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Executive Summary 
 

Growing uncertainty in power systems, coupled with the introduction of power 
markets, calls for the development of new tools for planning, operations, and market-
based decision-making. This project explored methods for efficiently calculating 
available transfer capability and quantifying transmission revenues under uncertainty. 
Illustrative analyses demonstrated potential uses in transmission planning. 

 
Part I: Stochastic-Algebraic Evaluation of Available Transfer Capability for 

Transmission Expansion 
 
Available transfer capability (ATC) is a measure of the “available room” in a 

power system to transmit power between two given points beyond already committed 
uses, whether for reliability or economy purposes. This makes calculation of ATC 
important to power market participants, system operators, and transmission planners. 
Power marketers trade power using a variety of tools such as the ATC calculation to 
make economic trade decisions and to value transmission resources. ATC is typically 
calculated using a deterministic model for a given system state specified by given loads, 
generation, line parameters and topology, system limits, etc.  

Rather than what the value of the ATC was for a given state, often what is really 
needed for planning and operations is an estimate of what ATC will be in a future system 
state, such as 15 minutes ahead, a day-ahead, or farther. However, the future state of a 
power system is affected by a number of random (that is, uncertain or stochastic) 
variables. For example, if bus loads are modeled as random variables, the variables 
characterizing the system state (such as bus voltages and power flows) become random, 
too. This makes the value of ATC random, so that it can only be described using statistics 
such as expected value, variance, or, more broadly, a probability density function. For the 
case of load uncertainty, that probabilistic description of ATC can be determined once the 
nature of the load uncertainty is specified in an explicit statistical model. Since line 
power flows are an important part of the evaluation of ATC, a stochastic power flow 
method is needed to find the probabilistic behavior of ATC.  

With load uncertainty, the stochastic ATC calculation problem could be solved 
using Monte Carlo analysis where a very large number of bus load cases would be used 
to calculate ATC between given system bus pairs. The Monte Carlo approach is 
computationally intensive, consuming computer resources and time. An alternative 
approach is to use a stochastic-algebraic method that avoids direct calculations with a 
large number of cases, thereby significantly reducing computational time. 

In this research project, a stochastic-algebraic method was developed to calculate 
ATC statistics based on uncertain bus loads and transmission line availability. The 
system limits that were modeled included transmission line thermal rating limits, bus 
voltage magnitude limits, and, as a proxy for security limits, phase-angle differences 
across transmission lines. The stochastic-algebraic method used a linear transformation 
matrix, the system power flow Jacobian matrix evaluated at the system operating point. 
The calculation of stochastic ATC with uncertain transmission line status was performed 
using a modified transmission outage table.  
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The stochastic-algebraic method was compared to the Monte Carlo method using 
the WECC 179-bus system. As expected, the results showed that the stochastic-algebraic 
calculations were more computationally efficient than with the Monte Carlo method. A 
typical calculation to evaluate the ATC probability density function, mean and variance 
required 54,000 seconds using the Monte Carlo method versus 60 seconds using 
stochastic-algebraic analysis. Estimate of the mean and variance using the two methods 
were within 0.5 percent and 12 percent respectively for illustrative cases. Simulations 
also showed that if the bus load standard deviations were {5, 10, 15} percent of the 
expected demand, ATC had a standard deviation of {75, 150, 300} percent of the 
expected ATC. The addition of transmission line uncertainty changed the shape of the 
ATC probability distribution with more likelihood that the realized ATC would be less 
than the mean; however, it did not have much effect on the ATC’s expected value.  

How the ATC could be used in justifying and paying for transmission expansion 
was studied. A benefit-cost analysis example of transmission expansion was performed 
using the WECC 179-bus system. The analysis showed that it is possible to financially 
justify transmission expansion based solely on the value of increased ATC.  

Directions for future work on the stochastic ATC method could include 
developing a stochastic ATC calculation tool, finding faster calculation methods, adding 
more sources of uncertainty, testing with real data, incorporating in future financial 
transmission rights markets, and integrating with calculation of congestion costs. 

 
Part II: Transmission Line Revenues with Uncertainty 

 
The regulated transmission tariff system allows transmission companies to collect 

revenues that allow recovery of the fixed and variable costs of transmission services, 
including a reasonable profit. Different forms of tariffs are in use today. One type is the 
postage-stamp tariff in which a price is charged per megawatt flow per mile in the 
system. For a particular transmission line, the revenue from a postage-stamp tariff is 
directly proportional to the amount of power flow through that transmission line for a 
given transaction times the length of the line in miles. 

The primary goal of this part of the project was to evaluate and compare the 
Monte Carlo method with an analytical method for incorporating uncertainty in load 
forecasts, and to investigate the effect of line outages on transmission revenues. The 
theoretical basis for both the Monte Carlo method and the analytical method were 
explored, documented, and illustrated on the IEEE 14-bus test system. The expected 
value and variance of the transmission revenue were computed for the case with all lines 
in service and for cases when one line was outaged. The results indicate that the 
analytical method provides very good approximations of the exhaustive Monte Carlo 
method. This was observed both in the incorporation of load uncertainty and in the 
investigation of uncertainty in transmission line availability. 

The probability distributions of hourly system revenues due to uncertainty in 
forecasted loads and transmission availability were also computed analytically using 
linear power flow methods and distribution factors. Results showed that the analytical 
method provided a very good approximation of the Monte Carlo simulation results, thus 
providing a very efficient technique to assess variation in transmission line revenue under 
load and transmission line uncertainties. 
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1. Stochastic Power Flow Study Applications in Power Marketing and 
Power Engineering 

1.1. Description of this report 
This is a final report for PSERC (Power Systems Engineering Research Center) 

project M-10 entitled Uncertain Power Flows and Transmission Expansion Planning. In 
this report, the focus is on available transmission capability. However, portions of the 
entire PSERC project are also described. 

The major information problem for smooth transmission expansion is the balancing 
of expansion costs with the cost of congestion and reliability during the operation of the 
energy system multiple markets over a repeated number of years. The risk of delivery 
failure due to transmission limitations, the risk of market power due to insufficient 
market reach to another supplier, and the operational risk due to maintenance schedules 
are known risks that must be mitigated by transmission expansion over some long-term 
future time horizon. This project assumes that the transmission owners are regulated 
entities that are compensated based on total costs each year plus a predetermined rate of 
return based on quality of service (performance based rates). 

There are two methods that have been extended to include the role of competitive 
auction markets to the issues of energy system adequacy and reliability: contingency 
analysis including remedial action and stochastic power flow. This project will 
investigate the expansion of each technique to calculate price signals to justify future 
transmission expansion. The future transmission requirements will include adequate 
transmission for any seller to find an equivalent best price buyer and for any buyer to find 
an equivalent best price seller. This objective is to mitigate market power that an isolated 
seller or an isolated buyer might exercise due to congestion. Techniques to define which 
time periods are critical will be investigated. The future transmission requirements will 
include consideration for maintenance of transmission equipment to provide an adequate 
set of paths from each buyer (seller) to multiple sellers (buyers) in an effort to reduce 
periods of isolation that lead to price spikes when justified by the system expansion costs.  

The contingency/remedial action approach is known to be computationally intensive 
over many time periods and multiple future scenarios. The original method was approved 
as a FERC tariff for wholesale market management in 1994. This method used costs for 
remedial action contracts to mitigate the changes to the loss of load probability (LOLP) 
and the expected unserved energy (EUE) at each distribution point in the electric 
transmission network. All predefined contingencies were enumerated and remedial 
actions selected to minimize the cost of mitigation. Monte Carlo techniques will be 
investigated to find the best combination of sampling and the best Linear Programming 
technique to reduce the computational burden. Other methods to reduce the tree size will 
be investigated. 

The stochastic power flow algorithm will be modified to produce the same 
information as the contingency/remedial action method. The speed of the stochastic 
power flow algorithm is expected to be faster than the traditional contingency/remedial 
action method. The stochastic power flow work is to expand the SPF algorithms previous 
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developed to include the equivalent action of remedial actions to maintain the strictness 
of guarantee and the cost so such mitigation. 

Once the future scenarios are solved, the resulting price signals will be used to justify 
expansion to the transmission system. It is proposed that a single year of operation be 
simulated in this fashion to form the basis for operation in future years. This input is then 
used by capital budgeting analysis based on modern portfolio theory as is typically used. 
Additionally, real option analysis and certain monetary equivalent may be investigated. 
The research focus of this proposal is the comparison of Monte Carlo combined with 
Linear Programming method to the stochastic power flow method. The analysis of the 
capital budgeting problem is only to show how the results of either program can be used 
to justify expansion.  

 
Contingency/Remedial Action 

One of the desired characteristics of the ideal market for electricity is that there 
should be several choices of electricity available for trading. Electricity is normally 
viewed as a homogeneous product. However, electricity contracts could be viewed as 
various heterogeneous products provided different contracts specify aspects of the 
electricity to be delivered. Previous work used strictness of guarantee to differentiate 
electricity contracts and these heterogeneous electricity contracts were traded in multiple 
auction classes. Different auction classes have different specified levels of strictness of 
guarantee. The specified level in each class serves as the minimum strictness of guarantee 
of the power that buyers bought from that class. This project will use a single auction 
class. 

 
This strictness of guarantee is specified through two quantities: availability and 

expected energy served (EES). In brief, availability is defined in this work as the 
probability of the services being served to/by the particular participants for the period 
specified in the auction contracts. EES is defined in this work as the expected proportion 
of the delivered power amount to the bought power amount of a buyer in the auction 
period. 

Remedial actions are needed so that power can be delivered from sellers to buyers 
promptly according to the availability and EES specified in the contracts. Remedial 
actions are invoked automatically or by the independent system operator in case of 
contingencies, which could be precontingency (invoked in expectation of a contingency), 
or post contingency (invoked after the occurrence of a contingency). Previous work 
allowed additional type of bids, contingency bids to serve as a market mechanism for the 
remedial actions so that there are enough remedial actions supplied to the system 
whenever they are needed. TPLAN and TRELSS were used as basis for the previous 
work for reliability assessment.  

Previous work proposed market mechanisms for multiple-class auctions, which 
specifies the minimum strictness of guarantee of the power that buyers bought via two 
quantities: availability and EES. Sellers are required to specify the availability of sold 
power to indicate strictness of guarantee. Previous work also illustrated the procedure 
that the central coordinator uses for matching energy bids and contingency bids. The 
market illustrated in previous work provides additional price signals (availability and 
EES) to the traders and also provides a market mechanism for remedial actions. 
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By having availability and EES as additional price signals based on offered 
prices, traders have additional options to choose and this in turn gives more flexibility for 
trading. This also gives flexibility for buyers to choose electricity at a desired level of 
availability and EES. The buyers who need high continuity of electricity, e.g. hospitals 
probably select to bid in the class of high availability (which also has high EES). The 
proposed work may include multiple class markets. 

There are several probabilistic indices that have been used in the literature for 
security assessment. Loss of load probability (LOLP) and expected energy not served 
(EENS) (or expected demand not served) are presented earlier work in this area. For 
example, a risk index has been used for security assessment. The indices used in this 
work for distinguishing each auction class from each other are availability and EES. 

The market mechanism for trading power and remedial actions in auctions with a 
specification of availability and EES is the key component. Generation companies 
(GENCOs) are assumed to be sellers and energy management companies (EMCOs) are 
assumed to be buyers. Transmission companies (TRANSCOs) are assumed regulated. An 
independent contract administrator (ICA) is the central coordinator, which provides the 
combined services of the independent system operator (ISO) and the regional 
transmission organization (RTO) as a seamless organization.  

 
Availability 

The availability level used in this work is defined as the probability of the services 
being served to/by the particular participants for the period specified in the auction 
contracts. In each auction class, there are two quantities specified: availability and EES. 
The availability level specified in each auction class is subject to the EMCOs, which are 
assumed to buy energy for customers. In each class, the availability level specified 
indicates the minimum availability guaranteed to the EMCOs that buy power from that 
auction class. 

In the process of matching bids, the loss of load probability (LOLP) is calculated 
for each auction class and the availability level is calculated as one minus the LOLP. The 
LOLP in each class can be calculated from the summation of the probabilities of 
contingencies that cause curtailing of the bought power of EMCO(s) in that class. The 
method used for calculating the LOLP is probabilistic and based on contingency 
enumeration. The calculation is aimed for operation and steady-state scenarios. 

 
EES 

In each auction class, an EES is specified in addition to the availability.  The EES 
specified in each auction class is subject to the EMCOs, which are assumed to buy the 
power. In each class, the EES level specified indicates the minimum EES guaranteed to 
all the EMCOs that buy power from that auction class.  

The EES used in this work is defined as the expected proportion of the delivered 
power amount to the bought power amount of an EMCO in the auction period. EES is 
calculated from one minus EENS. The EENS used in this work is defined as the expected 
proportion of the non-delivered (i.e., curtailed) power amount to the bought power 
amount of an EMCO in the auction period.  
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Energy Bids  
Previous work assumed that there are two types of bids, energy bids and 

contingency bids. Energy bid by an EMCO is composed of bid price, bid amount, and the 
desired auction class for the bid to be matched. Power bid of a GENCO is the same as 
power bid of a buyer but with an additional bid specification. The additional bid 
specification that the GENCO needs to submit is the guaranteed availability of supplied 
power. This project will use this assumption. 

 
Contingency Bids 

Apart from power bids, players (GENCOs and EMCOs) can submit contingency 
bids, which are defined as bids for each remedial action. A contingency bid is composed 
of bid price, bid amount, an offered remedial action, and an auction class for the 
contingency bid to be matched. Penalties are imposed for the undelivered remedial 
actions. Such bids are sometimes called contingency contracts. 

 
Remedial Actions 

In the deregulated market, some remedial actions that were classified in different 
categories in the past should be classified into the same category in the deregulated 
market. For example, generation redispatch and load shedding should no longer be 
separated because double-sided auctions are used and both GENCOs and EMCOs can 
submit bids for the market. This work assumes that the remedial actions are paid 
regardless  

Previous work used an LP-based formulation for optimizing the remedial actions 
when the contingency causes line overloading. The only remedial actions considered 
were reserves by GENCOs and shed-load by EMCOs. Other remedial actions to cure 
other problems resulting from contingencies can be incorporated similarly into the 
formulation but are not in the scope of this work. The LP-based optimal remedial action 
formulations are well presented in the literature which include other remedial actions not 
considered in the formulation shown below. The only minor modification for applying 
those formulations to the auction problem is to change the objective function to be 
minimizing the cost of contingency bids submitted by GENCOs and EMCOs and the 
remedial action costs of TRANSCOs. The cost of each contingency bid can be 
constructed similarly to which are presented. 

Note that if the remedial actions are infeasible (i.e., cannot cure the violated 
operational limits); the contracts of GENCOs will be allowed to be partly or fully taken 
away. 

The above data is the basis for evaluation of the transmission expansion plan using 
classical financial techniques similar to Black Scholes (Real Options). These tools require 
a probabilistic or stochastic model to evaluate the future cash flows. The cash flows for a 
transmission line are based on the use of the line and the payment method in place. This 
project assumes that the use of transmission equipment is based on the postage stamp 
method. The dollar per megawatt mile method data requirements will be investigated if 
time permits. 



 

5 

1.2. Project overview 
For power engineering and power marketing tasks, a number of computational 

tools have been developed. Among those tools is the utilization of a power system 
transmission effectiveness index known as the Available Transfer Capability (ATC). The 
ATC is the amount of power that can be transmitted between two given buses in a power 
system. Under deregulation, transmission paths are heavily used to buy and sell (i.e., 
‘trade’) electric power. Numerical values for the ATC in megawatts are commonly used 
to determine the amount of money that is generated for a trade. In addition to the use of 
ATC in evaluating market trading scenarios in an operating environment, ATC could also 
be used to evaluate alternative sources of electric power in a planning environment. 
Transmission expansion might be used to improve ATC, and cost/benefit analysis could 
be used to evaluate given expansion scenarios. 

The stochastic nature of power systems show that load demands have a 
probabilistic behavior. The probabilistic behavior of the loads suggest that the ATC is 
also probabilistic. Evaluating the stochastic ATC is important for: 

 
• Aid in operating decisions 
• Project revenue from transmission services sales 
• Identify the type and location of transmission expansion. 

 

1.3. Statement of the stochastic ATC evaluation problem 
Power systems in general are random in nature. If bus loads are considered to be 

random, all of the variables (e.g. bus load voltages and line power flows) resulting from a 
power flow study become random. Since the ATC is based on these variables, the ATC 
can be considered as random. The stochastic ATC evaluation problem is the evaluation of 
the statistical model of the ATC given a statistical model of the system loads. 
Traditionally, ATC calculation is considered to be deterministic. For most cases, a 
stochastic ATC calculation problem can be solved using a Monte Carlo analysis. That is, 
a very large number of system load cases could be used in calculating ATC between 
given pairs of system buses. Because of the degrees of freedom of the load randomness, 
in order to obtain the best results from a Monte Carlo analysis, a large number of trials 
have to be solved. This results in a long computational time. Stochastic-algebraic 
methods of ATC calculation that avoid direct simulation and calculation of a large 
number of trials can have a significant decrease in the computational time. Such an 
“stochastic-algebraic method” is an analysis based on algebraic properties of 
transformations and probability density functions and probability theory.  

1.4. Available transfer capability 
The Federal Energy Regulatory Commission (FERC), in response to the 

development of the Federal Power Act in 1992, issued a series of proposed rules that 
provided hints to the direction that FERC was headed and sought industry comment. 
After gathering the wide number of industrial comments, FERC issued the Orders No. 
888 [1] and 889 [2] in 1996. These orders established certain guidelines that energy 
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markets have to follow which played key roles in opening the US energy market to 
competition.  

FERC Order 888 further opens access to existing electric power transmission 
networks and allows for a better customer choice. Order 888 mandated the separation of 
electrical services and marketing functions which required utilities to provide open access 
to their tariffs, and gave existing utilities the right to recover stranded costs from energy 
customers from investments based on the older regulations.  

FERC Order 889 mandated the information of energy market indicators such as 
Available Transfer Capability (ATC) and Total Transfer Capability (TTC) available to 
potential competitors, and posting of the energy market indicators on the Open Access 
Same-time Information System (OASIS) [2]. ATC is defined by the FERC as the 
measure of transfer capability remaining in the physical transmission network over 
committed uses. Also, the TTC is defined as the total amount of power that can be sent in 
a reliable manner. The purpose of calculation and posting of market indicators such as 
ATC and TTC to OASIS is to further the open access of the bulk transmission system by 
providing a market signal of the capability of a transmission system to deliver energy, 
which would spur competitive bidding in the energy market. 

The NERC formed the official definition and proposed a numerical approximation 
of the ATC in 1995 and 1996 [3,4]. The documents by NERC defined ATC as a measure 
of transfer capability. This capability is the remaining available transfer in the physical 
transmission network above already committed uses. The NERC further defines ATC as 
a function of increases in power transfers between different systems where as the 
transfers increase, the flows in transmission lines increase. The TTC is the largest flow in 
the selected transmission system for which there are no reliability concerns such as 
thermal overloads, voltage limit violations, voltage collapse, system stability and any 
other system reliability problems. The TTC minus the base case flow and appropriate 
transmission margin is the ATC for the selected transmission system.  Figure 1.1 shows 
an NERC depiction of ATC. The top line of Figure 1.1 is the TTC. The changes in TTC 
depict changing reliability concerns, temperature and other factors that would cause 
change in the maximum amount of power that can be transferred [3,4]. Recallability is 
defined as “the right of a transmission provider to interrupt all or part of a transmission 
service for any reason, including economic, that is consistent with FERC policy and the 
transmission provider’s transmission service tariffs or contract provisions”. Non–
recallability is defined as transmission service that can only be interrupted in cases where 
system reliability is threatened or an emergency exists. The recallable and non-recallable 
ATC scheduled are based on the base case load flows which already exist in the system. 
The Independent System Operator (ISO) has an option to disconnect loads that are a part 
of the recallable scheduled loads that affect the ATC transfer. The Transmission 
Reliability Margin (TRM) is a small amount of reserved available power that insures a 
margin of stability in the system if faults or interruptions occur. 

Ejebe [5] implemented a program for ATC calculations based on a full AC power 
flow solution. The features of the program determine the reactive power flows, voltage 
limits and voltage collapse, as well as thermal loading effects. A continuation power flow 
(CPF) is used that is based on the Newton power flow algorithm with adaptive 
localization. Due to the large number of contingencies that are needed to determine ATC 
for each transfer, a large computation time results.  
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Gravener [6] observed, from a test case of the Pennsylvania-Jersey-Maryland 
Interconnection, that ATC needed to account for the uncertainties that exist in the 
physical structure of the power system. An ATC calculator was developed which 
included both linear and nonlinear analysis. Results showed that when the transfer step 
sizes in the ATC search pattern were varied, ATC values varied as much as 8%. The 
variation of ATC values in the calculator has an enormous impact on the energy market 
and improvement on the search algorithms to decrease the variation needs to be 
implemented. 

Ejebe [7] implemented a linear ATC (LATC) calculator based on the linear 
incremental power flow approximation. The LATC calculator provides a reasonable 
accurate approximation of the ATC much faster than exact methods. The thermal limits 
of the line flows and calculation of time independent generating and line outage 
contingencies before LATC make the calculation of the ATC faster. LATC tests were 
done on two large practical systems that provided a close approximation to the exact 
value of ATC with a faster speed than the continuation power flow method. 

Sauer [8] presented some initial concepts on including reactive power in linear 
methods for computing ATC. The reactive power flows are first determined. The ATC is 
then attained using active power distribution factors. Results show that inclusion of 
reactive power in linear ATC can reduce errors in the estimation of the maximum 
transaction over a transmission system. The computation method can be efficiently 
implemented in linear ATC programs, without considerable increase in computer 
requirements. Sauer’s consideration of reactive power in the ATC calculation is only 
applied to small systems and needs to be tested and evaluated for practicality in large 
systems. 
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Figure 1.1. TTC, ATC, and related terms in a transmission service reservation system  

(Taken directly from [9]) 
 

Gaino and Padilha-Feltrin [9] also include reactive power in a liner method of 
computing the ATC. The reactive power flows computation is approximated by exact 
circle equations for the transmission line complex flow and the ATC is calculated using 
power flow distribution factors. They went on to show that the ATC can be increased by 
finding the best group of busses which can have their injected reactive power modified in 
order to alleviate overloads in the transmission lines. Results from their method show that 
adding reactive power flows in the ATC computation to a traditional linear distribution 
factor approach results in more accurate estimates for the ATC. 

Othman, Mohamed, and Hussain [10] illustrate a computationally fast and 
accurate method of finding the ATC. They implement a cubic-spline interpolation curve 
fitting technique which reduces the computation time of the power flow computations. 
The ATC is limited by voltage and power flow limits. The voltage and power flow limits 
are used in a plot and the ATC is determined at the point where an increase of real power 
transfer intersects the curves. Their results show that their method is accurate and faster 
than an iterative AC power flow computation which is demonstrated on a realistic 241 
bus system. 

Xia and Chan [11] developed an ATC calculation which considers transient 
stability constraints. The method is solved by using a direct nonlinear primal-dual interior 
point method [91]. The transient stability constraints are first converted into equivalents 
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and then incorporated into an optimal power flow study. Their consideration of transient 
stability constraints is only applied to small systems and needs to be tested in large 
systems. 

Cui, Bie and Wang [12] propose a method of forming a probabilistic ATC study 
based on a Monte Carlo simulation [16-24] with a sensitivity analysis. The Monte Carlo 
simulation analyzes the power system uncertainties and the ATC is then calculated using 
a sensitivity analysis. Their method develops a new load model which considers the 
impact of load uncertainties which includes the system load level and bus fluctuations on 
the ATC. Their results show an efficient ATC calculation on a small system and should 
be retested on a larger system. The probabilistic ATC calculation provides a good 
compromise between the computing time versus precision for a 23 bus system. 

Kumar, Reddy and Venkaih [13] propose a real time ATC calculation using three 
different techniques: 

 
• Back propagation algorithm 
• Radial basis function neural network 
• Adaptive neuro fuzzy inference system. 

 
Each of these intelligent techniques trace all the paths between the transfer busses 

of the ATC. The path with the least impedance is chosen as a basis of pattern generation 
in the intelligent programs. The calculation methods are tested on a 24 bus system 
considering only line thermal ratings and a few selected line outages. Each of the three 
intelligent techniques resulted in similar values of the ATC, but further comparison 
should be preformed with a more accepted ATC calculation method. 

Su [14] proposes a computation of ATC which accounts for the uncertainty 
effects in the computation. The method uses a point estimate method to calculate the 
ATC. The statistical moments of the ATC are found with respect to the uncertainty in 
system parameters. The bus load injections are assumed to be normal. The proposed 
method is tested against a Monte Carlo method using a 24 bus system. Results show that 
the method has an execution time considerably shorter than a Monte Carlo method, and 
the expected value is accurate to within 5% of the Monte Carlo method. 

1.5. Stochastic load flow studies 

Power flow studies have been a major part of the analysis and design of power 
systems. Throughout the history of load flow techniques, the data that are provided in 
order to calculate the load flow variables are generally considered to be constant and 
deterministic. The inputs to a load flow analysis are, in most cases, a snapshot value of a 
wide range of operating point data. This technique gives a picture on what happens in the 
system, but engineers often need to know the effect of a range of operational load values. 
Since the 1970s, researchers have been studying data ranging in the power flow study 
context. Probabilistic or stochastic load flow methods are an approach to accommodate 
and model the random nature of the operational load and generation data. 

Throughout the 1970s and 1980s a number of papers addressed different 
techniques involved to analyze various formulations of the stochastic load flow problem. 
Vorsic, Muzek, and Skerbinek [15] summarized the different stochastic load flow 
techniques in three basic methods: 
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• Monte Carlo 
• convolution  
• method of statistical moments. 

 
The Monte Carlo method is a known method to obtain the solution of the 

stochastic load flow problem. This method utilizes repeated trials of the deterministic 
load flow technique to determine the probability distributions of the nodal powers, line 
flows and losses. Since the accuracy of the probability distribution of line flows, voltages 
and losses is presumed to be better when modeling all stochastic inputs over a large 
number of trials, the Monte Carlo method is often characterized by a large computation 
time. Nonetheless, the Monte Carlo method has been used in many general engineering 
applications [16-24]. This method has an appeal that a wide range of stochastic 
phenomena can be modeled, thus suggesting “accuracy” in the results. The Monte Carlo 
approach does not rely on any required system characteristics: e.g., nonlinear systems are 
just as readily studied as linear systems. But computational burden is a clear disadvantage 
of the Monte Carlo approach and researchers have sought faster methods to calculate the 
probability distributions. The Monte Carlo method can be used to verify and validate 
these faster methods. Also, no matter how large the number of trials in a Monte Carlo 
simulation, there is always an issue with not studying a particularly problematic 
condition. As an example, how many coin tosses are needed to find the probability that a 
coin lands on edge? 

Returning to the stochastic power flow studies, the convolution method was 
perhaps first researched by Borkowska [25]. Prior to her paper, there was little research 
done in determining the effect of the uncertainty of load data to the uncertainty of bus 
voltage and line power flow. Borkowska’s work concentrated on how probability density 
functions of the input bus variables calculated through load flow equations yield density 
functions of branch power flows. She assumed that active and reactive power flows are 
independent of each other. The random processes associated with the input bus variables 
are assumed independent and have a general statistical distribution which is calculated 
though linear load flow analysis using a convolution technique. The resulting density 
function gives a practical view of the probability of exceeding the capacity limit in 
branch flows and the practical and probable range of branch load values. Some problems 
in her assumptions are the nonlinear relation between node loads and branch flows, and 
proper balance of generation and loads. 

Dopazo, Klitin, and Sasson [26] addressed the stochastic load flow problem 
approximately at the same time as Borkowska. Their objective was similar to 
Borkowska’s convolution method but with a different approach. Employing a method 
that assumed normally distributed variables of load bus P and Q and normally distributed 
generator bus variables P and V, Dopazo, Klitin, and Sasson calculated load flows using 
classical methods. A covariance matrix of the load flow data is formed. Using the 
variances assumed for the input data, another covariance matrix is formed. The two 
covariance matrices are then used to obtain confidence limits, or ranges of which the true 
value has a given probability of existence (e.g., a 99% confidence interval). Note that 
normally distributed complex random variables have their difficulties as described in [27-
33]. 



 

11 

The method of statistical moments, used by Sauer and Heydt [27], relates to the 
processing of the statistical moments of univariate and multivariate random variables. For 
the univariate case, the kth central statistical moments (k > 1) of random variable x are 
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where E(…) denotes expectation. In order to use rather simple properties of statistical 
moments, of Y given Y = AX, and given the moments of a multivariate random variable 
X, the electric power flow problem is linearized. Following linearization of the system 
equations, the statistical moments of voltages and load flows are used to determine the 
distribution of voltages and load flows. Although the foregoing discussion mentions the 
univariate case, the method of moments is readily applicable in the multivariate case. The 
method works well solving the stochastic load flow equations with errors in the output 
data being smaller than other methods [25, 26]. Note that the probability density function 
of a random variable is not determined by its statistical moments in general, but in 
practical engineering applications one may assume that the density and distribution are 
uniquely determined by the statistical moments. [28-34]. 

A simpler solution of the Sauer and Heydt’s approach was done by Patra and 
Misera [35]. A proposed method of cumulants by Sanabria and Dhillon [36] is the basis 
of the work done by Patra and Misra. The method, like [27], uses the method of statistical 
moments to analyze the complex random variables while using the Gram-Charlier 
expansion [29] to approximate the probability density functions of the output bus 
voltages and line flows. Simply stated, the Gram-Charlier expansion is a technique used 
to obtain a probability density of a random variable given its statistical moments. The 
Gram-Charlier series has been used in recent applications such as a stochastic-algebraic 
available transfer capability calculation [95] and in optical communications systems [96]. 
The method is usually formulated in terms of cumulants. The cumulants nk  of a random 
variable can be found from the statistical moments of the distribution. In terms of the first 
four raw moments of random variable x, the first four cumulants of x are, 
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where mx
(n) with is the nth raw moment of the random variable x. The cumulants are used 

in the Gram-Charlier expansion where the bus voltages and line flows are obtained from 
both the statistical moments and cumulants. Conclusions of Patra and Misera’s work 
show that their technique has better computational advantages compared to existing 
methods using complex random variables for the load flow. However, Patra and Misera’s 
method seems to give higher errors than in [27]. 
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Zhang and Lee [37] proposed a method of computing a probabilistic load flow 
study in large power systems. The method is proposed to be a quick screening tool to 
analyze major investments on improving transmission system inadequacy. Zhang and 
Lee’s scheme combines the determination of line flow cumulants and the Gram-Charlier 
expansion to obtain probabilistic distribution functions of the transmission line flows. 
Their conclusions show that their method is able to accurately approximate the 
cumulative distribution function of transmission line flows for small systems. They state 
that future research will consider applying their method to larger size systems. 

In private communication with some researchers in the area of stochastic power 
flow studies, it appears that despite the intellectual appeal of the stochastic power flow 
algorithm, and despite the valid claims of potential value of the method, this stochastic-
algebraic tool has not been in widespread use at any stage of power engineering.  

1.6. Probability density fitting 
An important step in a stochastic load flow problem is the representation of the 

line loading data (i.e., P,Q), or line load statistical moments into a probability density 
function. Sauer [37] implemented the Gram-Charlier type A [29,38] series in the 
stochastic load flow problem. The general concept of construction of a probability 
density function has occupied considerable attention in the classical probability literature. 
Alternatives are illustrated here with the implication that the probability density function 
of ATC might be better constructed using one of these alternatives. Three different fitting 
theories based on the works of Karl Pearson, H. L. Gram, C. V. Charlier, and F. Y. 
Edgeworth are well documented [38-41] and have many distinguishing qualities. Perhaps 
the largest number of applications of the orthogonal series expansions of probability 
density functions is relegated to the pre-digital era. 

Pearson’s distributions [29] provide a systematic approach to fit statistical 
moments to one of twelve specific closed form density functions. Three are well known 
normal, beta, and gamma density functions. The criteria for determining which of the 
twelve densities to use are given in [29], and the process is quite lengthy. The process for 
determining the distribution as well as the criteria has a significant disadvantage of the 
required data due to the large size as well as the lengthy computation time needed to run 
in a computer program [29,38-41]. 

The Gram-Charlier and Edgeworth series [29,38-40] are independently derived 
representations of a density function as an infinite series of a sum of orthogonal functions 
involving statistical moments and cumulants. The methods generally stem from the 
uniqueness of the characteristic function 
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Note that there is an ambiguity of sign in the –jtx term of the characteristic 
equation. In electrical engineering, the sign is negative, and in mathematics the sign is 
positive. 

Three of the Gram-Charlier series have been proposed based on an infinite series 
of functions of Hermite polynomials and statistical moments. The type A series is the 
most commonly used type and is based on derivatives of the characteristic function of the 
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normal distribution. The characteristic function of a probability density function is its 
Fourier transform, 

{ } ).t()x(f xx φ=ℑ  

The Gram-Charlier series type A has been widely applied and can accurately 
represent many density functions, but in some cases, can produce negative frequencies. 
The type B and C series [29,38] are based on derivatives of the Poisson density and the 
gamma and beta densities. All of these kernel functions are orthogonal functions. The 
type B series has certain mathematical advantages and this series has been used to 
accommodate discontinuous variation resembling the Poisson distribution. The type B 
series is rarely used. The type C series, based on derivatives of the gamma and beta 
densities, was proposed by Charlier to avoid negative frequencies but never has had the 
appeal of the type A series. 

The Edgeworth series [39-41], which resembles the Gram-Charlier series, utilizes 
cumulants, instead of statistical moments in an infinite series based on the derivates of 
the same normal, Poisson, gamma and beta densities. References [28-34,38-40] are 
general references on the subject of random variables, stochastic processes and non-
deterministic systems. 

1.7. Organization of this report 
Chapter 1 describes the overview of the report and provides a literature summary 

of stochastic load flow, ATC, and probability density function fitting. In Chapter 2, a 
method of analytically calculating the stochastic ATC with bus load uncertainty is 
presented. Chapter 3 illustrates the stochastic ATC calculation. Chapter 4 extends the 
stochastic ATC calculation developed in Chapter 2. Transmission element outage 
uncertainty is added to the calculation. Chapter 5 provides illustrations of the stochastic 
ATC calculation with bus load and transmission element uncertainties. Conclusions 
drawn from the examples in Chapters 3 and 5 are provided in Chapter 6. Transmission 
expansion is addressed in Chapter 7 with a cost to benefit analysis. Conclusions of the 
report and possible future work ideas are shown in Chapter 8. Appendices A-H provides 
the following additional information: 

 
• Appendix A – information on the calculation of statistical moments and other 

statistical properties used in the report. 
• Appendix B – a subroutine in MATLAB written to calculate the probability 

density function by using statistical moments. The resulting PDF is called the 
Gram-Charlier series. 

• Appendix C – a derivation of the PDF of the minimum of several random 
variables is developed. This derivation is important in the final steps of the 
stochastic ATC calculation shown in Chapter 2. 

