Reliability Metrics for Renewable Resources and Self-Reserves (M-33)

Summary
New reliability metrics are necessary to evaluate (a) the impact of non-dispatchable renewables on reserve requirements, and (b) future technologies that enable renewable resources to provide *self-reserves*. This project will develop improved stochastic models of renewables, techniques to determine the optimal level of self-reserve for these resources to provide, new reliability metrics to determine the impact on system reserve requirements, and quantify the value proposition of renewable self-reserve. The focus will be wind generation, but the work can be generalized to other uncertain resources.

Academic Team
- **Project Leader:** Kory Hedman (Arizona State Univ., kory.hedman@asu.edu)
- **Team members:** Junshan Zhang (Arizona State Univ., junshan.zhang@asu.edu); Shmuel Oren (Univ. of California, Berkeley, oren@ieor.berkeley.edu); Alberto Lamadrid (Lehigh Univ., allamadrid@lehigh.edu)

Industry Advisors
- Jim Price (CAISO); Bob Entriken (EPRI); Evangelos Farantatos (EPRI); Eamonn Lannoye (EPRI); Aidan Tuohy (EPRI); Erik Ela (EPRI); Khaled Bahei-eldin (GE); Nikhil Kumar (GE); Tongxin Zheng (ISONE); Dejan Sobajic (NYISO); Hong Chen (PJM)

Risk Assessment of Constraint Relaxation Practices (M-34)

Summary
System operators allow various constraints within market models to be relaxed, but correct the relaxations in operations. This proposed project is an extension of PSERC Project M-29. Its goal is to analyze the following concerns: 1) should we treat pre-contingency limit relaxations differently than post-contingency limit relaxations; 2) how does the duration of the violation impact reliability and what risk are we exposed to; 3) how should we incorporate probabilities of contingencies within this practice; 4) what is the impact on stability; and 5) how does this practice relate to a risk-based optimal power flow dispatch.

Academic Team
- **Project Leader:** Kory Hedman (Arizona State University, kory.hedman@asu.edu)
- **Team members:** Vijay Vittal (Arizona State University, vijay.vittal@asu.edu); James McCalley (Iowa State University, jdm@iastate.edu)

Industry Advisors
- Khosrow Moslehi (ABB); Chien-Ning Yu (ABB); David Gray (Alstom Grid); Xing Wang (Alstom Grid); Jim Price (CAISO); Bob Entriken (EPRI); Mahendra Patel (EPRI); Erik Ela (EPRI); Jinan Huang; (IREQ Hydro Quebec); Feng Zhao (ISO-NE); Yonghong Chen (MISO); Marissa Hummon (NREL); Muhammad Marwali (NYISO); Vikas Dawar (NYISO); Michael Swider (NYISO); Nivad Navid (PG&E); Alva Svoboda (PG&E); Hong Chen (PJM); Jay Liu (PJM); Juan Castaneda (SCE); Joseph Yan (SCE); Doug Bowman (SPP); Thomas Burns (SPP); Jay Caspary (SPP); Melanie Hill (SPP); Harvey Scribner (SPP)
Advanced Cyber-Physical Analysis for Smart Grid Distributed ICT and IED Resources at RTE France (S-63G)

Summary
The availability of a vast number of substation IEDs and distributed computational resources offers great potential for enhancing the smart grid. However, the distributed computing infrastructures in utilities today are nowhere near adequate to exploit this potential, being decades behind those in other industries. This project will lead to several technologies and tools, and analyze others, to help utilities and vendors to develop next-generation cyber-physical infrastructure using distributed ICT and IED resources. The problems addressed by this project, as well as the software released, will be widely applicable to utilities, ISOs, and vendors.

Academic Team
- **Project Leader:** Dave Bakken (Washington State Univ., bakken@wsu.edu)
- **Team members:** Anurag Srivastava (Washington State Univ.)

Industry Advisors
- Daniel Arjona (Idaho Power); Patrick Panciatici (RTE France); Juan Castaneda (SCE)

Monitoring and Maintaining Limits of Area Transfers with PMUs (S-64)

Summary
We will develop practical methods based on PMUs to detect and act on conditions in which transfer of power through areas of the power system should be curtailed to satisfy thermal line limits and small signal stability limits. Closed loop controls for robust stability will also be developed. The larger objective is to combine measurements with physical network models to turn PMU data into actionable advice for operators to improve the management of bulk power transfers and control instabilities.

Academic Team
- **Project Leader:** Ian Dobson (Iowa State Univ., dobson@iastate.edu)
 - **Team members:** Marija Ilic (Carnegie Mellon Univ., milic@ece.cmu.edu)

Industry Advisors
- Guru Pai (Alstom Grid); Anil Jampala (Alstom Grid); Baj Agrawal (APS); Giuseppe Stanciulescu (BC Hydro); Evangelos Farantatos (EPRI); Navin Bhatt (EPRI); Mahendra Patel (EPRI); Dave Schooley (Exelon/ComEd); Alan Engelmann (Exelon/ComEd); Santosh Veda (GE Global Research); Naresh Acharya (GE Global Research); Chaitanya Baone (GE Global Research); Orlando Ciniglio (Idaho Power); Milorad Papic (Idaho Power); Slava Maslennikov (ISONE); Ed Muljadi (NREL); Saman Babaie (NYPA); Paul Runana (WAPA)

Real Time Synchrophasor Measurements Based Voltage Stability Monitoring and Control (S-65)

Summary
This project’s objective is improve situational awareness of the power grid by assessing the short-term and long-term voltage stability in real-time using synchrophasor measurements. We have developed a systematic PMU measurement-based model free approach for short-term voltage stability assessment which will be tested on a real system (~ 10,000 buses). A computationally efficient, long-term voltage stability assessment approach will be developed that uses PMU data and local network information to calculate voltage stability indices at all load buses in real time. These algorithms will be integrated and implemented on a real time test bed.

