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Executive Summary 
 

Incentives for attracting investments in transmission assets are essential to the overall 
success of the restructuring of the electric power industry. In general, adequate 
transmission capacity enhances reliability, lowers energy cost as delivered, limits market 
power of market participants, and provides flexibility to protect against market 
uncertainties such as load fluctuation, fuel price volatility, and unexpected facility 
outages.  

Various transmission-pricing approaches have been developed for recovering 
transmission costs and providing incentives for future expansion or enforcement. 
According to the market-based investment model, a transmission investment usually 
expands power-transfer capability, and therefore, increases the quantity and variety of 
transmission rights can be issued to investors. This project tackles problems related to the 
evaluation of market-based schemes for compensating transmission investments.  

I. Power system simulation approach for evaluating transmission reliability and 
adequacy related investments 
First, alternative compensation mechanisms for compensating transmission network 

investment aimed at improving reliability and adequacy are documented. Then, the 
evaluation of reliability and adequacy transmission investment is performed through 
incorporating constraints on the transmission reliability margin (TRM) and the generation 
reserve margin into a fundamental power system simulation models with a Locational 
Marginal Price (LMP)-based market structure. Heuristic methods for identifying 
incremental financial transmission rights (FTRs) resulting from typical network-
deepening or network-expanding transmission investment projects are illustrated. 

Through a case study, we show that FTR-based compensation scheme does provide 
financial incentives for reliability and adequacy targeted transmission investments via 
allocating the incremental FTRs to investors. The magnitude of such incentives depends 
on the amount of incremental FTRs resulting from the investment. The quantity and value 
of the incremental FTRs further depend on the bid values, the transmission network 
topology and the initial configuration of the allocated FTRs. Thus, market-based 
compensation mechanisms, such as the one rewarding investors with incremental FTRs 
as tradable instruments for recovering sunk capital costs and hedging market risks, have 
the potential of adequately compensating the reliability or security constraint-relieving 
transmission investments.  

II. Econometric modeling of the price of financial transmission rights 
An econometric modeling framework for simulating the stochastic behavior of 

congestion costs of electricity in New York State is developed. The basic specification of 
the model is that the price of electricity in a specified zone (region) is a function of the 
corresponding load, the price of natural gas and a set of seasonal and daily variables. The 
estimated multivariate time-series models are then used to predict the average daily prices 
in various zones in New York for the summer of 2006. Since the estimated models are 
based on information that is available before the auction to sell the FTRs, it is appropriate 
to use these models to evaluate the financial risk of purchasing FTRs in the auction.  
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The financial risk of the FTRs in New York, namely the TCCs, for the summer of 
2006 is evaluated from two different perspectives. First, the risk of hedging for a 
generator comes primarily from uncertainty about the actual daily temperatures next 
summer. Second, the risk for speculators comes from the combined uncertainty about 
future temperatures and future prices of natural gas. Through this process, the predicted 
price differences can be used as a basis for measuring the magnitude and financial 
riskiness of congestion costs for a specified financial transmission right. This analysis has 
demonstrated successfully the feasibility of using an econometric model to simulate the 
financial riskiness of the payout from holding FTRs using only information known prior 
to the FTR auction.  

III. Forward price risk premium and implications for transmission investments 
We examine the risk premium present in the electricity day-ahead forward price over 

the real-time spot price. This study establishes a quantitative model for incorporating 
transmission congestion into the analysis of electricity day-ahead forward risk premium. 

Through simulations with a three-bus study system, it is illustrated that the more 
frequently transmission congestion happens, the higher the forward prices get at the load 
buses. Consistent with the implications of the 3-bus model, evidences from empirical 
studies using the New York electricity market data confirm that there exists a significant 
statistical relationship between the day-ahead forward risk premium and the shadow price 
premiums on congested transmission flowgates.  

IV. Nonparametric modeling of the Hub-and-Spoke Representation of a Network 
We investigated an effective non-parametric approach for identifying proxy trading 

hubs in an LMP-based market for the purpose of approximating correct incentives for 
inducing efficient capacity investment in generation and transmission through a small set 
of financial transmission rights such as FTRs or TCCs. We developed a non-parametric 
dimension reduction method for modeling the structure of the LMPs at major zones in a 
bulk power system. Using this model, we can identify and analyze the major factors 
influencing the LMPs in all zones, which may serve as explanatory variables for the 
pricing of FTRs.  

We have applied this non-parametric model to investigate the electricity day-ahead 
forward price curve dynamics in the New York power market. This model performs 
better in forecasting short-term curves of the LMPs than do other existing time series 
models. 

V. Inherent inefficiency of FTR auctions 
Empirical studies of FTR (or, TCC) auction data from the NYISO1 show systematic 

deviations between the FTR auction clearing prices and the settlement payoffs. Such 

                                            
1 Bartholomew E. S, A. S., Siddiqui, C. Marnay, and S.S. Oren “The New York 
Transmission Congestion Contract Market: Is it Working Efficiently”, Electricity Journal, 
(November 2003), pp. 1-11. 
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deviations cannot be explained by risk aversion or by risk premiums associated with the 
correlation between FTRs and non diversifiable risks. As part of this project work, we 
have demonstrated that even with perfect foresight of the settlement payoffs, the auction 
clearing prices may deviate from the expected payoffs.  

Our theoretical analysis and simulations show that these deviations can be explained 
by the fact that FTR bids quantities are limited and dispersed over a large number of 
FTRs since most buyers try to match the FTRs they buy to the energy transactions they 
wish to hedge. Such quantity limits dampen the efficiency of the auction by allocating 
part of the flowgate capacities to FTR bids that undervalue them. 

Potential uses of the developed analytical tools 
Our study documents the alternative market-based compensating schemes for 

creating incentives for investments in improved network reliability and adequacy. It 
provides a better understanding on the effectiveness of the FTR-based compensation 
mechanism. Based on power system simulations reflecting the competitive and volatile 
market environment together with the physical system operating constraints, our 
investigation offers a framework for analyzing the proper structure of a long-term 
forward contract market in a large-scale power system for increasing trading liquidity, 
valuing transmission assets, and providing efficient incentives for transmission capacity 
investment. Incentives for transmission investment from energy and capacity markets 
will also be identified as supplements. Through the system simulation, potential benefits 
of generation investment for reliability and adequacy purposes at specific locations can 
be quantified. Reconciling the public goods with market mechanisms, for instance, 
reliability enhancement may be achieved by incorporating a reliability component into 
LMP calculation model to create economic incentives for the investments. 

The proposed power system simulation framework offers an important tool for 
evaluating transmission and generation investments which address the reliability and 
adequacy needs of a power system. For instance, this tool can be used by power 
merchants to evaluate opportunities in merchant transmission investments; and by system 
operators/regulators to examine how effective alternative incentive mechanisms are in 
inducing new investments for improving the system reliability and adequacy levels. 

The econometric model component of our project for modeling electricity spot prices 
and the risk premiums in the forward prices can be commercialized into a module for 
existing commercial software packages to analyze the key drivers, including transmission 
congestion factors, which influence the price dynamics of energy and transmission rights. 

                                                                                                                                  
Siddiqui, Afzal S., Emily S. Bartholomew Chris Marnay and Shmuel S. Oren, “On the 
Efficiency of the New York Independent System Operator Market for Transmission 
Congestion Contracts”, Journal of Managerial finance, Vol. 31, No. 1, (2005) pp. 1-45. 
Seabron Adamson,Thomas Noe and Geoffrey Parker, “Efficiency of Financial 
Transmission Rights Markets in Centrally-Coordinated Periodic Auctions, Presented at 
UKERC Workshop on Financial Methods in Electricity Markets, Oxford UK, July 9-10, 
2008 
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The price models developed in this project could form a basis for developing a method to 
evaluate a portfolio of FTRs and provide a framework for monitoring the behavior of 
participants in the FTR markets, which could be adopted by the system operators. 

Future work 
The identification and allocation of incremental transmission rights under a market 

setting with a LMP scheme will be investigated concerning configuration, quantity and 
maturity decisions. Alternative multivariate time-series models for the joint modeling of 
electricity price, load and temperature can be further investigated to better understand the 
stochastic behavior of locational marginal prices and the imputed value of FTRs. 
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1. Introduction 
Incentive for attracting investments in transmission assets is essential to the overall success 

of the restructuring of the electric power industry. In general, adequate transmission capacity 
enhances reliability, lowers energy cost as delivered, limits market power of market participants, 
and provides flexibility to protect against market uncertainties such as load fluctuation, fuel price 
volatility, and unexpected facility outages.  

Various transmission-pricing approaches have been developed for recovering transmission 
costs and providing incentives for future expansion or enforcement. The embedded cost method 
is based on approximated power flow patterns, with transmission congestion and system 
externalities being smeared over all network users. In contrast, marginal cost method is based on 
marker values of the transmission facilities at specific locations, with transmission charges being 
bundled into the prices of accessible electric power and actual system dispatching in response to 
the ever-changing system conditions being reflected. The cost-of-service regulation and the 
market-based approach for inducing transmission investment have been developed under their 
respective contexts. Cost-of-service regulation focuses on contract path and transmission tariffs 
which ignore the actual economic and physical conditions2. Although cost-of-service regulation 
appears to be successful in many aspects such as balanced development of infrastructures, it 
results in inefficiencies such as little incentives to reduce costs, retarded innovation, and 
misallocation of cost and decision risk. The recently proposed market-based investment regimes 
rely on competition, free entry, and property-rights allocation mechanisms3. Price signals, as 
indications of where and how much to invest, and property rights, as revenue collecting 
instruments awarded to investors, are two essential components. Such regimes allow unfettered 
competition to govern investment in new transmission capacity, placing the risks of investment 
inefficiencies and cost overruns on invest decision-makers instead of consumers4.  

It becomes obvious that the regulatory uncertainties, lumpiness in investment, large scale of 
system, network externalities, and market risks have inhibited the investment incentives and 
caused the serious problem of transmission inadequacy. Statistics show that generation 
development has outpaced transmission investment in recent years5. The impact of the increasing 
lag is stressed by the market operations, where generators respond to market opportunities by 
transferring larger quantity of power over longer distances more frequently, while traditionally, 
transmission network was designed to support power transfers within electric vicinity.  

According to the market-based investment model, a transmission investment usually 
expands power-transfer capability, and therefore, increases the quantity and variety of 
transmission rights can be issued to investors. It is required that the issuing of incremental 
transmission rights be limited by a simultaneous feasibility test, which verifies sufficiency of 

                                            
2 José Rotger and Frank Felder, Promoting Efficient Transmission Investment: The Role of the 
Market in Expanding Transmission Infrastructure, November, 2001. 
3 Williams Hogan, Contract Networks for Electric Power Transmission, Journal of Regulatory 
Economics, 4: 211–242, 1992. 
4 William W. Hogan, Market-Based Transmission Investments and Competitive Electricity 
Markets, August 1999. 
5 Eric Hirst, US Transmission Capacity-Present Status and Future Prospects, Prepared for Edison 
Electric Institute and U.S. Department of Energy, June 2004. 
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transmission capacity to accommodate the consolidated power injections and withdrawals 
corresponding to all outstanding transmission rights, taking into account thermal limits, voltage, 
stability, and contingency constraints6. It also ensures revenue adequacy, which refers to the 
financial solvency of the system operator in making congestion payments of physical power 
transactions out of the FTR revenues. However, the adequacy of incentives in terms of rewarding 
transmission investments is a major concern to investors 7 if the cost recovery relies solely on the 
values of property rights to be allocated. Economically, impact of transmission upgrades on 
energy price and capacity market price provides incentives to both generation companies 
(GENCOs) and load serving entities (LSEs). The incentives can be identified and combined with 
others as supplements to make transmission investment profitable and appealing to potential 
investors. This is one main issue that is investigated by this project based on a power system 
simulation model with a power pool and a locational marginal pricing (LMP) market mechanism. 

In order to facilitate the efficient use of the transmission network while mitigating the 
volatility associated with locational marginal prices (LMPs) so as to offer price certainty to users 
of transmission services, tradable financial transmission rights (FTRs) are offered in most of the  
electricity markets in the US. The FTRs provide a mechanism for defining property rights to the 
transmission network and enable hedging against congestion charges to support energy trading 
across the network. The FTRs are defined as financial swaps entitling or obligating the holder of 
one MW FTR to the nodal price difference between two specified nodes over a specified time 
period. These rights are either allocated based on historical use or auctioned off in periodic 
auctions. 

Based on a fundamental power system simulation model with a LMP-based market structure 
that we have formulated and studied in the previous PSERC project8, we establish a framework 
for evaluating reliability and adequacy transmission investment through incorporating constraints 
on the transmission reliability margin (TRM) and the generation reserve margin into the power 
system simulation model. Heuristic methods for identifying incremental financial transmission 
rights (FTRs) resulting from typical network-deepening or network-expanding transmission 
investment projects are illustrated. Through a case study, we show that FTR-based compensation 
scheme does provide financial incentives for reliability and adequacy targeted transmission 
investments via allocating the incremental FTRs to investors. The magnitude of such incentives 
depends on the amount of incremental FTRs resulting from the investment. The quantity and 
value of the incremental FTRs further depend on the bid values, the transmission network 
topology and the initial configuration of the allocated FTRs. Thus market-based compensation 
mechanisms, such as the one rewarding investors with incremental FTRs as tradable instruments 
for recovering sunk capital costs and hedging market risks, have the potential of adequately 
compensating the reliability or security constraint-relieving transmission investments.  

There is one inherent complexity in the FTR markets that would pose a significant challenge 
to the implementation of such a market-based mechanism for rewarding transmission 

                                            
6 Bushnell, J., and S. Stoft (1996) “Electric Grid Investment under a Contract Network Regime,” 
Journal of Regulatory Economics, 10: 61–79. 
7 William W. Hogan, Transmission Market Design, April, 2003. 
8 Shi-Jie Deng, Sakis Meliopoulos, and Tim Mount et al. Modeling market signals for 
transmission adequacy issues: valuation of transmission facilities and load participation contracts 
in restructured electric power systems, PSERC project, ongoing. 
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investments in any real system with thousands of buses. For example, a point-to-point financial 
transmission right can be defined over any pair of buses in a bulk power system. As a result, a 
majority of the FTRs may experience low trading volume and poor liquidity. To address this 
problem, we investigated effective approaches for identifying proxy trading hubs in a LMP-
based market. Specifically, we develop a non-parametric dimension reduction technique for 
identifying the major trading hubs and modeling the structure of all LMPs of a bulk power 
system in a low-dimensional space. Using this model, we can identify and analyze a relatively 
small set of key factors influencing the LMPs in all zones, which would serve as explanatory 
variables for the pricing of FTRs. We apply this non-parametric model to investigate the 
electricity day-ahead forward price curve dynamics in the New York power market. As we will 
see in Chapter 5, our model performs better in forecasting a short-term curves of the LMPs than 
do other existing time series models. 

An econometric modeling framework for simulating the stochastic behavior of congestion 
costs of electricity in New York State and especially the link between NYC and the Hudson 
Valley is developed in Chapter 4. The basic specification of the model is that the price of 
electricity in a specified zone (region) is a function of the corresponding load, the price of natural 
gas and a set of seasonal and daily variables. Multivariate time-series models (VARMAX) are 
estimated for 1) the daily temperature in different locations conditional on seasonal cycles, 2) the 
average daily loads in different zones conditional on Heating Degree Days (HDD), Cooling 
Degree Days (CDD), seasonal cycles and dummy variables for days of the week, and 3) the 
prices of electricity in different zones conditional on the load, a polynomial lag of past prices of 
natural gas, seasonal cycles and dummy variables for days of the week. Daily data from 2002 to 
2005 are used for the model estimation and the estimated models meet standard statistical criteria 
for VARMAX models (white noise residuals, etc.). The statistical specifications of these models 
are described in a paper that is one of the deliverables for this project (Mount, T.D. and J. Ju, 
2007). 

The estimated models are then used to predict the average daily prices in Western New York 
(Zone A), the Hudson Valley (Zone G), NYC (Zone J) and Long Island (Zone K) for the summer 
of 2006. The sum of the price differences for different pairs of locations from May to October 
represents the earnings of a six-month strip for the corresponding TCC. Since the estimated 
models are based on information that was available before the auction to sell the TCC, it is 
appropriate to use these models to evaluate the financial risk of purchasing a TCC in the auction. 
The financial risk of the TCC for the summer of 2006 is evaluated from two different 
perspectives. First, the risk of hedging for a generator comes primarily from uncertainty about 
the actual daily temperatures next summer. It is assumed implicitly that the generator holds a 
forward contract for natural gas based on the current forward prices for natural gas on the New 
York Mercantile Exchange (NYMEx). Second, the risk for speculators comes from the combined 
uncertainty about future temperatures and future prices of natural gas. Through this process, the 
predicted price differences can be used as a basis for measuring the magnitude and financial 
riskiness of congestion costs for a specified TCC. 