• Appendix D - useful information on the NERC E-tag process is presented. E-tag 
is widely used in deregulated power systems for the trade of power. 

• Appendix E – WECC system data used in all the WECC 179 bus examples is 
shown. 
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• Appendix F – stochastic ATC calculations are provided using the IEEE 14 bus 
system. These examples provide some different cases of stochastic ATC not 
shown with the WECC system. 

• Appendix G – the limitations used in the WECC examples is presented in this 
appendix. 

• Appendix H- provides a list of examples used in the report 
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2. Probabilistic Available Transfer Capability 

2.1. Available transfer capability and open access of transmission systems 
In order to provide open access to electric power transmission networks and 

promote generation competition and customer choice, the Federal Energy Regulatory 
Commission requires that available transfer capability be made available on a publicly 
accessible OASIS. ATC is defined as a measure of the transfer capability, or available 
“room” in the physical transmission network for transfers of power for further 
commercial activity, over and above already committed uses. That is, ATC is the 
megawatt capability of the system for tag schedules. Appendix D illustrates the method 
of E-tagging developed by the NERC. 

As an illustration, consider Figure 2.1 in which 1000 MW is transmitted from bus 
A1 to bus B1. If the path rating is 1500 MW and if no parallel paths exist from A to B, 
the ATC from A1 to B1 is 500 MW. 

 

 
Figure 2.1. Illustration of ATC 

Due to uncertainty in bus loading, the power flows within a power network also 
become uncertain. By applying the theory of functions of several random variables, the 
statistical moments of line power flows within a system can be found. Information on 
statistical moments is shown in Appendix A. Although difficult to find analytically, the 
statistical moments of the line power flows can be estimated by:  

 
• applying a stochastic load flow algorithm to the existing system 
• assuming bus loads to be normally distributed. 

 
The uncertainty of the future loads implies that the power flow is probabilistic. 

Thus, a stochastic load flow study should be used. The stochastic load flow study yields 
the statistical moments describing the behavior of the line power flows. This uncertain 
behavior of line power flows affects ATC and causes ATC to be probabilistic. The 
proposed algorithm described in this chapter is for the utilization of stochastic methods 
for ATC calculation and power marketing. Figure 2.2 shows the general concept. In order 
to develop a model that captures the stochastic aspects of ATC, it is necessary to use a 
statistical model. The Gram-Charlier series is proposed as a statistical model of the ATC. 

P = 1000 MW 

Path Rating 
1500 MW 

A1 B1 
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Figure 2.2. The general concept of the proposed algorithm 

2.2. Statistical moments of line flows and bus voltage magnitudes 
The stochastic power flow algorithm utilizes a direct transformation of statistics 

to obtain selected statistical results. In this section, the statistical moments of line active 
power flows and bus voltage magnitudes in a power system are considered. Consider 
Figure 2.3 as an example of the stochastic load flow method of finding the line flows and 
voltage magnitudes and the statistical moments of those flows and magnitudes. 

 

 
Figure 2.3. Stochastic load flow study process 

The concept of a stochastic power flow study is that if bus load moments are 
known, then those moments can be transformed into moments of active line flows and 
bus voltage magnitudes. Assuming that bus load statistics are Gaussian, a direct 
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transformation of moments can be performed using a linear transformation [15,25-27,35-
36] 

Y = AX. (2.1)

Let X be a multivariate Gaussian distributed vector with mean vector xM  and covariance 
matrix xΣ . The resulting mean and covariance of Y are 

XY AMM =  (2.2)

t
XY AAΣ=Σ . (2.3)

The approximation of statistical independence is made to estimate the higher order 
moments.  

The stochastic load flow uses information from the inverse power flow study 
Jacobian matrix to find an approximation of the change in bus voltage magnitude and 
transmission line flows, 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

=⎥
⎦

⎤
⎢
⎣

⎡

Δ
Δ −

Q
PJ

V
1δ . (2.4)

This yields an approximation of the change in bus voltage magnitude and bus 
voltage angle. Equation (2.4) can be decoupled into two parts 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
ΞΞ
ΞΞ

=−

2221

12111J  (2.5)

QP ΔΞ+ΔΞ=Δ 1211δ  (2.6)

QPV ΔΞ+ΔΞ=Δ 2221  (2.7)

in which ijΞ is the submatrix of the inverse Jacobian matrix from the solution point of a 
power flow. From (2.7), the change in voltage magnitude is found, and (2.6) can be used 
to find the change in transmission line flows.  

The change in transmission line flows within a system can be approximated by 

lineji
line

ij B)(P δδ Δ−Δ=Δ  (2.8)

where i and j represent sending and receiving buses, line
ijPΔ  is the change in line real 

power flow from bus i to bus j, and lineB  is the imaginary part of the transmission line 
admittance. In order to convert this single line approximation into an approximation 
which includes all transmission lines (and transformers) in the system, an incidence 
matrix needs to be formed. 

The incidence matrix L is of size (number of branches) x (number of busses) and 
includes only 0, 1 and -1 for its elements [42]. Each row of the incidence matrix 
represents each transmission line of the system corresponds to a +1 in the sending end 
bus column and -1 in the receiving end column. For example, if a representation of a 
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transmission line from bus 2 to bus 4 of a 5 bus system needs to be represented in an 
incidence matrix, the corresponding row for that transmission line in the incidence matrix 
would be 

[ 0 1 0 -1 0]. (2.9)

Then,  
δδ Δ=Δ L'  (2.10)

where 'δΔ  is the vector form of all the )( ji δδ Δ−Δ  in the system, L is the incidence 
matrix, and δΔ  is the result of (2.6). A matrix representation of lineB  is diag( lineB ) , 
where diag( lineB ) represents a (number of branches) x (number of branches) diagonal 
matrix whose elements are lineB  (for each transmission line of the system). Then,  

)QP(L)B(diagP line
line ΔΞ+ΔΞ=Δ 1211  (2.11)

QPV ΔΞ+ΔΞ=Δ 2221 . (2.12)

In order to proceed with the transformation shown in (2.1), Equations (2.11-12) 
need to be reconfigured into functions of one variable, namely PΔ . It is assumed that the 
individual power factors (pf) of each load are constant, i.e. statistically there is a 100% 
correlation between the active power load P and reactive power load Q. If load power 
factors are known, let 

PF=diag(tan(acos(pf))) (2.13)

where PF is the transformation matrix, and pf is the power factor of each load. In (2.13), 
the popular MATLAB syntax is used with the elements pf arranged as a diagonal matrix, 
acos(…)giving a diagonal matrix of arccosines of the pf terms, and tan(…) giving a 
diagonal matrix of tangents of the above mentioned angles. Equations (2.11-12) can be 
reconfigured, 

P)PF(L)B(diagP line
line ΔΞ+Ξ=Δ 1211  (2.14)

P)PF(V ΔΞ+Ξ=Δ 2221 . (2.15)

Using the linear transformation in (2.2-3), the mean and variance for linePΔ  and VΔ  can 
be found, 

PlineP
)PF(L)B(diagline ΔΔ

Ξ+Ξ= μμ 1211  (2.16)

t
line

)(
Pline

)(
P

))PF(L)B(diag()PF(L)B(diagline 1211
2

1211
2 Ξ+ΞΞ+Ξ= ΔΔ

μμ  (2.17)

PV )PF( ΔΔ Ξ+Ξ= μμ 2221  (2.18)

t)(
P

)(
V )PF()PF( 2221

2
2221

2 Ξ+ΞΞ+Ξ= ΔΔ μμ , (2.19)
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where )k(
PΔμ  is the kth central moment of the random variable PΔ . 

In order to find the statistical moments of line power flows in a stochastic load 
flow problem, the bus loads have to be represented by probabilistic models. If data for the 
bus loads are known, raw statistical moments are generated from the sample data using 
(2.20), 

n

x
m

n

i

k
i

)k(
x

∑
== 1 , (2.20)

where k is the moment order, and n is the number of samples and xi  is the datum sample 
i. 

If bus data are not known, statistical moment generating functions available in 
[29] can generate statistical moments for a given probability density. If bus load moments 
are in a form of a probability density function, a moment generating function can be used 
to find the moments of the bus loads. Given a random variable x and a probability 
distribution function f(x) then the characteristic function )t(xφ can also be called the 
moment-generating function. For a continuous distribution, 

...mt
!

jtmdx)x(fe)t( )(
x

)(
x

jtx
x +−−== ∫

∞

∞−

− 221

2
11φ . (2.21)

Raw moments of x are found from the derivates of )t(xφ . The raw moments can 
are calculated by 

.
dt

)t(d
m

dt
)t(d

m

dt
)t(d

m

x)(
x

x)(
x

x)(
x

3

3
3

2

2
2

1

φ

φ

φ

=

=

=

 

 
• In most cases the probability density function of the bus loads are: 
• Non stationary (statistical moments vary with time) 
• Correlated among themselves 
• Complex 
• Not any recognized distribution. 
 

However, the normal uncorrelated density is commonly used as a “first cut” 
approximation [15,25-27,35-36]. 

Many different stochastic power flow algorithms exist as documented by [15,25-
27,35-36,42]. The computational time of algebraic based stochastic power flow methods 
compared to a Monte Carlo approach may be significantly less, but at the potential cost of 
lots of accuracy. That is, Monte Carlo methods generally do not require linear systems or 
simple mathematical formulations, but many purely analytical methods do have these 
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limitations. From an operational point of view, complex mathematical structure is of little 
consequence because once an algorithm is programmed and rendered as a software tool, 
only accuracy and execution time are important. Figure 2.3 illustrates the stochastic load 
flow study process. Inputs into the stochastic load flow study calculation are the bus load 
statistical moments and power system information (e.g., line impedances, PV bus 
information, transformer impedances, and shunt capacitor admittances). Stochastic power 
flow formulations usually do not consider complexities such as P-V buses, Q-limits, and 
tap changer limits. 

2.3. Deterministic approximation of available transfer capability  
Before considering a probabilistic method of finding the stochastic ATC, a 

deterministic method is developed. The deterministic method limits the ATC transfer in a 
system due to two different fundamental limitations: bus voltage magnitude and 
transmission line / transformer thermal rating. Both long term and short term thermal 
ratings can be accommodated. Both contingencies have been widely used in the literature 
[10,43] and are the basis for a good approximation of the ATC. The subject of security 
limits for transmission paths will be briefly discussed below. 

The deterministic ATC calculation method uses information from the inverse 
Jacobian matrix at the solution point of a load flow to find an approximation of the 
change in bus voltage magnitude and transmission line flows. Equations (2.11-12) from 
the stochastic load flow study form the basis (with a slight modification) of a linear 
approximation for linePΔ  and VΔ . The modification to 2.11-12) is the use of the variable 

PΔ . If A represents the sending end bus, and B represents the receiving end bus, PΔ  
becomes a vector with 1 in the Ath row and -1 in the Bth row. This changes the 

representation of linePΔ  and VΔ , therefore 
AB

line

dP
dP  and 

ABdP
Vd

 are used to represent the 

AB

line

dP
dP  and 

ABdP
Vd

 for a given ATC transfer. Inequalities for 
AB

line

dP
dP  and 

ABdP
Vd

 are set up 

using transmission thermal line ratings and the maximum and minimum V  limits. Using 
lineP  from a base case load flow study and the transmission thermal line ratings, RatingP , 

two inequalities are written. These inequalities account for the two directions that power 
can flow in a transmission line, 

Ratingline

AB

line
BA PP)

dP
dP(ATC ≤+−  (2.22)

line

AB

line
BARating P)

dP
dP(ATCP +≤− − . (2.23)

Two more inequalities are written to model V  upper and lower limits 

max

AB

BA VV)
dP

Vd
(ATC ≤+−  (2.24)
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V)
dP

Vd
(ATCV

AB

BAmin +≤ −  (2.25)

where BAATC −  is the available transfer capability from bus A to bus B. Note that (2.24-
25) assume the worst case scenario of voltages VA and VB being in phase. Using all four 
inequalities, (2.22-25), a linear optimization program maximizes the scalar value of the 
constrained BAATC − . 

In addition to the Pline and |V| limits, security limits often determine ATC, 
especially for long lines. The static security limits could be interpreted as phase angle 
limits,  

max
ji

max δδδδ ≤−≤− . (2.26)

The ji δδ −  term can be approximated by a linear function of ATC similar to (2.6). The 
extra two inequalities so formed would need to be included with the inequalities in (2.12-
13). 

Due to the nonlinear behavior of power systems, linearly approximating 
AB

line

dP
dP  

and 
ABdP
Vd

 as constants can yield errors in evaluating ATC. In order to get a more precise 

ATC, an iterative approach can be used. The iterative approach, shown in Figure 2.4, 
updates the load at bus B of the system with the ATC calculated. This is repeated until the 
change in ATC is smaller than a specified tolerance (tol). Since initial estimates of the 
ATC can be overestimated based on the V  contingency, an acceleration factor greater 

than 1.00 can be used with 
ABdP
Vd

 in order to underestimate the ATC. The need for an 

“acceleration factor” was found in actual implementation of this concept. When the 
iterate gets close to the ATC, the acceleration factor is made equal to 1.00 and the 
calculation is iterated until the tolerance is met. 

2.4. Stochastic evaluation of available transfer capability 
The method of finding the stochastic ATC is more complex than the deterministic 

case. The method, illustrated in Figure 2.5, utilizes a stochastic load flow formulation, the 
deterministic ATC calculation, a Gram-Charlier series approximation of a probability 
density function, and a method of manipulating probability density functions of several 
random variables. The stochastic load flow and deterministic ATC calculations are used 
to calculate statistical moments of the ATC in the probabilistic formulation. The 
moments of the ATC are calculated in four separate groups, one for each of the 
constraints in (2.22-25). Each of these groups represents a random variable. The Gram-
Charlier series is used to find the probability density function for each group. Statistical 
properties of functions of several random variables [44] are used to find the resulting in a 
probability density function of the ATC. 
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Figure 2.4. Deterministic ATC algorithm calculated using an iterative method 

 
The deterministic evaluation of ATC is used in conjunction with a stochastic load 

flow study as a first step in finding the stochastic ATC. A stochastic load flow algorithm 
is used as shown in Section 2.2 to find the statistical moments of the system line flows 
and bus voltage magnitudes. The system line flows and bus voltage magnitudes are then 
linearly transformed using the results of the deterministic ATC evaluation in Section 2.3. 
The result from the deterministic ATC study used is the system Jacobian matrix at the 
ATC solution point. The assumption made is that of the linearized power flow 
formulation. For the convenience of the reader, Table 2.1 lists the dimensions of all the 
various terms in 2.31-2.48. 

Equations (2.22-25) ultimately serve as the limitations that constrain the ATC. 
Reordering those equations yields 

 

ATC’=0 

Add ATC’ to  
receiving end bus 

load 

Calculate ATC 

 
|ATC – ATC’|< tol 

ATCA-B  = ATC 

ATC’ = ATC Calculate [ ] 1−J  , linePΔ , and VΔ  

NO 
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Figure 2.5. Sample stochastic ATC calculation algorithm 

Deterministic ATC 
Calculation 

Stochastic Load Flow 

Calculate ATC moments 

Form probability density functions of 
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Find the minimum of the probability 
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Density Function of 
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Table 2.1 Dimensions of terms in (2.31-2.48) 

Symbol 
 

Description Rows Columns 

BAATC −  ATC from bus A o bus B 1 1 

lineB  Imaginary part of the transmission line admittance 
matrix 

NL NL 

)B(diag line  Diagonal elements of transmission line admittance 
matrix 

NL 1 

AB

line

dP
dP  

Line flow sensitivity factor NL 1 

ABdP
Vd

 
Bus voltage sensitivity factor NB 1 

L  Incidence matrix NL NB 
lineRating PP −

μ  Mean of lineRating PP −  NL 1 

VV max −
μ  Mean of the vector whose entries are (k=1,…, NB)  

k
max

k VV −  
NB 1 

VV min −
μ  Mean of the vector whose entries are (k=1,…, NB) 

k
min

k VV −  
NB 1 

lineRating PP −−
μ  Mean of lineRating PP −−  NL 1 

LN1  Vector of ones NL 1 
BN1  Vector of ones NB 1 

Base
lineP  Real power flows at system base case NL 1 
RatingP  Line thermal ratings NL 1 
PF  Power factor matrix NB NB 
pf Load power factor 1 1 

)(
P
1
Δμ  Mean of bus real power injection NB 1 

)(
PP lineRating

2
−

μ  Central 2nd moment of lineRating PP −  NL 1 
)(

PP lineRating
2

−−
μ  Central 2nd moment of lineRating PP −−  NL 1 

)(
VV max

2
−

μ  Central 2nd moment of VV max −  NB 1 
)(

VV min
2

−
μ  Central 2nd moment of VV min −  NB 1 

maxV  Vector of bus voltage maxima NB 1 
BaseV  Vector of base case bus voltages NB 1 
minV  Vector of bus voltage minima NB 1 

ijΞ  Submatrix of the inverse Jacobian matrix NB NB 
NB = number of buses. NL = number of lines 
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lineRating

AB

line
BA PP)

dP
dP(ATC −≤−  (2.27)

)
dP
dP(ATCPP

AB

line
BAlineRating −≤−−  (2.28)

|V||V|)
dP

|V|d(ATC max

AB

BA −≤−  (2.29)

)
dP

|V|d(ATC|V||V|
AB

BAmin −≤− . (2.30)

Information from a stochastic load flow solution is used to find the statistics for 
lineRating PP −  in (2.27), lineRating PP −−  in (2.28), VV max −  in (2.29), and VV min −  in 

(2.30). A stochastic load flow study results in statistics for lineP  and V . If RatingP , maxV , 

and minV  are assumed to be statistically constant, then the statistics for lineRating PP − , 
lineRating PP −− , VV max − , and VV min −  can be calculated: 

 
• Statistics for lineRating PP −  

Mean: Pline
Base

line
Rating

PP
)PF(L)B(diagPPlineRating Δ−

Ξ+Ξ−−= μμ 1211  (2.31)

Central 2nd moment: 
t

line
)(

Pline
)(

PP
))PF(L)B(diag()PF(L)B(diaglineRating 1211

2
1211

2 Ξ+ΞΞ+Ξ= Δ−
μμ  (2.32)

 
• Statistics for lineRating PP −−  

Mean: 
Pline

Base
line

Rating
PP

)PF(L)B(diagPPlineRating Δ−−
Ξ+Ξ−−−= μμ 1211  (2.33)

Central 2nd moment: 
t

line
)(

Pline
)(

PP
))PF(L)B(diag()PF(L)B(diaglineRating 1211

2
1211

2 Ξ+ΞΞ+Ξ= Δ−−
μμ  (2.34)
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• Statistics for VV max −  

Mean: P
Basemax

VV
)PF(VVmax Δ−

Ξ+Ξ−−= μμ 2221  (2.35)

Central 2nd moment: 
t)(

P
)(

VV
)PF()PF(max 2221

2
2221

2 Ξ+ΞΞ+Ξ= Δ−
μμ  (2.36)

 
• Statistics for VV min −  

Mean: P
Basemin

VV
)PF(VVmin Δ−

Ξ+Ξ−−= μμ 2221  (2.37)

Central 2nd moment: t)(
P

)(
VV

)PF()PF(min 2221
2

2221
2 Ξ+ΞΞ+Ξ= Δ−

μμ  (2.38)

where Base
lineP  is the system real line flows using the mean of each load and BaseV  is the 

system bus voltage magnitudes found by using the mean of each load. Note: formulating 
probability density functions becomes less complex if central moments are used. 

The vectors 
AB

line

dP
dP  and 

ABdP
Vd

are formed from using the deterministic ATC 

evaluation discussed in Section 2.3. The 
AB

line

dP
dP  and 

ABdP
Vd

 terms found from the 

deterministic approximation result in vectors. Equations (2.27-30) are rewritten using the 
form of (2.31-38) 

+− ≤ P)
dP
dP(ATC

AB

line
BA  (2.39)

)
dP
dP(ATCP

AB

line
BA−− ≤ . (2.40)

max

AB

BA V)
dP

Vd
(ATC ≤−  (2.41)

)
dP

Vd
(ATCV

AB

BAmin −≤ . (2.42)

where 
lineRating PPP −=+         lineRating PPP −−=−  

VVV maxmax −=         VVV minmin −=  
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In order to implement linear transformation for (2.39-42), the vectors 

)
dP

Vd
(ATC

AB

BA−  and )
dP
dP(ATC

AB

line
BA−  are first reformulated. Note: as discussed in 

Section 2.3, the variable BAATC −  is a scalar. Vectors 
AB

line

dP
dP  and 

ABdP
Vd

are rewritten as 

diagonal matrices, )
dP
dP(diag

AB

line

 and )
dP

Vd
(diag

AB

 where )(diag L  is the construction of 

a matrix of diagonal elements consistent with the dimension of X, (e.g. if. XT =[3,4,5], 

diag(X) =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

500
040
003

). The BAATC −  is multiplied by a vector with one column and a 

number of rows to be conformable as indicated by,  

( ) =− LNBA

AB

line

)ATC)(
dP
dP(diag 1 )

dP
dP(ATC

AB

line
BA−  (2.43)

))(ATC)(
dP

Vd
(diag BNBA

AB

1− = )
dP

Vd
(ATC

AB

BA− , (2.44)

where a1  represents a vector of ones with one column and a number of rows. Refer to 
Table 2.1 for a listing of all dimensions. 

Equations (2.43-44) are substituted into (2.39-42) and reordered, 

+

−

−
⎥
⎦

⎤
⎢
⎣

⎡
≤ P)

dP
dP(diag))(ATC(

AB

line
NBA L

1

1  (2.45)

))(ATC(P)
dP
dP(diag LNBA

AB

line

1
1

−−

−

≤⎥
⎦

⎤
⎢
⎣

⎡
 (2.46)

max

AB

NBA V)
dP

Vd
(diag))(ATC( B

1

1
−

−
⎥
⎦

⎤
⎢
⎣

⎡
≤  (2.47)

))(ATC(V)
dP

Vd
(diag BNBAmin

AB

1
1

−

−

≤⎥
⎦

⎤
⎢
⎣

⎡
. (2.48)

In order to distinguish between each of the BAATC −  values due to their respective 
limitations from (2.45-48), each BAATC −  is renamed: 
 

• +ATC represents BAATC −  in (2.45) 
• −ATC represents BAATC −  in (2.46) 
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• maxVATC represents BAATC −  in (2.47) 
• minVATC represents BAATC −  in (2.48). 

 
Equations (2.45-48) are now in a form in which the statistics for each of the 

following can be found: ATC+( LN1 ), ATC-( LN1 ), ATCVmax( BN1 ), ATCVmin( BN1 ). For each 
row of (2.45-48), a probability density function can be formed using a Gram-Charlier 
type A series approximation illustrated in Section 2.5. For example, if there are four 
buses and six lines in a system where the stochastic ATC is to be calculated, (2.45-46) 
have six probability density functions each and (2.47-48) have four probability density 
functions each. The Gram-Charlier type A series is a series approximation of the 
probability density function in terms of statistical moments. Therefore if the statistics of 
ATC+( LN1 ), ATC-( LN1 ),  ATCVmax( BN1 ), ATCVmin( BN1 ) are found, then a probability 
density function for each can be found. In order to find the probability density functions 
of only +ATC , −ATC , maxVATC , and minVATC  a method of manipulating probability 
distribution functions needs to be discussed. The evolution of (2.39-42) to the probability 
density function of the ATC is illustrated in Figure 2.6.  

 

 
Figure 2.6. The evolution of (2.39-48) to the probability density function of the ATC 

 
The probability density function of +ATC , −ATC , maxVATC , and minVATC  is found 

from the probability density function of each set of ATC+( LN1 ), ATC-( LN1 ), 
ATCVmax( BN1 ), ATCVmin( BN1 ). Since many of the probability density functions for each set 
of ATC+( LN1 ), ATC-( LN1 ), ATCVmax( BN1 ), ATCVmin( BN1 ) can lie close to each other, 
finding the probability density function of each is not simply finding the minimum of the 
mean. Papoulis [44] illustrates a scheme to find probability density function of the 
minimum of several random variables. A derivation of the probability density function of 
the minimum of several random variables by Papoulis is shown in Appendix C. The 
result is that if any number n of independent random variables form a function 

z)x...xmin( n =1 , (2.49)

the probability density function )z(f z  becomes 

reformulate  

using (2.43-44) 

form a probability density 

 function for each row of (2.45-48) 
using the Gram-Charlier type A 

equations 
(2.39-42) 

method of finding the probability density function 
of the minimum of several random variables  probability density 

function of the ATC 
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∑∑
≠==

−=
n

ij,j
x

n

i
xz )]z(F[)z(f)z(f

ji
11

1 . (2.50)

Since (2.50) has been established and that the probability density functions for 
each set of ATC+( LN1 ), ATC-( LN1 ), ATCVmax( BN1 ), ATCVmin( BN1 ) are known, and that the 
probability distribution functions can be found by integration, the probability density 
functions for +ATC , −ATC , maxVATC , and minVATC  can be found using (2.50). Using the 
probability density functions for +ATC , −ATC , maxVATC , and minVATC , (2.50) can be 
used once again to find the probability density function of the ATC, 
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2.5. Calculating the Gram-Charlier series 
The mean, variance, and other raw moments of an ATC transfer can be used to 

obtain an approximation of the probability density function. If higher order statistical 
moments of the ATC are known, the Gram-Charlier type A series for this purpose yields 
an approximate probability density function of the ATC. The script written in MATLAB 
is shown in Appendix A. 

The Gram-Charlier type A series is a standard measure frequency function, 
denoted as f(x), with the mean 0=GCμ  and variance 12 =GCσ  expanded in a series of 
derivatives of the standard measure normal (Gaussian) function 

2
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e)x(G
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. (2.52)

The derivatives of (2.52) result in a Taylor series representation, as shown in [29]. This 
Taylor series is the Gram-Charlier type A series 
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where jc  are constants based on a function of standardized moments, )x(H j  are Hermite 
polynomials, and G(x) is the characteristic Gaussian function. The first five Hermite 
polynomials are 
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where x is a scalar. For i greater than 1 the Hermite polynomials are, 
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where 
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The constant jc  in the Gram-Charlier type A series is found using standard 
measure, 
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For central moments, the first five values for nc  become 
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Using the Hermite polynomials, )x(H j , and Gram-Charlier constants, jc , a 
formal expression of f(x) is 
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Since f(x) is found using a standard measure random variable 0=GCμ  and 12 =GCσ , f(x) 
needs to be transformed into a function f(y) so that the probability density function of 
ATC has mean ATCGC μμ =  and variance 22

ATCGC σσ = . The standard measure 
transformation used for the Gram-Charlier type A series is 
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ATC

ATCyx
σ
μ−

= , 

where x are the standard measure variables of the ATC, y are the real variables of the 
ATC, ATCμ  is the mean of the ATC, and ATCσ  is the standard deviation of the ATC. The 
new Gaussian function now becomes, 
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The resulting probability density function f(y) is the actual distribution of ATC 
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2.6. Summary of the proposed algorithm 
Figure 2.7 illustrates the entire stochastic ATC algorithm. The deterministic ATC 

calculation algorithm (Section 2.3) and a stochastic load flow algorithm (Section 2.2) are 
first performed. The outputs used from the deterministic ATC algorithm are the system 
Jacobian, bus voltage magnitudes, and transmission line flows. The stochastic load flow 
algorithm outputs the statistical moments of the transmission line flows and bus voltage 
magnitudes, which are used with the Jacobian at point X in Figure 2.7 and relevant 
system parameters to form the moments of ATC+( LN1 ), ATC-( LN1 ), ATCVmax( BN1 ), 
ATCVmin( BN1 ) using (2.45-48). The moments are then used to form sets of probability 
density functions using the Gram-Charlier type A series. For each set of probability 
density functions associated with ATC+( LN1 ), ATC-( LN1 ), ATCVmax( BN1 ), ATCVmin( BN1 ), 
the probability density function is found, resulting in the four probability density 
functions +ATCf , −ATC

f , maxVATC
f , and minVATC

f . The resulting four probability density 
functions are then used with (2.51) to find the probability density function of the 
minimum of the four intermediate ATCs calculated. The resulting probability density 
function is )ATC(f BA

ATC
−  and can be used to find the mean and variance of the ATC. 

The quantity )ATC(f BA
ATC

− can also be used, in conjunction with a price function, to 
find the expected price of the transfer. 
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Figure 2.7 Stochastic ATC algorithm 
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3. Stochastic Available Transfer Capability Applications 

3.1. Introduction 
In this chapter, illustrations of stochastic ATC calculations are given. For this 

purpose the WECC 179 bus test bed [52] is used. This test bed was inspired by the actual 
WECC system in 2000. The data used in the examples here are representative of the real 
system at some point in time, but do not represent WECC system or load data at present. 
The WECC 179 bus test bed is intended to give an understanding of how the stochastic 
ATC problem is formed and determined. There are five different examples shown in this 
chapter, one for the deterministic ATC calculation, and two different examples for the 
stochastic ATC calculation using two methods. The two methods used are the algebraic 
method discussed in Chapter 2, and the iterative Monte Carlo method discussed in 
Section 3.5. 

For purposes of terminology, the term “stochastic-algebraic method” refers to the 
method in Chapter 2 in which mathematical properties of functions of multivariate 
variables is used as opposed to Monte Carlo – repeated trials. Of course, both the Monte 
Carlo and “stochastic-algebraic method” are analytical in the sense that results are used to 
analyze alternative scenarios. Nonetheless, the term “stochastic-algebraic method” is 
reserved here for the mathematical, non-repeated trial approach. All examples are listed 
in Appendix H. The bus loads for the stochastic ATC are modeled using information 
from a day ahead-load forecast. The method utilized for bus load modeling is shown in 
Section 3.3. 

3.2. WECC 179 test bed and examples 
The WECC 179 bus test bed is a power system which contains 263 lines as shown 

in Figure 3.1. The system data are shown in Appendix E. Limitations of line thermal 
rating and voltage magnitude are shown in Appendix G. As commonly used in stochastic 
load flow examples, the active power loads are represented by normally distributed 
pseudorandom variables, with reactive powers found by using constant power factors of 
the loads. A detailed modeling scheme for the statistics of the bus loads is shown in 
Section 3.4. 

The examples shown in this chapter are divided into five parts. The first part is the 
deterministic ATC shown in Section 3.3 and this example is called WECC-D. The second 
and third parts are a stochastic ATC example in which all bus loads are considered to be 
random. Two techniques will be illustrated as examples of the calculation of the 
stochastic ATC with all bus loads considered random. Example WECC-MCC is a Monte 
Carlo based example. Example WECC-S uses stochastic analysis. Both WECC-S and 
WECC-MC methods are compared and are shown in Section 3.6. The fourth and fifth 
examples are a stochastic ATC example but with large bus loads considered to be 
random. All these examples are performed using Monte Carlo and stochastic analysis 
methods. The examples are denoted as WECC-MCLx and WECC-SLx and are shown in 
Section 3.7, where L represents the examples with large bus loads larger than x 
considered to be random. There are four sets of these examples which are denoted as 
WECC-MCL100, WECC-SL100, WECC-MCL500, WECC-SL500, WECC-MCL1000, 
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WECC-SL1000, WECC-MCL1500, and WECC-SL1500. The listing of all examples in 
Appendix H should help identify the example conditions. 

3.3. Deterministic ATC 
The deterministic ATC calculation is a major part of the stochastic ATC 

calculation process. The Jacobian matrix taken from the deterministic ATC calculation is 
used as a linear transformation matrix in the stochastic ATC algorithm. Therefore, it is 
important that the deterministic ATC formulation is accurate. 

The deterministic ATC formulation is shown in Section 2.3 and is used with the 
WECC system to find the deterministic ATC. For the WECC system, there are 31862 
different ATC transfers but only ten different cases are illustrated. Table 3.1 lists only 10 
representative ATC values. These cases were compared to a computationally intensive 
iterative approach illustrated in Figure 3.2. The deterministic ATC affectively finds the 
approximate ATC of the system. The approach shown in Figure 3.2 is initialized at the 
base case and there is zero ATCA-B added to the system. ATCA-B is added to the bus load 
generator at bus A and as a constant power factor load at bus B. Since ATCA-B is in units 
of MW, the active and reactive power added at bus B are, 

Pload(B) =  Pload(B) + ATCA-B, 

Qload(B) = Qload(B) +  sgn(Qload(B))sin(acos(pf(B)))ATCA-B. 

where sgn which is the signum function which represents the sign of a real number. 
Since there are a few loads in the WECC system which are leading power factor, 

term sgn (Qload(B)) is used to preserve the negative sign of the load in such a case. 
Once the bus load at bus B is updated, a load flow study is preformed where |V| 

and line flows are found and compared to their respective limits. If all the limits are not 
violated, the quantity ΔATCA-B is added to the ATCA-B and the study is reiterated. When 
the ATCA-B reaches the point where there is a limit violation, the ATCA-B is achieved, and 
becomes the ATCA-B of the previous iteration. 

The deterministic ATC algorithm from Section 2.3 is compared to the 
approximate real deterministic ATC and is shown in Table 3.1. Because there are 179 
busses in the WECC test bed, there are 15931 possible ATCA-B values corresponding to 
the pairs A,B. 
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Table 3.1 Deterministic ATC results for Example WECC-D 

From Bus To Bus Actual ATC (MW) Deterministic ATC (MW) 
3 8 1141 1146 
8 112 965.1 965.2 
44 160 483.3 483.7 
3 155 498.1 498.3 
5 141 739.4 739.7 
39 57 876.1 876.3 
64 9 257.9 258.1 
12 60 1015 1015.1 
78 103 618 619.3 
34 64 181 181.4 
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Figure 3.1. The WECC 179 bus test bed used in examples WECC-x 
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Figure 3.2. Deterministic ATC iterative approach used in example WECC-D 

 

3.4. Modeling of bus load statistics 
In a majority of the stochastic load flow studies, bus loads are often assumed to be 

Gaussian [15,25-27,35-36]. The process of the stochastic load flow study and stochastic 
ATC calculation in this report also assumes the bus loads to be Gaussian. A linear 
transformation of statistical moments of bus loads is preformed to obtain the statistical 
moments of the ATC. If the mean of each bus load of the WECC 179 bus system is 
assumed to be base case bus loads, where do the other statistical moments come from? It 
is assumed that the statistical moments for all the bus loads are the result of errors in a 
day-ahead load forecast. 

There are a number of day-ahead load forecast algorithms in the literature [46-
51]. Each forecast technique results in an error which can be used to estimate a 
probability density function of the bus load. Table 3.2 shows the different load 
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forecasting errors that different programs have when estimating the load forecast. Note 
that [46] is a seven day ahead forecast. 

The error function can be used to find the standard deviation of the load forecast 
error, 

dye)x(erf
x y

∫
−

=
0

2 2

2

2
2 σ

πσ
. (3.1)

If a band of ±ε is known and assumed to be Gaussian distributed, the error function for 
this band is assumed to be equal to (±0.9). Neglecting the load forecast errors in 
references [46,49], an average day ahead load forecast error can be found, 

ε =1.04%. (3.1)

The parameter ε is used to estimate the standard deviation of the bus loads. It is 
assumed that 90% of the time, the bus load error lies in the band +/- 1.04%, from (3.1), in 
a Gaussian distribution. Therefore a method is developed to find the standard deviation of 
the error using this information. 