Academic Team
- **Project Leader:** Venkataramana Ajjarapu (Iowa State Univ., vajjarap@iastate.edu)
 - **Team members:** Umesh Vaidyam (Iowa State Univ., ugvaidya@iastate.edu); Chen-Ching Liu (Washington State Univ., liu@eecs.wsu.edu)

Industry Advisors
- Reynaldo Nuqui (ABB); Prasant Kansal (AEP); Jay Giri (Alstom Grid); Aftab Alam (CAISO); Navin Bhatt (EPRI); Evangelos Farantatos (EPRI); Mahendra Patel (EPRI); Erik Eia (EPRI); Alan Engelmann (Exelon/ComEd); David Schooley (Exelon/ComEd); Robert Daquila (GE Energy Management); Liang Min (LLNL); Eduard Muljadi (NREL); George Stefopoulos (NYPAL); Jianzhong Tong (PJM); Juan Castaneda (SCE)
Representation, Modeling, Data Development and Maintenance of Appropriate Protective Relaying Functions in Large Scale Transient Stability Simulations (S-66)

Summary

Questions have been raised about the appropriate representation of the relaying function in planning and operating studies. This project aims to systematically examine and identify the appropriate relaying functions that are critical for transient stability. The project will (1) develop systematic techniques to represent the relaying functions, and develop settings, (2) identify steps for maintaining data accuracy of data and for updating data as the system evolves, and (3) develop a systematic framework to ascertain the viability and accuracy of representing critical protection functions in commercial transient stability packages.

<table>
<thead>
<tr>
<th>Academic Team</th>
<th>Project Leader: Vijay Vittal (Arizona State University, vijay.vittal@asu.edu)</th>
<th>Team members: Anjan Bose (Washington State University, bose@wsu.edu); Saeed Lotififard (Washington State University, s.lotififard@wsu.edu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Advisors</td>
<td>Jay Giri (Alstom Grid); Rene Rosales (Alstom Grid); Daniel Houghton (APS); Brant Werts (Duke Energy); Mahendra Patel (EPRI); Anish Gaikwad (EPRI); Evangelos Farantatos (EPRI); Sean McGuinness (EPRI); Alan Engelmann (Exelon/ComEd); Mike Koly (Exelon/PECO); Jianzhong Tong (PJM); Bruce Fardanesh (NYPA); Brian Keel (SRP)</td>
<td></td>
</tr>
</tbody>
</table>

RTE DSE-Protection Demonstration (T-59G)

Summary

Georgia Tech and EPRI have been developing the Dynamic State Estimation based protection method (a.k.a. setting-less protection). This technology has been demonstrated in the laboratory and also a demonstration project with NYPA under NYSERDA sponsorship is in progress. The objective of the proposed project is to demonstrate the technology on the digital substation that RTE is developing. A DSE based relay will be developed for the protection of RTE’s digital substation, factory tested at the Georgia Tech laboratory and it will be installed on RTE’s digital substation.

<table>
<thead>
<tr>
<th>Academic Team</th>
<th>Project Leader: Sakis Meliopoulos (Georgia Institute of Technology, sakis.m@gatech.edu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Advisors</td>
<td>Patrick Panciatici, Thibault Prevost, Volker Leitloff, Aurelien Watare, Christian Guibout, RTE</td>
</tr>
</tbody>
</table>
Projects Ending in 2018

PSERC Projects Ending in 2018

Robust and Decentralized Operations for Managing Renewable Generation and Demand Response in Large-Scale Distribution Systems (M-35)

Summary
The distribution system is becoming more complex and active. Distribution system operators may face a portfolio of an extremely large number of devices including distributed generators (DG), demand response (DR) resources, storage devices, and emerging proactive customers with various resources (electric vehicles, smart appliances, rooftop PVs, TCLs). Many of these devices may exhibit stochastic supply or consumption patterns. A portfolio of these devices can significantly increase the flexibility of the distribution system for system balancing and congestion management. The goal of this project is to develop new operational models and algorithms to efficiently operate such a large portfolio of controllable but uncertain resources in an active distribution system with the aim to increase flexibility and reliability of both distribution and transmission systems. The proposed models will provide the industry with computational tools to manage various types of uncertainties through robust optimization techniques and a mixture of centralized and decentralized control schemes in order to improve scalability of the operational algorithms. The project will also explore efficient solution methods for incorporating unbalanced multi-phase power flow models in the proposed scheduling algorithms in order to accurately model the distribution system.

