intelligence for DER Management
Necessity of advanced AI techniques

- Machine learning (ML) algorithms are helpful for a wide range of tasks. Black-box ML algorithms can make predictions; however, it is still critical to interpret the predictions.

- What if a different ML algorithm is applied? What if data from a different source is used? What if the data did not cover sufficient types of a particular behavior?

- Causal inference is defined with three levels: association, intervention, and counterfactuals.

- At the lowest level, no association implies no causation; consequently, association is the foundation for classical ML methods that learn basically association from data. Association methods may be useful; however, they are often inadequate and unreliable when correlations are spurious.

- Advanced AI algorithms are needed to capture prosumers’ behavior.
Causal Learning for DER management

\[r = f(p, n, t, d, \epsilon_1) \]
\[a = f(p, n, e, d, \epsilon_2) \]
\[c = f(p, t, d, \epsilon_3) \]
\[g = f(s, t, \epsilon_4) \]

Prosumers' response = \(f(b, r, a, c, g, \epsilon_5) \)

\[Y = \mathbb{E}_{\omega \sim P(\omega)}[y] = \int_{\omega} y P(\omega) \]

\[Y^* = \int_{\omega} y P^*(\omega) = \int_{\omega} y \frac{P^*(\omega)}{P(\omega)} P(\omega) = \int_{\omega} l(\omega) P(\omega) \]
Chance Constrained Distribution System Scheduling
Objective: Design an innovative operational paradigm that leverages the full flexibility of DERs while accounting for risk due to stochastic resources.
Optimal scheduling of distribution systems: Bid-risk-dispatch model

- Without adequate representation of uncertain factors, risk-driven models may fail if the realized scenario were not among the modeled uncertainty.

- The majority of risk driven methods in power system literature are dedicated to the bulk system. For distribution systems, there are many other complicating factors (multi-phase, unbalanced, mutual coupling).

- Prior work often considers uniform uncertainty characteristics for all resources. *The proposed model accounts for varying uncertainty across prosumer groups and operational time periods.*
ACOPF with Second Order Cone Programming

\[
\text{Min: } \sum_{vt} C^M_t \left(P_{M,t}, Q_{M,t}, R_{M,t} \right) + \sum_{rg} \left(C^U_{rg,t} \left(P^U_{rg,t}, Q^U_{rg,t}, R^U_{rg,t} \right) \right) + \sum_{der} \left(C^\text{DER}_{der,t} \left(P^\text{DER}_{der,t}, Q^\text{DER}_{der,t}, R^\text{DER}_{der,t} \right) \right) + \\
\sum_{ev} \left(C^\text{EV}_{ev} \left(P^\text{EV}_{ev,t}, Q^\text{EV}_{ev,t}, R^\text{EV}_{ev,t} \right) \right) + \sum_{bess} \left(C^\text{BESS}_{bess,t} \left(P^\text{BESS}_{bess,t}, Q^\text{BESS}_{bess,t}, R^\text{BESS}_{bess,t} \right) \right)
\]

\[
g(P_{M,t}, P^U_{rg,t}, P^\text{DER}_{der,t}, P^\text{EV}_{ev,t}, P^\text{BESS}_{bess,t}, Q_{M,t}, Q^U_{rg,t,c}, Q^\text{DER}_{der,t}, Q^\text{EV}_{ev,t}, Q^\text{BESS}_{bess,t}) = 0
\]

\[
h(P_{M,t}, P^U_{rg,t}, P^\text{DER}_{der,t}, P^\text{EV}_{ev,t}, P^\text{BESS}_{bess,t}, Q_{M,t}, Q^U_{rg,t,c}, Q^\text{DER}_{der,t}, Q^\text{EV}_{ev,t}, Q^\text{BESS}_{bess,t}) \geq 0
\]