 

Table 3.2 Load forecast errors for different forecast methods 

Reference 

Minimum Load 
Forecast Error 

(%) 

Maximum Load 
Forecast Error 

(%) 
Time  

Horizon Method 

[46] 3.39 9.97 7 Days 

ARIMA model 
and transfer 

function model 

[47] 1.06 1.19 1 Day 
time series 
forecasting 

[48] 1.79 5.53 
Day Ahead 

Holiday 
fuzzy linear 
 regression 

[49] 0.55 1.07 1 Day 
hybrid fuzzy 

neural network 

[50] 0.9 1.49 1 Day 
hybrid fuzzy 

neural network 
 
Therefore σ  in (3.1) can be found using simple statistical analysis, e.g. using 

MATLAB. In MATLAB, the error function is defined as follows 

due)x(merf
x

u∫ −=
0

22
π

. (3.3)

By performing a transformation of variables, erf can be found in terms of merf. 

σσ 22
dyduyu ==  (3.4)
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If erf = 0.9 and x = 1.04, σ  can be found numerically, 

pσ =0.8596 (3.6)

The bus load variance can be modeled using the standard deviation in (3.6) and the mean 
of the bus loads 

( )2load
ip

Load
i Pσ=∑  (3.7)

where Load
i∑  is the variance of the real power load at bus i, and load

iP  is the mean of the 
load at bus i. In (3.7) all parameters are scalar. The notation ∑  for variance is usually 
used for the covariance matrix, but hopefully this will not be confused with summation. 

Long term load forecasting can be used in conjunction with to stochastic ATC in 
transmission expansion scenarios. Applications of neural networks and expert systems for 
long term load forecasts from 1 year to 10 years are widely used [79-82]. Calculation 
errors for the long term load forecasting range from 10% to 20%. A calculation error of 
20% is assumed and is substituted for ε in the analysis of finding the standard deviation 
of the bus loads from (3.3-3.6). From the analysis, it can be shown that a typical standard 
deviation of the bus loads for a long term load forecast (with erf =0.9 and ε = 20.0) is 

pσ = 12.0%. The value pσ  can once again be used in conjunction with (3.7) to find the 
bus load variances, instead with long term load forecasts considered. 

3.5. Monte Carlo simulation 
A Monte Carlo study is used to compare and verify the results of the algebraic 

stochastic ATC calculation method to approximate actual values of the stochastic ATC. 
A Monte Carlo study is performed which compares the results of the stochastic-algebraic 
method to an approximate actual value of the stochastic ATC. The Monte Carlo study is 
similar to the deterministic study in Section 3.3 and is shown in Figure 3.3. A Monte 
Carlo study is repeated many times to get the statistics of the ATC. Initially, the bus loads 
are pseudorandomly generated and applied to the approximate deterministic ATC 
calculation. When the sample ATC is found, it is saved and the process is repeated many 
times. 
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3.6. Examples WECC-MC and WECC-S 

Using the WECC-179 bus test bed, a stochastic-algebraic and Monte Carlo 
simulated ATC analysis of the system using MATLAB will illustrate the degree of 
agreement of both methods. Even though the Monte Carlo method is an “exact” process 
of finding the ATC given a sample operating condition and other given simplifying 
assumptions, the computation time for the method is quite large while the stochastic 
determination of ATC reduces the computation time significantly. In the WECC system, 
the average bus load mean is 225.688 MW and the standard deviation for that bus load 
mean can be found from the previous section and is 194.001 MW. From [93] the number 
of trials needed to represent the normal distribution for the mean and standard deviation 
given can be found. For simplicity, a Monte Carlo study is preformed to see how many 
trials are needed to have bus load mean and standard deviation agree within 5 percent of 
the values of 225.688 MW for the mean and 194.001 MW for the standard deviation. As 
a result about 800 trials are needed to represent the bus load mean and standard deviation 
statistics to within 5 percent. The WECC system has 104 bus loads. In order to keep the 
same resolution of 800 trials for 104 random variables, the Monte Carlo study performed 
should include at least 800104

 or 8.34e301 trials. Note that 8.34e301 is nearly impossible to 
perform on a desktop PC, therefore when Monte Carlo trials are used as a comparison 
with the stochastic-algebraic method, the reduced number of trials used for comparison 
will introduce some error in the resulting statistics. 

For the WECC system 10000 trials are ran and the computation time is about 24 
hours. The Gram-Charlier type A series for pATC(ATC) appears to be accurately 
represented using the first 40 statistical moments for each transfer and resulting in a 
probability of 1.000 when the series is integrated from ATC = ∞−  to ∞ . Figs. 3.4-3.8 
show plots of the probability density functions for the transfer between each bus pair of 
the system. 

This section shows results of the stochastic ATC analysis in the WECC-179 bus 
test bed. Since the test bed has 263 different power lines and devices, only 5 exemplary 
transfers are analyzed as shown in Table 3.3 

Data from Table 3.4 show the difference between the Monte Carlo and stochastic 
statistical moments which are calculated from the probability density f(x) is obtained 
from the Gram-Charlier series using  

where k is the moment order, )(
xm 1  is the mean of the datum x and f (x) is the probability 

density function represented by the Gram-Charlier type A series. 

11 >−= ∫
∞

∞−

k,dx)x(f)mx(u k)(
x

)k(
ATC  (3.8)
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Figure 3.3. Monte Carlo stochastic ATC 

 

Table 3.3 Five selected transfers used for examples WECC-S and WECC-MC 

Sending 
Bus 

Receiving 
Bus 

78 103 
3 155 
3 8 
44 160 
34 64 

 
As shown in Table 3.4, the differences in the mean between the Monte Carlo and 

stochastic-algebraic method moments have small error (~1%). The small error in the 
mean should warrant agreement between the stochastic-algebraic and Monte Carlo 
methods. Figures 3.4 – 3.8 show the agreement graphically using probability density 
functions. 

3.7. Stochastic ATC considering large bus loads to be random 

In large systems, one way to decrease the computational burden of a stochastic 
ATC study can be done by only considering large bus loads to be random. The examples 
illustrated in this section are results from the stochastic ATC considering bus loads larger 
than 100, 500, 1000, and 1500 MW. For each of the four cases the stochastic-algebraic 
and Monte Carlo studies are performed and compared. Tables 3.5-8 show the results. 
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Figure 3.4. PDF of the ATC transfer from 78 to 103 for examples WECC-S and WECC-

MC 
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Figure 3.5. PDF of the ATC transfer from 3 to 155 for examples WECC-S and WECC-

MC 
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Table 3.4 The mean and standard deviation selected transfers at the ATC limit for 
examples WECC-MC and WECC-S 

 

 
Stochastic-

Algebraic Method 
WECC-S 

Monte Carlo Method 
WECC-MC 

Sending Bus 
Receiving 

Bus 
Mean 
(MW) 

Sending 
Bus 

Receiving 
Bus 

Mean 
(MW) 

78 103 619.38 78 103 619.38 
3 155 498.34 3 155 498.34 
3 8 1145.3 3 8 1145.3 
44 160 483.69 44 160 483.69 
34 64 181.37 34 64 181.37 
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Figure 3.6. PDF of the ATC transfer from 3 to 8 for examples WECC-S and WECC-MC 
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Figure 3.7. PDF of the ATC transfer from 44 to 160 for examples WECC-S and WECC-

MC  
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Figure 3.8. PDF of the ATC transfer from 34 to 64 for examples WECC-S and WECC-

MC 
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Table 3.5 The mean and standard deviation selected transfers at the ATC limit for 
examples WECC-MCL100 and WECC-SL100 

 

 
Stochastic- 

Algebraic Method 
WECC-S 

Monte Carlo Method 
WECC-MC 

Sending Bus 
Receiving 

Bus 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
78 103 619.38 34.676 612.64 56.725 
3 155 498.34 4.2724 497.81 4.4449 
3 8 1141 1.0798 1141 1.5667 
44 160 483.69 2.07 483.74 2.1914 
34 64 181.37 28.313 182.01 29.985 

 

Table 3.6 The mean and standard deviation selected transfers at the ATC limit for 
examples WECC-MCL500 and WECC-SL500 

 

 
Stochastic- 

Algebraic Method 
WECC-S 

Monte Carlo Method 
WECC-MC 

Sending Bus 
Receiving 

Bus 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
78 103 619.38 36.673 614.3 57.173 
3 155 498.34 2.5738 497.89 3.9884 
3 8 1141 0.92141 1140.9 1.5425 
44 160 483.69 0.17359 483.66 0.28073 
34 64 181.37 24.309 181.68 31.496 
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Table 3.7 The mean and standard deviation selected transfers at the ATC limit for 
examples WECC-MCL1000 and WECC-SL1000 

 

 
Stochastic- 

Algebraic Method 
WECC-S 

Monte Carlo Method 
WECC-MC 

Sending Bus 
Receiving 

Bus 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
78 103 619.38 36.442 614.94 54.965 
3 155 498.34 3.5581 498.03 3.9581 
3 8 1141 0 1140.9 1.5824 
44 160 483.69 0.22238 483.64 0.27863 
34 64 181.37 24.309 179.48 31.327 

 

Table 3.8 The mean and standard deviation selected transfers at the ATC limit for 
examples WECC-MCL1500 and WECC-SL1500 

 

 
Stochastic- 

Algebraic Method 
WECC-S 

Monte Carlo Method 
WECC-MC 

Sending Bus 
Receiving 

Bus 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
78 103 619.38 50.636 614.25 53.969 
3 155 498.34 3.5578 498.27 4.1115 
3 8 1141 0 1141 1.4891 
44 160 483.69 0.2217 483.66 0.27283 
34 64 181.37 24.309 181.36 30.446 

 

3.8. Expected price of transfer 
ATC is one of the major tools used for the trading of power in an energy market. 

Therefore a power marketer would want to know a dollar amount of how much the ATC 
is worth. The value of ATC can be expressed as the maximum amount of money 
generated from a particular transfer, or the ATC could be used for transmission usage 
costs and reliability charges [94]. For each of the transfers shown in Examples WECC-S 
and WECC-SL, 3 different price functions denominated )(

ATCD 1 , )(
ATCD 2 , )(

ATCD 3  from (3.9-
11) are used to illustrate the price of the transfer. The Gram-Charlier Series type A 
representation of the probability density for each transfer from the stochastic method, 
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ATCf , is used in the determination the expected value of the price. The expected price is 
found by (3.12).  

100300300100 231 +++= −−− )ATC()ATC()ATC()ATC(D BABABA)(
ATC  

($/Wh) 
(3.9)

400400100 22 ++= −− )ATC()ATC()ATC(D BABA)(
ATC  ($/Wh) (3.10)

40103 += − )ATC()ATC(D BA)(
ATC  ($/MWh) (3.11)

∫
∞

∞−

= dx)x(f)x(D]D[E ATC
)X(

ATC
)X(

ATC . (3.12)

In Table 3.9, the data for the expected prices for all the cases in Example WECC-
S are shown which are possible amounts of money that can be generated for each 
transfer. The three columns at the right in Table 3.9 correspond to the three ATC prices 
given in (3.9-11). 

Conclusions from this chapter are discussed in Chapter 6.  
 

Table 3.9 Expected price of ATC in example WECC-S for three price equations (3.9-11)  

Transfer 
Sending Receiving 

E[ )(
ATCD 1 ] 

($/h) 
E[ )(

ATCD 2 ] 
 ($/h) 

E[ )(
ATCD 3 ] 

 ($/h) 
78 103 24211.00 38.85 6233.80 
3 155 12379.00 25.04 5023.40 
3 8 150230.00 131.63 11493.00 
44 160 11317.00 23.59 4876.90 
34 64 640.31 3.44 1853.70 
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4. Stochastic-Algebraic ATC Evaluation with the Integration of 
Transmission Asset Uncertainty  

4.1. Introduction 
The purpose of this chapter is to extend the stochastic-algebraic ATC calculation 

described in Chapter 2 to include a model of the uncertainty of the status of transmission 
asset. Inclusion of transmission element status is of high importance in the stochastic 
ATC calculation because the status of transmission paths has the possibility to drastically 
change the statistics of the ATC.  

4.2. Incorporation of transmission element uncertainty 

Equation (2.61) results in a representative density function of the ATC based on 
the randomness of the bus loads and considering limitations of bus voltage magnitude 
and transmission path thermal ratings. It may be of further use to incorporate the statistics 
of the status of the transmission circuits in the system.  

Transmission lines and transformers (i.e., transmission assets) can be statistically 
modeled by considering the status of the device as ON or OFF. Equipment forced outage 
data may be available or assumed in broad categories (e.g., by voltage rating [55]). The 
forced outage rates [66] that capture transmission path uncertainty can be integrated with 
the stochastic ATC calculation to obtain a figure that better characterizes transmission 
system operation. Transmission line forced outages have been heavily studied, and values 
of the forced outage rates [66] can be calculated from [58-61]. Other uses of transmission 
line outages in power system studies are shown in [58-65]. 

Integration of transmission line uncertainty into stochastic ATC calculation is 
performed by constructing a table similar to Table 4.1. Table 4.1 bears some resemblance 
to a generation capacity outage table [66], but Table 4.1 is related to transmission 
equipment rather than generating unit status. The first NL columns show all the possible 
states of transmission availability (as ON or OFF or simply 0, 1). For each system state, 
the stochastic ATC calculation from Chapter 2 is performed resulting in a probability 
density function for each calculation. The probability density functions are tabulated in 
the transmission outage table. The column labeled “Probability” shows the probability of 
being in that transmission system state. The calculation of the probabilities in this column 
is performed using the forced outage rates of each transmission line and the assumption 
of independent events. As a result, the “Probability” column depicted in Table 4.1 sums 
to one. Once all the probability density functions of the ATC and the probabilities of 
transmission availability are calculated, a new probability density function of the 
stochastic ATC is calculated. The new probability density function of the ATC is 
calculated by multiplying the stochastic ATC probability density function of the system 
state by the probability of occurrence; the results are added together to form a new 
stochastic ATC probability density function. The assumption made is that of independent 
events. 
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4.3. Reduction of the transmission outage table 

The number of system outage states is 2N, where N represents the number of lines. 
Using a widely accepted industry practice of considering only single line outages, the 
transmission outage table has one row for all lines in service plus N rows for each single 
line outage (“N-1”) case. Thus the reduced transmission outage table has N+1 rows. If it 
is desired to proceed to the N-2 analysis, for example, a large transmission outage table is 
needed and some assumption of statistical dependence of outage events must be made. 
For the case of assumed independence of outage events, probabilities listed in the 
transmission outage table become very small for N-2 case and beyond (N-k case, k > 2) 
while the number of rows in the table increases to (½)N2 + (½)N. This analysis does not 
include the effect of coalescence of rows. Coalescence of rows occurs in the transmission 
outage table when two or more rows have identical PDFs. In this case, for independent 
events, it is possible to represent that row once representing the probability of occurrence 
as the simple sum of the original row probabilities. Coalescence frequently occurs for the 
case that busses A and B are joined by multiple transmission circuits on a common right 
of way. A decrease of the number of rows in the transmission outage table can be realized 
by contingency ranking considering only the most severe contingencies. 

In power marketing, the ATC has a commercial value and is termed here as “the 
value of energy as limited by ATC and time”. The commercial value is based on the 
value of a non zero power transfer which is limited by the ATC for some specific time 
period. If power is traded at the ATC level, the money generated for a specific transfer is 
maximized. Therefore, calculations of money generated from a specific transfer based on 
the results of a stochastic ATC calculation are optimistic. 

If the probability density function )ATC(f BA
ATC

−  is known, the expected price of 
the transfer can be evaluated using )ATC(f BA

ATC
− and a price function DATC. The 

quantity DATC represents the price of the power in $/MW for current market conditions. 
The quantity ATCA-B is assumed to be in place for a given time interval (e.g., 15 minutes). 
Therefore DATC is also specified for that time interval. It could be argued that DATC is 
given in $/MWh; however, the assumption of a fixed 15 minute time interval is made in 
the discussion below. The quantity DATC is a random variable in this probabilistic 
formulation. An engineer may want to know the expected price for a future transfer 
traded at the ATC level and this price is determined by 

∫
∞

∞−

= ATCATCDATCATC dD)D(f)x(D]D[E
ATC

. (4.1)

Again, E[DATC] is for a 15 minute time interval expressed in dollars.  

4.4. Transmission outage table discussion 
The purpose of this section is to provide a brief illustration on how the 

transmission outage table is used in the stochastic ATC study. The use of the 
transmission outage table is limited to the number of system transmission outage states 
considered. For most cases the N and N-1 cases are only considered. This limits the 
number of entries in the transmission outage table to N+1. The probability of a particular 
system state can be found using the forced outage rate  
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Table 4.1 Pictorial of a “transmission outage table” 

Line Status 

1 2 … NL PDF of the ATC Probability 

1 1 … 1   

1 1 … 0   

… … … …   

0 0 … 0   
 

of each of the transmission lines. For most cases, the forced outage rate is small, and the 
N and N-1 cases represent at least 95% of the “Probability” column in the transmission 
outage table. For states beyond the N-1 case, values in the “Probability” column tend to 
become very small. To illustrate this, Table 4.2 shows the probability of occurrence of a 
system outage state for the WECC system of 179 busses and 263 lines. The forced outage 
rate is taken from Appendix G which presumably represents real data. From Table 4.2, 
about 98.7% of the probability is accounted for in the “Probability” column of a 
transmission forced outage table when the N and N-1 transmission system outage states 
are considered. The probability of occurrence of the N-2 and N-k, k > 2 states are small. 
Therefore the contributions to the outcome of a stochastic ATC study are considered to 
be negligible. Note that the number of transmission system outage states S, is related to 
the number of system lines NL and number of lines on outage that are considered, k, by 

!k)!kN(
!N

S
L

L

−
= . (4.2)

For the WECC 179 bus system, if the N and N-1 transmission system states are 
considered in the analysis of stochastic ATC, the stochastic ATC algorithm from Chapter 
2 is performed a total of 264 times. Each run of the stochastic ATC algorithm represents 
the stochastic ATC for each of the 264 transmission system outage states. The results for 
each stochastic ATC calculation is a probability density function, therefore a total of 264 
probability density functions are found. Each probability density function fits into the 
corresponding row in Table 4.1. 
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Table 4.2 Probability of the transmission system states for the WECC 179 bus system 

State Number of 
transmission 
system states 

Probability of one 
element in the 

state 

Total probability 

N 1 0.8424 0.8424 
N-1 263 5.49*10-4 0.144387 
N-2 34453 3.58*10-7 0.0134 
… … … … 

No lines in service 1 3.05*10-832 3.05*10-832 
 
To illustrate the calculation method of finding the stochastic ATC with 

transmission element uncertainty included, a small system with three transmission lines is 
considered. Table 4.3 shows a transmission outage table for the system with three 
transmission lines. It is assumed that only the N and N-1 cases are to be considered in the 
stochastic ATC calculation. Therefore the total number of system transmission outage 
states is four. It is assumed that the forced outage rate of one transmission line is 0.01. 
The final result of the calculation of the stochastic ATC from Table 4.3 is 

fatc= (0.9703)f1(x)+ (0.0098)f2(x) +(0.0098)f3(x) +(0.0098)f4(x). 

This simple illustration should clarify how the stochastic ATC is calculated by 
including transmission line uncertainty.  

Conclusions and observations from this chapter are discussed in Chapter 6. 
 

Table 4.3 Transmission outage table of a three line power system 

Line Status 
1 2 3 

PDF of the 
ATC 

Forced outage 
rate 

1 1 1 f1(x) 0.9703 
1 1 0 f2(x) 0.0098 
1 0 1 f3(x) 0.0098 
0 1 1 f4(x) 0.0098 
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5. Applications of Stochastic ATC Calculations with Transmission 
Element Uncertainty 

5.1. Introduction 
In this chapter, illustrations of the stochastic ATC calculation considering both 

bus loading and transmission element status uncertainty are given. For this purpose the 
WECC 179 bus test bed [52] is used. This test bed was inspired by the actual WECC in 
2000. The data used in the examples here are representative of the real system at some 
point in time, but do not represent WECC data at present. The WECC 179 bus test bed is 
intended to give an understanding of how the stochastic ATC problem is formed and 
solved. Eight different ATC transfers are considered and compared to results from the 
stochastic ATC method of only considering bus loading to be uncertain. The two methods 
used are as described in Chapters 2 and 4. All examples are listed in Appendix H. The 
bus loads for the stochastic ATC are modeled using information from a day ahead-load 
forecast. The method for bus load modeling is shown in Section 3.3. The transmission 
line uncertainty is modeled considering the top twenty most severe line outage 
contingencies. Severity of a line outage is based on a transient stability index using 
commercial software PSAT and TSAT. 

5.2. Line outage contingency ranking of the WECC 179 bus system 

In calculating the stochastic ATC, the number of considered system states can be 
initially decreased to the N and N-1 cases. It might be more beneficial to further decrease 
the system states to speed up the calculation process. Further decrease of the number of 
transmission asset forced outage states can be accomplished by considering the most 
severe line outage contingencies. A line outage contingency ranking study is performed 
on the WECC 179 bus system. The contingency ranking is performed on the following 
software packages: 

 
• power systems analysis tool (PSAT) 
• transient security assessment tool (TSAT). 

 
The contingency ranking is performed by taking a single line out of the system 

and running a stability study. A transient stability index is calculated and stored for each 
contingency. The transient stability index gives a measure of how severe a contingency 
is. The transient stability index [67,68] used for this purpose is a number between -100 
and 100. Negative values represent unstable cases, and positive values represent stable 
cases. The smaller the transient stability index, the more severe the contingency. This 
process is repeated until each single line outage case is studied individually. 

Results from the contingency ranking show that the WECC 179 bus system has a 
large number of single line outage contingencies that are unstable. These contingencies 
are shown in Table 5.1. Comparing Table 5.1 to the system topology, it is initially seen 
that most of the insecure contingencies are radial lines connected to generators. Other 
contingencies in Table 5.1 are not radial elements, but networked elements. These 
network elements are shown in Figure 5.1. These two groups of lines are important to 
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system stability and are also not considered as part of the top twenty most severe ranked 
contingencies. The twenty worst ranked contingencies considered in the stochastic ATC 
are shown in Table 5.2. 
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Table 5.1 Unstable contingencies of the WECC 179 bus system 

From To Transient Stability Index Status 
39 40 -93.6 Insecure 
157 161 -93.57 Insecure 
31 32 -93.52 Insecure 
32 33 -93.52 Insecure 
33 34 -93.52 Insecure 
78 66 -93.43 Insecure 
138 139 -93.42 Insecure 
31 30 -93.42 Insecure 
42 43 -93.4 Insecure 
76 77 -93.4 Insecure 
102 103 -93.32 Insecure 
140 141 -93.29 Insecure 
116 117 -93.28 Insecure 
12 13 -93.28 Insecure 
118 119 -93.28 Insecure 
161 162 -93.26 Insecure 
17 18 -93.21 Insecure 
144 145 -93.15 Insecure 
112 113 -93.09 Insecure 
16 15 -93.09 Insecure 
80 79 -93.08 Insecure 
5 6 -93.05 Insecure 
8 9 -93.04 Insecure 
34 35 -93.03 Insecure 
158 159 -93.03 Insecure 
147 148 -92.98 Insecure 
66 65 -92.98 Insecure 
2 4 -92.97 Insecure 

149 150 -92.97 Insecure 
5 1 -92.92 Insecure 
44 45 -92.86 Insecure 
68 70 -92.76 Insecure 
85 36 -89.86 Insecure 
156 157 -85.98 Insecure 
48 47 -84.01 Insecure 
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Table 5.1 (continued) Unstable contingencies of the WECC 179 bus system 

From To Transient Stability Index Status 
3 8 -84.01 Insecure 
2 3 -54.46 Insecure 

141 143 -54.46 Insecure 
 

Table 5.2 Twenty most severe contingencies for the WECC 179 bus system 

From To Transient Stability Index Status 
17 5 48.92 Secure 
5 160 49.93 Secure 
75 7 50.52 Secure 
8 17 50.81 Secure 
31 80 54.92 Secure 
156 85 55.07 Secure 
117 119 57.28 Secure 
60 61 58.1 Secure 
26 27 58.72 Secure 
14 26 58.96 Secure 
113 114 59.02 Secure 
136 152 59.07 Secure 
142 64 59.13 Secure 
27 139 59.23 Secure 
134 104 59.32 Secure 
119 134 59.36 Secure 
80 78 59.59 Secure 
133 108 59.82 Secure 
139 142 59.83 Secure 
88 86 59.84 Secure 
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Figure 5.1. Insecure transmission lines in the WECC 179 bus system 

North

 
 
(Circled transmission lines 
indicate that, if outaged, 
result in an unstable 
system) 
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5.3. Example WECC-STLU 

Using the WECC-179 bus test bed, the stochastic-algebraic ATC calculation with 
transmission element uncertainty is considered. Since the test bed has 263 different 
power lines and devices, only 7 exemplary transfers are illustrated as shown in Table 5.3 

The system element outages considered are shown in Table 5.2. The outages of 
the elements in Table 5.2 represent the most severe 20 stable contingences of the system. 
The results considering transmission element uncertainty are compared to the stochastic 
ATC calculation without considering transmission element uncertainty. Monte Carlo 
trials are not preformed due to the required of time to get a good estimate of the ATC 
statistics. Based on results from Chapter 3, the number of Monte Carlo trials needed to 
keep the same resolution of 1000 trials for this case is 100020. This represents about 1057 
days needed to model one transfer at the same resolution. Table 5.4 shows the mean, 
variance, skew, and kurtosis statistics for the transfers considered. Calculation methods 
for these statistics are shown in Appendix A. Table 5.5 shows various cumulative 
probabilities for each of the transfers. Figs. 5.2-5.8 show plots of the probability density 
functions for the transfer between each bus pair of the system considering the uncertainty 
of transmission element status. Figs 5.9-5.15 show cumulative probability density 
function plots for the transfer between each bus pair considering the uncertainty of 
transmission element status. 

Conclusions and observations from this chapter are discussed in Chapter 6. 
 

Table 5.3 Selected power transfers used for examples WECC-STLU 

Sending 
Bus 

Receiving 
Bus 

35 102 
40 10 
70 10 
36 137 
4 137 

162 69 
15 55 
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Table 5.4 The statistical measures for selected transfers* 

Transfer   
Mean  
(MW) 

Variance  
(MW2) Skew Kurtosis 

no lines out 613.85 4496.70 -0.01 3.02 
35-102 N-1 case 614.06 4583.20 0.10 3.77 

no lines out 1760.50 26.98 -25.88 8947 
40-10 N-1 case 1760.50 57.58 -8.21 3190.50 

no lines out 1004.60 670990 0.20 1.11 
70-10 N-1 case 995.47 665340 0.23 1.13 

no lines out 1427.50 8086.20 0.01 3.23 
36-137 N-1 case 1427.30 8195.00 0.01 3.44 

no lines out 1273.20 2.64 -483.1 417170 
4-137 N-1 case 1277.00 621.80 16.52 382.78 

no lines out 767.83 23.74 4.48 1350.2 
162-69 N-1 case 767.96 63.52 12.53 1461.8 

no lines out 2127.60 200.24 -3.10 333.56 
15-55 N-1 case 2121.50 3170.80 17.16 422.90 

* The N-1 case refers to a single transmission component outage taken from a 
contingency raking (20 worst cases considered) 
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Table 5.5 Probabilities of ATC* 

Transfer   
Pr(ATC 
<0MW) 

Pr(ATC 
<500MW)

Pr(ATC 
<1000MW) 

Pr(ATC 
<1500MW) 

no lines out 1.21E-06 0.046217 0.99995 1 
35-102 N-1 case 1.33E-06 0.046263 0.99973 0.99992 

no lines out 2.73E-07 5.59E-07 8.59E-07 1.17E-06 
40-10 N-1 case 4.32E-07 8.79E-07 1.34E-06 1.85E-06 

no lines out 0.013158 0.55313 0.55955 0.55955 
70-10 N-1 case 0.013549 0.54785 0.55462 0.55463 

no lines out 9.05E-07 2.07E-06 4.59E-06 0.79348 
36-137 N-1 case 1.53E-06 3.34E-06 2.94E-05 0.79348 

no lines out 4.13E-07 8.59E-07 1.34E-06 0.99999 
4-137 N-1 case 7.85E-07 1.63E-06 2.56E-06 0.99953 

no lines out 4.07E-07 8.42E-07 1 1 
162-69 N-1 case 2.74E-06 6.51E-06 0.99955 0.99998 

no lines out 1.57E-09 7.68E-07 1.49E-06 2.29E-06 
15-55 N-1 case 1.72E-09 8.38E-07 1.62E-06 2.49E-06 

* The N-1 case refers to a single transmission component outage taken from a 
contingency raking (20 most severe cases considered) 
 

Table 5.5 continued Probabilities of ATC* 

Transfer   
Pr(ATC 

<1750MW) 
Pr(ATC 

<2000MW) 
Pr(ATC 

<3500MW) 
Pr(ATC 

<4000MW) 
no lines out 1 1 1 1 

35-102 N-1 case 1 1 1 1 
no lines out 0.028149 1 1 1 

40-10 N-1 case 0.028401 0.99966 1 1 
no lines out 0.55955 0.99998 1 1 

70-10 N-1 case 0.55464 0.99112 1 1 
no lines out 0.99975 1 1 1 

36-137 N-1 case 0.99951 0.99996 1 1 
no lines out 1 1 1 1 

4-137 N-1 case 1 1 1 1 
no lines out 1 1 1 1 

162-69 N-1 case 1 1 1 1 
no lines out 2.73E-06 3.21E-06 1 1 

15-55 N-1 case 2.97E-06 3.48E-06 0.9946 0.9951 
 

* The N-1 case refers to a single transmission component outage taken from a 
contingency raking (20 most severe cases considered) 
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Figure 5.2. PDF of the transfer at the ATC limit from 35 to 102 for example WECC-

STLU 

 

-500 0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ATC (MW)

pr
ob

ab
ili

ty

 
Figure 5.3. PDF of the transfer at the ATC limit from 40 to 10 for example WECC-STLU 
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Figure 5.4. PDF of the transfer at the ATC limit from 70 to 10 for example WECC-

STLU. Bimodal PDF occurs due to inclusion of transmission outages. 

 

-500 0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10-3

ATC (MW)

pr
ob

ab
ili

ty

 
Figure 5.5. PDF of the transfer at the ATC limit from 36 to 137 for example WECC-

STLU 
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Figure 5.6. PDF of the transfer at the ATC limit from 4 to 137 for example WECC-STLU 
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Figure 5.7. PDF of the transfer at the ATC limit from 162 to 69 for example WECC-

STLU 
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Figure 5.8. PDF of the transfer at the ATC limit from 15 to 55 for example WECC-STLU 
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Figure 5.9. CDF of the transfer at the ATC limit from 35 to 102 for example WECC-

STLU 
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Figure 5.10. CDF of the transfer at the ATC limit from 40 to 10 for example WECC-

STLU 
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Figure 5.11. CDF of the transfer at the ATC limit from 70 to 10 for example WECC-

STLU 
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Figure 5.12. CDF of the transfer at the ATC limit from 36 to 137 for example WECC-

STLU 
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Figure 5.13. CDF of the transfer at the ATC limit from 4 to 137 for example WECC-

STLU 
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Figure 5.14. CDF of the transfer at the ATC limit from 162 to 69 for example WECC-

STLU 
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Figure 5.15. CDF of the transfer at the ATC limit from 15 to 55 for example WECC-

STLU 
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6. Conclusions Drawn from the Example 

6.1. Conclusions drawn from example WECC-D 
Example WECC-D is shown in Section 3.3. In this example, a deterministic ATC 

study is performed (using a full analysis) and is compared to an approximate 
deterministic ATC study (using the incremental technique shown in Chapter 3). Note that 
all examples in this study are simulations using system data inspired by the WECC. None 
of the examples use historical real data. The deterministic ATC study is an important part 
of the stochastic ATC study. The major information from the deterministic ATC study is 
the system Jacobian matrix at the solution. At this point, the limitations for the ATC are 
linearized using the information from the Jacobian matrix at the solution of the 
deterministic ATC. If the deterministic ATC study is properly performed, then the 
confidence of the mapping functions used in the stochastic-algebraic ATC study is high. 

Table 6.1 shows errors in the results of Table 3.1 in the deterministic ATC study. 
The error tabulated in Table 6.1 is the difference between the ATC calculated from a full 
analysis and that calculated using the approximate incremental technique described in 
Chapter 3. The errors shown in Table 6.1 suggest that the deterministic ATC calculation 
algorithm derived in Section 2.3 is a good approximation of the deterministic ATC 
calculation. Therefore, there is confidence that the resulting Jacobian matrix at the 
solution point of the deterministic ATC algorithm is a good linear approximation for the 
ATC. This resulting Jacobian matrix is used as a mapping matrix for the constraints of 
the stochastic ATC. 

6.2. Conclusions drawn from example WECC-S and WECC-MC 

Examples WECC-S and WECC-MC show an agreement between the Monte 
Carlo and stochastic analysis methods for evaluating the stochastic ATC for a fairly 
realistic power system. Table 6.2 shows errors in the mean and standard deviation 
between the Monte Carlo and stochastic analysis methods. The mean of the ATC as 
calculated using the Monte Carlo method versus the stochastic-algebraic method have 
small differences (e.g., much less than 1%). Errors for the standard deviation between the 
two methods are between 3 and 13 %. Errors of the standard deviation between the two 
methods can be the result of a combination of several factors. 

 
In Example WECC-MC: 

More trials are needed in the Monte Carlo study. In Chapter 3, an approximation 
of 800104 trials are needed to represent the statistics of the system. 10000 trials are used 
for each stochastic ATC study. If more trials are used, the standard deviations in the 
Monte Carlo analysis of the ATC is expected to be closer to the standard deviations of the 
stochastic-algebraic ATC calculation. 

The Monte Carlo analysis is terminated when the difference between the ATC of 
the previous iteration and the ATC of the in progress iteration is within a certain 
difference error. This error for the WECC-MC example is 10-2 MW. If the difference in 



 

68 

ATC from iteration to iteration is small (e.g., << 10-2), then the ATC from busses [3, 3, 
44] to busses [155, 8, 160] has enhanced accuracy. 
 