Academic Team
Project Leader: Andy Sun (Georgia Tech, andy.sun@isye.gatech.edu, 404-385-7574)
Team member: Duncan Callaway (U.C. Berkeley, dcal@berkeley.edu)

Industry Advisors
Mirrasoul J. Mousavi (ABB); Curtis Roe (ATC); Jim Price (CAISO); Jens Boemer (EPRI), Erik Ela (EPRI), Evangelos Farantatos (EPRI); Lei Fan (GE Energy Consulting, lei.fan@ge.com); Masoud Abbasszadeh (GE Global Research), Bahman Darynian (GE Global Research), Santosh Veda (GE Global Research); Ying Xiao (GE Grid Software Solutions - previously Alstom Grid); Xing Wang (GE Grid Software Solutions - previously Alston Grid); Tongxin Zheng (ISO NE); Eduard Muljadi (NREL); Hong Chen (PJM)

Analysis of Power System Operational Uncertainty from Gas System Dependence (M-36)

Summary
The heavier reliance on natural gas for electricity generation raises increasing power system security concerns because gas-fueled generators may be subject to gas supply shortages and/or high spot market prices. While under FERC directives the industry has undertaken appropriate steps to better align the gas supply plans with the forecast electricity loads, the gas supply issue has become a challenging uncertainty that must be considered explicitly in power system operations. The goals of this project are to analyze the impacts of the uncertainty created by gas supply vulnerabilities and to assess the risks that emanate from the unit commitment/dispatch schedules. The interpretation of the analysis and the risk assessment results with intuitively meaningful presentation of the information will allow the formulation of appropriate strategies to address the issues associated with the gas supply/cost uncertainty. Study of the impacts of the gas uncertainty on the grid operational flexibility (GOF) for systems with deep penetration of renewable resources will allow a practical assessment of the extent of GOF change due to gas shortage issues and the identification of GOF shortfalls that can result in power system insecurity.

Academic Team
Project Leader: Sarah Ryan (Iowa State University, smryan@iastate.edu, 515-294-4347)
Team Member: George Gross (University of Illinois at Urbana-Champaign, gross@illinois.edu)

Industry Advisors
Mirrasoul J. Mousavi (ABB); Floyd Galvan (Entergy); Mahesh Morjaria (First Solar); Lei Fan (GE Energy Consulting); Devin Van Zandt (GE Energy Consulting); Orlando Ciniglio (Idaho Power); Tongxin Zheng (ISO-NE); Mark Westendorf (MISO); Ben Kroposki (NREL); Muhammad Marwali (NYISO); Gary Helm (PJM); Jianzhong Tong (PJM); Jay Caspary (SPP); Yohan Sutjandra (The Energy Authority)
Leveraging Conservation Voltage Reduction for Energy Efficiency, Demand Side Control and Voltage Stability Enhancement in Integrated Transmission and Distribution Systems (S 70)

<table>
<thead>
<tr>
<th>Summary</th>
<th>We propose a comprehensive framework that assesses energy saving, demand reduction and stability enhancement potential of conservation voltage reduction (CVR). A new algorithm based on load modeling is developed to assess real-time real/reactive load-reduction effects of CVR. A co-simulation framework for transmission and distribution systems is proposed to investigate the impacts of CVR on voltage stability margins of transmission systems. The identified time-varying load models are integrated into the co-simulation framework to capture CVR effects. The coordination between energy-oriented and stability-oriented CVR will be studied. The mutual impacts between voltage reduction and voltage control of DGs will also be investigated. The combination of these approaches will assist utilities to select feeders to implement voltage reduction, perform cost/benefit analyses, reduce the stress of transmission systems, and improve the operation of integrated transmission and distribution systems.</th>
</tr>
</thead>
</table>
| Academic Team | Project Leader: Zhaoyu Wang (Iowa State University, wzy@iastate.edu, 515-294-6305)
Team members: Hao Zhu (University of Illinois, haozhu@illinois.edu)
Venkataramana Ajjarapu (Iowa State University, vajjarap@iastate.edu) |
| Industry Advisors | Xiaoming Feng (ABB); Baj Agrawal (APS); Farantatos Evangelos (EPRI); Chaitanya Baone (GE Energy Consulting); Suresh Gautam (GE Energy Consulting); Santosh Veda (GE Energy Consulting); Liang Min (LLNL); Edin Habibovic (MISO); Eduard Muljadi (NREL); Cuong Nguyen (NYISO); George Stefopoulos (NYP); Jianzhong Tong (PJ) |

Real-time Synchrophasor Data Quality Analysis and Improvement (S-71)