Second Order Cone Programming:

\[
R_{nj,x,\emptyset,t} = V_{n,x,t} V_{j,\emptyset,t} \cos(\theta_{n,x,t} - \theta_{j,\emptyset,t}), \quad I_{nj,x,\emptyset,t} = V_{n,x,t} V_{j,\emptyset,t} \sin(\theta_{n,x,t} - \theta_{j,\emptyset,t}), \quad U_{n,x,t} = \frac{V_{n,x,t}^2}{\sqrt{2}}
\]

\[
p^j_{n,x,t} = \sqrt{2} U_{n,x,t} G_{nj,xx} + \sum_{\emptyset = a}^{c} R_{nn,\emptyset,\emptyset} G_{nj,\emptyset} + I_{nn,\emptyset,\emptyset} B_{nj,\emptyset} + \sum_{\emptyset = a}^{c} -R_{nj,\emptyset,\emptyset} G_{nj,\emptyset} - I_{nj,\emptyset,\emptyset} B_{nj,\emptyset}
\]

\[
Q^j_{n,x,t} = -\sqrt{2} U_{n,x,t} B_{nj,xx} + \sum_{\emptyset = a}^{c} I_{nn,\emptyset,\emptyset} G_{nj,\emptyset} - R_{nn,\emptyset,\emptyset} B_{nj,\emptyset} + \sum_{\emptyset = a}^{c} -I_{nj,\emptyset,\emptyset} G_{nj,\emptyset} + R_{nj,\emptyset,\emptyset} B_{nj,\emptyset}
\]

\[
2U_{n,x,t} U_{j,\emptyset,t} \geq R_{nj,\emptyset,t}^2 + I_{nj,\emptyset,t}^2
\]
Chance constrained distribution system scheduling

\[P(V_{n,\min} \leq |\tilde{V}_{n,t}| \leq V_{n,\max}) \geq 1 - \varepsilon \]

\[P\left(\sqrt{P_{n,t}^j}^2 + Q_{n,t}^j \right) \leq S_{n,j}^{max} \geq 1 - \varepsilon \]

\[P(S_{M,t} - R_{M,t} \leq \tilde{S}_{M,t} \leq S_{M,t} + R_{M,t}) \geq 1 - \varepsilon \]
Chance constrained distribution system scheduling

\[I^p = \frac{\text{Total } P_{\text{DERs}}}{\text{Total } P_{\text{Load}}} \quad I^q = \frac{\text{Total } Q_{\text{DERs}}}{\text{Total } Q_{\text{Load}}} \]

\[\sum P_{\text{DERs}} \leq (I^p - \tau) \sum P_{\text{Load}} \]
\[\sum Q_{\text{DERs}} \leq \left(\frac{I^p - \tau}{I^p} \right) I_t^q \sum Q_{\text{Load}} \]

Solving modified SOCP-based ACOPF

\(\tau = 0 \)

MCS scenarios Generation

\(S = 1 \)

Power flow analysis using OpenDSS

No

\(z_{\text{vio}} \leq \varepsilon \)

End

No

Increase \(\tau \)

Yes

\(S < N_s \)

\(S = S + 1 \)
Chance constrained distribution system scheduling: DR and PV uncertainty

- IEEE 33-bus system
- 9 solar PV units: various types of active and reactive power controllability settings
- Beta distribution for PV uncertainty
- Demographically diverse prosumers:

<table>
<thead>
<tr>
<th>No. of Prosumer Groups</th>
<th>Income Level</th>
<th>No. of Occupants</th>
<th>Child</th>
<th>Average demand response (%)</th>
<th>Corresponding Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>High</td>
<td>1-2</td>
<td>No</td>
<td>22.55</td>
<td>5.28</td>
</tr>
<tr>
<td>5</td>
<td>High</td>
<td>3-5</td>
<td>Yes</td>
<td>28.49</td>
<td>4.72</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>1-2</td>
<td>No</td>
<td>11.34</td>
<td>7.26</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>3-5</td>
<td>Yes</td>
<td>3.92</td>
<td>6.81</td>
</tr>
<tr>
<td>1</td>
<td>Medium</td>
<td>1-2</td>
<td>No</td>
<td>0.99</td>
<td>8.12</td>
</tr>
</tbody>
</table>
Chance constrained distribution system scheduling: DR uncertainty