We also investigate the risk premium present in the electricity day-ahead forward price over 
the real-time spot price in Chapter 6. This part of our project study establishes a quantitative 
model for incorporating transmission congestion into the analysis of electricity day-ahead 
forward risk premium. Through simulations with a three-bus study-system, it is illustrated that 
the more frequently transmission congestion happens, the higher the forward prices get at the 



 

4 

load buses. Consistent with the implications of the model, evidences from empirical studies with 
the New York electricity market data confirm that there exists a significant statistical relationship 
between the day-ahead forward risk premium and the shadow price premiums on transmission 
flowgates. When applied to the forecasting of next day spot prices, this model still has 
considerable room to improve its accuracy. One important factor is that the PTDF coefficients 
are inferred using historical market price data without knowledge of the transmission network 
structure. However, for a long-term market participant in a specific power pool, who is more 
familiar with the system transmission conditions, these PTDF coefficients would be known. 
Furthermore, additional important transmission flowgates can be identified and the 
corresponding shadow price premiums can be added as explanatory variables in the regression 
model. With these enhancements, it is foreseeable that the forecasting accuracy of the model 
could be improved. Given the encouraging empirical evidences from the New York electricity 
market, caution should still be exercised in generalizing the results to other markets where 
factors such as market power and regulators’ price intervention may affect the market clearing 
process. 

The dual role of the FTRs as transmission property rights backed by the physical capability 
of the grid and as financial hedging instruments creates some inefficiencies that we have 
explored in Chapter 7 as part of the project tasks. Given the liquidity of FTR market, one would 
expect that the expected settlement payoffs of FTRs over the duration of the contract will 
roughly match the FTR auction clearing prices with some random deviations attributable to 
uncertainty. However, empirical studies of data from the NYISO9 show systematic deviations 
between the FTR auction clearing prices and the settlement payoffs. Such deviations cannot be 
explained by risk aversion or by risk premiums associated with the correlation between FTRs 
and non diversifiable risks. In our study we have demonstrated that even with perfect foresight of 
settlement payoffs, the auction clearing prices may deviate from the expected payoffs. Our 
theoretical analysis and simulations show that these deviations can be explained by the fact that 
FTR bids quantities are limited and dispersed over a large number of FTRs since most buyers try 
to match the FTRs they buy to the energy transactions they wish to hedge. Such quantity limits 
dampen the efficiency of the auction by allocating part of the flowgate capacities to FTR bids 
that undervalue them. Through a simulation study we show that the FTR bid quantities would 
have to be as much as 30 times the corresponding energy transactions volume for the auction 
prices to match the expected FTR settlements. Such inefficiencies can be reduced by segmenting 
the FTRs into shorter time intervals and perhaps several time-of-day segments so as to reduce the 

                                            
9 Bartholomew E. S, A. S., Siddiqui, C. Marnay, and S.S. Oren, “The New York Transmission 
Congestion Contract Market: Is it Working Efficiently”, Electricity Journal, (November 2003), 
pp. 1-11. 
Siddiqui, Afzal S., Emily S. Bartholomew Chris Marnay and Shmuel S. Oren, “On the Efficiency 
of the New York Independent System Operator Market for Transmission Congestion Contracts”, 
Journal of Managerial finance, Vol 31, No. 1, (2005) pp. 1-45. 
Seabron Adamson,Thomas Noe and Geoffrey Parker, “Efficiency of Financial Transmission 
Rights Markets in Centrally-Coordinated Periodic Auctions, Presented at UKERC workshop on 
Financial Methods in Electricity Markets, Oxford UK, July 9-10, 2008. 
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variability between the OPF solution used in the FTR auction clearing process and the OPF 
solution upon which the settlements are based.  
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2. Market Structures and Transmission Investments 
2.1. Transmission Adequacy and Reliability Needs 

Regulatory changes in the transmission system were accompanied by nationwide demand 
increases at an annual rate of 2-3% and substantial changes in the generation sector. New 
generation technologies, particularly gas-fired combined-cycle turbines, allowed electricity to be 
produced in more modular and flexible quantities with higher efficiency. A building boom 
ensued added over 200GW of new generation between the years of 1999 and 2004 (NERC, 
2004). In many cases, these units were located convenient to construction or fuel resource 
accesses while taking adequate transmission connection capacity for granted. With the building 
boom reaching its end and the evolution toward competitive markets well advanced, the 
transmission system is becoming increasingly vital. The importance of its new role of supporting 
market transactions is far beyond what is indicated by the relatively small capital cost it 
represents in the electric power industry.  

Compared with the steady increase of demand and generation, however, transmission 
investment declined over the same time period. In 1972 approximately 30GW generation was 
added, supported by $7.4billion (in year 2004 dollars) in transmission investment. In 2001, 
40.6GW generation was added with only $4.6billion in transmission. By the year 2003, the 
numbers further diverged to having 52.4GW of new generation versus $3.9billion invested in 
transmission. Normalized transmission capacity measured in MW-miles/MW-demand and 
MW/MW-demand is declining at annual rates of 1.5% and 1.6%, respectively (see Hirst, 2004). 
The market environment strains the system further because merchant power plants competing for 
short and long-term contracts with multiple buyers are encouraged to transfer larger quantities of 
electricity over longer distances more frequently to capture interregional market opportunities, 
raising power flow patterns significantly different from the projected scenarios in system 
planning. As a result, transmission loading relief (TLR) procedures, which dictate a certain 
percentage of the power transactions that cause the monitored transmission overloading to be 
curtailed, have been called frequently for managing transmission utilization to prevent overload 
situations that put the system at risk.  

It has been commonly recognized that, while considerable effort has been devoted to 
electricity market, development of the transmission sector has been largely overlooked. The lack 
of widely accepted regulation rules and absence of effective market mechanisms lead to vague 
signals for market participants. Potential transmission investors face physical nature, 
organization structure, and market risk related obstacles that complicate the projection of capital 
recovery. These risks include:  

a. Free riding -- As a public good with non-excludable benefit sharing, typical transmission 
investments are haunted with the free-riding problem due to the difficulty of isolating the 
benefits to the investor. Market participants would choose to be free riders, expecting positive 
externalities induced by others’ investments.  

b. Market risks -- Given the ever changing electricity demands, generation portfolio, network 
topology, and market rules, it is impossible to predict with accuracy the future economic payoffs 
accrue from a transmission investment.  

c. Regulation uncertainties -- One key element for the success of a transmission project is 
regulatory approval. In many cases, however, alignment of federal, state, and local regulations 
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results in project delays, and rejection is a very real possibility. Consequently, funds expended 
early in the project may be at substantial risk. 

d. Lumpiness -- Transmission investments typically appear as additions of large blocks of 
capacity. The obscured linkage between expected benefit and marginal cost complicates the 
investment decisions. Joskow and Tirole (2003) illustrate that lumpiness leads to transmission 
network underinvestment. 

Note that these obstacles are confounded by fragmented ownership that easily leads to sub-
optimal solutions.  

2.2. Transmission Investment Compensation 

2.2.1 Different types of transmission investment 
With the understanding of the valuation of transmission services, an efficient mechanism is 

needed to indicate adequate transmission investment, to lower the transmission congestion costs, 
and to facilitate the market based competitive electricity trading. Due to the obstacles listed in 
section 2.1, investment cost allocation is a complicated problem. The benefits of improving a 
transmission network as identified bellow are essential to understanding the problem and finding 
incentives for transmission investment, 

a. Economic efficiency improvement -- Transmission expansion provides access to 
alternative power sources and additional options to meet consumption at the lowest possible 
social cost. 

b. System reliability enhancement -- Higher transmission reliability margin and diversified 
fuel accesses improve interconnection by accommodating more fluctuating transactions, facility 
unavailability, and sudden disturbances.  

c. Financial volatility reduction -- Transmission upgrades reduce system congestion and 
alleviate market participants’ risk-hedging pressure created by volatile market prices.  

d. Market power mitigation -- The electricity market is vulnerable to the exercise of market 
power which intentionally creates scarcity and manipulates prices. This power can be mitigated 
by proper transmission expansions which facilitate competition.  

e. Environmental impact alleviation -- Although people are concerned about transmission 
facilities’ right-of-ways, given the more severe environmental impact of power plants, especially 
in highly-populated regions, transmission connection to remote generation sources may provide a 
more environmentally-sound alternative to meet demand (Bloyd et al., 2002).  

Corresponding to the benefits listed above, various incentives drive investment decisions or 
back up transmission investment cost allocations for capital recovery. Different transmission 
investment forms can be envisioned as follows:  

a. System-wide reliability enhancing and economic efficiency improving transmission 
upgrades. 

For a system with tight transmission capacity, transmission congestion happens frequently 
and out-of-merit generation units have to be called to serve demands. The inefficiency involved 
represents the social cost of the inadequate transmission capacity.  
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In addition, system reliability is impaired when a critical transmission flowgate is congested, 
since a subsequent contingency event may interrupt or compromise the quality of bulk power 
supply.  

System operators usually prepare regional transmission expansion plans which consolidate 
reliability or improve system-wide economic efficiency. Since these projects bring widespread 
benefits to most market participants in the electric vicinity, it is hard to draw the beneficiary 
boundaries, and a regulatory process is involved to allocate costs incurred to a large group of 
consumers through an added service charge. A request for proposals (RFP) process is preferable 
since the RFP process promotes minimal cost while assigning the project’s risks to the winning 
respondent instead of to the end consumers. Investments in this category should be limited to 
those projects the direct economic benefits of which are non-significant to any market 
participants. A potential refinement of this approach is to allocate investment costs through a 
cost-benefit analysis among sub-regions so that a non-uniform portion of the cost can be 
allocated accordingly. 

b. Voluntary transmission investment  

Projects in this category include generation interconnection requests to increase electricity 
delivery to the market, load connection requests to get access to desired resources, and capacity 
expansions that reduce congestion energy cost for consumers in a load pocket like, for example, 
New York City. The free-riders problem is less bothersome here since the economic benefits of 
the projects to potential investors are more exclusive, although they usually introduce more 
competition to mitigate the existing market power of others. A good quantitative assessment of 
future market opportunities is essential for the projection of economic cost-benefits analysis. 
Voluntary transmission investment projects are to be sponsored by those who would gain the 
benefits. It is necessary, however, to assure that the projects do not degrade system reliability nor 
create additional opportunities for market power exertion.  

c. Merchant transmission projects  

Merchant transmission investors rely on the LMP-based transmission service pricing 
mechanism and seek financial transmission rights as payoffs. Three components are essential to 
this category of market-motivated transmission investments. First, the spatial-differentiated 
electricity price signals indicate where and how much to invest; second, FTRs hedge against 
congestion-risks or, as tradable financial instruments, entitle investors to the right to collect 
revenues in the future; third, an efficient financial transmission rights identification and 
allocation mechanism is expected to assign proper amount of rights to appropriate investors. 
These rights include eliminating the opportunities of free-riding in public good benefits. Note 
that identification of incremental FTRs created by merchant transmission investment is guided 
by the SFT problem. With the revenues entitled to incremental FTRs, at least part of the cost can 
be recovered without resorting to the traditional regulatory charges. Bushnell and Stoft (1996) 
show that the transmission rights entitled revenues provide market incentives for transmission 
investment. The merchant investment mechanism relies on free entry and unfettered competition 
in the market. It places the risks of investment inefficiencies and cost overruns on investment 
decision-makers instead of on the involuntary end consumers.  

It is notable that, due to the network externality of power flows, a transmission upgrade may 
affect the transfer capacity between two locations in another part of the network. As a crucial 
issue regarding trade-offs between cooperation and competition in the long run, the network 
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externality may degrade system reliability and undermine open competition. Should a 
transmission upgrade impair existing FTRs, the theory of public economics suggests that the 
investor should buy back the disabled FTRs. Another option for the system operator is to retain 
some transmission rights and avoid jeopardizing FTRs held by market participants when a 
transmission upgrade has negative impacts. However, this induces additional overheads to be 
socialized to all consumers.  

Nevertheless, regardless of which category it belongs to, a transmission investment requires 
the assessment of market conditions in the future. The projection of locational market prices as 
the market signals is one of the most essential tasks involved. Two competing approaches are 
available for market price modeling: a fundamental approach that relies on system simulation; 
and a technical approach that directly models the randomness. While the fundamental approach 
provides more realistic representations under specific scenarios, it is computationally prohibitive 
due to the large number of scenarios to be considered. The method to be presented in this chapter 
is to combine the strengths of the two approaches by calibrating the stochastic price process 
models using probabilistic system simulation results.  

2.2.2  Market-based compensation schemes 
Since LMPs are volatile and cannot be foreseen with accuracy in advance, transmission 

usages are subject to fluctuating congestion charges. Such exposures to market price risks create 
strong demands for congestion-hedging among risk-averse transmission service customers. In 
PJM for example, the system operators identified several groups of electrically neighboring 
buses with active power transactions and defined them as trading hubs. The hub settlement 
LMPs are calculated as the average of the group of bus to provide market participants with more 
stable prices. Market participants can also choose to withhold transactions in case of 
transmission congestion to avoid congestion charges. Financial transmission rights (FTRs) also 
came up as sophisticated tradable market instruments to meet market participants’ risk hedging 
demands. An FTR entitles (or obligates) its holder to collect a stream of revenues determined by 
LMP differences between the two underlying locations over a contractual time period specified 
ex ante.  

Before the structuring of FTRs, physical transmission rights (PTR) were proposed at the 
conception of market restructuring. A PTR gives its holder the priority to access the underlying 
transmission facility. In the PTR-based congestion hedging mechanism, to a great extend, the 
allocation of PTRs through bilateral contracts or private auction markets determines the usage of 
scarce transmission capacity and determines the system dispatch as well. Therefore, PTR holders 
have market power to withhold transmission access and hamper competition. The scheduling 
priority of PTR holders creates perverse incentives which conflict with the bid-offer matching 
mechanism. Furthermore, the exclusion of the system operator’s control from the withheld 
transmission capacity compromises the system reliability. It’s been argued that the physical 
interpretation of transmission rights was the principal pitfall that buried the FERC’s original 
capacity reservation tariff. In the contrast, by entitling financial congestion rents instead of 
priority of transmission access to FTR holders, the FTR-based congestion hedging mechanism 
keeps the centralized market dispatch paradigm intact. It has been adopted into the PJM system 
since 1998, in New York since 1999, and in New England since 2003.  

As the underlying LMPs are determined by the market dispatch model which takes system 
operating constraints in both normal and contingent scenarios into consideration, an FTR 
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provides a perfect price hedge against transmission congestion for power transactions between 
the underlying source and sink. Assume a market participant schedules a transaction of ABq  MW 
power from source A to sink B, where the fluctuating LMPs are Ap~  and Bp~  during time 
periodT , respectively. The congestion rent involved will be ( )ABAB ppq ~~ − . To hedge against the 
scenario that AB pp ~~ −  is driven very high by the ever-changing system operating conditions, the 
market participant can procure an FTR of ABq  MW from source A to sink B over time period 
T at a cost of FTRC . It entitles him a revenue stream of ( )ABAB ppq ~~ −  . Therefore, the total cost of 
the transmission service TotalC  for the power transaction is the net of cost and revenue, 

 ( ) ( ) FTR
ABABABAB

FTRTotal CppqppqCC =−−−+= ~~~~                                     (2.1) 

Considering a random deviate ABqΔ  of the transaction quantity in real time market from the 
projected ABq , the total cost of uncertain transmission service TotalC~  is, 

 ( )ABAB
FTRTotal ppqCC ~~~

−Δ+=                                                       (2.2) 

As long as the volume deviation ABqΔ  is trivial, the transmission service can be secured at 
around the pre-determined FTR procurement cost.  

Since an FTR is typically connected with an existing or projected power transaction between 
two locations, it represents a pair of power injection and withdrawal accordingly. To conform to 
the system capability and ensure the revenue solvency of the system operator, the setup of FTRs 
is subject to a simultaneous feasibility test (SFT) defined as follows 

Definition 2.1 (Simultaneous feasibility test) Given a set of FTRs defined over a common time 
period, the system operator needs to test if the transmission network can accommodate the 
corresponding pairs of power injections and withdrawals ( )WI PP , , assuming they occur 
simultaneously.  
Using DC power flow and assuming F  and F'  represent the system PTDF matrix in the normal 
and a contingent scenario, respectively, the vectors of transmission capacity limits are T  and 'T , 
correspondingly. The SFT problem can be described as follows,  

 ( ) TPPF ≤− WI                                                                        (2.3a) 

 ( ) '' TPPF ≤− WI                                                               (2.3b) 

Note that constraints (2.3a) and (2.3b) represent the feasibility criteria in normal and contingency 
scenarios, respectively.  

As a summary, the marginal cost based transmission pricing provides market incentives for 
transmission capacity allocation, and the FTR mechanism provides transmission service 
customers a transmission congestion risk hedging tool.  
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3. A Case Study on Effectiveness of Market-based Compensation: A Power 
System Simulation Model for Market Dispatch 

3.1. A Market Dispatch Model: Power System Simulation  
In a pool-based electricity market, market dispatch is one of the most essential functions of 

the system operator (called ISO or RTO). It is an establishment that coordinates the movement of 
wholesale electricity, acting neutrally and independently, operating the competitive wholesale 
electricity market and ensures the reliability in managing the regional transmission system and 
the wholesale electricity market. By collecting electricity supply bids and demand requests, the 
system operator determines the set of winning supply bids to meet the demands while observing 
all the system operating constraints. This centralized market dispatch can be formulated as a 
network constrained optimal power flow (OPF) problem, which solves a set of linear or 
nonlinear equations and inequalities to obtain the intended optimal operations. Alternative 
objectives of an OPF problem include maximizing social welfare, minimizing customer expense, 
minimizing system status deviation and minimizing transmission loss etc. The rational for 
choosing different objectives and the respective implications on market participants are 
discussed by Alonso et al. (1999). A primitive formulation of the market dispatch OPF that 
minimizes the total generation procurement cost is defined as follows,  
Definition 3.1: (The market dispatch OPF problem) By collecting I supply bids and 
J demand requests, the system operator conducts the market dispatch accordingly to minimize 
the total generation procurement cost while accommodating all power flow balance and 
transmission feasibility constraints.  