<table>
<thead>
<tr>
<th>Summary</th>
<th>This project aims at developing strategies for real-time data quality management of streaming PMU data. With the recent impetus towards design and adoption of synchrophasor-based applications in the power industry, there is an urgent need to develop online techniques for detecting, analyzing, and mitigating bad as well as missing data in real-time streams. In this project, we will build a systematic online framework for identifying and handling typical data quality issues such as clock errors, transducer errors and network delays. Based on the synchrophasor data's spatio-temporal correlations, the proposed approach is capable of identifying bad data during both normal and fault-on conditions. Real-world synchrophasor data as well as synthetic dynamic grid models will be used to differentiate the root causes of data quality issues and to validate the proposed strategies.</th>
</tr>
</thead>
</table>
| Academic Team | Project Leader: Le Xie (Texas A&M, le.xie@tamu.edu, 979-845-7563)
Team members: P. R. Kumar (Texas A&M, prk@tamu.edu)
Mani Venkatasubramanian (Washington State, mani@eeecs.wsu.edu) |
| Industry Advisors | Xiaoming Feng (ABB); Prashant Kansal (AEP); Giuseppe Stanciulescu (BC Hydro); Aftab Alam (California ISO); Alan Engelmann (ComEd); Floyd Galvan (Entergy), Jay Ramamurthy (Entergy); Mahendra Patel (EPRI), Paul Myrda (EPRI); Chaitanya A. Baone (GE Global Research); Santosh Veda (GE Global Research); Gurudatha Pai (GE Grid Software Solutions - formerly Alstom Grid); Vijay Sukhavasi (GE Grid Software Solutions - formerly Alstom Grid); Frankie Zhang (ISO New England); Liang Min (LLNL); Yingchen Zhang (NREL); Naim Logic (SRP); Jay Caspary (SPP); Harvey Scribner (SPP) |
Attack-Resilient and Secure EMS: Design, Algorithms, Operational Protocols, and Evaluation (S-72)

<table>
<thead>
<tr>
<th>Summary</th>
<th>The modern electric grid is a highly automated cyber-physical system (CPS) and is increasingly dependent on cyber-based automation systems for various monitoring, control, protection, and market functions. The DOE, DHS, and NERC have identified concerns that the grid is vulnerable to sophisticated coordinated cyber-attacks. This leads to the following fundamental question: can reasonably realistic (i.e., attackers with limited capabilities) cyber-attacks be modeled and tested on electric power system (EPS) simulation platforms to: (a) evaluate attack severity and consequences and (b) evaluate resiliency of energy management systems (EMSs) to such attacks? The goal of the proposed research is three-fold: (i) identify credible threats and develop attack-resilient control algorithms (countermeasures) that can be modularly integrated into energy management systems (EMSs); (ii) develop a realistic software-hardware simulation testbed comprised of EMS software platform (ASU) and a hardware SCADA system in conjunction with a power system simulator (ISU); and (iii) use the integrated software-hardware testbed to evaluate credible threats and countermeasures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Team</td>
<td>Project Leader: Lalitha Sankar (Arizona State University, lsankar@asu.edu, 480-965-4953) Team Members: Manimaran Govindarasu (Iowa State University, gmani@iastate.edu); Oliver Kosut (Arizona State University, okosut@asu.edu)</td>
</tr>
<tr>
<td>Industry Advisors</td>
<td>Reynaldo Nuqui (ABB); Evangelos Farantatos (EPRI); Galen Rasche (EPRI); Jay Giri (GE Grid Software Solutions - formerly Alstom Grid); Sharon Xia (GE Grid Software Solutions - formerly Alstom Grid); Eugene Litvinov (ISO New England); Mark Westendorf (MISO); Benjamin Kropowski (NREL); Maurice Martin (NREL); Erfan Ibrahim (NREL); George Stefopoulos (NYPA); Harvey Scribner (SPP); Brandon Aguirre (Tri-State)</td>
</tr>
</tbody>
</table>

Functional assessment of DFIG and PMSG-based wind turbines for grid support applications (S-73G)

<table>
<thead>
<tr>
<th>Summary</th>
<th>The specific objectives of this project are to i) investigate the capability of doubly-fed induction generator (DFIG) and permanent-magnetic synchronous generator (PMSG)-based wind turbine systems to provide reactive power support at low wind speed and/or in cases of voltage drop, ii) develop new reactive power control techniques for wind turbines, iii) assess the suitability of using DFIGs to regulate frequency without energy storage systems, and iv) explore the possibility of DFIG inertia sustaining network voltage and frequency immediately following fault occurrence and before fault detection, in systems with low physical inertia and high wind penetration. Experiments will validate proposed theories.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Team</td>
<td>Project Leader: Zhaoyu Wang (Iowa State University, wzy@iastate.edu)</td>
</tr>
<tr>
<td>Industry Advisors</td>
<td>Thibault Prevost (RTE), Florent Xavier (RTE)</td>
</tr>
</tbody>
</table>
Efficient modeling of modular multilevel converters for fast simulation of large-scale MMC-HVDC embedded power systems (S-77G)

Summary
Voltage stability security is best ensured by complementing some form of system simulation with real-time measurements. Both approaches have their strong and weak points. For example, system simulations are able to predict the effects on voltage stability margin of contingencies while real-time-measurement-based Thévenin equivalents are not hampered by any erroneous data that may be part of the system model. Thévenin equivalent approaches however work well on small systems but fail on large systems. The objective of this proposal is to develop a set of theoretically-based rules for developing and using Thévenin-based equivalent approaches for estimating voltage stability margin on large systems and then demonstrate the effectiveness of these techniques on larger systems or understand their limitations. We also propose to develop a set of nonlinear equivalents, establish their properties and determine their fitness for use in measurement-based voltage-stability assessment approaches.