Table 6.1 Error* of the deterministic ATC results from example WECC-D 

From Bus To Bus ATC Error (%) 
3 8 0.43821 
8 112 0.01036 
44 160 0.08276 
3 155 0.04015 
5 141 0.04057 
39 57 0.02283 
64 9 0.07755 
12 60 0.00985 
78 103 0.21036 
34 64 0.22099 
* Error = (Deterministic ATC – Actual ATC) / Actual ATC 

 

Table 6.2 Errors* of the mean and standard deviation from examples WECC-S and 
WECC-MC 

From Bus 
To 
Bus Error in the mean (%) 

Error in the 
standard deviation (%) 

78 103 0.70716 12.9126 
3 155 0.02809 4.64255 
3 8 0.37545 12.5269 
44 160 0.00413 3.31439 
34 64 0.22606 8.58527 

* Error in the mean = (mean(WECC-S) – mean(WECC-MC)) /mean(WECC-S) 
  Error in the std = (std(WECC-S) – std(WECC-MC)) /std(WECC-S) 
 

In Example WECC-S: 
Errors can also be introduced by using the Gram-Charlier type A series 

approximation. The number of statistical moments used in the stochastic-algebraic ATC 
problem is 10. The Gram-Charlier type A series is an infinite serious approximation and 
is better represented when moments beyond the mean and variance are used in the 
formulation. Also, this series appears quite frequently in the algorithm of the stochastic-
algebraic ATC calculation. The series is used to approximate the probability density 
function of all the ATC limitations considered in the study. The number of Gram-Charlier 
type A series approximations used in the stochastic-algebraic study is shown in Table 6.3. 
This large number of series used in the stochastic-algebraic ATC calculation can 



 

69 

therefore be a contribution of the error in the standard deviations between examples 
WECC-MC and WECC-S 

 

Table 6.3 The number of Gram-Charlier type A series approximations used in example 
WECC-S 

Limitation Number of  Gram-Charlier type A Series 
Voltage Magnitude High 178 
Voltage Magnitude Low 178 

Line Power Flow 263 
Total 619 

 
The reduction of computation time is the main motivation behind developing a 

stochastic-algebraic ATC calculation. A 1000 trial Monte Carlo study of the stochastic 
ATC calculation for this system has an execution time of about 15 hours per each trial 
using a 2.5 GHz personal computer. Since the bus loads are modeled based on the day 
ahead load forecast error, the time needed to solve a Monte Carlo ATC study is 
unacceptable. Table 6.4 shows the computation time for each of the five transfers used in 
example WECC-S. These computation times are about 1 minute and would be acceptable 
to a power marketer who is attempting to buy/sell power in the day ahead time frame. 

 

Table 6.4 Computation times of the ATC transfers in example WECC-S 

From Bus To Bus Computation Time* (seconds) 
78 103 67.36  
3 155 49.94  
3 8 57.53  
44 160 46.57  
34 64 47.22  
A 2.5 GHz personal computer was used 

6.3. Conclusions drawn from examples WECC-S100, WECC-S500, WECC-S1000, 
WECC-S1500, WECC-MC100, WECC-MC500, WECC-MC1000 and WECC-
MC1500 

The examples shown in Section 3.7 illustrate the stochastic ATC for the WECC 
system considering only the large bus loads to be random. The examples are split into 
four different categories: 

 
• Bus loads over 100 MW considered to be random 
• Bus loads over 500 MW considered to be random 
• Bus loads over 1000 MW considered to be random 
• Bus loads over 1500 MW considered to be random. 
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The purpose of these examples is to show how the stochastic ATC changes by 
decreasing the amount of random bus loads. The bus loads that are considered to be 
random have the same mean and variance as the bus loads used in example WECC-S. 
The results show that the difference in standard deviation between the Monte Carlo and 
stochastic-algebraic solutions has similar results to examples WECC-MC and WECC-S. 

One important outcome from the examples discussed in this section is the 
behavior of the statistics of the ATC. This behavior is evident considering a relatively 
small number of bus loads to be random. Large bus loads are selected because it is 
assumed that their statistics have the most impact on the statistics of the ATC. Results 
show that when considering a smaller number of random bus loads for the system, the 
stochastic ATC of the system become more deterministic (i.e. standard deviation is 
small). Table 6.5 shows this evolution of the stochastic ATC to deterministic ATC for the 
transfer from bus 3 to bus 8. The standard deviation when all bus loads of the system 
from Table 6.5 is 1.5418 MW. This standard deviation becomes zero when only bus 
loads greater than 1000 MW are considered. Since a zero standard deviation is a 
characteristic of a deterministic ATC study, these results show that considering a smaller 
number of bus loads has a negative impact on the accuracy of the stochastic ATC. 
Therefore, in order to properly model the stochastic ATC, the system should include 
models of the maximum possible number of random bus loads. 
 

Table 6.5 Results from the stochastic-algebraic method for the transfer from bus 3 to 8 
for the WECC System 

Smallest random bus load Stochastic-Algebraic Method 
Loads below this 
level not modeled 

stochastically Example Mean (MW) Standard Deviation (MW) 
0 MW WECC-S 1145.3 1.5418 

100 MW WECC-S100 1141 1.0798 
500 MW WECC-S500 1141 0.92141 
1000 MW WECC-S1000 1141 0 
1500 MW  WECC-S1500 1141 0 

 

6.4. Conclusions drawn from example WECC-STLU 
The purpose of example WECC-STLU (shown in section 5.3) is to illustrate the 

concepts of Chapter 4. Chapter 4 discusses the addition of transmission uncertainty to the 
stochastic ATC calculation. Example WECC-STLU uses the same stochastic ATC 
calculation method as discussed in Chapter 2 along with a transmission outage table. The 
transmission outage table includes only the top twenty N-1 highest ranked contingencies 
from a contingency ranking program (TSAT). The results of the stochastic ATC 
calculation (including transmission element status uncertainty) are compared to the 
stochastic ATC calculation with only bus loads considered uncertain. 

The results between the two calculation methods are shown in Table 6.6. Table 
6.6 shows the percent difference between the two calculation methods. Incorporating 
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transmission line uncertainty does not drastically affect the mean of the ATC. The 
resulting percent changes in the mean are less than 1%. Since the probability of 
occurrence of the N-1 states are 0.0006518 for each of the transmission lines and 
0.00292304 for each of the transformers, addition of the means of each transmission line 
outage status will result in a small change in the overall calculated mean. Although the 
value of the mean of the ATC is significant in the use of the ATC for operations and 
planning, the changes in the variance, skew, and kurtosis can possibly change how the 
ATC is used in the trade of power. 

Unlike the percent difference in the mean, the changes in the variance, skew, and 
kurtosis are quite significant when integrating transmission asset status uncertainty in the 
stochastic ATC calculation. Information on the properties of skew and kurtosis can be 
found in Appendix A. Changes in these statistical measures represent changes in the 
shape of the density function that represents the ATC. For most of the cases, the skew of 
the ATC decreases (from the no line out case to the 20 N-1 cases). For a majority of 
cases, when a transmission system element is taken out of the system, the mean of the 
ATC decreases. The decrease of skew is expected due to the addition of the 20 N-1 
stochastic ATC random variables with means less than the stochastic ATC with all lines. 
The more negative the skew is the denser is the left side of the distribution is. Therefore, 
the addition of the transmission uncertainty to the stochastic ATC adds more weight to 
the left side of the density curve of the ATC. The shift of weight to the left side is 
important in the calculation probabilities of the ATC.  

The probabilities of the ATC are important in the trade of power if ATC is used. 
Prices of the power can be negotiated by the probability of the ATC. Different pricing 
levels of the transfer of power can be based on the probability of the ATC. For example, 
a transfer for 200 MW is to be traded. The probability of ATC is found from the 
probability density function: 

 
• probability(ATC ≤ 150 MW) = 0.7 
• probability(ATC ≤ 200 MW) = 0.8 
• probability(ATC ≤ 300 MW) = 1.0 

 
the price of the transfer can be split into two different categories based on these 
probabilities. The first category is contracted power that is to not be interrupted. This 
category can be based on the probability P ≤ ATC. For this case, the probability of the 
ATC greater than 200 MW is 0.2. If the probability of the ATC greater than the necessary 
transfer is within a certain range, then a contracted price can be negotiated with transfer 
of power at the full ATC “level”. If the probability of the ATC greater than the necessary 
transfer is 0.2, then the contract of the example will be a full uninterrupted energy 
transfer at the ATC level. If the probability of the ATC greater than the necessary transfer 
is less than 0.2, then the second category of contracted power can be used. This second 
category can be based on a different ATC price along with the possibility of interrupted 
service. For example, if the probability of the ATC greater than the necessary transfer is 
0.3, and the 200 MW of transfer is being negotiated, then 150 MW can be contracted out 
using the first category with uninterrupted service and the additional 50 MW is contracted 
using the second category with possible interrupted service. Therefore, the use of the 
probabilities of the ATC could be of some use in the trade of power across the network. 
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Table 6.6 Comparison of the ATC statistics when the transmission asset uncertainty is 
considered vs. when transmission asset uncertainty is not considered in example WECC-

STLU 

Transfer 

Difference  
in the mean 

(MW)  

Difference  
in the variance 

(MW2) 
Difference  
in the skew 

Difference  
in the kurtosis 

35-102 -0.0341 -1.887 -110 -19.893 
40-10 0 53.143 215.225 -180.426 
70-10 0.917 0.849 -13.043 -1.769 
36-137 0.014 -1.327 0 -6.104 
4-137 -0.297 -99.575 -3024.334 108884 
162-69 -0.0169 -62.625 -64.245 -7.634 
15-55 0.287 -93.684 -118.061 -21.125 
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7. Stochastic-Algebraic ATC Calculation and Transmission 
Expansion 

7.1. Introduction 
Transmission expansion of a power system enhances the ability of the system to 

transport power. With transmission expansion, new paths can be installed or existing 
paths can be upgraded to allow for the system to have increased power transfers and 
concomitant increased power market participation, and potentially enhanced operating 
environment. Since transmission expansion of a system can cost power companies 
significant investment in money, a cost to benefit analysis is commonly preformed as part 
of the extensive considerations to justify the transmission expansion. There are a wide 
range of issues that are also associated with potential transmission expansion including: 

 
• financial 
• systems engineering 
• environmental impact 
• public acceptance 
• expected load growth 
• contractual agreement 
• political 
• reliability 
• right of way availability. 

 
The stochastic ATC is suggested to be used as a tool in the addition of 

transmission assets. 

7.2. Cost to benefit analysis of transmission expansion using stochastic ATC 
Stochastic ATC can be integrated into the array of tools for the analysis of 

transmission expansion of a system. In the planning stage of transmission expansion, 
engineers typically perform a cost to benefit analysis to justify in part the transmission 
expansion of the system. A new analytical procedure in the cost to benefit analysis of 
transmission expansion could include the stochastic ATC calculation. Cost to benefit 
analysis usually entails the manipulation and analysis of data including present values 
and trends in load and available generation. If stochastic ATC calculation is used in the 
cost to benefit analysis, various data will need to augment the traditional data. For 
example, the statistics of loads will be needed; generation levels and base case power 
flows will need to be modeled probabilistically; future market prices will be needed; 
typical time intervals that the ATC is traded will be needed. 

Equation (7.1) shows the time it takes to payback the costs of transmission 
expansion of the system on the basis of elementary considerations,  

ATCATC

te
p DT

CT
ATC

μΔ
=  (7.1)
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where: 
 

• Tp is the payback time of transmission expansion 
• Cte is the cost of transmission expansion 
• 

ATC
μΔ  is the change of the mean of ATC 

• TATC is the number of hours per year that power is traded at the ATC level 
• DATC(P) is the value of the traded power and is dependent on the power 

level. 
 
The calculation of (7.1) can be calculated in sections based on low-medium-and 

high power. The calculation of (7.1) in these sections allows for the changes of DATC(P), 
TATC,  

ATC
μΔ ,  Cte to be properly reflected in Tp. This equation is used as the basis of the 

cost to benefit analysis of transmission expansion. The equation can be used to evaluate 
payback time vs. hours that the transfer is limited by the ATC. The concept of (7.1) is 
illustrated in Section 7.3.  

It can be assumed that real options analysis [70-71] is used to find the future 
values of ATC. Therefore the future value of money needs to be used to evaluate DATC. It 
is also important to note that the cost of transmission expansion Cte should be modified to 
include interest [72-73]. The calculation of the cost of transmission expansion with 
interest rates can be preformed using one of two different functions: 

Simple interest: rt+1  

Compound interest: 
tC

p

p

C
r
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+1  

where r is the interest rate, t is the time elapsed from the start of the interest rate 
calculation, and Cp is the number of compounding intervals per time t. Incorporating 
simple interest (with t equal to payback) into (7.1) yields 

( )
ATCATC

pte
p DT

TrC
T

ATC
μΔ

+
=

1
. (7.2)

Reformulation of (7.2) yields the payback for transmission expansion with simple 
interest included, 

( )rDT
CT

ATCATC
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p

ATC
−Δ

=
1μ

. ((7.
3)

Incorporating compound interest (with t equal to Tp) into (7.1) yields 
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A Taylor series expansion of 
PpTC

pC
r
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+1  is used to reformulate (7.4) from 

which the payback can be estimated. The Taylor series expansion about point a is 
truncated at the second term and is,  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

p
pp

a)cp(

p

T)cp(

p C
rlnaTC

C
r

C
r

p

1111 . (7.5)

If point a is taken to be zero (i.e., (7.5) turns into a Maclaurin series), (7.5) can be 
substituted into (7.4) to yield a payback function considering compound interest 
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Observation of (7.6) indicates: 
If r = 0, (7.1) results 

If 
ATCATC

)(
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DTm
C

ATC

1Δ
 is viewed as a simple unitless constant, the impact of interest 

rate r on Tp is 
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Equation (7.7), for small r, becomes 

rTp +≈1   

which is consistent with the simple interest model in (7.3). 

7.3. Transmission congestion and cost of congestion 
The cost of congestion is important in considering the sale of power across the 

network. A financial cost to benefit analysis of transmission expansion would be 
impacted by the cost of congestion. The cost of congestion typically is used in two 
different ways: nodal pricing and buy-back pricing. Nodal pricing considers congestion at 
nodes in a power system. The cost of congestion is paid for by the consumers and 
GENCOs are compensated for the congestion. These consumer payments are typically 
higher than the payments to GENCOs. Buy-back pricing shares the costs of congestion 
on a pro-rata basis by the consumers and is added to the unconstrained market clearing 
price and does not consider the effects on the transmission network caused by different 
consumers. Further information on the cost of congestion can be found in [74-78,97-99]. 

Inclusion of the costs of congestion to the calculation of the value of ATC could 
impact the payback time of transmission expansion. If a particular ATC transfer causes 
congestion at certain nodes in the power system, the cost of congestion could cause the 



 

76 

value of the ATC to significantly decrease. This phenomenon is dependent on the power 
levels of market sales: if the sales are at power levels close to the ATC, and if the power 
levels cause congestion and other costs, the dollar value (or price) of ATC will be 
impacted. The costs of congestion would add (subtract) some to (from) the price (value) 
of the transaction. This would change the way payback time of transmission expansion is 
calculated in (7.1). An additional function would have to be added to DATC in order to 
account for the cost of congestion, 

( ))P(CDT
CT

congATCATC

te
p

ATC
−Δ

=
1μ

 (7.8)

where Ccong(P) is a function of the cost of congestion at the power level P of the transfer.  
Research has been performed on the calculation of congestion costs associated 

with the ATC [78]. The method uses a DC optimal power flow, Monte-Carlo simulations 
of uncertainty of forecasted system conditions, and concepts of locational marginal 
pricing to calculate the cost of congestion in real time. Possible integration of the ideas in 
[78] to the stochastic ATC calculation are proposed as future work and is listed in Section 
8.2. 

7.4. Illustration of the cost to benefit analysis of transmission expansion 

The WECC test bed is used to illustrate the cost to benefit analysis of 
transmission expansion of the system using stochastic ATC. This example is 
denominated ATC example WECC-TE. The system data are shown in Appendix E. The 
path ratings used for this case are not the values shown Appendix E, but instead are 200% 
of the base case system flows. The change in path ratings is used to simulate a system 
based on ATC transfers limited by the transmission path ratings. Again, the number of 
possible ATC transfers in this system are 69432, four different ATC transfers are 
presented here as illustrations. All illustrations in this chapter assume that the interest rate 
of the money borrowed to complete transmission expansion is zero. That is, the payback 
function used for these examples is taken from (7.1). These illustrations are shown in 
Table 7.1. 

In the illustration, the interest rate r is assumed to be zero and the cost of 
congestion is not included. 

A stochastic ATC study is first preformed without transmission expansion. The 
mean and variance of the ATC for this study for each of the transfers in Table 7.1 is 
shown in Table 7.2. For this case, it is assumed that there are no new transmission rights 
of way going to be built. That is, existing paths are going to be upgraded. For each of the 
ATC analyses shown in Table 7.2, the path which limits the ATC is considered as 
possible transmission expansion. The limiting system paths which limits each of the ATC 
transfers is shown in Table 7.3 
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Table 7.1 Transfers used for the cost to benefit analysis of Example WECC-TE 

From Bus To Bus 
4 10 

112 137 
35 107 
43 39 

 

Table 7.2 Mean and variance of the ATC without transmission expansion in example 
WECC-TE 

From Bus To Bus 
Mean 
MW 

Variance 
MW2 

4 10 200.29 40188.0 
112 137 670.64 173140.0 
35 107 643.11 171340.0 
43 39 462.69 2415.7 

 

Table 7.3 Paths which limit the transfer of ATC in example WECC-TE 

Original transfer Transmission added to path 
From Bus To Bus From Bus To Bus 

4 10 8 10 
112 137 150 154 
35 107 150 154 
43 39 39 60 

 
A new stochastic ATC study is preformed with the transmission expansion 

component added to the system. The results from the new stochastic ATC study are 
shown in Table 7.4. Results from Tables 7.2 and 7.4 are used with (7.1) to find the 
payback of transmission expansion of the system. The value of the profit for the transfers 
are assumed to be 20 $/MWh. The cost of adding extra transmission is found based on 
the cost of $550,000 per mile of new transmission added in 1995. This figure comes from 
[56] and is based on a 230 kV circuit in 1995. Using the US consumer price index, the 
cost of new transmission is recalculated for June 2006, 

Cost of new transmission = 

731770$)(
.
.)(

CPI
CPI

,June

,June == 550000
5152
9202550000

1995

2006 . (7.9)

The line lengths for the transmission paths added need to be calculated. The 
WECC test bed used for these tests did not include line lengths. It is possible, for 
illustrative purposes, to approximate and typify line length based on the given value of 
the line resistance and a typical value of resistance for a high voltage conductor (e.g., 
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0.10 ohms/mile [59]). The calculated line lengths are shown in Table 7.5. Figs. 7.1-7.4 
show the pay back time vs. the hours that the transfer is limited by the ATC per year. 

 

Table 7.4 Mean and variance of the ATC with transmission expansion in example 
WECC-TE 

From Bus To Bus 
Mean 
MW 

Variance 
MW2 

4 10 600.88 361130 
112 137 823.60 175350 
35 107 793.95 173040 
43 39 1045.70 10999 

 

Table 7.5 Lengths of the new transmission lines added in example WECC-TE 

From Bus To Bus Line Length (miles) 
8 10 7 
150 154 71.25 
39 60 50.6 

 

 
Figure 7.1 Payback time for adding one additional line to (8-10) vs. the annual hours that 

the transfer is limited by the ATC (4-10) use in example WECC-TE 
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Figure 7.2 Payback time for adding one additional line to (8-10) vs. the annual hours that 

the transfer is limited by the ATC (50-154) use in example WECC-TE 

 
 

 
Figure 7.3 Payback time for adding one additional line to (112-137) vs. the annual hours 

that the transfer is limited by the ATC (50-154) use in example WECC-TE 
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Figure 7.4 Payback time for adding one additional line to (43-39) vs. the annual hours 

that the transfer is limited by the ATC (39-60) use in example WECC-TE 

7.5. Conclusions based on transmission expansion experiments 
In Section 7.3 a transmission expansion cost to benefit analysis is shown using the 

ATC. Four different cases are shown in which result in graphs of payback times based on 
the ATC. These graphs can be used to assist in the justification of transmission 
expansion. For example, if the payback time for the addition of the transmission lines to 
the system is to be less than ten years, then the amount of time that ATC has to be traded 
per year (based on 20 $/MWh sale) can be calculated. The amount of time that ATC has 
to be traded based on a 10 year payback for all four examples is shown in Table 7.6. 
Results from Table 7.6 can be used to justify transmission expansion. Small number of 
hours that ATC traded per year can be used to justify transmission expansion based on 
the sale of power at ATC levels. 

On the basis of limited experiments using the WECC test bed, simple 
formulations of the cost to benefit problem, and using assumed ATC dollar values, it is 
conjectured that some transmission corridor capacity expansion could realize a payback 
period of less than 5 years even for limited amount of time that power is traded near ATC 
levels (e.g., 200 hours that the transfer is limited by the ATC use per year). This 
statement is based on the analysis of line 4-10 as shown in Figure 7.1. 

The analysis shown in this chapter does not include a number of issues that should 
be included in transmission expansion. These issues include, but are not limited to: 

 
• Interest rate is not included in example WECC-TE 
• Limited examples studied 
• The number of hours that the sale of power is limited by the ATC is not 

really included 
• Load forecasts are not very accurate in a 2 year and beyond ahead time 

horizon. 
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• Environmental impact and other issued not modeled in the analysis 
• Volatile spot market is not modeled [92]. 

 

Table 7.6 Amount of time that ATC has to be traded based on a 10 year pay back in 
example WECC-TE 

From Bus To Bus 
Hours at which power sales 

at or near ATC limit 
4 10 64 

112 137 1688 
35 107 1712 
43 39 352 
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8. Conclusions and Future Work  

8.1. Conclusions 
Power marketers have the option to trade power using a variety of tools including 

measures and indices. Among those tools is the ATC calculation. Power systems are 
probabilistic in nature, and the probabilistic calculation of ATC is recommended. Since 
line power flows are an important part of the evaluation of ATC, a stochastic power flow 
problem can be used to find the probabilistic behavior of ATC. If bus load models can be 
statistically approximated using existing data, line flows can be modeled probabilistically 
resulting in multiple statistical moments for each line flow as well as a probability density 
function for each line. The observation that ATC is a stochastic quantity and the means of 
calculating the stochastic ATC are the main contributions of this report. 

Evaluating a stochastic ATC problem using a stochastic analysis method, as 
opposed to a Monte Carlo method, decreases the computational time. The decrease in 
computational time can result in a more efficient method of evaluating the stochastic 
ATC as well as offering power marketers fast determination of the expected price of ATC 
for any given transfer. In tests on a 179 bus system, a typical calculation time to evaluate 
the probability density function, mean and variance of ATC requires 54,000 seconds 
using the Monte Carlo method versus 60 seconds using a stochastic-algebraic analysis. 
The two cited calculation methods generally agree within 0.5 percent in the mean, and 12 
percent in the variance for the illustrative cases studied. 

The results shown in Chapter 3 suggest that the stochastic-algebraic method 
provides a good approximation of the stochastic ATC based on a day-ahead load forecast. 
If a small percentage of the total load is to be considered random (e.g., 20% of the total 
number of busses), the stochastic-algebraic ATC calculation solution reduces to a 
deterministic ATC approximation. Therefore, if the objective is to capture the stochastic 
behavior of ATC, it is necessary to model as much of the total system load as possible 
when performing the stochastic-algebraic stochastic ATC calculation. 

The results shown in Chapter 5 suggest that the addition of transmission element 
uncertainty to the stochastic ATC changes the shape of the probability density of the 
ATC. The shape of the probability density of the ATC affects the probabilities of certain 
values of ATC. For a majority of the cases, inclusion of transmission element uncertainty 
causes the probability distributions of the ATC to have a small (e.g., <1%) change in the 
mean. Further, inclusion of transmission uncertainty generally results in the appearance 
of higher tail weight at the left (i.e., ATC < mean). Also, as discussed in Chapter 6, the 
distribution of the ATC can be used to classify different levels of prices and/or services 
for a specified power transfer. 

Chapter 7 illustrates how the ATC can be used in transmission expansion. Basic 
cost to benefit analysis shows that it is possible to financially justify transmission 
expansion of the system solely based on the ATC. The increase of the ATC for a given 
transfer after transmission expansion can, in some cases, justify the cost of adding new 
transmission assets to the system. A “typical” payback for certain transmission expansion 
considering 1000 hours per year of power exchanges at the ATC limit, ranges from 5 to 
20 years for the WECC tests. The “payback” for transmission expansion is based on the 
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market price of the energy and the amount of time (per year) that power is sold within the 
ATC limit. 

The importance of using a stochastic calculation method to evaluate ATC lies in 
the fact that load uncertainty is modeled. If the standard deviation of the load is {5, 10, 
15} percent of the average demand, in a typical calculation, the ATC has a standard 
deviation of {75, 150, 300} percent of the expected ATC. The cited load variation was 
selected to illustrate 15 minute ahead calculation of ATC. If the probabilistic variation of 
the load is ignored, the standard deviation of the ATC is zero (i.e., the deterministic case). 

Table 8.1 summarizes the primary contributions of this report. Table 8.2 
summarizes the secondary contributions of this report. 

8.2. Future work 

With the deregulation of the power system, ATC is calculated daily and is used in 
the trading of power. A stochastic ATC calculation could benefit the E-tag approval 
process. Research in the use of stochastic ATC calculations as an operations tool is 
recommended. Faster methods of calculating the stochastic ATC based on uncertainty of 
bus load and transmission element status would need to be found. 

There are a variety of other uncertainties that are in power systems. Generation 
availability, transmission line parameters, transformer taps and shunt capacitor status 
have potential uncertainty. Integration of these uncertainties to the stochastic model could 
provide a more accurate measure of the ATC statistics for operations and transmission 
expansion. 

Testing with real data can be used to verify the stochastic ATC calculation in real 
life scenarios. The real data can be taken from power market histories. These histories 
would need to provide information (for a specific time interval) of 

 
• bus loads 
• existing power transfers 
• known ATC values for various transfers in the network 
• transmission element status 
• generator status 
• network topology. 
• Testing using real data can validate the stochastic ATC calculation. 

 
Research has been performed on the calculation of congestion costs associated 

with the ATC [78]. The method uses a DC optimal power flow, Monte-Carlo simulations 
of uncertainty of forecasted system conditions, and concepts of locational marginal 
pricing to calculate the cost of congestion in real time. The system uncertainties included 
are load forecast errors and transmission element status. The method does not consider 
reactive power flows and transfers. It is possible to replace the Monte-Carlo simulations 
with a stochastic ATC calculation. The integration of the stochastic ATC calculation 
could provide a faster calculation of the real time congestion costs. 

Open transmission access has implemented locational pricing markets (LPM). 
The LPM allow for the price of the transmission of power to vary in different 
transmission paths in the system. Before the implementations of LPM, the transmission 
rights were physical flowgates (e.g., the connecting transmission paths between existing 
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systems). Since open transmission access has resulted in the use of LPM, transmission 
rights changed from physical flowgate rights to point to point financial transmission 
rights (FTR). Since power can now be traded, FTR have an important role in the pricing 
of electrical energy trading [83-90]. The FTR have an economic value and take a role in 
the pricing of electrical energy. For various instances in [83-90], the ATC is proposed to 
be used as part of the auction of FTR. In power markets, future FTR markets are 
becoming important. Since the ATC is used as part of the auction of short term FTR, it is 
proposed that the stochastic ATC calculation can be used in part of the long term FTR 
markets. 

Table 8.3 summarizes suggestions for future work. 
 

Table 8.1 Primary contributions of the report 

Basis  
Contribution 

System 

theory 

Probability 

 theory 

Illustrations 

ATC is a stochastic quantity that can be 
modeled probabilistically  x  
Calculation of the statistics of the ATC 
is possible using a stochastic-algebraic 
method based on linear power flows, 
stochastic power flow, linear 
transformation of moments, and the 
Gram-Charlier type A series 
approximation. 

 
x 

 
x 

 

Inclusion of transmission element 
uncertainty in stochastic ATC 
calculation is possible using a tabular 
approach (transmission outage table) 

 
x 

 
x 

 

Use of power marketing with stochastic 
ATC has been illustrated using a 
simplified WECC test bed 

  x 

Tests on the simplified WECC test bed 
imply that short (e.g., > 5 years) 
payback may be possible for selected 
transmission expansion based on the 
modest assumptions of ATC use. 

   
x 
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Table 8.2 Secondary contributions of the report 

Basis  

Contribution System 

theory 

Probability 

theory 

Illustrations 

Examples of stochastic ATC are shown 
using the WECC and IEEE 14 bus test beds   x 
Comparison of the stochastic-algebraic 
ATC calculation to a Monte Carlo 
calculation 

 x x 

Use of the Gram-Charlier type A series as 
an approximation of probability density 
functions of the ATC 

 x  

An innovative use of stochastic power flow 
in the stochastic-algebraic ATC calculation x x  
The use of a contingency ranking and 
transmission outage study on the simplified 
WECC test bed to decrease the number of 
system transmission states in the 
transmission outage table 

x   
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Table 8.3 Summary of future work suggestions 

Potential solution approach  

Future Work System 
theory 

Probability 
theory 

Experimentation 

Stochastic ATC as an operations tool x   

Faster calculation methods x x  

Addition of other uncertainties  x  

Testing with real data   x 

Integration of the stochastic ATC 
with future FTR markets 

x   

Integration of the stochastic ATC 
calculation to the costs of congestion 
in [83] 

x   
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APPENDIX A: Useful Information on Statistical Moments 

A.1 Basics of statistical moments 
Statistical moments are used to provide some sort of “measure” that a probability 

distribution has.  The most important and useful moment is the center of a distribution of 
X. This center is called the mean, and is usually denoted as the E[X], or the expectation 
of X, 

∫
∞

∞−

= dx)x(xf]X[E . (A.1)

The mean is just one measure that a probability distribution has.  The variance is another 
popular statistical measure of a probability distribution. The variance is a measure of the 
spread of the distribution. The variance is typically symbolized as σ2 or Var[X].  The 
variance is calculated as the second central moment. 

Moments are calculated in two different ways. Raw moments, are moments 
calculated about the origin, or zero. The kth raw moment can be calculated as 

∫
∞

∞−

== dx)x(fx]X[Eu kk
k . (A.2)

Central moments are often more useful in practical applications. The central 
moment is the moment calculated about the mean,  

∫
∞

∞−

−=−= dx)x(f)ux(])uX[(E'u kk
k . (A.3)

 

A.2 Useful properties of moments 
The following are some useful properties of the expectation operator and 

moments 
Linear Property 

b]X[aE]baX[E +=+ . (A.4)

Variance of Linear Combination 

]X[Vara]baX[Var 2=+ . (A.5)

Properties of Several random variables 

]Y[E]X[E]YX[E +=+ . (A.6)

]Y[E]X[E]XY[E = . (A.7)

)]uY)(uX[(E*]Y[Var]X[Var]YX[Var yx −−−+=+ 2 . (A.8)
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Also two additional unitless measures are used with the mean and variance to help 
describe a probability distribution. These additional measures are the skewness and 
kurtosis. The skewness is defined as 

3

3

σ
μ )(

xskew = . (A.9)

The measure of skew is often useful to determine if a distribution of not symmetric. If the 
tail of the distribution is longer on the right, the skewness is a positive number. The 
skewness of a normal distribution is zero. The kurtosis is defined as 

4

4

σ
μ )(

xkurtosis = . (A.10)

The kurtosis is a measure of peakedness of a distribution. A distribution that has a high 
kurtosis has a sharp peak while a low kurtosis has a more rounded peak. The kurtosis can 
range from -2 to +∞. The kurtosis of a normal distribution is 3. 

A.3 Moment conversions 

This section shows some useful conversions between several raw and central 
moments as shown in [29]. Conversions of the first four raw moments (beyond the first) 
to central moments are 

222
x

)(
x

)(
x m μμ −=  (A.11)

32133 23 x
)(

x
)(

x
)(

x
)(

x mmm μμ +−=  (A.12)

42213144 364 x
)(

x
)(

x
)(

x
)(

x
)(

x
)(

x mmmmm μμ −+−= . (A.13)

Conversions of the first four central moments to raw moments are 
222

x
)(

x
)(

xm μμ +=  (A.14)

32133 3 x
)(

x
)(

x
)(

x
)(

x mm μμμ ++=  (A.15)

42213144 64 x
)(

x
)(

x
)(

x
)(

x
)(

x
)(

x mmm μμμμ +++= . (A.16)
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9. APPENDIX B: The Gram-Charlier Series Subroutine 

 
%%%%%%%%%%%%%%%%%%%%% 
% The Gram-Charlier Series Subroutine   % 
%        Jonathan W. Stahlhut                      % 
%%%%%%%%%%%%%%%%%%%%% 
function [f,y] = GCS(Moments_ATC) 
 
x = -10:.1:10; %initial range of x for the standard Gram-Charlier Series(GCS) 
n = size(Moments_ATC,2); %how many moments of the ATC are used to approximate 
the GCS, for all examples will equal 5 
 
% Subroutine to find the first n Hermite Polynomials 
b = 1; 
for a = 1:n 
    if b == 1 
        t = (a+1)/2; 
        b = 0; 
    else 
        t = (a+2)/2; 
        b = 1; 
    end 
    H(a,:) = X.^a; 
    kk = 1; 
    for k = 2:t 
        kk = kk*(2*k-3); 
        H(a,:) = H(a,:) + (-1)^(k-1)*(X.^(a-2*(k-1)))*(factorial(a)/(factorial(2*(k-
1))*(factorial(a-2*(k-1)))))*kk; 
    end 
end 
 
% the first five GCS constants cj 
c = [ 0 
Moments_ATC(2)/Moments(ATC(2))-1 
Moments_ATC(3)/Moments_ATC(2)^(3/2) 
Moments_ATC(4)/Moments_ATC(2)^(4/2)-6*Moments_ATC(2)/Moments_ATC(2)+3 
Moments_ATC(5)/Moments_ATC(2)^(5/2)-
10*Moments_ATC(3)/Moments_ATC(2)^(3/2) 
]; 
 
%Gaussian Function 
G = (1/(sqrt(2*pi)))*exp((-X.^2)/2); 
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%iterative procedue to find the standard GCS with the Hermite Polynomials and the GCS 
constants 
GCS_CH = 1; 
for g = 1:5 
GCS_CH = GCS_CH + (1/factorial(g))*c(g)*H(g,:); 
end 
 
% the standard Gram-Charlier Series 
GCS = G.*(GCS_CH); 
 
% the GCS using the real values for the ATC 
f = GCS./sqrt(Moments_ATC(2)); 
y = sqrt(Moments_ATC(2)).*X + Moments_ATC(1); 
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APPENDIX C: Derivation of the PDF of the Minimum of Several 
Random Variables 

If x and y are random variables, and a random variable z is defined as 

z)y,xmin( ≤  (C.1)

and the probability density functions xf  and yf  are known as well as the probability 

distribution functions xF  and yF , the probability distribution of z can be found. For a 
given z, the region Dz of the xy plane such that 

zy,zxz)y,xmin( ≤≤⇒≤  (C.2)

is shown in Figure C.1. 
 