Min  ( )∑
=

=
I

i
ii sC

1
C                 (3.1a) 

.St  ( ) 0,,, =uxdsEqF                (3.1b) 

 ( ) 0,,, ≤uxdsIneqF                (3.1c) 

By using minimization of the total generation procurement cost as the objective, the market 
dispatch model actually determines the locational marginal prices. An LMP measures the 
incremental system generation procurement cost for a unit of incremental demand at the specific 
location. In addition, the settlement prices of a transmission service market are implicitly 
determined through this market clearing decision.  

The system status variables x  consist of magnitudes and phase angles of bus voltages, and 
so on. The system control variables u  include real and reactive loads and generations, voltage 
settings and bounds, transformer tap settings, and so on. For example, a prescheduled 
multilateral transaction can be modeled as a set of power injections and withdrawals at the 
corresponding source and sink buses. In a system that has interface with neighboring systems 
and power interchanges, the interface MW limits are usually treated as required power injections 
or withdrawals in u , depending on the controlled power flow directions. 

The equality constraints ( ) 0,,, =uxdsEqF  are always binding at least to within a user 
specified tolerance. They consist of generation bus voltage setting and the power balance 
equations,  
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 ( ) 0,,, =uxdsg                    (3.1d) 
Specifically, according to traditional power flow formulation, considering both real and reactive 
power flows, the power balance equation at any bus n  which matches the locational generation 
and load is, 
 ( ) ( )[ ]∑

∈
−−−=−

nm
mnnmmnnmmnnn BGvvds

ψ
θθθθ sincos           (3.1e) 

       ( ) ( )[ ]∑
∈

−+−+
nm

mnnmmnnmmn BGvjv
ψ

θθθθ cossin  

Note that explicit load-flow equations are listed as essential constraints in the formal 
establishment of the optimal power flow problems. Instead of approximating the losses as a 
polynomial function of the power output of each unit (Wood and Wollenberg, 1996) and 
calculate a penalty factor for each generation unit, the transmission losses are accounted 
implicitly in the power flow equations and their market costs are imbedded in the electricity 
locational marginal prices. 

The inequality constraints ( ) 0,,, ≤uxdsIneqF  consist of system operating limit and bound 
constraints. In the primitive formulation of the market dispatch OPF, generation capacity bounds 

 Maxss ≤                      (3.1f) 

and the transmission loading thermal limits, 

 ( ) Tuxdsh ≤,,,                   (3.1g) 

are usually considered. 

Note that the transmission loading thermal limits apply to not only single transmission lines, 
but also to sets of transmission facilities with certain capacity limits, defined as transmission 
flowgates, which constraint the power flow through the interface involved.  

The Lagrange function associated with OPF problem (3.4) can be defined as,  

 ( ) ( ) ( ) ( ) ( )( )k

I

i
ii sC Thηssγλgηγλs −⋅+−+⋅+=∑

=
max

1
,,,L                     (3.2) 

where, [ ]ηγλ ,,  are vectors of Lagrange multipliers associated with constraints (3.1d), (3.1f) and 
(3.1g), respectively. 

In order for a point ( )**** ,,, ηγλs  to be optimal, in addition to (3.1b) and (3.1c), to guarantee 
the gradient of C needs to be normal to ( )⋅g , ( ) Th −⋅ , and Maxss − . This requires the gradient of 
the objective function to be a linear combination of the gradient vectors of the active constraints 

( )⋅∇g , ( )( )Th −⋅∇ , and ( )Maxss −∇ , 

 ( ) 0
*

=
∂
∂

=ss

ηγλs
s

,,,
L                  (3.3a) 

plus the complementary slackness conditions, 

 ( )[ ] 0* =−⋅ Thη , 0* ≥γ                                                             (3.3b) 
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 ( ) 0** =− Maxssγ , 0* ≥η                  (3.3c) 

In economic sense, the Lagrange multiplier nλ  associated with the real power balance at bus 
n  can be interpreted as the locational marginal price of energy because it quantifies the cost (or 
value, from demand side) for supplying (or consuming) an additional MW at the bus n  of the 
network. On the other hand, the Lagrange multiplier kη  associated with the power flow limit of 
the thk  transmission flowgate is interpreted as the variation in social generation procurement cost 
if the transmission capacity is relaxed, called flowgate shadow price or congestion multiplier. 
The Lagrange multiplier iγ  reveals the market opportunity cost associated with the scarcity of 
supplier i ’s generation capacity.  

By solving (3.1), LMPs can be read off the Lagrange multipliers associated with the 
corresponding constraints, which measure the cost to serve the next MW of load at a specific 
location, using the lowest production cost of all available generation, while observing all 
operating constraints. In the absence of any binding constraints, all LMPs are identical. The FTR 
values can be readily derived from the price differences. The non-zero shadow prices of binding 
transmission constraints are major factors that diversify the LMPs across the system. Market 
uncertainties due to fluctuating system loads, varying generation bid function, and unexpected 
transmission circuit outages can be incorporated by using random variables [ ]iC~,~,~ dT  to carry the 
distribution properties of the underlying coefficients, see (Sun et al. 2005). With a parametric 
optimal power flow formulation, sensitivity of the optimal operating conditions with respect to 
any parameters under interest corresponding to a market participant’s input or the system 
operator’s control can be investigated and the corresponding economic values can be interpreted. 

3.2. The IEEE-RTS 24 System 
Given the high dimension of a practical electric power system, analytical evaluation of the 

probabilistic properties of the market price behaviors requires very complicated numerical 
methods and procedures. A natural alternative is to resort to system simulation, through which 
the fundamental uncertainty factors of the system can be represented as random variables with 
corresponding distributions. Numerical experiments with the IEEE RTS-24 system are presented 
in this section. The structure of the IEEE RTS24 system is illustrated in figure 3-1, 
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Figure 3-1  The IEEE RTS24 system 

 

The system consists of 24 buses connected with 38 transmission lines. There are load 
demands at 17 of the buses, and 32 generation units connected to 10 of buses. Note that multi 
generation units of different capacities can reside at one bus and some buses are connected by 
double transmission lines. Bus 15 is the system slack bus. Most generation units reside at the 
upper part of the system, which consists of buses 11 - 24 and is operated at 230 kilovolt (kV). 
The lower part of the system is operated at 138 kV and is connected with the upper system 
through voltage transformers. The system has a total installed generation capacity of 3561MW. 
The yearly peak load PeakD  is 2850 MW. And the weekly, daily and hourly load peaks are given 
in percentages of PeakD . Generation unit parameters [ ]ul QQs ,,max , transmission capacities T  and 

( )kT  in contingency k , transmission parameters [ ]mnmnmnmn ,B,G,XR  for each line nm − , the 
outage rates and the averaged failure-repair cycles of all types of generation and transmission 
equipments are referred to (Billinton and Li, 1994). The function generation procurement cost 
from each generation unit i  is assumed to be a quadratic function of the real power output is , 

( ) 2
iiiiii scsbasC ++=  where the coefficients [ ] icba iii ∀,,,  are referred to (Meliopoulos et al., 

1990). To reflect the increase fuel cost over the years, the values of these coefficients are 
doubled. We assume that the generation cost function as used in the objective function of the 
market dispatch include the components of a profit margin beyond the operational costs. In this 
case, the short-run marginal cost as used for the first best pricing can provide enough market 
incentives for generation suppliers.  
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The original IEEE RTS24 system was configured for the test of system generation adequacy 
related reliability analysis only, high transmission capacity was assumed in (Billinton and Li, 
1994).   

3.2.1 LMPs and evaluation of reliability constraints   
Reliability of an electric power system is crucial to keep continuous supply of electricity at 

required quality. Although there has been substantial research activities on enhancing system 
reliability, the economic impact on market participants by imposing transmission reliability 
constraints in a competitive electricity market has not yet been adequately addressed. Without 
knowledge of the resulting market price dynamics, it is hard for system operators to estimate the 
economic consequences and for market participants to take proper market positions and manage 
risks involved. In retrospection, the unprecedented volatile California market electricity prices in 
2000-2001 led to rolling blackouts and dramatic economic trauma to load serving entities. In 
addition to fundamental reasons such as abnormal hydro resource and high demands, the 
inadequacy of transmission capacity made the system vulnerable to the exercise of market 
power. Suppliers intentionally leveraged the generation scarcity in the dysfunctional wholesale 
market, since transmission bottlenecks held back the otherwise reachable alternative generation 
sources to the buyers. The lessons call for imposing transmission adequacy requirement to 
maintain a reliable environment for energy trading and to support open competition. 

In an electricity market, as the competitions are getting more intensive and drive market 
participants to chase market opportunities, more generation units and transmission facilities are 
operated close to the edge for economic efficiency. This leads to higher risks of equipment 
contingency status and puts the failure stakes higher than ever before. A contingency event such 
as the forced outage of a transmission line or a generator unit may jeopardize the entire system if 
there lacks back up transmission capacity or generation source to support the power flows 
anticipated by the normal operation of the system. To prevent that a single contingency events 
could trigger the occurrence of cascading outages throughout the network, capacity reserves in 
generation and transmission should be procured and contingency analysis should be conducted.  

As mentioned earlier, reliability is deemed as public good with non-excludable benefit 
sharing among market participants. Traditionally, the reliability enhancement and the LMP-
determining market dispatch are implemented as economically separated activities. As a 
consequence, there lacks a market mechanism to value reliability and the costs involved are 
smeared among all consumers. We propose that economic values of reliability can, at least 
partially, be discovered with a properly designed market dispatch mechanism. A reliability-
differentiated pricing scheme can be constructed correspondingly. Market dispatch OPF 
formulation (3.1) can be augmented to a security and adequacy constrained optimal power flow 
(SACOPF) problem by incorporating extra security and adequacy related constraints to address 
system reliability concerns. 

The generation and transmission capacity reserve requirements are imposed for system 
adequacy concerns to ensure the existence of sufficient facilities to satisfy system disturbances. 
They can be imposed by allowing lower generation and transmission capacity for market 
dispatch. For example, replacing the constraint (3.1f) with   

 ( ) Max
S ss ρ−≤ 1                                                            (3.4a) 
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is equivalent to imposing a %100⋅Sρ  generation reserve margin. Similarly, a %100⋅Tρ  
transmission reserve margin can be imposed by replacing the constraint (3.1g) with  

 ( ) ( )Tuxdsh Tρ−≤ 1,,,                (3.4b) 

The unused capacity, namely, the generation reserve margin Max
ssρ and the transmission 

reserve margins TTρ  can be called by contingency operating procedures when contingency 
events such as load surges or equipment outages happen. With such reserve margins, the systems 
can absorb the dynamics caused by the disturbances and remain stable. The technical problems 
of determining spare capacity in each generation unit and transmission facility to keep the system 
operation safe have been proposed by Bobo et al. (1994) and McCalley et al. (1991) respectively. 
By incorporating the generation and transmission reserve margin requirements as adequacy 
constraints into the market dispatch, their economic incentives can be revealed and passed to the 
corresponding beneficiaries. Therefore, an investment cost recovery mechanism can be 
established accordingly. 

The contingency test constraints are imposed for system security, which is related to the 
ability of the system to respond to disturbances arising within the system. In power system 
operations, the N-1 criteria are widely adopted in industry for postulated contingency tests. It 
means that given a normal operating condition [ ]uxds ,,, , in case a single postulated contingency 
event k  happens, the demands d  and the market dispatch determined supplies s  can still be 
accommodated with no pressure for any immediate adjustment. However, the system control 
variables u  will be changed to ( )ku  and deviated system states ( )kx  will be reached. The system 
can stand the contingency states ( )kx  for a short period of time. However, to keep the safety of 
the system, ( )kx  should not deviate out of the feasible regions and the system operator will go 
through certain operational procedures to put system states from the edge of feasible regions 
back to normal conditions. To reflect the N-1 contingency-proof criteria, for each postulated 
contingency event k , the following constraints should apply, 

( ) ( )( ) 0,,, =kk uxdsg                        (3.4c) 
( ) ( )( ) ( )kkk Tuxdsh ≤,,,                  (3.4d) 

Note that under contingency event k , the transmission capacity vector may change to ( )kT  
correspondingly.  

It is straightforward to foresee that imposing the generation and transmission capacity 
reserve requirements and the contingency tests leads to a more conservative market dispatch at 
the cost of higher generation procurement cost. The incremental cost of generation procurement 
incurred can be reflected by augmented market prices and passed to the corresponding market 
participants accordingly.  

Additional practices to promote a reliable market dispatch include imposing upper and lower 
bounds for voltage magnitudes to keep the quality of power supply and the safety of electric 
equipments, 

 ul vvv ≤≤                    (3.4e) 
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and imposing upper and lower bounds for reactive power outputs which reflect the 
corresponding generation unit’s feasible operation region, 

 ( ) ul QSQ ≤≤ im                    (3.4f) 

where ( )Sim  denotes the reactive power outputs of generation units. 

When solving the market dispatch OPF problem, as components of LMPs, marginal costs 
associated with various reliability constraints can be read off the corresponding Lagrange 
multipliers (Alvarado 2003). As more reliability constraints become active, the LMPs become 
further differentiated between locations across the system. By taking more conservative values 
for model parameters [ ]ululTS QQvv ,,,,,ρρ , certain reliability criteria can be imbedded 
accordingly. Different model parameters can apply to different market participants according to 
their respective requirements. For example, for consumers expecting lower loss of load 
probability, higher Sρ  and Tρ  values can be determined to their generation suppliers and the 
corresponding transmission facilities. On the other hand, for consumers expecting a relatively 
stable voltage level, a higher lv  or a lower uv  should be applied to the corresponding bus. Note 
that such parameter-settings usually affect not individual but a group of end consumers, the 
decision should be based on aggregated requirements. Due to the impact on the resulting LMPs, 
the reliability-requirement differentiated pricing mechanism can be established. 

By incorporating the reliability constraints explicitly into the market dispatch model, the 
openness of the market pricing mechanism can be improved since market values instead of 
regulation rules determine the service values and allocate the costs involved accordingly. As the 
restructuring continuous, further details can be incorporated into market dispatch model with 
evolving market mechanism.  

Among various methods to reach higher reliability through market dispatch, we advocated 
the imposing of generation reserve margin Max

ssρ  and the transmission reserve margin (TRM) 
TTρ  as indicated by constraints (3.4a) and (3.4b). Here we focus on the TRM TTρ  and present 

numerical examples in this section to show the impact of imposing constraints (3.4b).  
Before jumping onto the experiments results, we start with a look at the sensitivity of LMP with 
respect to transmission capacity using the market dispatch model without TRM requirements. 
The following figure 3-2 plots the changes of system averaged LMP (equal weight for LMPs at 
all buses) with respect to the assumed transmission capacity limit expressed in percentage of 
their nominal values. 
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Figure 3-2  System averaged LMP with respect to transmission capacity using market dispatch 

without TRM requirement when the system load is 80% of peak level 

From figure 3-2, we observe that the system averaged LMP decreases with the increase of 
available transm`ission capacity. When transmission capacity reaches a threshold point of 
adequacy when no transmission congestion appears throughout the system, the LMP stays 
constant even when more transmission capacity is invested. This is because the generation 
resources are dispatched in merit-order already and the increase of transmission capacity does 
not change the profile of winning generation supply bids. However, no more conclusions can be 
drawn from figure 3-2 unless that the transmission expansion increases economic efficiency in 
the sense of using less-costly generation to meet system demands. In order to find out the impact 
on distinct market participants, we pick any 2 buses (5 and 10) with pure load demands and 2 
buses (18 and 22) with high installed low cost generation capacities and plot the changes of their 
LMPs as the available transmission capacity changes in the following figure 3-3. 
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Figure 3-3  Generation and load bus LMPs with respect to transmission capacity using market 
dispatch without TRM requirement when the system load is 80% of peak level 
 

As the transmission capacity increases, the change of LMPs at the 2 load buses 5 and 10 
show quite similar tendency: decreases to a low value until transmission capacity reaches a 
certain adequacy threshold and stays the same afterwards. For generation buses 18 and 22, the 
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direction of the changes is the opposite: increases to a low value until transmission capacity 
reaches a certain adequacy threshold and stays the same afterwards. It is an interesting 
observation since it reveals that low-cost generation suppliers can sell more energy at higher 
prices given adequate transmission to support their power transactions.  

Actually, similar results are observed when applying different TRMs TTρ . Higher Tρ  
values actually reduce the available transmission capacity for market dispatch in normal system 
operating conditions and reserve more capacity for contingency operating procedures. According 
to figure 3-3, we expect different changes of LMPs at load and low-cost generation buses when a 
TRM requirement is imposed. Using the given hourly load over one sample year (52 weeks), we 
calculate the hourly LMPs at buses 10 and 18 sequentially and plot their probability distributions 
in figures 3-4 and 3-5, respectively.  
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Figure 3-4  Probability distributions of LMPs at bus 10 over the sample year with different 

TRMs requirements 
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Figure 3-5  Probability distributions of LMPs at bus 18 over the sample year with different 

TRMs requirements 
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Observations from figures 3-4 and 3-5 coincide with the indication from figure 3-3: higher 
TRMs increase the LMP at the load bus due to transmission congestion charges and lower the 
LMP at the generation bus due to lower output level, while lower TRMs grant more transmission 
capacity for market dispatch, reduce transmission congestions and determine less differentiated 
LMPs between buses. The quantitative measures of averaged spatial volatility of LMPs over the 
sample year at different TRMs are listed in table 3-1 as follows, 

Table 3-1  Averaged spatial volatility of LMPs over the sample year when imposing different 
TRM requirements in the market dispatch ($/MWh) 

0% TRM 10% TRM 20% TRM 

4.02 4.67 5.12 

 

Identification of transmission adequacy and reliability needs 
To identify transmission adequacy and reliability needs, we consider the market dispatch 

model without constraints (3.4a) and (3.4b). By varying the capacity of two transmission 
bottlenecks, the transmission lines between Bus 20 and Bus 23, between Bus 22 and Bus21, we 
calculate the sensitivities of reliability index for system transmission reliability margin (TRM), 
which is calculated as the sum over all transmission lines of the relative difference between 
transmission capacity and power output. 