<table>
<thead>
<tr>
<th>Academic Team</th>
<th>Project Leader: Daniel Tylavsky (Arizona State University, tylavsky@asu.edu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Advisors</td>
<td>Di Shi, Zhiwei Wang, Jidong Chai, Xiaohu Zhang, Xi Chen, Zhe Yu, Wendong Zhu, Xinan Wang, Janet Zhang (GEIRI North America)</td>
</tr>
</tbody>
</table>

Improving Voltage Stability Margin Estimation through the use of HEM and PMU Data (S-78G)

Summary
Modular multilevel converters (MMCs) have become the most attractive multilevel converter topology for voltage-sourced converter high-voltage direct current (VSC-HVDC) transmission systems. The salient features of MMCs include: 1) modularity and scalability to meet any voltage level by stacking up additional numbers of SMs without increasing topology complexity, 2) inherent redundancy and fault-tolerance capability to improve reliability, 3) high efficiency suitable for high-power applications, and 4) high power quality and low filter and transformer cost due to filter-free and transformerless applications by realization of high-level converters. With the increasing number of MMCHVDC systems embedded into the AC grid, performance of the present power system can be dramatically improved, including stability, reliability, capacity, and efficiency. However, MMCs’ applications in power systems are restricted due to the challenge to efficiently and accurately model a variety of such power electronics-based components for large-scale power system analysis, modeling, and simulation. In this project, the PI proposes to investigate and develop new generalized high-efficiency modeling techniques, with covering various submodule (SM) circuits and MMC topologies, which can be used and integrated in electromagnetic transient (EMT) power system simulation software packages and real-time hardware-in-the-loop (HIL) simulation platforms for large-scale MMCs-embedded power system analysis and simulation.

<table>
<thead>
<tr>
<th>Academic Team</th>
<th>Project Leader: Jiangchao Qin (Arizona State University, jqin@asu.edu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Advisors</td>
<td>Di Shi, Xi Chen, Zhiwei Wang, Xi Chen (GEIRI North America)</td>
</tr>
</tbody>
</table>
Projects Ending in 2018

Life-cycle Management of Mission-Critical Systems through Certification, Commissioning, In-Service Maintenance, Remote Testing, and Risk Assessment (T-57HI)

Summary

The life-cycle management of mission critical systems requires tools and methodologies that are not readily available. For example, no standard tools for certification, commissioning, in-service maintenance, and risk assessment are available for synchrophasors used for Wide Area Protection, Monitoring and Control; and Special Protection Schemes. This project will deliver such tools for:

- Device and system testing of synchrophasor systems, substation measurement equipment, etc.
- Calibration and field testing equipment for in-service maintenance
- Remote testing and detection of device failures and data management architecture problems
- Visualization to track the state of mission-critical systems and to help with maintenance and repair.

Academic Team

Project Leader: Mladen Kezunovic (Texas A&M University, kezunov@ece.tamu.edu)

Team Members: Sakis Meliopoulos (Georgia Institute of Technology, sakis.m@gatech.edu); Thomas Overbye (University of Illinois-Urbana Champaign, overbye@illinois.edu); David Bakken (Washington State University, bakken@wsu.edu); Anurag Srivastava (Washington State University, asrivast@eecs.wsu.edu)

Industry Advisors

Jay Giri (Alstom Grid); Don Sevcik (CenterPoint); Floyd Galvan (Entergy); Angela Nelson (Entergy); Lisa Beard (Entergy); Alberto Del Rosso (EPRI); Paul Mydra (EPRI); Evangelos Farantatos (EPRI); Orlando Cingilio (Idaho Power); Eugene Litvinov (ISO-NE); Tongxin Zheng (ISO-NE); Mark Westendorf (MISO); Kevin Frankeny (MISO); Michael Swider (NYISO); Ed Cano (NYISO); Muhammad Marwali (NYISO); Rana Mukerji (NYISO); Bruce Fardanesh (NYP); Saman Babei (NYP); George Stefopoulos (NYP); Jianzhong Tong (PJM); Mark Laufenberg (PowerWorld); Patrick Panciatici (RTF France); Juan Castaneda (SCE)

Power Electronics to Improve the Performance of Modern Power Systems: Case Study on Partially Rated Solid-State Transformers (T-58)

Summary

As the power industry prepares to update distribution and transmission assets that are reaching the end of their lifetime, it is prudent to consider alternatives and likely new applications enabled by technological advances. Among these technologies are power electronics solutions, especially in the light of recent and/or potential advances in technology and material science (e.g., the advent of wide bandgap devices). We propose a two-pronged research effort: (i) an explorative study on the requirements of power electronics (e.g., ratings, basic impulse level, lifetime, and maintenance) and necessary improvements in this technology to enable its use in power systems and (ii) an application design study of partially rated power electronics-enabled transformers for truck-mounted and load tap changer applications.