 
Figure C.1. Pictorial of min(x,y) ≤z  

To find Fz(z), the mass in Dz needs to be determined. This mass equals the mass in 
Fx(z) in the half plane x ≤ z plus the mass Fy(z) in the half plane y ≤ z minus the mass 
Fxy(z,z) in the region x ≤ z, y ≤ z 

)z(F)z(F)z(F)z(F xyyxz −+= . (C.3)

If the random variables x and y are independent, then the above yields 

)z(F)z(F)z(F)z(F)z(F yxyxz −+= . (C.4)

The probability density function )(zf z  is found by differentiating (2.55), 

)z(F)z(f)z(F)z(f)z(f)z(f)z(f xyyxyxz −−+= . (C.5)
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Reordering (2.56) yields 

)]z(F)[z(f)]z(F)[z(f)z(f xyyxz −+−= 11 . (C.6)

If a third random variable w is introduced, with probability density function wf  and 
probability distribution function wF ,  

z)w,y,xmin( ≤ , (C.7)

it can be shown that 

)]z(F)][z(F)[z(f)]z(F)][z(F)[z(f)z(f wxywyxz −−+−−= 1111  

)]z(F)][z(F)[z(f yxw −−+ 11 . 
(C.8)

Therefore the result is that if any number n of independent random variables form a 
function 

z)x...xmin( n ≤1 , (C.9)

the probability density function )(zfz  becomes 

∑∑
≠==

−=
n

ij,j
x

n

i
xz )]z(F[)z(f)z(f

ji
11

1 . (C.10)
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APPENDIX D: NERC E-Tag 

According to the NERC Policy 3, “full-time E-Tag monitoring” is required of all 
control areas, transmission providers, and purchasing-selling entities [54]. The purpose of 
E-Tags is to enable power marketing in a coordinated way. Par of the E-Tag process is to 
help decrease the amount of transmission system congestion and to help security 
coordinators and control areas assess reliability impacts and curtail transactions when 
necessary. 

Purchase selling entities submit tags to a tag authority service. The authority 
performs contingency analysis and assessment and dynamic security assessment. The 
authority approves or rejects the E-Tag request as appropriate. Once the tags are 
approved, power can be traded in the network. The tags are usually submitted in the day-
ahead time frame. 

One important component of an E-Tag is transmission stacking. Each physical 
segment of the power system (e.g., transmission line or transformer) must support the 
energy flowing through the segment during the tagged schedule. The power flow through 
each segment is stacked either horizontally or vertically, or a combination of both. Figs. 
D.1 and D.2 show horizontal and vertical stacking respectively. A tag authority service 
assembles all of the submitted tags for a specified time frame, and stacks the tags. If a tag 
is stacked and violates the maximum energy flow through the physical segment, the tag 
would be denied. Figure D.3 illustrates an example of transmission stacking which 
incorporates both horizontal and vertical stacking.  
 

 
Figure D.1 Horizontal stacking of three E-Tags 
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Figure D.2. Vertical stacking of three E-Tags 

 
Figure D.3. Transmission stacking of several E-Tags 
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APPENDIX E:WECC System Data 

Table E.1 The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

1 4 159 0.00811 0.1369 2.4348 1 730.46 
2 2 7 0.00179 0.01988 2.576 1 5030.2 
3 7 16 0.0005 0.0053 0.0882 1 18868 
4 16 4 0.00977 0.11 2 1 909.09 
5 11 19 0 -0.00634 0 1 15773 
6 19 20 0.00077 0.01804 1.3984 1 5543.2 
7 20 13 0 -0.00634 0 1 15773 
8 11 21 0 -0.01188 0 1 8417.5 
9 21 22 0.00241 0.05865 4.8656 1 1705 
10 22 18 0 -0.01188 0 1 8417.5 
11 13 23 0 -0.00826 0 1 12107 
12 23 24 0.00179 0.04244 3.3922 1 2356.3 
13 24 18 0 -0.00826 0 1 12107 
14 13 25 0 -0.01795 0 1 5571 
15 25 26 0.00207 0.04959 3.9516 1 2016.5 
16 26 138 0 -0.01795 0 1 5571 
17 15 18 0.0004 0.0096 0.9038 1 10417 
18 15 18 0.0004 0.0096 0.9038 1 10417 
19 6 27 0 -0.00408 0 1 24510 
20 27 28 0.00177 0.04189 3.3446 1 2387.2 
21 28 13 0 -0.00612 0 1 16340 
22 30 31 0.0035 0.07 4.606 1 1428.6 
23 32 33 0.002 0.02 0.8 1 5000 
24 51 62 0.0107 0.07905 0.3667 1 1265 
25 52 62 0.0107 0.07905 0.3667 1 1265 
26 54 40 0.00047 0.00723 0.01624 1 13831 
27 54 57 0.00119 0.01244 0.02798 1 8038.6 
28 54 57 0.00119 0.01244 0.02798 1 8038.6 
29 56 41 0.00201 0.03074 0.06886 1 3253.1 
30 56 53 0.00073 0.01025 0.02558 1 9756.1 
31 56 53 0.00073 0.01025 0.02558 1 9756.1 
*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

32 56 57 0.0011 0.01189 0.02514 1 8410.4 
33 61 54 0.00128 0.00979 0.0212 1 10215 
34 63 48 0.00083 0.01884 1.6667 1 5307.9 
35 40 57 0.00035 0.00536 0.01204 1 18657 
36 36 37 0.00074 0.01861 1.4026 1 5373.5 
37 36 55 0.00082 0.01668 1.188 1 5995.2 
38 36 63 0 0.00159 0.12002 1 62893 
39 36 63 0 0.00159 0.12002 1 62893 
40 41 57 0.00281 0.04296 0.09648 1 2327.7 
41 47 61 0.00138 0.01116 0.0247 1 8960.6 
42 47 61 0.00138 0.01116 0.0247 1 8960.6 
43 49 41 0.0022 0.03422 0.07716 1 2922.3 
44 49 41 0.00238 0.03669 0.08284 1 2725.5 
45 49 56 0.00037 0.00366 0.0083 1 27322 
46 49 57 0.00055 0.00586 0.01246 1 17065 
47 47 54 0.00229 0.01583 0.0306 1 6317.1 
48 47 54 0.00229 0.01583 0.0306 1 6317.1 
49 38 45 0.00221 0.03346 0.07338 1 2988.6 
50 38 47 0.0029 0.038 0.0824 1 2631.6 
51 38 58 0.00309 0.04677 0.1008 1 2138.1 
52 38 59 0.00226 0.03422 0.07506 1 2922.3 
53 47 45 0.00029 0.00434 0.0095 1 23041 
54 47 58 0.00141 0.00967 0.0194 1 10341 
55 47 58 0.00141 0.00967 0.0194 1 10341 
56 47 58 0.00161 0.00971 0.01928 1 10299 
57 47 58 0.00161 0.00971 0.01928 1 10299 
58 47 59 0.00027 0.00393 0.00918 1 25445 
59 47 59 0.00027 0.00393 0.00918 1 25445 
60 47 59 0.00027 0.00393 0.00918 1 25445 
61 74 77 0.00142 0.02258 1.88 1 4428.7 
62 74 75 0.00196 0.03304 1.88 1 3026.6 

*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

63 74 72 0.00179 0.01405 3.68 1 7117.4 
64 77 73 0.00113 0.02069 1.8553 1 4833.3 
65 77 75 0.0012 0.02316 1.7152 1 4317.8 
66 77 75 0.0003 0.02 3.6 1 5000 
67 79 77 0.0002 0.0082 1.3 1 12195 
68 79 77 0.0002 0.0082 1.3 1 12195 
69 67 70 6.00E-05 0.00131 0.00378 1 76336 
70 67 70 6.00E-05 0.00116 0.00332 1 86207 
71 68 71 1.00E-05 0.0003 0.01434 1 3.33E+05
72 68 71 1.00E-05 0.0003 0.01844 1 3.33E+05
73 68 75 0.00023 0.00451 0.3332 1 22173 
74 68 75 0.0002 0.00446 0.305 1 22422 
75 81 75 0.00063 0.01412 1.0976 1 7082.2 
76 81 75 0.00109 0.02408 1.5554 1 4152.8 
77 81 75 0.00108 0.02409 1.5535 1 4151.1 
78 81 86 0.00041 0.00737 0.72694 1 13569 
79 86 87 0 -0.01263 0 1 7917.7 
80 87 85 0.0006 0.01036 1.0146 1 9652.5 
81 82 88 0.00072 0.01382 1.2757 1 7235.9 
82 88 89 0 -0.00858 0 1 11655 
83 89 85 0.00012 0.00238 0.21926 1 42017 
84 81 90 0.00066 0.01266 0.95976 1 7898.9 
85 90 91 0 -0.01263 0 1 7917.7 
86 91 92 0.00074 0.01428 1.0822 1 7002.8 
87 92 93 0 -0.01263 0 1 7917.7 
88 93 82 0.00078 0.01502 1.1381 1 6657.8 
89 81 94 0.00066 0.01266 0.95976 1 7898.9 
90 94 95 0 -0.01263 0 1 7917.7 
91 95 96 0.00074 0.01428 1.0822 1 7002.8 
92 96 97 0 -0.01263 0 1 7917.7 
93 97 82 0.00074 0.01413 1.0663 1 7077.1 

*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

94 80 98 0.00264 0.05356 5.2907 1 1867.1 
95 98 83 0 -0.02667 0 1 3749.5 
96 110 119 0 -0.01 0 1 10000 
97 119 120 0.00076 0.01952 1.8245 1 5123 
98 120 121 0 -0.01 0 1 10000 
99 121 122 0.00082 0.02119 1.9842 1 4719.2 
100 122 118 0 -0.01 0 1 10000 
101 106 103 0.00083 0.01985 0 1 5037.8 
102 106 107 0.00153 0.0147 0 1 6802.7 
103 109 106 0.00053 0.01297 0 1 7710.1 
104 113 123 2.00E-05 -0.00998 0 1 10020 
105 123 124 0.0014 0.02338 1.475 1 4277.2 
106 124 114 1.00E-05 -0.00666 0 1 15015 
107 113 125 2.00E-05 -0.00998 0 1 10020 
108 125 126 0.0014 0.02338 1.475 1 4277.2 
109 126 114 1.00E-05 -0.00666 0 1 15015 
110 114 127 1.00E-05 -0.0112 0 1 8928.6 
111 127 128 0.00154 0.03409 2.3114 1 2933.4 
112 128 118 1.00E-05 -0.0112 0 1 8928.6 
113 114 129 1.00E-05 -0.0072 0 1 13889 
114 129 130 0.00095 0.02102 1.4252 1 4757.4 
115 130 118 1.00E-05 -0.0036 0 1 27778 
116 100 112 0.01113 0.06678 0.07286 1 1497.5 
117 100 112 0.0105 0.0654 0.0686 1 1529.1 
118 100 112 0.01105 0.06642 0.0716 1 1505.6 
119 100 116 0.03903 0.27403 0.31072 1 364.92 
120 100 99 0.02482 0.16938 0.20232 1 590.39 
121 99 116 0.0148 0.10101 0.12066 1 990 
122 100 104 0.01382 0.09268 0.1106 1 1079 
123 104 116 0.03058 0.2046 0.24472 1 488.76 
124 100 105 0.01668 0.11381 0.13608 1 878.66 

*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

125 105 116 0.02235 0.16106 0.18342 1 620.89 
126 118 131 1.00E-05 -0.00755 0 1 13245 
127 131 132 0.00165 0.05719 2.4774 1 1748.6 
128 132 107 2.00E-05 -0.01331 0 1 7513.1 
129 118 133 1.00E-05 -0.01098 0 1 9107.5 
130 133 103 0.00093 0.03644 1.3895 1 2744.2 
131 103 134 0.00072 0.016 1.0879 1 6250 
132 134 107 2.00E-05 -0.00998 0 1 10020 
133 103 101 0.00079 0.01937 1.3285 1 5162.6 
134 101 107 0.00087 0.02087 1.4571 1 4791.6 
135 101 107 0.00087 0.02087 1.4571 1 4791.6 
136 141 152 0.00044 0.01125 0.8292 1 8888.9 
137 141 152 0.00044 0.01125 0.8292 1 8888.9 
138 141 146 0.0019 0.031 4.1402 1 3225.8 
139 138 141 0.00193 0.02779 4.6712 1 3598.4 
140 146 138 0.00056 0.01415 1.0429 1 7067.1 
141 135 151 0.00042 0.00905 0.66794 1 11050 
142 141 150 0.0006 0.0128 0.9462 1 7812.5 
143 144 150 0.00021 0.00457 0.32336 1 21882 
144 150 151 0.0004 0.0093 0.6856 1 10753 
145 141 144 0.00028 0.00753 0.51736 1 13280 
146 141 144 0.00035 0.0075 0.5536 1 13333 
147 149 153 0.00285 0.03649 0.12656 1 2740.5 
148 149 153 0.00138 0.03399 0.11252 1 2942 
149 136 142 0.0019 0.0258 0.0984 1 3876 
150 136 149 0.00845 0.07034 0.15954 1 1421.7 
151 140 142 0.0011 0.0127 0.048 1 7874 
152 153 142 0.0032 0.0395 0.144 1 2531.6 
153 145 142 0.00138 0.05399 0.15252 1 1852.2 
154 155 166 0.0016 0.0226 0.381 1 4424.8 
155 154 166 0.0008 0.0106 0.2039 1 9434 

*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

156 155 154 0.0024 0.0332 0.5849 1 3012 
157 154 159 0.0017 0.0225 0.3992 1 4444.4 
158 154 159 0.0021 0.0238 0.3845 1 4201.7 
159 157 163 0.0096 0.0878 1.4265 1 1139 
160 154 157 0.0052 0.0602 1.01 1 1661.1 
161 154 157 0.0049 0.0537 0.8843 1 1862.2 
162 154 164 0.0012 0.0172 0.2987 1 5814 
163 157 165 0.0034 0.0374 0.6208 1 2673.8 
164 157 165 0.0034 0.0372 0.6182 1 2688.2 
165 159 165 0.0038 0.034 0.5824 1 2941.2 
166 159 165 0.0032 0.0349 0.5722 1 2865.3 
167 156 160 0.0108 0.0965 0.3296 1 1036.3 
168 157 164 0.0034 0.0392 0.6524 1 2551 
169 30 79 0.00083 0.0239 3.3 1 4184.1 
170 77 65 0.0007 0.074 4.87 1 1351.4 
171 82 167 0 -0.0072 0 1 13889 
172 167 168 0.00103 0.02338 1.5804 1 4277.2 
173 168 113 0 -0.0072 0 1 13889 
174 82 169 0 -0.00864 0 1 11574 
175 169 170 0.00107 0.0247 1.527 1 4048.6 
176 170 113 0 -0.0072 0 1 13889 
177 82 171 0 -0.01 0 1 10000 
178 171 172 0.00103 0.0323 2.796 1 3096 
179 172 110 0 -0.01 0 1 10000 
180 107 173 0 -0.00935 0 1 10695 
181 173 174 0.00123 0.02659 1.987 1 3760.8 
182 174 152 0 -0.00935 0 1 10695 
183 107 175 0 -0.00944 0 1 10593 
184 175 176 0.00123 0.02662 1.9888 1 3756.6 
185 176 152 0 -0.00935 0 1 10695 
186 107 177 0 -0.00935 0 1 10695 

*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

187 177 178 0.00112 0.02517 1.8359 1 3973 
188 178 152 0 -0.0084 0 1 11905 
189 141 63 0.0002 0.0041 0.2962 1 24390 
190 138 63 0.00179 0.02524 0.53546 1 3962 
191 138 63 0.00179 0.02524 0.53546 1 3962 
192 149 60 0.00065 0.01187 0.04672 1 8424.6 
193 149 60 0.00065 0.01187 0.04672 1 8424.6 
194 136 60 0.0014 0.0264 0.102 1 3787.9 
195 11 138 0.0028 0.0211 1.0194 1 4739.3 
196 15 135 0.00259 0.02967 2.153 1 3370.4 
197 15 135 0.00259 0.02967 2.153 1 3370.4 
198 80 179 0 -0.02667 0 1 3749.5 
199 179 85 0.00122 0.02373 2.2071 1 4214.1 
200 155 84 0.0062 0.0673 1.1156 1 1485.9 
201 43 159 0.0018 0.0245 0.4392 1 4081.6 
202 43 159 0.0018 0.0245 0.4392 1 4081.6 
203 162 7 0.0048 0.0436 0.7078 1 2293.6 
204 4 10 0 0.015 0 1 6666.7 
205 1 2 0 0.0146 0 1 6849.3 
206 15 14 5.50E-05 0.00495 0 0.90408 20202 
207 1 3 0 0.017303 0 1.0477 5779.3 
208 16 17 0 0.006 0 0.95831 16667 
209 6 7 0 0.011 0 0.94073 9090.9 
210 6 7 0 0.011 0 0.94073 9090.9 
211 7 8 0 0.0059 0 1 16949 
212 7 9 0.00028 0.0138 0 1 7246.4 
213 7 9 0.00029 0.0139 0 1 7194.2 
214 11 12 0 0.00666 0 0.92593 15015 
215 31 32 0 0.01 0 0.90909 10000 
216 30 29 0 0.0015 0 0.95238 66667 
217 33 34 0 0.002 0 1 50000 

*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

218 63 62 0.000201 0.023381 0 1.0216 4277 
219 43 44 0 0.0052 0 0.97561 19231 
220 65 64 0 0.005 0 0.91743 20000 
221 83 84 0 0.0072 0 0.95238 13889 
222 79 78 0 0.0025 0 0.93809 40000 
223 71 70 0 0.002205 0 0.97714 45351 
224 67 66 0.000893 0.029903 0 1.0129 3344.1 
225 68 67 0.000198 0.011808 0 0.97675 8468.8 
226 68 67 8.80E-05 0.007354 0 0.97675 13598 
227 75 76 0 0.003751 0 0.911 26660 
228 67 69 0 0.010339 0 0.95648 9672.1 
229 111 112 0 0.022812 0 1.09 4383.7 
230 112 113 9.90E-05 0.017397 0 0.89366 5748.1 
231 117 118 0 0.004477 0 1.058 22336 
232 115 116 0 0.01815 0 1.1 5509.6 
233 116 118 0.000198 0.012502 0 0.89366 7998.7 
234 108 107 0.000298 0.017397 0 0.89366 5748.1 
235 108 107 0.000198 0.011896 0 0.89366 8406.2 
236 101 102 0 0.0098 0 0.95238 10204 
237 152 153 0 0.01149 0 0.94065 8703.2 
238 152 153 0 0.01149 0 0.94065 8703.2 
239 152 153 0 0.01149 0 0.94065 8703.2 
240 137 138 0 0.01512 0 1.004 6613.8 
241 146 147 0 0.0098 0 0.95238 10204 
242 139 140 0 0.003654 0 1.0218 27367 
243 143 144 0 0.005161 0 1.016 19376 
244 144 145 0 0.005 0 1 20000 
245 51 50 0.00059 0.01491 0 0.9983 6706.9 
246 52 50 0.00059 0.01491 0 0.9983 6706.9 
247 53 50 0.0003 0.0133 0 1 7518.8 
248 53 50 0.0003 0.0134 0 1 7462.7 

*On a 100 MVA Base 
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Table E.1 continued The WECC test bed system data* 

Line 
No. Between buses R  (p.u.) X (p.u.) 

Line charging 
susceptance (p.u.) 

Tap 
setting 

Rating 
(MW) 

249 55 54 0.00013 0.01386 0 0.98951 7215 
250 55 54 0.00013 0.01386 0 0.98951 7215 
251 37 47 0.00013 0.00693 0 0.95238 14430 
252 41 42 0.00058 0.02535 0 0.9532 3944.8 
253 48 47 0.00026 0.01386 0 0.95238 7215 
254 47 46 0.00499 0.11473 0 0.95438 871.61 
255 38 39 0.0005 0.0238 0 1 4201.7 
256 59 60 0 0.001148 0 0.98687 87108 
257 148 149 0 0.010263 0 1.0131 9743.7 
258 4 5 0 0.01238 0 1 8077.5 
259 157 158 0.0002 0.0058 0 1.0147 17241 
260 163 162 0 0.0195 0 1 5128.2 
261 155 156 0.0003 0.0181 0 1 5524.9 
262 160 161 0.0005 0.0141 0 0.94447 7092.2 
263 84 35 0 0.0046 0 1 21739 

*On a 100 MVA Base 
 
The values in Table E.2 are 30% reduced from the original file found in [52]. The 

30% reduction was chosen so that a contingency analysis would not include certain lines 
in the analysis. All the negative loadings (which are representation of dc transmission 
lines in the system) in the system were not reduced.  
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Table E.2 The WECC test bed bus data 

Bus 
Active 

Power(MW) 
Reactive Power 

(MW) 
Generation 

(MW) 
Generation 
(MVAR) 

1 1225 -56 0 0 
2 0 0 0 0 
3 70 0 560 86.128 
4 1645 -127 0 0 
5 70 0 733.6 -93.037 
6 0 0 0 0 
7 167.3 -56 0 0 
8 70 0 1512 -21.371 
9 97.79 16.66 0 0 
10 70 0 1435 325.374 
11 63 49 0 0 
12 70 0 1183 136.703 
13 0 0 0 0 
14 70 0 1848 265.132 
15 555.38 144.9 0 0 
16 588 3.5 0 0 
17 70 0 673.4 104.125 
18 431.9 -69 0 0 
19 0 0 0 0 
20 0 0 0 0 
21 0 0 0 0 
22 0 0 0 0 
23 0 0 0 0 
24 0 0 0 0 
25 0 0 0 0 
26 0 0 0 0 
27 0 0 0 0 
28 0 0 0 0 
29 70 0 3115 707.63 
30 3080 700 0 0 
31 0 0 0 0 
32 0 0 0 0 
33 2520 490 0 0 
34 70 0 3136 805.07 

 



 

113 

Table E.2 continued The WECC test bed bus data 

Bus 
Active 

Power(MW) 
Reactive Power 

(MW) 
Generation 

(MW) 
Generation 
(MVAR) 

35 70 0 1148 199.86 
36 -1862 679.7 0 0 
37 0 0 0 0 
38 0 0 0 0 
39 70 0 140 -36.519 
40 94.5 18.9 0 0 
41 0 0 0 0 
42 70 0 227.5 47.775 
43 1437.1 634.97 0 0 
44 70 0 1246 374.21 
45 -72.8 -17 0 0 
46 70 0 77 20.356 
47 84.7 17.5 0 0 
48 0 0 0 0 
49 224 45.5 0 0 
50 166.04 -63.2 0 0 
51 0 0 0 0 
52 0 0 0 0 
53 96.6 19.6 0 0 
54 565.46 92.47 0 0 
55 0 0 0 0 
56 81.9 16.8 0 0 
57 84.7 17.5 0 0 
58 621.39 -6.2 0 0 
59 -2771 1157.8 0 0 
60 280.7 56.42 0 0 
61 143.64 12.32 0 0 
62 -129 22.54 0 0 
63 0 0 0 0 
64 70 0 2037 666.91 
65 1190 210 0 0 
66 112 21.875 0 0 
67 -67.5 112 0 0 
68 -44.2 15.4 0 0 
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Table E.2 continued The WECC test bed bus data 

Bus 
Active 

Power(MW) 
Reactive Power 

(MW) 
Generation 

(MW) 
Generation 
(MVAR) 

69 70 0 910.7 301.48 
70 2195.9 1176.7 0 0 
71 0 0 0 0 
72 -1525 -50 0 0 
73 0 0 0 0 
74 1808.8 275.8 0 0 
75 2240 770 0 0 
76 70 0 3621.5 597.42 
77 2450 350 0 0 
78 70 0 6965 1296.8 
79 3500 280 0 0 
80 0 0 0 0 
81 -66.6 -97 0 0 
82 -339 -119 0 0 
83 0 0 0 0 
84 427 -414 0 0 
85 0 0 0 0 
86 0 0 0 0 
87 0 0 0 0 
88 0 0 0 0 
89 0 0 0 0 
90 0 0 0 0 
91 0 0 0 0 
92 0 0 0 0 
93 0 0 0 0 
94 0 0 0 0 
95 0 0 0 0 
96 0 0 0 0 
97 0 0 0 0 
98 0 0 0 0 
99 -43.3 14 0 0 
100 147.28 -77 0 0 
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Table E.2 continued The WECC test bed bus data 

Bus 
Active 

Power(MW) 
Reactive Power 

(MW) 
Generation 

(MW) 
Generation 
(MVAR) 

101 35 17.5 0 0 
102 70 0 535.5 -144.49 
103 213.5 -7.6 0 0 
104 19.25 -0.1 0 0 
105 5.607 0 0 0 
106 185.5 9.8 0 0 
107 38.92 -329 0 0 
108 544.32 22.82 0 0 
109 28 15.05 0 0 
110 -189 43.05 0 0 
111 70 0 739.9 17.815 
112 103.6 0 0 0 
113 0 0 0 0 
114 -0.7 82.95 0 0 
115 70 0 415.8 134.44 
116 618.8 38.36 0 0 
117 70 0 2426.9 1157.5 
118 3962.7 2443.7 0 0 
119 0 0 0 0 
120 0 0 0 0 
121 0 0 0 0 
122 0 0 0 0 
123 0 0 0 0 
124 0 0 0 0 
125 0 0 0 0 
126 0 0 0 0 
127 0 0 0 0 
128 0 0 0 0 
129 0 0 0 0 
130 0 0 0 0 
131 0 0 0 0 
132 0 0 0 0 
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Table E.2 continued The WECC test bed bus data 

Bus 
Active 

Power(MW) 
Reactive Power 

(MW) 
Generation 

(MW) 
Generation 
(MVAR) 

133 0 0 0 0 
134 0 0 0 0 
135 599.2 13.72 0 0 
136 122.5 12.6 0 0 
137 70 0 687.89 -90.188 
138 631.61 -11.4 0 0 
139 70 0 2236.5 722.89 
140 2233.7 441 0 0 
141 142.94 -28.2 0 0 
142 264.18 45.15 0 0 
143 70 0 1183 415.48 
144 2168.6 832.3 0 0 
145 0 0 0 0 
146 0 0 0 0 
147 70 0 1176 312.59 
148 70 0 1540 275.6 
149 2182.6 54.6 0 0 
150 861 50.96 0 0 
151 284.2 28.7 0 0 
152 0 0 0 0 
153 746.2 -10.8 0 0 
154 320.39 57.19 0 0 
155 23.73 8.33 0 0 
156 103.6 -7.9 0 0 
157 81.27 26.88 0 0 
158 70 0 1165.5 -21.952 
159 -62 8.96 0 0 
160 178.5 70 0 0 
161 70 0 311.5 64.211 
162 0 0 0 0 
163 22.12 8.05 0 0 
164 98.84 49.98 0 0 
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Table E.2 continued The WECC test bed bus data 

Bus 
Active 

Power(MW) 
Reactive Power 

(MW) 
Generation 

(MW) 
Generation 
(MVAR) 

165 265.3 -43 0 0 
166 129.5 54.95 0 0 
167 0 0 0 0 
168 0 0 0 0 
169 0 0 0 0 
170 0 0 0 0 
171 0 0 0 0 
172 0 0 0 0 
173 0 0 0 0 
174 0 0 0 0 
175 0 0 0 0 
176 0 0 0 0 
177 0 0 0 0 
178 0 0 0 0 
179 0 0 0 0 
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APPENDIX F: Stochastic ATC Calculation of the 14 BUS SYSTEM 

F.1 The 14 bus test bed and examples 
The 14 bus test bed [54] consists of 20 lines as shown in Figure F.1. The system 

data are shown in Table F.1. This system is a representation consisting of transformers, 
synchronous condensers and complex power loads. All bus loads are once again 
represented by normally distributed pseudorandom variables with means and variances 
given in Table F.2. The ATC calculation for this system is illustrated by comparing the 
stochastic-algebraic method to the Monte Carlo method. The examples offered are 
denominated as 14-S and 14-MC. 

 

 
Figure F.1 The 14 bus test bed  

(taken directly from [54]) 
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Table F.1 The 14 bus test bed system data * 

Line 
No. 

Between 
buses R  (p.u.) 

X 
( p.u.) 

Line charging 
susceptance in 

per unit Tap setting 
Rating 
(MW) 

1 1 2 0.01938 0.05917 0.0528 0 200 
2 1 5 0.05403 0.22304 0.0492 0 110 
3 2 3 0.04699 0.19797 0.0438 0 110 
4 2 4 0.05811 0.17632 0.034 0 80 
5 2 5 0.05695 0.17388 0.0346 0 70 
6 3 4 0.06701 0.17103 0.0128 0 50 
7 4 5 0.01335 0.04211 0 0 100 
8 4 7 0 0.20912 0 0.978 50 
9 4 9 0 0.55618 0 0.969 50 
10 5 6 0 0.25202 0 0.932 70 
11 6 11 0.09498 0.1989 0 0 30 
12 6 12 0.12291 0.25581 0 0 30 
13 6 13 0.06615 0.13027 0 0 50 
14 7 8 0 0.17615 0 0 60 
15 7 9 0 0.11001 0 0 60 
16 9 10 0.03181 0.0845 0 0 50 
17 9 14 0.12711 0.27038 0 0 50 
18 10 11 0.08205 0.19207 0 0 50 
19 12 13 0.22092 0.19988 0 0 50 
20 13 14 0.17093 0.34802 0 0 50 

* On a 100 MVA base 
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Table F.2 The14 bus test bed bus data 

Bus 
Active Power 

(MW) 
Reactive Power 

(MVAR) 
Generation  

(MW) 
1 22 0 - 
2 94 12.7 40 
3 48 19 0 
4 8 -3.9 0 
5 12 1.6 0 
6 30 7.5 0 
7 0 0 0 
8 0 0 0 
9 9 16.6 0 
10 0 5.8 0 
11 3.5 1.8 0 
12 6 1.6 0 
13 14 5.8 0 
14 15 5 0 

 

F.2 Example 14-S 

Using the IEEE-14 bus test bed, a stochastic-algebraic and Monte Carlo simulated 
ATC analysis of the system using MATLAB will illustrate the agreement of both 
methods. The value of the bus load standard deviation is 0.1 % of the actual bus load. 
Even though the Monte Carlo method is an “exact” process of finding the ATC given a 
sample operating condition, the computation time for the method is quite large while the 
stochastic determination of ATC reduces the computation time significantly. The Gram-
Charlier type A series appears to be accurately represented using the first 40 statistical 
moments for each transfer resulting in a probability of 1.000 when the series is integrated 
from ∞−  to ∞ . 5 exemplary transfers are listed Table F.3 

 

Table F.3 Transfers used for Examples 14-S and 14-MC 

Sending Receiving 
1 13 
2 14 
1 6 
3 9 
2 11 
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Data from Table F.4 show the difference between the Monte Carlo and stochastic 
statistical moments which are calculated from the Gram-Charlier series using  

=)k(
)ATC(m  ∫

∞

∞−

− dx)x(f)ux( k
x  (F.1)

where k is the moment order, ux is the mean of the datum x and f (x) is the probability 
density function represented by the Gram-Charlier type A series. 

As shown in Table F.4, the differences between the Monte Carlo and stochastic 
moments have small error. These small errors should warrant agreement between the 
stochastic and Monte Carlo methods. 

F.3 Additional Examples 
The IEEE 14 Bus test bed is used as an illustration of several different special 

examples of the stochastic ATC from bus 1 to bus 6 considering all ATC limitations as 
well as transmission line outage contingences. The five different examples are: 

 
• Normal Stochastic ATC calculation (example 14-N) 
• Normal Stochastic ATC calculation without transmission line outage 

contingencies (example 14-NTLO) 
• Stochastic ATC considering tight line rating limits (example 14-LR) 
• Stochastic ATC considering tight voltage rating limits (example 14-VR) 
• Special case of the Stochastic ATC were the distribution of the ATC is not 

normally distributed (example 14-SP). The transfer for this example is 
changed to 2-13. 

 

Table F.4 The mean and standard deviation selected ATC transfers for examples 14-MC 
and 14-S 

 

The standard deviation of the bus load in these examples is 30% of the bus load 
value. Note this is much larger than the standard deviation of the bus loads in Example 
14-S. Example 14-N illustrates the normal calculation of the stochastic ATC.  Bus 
voltage and thermal line rating limits as well as the N-1 transmission line outage 
contingencies are modeled. The limitations for upper and lower bus voltage magnitude 

 

 
Stochastic-Algebraic Method 

14-S 
Monte Carlo Method 

14-MC 

Sending 
Bus 

Receiving 
Bus 

Mean 
(MW) 

Standard 
Deviation 

(MW) 
Mean 
(MW) 

Standard 
Deviation 

(MW) 
1 13 106.3226 .2926 106.3231 0.1367 
2 14 54.894 0.483 51.6605 0.1527 
1 6 213.3323 0.0252 213.3355 0.6638 
3 9 102.69 0.65568 99.7869 0.2702 
2 11 77.299 1.1446 74.3582 0.0934 
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limits are 13% and 5% of the base case voltages. These limitations are chosen based on 
the Class B service. Each line of the system at the base case is assumed to be 10% loaded. 
Therefore line ratings are calculated based on the 10% loading. The loaded line 10% is 
chosen such that when each N-1 contingency is preformed, all load flows are within line 
ratings. Example 14-NTLO illustrates the stochastic ATC with no line outage 
contingencies. Example 14-LR illustrates the stochastic ATC with only the line rating 
limits and transmission line outage contingences. The line ratings are the same as 
Example 14-N and all N-1 contingencies are considered. Example 14-VR illustrates the 
stochastic ATC with only the bus voltage magnitude limits and transmission line outage 
contingences. The bus voltage magnitude limits are the same as Example 14-N and all N-
1 contingencies are considered. All IEE 14 bus examples result in Gaussian distributions 
at the solution of the stochastic ATC calculation. Example 14-SP illustrates the stochastic 
ATC in which the resulting probability distribution does not graphically appear to be 
Gaussian. The transfer for this example has changed to 2-13. 

F.4 Results for example 14-N 

Figures F.2-F.3 illustrate the probability density and cumulative density functions 
for Example 14-N. The resulting statistical measures from Example 14-N are shown in 
Table F.5. 

 

Table F.5 The mean, variance, skew and kurtosis of the ATC transfer from 1 to 6 for 
example 14-N 

Mean (MW) 209.8855 
Variance (MW2) 111.1645 

Skew -13.0317 
Kurtosis 204.8191 
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Figure F.2 PDF of the ATC transfer from 1 to 6 for example 14-N 

 

 
Figure F.3 CDF of the ATC transfer from 1 to 6 for example 14-N 
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F.5 Results for example 14-NTLO 

 Figures F.4-F.5 illustrate the probability density and cumulative density 
functions for Example 14-NTLO. The resulting statistical measures from Example 14-
NTLO are shown in Table F.6. 

 
Figure F.4 PDF of the ATC transfer from 1 to 6 for example 14-NTLO 

 

 
Figure F.5 CDF of the ATC transfer from 1 to 6 for example 14-NTLO 
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Table F.6 The mean, variance, skew and kurtosis of the ATC transfer from 1 to 6 for 
example 14-NTLO 

Mean (MW) 212.3635 
Variance (MW2) 3.5188 

Skew 0 
Kurtosis 3 

 

F.6 Results for example 14-LR 
Figures F.6-F.7 illustrate the probability density and cumulative density functions 

for Example 14-LR. The resulting statistical measures from Example 14-LR are shown in 
Table F.7. 