∑∑
−

m n mn

mnmn

T
PT 2

                                   (3.5) 

The simulation results for investment in transmission line between Bus 20 and Bus 23 are 
given by figure 3-6. 

 
Figure 3-6 Reliability index for system TRM with respect to transmission capacity between Bus 

20 and Bus 23 using market dispatch when the system load is 60% of peak level 
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From figure 3-6, we observe that the reliability index for TRM increases with the increase of 
available transmission capacity of the transmission bottleneck, though not strictly. The total 
generation cost decreases at the same time. The simulation results for investment in transmission 
line between Bus 21 and Bus 22 are given by figure 3-7. 

 

 
Figure 3-7  Reliability index for system TRM with respect to transmission capacity between Bus 

21 and Bus 22 using market dispatch when the system load is 60% of peak level 

 

From figure 3-7, we observe that the reliability index for TRM increases with the increase of 
available transmission capacity of the transmission bottleneck. The total generation cost 
decreases at the same time. 

3.3. Effectiveness of Market-based Transmission Compensation 
In 3.2.2, we illustrated how to identify the investment needed to increase transmission 

capacity of a transmission bottleneck to achieve certain desired reliability index level for TRM. 
Here we further explore the effectiveness of market-based transmission compensation. Following 
Kristiansen (2008), we assume there are no proxy FTRs and reward the incremental FTRs for 
new transmission capacity that maximizes investor’s preferences. To conform to the system 
capability and ensure the revenue solvency of the system operator, the FTRs before and after 
expansion are all subject to simultaneous feasibility tests (SFT). The allocation of incremental 
FTRs is formulated as follows 

        
δ

Max  δb  

        s.t. TFP ≤                           (3.6a) 

   ++ ≤+ TPF )( δ                (3.6b) 

where 
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b  is the bid preference parameter of the investor,  

F  and +F  represent the system PTDF matrices before and after expansion,  

T  and +T  are vectors of transmission capacity limits before and after expansion,  

P  is a vector of existing amounts of FTRs,  

δ  is the decision variable, amounts of  incremental FTRs. 

As an illustration, we expand the transmission network by increasing the capacity of 
transmission line between Bus 20 and Bus 23 to 150%, so that the reliability index for system 
TRM is above 35.87. The original IEEE RTS24 system has 1000 MW capacity on the line 
between Bus 20 and Bus 23. After expansion, the capacity becomes 1500 MW. Assume 
originally there are only two FTRs in the system: FTRs between Bus 20 and 23, Bus 22 and 21. 
We assume the bid values are  

6023,20 =b , 1021,22 =b , 

which shows that the investor has a greater preference for incremental FTRs in transmission line 
between Bus 20 and Bus 23. The existing amounts of FTRs before expansion are  

1.52923,20 =P , 30021,22 =P  

which are simultaneous feasible and the capacity between Bus 20 and Bus 23 are fully allocated. 
The optimal incremental FTRs solved are  

8.26423,20 =δ , 8.5721,22 =δ  

which fully allocate the expanded capacity in line between Bus 20 and Bus 23 and the capacity 
in line between Bus 22 and Bus 21. The FTR revenues collected from transmission lines between 
Bus 20 and 23, Bus 22 and 21 increase 4% and 16%, respectively.  

Through this case study, we show that FTR-based compensation scheme does provide 
financial incentives for reliability and adequacy targeted transmission investments via allocating 
the incremental FTRs to investors. The magnitude of such incentives depends on the amount of 
incremental FTRs generated. The quantity and value of the incremental FTRs further depend on 
the bid values, the transmission network topology and the initial configuration of the allocated 
FTRs. 
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4. Modeling the Financial Risk of Power Transfers in the Market for 
Transmission Congestion Contracts in New York State  

Besides FTR, another important financial instrument used to hedge against the risk of price 
differences between regions is Transmission Congestion Contracts (TCC). In this chapter, we use 
the New York State electricity market as another case study to measure the congestion costs for a 
specified TCC, by simulating the stochastic behavior of zonal electricity price differences. 

4.1. Introduction  
The electricity market in New York State (NYS) was deregulated in November 1999, and it 

is now operated by the New York Independent System Operator (NYISO). Even though the 
NYISO network is connected to the adjoining systems in New England, PJM and Canada, the 
NYISO market corresponds almost exactly to the geography of NYS. By 2006, the number of 
nodes on the NYISO network had increased to more than 400. The electricity price at each node 
in the wholesale market is called the nodal price. The price is determined by the system operator 
in an auction based on offers submitted by different generators and bids submitted by buyers. 
The hourly nodal prices in both the real-time and day-ahead markets are highly volatile, 
especially when the demand for electricity is high and the transmission network is congested.  

 

 

 

 

 

 

 

 

 

 

Figure 4-1  Load Zones in the Electricity Market in the New York Control Area 

Source: http://www.nyiso.com/public/index.jsp 

When there is no congestion on the network, the differences in the prices at different nodes 
are small and caused by transmission losses. Under these circumstances, all nodal prices are 
effectively determined by the cost (offer) of the most expensive unit generating (equivalent to a 
merit-order dispatch). Since the inexpensive sources of generation are mostly upstate, the 
network transfers power from upstate to New York City (NYC) in the SE corner of the NYISO 
region. When the load increases in NYC, the transmission lines linking NYC to upstate 
eventually become congested, and the amount of power transferred is constrained by the capacity 
of these lines. When the limits of transmission are reached, the market fragments into sub-
regions (load pockets) and the nodal prices in a load pocket are now set by the most expensive 
source of generation in that load pocket. Hence, the market prices in NYC can be substantially 
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higher than the prices upstate. These price differences are large and are caused primarily by the 
cost of congestion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2  Nodal Prices of Electricity in 2001 and 2005 Ranked by Load Zone 

Source: Derived from data on http://www.nyiso.com/public/index.jsp 

 

Figure 4-1 shows the Load Zones in the New York Control Area. Most of the major sources 
of inexpensive generation are “upstate” in Zones A, B, C and E, and most of the load is 
“downstate” in New York City (Zone J) and Long Island (Zone K). The Hudson Valley (Zones 
G, H, and I) is the major transmission corridor for transferring power from upstate to downstate. 
The nodal prices in the Day-Ahead-Market (DAM) for 2001 and 2005 are shown in Figure 4-2. 
For each year, the mean annual price, the 90th percentile price and the 10th percentile price are 
computed for every node. The mean nodal prices are then ranked within each Zone and this 
ranking is then applied to the 90th and 10th percentile prices as well. Inspection of these two plots 
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shows 1) the total number of nodes increased from 2001 to 2005, 2) the nodal prices are higher 
downstate than upstate, 3) the differences across zones in the10th percentile prices (low load) are 
relatively small, 4) the differences across zones in the 90th percentile prices (high load) are 
relatively large due to congestion, and 5) congestion has become more important over time and 
by 2005 there were substantial differences in nodal prices within New York City (Zone J). Note 
that the three sub-zones in Zone J are based on an Eigen analysis of the nodal prices and are not 
officially recognized by the NYISO.  

If a generator in upstate wants to sell power in NYC, for example, it is not effective to use a 
standard bilateral contract with a buyer to hedge against price risk. When a generator holds a 
forward contract for fuel, the generator would typically be willing to negotiate with a local load 
for a fixed price contact to deliver a fixed quantity of power for specified time periods. This 
contract is equivalent to the type of contract-for-differences traded on the New York Mercantile 
Exchange (NYMEX) for different locations in the state. Hence, a generator selling into a load 
pocket over congested transmission lines faces additional price risk due to the volatility of 
congestion costs. For this reason, different kinds of financial instruments, such as Transmission 
Congestion Contracts (TCC) and Financial Transmission Rights (FTR), have been developed to 
hedge against the risk of price differences between regions. In NYS, for example, owning a TCC 
pays the holder the hourly price difference between a Point-of-Withdrawal and a Point-of-
Injection in the day-ahead-market (adjusted for losses) for a transfer of 1MW over a specified 
period (for example, one month). A generator holding a forward contract for fuel combined with 
the appropriate TCC can hedge a fixed price contract with a buyer in a load pocket perfectly. 
This is the basic rationale for establishing the TCC market in NYS, and this market made it 
feasible for generators in upstate to adapt existing bilateral contracts with NYC to the structure 
of the new wholesale market. In fact, many contracts that existed before the TCC market was 
established have been “grandfathered” into the TCC auctions.  

Since the transmission corridor between NYC and the Hudson Valley is the most important 
transmission bottleneck in the state, it has been a major concern of government, industry and 
academic analysts since the electricity market was first deregulated. The purpose of this chapter 
was to develop a modeling framework to simulate the stochastic behavior of congestion costs of 
electricity in New York State and especially the link between NYC and the Hudson Valley. 
Through this process, the predicted price differences can be used as a basis for measuring the 
magnitude and financial riskiness of congestion costs for a specified TCC.  

4.2. The Econometric Results 
The basic specification of the model is that the price of electricity in a specified zone 

(region) is a function of the corresponding load, the price of natural gas and a set of seasonal and 
daily variables. Multivariate time-series models (VARMAX) were estimated for 1) the daily 
temperature in different locations conditional on seasonal cycles, 2) the average daily loads in 
different zones conditional on Heating Degree Days (HDD), Cooling Degree Days (CDD), 
seasonal cycles and dummy variables for days of the week, and 3) the prices of electricity in 
different zones conditional on the load, a polynomial lag of past prices of natural gas, seasonal 
cycles and dummy variables for days of the week. The models were estimated using daily data 
from 2002 to 2005 and the estimated models meet standard statistical criteria for VARMAX 
models (white noise residuals, etc.). The statistical specifications of these models are described 
in a paper that is one of the deliverables for this project (Mount, T.D. and J. Ju, 2007). 
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The estimated models were then used to predict the average daily prices in Western New 
York (Zone A), the Hudson Valley (Zone G), NYC (Zone J) and Long Island (Zone K) for the 
summer of 2006. The sum of the price differences for different pairs of locations from May to 
October represents the earnings of a six-month strip for the corresponding TCC. Since the 
estimated models are based on information that was available before the auction to sell the TCC, 
it is appropriate to use these models to evaluate the financial risk of purchasing a TCC in the 
auction. The financial risk of the TCC for the summer of 2006 was evaluated from two different 
perspectives. First, the risk of hedging for a generator comes primarily from uncertainty about 
the actual daily temperatures next summer. It is assumed implicitly that the generator holds a 
forward contract for natural gas based on the current forward prices for natural gas on the New 
York Mercantile Exchange (NYMEX). Second, the risk for speculators comes from the 
combined uncertainty about future temperatures and future prices of natural gas.  

For both hedgers and speculators, 100 different realizations of daily temperatures and loads 
in different zones were simulated for March to October 2006 to represent a random sample of 
100 summers. For hedgers, the future daily prices of natural gas were interpolated from the 
forward price of natural gas on the New York Mercantile Exchange (NYMEX) for different 
delivery months. For speculators, 100 different realizations of the daily price of natural gas for 
March to October 2006 were simulated from an ARIMA model that was estimated using data for 
2002 to 2005. Each realization for the daily price of natural gas was paired with one set of 
realizations for the daily temperatures in different zones. Given these realizations of daily 
temperatures and the daily price of natural gas, it is straightforward to simulate 100 sets of daily 
prices of electricity in different zones and compute the corresponding daily price differences. 
The corresponding revenues from holding a TCC for May to October 2006 can be computed by 
scaling and aggregating the price differences. 

 
Figure 4-3  Daily Temperature Data for Three Locations in New York State 
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Figure 4-4  Daily Load Data for Zones A-F, G-I, J and K 

 
Figure 4-5  Daily Price Data for Zones A, G, J and K 
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The basic data used for the econometric modeling are shown in figures 4-3 to 4-5. Figure 4-
3 shows the clear annual pattern of high summer temperatures and low winter temperatures. The 
temperatures at different locations are highly positively correlated together and this 
interdependence is captured by the VARMAX specification. In the simulations, the correlations 
among the random departures from the estimated annual cycles at different locations are 
incorporated and these spatial correlations have important effects on the behavior of the 
simulated loads and prices in the four different Zones. Figure 4-4 shows the load data for Zones 
A-F combined, Zones G-I combined and Zones J and K and illustrates the importance of the 
summer peak in NYC (Zone J) due to air conditioning (the two aggregates of the upstate Zones 
correspond to the main groupings in the structure of the daily nodal prices using an Eigen 
analysis). The summer and winter peak periods and the weekly cycles are clearly visible for load. 
In contrast, the behavior of the prices in figure 4-5 for Zones A, G, J, and K is more random and 
the annual and weekly patterns are far less obvious. In addition, prices have trended up more 
over time, due in part to higher prices for natural gas, compared to the loads. However, it is the 
variability of price differences between two locations that reflects the financial riskiness of 
holding a TCC. Since the prices at different locations are positively correlated together, the 
variability of price differences could be substantially less than the variability of the individual 
prices. 

Using data for 2002-2005, models for temperature, load and price were estimated. The 
objective was to use these models to simulate the distribution of payouts from holding a TCC for 
the summer months in 2006. In other words, the simulated payouts were based only on 
information that was available before the auction to sell the TCC occurred in February 2006 (and 
forecasts of the price of natural gas derived from the forward prices of delivery at Henry Hub 
obtained from NYMEx). The main source of uncertainty in the payout from buying a TCC is that 
the summer temperatures in 2006 are not known. One predicted payout for May to October (the 
standard six month strip for a TCC) is computed by predicting the daily prices from February to 
October at the four locations. These daily prices are then used to compute and aggregate the 
corresponding price differences over the summer months. The simulation process for 
determining one payout of the TCC is illustrated by showing the daily realizations of 
temperature, load and price in figures 4-6 to 4-8. The patterns of behavior of these simulated data 
are similar to the observed data in figures 4-3 to 4-5, showing that the VARMAX framework 
captures the type of randomness that underlies the true data generating processes. The focus is 
now directed to evaluating the simulated price differences between NYC (Zone J) and the 
Hudson Valley (Zone G).  
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Figure 4-6  One simulated realization of daily temperatures for February to October 2006 

 
Figure 4-7  One simulated realization of daily loads for February to October 2006 
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Figure 4-8  One simulated realization of daily prices for February to October 2006 

 

 
 

Figure 4-9  Simulated Daily Price Differences between NYC and the Hudson Valley for May-
October 2006 (Hedgers using Actual Forward Prices for Natural Gas) 
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Figure 4-10  Simulated Daily Price Differences between NYC and the Hudson Valley for May-

October 2006 (Speculators using Simulated Realizations of the Price for Natural Gas) 

 

The simulated price differences in figures 4-9 and 4-10 are histograms of the simulated daily 
price differences between NYC and the Hudson Valley. Each histogram summarizes 100 
realizations of the 184 daily price differences from May 1st to October 31st. Even though the 
price spikes are more likely to occur in NYC, there is no obvious skewness to the right as one 
might expect and the histograms are approximately normally distributed. It is interesting to note 
that the histogram for hedgers (using the same projection of the price of natural gas for all 100 
realizations of the summer) has slightly more variability than the histogram for speculators 
(using different projections of the price of natural gas derived from an estimated ARIMA 
model). However, it is the distribution of the simulated payouts aggregated over the 184 days in 
a summer, corresponding to the six-month TCC, that is the main focus of this analysis.  

The results for four different TCCs are summarized in table 4-1. Since the actual payout 
from holding a TCC is for the Congestion Component (C.C.) of the price differences only and 
does not include the Loss component, both two components of the actual payouts in the Summer 
2006 are shown. For example, the payout from holding a TCC for a transfer from the Hudson 
Valley (Zone G) to NYC (Zone J) pays the total congestion costs for the 24x184 hours from May 
to October. The actual total congestion cost paid was $36,685.3/MW for the Zone G-J TCC but 
the simulations represent the differences in the Location Based Marginal Prices (LBMP, i.e. the 
nodal price differences). Hence, the simulated payouts correspond to the actual LBMP difference 
of $36,851.3/MW that includes the Loss of $166.0/MW. Comparing the actual LBMP payout 
with the corresponding simulated payouts shows that all of the actual LBMP payouts fall in the 
ranges of the simulated payouts. The actual LBMP payouts for Zones A-G, A-J and J-K are all 
substantially higher than the simulated mean values, and in contrast the actual LBMP payout for 
Zones G-J, the main focus of this analysis, is slightly less than the mean for Hedgers and slightly 
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above for Speculators. Overall, the actual payouts represent a realistic random selection from the 
simulated distributions. 