The graph shows the distribution of percentage of load reduction for different income and household categories. Each category is represented by a different color:
- Blue: High-income, 1-2 Occupants, No Child, E21 3pm - 4pm
- Orange: High-income, 3-5 Occupants, Have Child, E21 3pm - 4pm
- Yellow: Low-income, 1-2 Occupants, No Child, E21 3pm - 4pm
- Purple: High-income, 3-5 Occupants, Have Child, E26 3pm - 4pm
- Green: Medium-income, 1-2 Occupants, No Child, E26 3pm - 4pm
- Cyan: All Group
Operational scheduling: DR and PV uncertainty

\[P(\tilde{P}_{M,t} \leq \text{Compensated Power from Transmission System Threshold}) \geq 95\% \]

Socially-aware aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Compensated Power Threshold (kW)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20%</td>
<td>23%</td>
</tr>
<tr>
<td>200</td>
<td>29%</td>
<td>33%</td>
</tr>
<tr>
<td>300</td>
<td>66%</td>
<td>76%</td>
</tr>
<tr>
<td>400</td>
<td>82%</td>
<td>95%</td>
</tr>
<tr>
<td>500</td>
<td>84%</td>
<td>97%</td>
</tr>
<tr>
<td>600</td>
<td>84%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Indiscriminate aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Compensated Power Threshold (kW)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15%</td>
<td>17%</td>
</tr>
<tr>
<td>200</td>
<td>20%</td>
<td>23%</td>
</tr>
<tr>
<td>300</td>
<td>24%</td>
<td>28%</td>
</tr>
<tr>
<td>400</td>
<td>31%</td>
<td>36%</td>
</tr>
<tr>
<td>500</td>
<td>36%</td>
<td>42%</td>
</tr>
<tr>
<td>600</td>
<td>41%</td>
<td>47%</td>
</tr>
</tbody>
</table>
Operational scheduling: DR and PV uncertainty

\[P(\tilde{P}_{M,t} \leq 300) \geq \text{Probability of violation}\% \]

Socially-aware aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Probability of violation (ε) (%)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32%</td>
<td>37%</td>
</tr>
<tr>
<td>3</td>
<td>36%</td>
<td>42%</td>
</tr>
<tr>
<td>5</td>
<td>66%</td>
<td>76%</td>
</tr>
<tr>
<td>7</td>
<td>68%</td>
<td>79%</td>
</tr>
<tr>
<td>9</td>
<td>71%</td>
<td>82%</td>
</tr>
<tr>
<td>11</td>
<td>73%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Indiscriminate aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Probability of violation (ε) (%)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16%</td>
<td>18%</td>
</tr>
<tr>
<td>3</td>
<td>19%</td>
<td>22%</td>
</tr>
<tr>
<td>5</td>
<td>24%</td>
<td>28%</td>
</tr>
<tr>
<td>7</td>
<td>27%</td>
<td>31%</td>
</tr>
<tr>
<td>9</td>
<td>30%</td>
<td>35%</td>
</tr>
<tr>
<td>11</td>
<td>31%</td>
<td>36%</td>
</tr>
</tbody>
</table>
Chance constrained distribution system scheduling: DR uncertainty

- IEEE 33-bus system
- 9 solar PV units: various types of active and reactive power controllability settings
- No PV uncertainty
- Demographically diverse prosumers:

<table>
<thead>
<tr>
<th>No. of Prosumers Groups</th>
<th>No. of Occupants</th>
<th>Income Level</th>
<th>Child</th>
<th>Average demand response (%)</th>
<th>Corresponding Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1-2</td>
<td>High</td>
<td>No</td>
<td>22.55</td>
<td>5.28</td>
</tr>
<tr>
<td>5</td>
<td>3-5</td>
<td>High</td>
<td>Yes</td>
<td>28.49</td>
<td>4.72</td>
</tr>
<tr>
<td>4</td>
<td>1-2</td>
<td>Low</td>
<td>No</td>
<td>11.34</td>
<td>7.26</td>
</tr>
<tr>
<td>4</td>
<td>3-5</td>
<td>High</td>
<td>Yes</td>
<td>3.92</td>
<td>6.81</td>
</tr>
<tr>
<td>1</td>
<td>1-2</td>
<td>Medium</td>
<td>No</td>
<td>0.99</td>
<td>8.12</td>
</tr>
</tbody>
</table>
Operational scheduling: DR uncertainty

\[
P(\tilde{P}_{M,t} \leq \text{Compensated Power from Transmission System Threshold}) \geq 95%
\]