 

 
Figure F.6 PDF of the ATC transfer from 1 to 6 for example 14-LR 
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Figure F.7 PDF of the ATC transfer from 1 to 6 for example 14-LR 

 

Table F.7 The mean, variance, skew and kurtosis of the ATC transfer from 1 to 6 for 
example 14-LR 

Mean (MW) 209.4899 
Variance (MW2) 99.3333 

Skew -11.9458 
Kurtosis 203.4154 

 

F.7 Results for example 14-VR 
Figures F.8-F.9 illustrate the probability density and cumulative density functions 

for Example 14-VR. The resulting statistical measures from Example 14-VR are shown 
in Table F.8. 
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Figure F.8 PDF of the ATC transfer from 1 to 6 for example 14-VR 

 

 
Figure F.9 PDF of the ATC transfer from 1 to 6 for example 14-VR 

 

Table F.8 The mean, variance, skew and kurtosis of the ATC transfer from 1 to 6 for 
example 14-VR 

Mean (MW) 243.8290 
Variance (MW2) 56.0070 

Skew -12.5428 
Kurtosis 345.1316 
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F.8 Results for example 14-SP 

Figures F.10-F.11 illustrate the probability density and cumulative density 
functions for Example 14-SP. The resulting statistical measures from Example 14-SP are 
shown in Table F.9. 

 

 
Figure F.10 PDF of the ATC transfer from 2 to 13 for example 14-SP 

 

 
Figure F.11 CDF of the ATC transfer from 2 to 13 for example 14-SP 
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Table F.9 The mean, variance, skew and kurtosis of the ATC transfer from 2 to 13 for 
example 14-SP 

Mean (MW) -42.8421  
Variance (MW2) 2.6315e+003 

Skew -4.4155 
Kurtosis 52.3342 
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APPENDIX G: Limitations Used in the WECC Examples

This appendix shows the values of the thermal line ratings, voltage magnitude 
limits, and the values of the forced outage rates used in the numerical examples in 
Chapters 3 and 5. 

The voltage magnitude limits are 0.87 p.u. for the lower limit and 1.10 p.u. for the 
upper limit. Table D.1 shows the values of the thermal line ratings for each line of the 
system. The values of the forced outage rates for the system elements used in Example 
WECC-STLU are  

 
• 0.0006518 for each of the transmission lines 
• 0.00292304 for each of the transformers. 

 
These values of forced outage rates are taken from a study of the frequency of 

transmission line and transformer outages in Canada from 1988-1992 [61].  
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APPENDIX H: List of the Examples 

This appendix shows a list and explanation for all examples in this report. Tables 
H.1 and H.2 show the list of examples and their conditions. In Table H.1, for each 
example, an “x” in the corresponding box shows which analysis and test beds are used. In 
Table H.2, for each example, an “x’ in the corresponding box are the ATC transfers 
shown using the WECC test bed. In Table H.3, for each example, an “x’ in the 
corresponding box are the ATC transfers shown using the 14 bus test bed. For each 
example, the corresponding mean and variance are shown. In examples WECC-MC, 
WECC-S, 14-S, and 14-D, probability density function plots are shown. 

 
Example WECC-D illustrates the deterministic ATC analysis on the WECC test 

bed. The conditions for Example WECC-D are 
 

• all system elements in service 
• all bus loads are modeled by their mean value only 
• the ATC transfers illustrated in Table H.2. 

 
Example WECC-MC illustrates the Monte Carlo analysis method of finding the 

stochastic ATC. The conditions for Example WECC-MC are 
 

• all system elements in service 
• bus loads are modeled using method of Section 3.4 
• the ATC transfers illustrated in Table H.2. 
 

Example WECC-S illustrates the stochastic analysis method of finding the 
stochastic ATC. The conditions for Example WECC-S are 

 
• all system elements in service 
• bus loads are modeled using method of Section 3.4 
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Table H.1 The analysis, test bed, and line outage case possibility for all examples 

Example 
Deterministic 

 analysis 
Stochastic 
analysis 

Monte 
Carlo 

 analysis 
WECC  

Test Bed

14 Bus  
Test 
Bed 

Transmission 
outage rates 

modeled 
WECC-D x     x    
WECC-

MC     x x   
 

WECC-S   x   x    
WECC-
MCL100     x x   

 

WECC-
SL100   x   x   

 

WECC-
MCL500     x x   

 

WECC-
SL500   x   x   

 

WECC-
MCL1000     x x   

 

WECC-
SL1000   x   x   

 

WECC-
MCL1500     x x   

 

WECC-
SL1500   x   x   

 

WECC-
STLU  x  x  

x 

14-S   x     x  

14-MC     x   x  

14-N  x   x  

14-NTLO  x   x  

14-LR  x   x  

14-VR  x   x  

14-SP  x   x  
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Table H.2 Transfers that are shown for examples using the WECC test bed 

Example 78-103 3-155 3-8 44-160 34-64 8-112 5-141 39-57 64-9 12-60 
WECC-D x x x x x x x x x x 

WECC-MC x x x x x           
WECC-S x x x x x           

WECC-MCL100 x x x x x           
WECC-SL100 x x x x x           

WECC-MCL500 x x x x x           
WECC-SL500 x x x x x           

WECC-MCL1000 x x x x x           
WECC-SL1000 x x x x x           
ECC-MCL1500 x x x x x           
WECC-SL1500 x x x x x           
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Table H.2 continued Transfers that are shown for examples using the WECC test 
bed 

Example 35-102 40-10 70-10 36-137 4-137 162-69 15-55 
WECC-STLU x x x x x x x 

 

Table H.3 Transfers that are shown for examples using the 14 bus test bed 

Example 1-13 2-14 1-6 3-9 2-11 2-13 
14-S x x x x x  

14-MC x x x x x  
14_N   x    
14-

NTLO   x  
 

 
14-LR   x    
14-VR   x    
14-SP      x 

 
the ATC transfers illustrated in Table H.2. 
 

Example WECC-MC is used in comparison with Example WECC-S to validate 
the stochastic analysis method to find the stochastic ATC. 

 
Example WECC-MC100 illustrates the Monte Carlo analysis method of finding 

the stochastic ATC. The conditions for Example WECC-MC100 are 
 

• all system elements in service 
• bus loads over 100 MW are modeled using method of Section 3.4 
• bus loads under 100 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 
 

Example WECC-S100 illustrates the stochastic analysis method of finding the 
stochastic ATC. The conditions for Example WECC-S100 are 

 
• all system elements in service 
• bus loads over 100 MW are modeled using method of Section 3.4 
• bus loads under 100 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 

 
Example WECC-MC500 illustrates the Monte Carlo analysis method of finding 

the stochastic ATC. The conditions for Example WECC-MC500 are 
 

• all system elements in service 
• bus loads over 500 MW are modeled using method of Section 3.4 
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• bus loads under 500 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 
 

Example WECC-S500 illustrates the stochastic analysis method of finding the 
stochastic ATC. The conditions for Example WECC-S500 are 

 
• all system elements in service 
• bus loads over 500 MW are modeled using method of Section 3.4 
• bus loads under 500 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 
 

Example WECC-MC1000 illustrates the Monte Carlo analysis method of finding 
the stochastic ATC. The conditions for Example WECC-MC1000 are 

 
• all system elements in service 
• bus loads over 1000 MW are modeled using method of Section 3.4 
• bus loads under 1000 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 
 

 Example WECC-S1000 illustrates the stochastic analysis method of finding the 
stochastic ATC. The conditions for Example WECC-S1000 are 
 

• all system elements in service 
• bus loads over 1000 MW are modeled using method of Section 3.4 
• bus loads under 1000 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 
 

 Example WECC-MC1500 illustrates the Monte Carlo analysis method of finding 
the stochastic ATC. The conditions for Example WECC-MC1500 are 
 

• all system elements in service 
• bus loads over 1500 MW are modeled using method of Section 3.4 
• bus loads under 1500 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 
 

Example WECC-S1500 illustrates the stochastic analysis method of finding the 
stochastic ATC. The conditions for Example WECC-S1500 are 

 
• all system elements in service 
• bus loads over 1500 MW are modeled using method of Section 3.4 
• bus loads under 1500 MW are modeled by their mean only  
• the ATC transfers illustrated in Table H.2. 
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Example WECC-STLU illustrates the stochastic analysis method of finding the 
stochastic ATC with transmission element uncertainty considered.  The conditions for 
Example WECC-STLU are 

 
• Twenty worst ranked contingencies modeled 
• all system elements in service 
• bus loads are modeled using method of Section 3.4 
• the ATC transfers illustrated in Table H.2. 
 

Example 14-MC illustrates the Monte Carlo analysis method of finding the 
stochastic ATC. The conditions for Example 14-MC are 

 
• all system elements in service 
• bus loads are modeled using method of Section 3.4 
• the ATC transfers illustrated in Table H.3. 
 

Example 14-S illustrates the stochastic analysis method of finding the stochastic 
ATC. The conditions for Example 14-S are 

 
• all system elements in service 
• bus loads are modeled using method of Section 3.4 
• the ATC transfers illustrated in Table H.3. 
 

Example 14-MC is used in comparison with Example 14-S to validate the 
stochastic analysis method to find the stochastic ATC. 

 
Example 14-N illustrates the stochastic analysis method of finding the stochastic 

ATC. The conditions for Example 14-N are 
 

• N-1 contingencies considered 
• bus loads are modeled using method of Section 3.4 with larger variance 
• the ATC transfers illustrated in Table H.3. 
 

Example 14-NTLO illustrates the stochastic analysis method of finding the 
stochastic ATC. The conditions for Example 14-NTLO are 

 
• all system elements in service 
• bus loads are modeled using method of Section 3.4 with larger variance 
• the ATC transfers illustrated in Table H.3. 
 

Example 14-LR illustrates the stochastic analysis method of finding the stochastic 
ATC without considering bus voltage magnitude limits. The conditions for Example 14-
LR are 

 
• N-1 contingencies considered 
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• bus loads are modeled using method of Section 3.4 with larger variance 
• the ATC transfers illustrated in Table H.3 
• bus voltage magnitude limits are not considered. 
 

Example 14-VR illustrates the stochastic analysis method of finding the stochastic 
ATC without considering line ratings limits. The conditions for Example 14-VR are  

 
• N-1 contingencies considered 
• bus loads are modeled using method of Section 3.4 with larger variance 
• the ATC transfers illustrated in Table H.3 
• line rating limits are not considered. 
 

Example 14-SP illustrates the stochastic analysis method of finding the stochastic 
ATC. The purpose of this example is to show a result that does not have a Gaussian 
distribution for the ATC. The conditions for Example 14-SP are 

 
• N-1 contingencies considered 
• bus loads are modeled using method of Section 3.4 with larger variance 
• the ATC transfers illustrated in Table H.3. 
 

Example WECC-TE illustrates how values of power traded near ATC levels can 
be integrated into the cost to benefit analysis of transmission expansion of a power 
system. The conditions for Example WECC-TE are 

 
• bus loads are modeled using method of Section 3.4. 
• the ATC transfers illustrated are (4-10), (112-137), (35-107), and (43-39). 
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1. Introduction 

1.1 Background 
With the restructuring of the electric power system, the role of transmission companies is 

to provide reliable electric service to customers [1]. The “unbundling” of vertically integrated 
utilities has introduced a competitive market where customers may select their supplier based on 
competitive pricing and reliability. As a result, the transmission companies are required to allow 
“open access” of the transmission lines by allowing third parties to complete transactions to 
customers within the limits of the system using the transmission lines owned by a transmission 
company. In 1994, the Federal Energy Regulatory Commission (FERC) first announced a new 
standard which defined the provisions that needed to be made for “open access” transmission 
services. This standard called for an open-access transmission tariff to be established on the 
transmission lines such that it is not anticompetitive or discriminatory to third parties. In other 
words, under the same or comparable conditions, a transmission company may not assign 
different tariffs to distinct third parties for access of the transmission lines to gain a competitive 
edge [2]. The regulated tariff system allows transmission companies to collect an “Authorized 
Income” which helps the companies recover the fixed and variable costs of the transmission lines 
and to also make a reasonable profit [3]. Different forms of tariffs are in use today. One 
particular type is the postage-stamp tariff. This particular type of tariff assigns a value per 
megawatt flow for the system and is directly proportional to the amount of power flow through a 
transmission line for a transaction. As a result, the revenue generated from transmission tariffs 
for the system’s ability to serve load can be used to determine the economic value of a 
transmission system. 

However, the ability of a transmission system to serve loads is an important factor that 
weighs heavily on the reliability of the system. The economic value of the transmission system 
generated from tariffs is affected by the ability to serve load, which depends on certain 
characteristics of the system, such as thermal, voltage, and stability limits. These characteristics, 
in turn, limit the ability of the transmission system to transfer power among elements in the 
system and to deliver power from the generation source to the customers or customer demand 
centers. As a result, the criteria used for the planning and expansion of the system must ensure 
that the system is able to deliver and transfer power to meet the total customer demand in the 
event of disturbances or contingencies by operating reliably within the limits of the system [1]. 

The concept of system reliability can be separated into two aspects, system adequacy and 
system security. System adequacy is defined in [1], [4] using the NERC definition as “the ability 
of the electric system to supply aggregate electrical demand and energy requirements of 
customers at all times taking into account scheduled and reasonably expected unscheduled 
outages of system elements.” System security is also defined in [1], [4] as “the ability of the 
electric system to withstand sudden disturbances such as electric short circuits or unanticipated 
loss of system facilities.” System security can be divided into two more areas referring to the 
ability of the system to withstand internal failures and sudden natural disturbances such as 
network overloads and instability problems, and the ability of the system to avoid external 
interference or attacks [4]. To ensure that the system performs adequately and securely, resource 
and transmission adequacy criteria are currently in use today. Resource adequacy criteria are 
usually determined by multiple factors specific to a particular region. Therefore, NERC currently 
depends on the regions or regional members of NERC to determine their resource adequacy 
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criteria [1]. Presently, regions have begun to shift to a probabilistic planning criteria approach 
while some still maintain a deterministic planning approach. 

1.2 Probabilistic Planning 
Probabilistic planning has been incorporated into most regional planning criteria. 

Probabilistic planning criteria use performance characteristics of the electric system components 
and other factors to predict the likelihood that the customer peak demand and energy 
requirements are served over a period of time. These criteria can also incorporate the possibility 
of uncertainties such as forced outages of generating units, variations in weather, and variations 
in customer demand [1]. 

Two reliability indices that are used in probabilistic planning criteria are the Loss of Load 
Expectation (LOLE) and the Expect Unserved Energy (EUE). The LOLE is defined in [1] as the 
“number of expected days per year that available generation capacity is insufficient to serve daily 
peak demand” (load). The LOLE can be measured in days or hours per year. Usually, if the 
LOLE is measured in days per year, the index compares the peak daily load with the available 
generation. However, if the LOLE is measured in hours per year, the index compares the hourly 
load with available generation. The LOLE is also expressed as the loss of load probability 
(LOLP). The LOLP is the probability or proportion of the number of days per year, hours per 
year, or events per season, that the available generation capacity does not serve the daily or 
hourly peak load demand. A typical standard using this reliability index is the “1 day in 10 year” 
standard. This standard sets a value for the LOLP of 0.1 days/year stating that the generation 
capacity must be adequate to maintain an LOLP of 0.1 days/year. The EUE measures the 
expected amount of energy that is not supplied per year due to generation capacity deficiencies 
or shortages in basic energy supplies. This reliability index is predominantly used by systems 
with large amounts of hydro generation and may also be measured deterministically [1].  

By incorporating probabilistic planning, system operators can analyze factors affecting 
system performance and assess risk using the probabilistic reliability indices. The ability to 
consider the probability of large contingencies actually occurring allows for more efficient 
system operation. In contrast, the deterministic criteria consider the loss of a single element 
regardless of the probability of that loss actually occurring. Probabilistic tools also may 
incorporate the planning and operating uncertainties by illustrating the effects uncertainties in the 
system have on the reliability indices [4]. Such methods may take into account the possible 
forced outages of generating units, weather, or changes in customer demand [1]. However, 
computation time may increase since calculations of the reliability indices and probabilities rely 
on computer simulations and involved calculations due to the complexity of the system to model 
[1], [4]. 

Uncertainties in the system are important in considering the system reliability. The 
uncertainty in the demand or load stems from the fact that the load is a constantly varying 
parameter that is largely uncertain [5]. The load forecast is based on historical data [4]. 
Therefore, this data can illustrate that the demand is affected by demographic and economic 
factors such as economic growth, environmental factors such as temperature and precipitation, 
electronically controlled loads, and variations in load power factors [4] – [6]. Uncertainties in the 
load forecast can exist as short-term and long-term uncertainties. Long-term uncertainties in the 
load forecast theoretically could increase due to the restructuring of the electric system and the 
introduction of competition and customer choice. Customers may be more willing to shop around 
for the best value as opposed to remaining in a long-term contract [4]. Short-term uncertainties in 
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load exist mainly due to time and weather factors. The load may vary due to the seasonal, daily, 
weekly, or even holiday cycles [5].  

Load uncertainty can be modeled by a number of different methods. Many methods use a 
stochastic process to incorporate load uncertainty. As defined in [4], a stochastic process refers to 
a “set of random variables ordered in a given sequence often with time as an indexing 
parameter.” In [7], the load was modeled at each bus as a normal distribution of the peak 
forecasted load. Then, random samples from the normal distribution were obtained to determine 
the load at each bus. The variations and uncertainties in the load were also represented using a 
normal distribution in the symmetrical case in [5]. This model divided the load variation into a 
weekday or weekend, according to the particular season, and then divided the load for the day in 
to two separate categories, dividing the high load during the day and the low load for the load 
during the evening hours. The Task Force on Bulk Power System Reliability of the IEEE-PES 
Application of Probability Methods Subcommittee notes that most load models include a 
“correlated” load model in which the loads at all load buses increase and decrease 
simultaneously and in the same proportion. The committee states that this assumption yields 
pessimistic results, whereas models incorporating loads that are randomly varied independently 
of each other yield optimistic results [8]. 

Li Wenyuan and R. Billinton observe in [9] the effect of bus load uncertainty on the 
reliability indices used to evaluate the composite system adequacy. In this investigation, the total 
system load uncertainty is modeled using a tabulating technique of a normal distribution. The 
bus loads are then determined using a covariance matrix in which the loads at the buses are 
neither dependent nor independent. Therefore, the bus loads are correlated by using the 
covariance matrix. The tabulating technique of the normal distribution was compared to a 
discrete enumeration model of a normal distribution. According to the results, Wenyuan and 
Billinton conclude that the enumeration model of normal distribution requires a large number of 
discrete intervals to provide accurate results for large load standard deviations. Also, load 
uncertainty increased the system inadequacy or reliability indices. Increases in the standard 
deviation of the load at the buses increased the reliability indices. 

Further consideration of load uncertainty examined the effects of load uncertainty on the 
probabilistic planning reliability indices in determining production costs. As previously 
mentioned, in [7] the uncertainty in the load was modeled using random samples from a normal 
distribution. A computer procedure to develop the production costing used Monte Carlo 
simulations in considering the load uncertainty and the system component availability. Research 
and surveys were performed to estimate the cost to the customer of electrical service 
interruptions. The reliability indices were calculated with the consideration of load uncertainty . 

Michael Emmerton and Don Somatilake both review the probabilistic transmission 
planning methods that are currently available and are in practice. These planning methods consist 
of the Markov State method, the Frequency-Duration method, and the Monte Carlo method. 
Software packages are available that include models of sources of uncertainty, such as those that 
exist in the load, may include tradeoffs in representation of details in the generation and 
transmission systems [6]. 

The deviation in the amount of revenue from the tariffs due to the load uncertainty is a 
measure of the risk due to load uncertainty. The investigation can be divided into three steps. 
First, the income from transmission tariffs based on $/MW-mile for an entire year using hourly 
conditions was computed using historical hourly load data for one year scaled to match the load 
schedule of the IEEE 14-bus system. This process produced the hourly incomes using an 
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assumed tariff of $0.04 per MW-mile for each transmission line. An annual income was also 
computed by summing the hourly incomes for the year. In the second step, the hourly incomes 
calculated in step 1 were computed by randomly sampling from a known distribution. The 
random sample at each hour was considered to be an error in the forecast for that hour. For each 
hour, the hourly incomes were calculated by sampling from the known distribution 100 times to 
provide 100 revenue values for that same hour. These revenue values for each hour provided the 
statistical distribution (based on 100 samples) of the transmission line income for each hour of 
the day throughout the year. In the final step, analytical methods incorporating linear power 
flows and sensitivity factors were used to estimate the distribution of the hourly and total 
income. 

Planning also involves studying system performance with various options in transmission 
line construction and utilization. This study examined the sensitivity of the expected 
transmission line revenue to the actual transmission line configuration. That is, a base case was 
studied with a certain transmission line topology, resulting in a base case expected revenue. This 
expected revenue was then repeated for the various contingency cases where lines were removed 
one at a time. Collectively the results indicate how the expected revenue might vary with 
transmission topology. 

1.3 Report Organization  
This report is essentially divided into five parts. Chapter 2 describes the test system that 

was used for the analysis. Chapter 3 presents the results of uncertainty in loading using a Monte 
Carlo techniques. Chapter 4 presents the results of uncertainty in loading using an analytical 
technique. Chapter 5 compares these two techniques. Chapter 6 provides the results of analysis 
using various system line topologies. Chapter 7 provides conclusions and recommendations. 
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2. The Test System 

Upon agreement with all of the other investigators on this project, the IEEE 14-bus test 
system was chosen for the test system. This test system contains 14 buses, 20 transmission lines, 
2 generators, 3 synchronous condensers, and 3 transformers. Buses 1-5 have a nominal voltage 
of 69 kV, while buses 6-14 have a nominal voltage of 138 kV. Figure 2.1 displays the one-line 
diagram of the system using the PowerWorld Simulator 10.0 software. 
 

 
Figure 2.1 IEEE 14-bus test system one-line diagram 

2.1 Test System Parameters 

The test system is defined by the set of parameters for the generation, transmission lines, 
and load schedules at each bus. The transmission line parameters that are used to generate the 
test system base case are taken from [10] and are listed in Table 2.1. 
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Table 2.1 IEEE 14-Bus System Line Parameters 

Between 
Buses Line 

L i J 

Nominal 

Voltage 

kV 

Resistance, 

rij 

p.u. 

Reactance, 

 xij  

p.u. 

Line Charging 
Susceptance 

p.u. 
Tap 

Setting 

1 1 2 69 0.01938 0.05917 0.0528 0 

2 1 5 69 0.05403 0.22304 0.0492 0 

3 2 3 69 0.04699 0.19797 0.0438 0 

4 2 4 69 0.05811 0.17632 0.0374 0 

5 2 5 69 0.05695 0.17388 0.034 0 

6 3 4 69 0.06701 0.17103 0.0346 0 

7 4 5 69 0.01335 0.04211 0.0128 0 

8 4 7 69/138* 0 0.20912 0 0.978 

9 4 9 69/138* 0 0.55618 0 0.969 

10 5 6 69/138* 0 0.25202 0 0.932 

11 6 11 138 0.09498 0.1989 0 0 

12 6 12 138 0.12291 0.25581 0 0 

13 6 13 138 0.06615 0.13027 0 0 

14 7 8 138 0 0.17615 0 0 

15 7 9 138 0 0.11001 0 0 

16 9 10 138 0.03181 0.0845 0 0 

17 9 14 138 0.12711 0.27038 0 0 

18 10 11 138 0.08205 0.19207 0 0 

19 12 13 138 0.22092 0.19988 0 0 

20 13 14 138 0.17093 0.34802 0 0 

*Represents the nominal voltage of the low/high sides of the transformer branches 

 
Further information is necessary for the calculation of the total system revenue for each 

hour for this investigation. Because the transmission tariff is a function of the length of each 
transmission line, an estimate of the transmission line lengths is necessary. Since this 
information is not normally given for test systems such as this one, it was necessary to develop a 
method to estimate the length of the lines in the test system. The total impedance of a 
transmission line is dependent on the length of the line. For example, a transmission line that is 
2.0 miles in length will have a greater impedance than if the transmission line was only 1.0 mile 
in length. As a result, a method for estimating the lengths of the transmission lines in the IEEE 
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14-bus test system based on the total line impedance of each line listed in Table 2.1 was 
developed as follows. A power base for the system was assumed to be Sbase= 100 MVA. Using 
the nominal voltages, Vbase, of the transmission lines and the power base of the system, each 
transmission line reactance value in Table 2.1, 

..uplx , can be converted to the reactance value in 

ohms,  
ohmslx , as shown in Equation (2.1). 

 
base

base
ll S

V
xx

upohms

2

*
..

=  (2.1) 

The length of the line was then calculated assuming that for a standard transmission line, 
the reactance is determined to by a conversion factor of 0.7 Ω/mile. Secondly, lines containing 
transformers (i.e., lines 8-10) were considered to be zero-length lines. The length of the 
transmission line was therefore calculated using Equation (2.2). 

  
mile/7.0 Ω

= ohmsl

l

x
l    (2.2) 

Equation (2.2) thus calculates the length of the transmission line l from the corresponding 
line reactance. For example, using Table 2.1 and Equations (2.1) and (2.2), the reactance in ohms 
and the length of line 5 connecting bus 2 to bus 5 in the system can be calculated as shown in 
Equations (2.3) and (2.4), respectively. 

 Ω== 2784.8
MVA100

)kV69(*17388.0
2

5ohms
x  (2.3) 

  miles826.11
mile/7.0

2784.8
5 =

Ω
Ω

=l    (2.4) 

In this way, the remaining lengths of the transmission lines listed in Table 2.1 were 
calculated and are displayed in Table 2.2. The line lengths listed in Table 2.2 illustrate the 
relationship between the reactance of the line and the length of the transmission line. Lines 11-20 
of the system are over twice as long as lines 1-7 of the system. This property is due to the 
reactance of the lines. Lines 11-20 are 138-kV lines and therefore have larger reactances than 
lines 1-6 of the system. 
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Table 2.2 Transmission Line Lengths 

“To” and “From” 
Buses Line 

Number 
I j 

Reactance
p.u.lx  

(p.u.) 

Reactance
ohmslx  

(Ohms) 

Line 
Length 

ll 
(miles) 

1 1 2 0.05917 2.8171 4.02 

2 1 5 0.22304 10.6189 15.17 

3 2 3 0.19797 9.4254 13.46 

4 2 4 0.17632 8.3946 11.99 

5 2 5 0.17388 8.2784 11.83 

6 3 4 0.17103 8.1427 11.63 

7 4 5 0.04211 2.0049 2.86 

8 4 7 0.20912 0 0 

9 4 9 0.55618 0 0 

10 5 6 0.25202 0 0 

11 6 11 0.1989 37.8785 54.11 

12 6 12 0.25581 48.7165 69.59 

13 6 13 0.13027 24.8086 35.44 

14 7 8 0.17615 33.5460 47.92 

15 7 9 0.11001 20.9503 29.93 

16 9 10 0.0845 16.0922 22.99 

17 9 14 0.27038 51.4912 73.56 

18 10 11 0.19207 36.5778 52.25 

19 12 13 0.19988 38.0651 54.38 

20 13 14 0.34802 66.2769 94.68 

 

2.2 Base Case Solution 
After all of the parameters and line lengths were established for the IEEE 14-bus test 

system in Figure 2.1, bus 1 was chosen as the system swing bus. As a result, the voltage angle at 
bus 1 is set at 0˚ with a voltage magnitude of p.u.06.11 =V  Applying these definitions, a power 
flow was performed on the test system to determine the base case parameters for the generation 
and load at each bus. Table 2.3 displays the base case parameter values. Summing all of the real 
power loads at the load buses in Table 2.3, the total system base case load is 259 MW. The angle 
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and voltage magnitude at bus 1, the system swing bus, remains constant at 0˚ and 1.06 p.u., 
respectively. Real power generation is supplied by both bus 1 and bus 2. 

 

Table 2.3 Base Case Power Flow Solution 

Load Generation  

Name 
Nom 
kV 

Voltage 

p.u. 
Voltage 

kV 
Angle 
Deg MW MVar MW MVar 

Act G 
Shunt 
MW 

Act B 
Shunt 
Mvar 

Bus 1 69 1.06 73.14 0 0 0 232.4 -16.9 0 0 

Bus 2 69 1.045 72.1 -4.98 21.7 12.7 40 42.2 0 0 

Bus 3 69 1.01 69.69 -12.72 94.2 19 0 23.3 0 0 

Bus 4 69 1.019 70.3 -10.33 47.8 -3.9 0 0 0 0 

Bus 5 69 1.02 70.41 -8.78 7.6 1.6 0 0 0 0 

Bus 6 138 1.07 147.66 -14.21 11.2 7.5 0 11.8 0 0 

Bus 7 138 1.063 146.63 -13.37 0 0 0 0 0 0 

Bus 8 138 1.09 150.42 -13.37 0 0 0 17 0 0 

Bus 9 138 1.058 145.94 -14.95 29.5 16.6 0 0 0 22.4 

Bus 10 138 1.052 145.22 -15.1 9.0 5.8 0 0 0 0 

Bus 11 138 1.058 145.95 -14.79 3.5 1.8 0 0 0 0 

Bus 12 138 1.055 145.63 -15.07 6.1 1.6 0 0 0 0 

Bus 13 138 1.05 144.99 -15.15 13.5 5.8 0 0 0 0 

Bus 14 138 1.037 143.05 -16.04 14.9 5 0 0 0 0 

 

The power flow result shows that the system generates a total of 272.4 MW of real power 
for serving a total load of 259 MW and, while doing so, suffers a loss of 13.4 MW (about 5%). 

2.3 Defining the Load Forecast 
The load forecast for power systems follows a typical variation according to the hour of a 

particular day. Variations in the load exist between each hour throughout the course of one day. 
Additionally, variations in the system load exist between each day, holiday, and season (i.e., 
Winter, Spring, Summer, and Fall). These variations in the system load complicate the analysis 
of power system states and stability. However, the randomness of typical system loads can be 
characterized by making assumptions as stated in [11]. The system loads are time-variant, but the 
variations at each minute are almost negligible such that the load is almost constant from minute 
to minute. Thus, the variations in loads can be predicted at each hour by using a typical curve 
from [11] shown in Figure 2.2. 
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Figure 2.2 Typical load variation as taken from [11] 

 
Figure 2.2 illustrates the change in load demand throughout the course of a day. There is 

an increase in the real power demand throughout the course of the morning. The peak load for 
the day is reached around 3:00 p.m. The load then decreases for the remainder of the day. 

A load forecast taking into account these hourly variations was developed for this 
investigation by using publicly accessible approximate historical load data for each hour of every 
day for the year 2004 from the PJM website [12]. PJM is a regional transmission organization 
(RTO) that manages the wholesale electricity transactions in all or portions of Delaware, Illinois, 
Indiana, Kentucky, Maryland, Michigan, New Jersey, Ohio, Pennsylvania, Tennessee, Virginia, 
West Virginia, and the District of Columbia. The PJM Interconnection is divided into regions as 
designated in the load data file for the year. In the year 2004, the historical load data lists five 
regions. However, three of the five regions were added to the PJM Interconnection in 2004. As 
of the end of 2004, the addition of the three regions increased the PJM peak load to 106 000 MW 
as stated in [12]. The areas that were introduced into the PJM Interconnection in 2004 include 
Northern Illinois (Commonwealth Edison) (NI), Dayton Power and Light (DAY), and American 
Electric Power (AEP). Because these three areas were added during 2004, a complete annual 
listing of the integrated hourly loads for the entire year does not exist. Therefore, for the purpose 
of this study, the load data for one year was necessary, which resulted in using the PJM load data 
for the PJM-E area. 

The hourly load data for PJM-E area on January 14, 2004, was scaled to match the 
system load of 259 MW of the IEEE 14-bus test system. The value, 27 077 MW is taken as the 
base load for conversion of all the loads to the IEEE 14-bus system. Thus, 31 887 MW on the 
PJM network for 1:00 a.m. on January 14, 2004, scaled down to 259*31 887/27 077 = 305 MW 
on the IEEE 14-bus system. The loads for the remaining hours are scaled down in a similar way 
and are tabulated in Table 2.4. 



 

11 

 

Table 2.4 Test System Hourly Load Schedule for January 14, 2004 

Date Time PJM Load New scaled down 
Load 

1/14/2004 100 31 887 305 

1/14/2004 200 31 255 299 

1/14/2004 300 31 110 298 

1/14/2004 400 31 343 300 

1/14/2004 500 32 098 307 

1/14/2004 600 34 662 332 

1/14/2004 700 38 820 371 

1/14/2004 800 41 334 395 

1/14/2004 900 40 991 392 

1/14/2004 1000 40 634 389 

1/14/2004 1100 40 207 385 

1/14/2004 1200 39 803 381 

1/14/2004 1300 39 749 380 

1/14/2004 1400 39 574 379 

1/14/2004 1500 39 207 375 

1/14/2004  1600 39 276 376 

1/14/2004  1700 40 829 391 

1/14/2004  1800 43 497 416 

1/14/2004  1900 44 020 421 

1/14/2004  2000 43 473 416 

1/14/2004  2100 42 635 408 

1/14/2004  2200 40 692 389 

1/14/2004  2300 37 800 362 

1/14/2004  2400 34 992 335 

 

The IEEE 14-bus system was loaded according to the new load schedule for each hour of 
the day. Therefore, for hour 1, the total load served by the IEEE 14-bus system is 305 MW; for 
hour 2, the total load served by the system is 299 MW and so on. With new loads assigned, a 
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power flow was performed for each hour and the megawatt flowing over each line was 
calculated. 

Note that the total system load at each hour was divided among the load buses in the 
same ratio as the original IEEE 14-bus load. For example, the total load on the original IEEE 14-
bus system was 259 MW. Out of the total 259 MW, bus two served a load of 21.7 MW, i.e., 
21.7/259*100 = 8.38% of the total load. Therefore, also under the newly assigned load schedule, 
bus two will serve 8.38% of the total load. Thus, for hour 1, out of the total load of 305 MW, bus 
2 will serve 305*8.38/100 = 25.55 MW. Other buses also share the total load in the manner 
discussed above. The distribution of loads among the load buses for hour one is tabulated in 
Table 2.5. 

 

Table 2.5 Load Scheduling for 1:00 a.m. on January 14, 2004. 

Load 
Bus 

Old Load 
Corresponding 

To 259 MW(hour # 1) 

Original ratio of load 

Sharing among the buses 

New Load 
Corresponding 

To 305 MW (hour #1 ) 
Bus 1 0 0 0 
Bus 2 21.7 8.38% 25.5539 
Bus 3 94.2 36.37% 110.93 
Bus 4 47.8 18.46% 56.2893 
Bus 5 7.6 2.93% 8.9498 
Bus 6 11.2 4.32% 13.1891 
Bus 7 0 0 0 
Bus 8 0 0 0 
Bus 9 29.5 11.39% 34.7392 
Bus 10 9 3.47% 10.5984 
Bus 11 3.5 1.35% 4.1216 

 

In the same manner, the load distribution among the load buses for all 24 hours was 
calculated. With this hourly system load, the revenue generated from transmission tariffs can be 
computed. Power flow was done and the megawatt flowing through each line for each hour was 
determined. The megawatt flowing over each line is the megawatt flow after the transmission 
losses are deducted. Table 2.6 shows the line megawatt flows for 1:00 a.m. on January 14, 2004, 
and the line lengths. 

 



 

13 

Table 2.6 Megawatt Flows for 1:00 a.m. on January 14, 2004. 