 

Table 4-1  Simulated Payouts from Four Different Six-Month TCCs for the Summer 2006 
Simulation Results ($/MW)     
Sim1 (Hedgers)  Zones A-G Zones A-J Zones G-J Zones J-K 
Actual payout LBMP 60,543.1 97,394.4 36,851.3 67,281.1 

May-October 2006 Loss 1,698.1 1,864.1 166.0 140.3 
 C.C. 58,845.0 95,530.3 36,685.3 67,140.8 

Simulated payouts max 72,021.0 108,880.8 50,574.4 74,419.7 
LBMP mean 52,000.8 89,706.5 37,705.7 48,333.1 

 median 52,051.0 90,622.3 37,856.7 47,461.4 
 min 37,079.5 68,974.3 17,080.3 27,908.9 
      

Sim2 (Speculators) A-G A-J G-J J-K 
Actual payout LBMP 60,543.1 97,394.4 36,851.3 67,281.1 

May-October 2006 Loss 1,698.1 1,864.1 166.0 140.3 
 C.C. 58,845.0 95,530.3 36,685.3 67,140.8 

Simulated payouts max 67,501.7 100,596.8 45,393.3 74,000.7 
LBMP mean 48,907.0 82,401.0 33,494.0 49,236.2 

 median 48,829.6 83,005.9 33,678.5 48,405.5 
 min 34,767.9 63,205.6 14,342.5 30,194.3 

 

 
Figure 4-11  Simulated LBMP Payouts for a TCC between NYC and the Hudson Valley for 

May-October 2006 (Hedgers using Actual Forward Prices for Natural Gas) 
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Figure 4-12  Simulated LBMP Payouts for a TCC  between NYC and the Hudson Valley for 
May-October 2006 (Speculators using Simulated Realizations of the Price for Natural Gas) 

 

Figures 4-11 and 4-12 show the distributions of the simulated LBMP payouts from holding a 
Zone G-J TCC for hedgers and speculators, respectively. These two figures are consistent with 
figures 4-9 and 4-10 that show the distribution of the simulated daily price differences between 
Zones G and J. Notice that the simulated TCC payouts are all positive even though there are a 
substantial number of negative price differences shown in figures 4-9 and 4-10. This is also the 
case for the three other TCCs presented in table 4-1. The overall conclusion is that this analysis 
has demonstrated successfully the feasibility of using an econometric model to simulate the 
financial riskiness of the payout from holding a TCC using only information known prior to the 
TCC auction. This method could be applied to evaluating a portfolio of TCCs, and it provides a 
viable framework for monitoring the behavior of participants in the TCC market that could be 
adopted by the NYISO. 

The results show that the simulated revenues from holding a TCC between the Hudson 
Valley and New York City are generally close to the price paid in the auction in March. For 
hedgers, the auction price is 45.05 percentile of simulated revenues, and for speculators, the 
auction price represents the 71.27 percentile. Although this is only a single example, the results 
do raise questions about the effectiveness of the TCC auction as a reliable source of price 
discovery. This research is the first step toward understanding the stochastic behavior of 
transmission costs and the TCC market. Future research can look into multivariate time-series 
models to jointly model the price of electricity, load and temperature. 
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5. Reduced-form Hub-and-spoke Representation of a Power System 
5.1. Introduction 

We proposed to investigate effective approaches for identifying proxy trading hubs in an 
LMP-based market and the corresponding financial contract market structures for approximating 
correct incentives for inducing efficient capacity investment in generation and transmission 
through instruments such as FTRs or TCCs. We developed a non-parametric econometric model 
for modeling the structure of the LMPs at major zones in a bulk power system. Using this model, 
we can identify and analyze the major factors influencing the LMPs in all zones which may serve 
as explanatory variables for the FTR prices. We have applied this non-parametric model to 
investigate the electricity day-ahead forward price curve dynamics. This model performs better 
in short-term forecasting than existing time series models do. A paper has been completed on the 
non-parametric modeling of electricity forward curves and sent to a journal for publication. 

5.2. Alternative Non-linear Dimension Reduction Method   

5.2.1 Introduction to manifold learning   
Manifold learning is a new and promising nonparametric dimension reduction approach. 

Many high-dimensional data sets that are encountered in real-world applications can be modeled 
as sets of points lying close to a low-dimensional manifold. Given a set of data points 

D
N Rxxx ∈,,, 21 L , we can assume that they are sampled from a manifold with noise, i.e.,  

 Niyfx iii ,,1,)( L=+= ε  (5.1) 

where DdRy d
i <<∈ , , and iε  are noises. Integer d  is also called the intrinsic dimension. The 

manifold based methodology offers a way to find the embedded low-dimensional feature vectors 
iy  from the high-dimensional data points ix .  

Many nonparametric methods were created for nonlinear manifold learning, including 
multidimensional scaling (MDS), locally linear embedding (LLE), Isomap, Laplacian 
eigenmaps, Hessian eigenmaps, local tangent space alignment (LTSA), and diffusion maps.  

Among various manifold based methods, we find that locally linear embedding (LLE) works 
well in modeling LMPs. Our purpose is to analyze the features of cross-zonal LMPs. In next 
subsection, we introduce the algorithms of LLE.  

5.2.2 Locally linear embedding (LLE)  

Given a set of data points D
N Rxxx ∈,,, 21 L  in the high-dimensional space, we are looking 

for the embedded low-dimensional feature vectors d
N Ryyy ∈,,, 21 L . LLE is a nonparametric 

method that works as follows:  

1. Identify the k  nearest neighbors based on Euclidean distance for each data point 
Nixi ≤≤1, . Let iN  denote the set of the indices of the k  nearest neighbors of ix .  

2. Find the optimal local convex combination of the k  nearest neighbors to represent each data 
point ix . That is, the following objective function (5.2) is minimized and the weights ijw  of 
the convex combinations are calculated.  
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where |||| ⋅  is the 2l  norm and 1=∑
∈ iNj

ijw .  

The weight ijw  indicates the contribution of the j th data point to the representation of the 
i th data point. The optimal weights can be solved as a constrained least square problem, 
which is finally converted into a problem of solving a linear system of equation. 

3. Find the low-dimensional feature vectors Niyi ≤≤1, , which have the optimal local convex 
representations with weights ijw  obtained from the last step. That is, iy ’s are computed by 
minimizing the following objective function:  

 ∑ ∑
= ∈

−=Φ
N

i Nj
jiji

i

ywyy
1

2||||)(  (5.3) 

It can be shown that solving the above minimization problem (5.3) is equivalent to solving an 
eigenvector problem with a sparse NN ×  matrix. The d eigenvectors associated with the d  
smallest nonzero eigenvalues of the matrix comprise the d -dimensional coordinates of iy ’s. 
Thus, the coordinates of iy ’s are orthogonal.  

LLE does not impose any probabilistic model on the data; however, it implicitly assumes 
the convexity of the manifold. It can be seen later that this assumption is satisfied by the 
electricity price data.  

5.3. Modeling of LMPs with Locally Linear Embedding Method   
We used data of the day-ahead LMPs of 10am in the 15 zones of the New York Independent 

System Operator (NYISO): CAPITL, CENTRL, DUNWOD, GENESE, H Q, HUD VL, 
LONGIL, MHK VL, MILLWD, N.Y.C., NORTH, NPX, O H, PJM, and WEST. Two years (731 
days) of price data from Feb 6, 2003 to Feb 5, 2005 are used as an illustration of modeling the 
LMPs by manifold based methodology. The data are available online 
( www nyiso com public market_data pricing_data jsp. . / / / . ).  

5.3.1 Preprocessing  

LLP smoothing 
The noise in (5.1) can contaminate the learning of the embedded manifold and the 

estimation of the intrinsic dimension. Therefore, locally linear projection (LLP) is recommended 
to smooth the manifold and reduce the noise. The description of the algorithm is given as 
follows:  

ALGORITHM: LLP  

For each observation Nixi ,,2,1, L= ,  

1. Find the k -nearest neighbors of ix . The neighbors are denoted by kxxx ~,~,~
21 L  
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2. Use PCA or SVD to identify the linear subspace that contains most of the information in the 
vectors kxxx ~,~,~

21 L . Suppose the linear subspace is A . Let 0k  denote the assumed dimension 
of the embedded manifold. Then subspace iA  can be viewed as a linear subspace spanned by 
the singular vectors associated with the largest 0k  singular values.  

3. Project ix  into the linear subspace iA  and let 1i i Nx , = , ,L , denote the projected points.  

After denoising, the efficiency of manifold learning is enhanced, and the reconstruction 
error (TRE) of the entire calibration data set is reduced. For the illustrated data set with the 
intrinsic dimension being four, the TRE is %53.1 after LLP smoothing, compared to %72.1  
without LLP smoothing. The choice of the two parameters in LLP, the dimension of the linear 
space and the number of the nearest neighbors, will be discussed in detail in subsection 5.3.4. 

5.3.2 Manifold learning by LLE  
LMP of 15 zones at 10am each day is considered as an observation, so the dimension of the 

high-dimensional space D  is 15. The intrinsic dimension d  is set to be four. The number of the 
nearest neighbors k  for LLP smoothing, and LLE is selected to be a common number 16  for all 
the numerical studies. The details of the parameter selections are discussed in subsection 5.3.4. 
Due to the ease of visualization in a three-dimensional space, the low-dimensional manifold is 
plotted with the intrinsic dimension being three. We apply LLE to the denoised data 

1i i Nx , = , ,L , which are obtained after LLP smoothing. Figure 5-1 provides the plot of the 
embedded three-dimensional manifold. As the low-dimensional manifold is nearly convex and 
uniformly distributed, LLE is an appropriate manifold based method. Figure 5-2 plots the time 
series of each coordinates of the feature vectors in the embedded four-dimensional manifold.  
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Figure 5-1 Embedded three-dimensional manifold after LLP smoothing 
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Figure 5-2 Coordinates of the embedded 4-dim manifold 

 

5.3.3 Analysis of major factors with low-dimensional feature vectors  

Interpretation of each dimension in the low-dimensional space 
There are some interesting interpretations for the coordinates of the feature vectors in the 

low-dimensional space. The sequence of each coordinates of the low-dimensional feature vectors 
comprises a time series. The correlation between each time series and each FTR can be 
calculated. Table 5-1 shows the four FTRs, which have the maximum absolute correlations with 
the four-dimensional coordinates, and the corresponding correlation coefficients. It is found that 
the second coordinates have a very high correlation coefficient 8166.0  with the FTR from 
CENTRL to NYC, and the third coordinates are highly correlated with the FTR from NORTH to 
LONGIL with a correlation coefficient 7245.0 . This also means that the second coordinates 
contain some other information. Table 5-1 also demonstrates that the first coordinates have a 
high correlation coefficient 684.0  with the FTR from CENTRL to CAPITL, and the fourth 
coordinates are highly correlated with the FTR from WEST to DUNWOD with a correlation 
coefficient 6208.0− . Figure 5-3 illustrates these four FTRs in the zone map from NYISO 
(Source: http://www.nyiso.com/public/market_data/zone_maps.jsp). 

 
Table 5-1  Correlation coefficient of the four-dimensional coordinates with four FTRs 

Coordinate 1st 2nd 3rd 4th 

FTR 
CENTRL 

to 
CAPITL 

CENTRL 
to 

NYC 

NORTH 
to 

LONGIL 

WEST 
to 

DUNWOD 
Correlation 
Coefficient 0.684 0.8166 0.7245 -0.6208 
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Figure 5-3  Four FTRs with the maximum absolute correlations with the 4-dim coordinates 

 
Another interesting observation is that we could use as few as two FTRs to interpret the four-
dimensional coordinates. Table 5-2 demonstrates that the FTR from WEST to DUNWOD has 

high correlation coefficients with the first and fourth coordinates, and the FTR between 
CENTRL to LONGIL has high correlation coefficients with the second and third coordinates. 

Figure 5-4 illustrates these two FTRs in the zone map. 

 

Table 5-2  Correlation coefficient of the four-dimensional coordinates with two FTRs 
Coordinate 1st 2nd 3rd 4th 

FTR 
WEST 

to 
DUNWOD 

CENTRL 
to 

LONGIL 

CENTRL 
to 

LONGIL 

WEST 
to 

DUNWOD 
 

Correlation 
Coefficient 0.6316 0.6196 0.6952 -0.6208 
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Figure 5-4  Two FTRs with high absolute correlations with the 4-dim coordinates 

 

5.3.4 Parameter setting and sensitivity analysis   
The selections of several parameters, including the number of intrinsic dimensions, the 

number of the nearest neighbors and the length of the calibration data, are discussed in this 
subsection.  

Intrinsic dimension 

Intrinsic dimension d  is an important parameter of manifold learning. Levina (2005) and 
Verveer (1995) provide several approaches of estimating the intrinsic dimension. In Levina 
(2005), the maximum likelihood estimator of the intrinsic dimension is established. In Verveer 
(1995), the intrinsic dimension is estimated based on a nearest neighbor algorithm. The two 
methods show that the intrinsic dimension is some value around 4 . Thus, it is reasonable to set 
the dimension of the linear space as 4  in LLP smoothing. The numerical experiments indicate 
that LLP smoothing can not only denoise, but also improve the efficiency of estimating the 
intrinsic dimension. 

Another empirical way of estimating the intrinsic dimension is to analyze the sensitivity of 
the TRE to the different values of the intrinsic dimension. Figure 5-5 shows that the TRE is a 
decreasing function of the intrinsic dimension with an increasing slope. The slope of the curve in 
the figure has a dramatic change when the intrinsic dimension is around four. Therefore, we 
choose the intrinsic dimension as four.  

 



 

40 

2 4 6 8 10 12 14
0.5

1 

1.5

2

2.5

3

3.5

4

4.5

Intrinsic dimension

TR
E

(%
)

 
Figure 5-5  Sensitivity of TRE to the intrinsic dimension (data length = 731 days, number of the 

nearest neighbors = 16). 

 

The number of the nearest neighbors 
The plot of the TRE against the number of the nearest neighbors is used to select the 

appropriate number of the nearest neighbors. Figure 5-6 indicates the TRE first falls steeply 
when the number of the nearest neighbors is small, and then remains steady when the number of 
the nearest neighbors gets greater. We set the number of the nearest neighbors to be 16 for all the 
numerical studies. This is only one of the many choices as the reconstruction error is not 
sensitive to the number of the nearest neighbors within a range.  
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Figure 5-6  Sensitivity of TRE to the number of the nearest neighbors (data length = 731 days, 

intrinsic dimension = 4) 
 

The plot of the TRE against the length of the calibration data in figure 5-7 illustrates that 
TRE is not very sensitive to the data length. Two years of data are applied to the manifold 
learning. 
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Figure 5-7  Sensitivity of TRE to the length of the calibration data (intrinsic dimension = 4, 

number of the nearest neighbors = 16) 
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5.4. Conclusions  
We find that a manifold-based dimension reduction method performs very well in modeling 

a whole set of cross-zonal LMPs. LLE is demonstrated to be an efficient algorithm for extracting 
the intrinsic low-dimensional structure of electricity price curves. Using price data taken from 
the 15 zones of NYISO, we find that there exists a low-dimensional manifold representation of 
the set of day-ahead LMPs across all zones at any one single time, and specifically, the 
dimension of the manifold is around 4. The interpretation of each dimension in the low-
dimensional space is obtained via the FTR values defined as the price differences between zonal 
prices to analyze the main factors that drive the cross-zonal LMP variations.  
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6. Day-ahead Forward Risk Premium in Electricity Markets with 
Transmission Network Constraints  

This chapter tackles the issues of optimal hedging and equilibrium price discovering for 
market participants in the electricity day-ahead forward and spot wholesale markets considering 
transmission capacity constraints. The equilibrium prices in day-ahead forward and spot markets 
are derived by formulating the individual market participants’ decision problems and solving 
them with respect to the market clearing conditions. Consequently, the locational forward risk 
premium, defined as the difference between the day-ahead forward price and the spot price, is 
expressed as a function of network topology, shadow prices of transmission flowgates, and other 
economic measures of the market participants. The implications of the model are illustrated 
through a series of numerical experiments with a three bus study-system. Empirical studies with 
New York electricity market data indicate that the forward risk premium determining model 
captures key economic features based on the hypothesis that the market prices are determined by 
rational risk-averse market participants. 

The following notations apply to this chapter. 

Acronyms 

{AC, DC} {Alternating, Direct} current 

GEN Generator 

ISO Independent system operator 

LBMP Locational based marginal price  

LSE Load serving entity 

MW Mega watts, unit for real power, the rate of energy consumption 

MWh Mega watts hour, unit for energy consumption 

NYISO New York independent system operator 

NYEM New York electricity market 

PTDF Power transfer distribution factor 

Parameters of the transmission network  

F  Matrix of PTDFs, [ ]knf ,=F , where knf ,  denotes the proportion of power flow on 
flowgate k  for one unit of power injection into bus n  paired with one unit of power 
ejection out of slack bus. 

ig  Bus index of where the thi  GEN’s units are connected. We assume that different 
GENs do not compete at the same location, i.e. if 'ii ≠ , then 'ii gg ≠ . 

jl  Bus index of where the thj  LSE is located. We assume that all LSEs have non-
overlapping franchised service area, i.e. if 'jj ≠  , then 'jj ll ≠ . 

T  Vector of transmission capacity of flowgates, [ ]TkT=T , K∈k . 

Ν  Set of buses, { } Nnn L,1, ==Ν . 
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K  Set of flowgates, { } Kkk L,1, ==K  . 