Socially-aware aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Compensated Power Threshold (kW)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26%</td>
<td>30%</td>
</tr>
<tr>
<td>200</td>
<td>36%</td>
<td>42%</td>
</tr>
<tr>
<td>300</td>
<td>83%</td>
<td>96%</td>
</tr>
<tr>
<td>400</td>
<td>84%</td>
<td>97%</td>
</tr>
<tr>
<td>500</td>
<td>84%</td>
<td>97%</td>
</tr>
<tr>
<td>600</td>
<td>84%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Indiscriminate aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Compensated Power Threshold (kW)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20%</td>
<td>23%</td>
</tr>
<tr>
<td>200</td>
<td>27%</td>
<td>31%</td>
</tr>
<tr>
<td>300</td>
<td>32%</td>
<td>37%</td>
</tr>
<tr>
<td>400</td>
<td>37%</td>
<td>43%</td>
</tr>
<tr>
<td>500</td>
<td>42%</td>
<td>48%</td>
</tr>
<tr>
<td>600</td>
<td>45%</td>
<td>52%</td>
</tr>
</tbody>
</table>
Operational scheduling: DR uncertainty

\[P(\tilde{P}_{M,t} \leq 300) \geq (1 - \varepsilon)\% \]

Socially-aware aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Probability of violation ((\varepsilon)) (%)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70%</td>
<td>81%</td>
</tr>
<tr>
<td>3</td>
<td>72%</td>
<td>83%</td>
</tr>
<tr>
<td>5</td>
<td>83%</td>
<td>96%</td>
</tr>
<tr>
<td>7</td>
<td>84%</td>
<td>97%</td>
</tr>
<tr>
<td>9</td>
<td>84%</td>
<td>97%</td>
</tr>
<tr>
<td>11</td>
<td>84%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Indiscriminate aggregation, prediction, and uncertainty modeling

<table>
<thead>
<tr>
<th>Probability of violation ((\varepsilon)) (%)</th>
<th>Proportion of dispatched active power of DERs (%)</th>
<th>Proportion of dispatched reactive power of DERs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27%</td>
<td>31%</td>
</tr>
<tr>
<td>3</td>
<td>29%</td>
<td>33%</td>
</tr>
<tr>
<td>5</td>
<td>32%</td>
<td>37%</td>
</tr>
<tr>
<td>7</td>
<td>34%</td>
<td>39%</td>
</tr>
<tr>
<td>9</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>11</td>
<td>36%</td>
<td>42%</td>
</tr>
</tbody>
</table>
Conclusions

- With increasing penetration level of DERs, socially-aware engineering solutions can improve smart grid design and operations.

- Recent advancements in Artificial Intelligence empower characterizing prosumers’ behaviors to enable design of socially-aware engineering solutions without modeling the behavior itself.

- Advanced artificial intelligence (AI) algorithms, which account for demographic characteristics of prosumers, are required to enable accurate classification, aggregation, prediction, and uncertainty characterization of prosumers and their DERs.

- Risk-aware and socially-aware operational solutions can enable efficient utilization of DERs.
Key Notes

• In the era of energy democracy, it is critical to consider the interplay of social, behavioral, technological, and engineering aspects, while designing smart grid solutions.

• This is essential for the existing system to the transition period and to the future grid.
Research Questions

• How to design operational protocols to enable efficient use of DERs while accounting for risk?

• How can we aggregate prosumers in a way to enable efficient prediction and utilization of DERs?

• How will this help with the design of distribution markets?

• What is a good approach for risk-aware scheduling?
Questions?

Mojdeh Khorsand Hedman
(Mojdeh.Khorsand@asu.edu)