Academic Team

Project Leader: Ali Mehrizi-Sani (Washington State University, mehrizi@eecs.wsu.edu, (509) 335-6249)

Team members: Gerald Heydt (Arizona State University, heydt@asu.edu, (480) 965-8307); Maryam Saeedifard (Georgia Tech, maryam@ece.gatech.edu, (404) 894-4834)

Industry Advisors

Xiaoming Feng (ABB); Reynaldo Nuqui (ABB); Bob Malek (AEP); Giuseppe Stanciulescu (BC Hydro); Anders Johnson (BPA); Terry Oliver (BPA); Ziliyan Zhang (BPA); Alan Engelman (ComEd-Exelon); Matt Gardner (Dominion Virginia Power); Chetan Mishra (Dominion Virginia Power); Venkat Sharma Kolluri (Entergy); Ram Adapa (EPRI); Miao lei Shao (GE Energy Consulting); Kathleen O’Brien (GE Global Research); Neil Kirby (GE Grid Software Solutions-formerly ALSTOM Grid); Deepak Konka (GE Grid Software Solutions-formerly ALSTOM Grid); Daniel Arjona (Idaho Power); Orlando Cingilio (Idaho Power); Dale Osborn (MISO); Sudipta Chakraborty (NREL); Vahan Gevorgian (NREL); Eduard Muljadi (NREL); Saman Babaei (NYP); Alan Ettinger (NYP); Joe Schatz (Southern Co.); Jay Caspary (SPP); Harvey Scribner (SPP); Naim Logic (SRP); Shaun Mann (Tri-State)
PS ERC Projects Ending in 2019

Development of Expansion Planning Methods and Tools for Handling Uncertainty (M-37)

<table>
<thead>
<tr>
<th>Summary</th>
<th>Appropriately addressing uncertainty has been recognized as a major challenge for generation and transmission planning. Most existing planning models and tools become computationally intractable when considering a large number of scenarios; however, a small set of scenarios often fail to include the low probability and high impact ones that are critical to ensure the resiliency of the transmission network. We propose to develop a new method for generating a small number of high quality scenarios to help existing expansion planning models and tools to produce more resilient solutions. The effectiveness of the new method will be validated using existing planning tools on realistic case studies.</th>
</tr>
</thead>
</table>
| Academic Team | Project Leader: Lizhi Wang (Iowa State University, lzwang@iastate.edu)
Team Members: James McCalley (Iowa State University, jdm@iastate.edu)
Christopher DeMarco (University of Wisconsin–Madison, cdemarco@wisc.edu) |
| Industry Advisors | Jay Caspary (SPP); Harvey Scribner (SPP); Curtis Roe (ATC); Anish Gaikwad (EPRI); Mark Westendorf (MISO); Aditya JayamPrabhakar (MISO); Lei Fan (GE); Saman Babaie (NYP); Gary Gu (GE); Keel Brian (SRP); Sakshi Mishra (AEP); Jim Price (CAISO); Matthew Ellis (MISO); Orlando Ciniglio (Idaho Power); Aaron Bloom (NREL); Rebecca Johnson (WAPA); Sara Daubenberger (BPA) |

Coordination Mechanisms for Seamless Operation of Interconnected Power Systems (M-38)

<table>
<thead>
<tr>
<th>Summary</th>
<th>Concerted coordination among grid operators (GOs) such as ISOs/RTOs/PMAs in an interconnected power system is imperative to fully exploit the spatial and temporal diversity of renewable wind and solar resources, as well as other grid resources. An effective coordination mechanism needs to respect practical limitations on information exchange, be harmonized with existing market structures that GOs operate and/or facilitate within the areas they control, and be able to explicitly incorporate the impacts of uncertainty under deepening penetration of renewable resources. This project broadly aims to design and analyze the performance of such coordination mechanisms and to construct a unified framework to quantify their benefits. In addition, we adapt the proposed mechanisms in the bulk power systems to coordinate among neighboring microgrids in the emergent distribution network market environment.</th>
</tr>
</thead>
</table>
| Academic Team | Project Leader: Subhonmesh Bose (UIUC, bose@illinois.edu)
Team Members: Lang Tong (Cornell, ltong@ece.cornell.edu); George Gross (UIUC, gross@illinois.edu) |
| Industry Advisors | Jim Price (CAISO); Harvey Scribner (SPP); Yohan Sutjandra (TEA); M. Gary Helm (PJM); Jianzhong Tong (PJM); Mirrasoul J. Mousavi (ABB); Khosrow Moslehi (ABB); Feng Zhao (ISO-NE) |
Synchrophasor – Data Analytics for a More Resilient Electric Power System (S-74)

Summary	The aim of this proposal is to develop wide area measurement systems (WAMS)-based tools and algorithms for monitoring, protection, and control of the electric power system. The specific topics of focus are: faster islanding detection schemes and online asset health monitoring (monitoring application); combating cyber-attacks by developing data analytics algorithms that enhance system resiliency (protection application); increasing situational awareness when system has large penetration of renewable generation (control application). Synthetic-generated simulated data will be used to test the tools while synchrophasor data obtained from the field will be used to validate the tool's performance for real-world applications.
Academic Team	Project Leader: Anamitra Pal (Arizona State University, Anamitra.Pal@asu.edu), Christopher DeMarco (University of Wisconsin-Madison, cdemarco@wisc.edu)
Industry Advisors	Alan Engelmann (ComED), Blake Buescher (MISO), Zhongyu Wu (MISO), Di Shi (GEIRI North America), Jay Giri (GE Energy), Reynaldo Nuqui (ABB), Evangelos Farantatos (EPRI), Mahendra Patel (EPRI), Dejan Sobajic (NYISO), Curtis Roe (ATC), Emanuel Bernabeu (PJM), Jianzhong Tong (PJM), George Stefopoulos (NYPA), Gordon Matthews (BPA), Qiang Zhang (ISONE)