Parameters, variables, and functions associated with market participants 

{ }L
j

G
i AA ,  Risk aversion coefficients of the thi  GEN or the thj  LSE, assume that 

0>= G
G
i AA , i∀ , and 0>= L

L
j AA , j∀ . 

( )⋅C  Generation cost function. 

D  Vector of bus-aggregated demand of end consumers, [ ]Tnd=D , Ν∈n . 

iF  Fixed cost of the thi  GEN’s generation cost function.  

{ }SF ,G   Vector of forward/spot positions taken by GENs, { } { }[ ]TSF
i

SF G ,, =G , Ii ,,1L= . 

{ }*,SFG  Vector of optimal forward/spot positions of GENs, { } { }[ ]TSF
i

SF G *,*, =G , Ii ,,1L= . 

G   Vector of total positions by GENs, [ ]TiG=G , Ii ,,1L= , and SF GGG += . 

i  Index of GENs, Ii ,,1L= . 

j   Index of LSEs, Jj ,,1L= . 

{ }SF ,L  Vector of forward/spot positions taken by LSEs, { } { }[ ]TSF
j

SF L ,, =L , Jj ,,1L= . 

{ }*,SFL  Vector of optimal forward/spot positions of LSEs, { } { }[ ]TSF
j

SF L *,*, =L , Jj ,,1L= . 

L  Vector of total positions by LSEs, [ ]TjL=L , Jj ,,1L= , and SF LLL += . 

{ }( )⋅LGU ,  Utility function of a GEN/LSE. 

{ }L
j

G
i ρρ ,  GEN i  or LSE j ’s profit without forward hedging. 

{ }
{ }( )⋅SF

LG
,
,π  Profit function of a GEN/LSE in forward/spot markets.  

G
iθ   Parameter of GEN i ’s generation cost function, 0>G

iθ , assume θθ =G
i , i∀ . 

G
iα   Parameter of GEN i ’s generation cost function, 0>G

iα . 

ϖ  A random variable representing the market uncertain which leads to load randomness 
and market price fluctuation. 

Electricity market prices and shadow prices associated with transmission flowgates  
{ }SF ,P   Vector of the LMPs in forward/spot markets, { } { }[ ]TSF

n
SF P ,, =P  , Ν∈n . 

RP   Vector of electricity retail price for end consumer, [ ]TR
n

R P=P  , Ν∈n .  
{ }SF

refP ,   LMP at the reference bus in forward/spot markets. 

{ }SF ,λ   Vector of flowgate shadow prices in forward/spot markets, { } { }[ ]TSF
k

F,S ,λ=λ . 
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6.1. Introduction   
Deregulation of the electric power industry separates production and delivery of electricity 

as different market making functions from the previously vertically integrated monopoly. 
Wholesale electricity markets and retail electricity markets are established to allow trading 
between bulk suppliers, retailers and other financial intermediaries. As an essential commodity 
for national economics and household uses, electricity is traded in large quantities between these 
market participants. With an annual consumption of over 3.6 billion MWh, the US power market 
is becoming one of the most active commodity markets in the world. In the first few years 
following the conception of deregulation, the complexity of electricity trading and the market 
risks were more or less underestimated due to continuations of the power transaction contracts 
predetermined in the regulated regime. Until the late 1990s, electricity marketers had enjoyed 
substantial latitude in capital markets. However, the turmoil of the California power market in 
2000-2001 and the collapse of the energy giant Enron in late 2001 created unease and reminded 
market participants of the harsh realism in the rapidly developing industry. The electricity 
trading business experienced dramatic impact although it was not the exclusive driver to such 
crisis. In 2002, stock depreciation and credit downgrades haunted the industry and increased the 
cost of capital access. The market perceptions of electricity commodities and derivatives trading 
associated risks came to the close attention of market participants. Stakeholders and potential 
investors began to appreciate the related research.  

The imbedded physical nature of electricity determines the extreme volatility of its price and 
the illiquid of its trading. The following figure 6-1 illustrates the day-ahead (left panel) and spot 
(right panel) market hourly electricity prices on the reference bus in the New York power pool 
over the period from February 2005 through August 2006. 
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Figure 6-1  Hourly day-ahead forward and spot prices on the reference bus in NYEM 

 

From figure 6-1, electricity price spikes are observed frequently especially in the spot 
market. In contrast to the general observation that in most commodity markets derivative prices 
are more volatile than the fundamentals, figure 6-1 shows the opposite: electricity prices in the 
day-ahead forward market are generally less volatile than in the underlying in the spot market. 
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Actually, the standard deviation of percentage changes of the hourly electricity prices as 
displayed in figure 6-1 is 10.7% in the day-ahead forward market (the left panel) and 121.7% in 
the spot market (the right panel), respectively. Compared with the stock market, the standard 
deviation of daily returns on the S&P 500 index during the most volatile single month in recent 
decades, October 1987, was 5.7% (Bessembinder and Lemmon, 2002). The extreme price 
volatilities put market participants at significant risk exposure in the spot market, which may 
lead to serious financial difficulties. It leads to the future trading of bulk electricity. Soon after 
the conception of the electric power industry’s deregulation, the market for electricity futures 
emerged in the New York mercantile exchange in March 1996. Financially settled monthly 
futures contracts for on-peak and off-peak electricity transactions provide a channel for risk 
transferring between market agents who have different market projections and risk preferences. 
Nowadays, standardized futures contract trading for electricity delivery at specific locations 
provides sophisticated bulk electricity suppliers and buyer opportunities to hedge against 
unfavorable price fluctuations. Options on the monthly futures have been structured and offer 
market agents additional trading opportunities and risk management tools. 

Compared with electricity spot prices which clear the transactions in the spot market, 
electricity forward prices clear the forward transactions and reflect the pricing of the 
corresponding forward contracts. There usually exist forward risk premiums which measure the 
differences between the forward and expected spot prices. Economic theories suggest that 
forward premiums represent market compensation to financial market participants for bearing 
the systematic risk. Although classical literatures suggest that a typical forward premium is 
negative due to the systematic hedging-pressure effect, recent literature (e.g., Longstaff and 
Wang, 2004) provides examples of positive forward premiums. Routledge et al. (2000) develop 
an equilibrium model of term structure of forward prices for storable commodities. In their 
model, a competitive rational expectations model of storage is employed to study the impact of 
the embedded timing option of spot commodity which is absent in the future contracts. However, 
the results do not necessarily extend to electricity futures. The cost-of-carry relationship links 
spot and forward prices by the no arbitrage condition. A forward contract can be synthesized by 
taking a long position in the underlying asset and holding it till the maturity of the contract. Since 
there lacks efficient technology to store electricity economically, the buffering benefit of holding 
inventory to smooth temporary demand/supply imbalance does not exist. Consequently, in 
addition to the resulting extreme intertemporal and interspatial price volatility, the standard 
arbitrage-based approach cannot be applied as it is to value electricity derivatives. Therefore, 
electricity forward prices do not necessarily conform to the cost-of-carry relationship (Eydeland 
and Geman, 1999; Pirrong and Jermakyan, 1999), and the no-arbitrage approach does not apply 
to power derivatives valuing directly. Pirrong and Jermakyan (1999) note that electricity forward 
prices differ from expected delivery date spot prices due to an endogenous market price of power 
demand risk. However, no attempt to explicitly model the determinants of the forward market 
price risks is made. Eydeland and Geman (1999) focus on electricity options and note that as a 
consequence of non-storability, delta hedging involving the underlying asset cannot be 
implemented and using the spot price evolution models for pricing power options is not helpful. 
Their option pricing model relies on assumptions regarding the evolution of forward power 
prices instead. A recent study of forward price premiums in the natural gas market (Borenstein et 
al., 2006) argues that since gas local distribution companies (LDCs) choose to pay to guarantee 
access to gas at times when gas transportation capacity is expected to be constrained, positive 
forward price premiums exist. However, this conclusion is back up by the fact that LDCs face a 
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much higher penalty for inadequate gas input than for storing excessive gas. Inspired by the fact 
that storable natural gas can be converted into electricity in industrialized size, Routledge et al. 
(2001) tackle the equilibrium pricing of electricity contracts by studying the spark spreads 
between the natural gas and electricity markets. Their research indicates mean reversion and 
positive skewness of electricity prices. Also revealed is the unstable correlation between 
electricity and natural gas prices. These literatures suggest relying on equilibrium-based models 
to derive how electricity forward prices are related to spot market conditions. According to the 
general equilibrium model of electricity forward prices proposed by Bessembinder and Lemmon 
(2002), there exists a functional relationship between electricity forward prices and the expected 
underlying spot price and load demand. The forward price is a biased forecast of the future spot 
price, with the forward premium being a decreasing function of the expected variance of the 
wholesale spot price and an increasing function of the expected skewness of wholesale spot 
prices. More specifically, the forward premium is negative (termed normal backwardation) when 
price volatility over-dominates the positive skewness effect, and positive (termed contango) 
otherwise. Generally, it shows that fundamental economic factors and market participants’ risk 
attitude determine the forward premium. Following the equilibrium model proposed by 
Bessembinder and Lemmon (2002), Longstaff and Wang (2004) implement empirical studies 
using high frequent electricity price data from the PJM (Pennsylvania, New Jersey, and 
Maryland) electricity market. Their study confirms the relationship between forward risk 
premium and the moment statistics of spot prices and finds that the forward premiums are higher 
in peak hours compared with non-peak hours.  

In addition to the markets for long-maturity futures, in many U.S. power pools, a two-
settlement mechanism has been established which involves the market clearing in a day-ahead 
forward market and a real-time spot-market. Assisted with market monitoring which deters 
market speculation behaviors, the creation of the day-ahead forward market allows the system 
operators to collect information and make more accurate projections of the next-day’s demand 
and available generation supply. The opening of the day-ahead forward markets also moderates 
the impact of the otherwise more volatile spot market prices and provides market participants a 
channel to hedge the market risks involved. Since the establishment of the two-settlement 
mechanism, the day-ahead forward markets have grown rapidly. The price dynamics in the day-
ahead forward markets and the relation between day-ahead forward and spot prices have become 
one of the major concerns of market participants.  

Although the model proposed by Bessembinder and Lemmon (2002) provides an economic 
characterization of forward risk premium for monthly settled futures contracts, it implicitly 
assumes single forward and spot prices apply to every market participant within the broad 
delivery locations of their transactions with the transmission congestion related price dynamics 
being smeared over the model parameters. However, if applied directly to the day-ahead forward 
market, the same model would over-simplify the realism since limited transmission capacity 
leads to different LBMPs at different locations. In addition to the supply-demand balances, 
market prices are vulnerable to transmission network constraints. Since physics laws determine 
the transmission of electric power flows, given the capacity constrained transmission network, 
there is a significant variation in energy prices at different locations even within one market. The 
following figure 6-2 illustrates the day-ahead forward (left panel) and spot (right panel) market 
hourly LBMP differences between the zone CENTRL and the reference bus in NYEM over 
February 2005 through August 2006,  
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Figure 6-2  Day-ahead forward and spot price differences between zone CENTRL and the 

reference bus in NYEM 

 

It illustrates the effect of network congestion resulting from limited transmission capacity. 
Note that spatial price differences make significant percentages of the market prices, especially 
in the spot market. Actually, the spatial price differences between the zone N.Y.C and the 
reference bus are more dramatic due to the tighter transmission capacity connection. 
Consequently, to understand the relationship between the day-ahead forward LBMPs and the 
spot LBMPs in a practical system, the model presented in (Bessembinder and Lemmon, 2002) 
needs to be expanded to incorporate transmission network constraints and model the interspatial 
price diversity. 

The research work presented in this chapter investigates an equilibrium model for the 
pricing of electricity forward contracts in the day-ahead market while considering the impact of 
transmission congestion. We assume that in both the day-ahead and the spot markets, market 
clearing prices are determined by the supply- and demand-side participants with physical needs 
rather than pure speculators. We also assume that electricity bulk suppliers and retailers are risk-
averse and risk-adjusted profit maximizers. An equilibrium model is formulated which leads to a 
regression model relating the forward risk premium to the network topology, the shadow prices 
of transmission flowgates, and other economic measures of the market participants. We conduct 
preliminary empirical analysis using historical electricity prices and transmission congestion 
information form the New York electricity wholesale market. The data used in this study consist 
of hourly day-ahead and spot electricity prices, hourly day-ahead and spot flowgate shadow 
prices, and hourly load level for the period from February 2005 to August 2006. The rational for 
using hourly data instead of daily-averaged data, as mostly adopted in other literatures, is that the 
occurrences of transmission congestions usually last no more than a few hours instead of days. 
The congestion effect may become obscured if it is scaled into daily averaged data. The 
observations from the empirical study are in general supportive of the relation indicated in the 
proposed model. They confirm that the regression model for day-ahead forward risk premium in 
power prices captures many of the key economic features based on the hypothesis that the 
market prices are determined by rational risk-averse market participants. This research 
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contributes to the rapidly growing literature on electricity market risks and is valuable for leading 
to broader insights regarding market perceptions. Although the equilibrium model considers 
electricity market’s exclusive characteristics, the modeling framework and the insights obtained 
apply to other non-storable commodity markets as well.  

The rest of the chapter is organized as follows. Section 6.2 describes the general setup of the 
day-ahead forward and spot markets for electricity wholesale. The decision problems of each 
market participant in the day-ahead and spot markets are formulated. Section 6.3 discusses the 
market clearing conditions and solves for economic determinants of market clearing prices. By 
maximizing each market participant’s risk-adjusted profit with respect to market clearing 
conditions, the model gives closed form solutions for the equilibrium forward prices and optimal 
forward positions. The implications of the model and impacts of various system parameters on 
the forward risk premium are illustrated through a series of simulation studies with a 3-bus study 
system. A regression model for day-ahead forward risk premium, which incorporates 
transmission network constraints and various economic measures, is derived in section 6.4. 
Empirical statistical studies with New York electricity market data are conducted. The 
observations indicate that the proposed model captures many of the key economic features which 
determine the forward risk premium. The model is then used for spot market price prediction and 
tested against out-of-sample historical data. Finally, conclusions and directions for future 
research are presented in section 6.5. 

6.2. Decision Problems of the Market Participants   
In an open electricity pool market, the transactions of electric power are primarily driven by 

market participants’ business incentives. End consumers’ activities determine the total demand. 
Generators and load serving entities choose to sell or procure on either day-ahead forward or 
spot markets and at what quantities. They interact continuously through projected and real-time 
electricity transactions. There exists an independent system operator that monitors the 
transmission network status and dispatches the system to minimize the social energy acquisition 
cost. The winning electricity selling and buying bids determine the market clearing prices 
consequently. However, the objective of each market participant is to maximize the individual 
risk adjusted profit. At the market equilibrium, each market participant cannot gain profit by 
making unilateral moves.  

Since the cost-of-carry models cannot be readily applied to price electricity derivatives, an 
equilibrium approach is adopted instead to assess equilibrium prices and optimal hedging 
positions for market participants in the day-ahead forward and spot markets. To model the two-
settlement mechanism, we consider a single forward time period for electricity wholesale 
transactions when market participants choose their forward market positions by estimating the 
spot market conditions. When it comes close to the settlement of spot market, electricity load, the 
fundamental factor of market uncertainty, can be estimated with substantial precision in the 
immediate future. A same assumption in (Bessembinder and Lemmon, 2002) is made that market 
participants can make decisions regarding spot market positions at precisely projected spot 
prices.  

This section presents the decision problems of major market participants. Contingency 
events such as outages of generation units and transmission facilities are ignored here and 
reserved for future researches. 
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6.2.1 System operator  

Assume an electric power system with the transmission network consisting of a set Ν of 
buses and a set K  of monitored transmission flowgates. In our analysis, three markets are 
considered as follows:  

a. A day-ahead forward wholesale market 

In the day-ahead wholesale forward market, electricity power suppliers (i.e., GENs) and 
buyers (i.e., LSEs) choose their forward positions FG  and FL , respectively. The market clears at 
the day-ahead locational marginal prices FP . 

b. A real-time spot wholesale market 

In the wholesale spot market, the suppliers and buyers choose their spot positions SG  and 
SL , respectively, while the market clears at the spot prices SP . 

c. A regulated retail market 

The load serving entities act as electricity buyers in the wholesale markets and sell 
electricity procured from the wholesale markets to the end consumers in a retail market. 
Although LSEs have to buy bulk electricity at time-varying competitive market clearing prices 

FP  or SP  in the day-ahead forward or spot market, respectively, the retail prices to end 
consumers are under regulation and set fixed at RP . Usually, the regulated retail price RP  to end 
consumers is set based on the expected spot price SP  plus a certain retail profit margin.  

Suppose there exist I  generators acting as power suppliers selling electricity into the 
competitive wholesale markets with J  load serving entities being the wholesale buyers and 
suppliers in the retail market. To ensure the economical efficiency of the wholesale market, 
prevent discriminatory access to the transmission network, and encourage open markets 
competitions, an independent system operator with central dispatch authority coordinates the 
transmission of electricity to facilitate the transactions while monitoring against the violation of 
transmission network capacity. Locational marginal energy prices { }SF ,P  and shadow prices { }SF ,λ  
associated with the congested flowgates are determined by the system dispatch and informed to 
the public. The aggregated electricity demands in the LSEs’ franchised service territories are 
denoted by a vector of exogenous random variables D , which appear as firm obligations to load 
serving entities.  