Line 
Number 

From 
Bus To Bus 

Line 
MW 

Line 
length 

1 1 2 186.9152 4.02
2 1 5 86.9395 15.17
3 2 3 83.7163 13.46
4 2 4 63.5775 11.99
5 2 5 47.2278 11.83
6 3 4 27.2077 11.63
7 4 5 72.4193 2.86
8 4 7 33.0398 0
9 4 9 18.9023 0
10 5 6 52.0646 0
11 6 11 8.6411 54.11
12 6 12 9.0803 69.59
13 6 13 20.6982 35.44
14 7 8 0.0021 47.92
15 7 9 33.0419 29.93
16 9 10 6.0975 22.99
17 9 14 10.9348 73.56
18 10 11 4.5016 52.25
19 12 13 1.8882 54.38
20 13 14 6.6125 94.68

 

An hourly transmission tariff was assumed to be $0.04/MW-mile. Then, revenue for hour 
1 is 0.04 * linelength * LineMW = $ 390.96, where the “LineMW’’ and “linelength” are vectors 
storing the values of column 4 and 5, respectively, of Table 2.6. The revenue for the remaining 
hours was calculated in this manner and is given in Table 2.7. This result forms the base case 
revenue for the remaining study. 
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Table 2.7 Base Case Loading and Revenue. 

Time Date Base Case System 
Load, Ptot (MW) 

Base Case 
Total Revenue 

($) 

100 1/14/04 305 390.96 

200 1/14/04 299 382.95 

300 1/14/04 298 381.11 

400 1/14/04 300 384.06 

500 1/14/04 307 393.56 

600 1/14/04 332 426.22 

700 1/14/04 371 479.04 

800 1/14/04 395 510.85 

900 1/14/04 392 506.51 

1000 1/14/04 389 501.86 

1100 1/14/04 385 496.49 

1200 1/14/04 381 491.41 

1300 1/14/04 380 490.73 

1400 1/14/04 379 488.53 

1500 1/14/04 375 483.91 

1600 1/14/04 376 484.78 

1700 1/14/04 391 504.46 

1800 1/14/04 416 538.33 

1900 1/14/04 421 544.99 

2000 1/14/04 416 538.02 

2100 1/14/04 408 527.33 

2200 1/14/04 389 502.73 

2300 1/14/04 362 466.21 

2400 1/14/04 305 430.47 

  

A Matlab code was created to establish the load forecast for the IEEE 14-bus test system 
using the text file from [13] required to sort and scale the PJM-E load data. The base case 
parameters in Table 2.3 from the power flow are considered to be the system load at the first 
hour associated with 1:00 a.m. on January 1, 2004. Because the year 2004 was a leap year, the 
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load forecast for the year was assigned in 8784 hourly increments. Figure 2.3 illustrates the 
annual variation in system load using the load data scaled to match the IEEE 14-bus test system. 

By establishing the hourly system load, the revenue generated from transmission tariffs 
can be calculated. The hourly transmission tariff was assumed to be $0.04/MW-mile. With this 
value as the transmission tariff, the revenue generated for one transmission line in a 24-hour day 
would be approximately $0.96/MW-mile. Therefore, this would generate an annual income of 
$350.40/MW-mile. Over a span of 5 years, an income of $1,752/MW-mile would be generated. 

 

Annual System Load Variation
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Figure 2.3 System load for each hour of the year 

 
The revenue generated from the transmission tariffs, Il, is directly related to the 

transmission tariff t = $0.04/MW-mile, the transmission line lengths ll, as given in Table 2.2, and 
the megawatt flows on the transmission lines lf , by Equation (2.5). 

 lll ftlI =   (2.5)  

Using load forecast determined from the historical PJM load data, power flows were 
conducted to determine the megawatt flows on the transmission lines allowing the calculation of 
each line revenue for the hour using Equation (2.5). The total revenue generated for each hour is 
calculated by summing all of the line revenues calculated from the power flows. Figure 2.4 
displays the total system revenue for every 8784-hour increment in the year. 
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Hourly Revenue Variation
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Figure 2.4 Total revenue for each hour throughout the year 

 
The total hourly revenue generated using the load forecast is considered to be the base 

case revenue. A value for the annual revenue is calculated by summing the 8784 hourly revenues 
for the year. The annual revenue for the base case is about $3.5M. The system load assigned by 
the load forecast for each hour is considered to be the base case system load for each hour. For 
clarity, this report gives results only for one day – January 14, 2004. 
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Table 2.4 Base Case System Load and Total Revenue Values (Jan 14, 2004) 

Hour 
of the 
year 

Time Date 
Base Case 
Load, Ptot

0 

(MW) 

Base Case  
Revenue, I0 

($) 

313 100 1/14/04 305 390.96 

314 200 1/14/04 299 382.95 

315 300 1/14/04 298 381.11 

316 400 1/14/04 300 384.06 

317 500 1/14/04 307 393.56 

318 600 1/14/04 332 426.22 

319 700 1/14/04 371 479.04 

320 800 1/14/04 395 510.85 

321 900 1/14/04 392 506.51 

322 1000 1/14/04 389 501.86 

323 1100 1/14/04 385 496.49 

324 1200 1/14/04 381 491.41 

325 1300 1/14/04 380 490.73 

326 1400 1/14/04 379 488.53 

327 1500 1/14/04 375 483.91 

328 1600 1/14/04 376 484.78 

329 1700 1/14/04 391 504.46 

330 1800 1/14/04 416 538.33 

331 1900 1/14/04 421 544.99 

332 2000 1/14/04 416 538.02 

333 2100 1/14/04 408 527.33 

334 2200 1/14/04 389 502.73 

335 2300 1/14/04 362 466.21 

336 2400 1/13/04 305 430.47 
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3. Monte Carlo Simulations 

Uncertainty in the load forecast was introduced using a random variable sampled from a 
normal distribution. The uncertainty in the load was then applied to the IEEE 14-bus test system 
to calculate the power flows and total revenue generated using the transmission tariff specified in 
Chapter 2. The importance of each step in the simulation is identified in the following sections. 

3.1 Normal Random Number Generator 
The selection of a random number generator is important to the accuracy of the Monte 

Carlo simulations. The normal random number generator supplied by the Matlab software is built 
from a uniform random number generator. According to [14], the normal random number 
generator uses a table lookup algorithm. Uniform random numbers are generated in the same 
plane and are accepted if each falls under the area of the probability density function for a 
normal distribution. If the uniform random number generated does not fall under the area of the 
probability density function, then the number is rejected. The area under the probability density 
function is divided into 128 sections with equal areas. Figure 3.1 from [14] illustrates an 
estimation of the probability density function area using eight sections of equal area. 

 

 

Figure 3.1 Area estimation by step functions for the probability density function of a normal 
distribution as shown in [14] 

 
The period of the normal random number generator used is 264 [14]. The state of the 

normal random number generator is set to the clock to initialize the random number generator to 
a different state for every sample. Figure 3.2 displays a histogram of 100 random variables using 
the normal random number generator with the mean μ set at zero and the standard deviation σ set 
at 0.03. 
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Figure 3.2 Histogram displaying the distribution of the random numbers generated by the 

random number generator using 100 samples 

 
Figure 3.2 also displays the mean of the random number generator as μ = -0.0015. The 

random number generator was set to produce a mean of zero. The standard deviation of the 100 
samples was σ = 0.0282. With a standard deviation originally set as σ =0.03, the distribution of 
100 samples produced approximately a 6.38% error. After multiple samples were drawn using 
the normal random number generator, the percent deviation from the theoretical values of the 
mean and standard deviation proved adequate for this investigation.  

3.2 Power Flow Simulation 
Using the random number generator discussed in the previous section, the Monte Carlo 

simulations were performed using Matlab software in conjunction with SimAuto 10.0 and 
PowerWorld Simulator 10.0. The random number generator was used to draw 100 samples for 
each hour to represent the error in the load forecast for the respective hour. The random variable 
was multiplied with the total base case system load for the hour by obtaining the base case 
system parameters as computed in Chapter 2. The resulting value was represented as the amount 
of megawatt error in the system load forecast for the hour. The error was then distributed to the 
loads at the buses according to the percentage of contribution of each bus to the total system load 
in the base case. Therefore, the percentage of total system load at each load bus remained the 
same for every hour. 

With the change in the load, a power flow was performed to determine the new power 
flows on all of the transmission lines. The power flow solution provided the power at the “to” 
bus and power at the “from” bus of each transmission line. For purposes of this analysis, the 
power flow on the transmission lines used to calculate the transmission revenue generated from 
the transmission tariff was computed using the smallest absolute value of the two power flows. 
Therefore, the revenue generated for each line is calculated using Equation (2.5), where the 
power flows on the transmission lines are the power flows after transmission line losses are 
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subtracted. The total system revenue was generated by summing the revenues generated from all 
of the lines for the hour. For each of the 100 samples in a one-hour increment, the simulation 
provided a value for the total transmission revenue. Figure 3.3 displays the algorithm used for 
the stochastic simulations. 

Once all 100 samples were computed, the mean and standard deviation of the system 
revenue for each hour was calculated. For the statistical samples, the mean and the standard 
deviation were calculated using the following definitions in [15]. Suppose that the sample size 
consists of n observations where each random sample is identified as ηi for samples i = 1, 2, …, 
n. All ηi are independent observations from the same parent distribution and are random to the 
point that if 100 new samples were collected for the hour, these samples would be different from 
the original samples obtained. Because samples for this experiment are obtained from a normal 
distribution, the parent distribution, which describes how the values of ηi are distributed, should 
be a normal distribution. Thus, the sample mean of the 100 samples for each hour was calculated 
according to Equation (3.1). 

 
n

n

i
i∑

== 1

η
μ  (3.1) 

 Therefore, for this investigation, there were n = 100 samples for each hour with a 
normal distribution. The sample standard deviationσ  was calculated according to Equation 
(3.2). 
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−

−
=
∑
=

n

n

i
i μη

σ  (3.2) 

Using Equations (3.1) and (3.2), the unbiased sample standard deviation and sample 
mean were then calculated for the 100 samples for each hour. 
 



 

21 

 
Figure 3.3 Flowchart for the algorithm for the Monte Carlo simulations 
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3.3 Monte Carlo Simulation Results 

Applying the algorithm in Figure 3.3, the Monte Carlo simulations were performed on 
the IEEE 14-bus test system using the base case parameters described in Chapter 2. The 
simulations were performed for 100 samples of each 8784 hourly increment resulting in 878 400 
power flow solutions. The resulting mean total system load, mean total system revenue, and 
standard deviation of the total revenue of the 100 samples for the hours specified in Table 2.4 are 
listed in Table 3.1. 

A histogram of each hour may also be plotted using the 100 samples obtained in the 
simulation. The histogram also reflects the standard deviation and statistical mean of the 100 
samples. Figure 3.4 illustrates the typical bell-curve of the normal distribution in the system 
revenue for hour 329 (1700 = 5pm on January 14). In the figure, the mean value of the 
distribution appears to be near the $502.80 listed in Table 3.1. The standard deviation of σ = 
$14.16 is also evident in Figure 3.4. It is often assumed that the mean plus or minus 3 standard 
deviations will include all samples. 

 

 
Figure 3.4 Histogram displaying the distribution of the system revenue for 100 samples 
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Table 3.1 Statistical Results by Hour from the Monte Carlo Solutions for January 14, 2004 

Time Date 

Simulated 
Mean 

System 
Load 
(MW) 

Simulated 
Mean 

System 
Revenue 

($) 

Simulated 
Standard 
Deviation 

revenueσ  
($) 

100 1/14/04 305 390.66 12.49 

200 1/14/04 298 382.23 11.28 

300 1/14/04 295 378.27 12.82 

400 1/14/04 299 383.13 12.29 

500 1/14/04 308 394.60 13.23 

600 1/14/04 333 427.99 14.47 

700 1/14/04 371 478.56 14.23 

800 1/14/04 395 510.09 16.94 

900 1/14/04 391 505.21 14.03 

1000 1/14/04 388 501.30 13.83 

1100 1/14/04 385 497.15 13.93 

1200 1/14/04 380 490.09 12.79 

1300 1/14/04 383 494.68 13.83 

1400 1/14/04 379 488.98 15.66 

1500 1/14/04 376 484.86 15.24 

1600 1/14/04 376 484.97 14.77 

1700 1/14/04 389 502.80 14.16 

1800 1/14/04 416 537.99 17.39 

1900 1/14/04 420 543.86 16.76 

2000 1/14/04 415 536.59 19.71 

2100 1/14/04 408 527.99 14.94 

2200 1/14/04 388 500.62 15.19 

2300 1/14/04 360 464.40 13.47 

2400 1/14/04 333 427.75 14.41 
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4. Analytical Solution 

This chapter presents results that use linear power flow methods to analytically predict the 
same results as obtained using the exhaustive Monte Carlo solutions. The linear approximations 
presented in this investigation are derived using the relationships in the DC power flow. These 
approximations are used in calculating the power transfer distribution factors (PTDF). The 
PTDFs are defined as the relative change in the power flow on a particular line from bus i to bus 
j due to a change in injection, ΔPk, and corresponding withdrawal at the system swing or slack 
bus as shown in Figure 4.1. Using the PTDFs, the change in flow on each transmission line in the 
system may be calculated for the change in injection at one or more buses using superposition. 
This calculated change in flow on the transmission line causes a change in the amount of revenue 
generated. Using the methods described in this chapter, by using PTDFs, the calculation of the 
change in revenue ultimately leads to the evaluation of the distribution of the revenue for that 
hour. 

 
Figure 4.1 Illustration of the change of the flow on the line from bus i to bus j due to a change in 

injection at load bus k. 

 

4.1 Calculation of Susceptance Matrix Using DC Power Flow  

To begin the derivation of the distribution factors, the derivation of the DC power flow 
must be addressed. To discuss the basis for the DC power flow, the formulation of the Newton 
power flow equations must be discussed. Consider a power system with N buses. Each bus i may 
be characterized by the net power injections, Pnet i and Qnet i, and the voltage phasor ij

ii eVE θ= At 
each bus, the variables are represented with the relationship in Equation (4.1). 

line l 

Bus k 

ΔPk 

ΔPk 

Slack Bus 

j i 
ll ff Δ+  
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The I vector contains the current injection phasors, where jI  is the current into bus j. 

The E vector is the voltage phasor measured with respect to the ground node, where jE  
represents the voltage at bus j with respect to ground. The bus admittance matrix referenced to 
the ground bus is represented by the Y matrix in Equation (4.1). The bus admittance matrix 

[ ]ijYY =  may be calculated using Equation (4.2).  

 BjGY +=  (4.2) 

The bus conductance matrix in Equation (4.2) is defined as [ ]ijGG = , and the bus susceptance 

matrix is defined as [ ]ijBB = . The diagonal elements iiY  of the bus admittance matrix are the 
algebraic sums of all of the complex admittances of the lines of the incident bus i.The off-
diagonal elements ijY  of the bus admittance matrix are the negative sums of the lines connecting 

buses i and j. The ijY  component of the matrix will be nonzero if and only if buses i and j are 
connected by a transmission line or transformer. The system can be modeled using the 
assumption that the transmission lines may be represented by the π-equivalent model as shown in 
Figure 4.2. 

 

 
Figure 4.2 Representation of the π-equivalent transmission line model   

 

With this model, the off-diagonal bus admittance matrix elements are determined given 
Equation (4.3).  

c

ijy  
c

ijy  

ijijij jbgy +=  

Line admittance

i j 

Line charging admittance 
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 ijijijij jbgyY −−=−=  (4.3) 

Thus, from Equation (4.2), the conductance is ijij gG −= , and the susceptance is 

ijij bB −= . With the line impedance written as jxrz += , the admittance term ijy in Equation 
(4.3) may also be written as a function of the impedance, ultimately creating a relationship 
between the resistance r and the reactance x by Equation (4.4). 
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Using the real and imaginary expressions in Equation (4.4), the conductance Gij and 
susceptance Bij values are defined in Equations (4.5) and (4.6), respectively. 
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To form the basic power flow equations, bus 1 in the N-bus system is chosen as the slack 
bus in which both the voltage V and angle θ are known and constant. The power flow equations 
have the form 0=)(xg , where x is called the system state containing the bus angles θ and bus 
voltages V of all of the buses excluding the system slack bus. The power flow equations are 
solved by Equations (4.7) and (4.8) for the buses of the system not including the system slack 
bus. 
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The Newton power flow scheme is an iterative method obtained by the Taylor series 
expansion about a point. Using the Newton power flow scheme, a Jacobian matrix is defined as 
the gradient of the power flow equations gx∇ . The structure of the Jacobian matrix appears as 
shown in Equation (4.9). 
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The equations used in the Newton power flow scheme are simplified to form the 
decoupled power flow method by applying the following assumptions according to the terms in 
the Jacobian matrix: 

1. 0i

k

P
V
∂

≅
∂

 as a result of neglecting all interactions between Pi and |Vk|.  

2. 0≅
∂
∂

k

iQ
θ

, as a result of neglecting all interactions between Qi and θk . 

3. ( ) 1cos ≅− ji θθ , due to the usually small value of (θi – θj). 

4. ( ) ikkiik BG <<−θθsin . 

5. 2
iiii VBQ <<  

The first two assumptions illustrate the power system property that real power is more 
sensitive to perturbations in the voltage angle as opposed to perturbations in the voltage 
magnitude. Thus, the reactive power is more sensitive to changes in the voltage magnitude than 
changes in the voltage angle. Using the assumptions listed above, the Jacobian equations and 
power flow equations may be written as Equations (4.10) and (4.11) and Equations (4.12) and 
(4.13), respectively. 

 ikki
k

i BVV
P

−=
∂
∂
θ

 (4.10) 

 ikki

k

k

i BVV

V
V
Q

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∂

∂
 (4.11) 

 k
k

i
i

P
P θ

θ
Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=Δ  (4.12) 

 
k

k

k

k

i
i V

V

V
V
Q

Q
Δ

Δ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∂
∂

=  (4.13) 

By substituting Equation (4.10) into Equation (4.12) and Equation (4.11) into Equation 
(4.13), the following relationships may be derived in Equation (4.14) and Equation (4.15): 

 kikkii BVVP θΔΔ −=  (4.14) 
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Dividing Equations (4.14) and (4.15) by iV  and assuming that ,1≅kV further 
simplification can be made to derive Equations (4.16) and (4.17). 
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As a result, the matrix equations for an N-bus system may be determined using Equations 
(4.16) and (4.17) as shown in equations (4.18) and (4.19), respectively. 
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Further simplification to the θΔ−ΔP relationship is made using three more assumptions. 
First, all shunt reactances to ground are ignored. Second, all shunts to ground from 
autotransformers are ignored. Lastly, the line resistance can be neglected due to the value of the 
line resistance being much smaller than the line reactance, ikik xr << . This last assumption 
simplifies the calculation of ikB−  in Equation (4.6) to Equation (4.20). 

 
ik

ik x
B 1−

=−  (4.20) 

The VQ ΔΔ −  relationship is simplified by eliminating the effects from all phase shift 
transformers. The simplifications to both relationships create two different B matrices as 
assigned in Equations (4.18) and (4.19). The B’ matrix is the new simplified B matrix in 
Equation (4.16) for the θΔ−ΔP relationship by ignoring the shunt susceptances. The off-
diagonal elements '

ikB  are calculated using Equation (4.20) as shown in Equation (4.21). The 
diagonal elements '

iiB  are then calculated using Equation (4.22). 
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The B’’ matrix is the new simplified B matrix in Equation (4.19) for the VQ ΔΔ −  

relationship. The off-diagonal elements ''
ikB  are calculated using Equation (4.6) as shown in 

Equation (4.23). The diagonal elements '
iiB  are then calculated using Equation (4.24). 
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The B’ and B’’ matrices remain constant and only need to be calculated once, which is 
one of the advantages of the decoupled power flow. The DC power flow is derived from the 
decoupled power flow formulation by omitting the VQ ΔΔ −  relationship and by setting all 

..0.1 upVi =  As a result, Equation (4.18) becomes Equation (4.25), which produces the DC 
power flow equation. 

 ΔP = B’Δθ (4.25) 

Equation (4.25) implies that the DC power flow only calculates the MW flows on 
transmission lines and transformers without giving any information of MVar flows. For this 
investigation, the information provided by the DC power flow is sufficient. For example, the B’ 
matrix for the IEEE 14-bus test system is calculated according to the line data given in Table 2.1 
and Equations (4.21) and (4.22). Because the test system slack bus is assumed to be bus 1, the 
first row of the B’ matrix refers to bus 2 of the system. Equation (4.23) shows the calculation of 
the off-diagonal element '

12B  relating to the transmission line connecting buses 2 and 3. Equation 
(4.24) displays the calculation of the diagonal element '

11B , which is the sum of the admittances 
of the lines connecting bus 2 to buses 1, 3, 4, and 5. 

 p.u.0513.5
p.u.19797.0

1'
12 −=

−
=B    (4.23) 

 .p.u374.33
p.u.17388.0

1
.p.u17632.0

1
.p.u19797.0

1
.p.u05917.0

1'
11 =+++=B    (4.24) 

Thus, the complete B’ matrix for the IEEE 14-bus test system is shown in Equation 
(4.25). 
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 B’ =
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⎣

⎡

6.57192.8734-0003.6985-0000000
2.8734-15.5535.003-000007.6764-0000

05.003-8.9122000003.9092-0000
00010.2345.2064-0005.0277-0000
0005.2064-17.04111.834-0000000

3.6985-00011.834-26.42109.0901-001.798-00
0000005.6775.677-00000
000009.0901-5.677-19.549004.7819-00
07.6764-3.9092-5.0277-000020.5813.9679-000
000000003.9679-37.9523.747-05.7511-
000001.798-04.7819-023.747-41.8465.8469-5.6715-
00000000005.8469-10.8985.0513-
0000000005.7511-5.6715-5.0513-33.374

 (4.25) 

Ultimately, by Equation (4.25), the power flowing on each line l connecting buses i and j 
can then be calculated according to Equation (4.26). 

 ( )ji
ij

ijl x
Pf θθ −==

1  (4.26) 

4.2 Calculation of Distribution Factors 
The distribution factors use the standard matrices calculated in the DC power flow 

equations in the previous section. Given the linearity of the DC power flow model, the changes 
due to any set of system conditions can be calculated. For this particular investigation, the load, 
or power withdrawn from the bus, is changed at all load buses. Thus, a relationship between the 
resulting change in the bus voltage angles Δθ and the change in the bus power injections ΔP is 
desired. Manipulating Equation (4.25) to calculate the change in bus voltage angles given a 
known change in the bus power injections results in Equation (4.27), and thus the relationship 
between the X matrix and the B’ matrix is defined in Equation (4.28). 

 Δθ = XΔP  (4.27) 

 X = (B’)-1|incremented with a row and column of zeros at the swing bus  
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The power on the swing bus is equal to the sum of the injections of the remaining buses 
in the system. Therefore, in Equation (4.27), it can also be assumed that the change in power on 
the swing bus is the sum of the perturbations in the injections on the remaining buses. Thus, the 
X matrix in Equation (4.28) includes an entry of zeros in the row and column of the system 
swing bus. For the IEEE 14-bus test system used in this investigation with Bus 1 as the slack bus, 
X matrix for this system is shown in Equation (4.29) and is calculated from Equation (4.28) and 
the B’ matrix in Equation (4.25).  
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X= 
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⎥
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0.365580.227570.209950.193680.199760.202430.162460.162460.187390.0794790.0864770.0640480.0380850
0.227570.311550.277840.204420.175180.162320.134810.134810.234690.0818510.0825190.0616320.0374560
0.209950.277840.373770.205790.172040.15720.131280.131280.240730.0821540.0820130.0613240.0373750
0.193680.204420.205790.313950.224630.185340.150680.150680.207540.0804890.0847910.0630190.0378170
0.199760.175180.172040.224630.27930.218850.173780.173780.168030.0785070.0880980.0650370.0383430
0.202430.162320.15720.185340.218850.233590.183940.183940.150640.0776350.0895530.0659250.0385740
0.162460.134810.131280.150680.173780.183940.400330.224180.126760.0764370.0915520.0671440.0388920
0.162460.134810.131280.150680.173780.183940.224180.224180.126760.0764370.0915520.0671440.0388920
0.187390.234690.240730.207540.168030.150640.126760.126760.248460.0825420.0813660.0609290.0372720

0.0794790.0818510.0821540.0804890.0785070.0776350.0764370.0764370.0825420.0868620.074160.0565310.0361270
0.0864770.0825190.0820130.0847910.0880980.0895530.0915520.0915520.0813660.074160.0953520.0694630.0394960
0.0640480.0616320.0613240.0630190.0650370.0659250.0671440.0671440.0609290.0565310.0694630.14950.0441730
0.0380850.0374560.0373750.0378170.0383430.0385740.0388920.0388920.0372720.0361270.0394960.0441730.0495860

00000000000000  

 (4.29) 

Sensitivity factors can be calculated for a change in power at bus i, which is compensated 
by an opposite change in power at the swing bus. The PTDF ρlk for each line l connecting bus i to 
bus j with respect to a change in injection at bus k may be calculated by applying Equations 
(4.26) and (4.27) using Equation (4.30). 
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In Equation (4.30), xl represents the line reactance of line l connecting buses i and j, and 
the values ikX and jkX  are the respective elements of the X matrix defined in Equation (4.28). 
The distribution factors kl ,ρ  are computed for each load bus for the test system using Equation 
(4.30) and are listed in Table 4.1. 

Because this experiment is concerned with the error or change in load at the load buses, 
kPΔ will be negative, the opposite of an injection at bus k. With m load buses in the system, the 

resulting change in the flow of real power on line l connecting buses i and j is calculated as lPΔ  
using the sensitivity factor from Equation (4.30) as shown in Equation (4.31). 

 ∑
=

Δ=Δ
m

k
klkl Pf

1

ρ  (4.31) 

A test of the sensitivity factors defined in Equation (4.30) was then conducted using 
Equation (4.31). The load at one load bus was increased by 20% of the base case load value with 
all other loads remaining the same as the respective base case values. Power flows were 
performed to compute the real power flow on all of the lines. The change in the load is calculated 
as the difference between the newly calculated flow on the line and the base case value of the 
flow on the line. This simulated change in the flow on the line was compared to the calculated 
change in the flow on the line using Equation (4.31) and the sensitivity factors listed in Table 
4.1. 
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Table 4.1 Distribution Factors for Load Buses for the IEEE 14-Bus Test System 

Line 
l 

Bus 
i 

Bus 
j ρl,2 ρl,3 ρl,4 ρl,5 ρl,6 ρl,9 ρl,10 ρl,11 ρ1,12 ρ1,13 ρ1,14 

1 1 2 -0.83803 -0.74654 -0.66751 -0.61056 -0.62992 -0.65192 -0.648 -0.6391 -0.6317 -0.633 -0.6437

2 1 5 -0.16197 -0.25346 -0.33249 -0.38944 -0.37008 -0.34808 -0.352 -0.3609 -0.3683 -0.367 -0.3563

3 2 3 0.027343 -0.53203 -0.15137 -0.10307 -0.11949 -0.13815 -0.1348 -0.1273 -0.121 -0.1221 -0.1311

4 2 4 0.057224 -0.14343 -0.31678 -0.2157 -0.25008 -0.28913 -0.2822 -0.2664 -0.2532 -0.2556 -0.2745

5 2 5 0.077406 -0.071076 -0.19935 -0.29178 -0.26035 -0.22464 -0.231 -0.2454 -0.2575 -0.2553 -0.2381

6 3 4 0.027343 0.46797 -0.15137 -0.10307 -0.11949 -0.13815 -0.1348 -0.1273 -0.121 -0.1221 -0.1311

7 4 5 0.080021 0.30709 0.50325 -0.30164 -0.02793 0.28302 0.22776 0.10215 -0.0034 0.01584 0.16621

8 4 7 0.0028891 0.011087 0.018169 -0.01089 -0.21708 -0.45134 -0.4097 -0.3151 -0.2356 -0.2501 -0.3633

9 4 9 0.0016577 0.0063616 0.010425 -0.006249 -0.12456 -0.25897 -0.2351 -0.1808 -0.1352 -0.1435 -0.2085

10 5 6 -0.0045468 -0.017449 -0.028595 0.017139 -0.65836 -0.28969 -0.3552 -0.5041 -0.6292 -0.6065 -0.4282

11 6 11 -0.002738 -0.010507 -0.017219 0.010321 0.20573 -0.17445 -0.2846 -0.535 0.17569 0.15221 -0.0316

12 6 12 -0.0004021 -0.001543 -0.002529 0.0015158 0.030216 -0.025622 -0.0157 0.00686 -0.5201 -0.1687 -0.0882

13 6 13 -0.0014067 -0.005398 -0.008847 0.0053024 0.1057 -0.089625 -0.0549 0.02399 -0.2849 -0.59 -0.3084

14 7 8 7.88E-17 1.58E-16 7.88E-17 7.88E-17 0 0 0 0 0 0 0

15 7 9 0.0028891 0.011087 0.018169 -0.01089 -0.21708 -0.45134 -0.4097 -0.3151 -0.2356 -0.2501 -0.3633

16 9 10 0.002738 0.010507 0.017219 -0.010321 -0.20573 0.17445 -0.7154 -0.465 -0.1757 -0.1522 0.03162

17 9 14 0.0018088 0.0069414 0.011376 -0.006818 -0.13591 0.11525 0.07061 -0.0308 -0.1951 -0.2413 -0.6034

18 10 11 0.002738 0.010507 0.017219 -0.010321 -0.20573 0.17445 0.2846 -0.465 -0.1757 -0.1522 0.03162

19 12 13 -0.0004021 -0.001543 -0.002529 0.0015158 0.030216 -0.025622 -0.0157 0.00686 0.47994 -0.1687 -0.0882

20 13 14 -0.0018088 -0.006941 -0.011376 0.0068183 0.13591 -0.11525 -0.0706 0.03085 0.19509 0.24132 -0.3966
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For example, an increase of 4.34 MW of load at bus 2 yields a value of =Δ 2P -4.34 MW. 
Table 4.1 is used to find the distribution factors for each of the lines with respect to bus 2, which 
is the third column in Table 4.1. The value for 2PΔ  and the corresponding distribution factors are 
used to calculate the change in the line flow for all of the lines using Equation (4.31). The 
resulting values are displayed in Table 4.2 along with the actual change in line flows obtained 
from the power flows.  
 

Table 4.2. Analysis of Distribution Factors with Change in Bus 2 Load 

 

 

Perturbation at Bus 2 
ΔP2 

(MW) 

Power Flow 
Δfl 

(MW) 

Calculated Δfl 
(Equation 4.2.4) 

(MW) 

% Error 
(%) 

-4.34 3.83 3.637 5.04 
-4.34 0.75 0.7029 6.27 
-4.34 -0.122 -0.1187 2.73 
-4.34 -0.256 -0.2484 2.99 
-4.34 -0.345 -0.3359 2.63 
-4.34 0.118 0.1187 0.57 
-4.34 -0.343 -0.3473 1.25 
-4.34 -0.014 -0.01254 10.44 
-4.34 -0.008 -0.007194 10.07 
-4.34 0.023 0.01973 14.20 
-4.34 0.0139 0.01188 14.51 
-4.34 0.0018 0.001745 3.04 
-4.34 0.007 0.006105 12.78 
-4.34 -0.000036 0.00 0.00 
-4.34 -0.014 -0.01254 10.44 
-4.34 -0.0137 -0.01188 13.26 
-4.34 -0.0086 -0.007850 8.72 
-4.34 -0.0137 -0.01188 13.26 
-4.34 0.0017 0.001745 2.66 
-4.34 0.0087 0.00785 9.77 
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In the same process as that used for Table 4.2, a single load was changed for each power flow to calculate the error in the 
distribution factors with respect to the change in load for each load bus. Table 4.3 displays the amount of error that was found for each 
distribution factor using this method. For example, there was a 0.57% error in the calculation of the change in the power  

 
Table 4.3 Percent Error of the Change in Line Flows Using Distribution Factors for Load Buses for the IEEE 14-Bus Test System 

Line 
l 

%Error 
ΔP2 

 ρl,2 

%Error 
ΔP3 

ρl,3 

%Error 
ΔP4 

ρl,4 

%Error 
ΔP5 

ρl,5 

%Error 
ΔP6 

ρl,6 

%Error 
ΔP9 

ρl,9 

%Error 
ΔP10 

ρl,10 

%Error 
ΔP11 

ρl,11 

%Error 
ΔP12 

ρ1,12 

%Error 
ΔP13 

ρ1,13 

%Error 
ΔP14 

ρl,14 

1 5.04 13.07 10.50 9.01 8.97 10.76 10.96 10.52 10.39 10.98 12.81
2 6.27 12.25 9.10 7.22 7.48 8.11 8.57 8.14 9.03 9.18 10.62
3 2.73 10.08 8.93 7.84 7.38 10.72 10.77 9.07 8.90 9.66 12.38
4 2.99 2.59 4.19 3.85 2.75 4.27 4.70 4.37 4.38 4.69 6.53
5 2.63 1.60 4.33 2.74 3.77 4.03 4.64 4.56 5.37 5.44 6.90
6 0.57 0.37 5.60 5.05 4.07 7.48 7.71 6.20 5.40 6.33 9.33
7 1.25 1.86 0.52 2.66 51.87 1.63 3.53 23.28 90.25 52.75 7.68
8 10.44 15.77 20.69 18.23 10.51 0.30 0.47 3.06 8.05 5.66 0.30
9 10.07 16.77 23.34 35.69 10.72 0.92 0.99 3.73 8.50 6.14 0.37

10 14.20 17.40 22.34 18.41 4.11 2.05 3.56 4.36 5.92 5.68 6.72
11 14.51 18.24 22.75 14.51 7.45 3.10 2.83 2.35 4.40 8.84 27.18
12 3.04 5.30 22.26 92.00 31.42 10.59 2.01 100.02 10.79 5.27 3.48
13 12.78 18.64 25.16 15.14 8.11 3.68 9.32 39.94 11.74 5.46 6.88
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 10.44 15.77 19.21 18.23 10.51 0.0035 0.33 3.06 8.05 5.66 0.39
16 13.26 17.07 21.01 15.35 8.74 1.32 0.10 1.53 5.74 10.06 25.62
17 8.72 14.36 21.59 29.55 13.98 1.64 4.79 49.95 10.60 3.41 1.85
18 13.26 17.28 21.50 14.51 8.51 1.84 1.60 1.31 5.48 9.85 25.98
19 2.66 3.73 19.68 92.00 32.71 12.73 3.88 100.02 12.32 7.16 5.30
20 9.77 14.08 21.93 31.19 14.45 1.46 4.65 49.95 11.06 4.07 2.53
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flow on line 6 due to a 20% increase in the load at bus 2 using the PTDF, ρ6,2, and power 
flow calculations. The percent error values in Table 4.3 range from 0.37% to 100%. The 
percent error in the calculation of the power flow on the lines increases when the actual 
power flow on the line decreases by as small as 0.1 MW. As a result, the PTDFs provide 
reasonably accurate results when the real power flow on the line is large. 