Reliability Evaluation of Renewable Generation Integrated Power Grid including Adequacy and Dynamic Security Assessment (S-75)

| Summary | Probabilistic methodologies are needed for reliability assurance in the emerging power grids with increasing penetration of renewable resources. Most of the probabilistic methodologies have focused on the adequacy issues. Some work has also been done on the probabilistic stability including, small signal and transient stability. The objective of this proposal is to integrate reliability into a single frame work including adequacy and transient stability evaluation and develop computationally tractable methods to achieve this objective. |
| Academic Team | Project Leader: Chanan Singh (TAMU, sing@ece.tamu.edu) |
| Team Member: Vijay Vittal (ASU, vijay.vittal@asu.edu) |
| Industry Advisors | Orlando Ciniglio, (Idaho Power Company); Bajarang Agrawal, (Arizona Public Service); Sharma Kolluri, (Entergy); Evangelos Farantatos, Anish Gaikwad, (EPRI); Alan Engelmann, (Exelon); Feng Zhao, (ISO-NE); Mark Westendorf, (MISO) |
Modeling, Control, and Protection of Multi-Terminal Direct-Current Transmission for Improving Power Grid’s Performance (S-76)

Summary
High Voltage DC (HVDC) transmission is a long-standing technology with many installations around the world. Over the past few years, significant breakthroughs in the Voltage-Sourced Converter (VSC) technology along with their attractive features have made the HVDC technology even more promising in providing enhanced reliability, functionality, reducing cost, and power losses. Concomitantly, significant changes in generation, transmission, and loads such as (i) integration and tapping renewable energy generation in remote areas, (ii) need for relocation or bypassing older conventional and/or nuclear power plants, (iii) increasing transmission capacity, and (iv) urbanization and the need to feed the large cities have emerged. These new trends have called for Multi-Terminal DC (MTDC) systems, which when embedded inside the AC grid, can enhance stability, reliability, and efficiency of the present power grid. Amid the optimism surrounding the MTDC grids, the following fundamental research questions must be addressed. First, what control strategies are required to operate the MTDC converter stations? Secondly, how will the MTDC grid interact with its surrounding AC system and what kind of services (e.g., frequency support and power oscillation damping) can it provide? Thirdly, how would a converter station outage impact the operation/stability of the system? Lastly, how can DC faults be detected, identified, and cleared? To this end, a multi-pronged research effort is proposed: (i) to development of suitable dynamic models of the MTDC systems which can be efficiently solved together with the AC systems; (ii) design of advanced control strategies enabling the MTDC systems to support the resulting hybrid AC/DC systems; and (iii) development of strategies for DC fault detection, identification, and protection of MTDC systems.

Academic Team
Project Leader: Maryam Saeedifard (Georgia Tech, maryam@ece.gatech.edu)
Team Members: Ali Mehrizi-Sani (Washington State University, mehrizi@eecs.wsu.edu), Jiangchao Quin (Arizona State University, jqin@asu.edu)

Industry Advisors
Rambabu Adapa (EPRI), Neil Kirby (GE Energy Connections), Harvey Scribner (SPP), Reynaldo Nuqui (ABB), Innocent Kamwa (Institut de Recherche d'Hydro-Québec), Saman Babaei (NYPA), Alan Ettlinger (NYPA), Brian Johnson (NREL), Eduard Muljadi (NREL), Di Shi (Global Energy Interconnection Research Institute North America), Mirrasoul Mousavi (ABB), Jiuping Pan (ABB)

Assessing the Reliability of Power Grid with Flexible Demand Response and other Disrupting Factors (S-80G)

Summary
Probabilistic methodologies are needed for reliability assurance in the emerging power grids with increasing penetration of renewable resources and enhanced information technologies providing two way communications with the loads. Most of the probabilistic methodologies for assuring reliability have focused on the generation side. Some work has also been done on the demand side but it is based mostly on deterministically shaving the peak or other portions of the load. This research will focus on understanding the fundamental issues involved in the use of responsive demand to improve reliability and reduce the reserve as well the storage in the presence of variable energy sources. More realistic models of contingency responsive demand and generation will be developed.

Academic Team
Project Leader: Chanan Singh (TAMU, singh@ece.tamu.edu, 979-845-7589)
Team members: Le Xie (TAMU, le.xie@tamu.edu, 979-845-7563)

Industry Team
Dr. Di Shi (di.shi@geirina.net, GEIRI North America Inc.)
Oscillation Monitoring and Control of the RTE Power System Using Synchrophasors (S-81G)

Summary
Recent advances in design of fast oscillation monitoring algorithms have paved the way for real-time detection and analysis of electromechanical oscillations from wide-area synchrophasor measurements in large power interconnections. The oscillations if left unmitigated can lead to unwanted tripping of transmission lines and generators that could cascade into devastating blackouts. Oscillation monitoring algorithms developed at Washington State University have previously been implemented and tested in North American power grid and in India. In this project, we will study oscillation phenomena in the RTE portion of the European power grid by using available synchrophasor data. Suitability of ambient versus ringdown analysis algorithms for analyzing recent oscillation events in RTE will be investigated. Oscillation analysis results using transmission level PMUs will be compared with corresponding results using distribution level Phasor Measurement Units (PMUs). The effectiveness of the oscillation algorithms will be tested and improved by using simulated PMU data from dynamic models of the RTE system wherein the expected answers are known from small-signal analysis of the dynamic models. New oscillation analysis and control algorithms will be developed in the project as needed in collaboration with RTE to address the oscillation issues in RTE.