The cost function of the thi  generator is assumed to be a quadratic function of the generation 
output iG ,  

 ( ) 2

2 iG
i

G
i

ii GFGC ⋅+=
α
θ                                                               (6.1) 

In the model proposed in (Bessembinder and Lemmon, 2002), to account for the missed market 
price dynamics do to ignored transmission congestion, the term of iG  in the cost function is 
assumed to be higher than 2 in general. In the contrast, the transmission network constraints are 
modeled explicitly in the proposed model, we use quadratic functions to represent supply curves, 
which are, according to (Wood and Wollenberg, 1996), more realistic characterizations of the 
generation production. 
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The market participants generally optimize market decisions expecting to reach high profit 
on average. Suppose that the information ϖ  can be viewed as a random variable with support Ω  
and known probability distributions, for example, with cumulative distribution function ( )ϖF , 
the profit on average can be defined as ( )[ ] ( ) ( )∫

Ω∈
=

ϖ
ϖϖπϖπ dFE .  

However, for a particular realization of the system conditions, the profit resulted could be 
very different from the corresponding expected value. The deviation may be quite considerable if 
the underlying randomness has a large variance. Following the corporate risk hedging literature 
which argues that market agents can benefit from hedging market risks by avoiding suboptimal 
decisions, and given the extreme volatility of the electricity wholesale prices, electricity market 
participants are modeled as risk averse and willing to seek hedges in forward market against 
adverse real time price changes, that is, they take both expected profits and the imbedded 
volatilities into consideration. A utility function linear in expected value and variance of profit is 
chosen as follows to reflect their risk aversion, 

 { }[ ] { }( )[ ] { }
{ }( )( )ωπωπ LG

LG
LGLG Var

A
EUE ,

,
,, 2

−=                                              (6.2) 

where { } 0, ≥LGA  represents the weight given to the conservative part of the decision.  

To simplify the problem, the forward and spot wholesale markets are modeled as closed 
systems where market participation is limited to generators and load serving entities with the 
prices determined by their physical delivery backed electricity trades. The rational for this 
assumption is that currently the activities of market agents, who take financial positions in the 
forward market and offset their positions prior to the next day delivery, are under strict 
regulation. Actually, due to the lack of electricity price indices (Ong, 1996), the speculative 
power transactions only account for a very limited percentage compared with the overall volume. 
Although no explicit model is built to represent market speculation, it is straightforward to 
envision that the unlimited costless participation of risk-neutral speculators would drive forward 
price converge to the expected spot price. Nevertheless, the existence of nonzero electricity 
forward premiums as observed from the empirical data provides incentives for financial 
intermediaries to create instruments, for example, power-indexed bonds, to allow outside 
speculators to include power positions in their portfolios (Bessembinder and Lemmon, 2002). 
The presence of outside speculators would be essential to market prices. 

As mentioned in previous chapters, a major difference of electricity from other commodities 
is that electricity flow over the transmission network following the law of physics instead of 
flowing freely as envisioned from an economic perspective. Since electricity is priced at each 
distinct location, the existence of network constraints presents complications to the electricity 
markets. Since we are concerned with the real power only, we use the DC instead of AC power 
flow equations based system dispatch model in our analysis. The DC model identifies thermal 
limits constraints and eases the understanding of economical issues in congestion management. 
We have the ISO’s system dispatch problems with network constraints as follows, note that the 
market prices can be determined based on the dispatch decisions. 

Definition 6.1: (ISO’s system dispatch problem in the day-ahead forward wholesale 
market) The ISO collects the load serving entities’ electricity demands in the day-ahead forward 
market and dispatches the available generation resources accordingly to meet the forward 



 

52 

demand while minimizing the forward electricity energy acquirement cost. By clearing the 
supply and demand at each location with respect to the transmission capacity constraints on each 
monitored flowgates, the market clearing day-ahead forward location marginal prices and 
flowgate shadow prices are determined by solving the following optimization problem, 

Min ( ) ( )∑
=

=
I

i

F
i

F GCC
1

G                     (6.3a) 

St.  ∑∑
==

=
J

j

F
j

I

i

F
i LG

11
                  (6.3b) 

  ( ) TLGF ≤− FFT                   (6.3c) 

  0≥FG                     (6.3d) 

Definition 6.2: (ISO’s system dispatch problem in the spot wholesale market) The ISO 
collects the load serving entities’ projected electricity demands in the spot market, based on the 
scheduled generation resources as determined in the day-ahead forward market, the ISO adjusts 
the available generation resources accordingly to meet the spot demand while minimizing the 
total electricity energy acquirement cost. By clearing the supply and demand at each location 
with respect to the transmission capacity constraints on each monitored flowgates, the market 
clearing forward location marginal prices and flowgate shadow prices are determined by solving 
the following optimization problem, 

Min ( ) ( )∑
=

=
I

i
iGCC

1

G                   (6.4a) 

St.  ∑∑
==

=
J

j
j

I

i
i LG

11
                       (6.4b) 

  ( ) TLGF ≤−T                 (6.4c) 

  0≥G                   (6.4d) 

Locational marginal pricing is the marginal cost of supplying the next increment of power 
demand at a specific location on the network, taking into account the marginal cost of generation 
and the physical aspects of the transmission system. Without the network constraints, electricity 
would be traded at a unique price wherever the physical delivery were located in the system. The 
demands would be met by the merit-order generations, i.e., the cheapest group of generation 
units, to incur the minimum social cost. However, the limited transmission network capacity may 
limit the transactions as congestion occurs, preventing the access to the cheapest generation 
resource while resorting to out of merit-order generations instead with respect to the specific 
location of the demands. As a consequence, the market clearing prices are differentiated across 
spatial locations. The optimality conditions of (6.3) and (6.4) characterize the relation between 
location prices and the reference bus price. 

The problem (6.3), with a convex objective function and linear constraints, is a convex 
programming problem. The associated Lagrange function can be defined as 
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where Fγ  is the Lagrange multiplier associated with constraints (6.3b) and Fλ  is a vector of 
Lagrange multipliers – dual variables associated with constraints (6.3c).  

In order for a solution ( )FFF γ,,* λG  to be optimal, in addition to constraints (6.3b-c), to 

guarantee that the gradient of ( )FC G  is normal to ⎟
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 and ( )( )TLGF −−∇ FFT , that is, be linearly 

dependent vectors. This means the gradient of the objective function should be a linear 
combination of the gradients of the active constraints. 

 ( ) 0,,* =
∂
∂ FFF

F γλG
G
L        

plus the complementary slackness condition, 

 ( ) ( )( ) 0** =−− TLGFλ FFTTF , 0≥Fλ   

Due to the convexity of (6.3a-c), the second-order optimality conditions are satisfied. In the 
economical sense, the Lagrange multiplier *Fγ  associated with the system-wise power supply 
and demand balance can be interpreted as the locational marginal price at the reference since it 
quantifies the electricity procurement cost for an additional unit of load at the system reference 
bus. On the other hand, the Lagrange multiplier vector *Fλ  associated with the power flow limit 
of the monitored transmission flowgate are interpreted as the variation in electricity procurement 
cost if the transmission capacity is relaxed, called flowgate shadow price herein below. 
Therefore, the necessary conditions for optimal system dispatch gives 

 FF
ref

F P FλP −=                     (6.5a) 

where for each congested transmission flowgate k , 0>F
kλ , otherwise, 0=F

kλ . 

Similarly, from problem (6.4), we can get 

 SS
ref

S P FλP −=                   (6.5b) 

Note that the day-ahead forward prices FP  re used to settle the day-ahead forward market 
transactions and the settlements of spot market position deviations from the day-ahead schedules 
are based on the spot prices SP . 

6.2.2 Generators and Load Serving Entities   
With the consideration of transmission constraints, power suppliers cannot be deemed as 

homogeneous as in (Bessembinder and Lemmon, 2002). Even if they share the same production 
technology, their trading activities vary since they may experience diversified market prices due 
to their respective spatial locations. Similarly, same arguments require the LSEs been treated 
heterogeneously in their respective franchised service areas. With the unbundling of generation 
and retail services, market agents pursue their individual goals simultaneously. The market 
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equilibrium under the multi-agent perspective can be modeled by a set of optimization problems 
associated with different market participants and clears according to the market coordination 
conditions. A variety of models have been proposed to model market participants’ behaviors in a 
competitive market focusing on choosing different variables to compete against their rivals. 
Bertrand, Cournot, and Stackelberg models have been employed in Hogan (1997), Borenstein et 
al. (1995), and Otero-Novas et al. (2000) to study market participants’ activities. The Bertrand 
model takes price decision as the move of each supplier while conjecturing that the rivals will 
not react to its actions by changing their prices. In the Cournot model, the quantity is the driver 
for market equilibrium. It is also termed as Nash equilibrium and can be reached when no agent 
can improve individual profit by unilaterally changing equilibrium strategy. A leader is assumed 
in the Stackelberg model to take the first move while leaving other agents behaving as in the 
Cournot set up. In this section, a two-period Cournot model is employed with the DC power flow 
approximation of network constraints to show the interaction of strategic behaviors between 
different market participants in diverse locations. Specifically, we evaluate GENs’ and LSEs’ 
forward hedging and spot positions and obtain closed form solutions for the equilibrium 
electricity prices based on market clearing conditions. This model is extendable to include 
strategic behaviors in the generation reserve market.  

We start with assessing the real-time spot wholesale market while taking into account the 
day-ahead forward positions selected beforehand. We then step back to the day-ahead forward 
market. The optimal decisions can be determined assuming that each GEN and LSE would 
behave optimally in the spot market the next day. 

Spot Market  

According to the aforementioned assumption of market uncertainty being cleared in the real-
time spot market, market participants can make decisions regarding spot market positions at 
precisely projected load demand and spot prices. LSEs can procure exactly the amount of power 
as needed and meanwhile, GENs are able to decide spot positions contracts in the spot wholesale 
market at known prices.  

Definition 6.3: (Generators’ profit pursuing problem in the spot wholesale market) The ex 
post profit of a generator is the sum of revenues from electricity transactions in forward and spot 
markets minus the total generation cost. Therefore, given the day-ahead forward market position 

*F
iG , GEN i ’s decision-making problem is to maximize the profit as follows, 

Max  ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
++−+=

2***

2
S
i

F
iG

i
i

S
i

S
g

F
i

F
g

S
i

S
G GGFGPGPG

ii α
θϖπ           (6.6) 

 The first order necessary condition  
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gives the profit-maximizing spot market position by GEN i  being, 

 ( ) ** F
i

S
g

G
iS

i GPG
i

−= ϖ
θ
α                    (6.7) 

And the second order sufficient condition satisfies 
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Note that as implied in the generation cost function (6.1), the locational marginal price at the 
bus ig  defined as the marginal cost of supplying the next increment of power demand at that 
specific location of the network can be determined as: 

 ( )
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i
g G

dG
GdCP

i α
θ

==  

which increases with iG  and implies that the supplier can set the market price at which it sells 
the power. However, due to the correlations between market prices at various locations of the 
same system as revealed by (6.5), this price-setting cannot be decided independently of other 
market participants’ decisions. Instead, the conformation to the market clearing conditions 
presented in section 6.3 combined with price relation (6.5) provides the decision environment for 
generators to rely on. 

Definition 6.4: (Load serving entities’ obligation fulfillment problems in the spot wholesale 
market) For LSEs, by regulation they need to fulfill the real time demand of end consumers in 
their franchised territory. Take LSE j  as an example, 

 jlj dL ≡                          (6.8) 

Therefore, LSE j  has little control over S
jL  and simply buys in the shortage of electricity 

power resulted from the forward contracted quantity *F
jL , 

 ** F
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S
j LdL

j
−=                      (6.9) 

Therefore, the ex post profit of LSE j  can be determined as, 
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Note that the profit gain (loss) from taking day-ahead forward position *F
jL  is multiplied by 

( ) *F
l

S
l jj

PP −ϖ . And a reduced portion of load obligation *F
jl Ld

j
−  of LSE j  is subject to the spot 

market price surging risk. On the other side, the regulated retail price R
l j

P  should be high enough 
to create a profit margin and keep LSE j  in the market for service.  

We next step back in time to formulate the day-ahead forward market decisions of market 
participants.  

Forward Market 

In the day-ahead forward market, GENs and LSEs face uncertain load demands to be 
revealed in the next day retail market. Given the uncertain ( )ϖSP  and unrevealed optimal 
decisions in the spot market SG  and SL , the GENs and LSEs have to rely on the projections of 
the spot market conditions and decide their forward market positions.  
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Given the subsequent optimal spot market positions *SG  as reveal in (6.7) to be taken by 
GEN i , his total profit with forward market position F

iG  can be determined as follows, 
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To facilitate the model derivation in the following sections, we define GEN i ’s un-hedged 
profit by assuming no position in forward market is taken, that is, 0=F

iG , that is, the profit 
without forward hedging is: 
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where, according to equation (6.5), ( ) ( ) ( )ϖλϖϖ S
kkg

S
Ref

S
g ii

fPP ,−= , assuming k  is the only 
transmission flowgate which has tight capacity and non-zero associated shadow price in the 
system.  

Taking the *S
iG  revealed in (6.7) and the ( )ϖρ G

i  defined in (6.12) into consideration, 
equation (6.11) can be transformed into the following neat form, 
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Definition 6.5: (GENs’ risk-adjusted profit pursuing problem in the day-ahead forward 
wholesale market) With the projected overall profit (6.13), the risk-averse generator i ’s utility 
maximization problem in the form of (6.2) in the day-ahead forward market is as follows, 
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Given the rational that the un-hedged profit ( )ϖρ G
i  is calculated when no forward market 

position is taken, we can assume that ( )[ ]ϖρ G
iE  and ( )( )ϖρ G

iVar  are independent of F
iG , which 

leads to explicit form of (6.14) as follows, 
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The first order necessary condition for optimality 
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gives the expected utility maximizing GEN i ’s forward market position being, 
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And the second order sufficient condition of optimality satisfies, 
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As described in (6.15), the optimal forward position consists of two components with the 
first reflects the position taken in response to the bias in the forward price as compared to the 
expected spot prices. Note that since ( )ϖρ G

i  is positively correlated with ( )ϖ*S
gi

P  for i∀ , the 
second term of GEN i ’s forward market position accounts for the effort to reduce the total 
profit’s risk exposure to the spot market prices as compared to without forward hedging. Note 
that in (6.15), the ( )[ ]ϖ*S

gi
PE  denotes the conditional expectation of ( )ϖ*S

gi
P , similarly, 

( )( )ϖ*S
gi

PVar  and ( ) ( )( )ϖϖρ *, S
g

G
i i

PCov  are both conditional measures.  

Taking (6.15) back into (6.7), the optimal position to take in the wholesale spot market by 
GEN i  can be expressed as, 
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Similarly, load serving entity j ’s profit function is to be determined as, 
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By assuming no position to be taken in forward market, that is, 0=F
jL , we define LSE j ’s 

profit without forward hedging as: 
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S
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fPP λ,−=  

Note that LSE j ’s profit without forward hedging is exposed to risks of electricity acquiring 
cost in wholesale spot market and revenue in the retail market. The retail revenue co-varies 
positively with the electricity wholesale spot price since electricity price is positively correlated 
with the locational demand in general. And this correlation can be amplified by the regulated 
retail price level. However, the cost to acquire the required electricity from wholesale market 
offsets the revenue.  

Therefore, take in the *S
jL  revealed in (6.9) and the ( )ϖρ L

j  defined in (6.17) into 
consideration, (6.17) can be transformed into the following, 
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Definition 6.6: (LSEs’ risk-adjusted profit pursuing problem in the forward wholesale 
market) With the projected overall profit (6.18), the risk-averse load serving entity j ’s utility 
maximization problem in the form of (6.2) in the day-ahead forward market is as follows, 
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By assume ( )[ ]ϖρ L
jE   and ( )( )ϖρ L

jVar  being independent of F
jL , which is reasonable given that 

un-hedged profit ( )ϖρ L
j  considers zero F

jL , we get, 
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The following first order necessary condition 
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gives the expected utility maximizing LSE j ’s forward market position being, 
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 And the second order sufficient condition satisfies, 
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Similar to what is revealed in (6.15) for generators, the optimal forward position for LSEs 
consists of two components with the first reflects the position taken in response to the bias in the 
forward price as compared to the expected spot prices. Since ( )ϖρ L

j  is negatively correlated with 
( )ϖ*S

l j
P  for jl∀ , the second term of LSE j ’s forward market position accounts for the effort to 
reduce the total profit’s risk exposure to the spot market prices without forward hedging. 

Therefore, taking (6.20) back to (6.9), the optimal position to take in the wholesale spot 
market by LSE j  can be expressed as, 
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Since GENs and LSEs take balanced forward and spot market positions in day-ahead and 
spot markets according to projected demand, the market risks imbedded are shared by the market 
participants. The retail price regulation prevents LSEs from transporting all of their market risk 
to end consumers who are vulnerable to price fluctuations due to the inelasticity of electricity 
consumption.  
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6.3. Market Equilibrium Prices  
The equilibrium of the market can be reached when, in addition to every market participant 

choosing the optimal decision from each individual optimization problem given others’ behavior 
strategies, the market reaches its coordination. In our case, it requires the balance of supply and 
demand with respect to transmission capability. 