4.3 Calculation of the Hourly Revenue  
To calculate the distribution of the hourly revenue due to uncertainty in the load 

forecast, three values are necessary: the transmission tariff, the length of the transmission 
line, and the megawatt flow on each transmission line. The first two values are constant, 
but the flow on the transmission lines must be constantly calculated. The amount of error 
due to the uncertainty in the load forecast can be represented in terms of a change in the 
injection at the load buses. Therefore, the sensitivity factors discussed in the previous 
subsection can be applied to calculate the change in the flow on each transmission line in 
the system. The analytical method first addresses the uncertainty in the load forecast by 
defining a random variable Δυ, which represents the deviation or error from the 
forecasted load for the hour. As in the Monte Carlo simulations, Δυ is sampled from a 
normal distribution with a mean μ = 0 and a specified standard deviation συ. As a result, 
Equation (4.32) displays the amount of error, or change in injection in the power at each 
load bus k. 

 0
totkk PP υα Δ=Δ  (4.32) 

The variable 0
totP  is defined as the total system load forecasted for the hour. The 

variable kα  represents the percentage of the total system load at each load bus k. Table 
4.4 displays the values of kα  for each of the load buses in the IEEE 14-bus test system 
using the base case values of the system defined in Chapter 2 with a base case system 
load of 259 MW. 
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Table 4.4 Percentage of System Load at Each Load Bus 

Load Bus 
k 

Base Case 
Bus Load 

(MW) 

Base Case 
System Load 

(MW) 
αk 

2 21.7 259 0.083784 
3 94.2 259 0.36371 
4 47.8 259 0.18456 
5 7.6 259 0.029344 
6 11.2 259 0.043243 
9 29.5 259 0.1139 

10 9.0 259 0.034749 
11 3.5 259 0.013514 
12 6.1 259 0.023552 
13 13.5 259 0.052124 
14 14.9 259 0.057529 

 

Substitution of Equation (4.32) into Equation (4.31) yields Equation (4.33). 
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=

Δ=Δ
m

k
totklkl Pf

1

0υαρ  (4.33) 

In Equation (4.33), the topology of the network remains the same and the 
distribution of the system load among the load buses is constant for this investigation. As 
a result, the terms ρik and αk only need to be calculated once. Thus, these two terms can 
be set equivalent to a constant cl with the relationship shown in Equation (4.34). 
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1

αρ  (4.34) 

Using Equation (4.33), the flow on each transmission line as a result of the error 
in the load forecast is derived in Equation (4.35), where 0

lf  is the flow on line l resulting 
from the base case forecasted load for the hour. 

 ∑
=

Δ+=Δ+=
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k
totklkllll Pffff

1

000 υαρ  (4.35) 

As stated in Chapter 2, the revenue generated from the transmission tariffs Il is 
directly related by Equation (2.5) to the transmission tariff t, the transmission line lengths 
ll, and the megawatt flows on the transmission lines lP . The transmission tariff remains 
constant, and the transmission line lengths do not change. Therefore, Equation (2.5) can 
be simplified by assigning a constant for the value of the transmission tariff and the line 
lengths in Equation (4.36). 

 ll tld =  (4.36) 
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Substituting Equations (4.35) and (4.36) into Equation (2.5), an expression for the 
total system revenue I generated for the hour is derived in Equation (4.37). 
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Equation (4.37) can be written in terms of the total base case system revenue for 
the hour 0I  using the relationship in Equation (2.5) as shown in Equation (4.38). 
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The constants in Equation (4.38) can be grouped into one large constant A as 
defined in Equation (4.39) using the definitions from Equations (4.34) and (4.36). 
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As a result, Equation (4.39) can be substituted into Equation (4.38) to calculate 
the total change in system revenue for the hour ΔI in Equation (4.40). 

 υΔ=−=Δ 00
totAPIII  (4.40) 

The equations listed above are applied to the test system. Table 4.5 lists the 
constants for the system calculated using Equations (4.34), (4.36), and (4.39) and the line 
parameters listed in Chapter 2. 
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Table 4.5 IEEE 14-Bus Test System Analytical Constants 

Line 
Number 

Bus 
i 

Bus 
j 

Line 
Length 
(miles) 

Σρl cl 
dl 

($/MW) 
Al 
($) 

1 1 2 4.024 -6.4707 0.70039 0.16 0.11 

2 1 5 15.170 -3.6600 0.29961 0.61 0.18 

3 2 3 13.465 -1.6531 0.26624 0.54 0.14 

4 2 4 11.992 -2.4897 0.20439 0.48 0.10 

5 2 5 11.826 -2.1971 0.14598 0.47 0.07 

6 3 4 11.632 -0.6531 -0.097465 0.47 -0.05 

7 4 5 2.864 1.3524 -0.25305 0.11 -0.03 

8 4 7 0 -2.2209 0.11147 0 0 

9 4 9 0 -1.2743 0.063958 0 0 

10 5 6 0 -3.5047 0.16319 0 0 

11 6 11 54.112 -0.5122 0.024766 2.16 0.05 

12 6 12 69.595 -0.7841 0.029194 2.78 0.08 

13 6 13 35.441 -1.2085 0.065984 1.42 0.09 

14 7 8 47.923 -7.8785e-16 1.2231e-16 1.92 0 

15 7 9 29.929 -2.2209 0.11147 1.20 0.13 

16 9 10 22.989 -1.4905 0.023497 0.92 0.02 

17 9 14 73.559 -1.0074 0.038026 2.94 0.11 

18 10 11 52.254 -0.4878 -0.011252 2.09 -0.02 

19 12 13 54.379 0.2159 0.0056418 2.18 0.01 

20 13 14 94.681 0.00743 0.019503 3.79 0.07 

TOTAL 1.09 

 

4.4 Distribution of System Revenue 
Equation (4.40) creates an important relationship between the random variate Δυ 

and system revenue for the hour. Because the random variable is sampled from a normal 
distribution with a zero mean and a known standard deviation, Δυ~N(0, συ), Equation 
(4.40) indicates that the change in the system revenue, IΔ , also has a normal distribution 
with some known mean and a variance, IΔ ~N(0, σrevenue). The following mathematical 
properties can be used in the derivation of the standard deviation of the system revenue in 
Equations (4.41) and (4.42) where D is a scalar, Y is a known distribution, E[Y] is the 
expected value, or mean, of the distribution of Y, and VAR[Y] is the variance, or the 
standard deviation squared, of the distribution of Y. 

 [ ] [ ]YDEDYE ==μ  (4.41) 
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 [ ] [ ]YVARDDYVAR 22 ==σ  (4.42) 

With the relationship in Equation (4.40) and the statistical properties in Equations 
(4.41) and (4.42), the mean and standard deviation of the change in revenue can be 
derived using Equations (4.43) and (4.44), respectively. 

 [ ] [ ] 0000 ==Δ=Δ= υμυυμ tottottotrevenue APEAPAPE  (4.43) 

 [ ] ( ) [ ] ( ) υυ σσυυσσ 02202002
tottottottotrevenuerevenue APAPVARAPAPVAR ==Δ=Δ==

 (4.44) 

Equation (4.44) indicates that the standard deviation of the total system revenue 
for each hour will vary depending directly on the total forecasted system load. The 
standard deviation is calculated according to Equation (3.2).  

4.5 Analytical Method Results 
The analytical methods discussed above were then used to calculate the 

distributions of the system revenue for each hour on January 14, 2004 as shown in Table 
4.6. The mean of the system revenue was scaled to match the base case system revenue 
value.  
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Table 4.6 Calculated Distributions from the Analytical Method for January 14, 2004 

Time Date 

Base 
Case 
Load, 
Ptot

0 

(MW) 

Base Case 
Revenue, 

I0 

($) 

Standard 
Deviation 

revenueσ  
($) 

100 1/14/04 305 390.96 9.96 

200 1/14/04 299 382.95 9.76 

300 1/14/04 298 381.11 9.72 

400 1/14/04 300 384.06 9.79 

500 1/14/04 307 393.56 10.03 

600 1/14/04 332 426.22 10.83 

700 1/14/04 371 479.04 12.13 

800 1/14/04 395 510.85 12.91 

900 1/14/04 392 506.51 12.81 

1000 1/14/04 389 501.86 12.69 

1100 1/14/04 385 496.49 12.56 

1200 1/14/04 381 491.41 12.43 

1300 1/14/04 380 490.73 12.42 

1400 1/14/04 379 488.53 12.36 

1500 1/14/04 375 483.91 12.25 

1600 1/14/04 376 484.78 12.27 

1700 1/14/04 391 504.46 12.76 

1800 1/14/04 416 538.33 13.59 

1900 1/14/04 421 544.99 13.75 

2000 1/14/04 416 538.02 13.58 

2100 1/14/04 408 527.33 13.32 

2200 1/14/04 389 502.73 12.71 

2300 1/14/04 362 466.21 11.81 

2400 1/14/04 305 430.47 10.93 

 
The probability density function (pdf) of a normal distribution is given in 

Equation (4.46). 
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The mean and standard deviation of the normal distribution are represented by μ 
and σ, respectively. Using the values for the base case revenue and standard deviation 
calculated in Table 4.6, a probability density function can be drawn according to the 
relationship in Equation (4.46). The representation of the distribution of the system 
revenue for hour 329 (1700 hours on January 14, 2004) is shown in Figure 4.3. The 
figure displays the typical bell-curve of the probability density function of the normal 
distribution. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 Normal distribution of the system revenue using the analytical calculated 

standard deviation 
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5. Comparison of Solutions 

The two methods, Monte Carlo simulations and the Analytical Method, presented 
in Chapters 3 and 4 can be compared based on their results presented in the previous 
chapters. Both methods provide results for the distribution of the system revenue. Table 
5.1 lists the results from both methods for January 14, 2004. 
 

Table 5.1 Comparison of Monte Carlo and Analytical Methods for January 14, 2004 

Hour Time Date 

Mean 
Total 

Revenue 
($) 

Base 
Case 
Total 

Revenue
I0 

($) 

Error in 
Total 

Revenue
(%) 

Simulated 
Standard 
Deviation

revenueσ
($) 

Analytical 
Standard 
Deviation 

revenueσ  
($) 

Error in 
Standard 
Deviation

(%) 

313 100 1/14/2004 390.66 390.96 0.08 12.49 9.96 20.24 

314 200 1/14/2004 382.23 382.95 0.19 11.28 9.76 13.44 

315 300 1/14/2004 378.27 381.11 0.75 12.82 9.72 24.19 

316 400 1/14/2004 383.13 384.06 0.24 12.29 9.79 20.33 

317 500 1/14/2004 394.60 393.56 0.26 13.23 10.03 24.21 

318 600 1/14/2004 427.99 426.22 0.41 14.47 10.83 25.17 

319 700 1/14/2004 478.56 479.04 0.10 14.23 12.13 14.77 

320 800 1/14/2004 510.09 510.85 0.15 16.94 12.91 23.77 

321 900 1/14/2004 505.21 506.51 0.26 14.03 12.81 8.73 

322 1000 1/14/2004 501.30 501.86 0.11 13.83 12.69 8.21 

323 1100 1/14/2004 497.15 496.49 0.13 13.93 12.56 9.83 

324 1200 1/14/2004 490.09 491.41 0.27 12.79 12.43 2.78 

325 1300 1/14/2004 494.68 490.73 0.80 13.83 12.42 10.21 

326 1400 1/14/2004 488.98 488.53 0.09 15.66 12.36 21.05 

327 1500 1/14/2004 484.86 483.91 0.20 15.24 12.25 19.63 

328 1600 1/14/2004 484.97 484.78 0.04 14.77 12.27 16.93 

329 1700 1/14/2004 502.80 504.46 0.33 14.16 12.76 9.92 

330 1800 1/14/2004 537.99 538.33 0.06 17.39 13.59 21.86 

331 1900 1/14/2004 543.86 544.99 0.21 16.76 13.75 17.95 

332 2000 1/14/2004 536.59 538.02 0.27 19.71 13.58 31.10 

333 2100 1/14/2004 527.99 527.33 0.13 14.94 13.32 10.85 

334 2200 1/14/2004 500.62 502.73 0.42 15.19 12.71 16.31 

335 2300 1/14/2004 464.40 466.21 0.39 13.47 11.81 12.33 

336 2400 1/14/2004 427.75 430.47 0.64 14.41 10.93 24.14 
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Table 5.1 displays the percent difference in both the mean and standard errors 
from the results using the Monte Carlo simulations and the analytical method. The 
percentage of error from the base case system revenue values from Chapter 2 is 
calculated for the mean value of revenue obtained from the 100 samples in the Monte 
Carlo simulations for all hours. The percentage of error was less than 1%. However, the 
percentage of error in the standard deviation calculated using the Monte Carlo simulation 
results and the analytical method for each hour was more significant with a range of 
1.28% to 30.96%. This range of differences in the standard error could be due to the 
calculation of the PTDFs. As shown in Table 4.3, error is inherent in the calculation of 
the PTDFs. This error propagates through the analytical calculations to contribute to the 
overall difference in the percent difference between the two values. 

Another source of error in the calculation of the standard deviation could be due 
to the fact that the power losses in the transmission lines were not accounted for in the 
analytical method, whereas the losses were considered in the power flows computed in 
the Monte Carlo simulations. Therefore, the revenues obtained from the simulations 
would possibly be smaller than the mean value for the revenue generated using the 
analytical method. 

Finally, some of the values obtained using the Monte Carlo simulations may be 
different from those obtained using the analytical methods because the random number 
generator also possesses some percentage of error in the 100 random samples generated, 
as discussed in Chapter 3. More Monte Carlo simulations would have to be performed 
with different numbers of samples for each hour to test the accuracy and the optimal 
number of samples for the hour. 
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Set line i=1 

Open line i 

Set hour = 1

Set sample=1 

sample >100 ? 

     Perform power flow 

sample=sample+1 

hour = hour +1 

           i=i+1 

hour>24 ? 

i>20? 

Estimate and save new revenue 

       Close line i 

   Do load scheduling 

Revenue(i,hour) = 
mean (100 revenues) 

No 

Yes 

Yes No 

No
Yes 

Stop 

6. Line Outages 

6.1  Monte Carlo Simulation 
This chapter reports on the extension of the previous work to include the effect of 

line outages on transmission revenues together with the uncertainty in the load. A Monte 
Carlo method was performed to develop a data set that could be used to quantify the 
impact of topology on transmission revenues. The outages of the transmission lines were 
simulated by opening the transmission lines one at a time and analyzing the effects for 
each hour of uncertain load as indicated in the flowchart of Figure 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1 Flow chart of the Monte Carlo simulation 
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As in the earlier chapters, Monte Carlo simulations were performed on the IEEE 
14-bus test system for each hour of January 14, 2004. Table 6.1 shows the sample mean 
results of the Monte Carlo simulation. In the experiment presented here, a sample size of 
100 was used. The standard deviation of the revenues for the case of 100 samples was 
also computed and tabulated in Table 6.2. The values that are blank were from a case 
were at least one of the100 random load-flow solutions did not converge. 

Table 6.1 is read as follows: the second row of the table corresponds to the hourly 
revenue for the IEEE 14-bus system for hours 1 through 24 when line 1 connecting bus 1 
and bus 2 is out. The second column of the table corresponds to the hourly revenue 
earned between 12:00 a.m. and 1:00 a.m. when lines 1 through 20 are opened and closed 
systematically, with one line open at a time. The last row gives the mean value (simple 
average) of the revenues for the corresponding hour.  
 

Table 6.1 Expected Revenues Computed Using 100 Samples Per Hour. 

 Hr1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Ln1                         
2 377 370 368 371 380411 463     476475472468469       450415
3 447 437 435 439 450490                  496
4 396 388 386 389 398431 484 517 512508502497496494489490510545 552 544 534508471435
5 379 372 370 373 382413 464 495 491486481476475473469469489521 528 521 511487451417
6 376 368 366 369 378410 460 491 487483477472472470465466485517 524 517 507483448414
7 433 424 422 425 436474 534 570 565560553548547544539540562601 609 601 588560519479
8 407 398 397 400 410444 498 532 527522517511511508503504525561 568 561 549523485449
9 426 417 415 419 429464 522 556 552547541535535532527528550587 594 586 575548508469
10 601 589 586 591 605657                 723664
11 394 386 384 387 397430 484 517 512508502497496494489490510544 551 544 533508471434
12 390 382 380 383 393425 478 510 505501496490490487483484503537 544 537 526502465430
13 446 437 435 438 449486 547 584 579573567561560558552553576616 624 616 603574532491
14 394 386 384 387 397429 481 513 509504499494493491486487507541 548 541 530505468433
15 413 404 402 405 415450 505 540 535530524519518516511512533570 577 569 558531492454
16 401 393 391 394 404437 490 523 518514508503502500495496516551 558 551 540515477441
17 407 399 397 400 410444 500 534 529524518513512510505506527563 571 563 552525486448
18 383 376 374 377 386418 471 502 498493488483482480476476496529 536 529 518494458422
19 384 376 375 377 387419 471 502 498493488483482480476476496529 536 529 518494458423
20 385 377 376 378 388420 473 505 501496491486485483478479498532 539 532 521497460425
Mean 416 408 406 409 419455 513 547 543538532526526523518519540579 586 578 566539498459
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Table 6.2 Standard Deviation of Revenues Computed Using 100 Samples Per Hour 

 Hr#1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Line#1                         

2 12 12 12 12 12 14 16     15 15 16 16 16       15 14
3 15 15 15 15 16 18                  18
4 13 13 13 13 13 14 16 17 17 17 16 16 16 16 16 16 17 18 18 18 18 17 15 14
5 12 12 12 12 12 13 15 16 16 16 16 16 16 15 15 15 16 17 17 17 17 16 15 14
6 12 12 12 12 13 14 15 16 16 16 16 15 15 15 15 15 16 17 17 17 17 16 15 14
7 15 14 14 14 15 16 18 19 19 19 18 18 18 18 18 18 19 20 21 20 20 19 17 16
8 14 13 13 13 14 15 16 18 18 17 17 17 17 17 16 16 17 19 19 19 18 17 16 15
9 14 14 14 14 14 15 17 18 18 18 18 18 17 17 17 17 18 19 20 19 19 18 17 15
10 20 19 19 20 20 23                 26 23
11 13 13 13 13 13 14 16 17 17 17 16 16 16 16 16 16 17 18 18 18 17 17 16 15
12 13 13 12 13 13 14 16 17 17 16 16 16 16 16 16 16 16 18 18 18 17 16 15 14
13 15 14 14 14 15 16 18 19 19 19 19 19 19 18 18 18 19 21 21 21 20 19 18 16
14 13 13 12 13 13 14 16 17 17 16 16 16 16 16 16 16 17 18 18 18 17 16 15 14
15 13 13 13 13 14 15 17 18 18 18 17 17 17 17 17 17 18 20 20 20 19 18 16 15
16 13 13 13 13 13 14 16 17 17 17 17 16 16 16 16 16 17 18 18 18 18 17 16 14
17 13 13 13 13 13 15 17 18 18 18 17 17 17 17 17 17 18 19 20 19 19 18 16 15
18 13 12 12 12 13 14 15 16 16 16 16 16 16 16 16 16 16 17 18 17 17 16 15 14
19 13 12 12 12 13 14 15 16 16 16 16 16 16 16 16 16 16 17 18 17 17 16 15 14

20 13 12 12 12 13 14 16 17 16 16 16 16 16 16 16 16 16 18 18 18 17 16 15 14

 

A histogram for revenue 
samples obtained for hour 9 when 
line 20 is out is shown in Figure 6.2. 
The 100 revenues have a mean of 
501 and a standard deviation of 16. 

Transmission revenues were 
also computed for the base case 
loading with the transmission lines 
opened. This was in order to see how 
close the Monte Carlo simulation 
results were with the actual revenue 
that would have been obtained with 
lines opened, one at a time. No 
random samples of load were used. 
These results are shown in Table 6.3. 

Figure 6.2 Histogram of the 100 revenues 
obtained for hour 9 when line 20 is open. 
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Table 6.3 Revenue Computed for Base Case Loading 

 Hr#1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Ln1                         
2 377 369 368 371 380 411 462     475474472467468       450415
3 447 437 435 439 450 490                  495
4 396 388 386 389 398 431 484 517 512508502497496494489490510545 552 544 533508471435
5 379 372 370 373 382 413 464 495 490486481476475473469469489521 528 521 511487451417
6 376 368 366 369 378 410 460 491 487482477472472469465466485517 524 517 507483448414
7 433 424 422 425 436 475 533 569 565559553547546544539540562601 609 601 588560519479
8 407 398 396 400 410 444 498 532 527522517511510508503504525561 568 561 549523485449
9 426 417 415 418 429 464 522 556 552547541535534532527528549586 594 586 575548508469
10 601 589 586 591 605 656                 723664
11 394 386 384 387 397 430 484 516 512508502497496494489490510544 551 544 533508471434
12 390 382 380 383 393 425 478 510 505501495490490487483484503537 544 537 526502465430
13 446 437 434 438 449 486 547 583 578573567561560558552553576616 624 615 603574532491
14 394 386 384 387 397 429 481 513 509504499494493491486487507541 548 541 530505468433
15 413 404 402 406 415 449 505 539 535530524519518515511511533569 577 569 557531492454
16 401 393 391 394 404 437 490 523 518514508503502500495496516551 558 551 540515477441
17 407 399 397 400 410 444 500 534 529524518513512510505506527563 570 563 551525486448
18 383 376 374 377 386 418 471 502 498493488483482480476476496529 536 529 518494458422
19 384 376 375 377 387 419 471 502 498493488483482480476476496529 536 529 518494458423
20 385 377 376 378 388 420 473 505 500496491486485483478479498532 539 531 521497460424
Mean 416 408 406 409 419 455 513 547 543538532526525523518519540578 585 577 565539498460

 

Comparing Tables 6.1 and 6.3, it can be seen that the revenues obtained closely 
match, thus confirming that the mean value of revenue variation computed from the 
hundred samples of normal distribution of load is near zero.  

From these raw solution sets, statistical information such as the expected revenue 
from the system given that one line is outaged can be computed. This would require 
knowledge of the probability of each line outage. Since this number would normally be 
quite small, the impact of this uncertainty on the revenue would also be quite small. 
However, there is a considerable variation in revenue depending on the network 
topology. This indicates that the analysis could be used to evaluate the benefits of adding 
new lines. 
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6.2 Analytical Method 
This section presents an analytical method to approximate the same solution that 

was obtained from the exhaustive Monte Carlo solution. The analytical method utilizes 
the well-known concept of a Line Outage Distribution Factor (LODF) [16].  

Once the LODFs are computed and the base case megawatt flows are given, it is 
possible to compute the change in megawatt flows on other lines due to the outage of a 
particular line. With the knowledge of the new megawatt flowing over the lines, the 
revenues for any hour can be computed using the expression, hourly revenue = 
0.04*linelength’*new LineMW. While the analytical method always provides a solution 
for line outage cases, the cases where the Monte Carlo solutions failed to converge have 
been left blank here to avoid comparison. 

 

Table 6.4 Expected Revenues Computed Analytically. 

 Hr#1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Line#1                         

2 378 371 369 372 381 413 464     476476474469470       452417
3 439 430 428 431 442 479                  483
4 395 387 385 388 398 431 484 517512508502497496494489490510545 551 544 534508471435
5 380 372 370 373 382 414 466 497492488483478477475470471490523 530 523 513489453418
6 377 369 367 370 379 411 461 492488483478473473470466467486518 525 518 508484449415
7 426 417 415 418 428 464 522 557552547541536535532527528550587 594 586 575548508469
8 409 401 399 402 412 446 502 535530526520515514511507508528563 570 563 552526488451
9 427 418 416 419 430 465 522 557552547541536535533528529550587 594 587 575548508470
10 596 584 581 585 600 649                 709655
11 395 387 385 388 397 430 484 516511507501496495493489489509544 550 543 533508471435
12 390 382 380 383 393 425 478 510506501496491490488483484504538 544 537 527502465430
13 443 434 432 436 446 483 543 580575569563557557554549550572611 619 611 599570528488
14 391 383 381 384 394 426 479 511507502497491491489484485504538 545 538 527503466431
15 409 401 399 402 412 446 502 535530526520515514511507508528563 570 563 552526488451
16 401 393 391 394 403 437 491 523519514509504503501496497517552 558 551 540515478441
17 407 398 396 399 409 443 497 531526522516510510507503503524560 567 559 548522484447
18 384 376 374 377 386 418 470 501497493487482482479475476495528 535 528 518493457422
19 384 376 375 377 387 419 471 502498493488483482480476476496529 536 529 518494458423
20 385 377 375 378 387 420 472 503499494489484483481477477497530 537 530 519495459424

Mean 414 406 404 407 417 452 508 542537533527521521518513514535572 579 571 560533494456
 

The following mathematical properties can be used in the derivation of the 
standard deviation of the system revenue [20]. If D is a scalar and Y has a known 
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distribution, E[Y] is the expected value or mean of the distribution of Y, and VAR[Y] is the 
variance or the standard deviation squared of the distribution of Y, then 

         2 2   [ ]   [ ]     [ ]    [ ]µ E DY DE Y and VAR DY D VAR Yσ= = = =                       (6.1) 

Thus, if the 100 load samples of the Monte Carlo solution had a standard 
deviation of 3% of the base case load then the revenues will have a standard deviation of 
0.03 times the revenues of the base case load. Thus, for hour 3 when line 2 is out, the 
revenue generated is $369 with a standard deviation of 0.03*369 = 11.07. The standard 
deviations computed analytically in this manner are given in Table 6.5. 

 

Table 6.5 Standard Deviations Computed Analytically. 

 Hr#1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Line#1                         

2 11 11 11 11 11 12 14     14 14 14 14 14       14 13

3 13 13 13 13 13 14                  14

4 12 12 12 12 12 13 15 15 15 15 15 15 15 15 15 15 15 16 17 16 16 15 14 13

5 11 11 11 11 11 12 14 15 15 15 14 14 14 14 14 14 15 16 16 16 15 15 14 13

6 11 11 11 11 11 12 14 15 15 15 14 14 14 14 14 14 15 16 16 16 15 15 13 12

7 13 13 12 13 13 14 16 17 17 16 16 16 16 16 16 16 16 18 18 18 17 16 15 14

8 12 12 12 12 12 13 15 16 16 16 16 15 15 15 15 15 16 17 17 17 17 16 15 14

9 13 13 12 13 13 14 16 17 17 16 16 16 16 16 16 16 17 18 18 18 17 16 15 14

10 18 18 17 18 18 19                 21 20

11 12 12 12 12 12 13 15 15 15 15 15 15 15 15 15 15 15 16 17 16 16 15 14 13

12 12 11 11 12 12 13 14 15 15 15 15 15 15 15 14 15 15 16 16 16 16 15 14 13

13 13 13 13 13 13 14 16 17 17 17 17 17 17 17 16 16 17 18 19 18 18 17 16 15

14 12 11 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 16 16 16 16 15 14 13

15 12 12 12 12 12 13 15 16 16 16 16 15 15 15 15 15 16 17 17 17 17 16 15 14

16 12 12 12 12 12 13 15 16 16 15 15 15 15 15 15 15 16 17 17 17 16 15 14 13

17 12 12 12 12 12 13 15 16 16 16 15 15 15 15 15 15 16 17 17 17 16 16 15 13

18 12 11 11 11 12 13 14 15 15 15 15 14 14 14 14 14 15 16 16 16 16 15 14 13

19 12 11 11 11 12 13 14 15 15 15 15 14 14 14 14 14 15 16 16 16 16 15 14 13

20 12 11 11 11 12 13 14 15 15 15 15 15 14 14 14 14 15 16 16 16 16 15 14 13
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6.3 Comparison of the Results 
Comparing the results of Tables 6.1 and 6.4, we see that the analytical method 

gives a very good approximation of the expected revenues obtained using the Monte 
Carlo method. To illustrate this fact, a normal distribution of the Monte Carlo simulation 
result and analytical result is shown in Figure 6.3 for the case for hour 9 when line 20 is 
out. A histogram of the hundred revenues obtained for the 100 samples of the Monte 
Carlo simulation is plotted. The Monte Carlo simulation gave mean revenue of $501 with 
a standard deviation of 16. The analytical method estimated mean revenue of $499 with a 
standard deviation of 15. 

 
Figure 6.3 Normal distribution curve for Monte Carlo and analytical revenues for hour 9 

with line 20 open. 

 
The percentage error in the revenue computed analytically can be found as 

(analytical revenue-Monte Carlo revenue)*100/Monte Carlo revenue and is given in 
Table 6.6. The blank figures correspond to cases that would not solve in the Monte Carlo 
results. 
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Table 6.6 Percentage Error in Revenues. 

 Hr1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Ln1                         
2 0.3 0.3 0.3 0.3 0.3 0.4 0.3     0.3 0.3 0.3 0.3 0.3       0.4 0.5
3 -1.9 -1.8 -1.8 -1.8 -1.9 -2.4                  -2.5
4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
5 0.1 0.1 0.0 0.1 0.1 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3
6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
7 -1.8 -1.7 -1.7 -1.7 -1.8 -2.1 -2.1 -2.3 -2.2 -2.2 -2.2 -2.2 -2.2 -2.1 -2.1 -2.1 -2.2 -2.4 -2.4 -2.4 -2.3 -2.2 -2.1 -2.1
8 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.5 0.6 0.6 0.5
9 0.2 0.2 0.2 0.2 0.2 0.2                 0.1 0.2
10 -0.9 -0.9 -0.9 -0.9 -1.0 -1.2 -2.1 -1.7 -1.7 -1.8 -1.9 -2.0 -2.0 -2.1 -2.1 -2.1 -1.7 -1.1 -0.9 -1.1 -1.3 -1.8 -2.0 -1.3
11 0.2 0.2 0.2 0.2 0.2 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.10.1
12 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
13 -0.5 -0.5 -0.5 -0.5 -0.5 -0.6 -0.6 -0.7 -0.7 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.7 -0.8 -0.8 -0.8 -0.7 -0.7 -0.6 -0.6
14 -0.8 -0.8 -0.8 -0.8 -0.8 -0.6 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
15 -0.8 -0.8 -0.9 -0.9 -0.8 -0.7 -0.8 -0.9 -0.9 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.9 -1.1 -1.2 -1.1 -1.0 -0.9 -0.7 -0.7
16 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
17 -0.1 -0.1 -0.2 -0.1 -0.1 -0.3 -0.5 -0.6 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.7 -0.7 -0.6 -0.6 -0.5 -0.4 -0.3
18 0.1 0.1 0.1 0.1 0.1 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 -0.1 -0.1 -0.10.0
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.4 -0.4 -0.4 -0.3 -0.3 -0.3 -0.2

 

The percentage error in the standard deviation (SD) computed analytically is 
(analytical SD-Monte Carlo SD)*100/Monte Carlo SD and is shown in Table 6.7. 

Tables 6.6 and 6.7 display the percentage error in the mean and standard deviation 
among the results of the Monte Carlo simulations and the analytical method. The 
percentage of error for the mean revenue for the methods varies between the range of 0-
2.4%. The percentage of error in the standard deviation calculated using the Monte Carlo 
simulation results and the analytical method for each hour was in the range of 0 to 20%.  
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Table 6.7 Percentage error in standard deviation. 

 Hr#1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Line#1                         
2 -8 -8 -8 -8 -8 -8 -11     -8 -8 -9 -10 -10       -10 -9 
3 -14 -14 -13 -14 -15 -20                  -21
4 -9 -9 -9 -9 -9 -8 -8 -9 -9 -9 -9 -9 -9 -9 -8 -8 -9 -10 -10 -10 -10 -9 -8 -8 
5 -8 -8 -9 -8 -8 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -7 
6 -9 -9 -9 -9 -9 -9 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -8 -8 -8 -7 -9 
7 -14 -13 -13 -13 -14 -13 -11 -13 -12 -12 -12-12 -12 -11-11 -11 -12-14 -14 -14 -13 -12 -10-12
8 -10 -9 -9 -9 -10 -9 -7 -10 -10 -9 -9 -8 -8 -8 -8 -8 -9 -11 -11 -11 -10 -9 -6 -8 
9 -8 -8 -8 -8 -8 -9 -8 -9 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -8 -8 -9 
10 -10 -10 -10 -10 -11 -14                 -17 -15
11 -9 -8 -8 -8 -9 -11 -9 -8 -8 -8 -8 -8 -8 -8 -9 -9 -8 -9 -9 -9 -8 -8 -10 -11
12 -9 -9 -9 -9 -9 -9 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -8 -8 -8 -9 
13 -9 -9 -9 -9 -9 -10 -10 -11 -11 -10 -10-10 -10 -10-10 -10 -10-12 -12 -12 -12 -10 -10-10
14 -8 -8 -8 -8 -8 -8 -8 -9 -9 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -8 -8 -8 
15 -9 -9 -9 -9 -9 -9 -10 -11 -11 -11 -10-10 -10 -10-10 -10 -11-14 -15 -14 -12 -11 -10-9 
16 -8 -8 -8 -8 -8 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -8 -8 -8 -8 -7 
17 -8 -8 -8 -8 -8 -10 -10 -11 -11 -11 -11-11 -11 -11-11 -11 -11-12 -13 -12 -12 -11 -10-10
18 -9 -9 -9 -9 -9 -10 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -8 -9 -10
19 -9 -9 -9 -9 -9 -9 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -8 -8 -8 -9 
20 -9 -9 -9 -9 -9 -11 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -10 -10 -10 -9 -9 -9 -11

 

The Monte Carlo method and the analytical methods have some elegance in their 
own way. The choice of a method for a particular application is dependent on many other 
details specific to the application. The advantages of the Monte Carlo sampling approach 
are: conceptual simplicity, i.e., each sampled scenario can be seen as a possible "history" 
of system operation; and flexibility, i.e., it is easy to incorporate complex modeling 
features. One limitation of the Monte Carlo method is related to the computational effort, 
which increases significantly with the required accuracy of the estimates. Analytical 
models have several attractive features: they are reasonably accurate, computationally 
efficient and, perhaps most important, they provide the planner with insight on the 
relationships between input variables and final results. Their major limitations are related 
to the simplifying assumptions which may be required for analytical tractability. The 
extension of analytical models to incorporate additional features often leads to infeasible 
computational requirements. 
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7. Conclusions and Recommendations 

The primary goal of this portion of the project was to evaluate and compare the 
Monte Carlo method and the analytical method for incorporating uncertainty in load 
forecasts, and to investigate the impact of line outages on transmission revenues. The 
theoretical basis for both the Monte Carlo method and the analytical method were 
explored and documented with an illustration on the IEEE 14-bus test system. The 
expected value and variance of the transmission revenue were computed for the case with 
all lines in service and for the cases where one line was outaged. The results indicate that 
the analytical method provides very good approximations of the exhaustive Monte Carlo 
method. This was observed both in the incorporation of load uncertainty and in the 
investigation of the impact of line outages. 

The analysis did not incorporate any probability of line outages, or consideration 
of “length of outage”. The analysis did include the computation of the “mean” revenue by 
simply computing the average expected revenue considering all individual line outage 
cases. This was the expected value of the revenue given that one line was outaged. The 
expected value of revenue considering uncertainty in both load forecast and topology 
would be equal to a weighted sum of the expected revenue values computed here with the 
corresponding probabilities of individual line outages plus the probability of all lines in 
service. 
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