Academic Team
Project Leader: Vaithianathan (Mani) Venkatasubramanian (Washington State University, mani@eecs.wsu.edu, 509-335-6452)

Industry Team
Patrick Panciatici (RTE, patrick.panciatici@rte-france.com), Florent Xavier (RTE, florent.xavier@rte-france.com), Thibault Prevost (RTE, thibault.prevost@rte-france.com)

Framework to Analyze Interactions between Transmission and Distribution (T&D) Systems with High Distributed Energy Resource (DER) Penetrations (T-60)

Summary
This project aims at developing an integrated T&D system analysis framework to study and mitigate the impacts of high penetrations of DERs. A coupled T&D analysis framework is developed through co-simulation approach. The framework utilizes legacy software to separately solve the decoupled models. The T&D interactions are captured by exchanging network solutions at the point of common coupling (PCC). The co-simulation approach adds modularity to the analysis and helps in achieving speed and scalability. The framework is utilized to understand and mitigate the impacts of high DER penetrations. Power quality issues which are otherwise difficult to model are studied, and mitigation schemes are proposed. Finally, the utility of DERs as an active participant in system operations is explored.

Academic Team
Project Leader: Anamika Dubey (Washington State University, anamika.dubey@wsu.edu)
Team Member: P.K. Sen, (Colorado School of Mines, psen@mines.edu)

Industry Advisors
Lei Fan (GE Energy); S. Kolluri (Entergy); Aftab Alam (CAISO); Bill Middaugh, Chris Pink (Tri-State G&T); Fei Ding, B Palmintier, Murali Baggu, Ben Kroposki, Santosh Veda (NREL); Jens Boemer, Evangelos Farantatos (EPRI); Dan Hamai (WAPA); Francisco G Velez-Cedeno (Virginia Power); Di Shi, Xi Chen (GEIRI); Orlando Ciniglio (Idaho Power)
PSERC Pending Final Projects

New Operation Tools for Improving Flexibility and Reliability of Systems with Variable Resources and Storage Devices (M-32)

Summary

This project explores new operational tools to improve system flexibility and reliability in systems with variable resources and storage. The new dispatch models will integrate storage devices of various types (e.g., distributed batteries, pumped hydro etc.) as well as flexible demand control, and assess their impact on system flexibility. The SPP 2020 planning study model (with 16,000 buses, 90 GW wind capacity) will provide a simulation platform for realistic evaluation of the proposed models in real-world, large-scale systems.

Academic Team

- **Project Leader:** Andy Sun (Georgia Tech, andy.sun@isye.gatech.edu)
- **Team Members:** Le Xie (Texas A&M, lxie@ece.tamu.edu); Sakis Meliopoulos (Georgia Tech, sakis.m@gatech.edu)

Industry Advisors

- Feng Gao (ABB-Ventyx);
- Prashant Kansal (AEP);
- Zhenhua Wang (AEP);
- Xing Wang (Alstom Grid);
- Aftab Alam (CAISO);
- Jim Price (CAISO);
- Robert Entriken (EPRI);
- Evangelos Farantatos (EPRI);
- Eamonn Lannoye (EPRI);
- Nikhil Kumar (GE Energy Management);
- Eugene Litvinov (ISONE);
- Tongxin Zheng (ISONE);
- Li Zhang (MISO);
- Hong Chen (PJM);
- Harvey Scribner (SPP);
- Phil Markham (Southern Company)

Hybrid Time Domain Simulation: Application to Fault Induced Delayed Voltage Recovery (S-58)

Arizona State University, Part I: Published Here, Georgia Tech, Part II: Pending

Summary

This project develops an approach for hybrid time domain simulation that represents desired portions of the system in variable detail and that can analyze phenomena requiring attention to unbalance in phases, unsymmetrical faults, and devices represented on a single phase basis. The proposed method is applicable to a number of problems, such as Geomagnetically Induced Currents, HV ACDC systems, and inverter interfaced generation. The hybrid simulation will be demonstrated in a study of Fault Induced Delayed Voltage Recovery phenomena. More generally, it enables electromagnetic transient analysis at the required locations.

Academic Team

- **Project Leader:** Vijay Vittal (Arizona State Univ., vijay.vittal@asu.edu)
- **Team member:** Sakis Meliopoulos (Georgia Tech, sakis.m@gatech.edu)

Industry Advisors

- Bajarang Agrawal (APS);
- Evangelos Farantatos (EPRI);
- Anish Gaikwad (EPRI);
- Mahendra Patel (EPRI);
- Bruce Fardanesh (NYPa);
- Patrick Piciatici (RTE-France);
- Brian Keel (SRP);
- Juan Castaneda (SCE)