6.3.1 Theoretical formulations  
In the forward wholesale market, the equilibrium requires, 
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In addition, according to the characterization of a PTDF  matrix, for the congesting flowgate k , 
we have, 
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We get (see appendix B),  

 ( ) ( )
31

2
2

643752
Ref κκκ

κκκκκκ
−

−−+−
= kF TP              

(6.24a) 

 ( ) ( )
31

2
2

642751

κκκ
κκκκκκλ

−
−−+−

= kF
k

T              

(6.24b) 

 
( )( ) ( )( )

31
2

2

642,3751,2

κκκ
κκκκκκκκ

−

−−−−−−
= knkknF

n

fTf
P          

(6.24c) 

where, 
( )( ) ( )( )∑∑

==

+=
J

j
S

lL

I

i
S

gG ji
PVarAPVarA 1

*
1

*1
11

ϖϖ
κ  

  
( )( ) ( )( )∑∑

==
+=

J

j S
lL

klI

i S
gG

kg

j

F
j

i

F
i

PVarA
f

PVarA
f

1 *

,

1 *

,
2 ϖϖ

κ  

  
( )

( )( )
( )

( )( )∑∑
==

+=
J

j
S

lL

kl
I

i
S

gG

kg

j

F
j

i

F
i

PVarA

f

PVarA

f

1
*

2
,

1
*

2
,

3 ϖϖ
κ  

  
( )[ ]
( )( )

( )[ ]
( )( )∑∑

==

+=
J

j
S

LjL

S
Lj

I

i
S

gG

S
g

PVarA
PE

PVarA
PE

i

i

1
*

*

1
*

*

4 ϖ
ϖ

ϖ
ϖ

κ  

  
( )[ ]
( )( )

( )[ ]
( )( )∑∑

==

+=
J

j
S

lL

S
lkl

I

i
S

gG

S
gkg

j

j
F

j

i

i
F

i

PVarA

PEf

PVarA

PEf

1
*

*
,

1
*

*
,

5 ϖ

ϖ

ϖ

ϖ
κ  



 

60 

  
( ) ( )( )

( )( )
( ) ( )( )

( )( )∑∑
==

+=
J

j
S

l

S
l

L
j

I

i
S

g

S
g

G
i

j

j

i

i

PVar

PCov

PVar
PCov

1
*

*

1
*

*

6

,,
ϖ

ϖϖρ

ϖ
ϖϖρ

κ  

  
( ) ( )( )
( )( )

( ) ( )( )
( )( )∑∑

==

+=
J

j
S

l

S
l

L
jkl

I

i
S

g

S
g

G
ikg

j

j
F

j

i

i
F

i

PVar

PCovf

PVar

PCovf

1
*

*
,

1
*

*
,

7

,,

ϖ

ϖϖρ

ϖ

ϖϖρ
κ  

And the optimal day-ahead forward market positions *F
iG  and *F

jL  can be derived by 
combining (6.24c) with (6.15) and (6.20), respectively. The optimal forward positions derived 
are useful in evaluating which market participants have comparative advantage in participating 
as compared to being absent from forward transactions. 

In the spot market, similar to (6.22), the coordination of the market requires the balance of 
supply and demand with respect to transmission capability as follows, 
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taking (6.16) and (6.21) into (6.25), it leads to, 
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Combining (6.22) and (6.25), since the total generation should equal to the total demand, we 
have, 
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which equates the total generation production to total demand, we get, 
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Also, according to the characterization of PTDF  matrix and for the congesting flowgate k , 
corresponding to (6.23) in the day-ahead forward market, we have, 
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We get, 
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And the optimal spot market positions *S
iG  and *S

jL  can be derived by combining (6.28c) 
with (6.16) and (6.21), respectively.  

6.3.2 Numerical examples   
To illustrate the implications of economic determinants of the equilibrium forward prices as 

expressed in (6.24c), a series controlled experiments are designed and conducted on a 3-bus 
study system illustrated in figure 6-3.  
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Figure 6-3  A 3-bus example system 

 

The admittances of all transmission lines are assumed to be equal. Bus2 is the reference bus. 
There exist 2=I  generators (GEN1 and GEN2) located at bus 1 and 2, respectively, and 2=J  
load serving entities (LSE 2 and LSE3) with respective franchised service territory whose 
demands are aggregated at bus 2 and 3, respectively. The ingoing and outgoing arrows illustrate 
power injections and ejections represented by GENs and LSEs, respectively. Transmission 
flowgate 1-3 is monitored for transmission congestion. We assume generation cost function 
parameters 10=θ  and 4021 == GG αα . All market participants have the same risk aversion. We 
also assume the regulated retail price by LSEs are 1.2 times the average spot market price.   

Since the bus aggregated demands of end consumers are the most fundamental drivers for 
market price uncertainty and transmission flowgate congestions, we study the following 
scenarios by assuming different levels of aggregated demands at load buses 2 and 3. For 
simplicity, the demands are assumed to follow normal distribution ( )σμ ,N . The postulated 
parameters are as follows, 

Scenario A: low demand    

Scenario B: medium demand    

Scenario C: high demand   

In addition to the demand level, we study the impact of demand volatility as well by adding 
another scenario 

Scenario D: medium demands with high volatility  

The parameter of demands assumptions at bus 2 and 3 at each scenario are listed in table 6-
1, 

Table 6-1  Parameters of demand distributions (in $/MWh) 
Load Bus 2 Bus 3 

Parameter μ σ μ σ  
Scenario A 250 9250 200 9200  
Scenario B 275 9275 225 9225  
Scenario C 325 9325 250 9250  
Scenario D 275 6275 225 6225  
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When control over the explanatory variables is exercised through random assignments, since the 
randomization tends to balance out the effects of other variables that might affect the response 
variable, the resulting experimental data provide strong information about the cause-and-effect 
relationships than observational data. For each of the following experiment setup, the results are 
based on system dispatching conditions based on 100 load simulations. 

The spot market prices, the day-ahead forward market prices, and the forward premiums in 
each scenarios are listed in tables 6-2 to 6-13 are listed as bellows, 

Scenario A: 

 

Table 6-2  Scenario A – Spot market prices (in $/MWh) 
 Bus 1 Bus 2 Bus 3 Flow-gate Shadow Price 

Mean 54.72 57.29 59.85 6.64 
Variance 3.51 7.13 13.01 17.23 

 
 

Table 6-3  Scenario A – Day-ahead forward market prices (in $/MWh) 
Risk-aversion Coefficient Bus 1 Bus 2 Bus 3 FG Shadow Price 

0.05 54.87 56.73 58.60 5.60 
0.005 54.79 57.08 58.74 5.18 
0.0005 54.76 57.20 58.79 5.02 

 
 

Table 6-4  Scenario A – Day-ahead forward premium (in $/MWh) 
Risk-aversion Coefficient Bus 1 Bus 2 Bus 3 FG Shadow Price 

0.05 0.15 -0.56 -1.25 -1.04 
0.005 0.07 -0.21 -1.11 -1.46 
0.0005 0.04 -0.09 -1.06 -1.62 
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Scenario B: 

Table 6-5  Scenario B – Spot market prices (in $/MWh) 
 Bus 1 Bus 2 Bus 3 FG Shadow Price 

Mean 54.78 69.67 84.56 23.22 
Variance 20.05 160.78 812.10 1440.00 

 
Table 6-6  Scenario B – Day-ahead forward market prices (in $/MWh) 

Risk-aversion 
Coefficient 

Bus 1 Bus 2 Bus 3 FG Shadow Price 

0.05 52.57 55.11 57.65 44.30 
0.005 54.56 68.21 81.87 40.97 
0.0005 54.75 69.52 84.29 7.62 

 
Table 6-7  Scenario B – Day-ahead forward premium (in $/MWh) 

Risk-aversion Coefficient Bus 1 Bus 2 Bus 3 FG Shadow Price 
0.05 -2.21 -14.56 -26.91 21.08 
0.005 -0.22 -1.46 -2.69 17.75 
0.0005 -0.02 -0.15 -0.27 -15.60 

 

Scenario C: 

Table 6-8  Scenario C – Spot market prices (in $/MWh) 
 Bus 1 Bus 2 Bus 3 FG Shadow Price 

Mean 50.60 92.54 134.47 125.82 
Variance 47.60 298.40 1650.00 4960.00 

 
Table 6-9  Scenario C – Day-ahead forward market prices (in $/MWh) 

Risk-aversion Coefficient Bus 1 Bus 2 Bus 3 FG Shadow Price 
0.05 44.33 104.42 164.50 180.25 
0.005 47.47 98.48 149.49 153.03 
0.0005 49.97 93.72 137.48 131.26 

 
Table 6-10  Scenario C – Day-ahead forward premium (in $/MWh) 

Risk-aversion Coefficient Bus 1 Bus 2 Bus 3 FG Shadow Price 
0.05 -6.26 11.88 30.02 54.43 
0.005 -3.13 5.94 15.01 27.22 
0.0005 -0.63 1.19 3.00 5.44 
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Scenario D: 

 
Table 6-11  Scenario D – Spot market prices (in $/MWh) 
 Bus 1 Bus 2 Bus 3 FG Shadow Price 

Mean 52.93 71.23 89.52 48.04 
Variance 39.20 322.50 1570.00 4300.00 

T 
Table 6-12  Scenario D – Day-ahead forward market prices (in $/MWh) 

Risk-aversion 
Coefficient Bus 1 Bus 2 Bus 3 FG Shadow Price 

0.05 44.31 113.23 182.15 206.77 
0.005 52.07 75.43 98.79 70.07 
0.0005 52.85 71.65 90.45 56.40 

 
Table 6-13  Scenario D – Day-ahead forward premium (in $/MWh) 

Risk-aversion Coefficient Bus 1 Bus 2 Bus 3 FG Shadow Price 

0.05 -8.63 42.00 92.63 158.72 

0.005 -0.86 4.20 9.26 22.03 

0.0005 -0.09 0.42 0.93 8.36 

  

According to experimental results illustrated above, the following observations can be made,  

a. According to tables 6-4, 6-7, 6-10, and 6-13, the lower the risk aversion coefficients of 
market participants are, that is, the more risk-neutral the market participants become, the closer 
the forward prices, including on the reference bus, are to the expected spot prices 

b. By comparing tables 6-2, 6-5, 6-8, and 6-11, the higher the demands, the more frequently 
the flow-gate gets congested in the spot market, and the higher the market prices at load buses 
and the lower the market prices at the generation buses are. Also, by comparing tables 6-3, 6-6, 
6-9, and 6-12, similar results can be observed from the day-ahead forward market as well.  

c. By comparing scenario B and scenario D results, for the same expected load level, the 
more volatile the load gets, the larger the forward prices at load buses and the lower the forward 
prices at the generation buses are.  

6.4. Day-Ahead Forward Risk Premium  

6.4.1 Theoretical formulation  
By applying the relation of locational marginal prices as revealed by (6.5) to the day-ahead 

forward and spot markets, we get the following (6.29a) and (6.29b), respectively, 
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Note that they reflect the effect of transmission capacity constraints on market clearing 
conditions. Following the forward market coordination (6.22), with the utility maximizing 
forward market positions of GENs and LSEs given in (6.15) and (6.20), respectively, we get  
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which leads to (see appendix C), 
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Equation (6.30b) connects the forward premium on the reference bus with the forward premium 
of transmission flowgate shadow prices [ ]( )S

k
F
k E λλ −  k∀ , the covariance between the un-hedged 

profits of generators and load serving entities with their respective spot prices in the real-time 
spot market.  

Model (6.30b) can be extended to the following more general form when the effect of multi 
transmission flowgates is taken into account, 
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Note that the economic incentives of transmission network constraints as revealed by { }SF ,λ  
play an important role and consist a non-negligible component of the forward risk premium on 
the reference bus. Similarly, the effect on the forward risk premium on other buses can be 
derived by combining (6.5) and (6.31). 



 

67 

6.4.2 Empirical evidences  
We start with an overview of the structure and functions performed by the New York 

independent system operator (NYISO). The NYISO is an outgrowth of the NYPOOL (New York 
power pool), which was created by New York's eight largest electric utilities to coordinate the 
statewide interconnection following the big Northeast blackout of 1965. In responding to the 
Federal Energy Regulatory Commission (FERC)’s acts and related state policies issued in mid 
1990s intended to create more competition in the nation’s wholesale electricity markets, the 
transmission system gradually became open and provide nondiscriminatory access to newly 
expanded non-utility generation. As the restructuring of the electric power industry evolved, 
NYPOOL was dissolved in 1998 and replaced with the not-for-profit NYISO. The NYISO’s 
mission is to ensure the reliable, secure and efficient operation of the interconnected transmission 
system and to create and administer an open, competitive and nondiscriminatory electricity 
wholesale market, in which power is traded on the basis of competitive bidding. It enables the 
transactions to be settled at competitive prices, rather than regulated rates. Currently, the NYISO 
system oversees over 160,000 GWh energy transactions each year with a recorded summer load 
peak of over 32,075MW (July 26, 2005) and winter load peak of 25,540MW (December 20, 
2004), which represent about $8 billion market value. Specifically, NYISO establishes and 
enforces market trading protocols, coordinates the transmission of electricity power from 
generation source to consumption centers, and clears the markets at settlement prices.  

 

 
Figure 6-4  NYISO control area load zones 

 

Compared with many other ISOs, where only partial, if any, markets have been created, the 
NYISO adopts a full, two-settlement system with comprehensive markets for a variety of energy-
related contracts, including the day-ahead and real-time energy markets (balancing market).  

In the day-ahead markets (DAM), a set of forward prices is determined on an hourly basis 
for each zone within the control area (and the neighboring areas) at a pre-specified time (11AM) 
by matching generation and energy transaction bids offered in advance to the ISO. The ISO runs 
a security constrained unit commitment and determines the amount of energy needed for each 
day. Transmission losses, congestion, shift factors, penalty factors and other system 
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mathematical quantities are calculated against a reference bus (physically located at the Marcy 
345 kV substation in Marcy, New York). The DAM zonal locational based marginal prices 
(LBMPs) are obtained by adding the marginal costs of energy, losses and congestion and used as 
the basis for settlements. Generating units that can most economically satisfy the energy needed 
to supply customers' demand and allow a sufficient reserve for contingencies are scheduled. 
Typically, most (>90%) energy transactions processed by the NYISO occur in the DAM since 
market participants can hedge against the next day price risks. 

In the real-time market (RTM), the ISO runs a security constrained dispatch (SCD) which 
determines the amount of energy needed on a continual basis. SCD makes adjustments to 
previous schedules to regulate generating units that can most economically satisfy the energy 
needed to supply customers' real-time demand and allow a sufficient reserve for contingencies. 
LBMPs are calculated at five-minute intervals throughout the day. Typically less (<10%) energy 
transactions processed by the ISO occur in the RTM. The settlements based on the RTM prices 
are intended to credit or charge market participants for energy transactions, due to variations in a 
power supplier’s real-time dispatch quantity from what is pre-determined in the DAM. The total 
settlement is determined by the sum of balancing energy, incremental occurring losses, and 
created/eliminated congestion. There is actually a rolling hour-ahead market (HAM) intended to 
balance the most updated system situations with pre-schedules (sell excess and buy shortage). 
Since it serves the same function as the RTM as far as the proposed model is concerned, they are 
not distinguished here. 

Note that the market settlements are based on LBMPs, which differ from the market-
clearing prices determined at the New York Mercantile Exchange in that the spatial location of a 
power transaction matters even within a market. 

We are interested in the following market participants, who can be categorized as follows 
based on their primary business functions,  

a. Power producers that own generation units and sell to the wholesale markets  

b. Load serving entities that buy from the wholesale markets and sell electricity at certain 
retail prices to end consumers via the distribution networks 

c. End consumers that have access to electricity through load serving entities. They are 
generally immune to the market price risks since the prices are generally stable.  

Although in reality most market participants are not exclusively electricity sellers or buyers 
but tend to appear on both sides of the market as the needs to fulfill contractual commitments or 
as the opportunities to generate extra profit come up, the primary business function of each 
market participant generally dominates its market activities and in our model, such subsidiary 
functions can be ignored without missing the major determinant factors for forward risk 
premium discovery. 

One problem with empirical tests is the availability of market data. Since the market 
functions changed gradually following the conception of the deregulation, the historical data do 
not necessarily reflect the same market structure. Besides, market participants do not behave 
consistently due to the ever-evolving of the market design. Therefore, the historical market 
equilibrium prices over a long period of time bear discrete biases caused by regulatory 
adjustment. Taking the concerns listed above into consideration, we choose the time-horizon 
from February 1st 2005 to August 31st 2006 when the NYISO market structure was relatively 
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stable. The data used for this study consist of hourly LBMPs and flowgate shadow prices in day-
ahead and spot markets, and hourly zonal loads as well. These data are acquired from NYISO 
website. The Zonal LBMPs are load-weighted LBMPs at all buses within the zone. 

A summary of statistics for the electricity forward and spot prices on the system reference 
bus and in each zone is reported in table 6-14 as bellow. 

 

Table 6-14  Statistics of forward and spot LBMPs (in $/MWh) 
 Forward Market Spot Market 

Mean Median Volatility Mean Median Volatility 
Ref. Bus 66.99 63.21 21.95 63.67 58.56 40.72 
CAPITL 74.67 70.42 25.11 69.82 64.32 45.43 
CENTRL 63.72 59.80 21.95 61.46 56.22 41.29 

DUNWOD 79.78 75.60 27.26 73.78 68.13 48.06 
GENESE 60.48 56.33 21.30 58.89 53.04 41.64 
HUD VL 78.38 74.37 26.64 73.17 67.52 47.87 
LONGIL 82.76 78.33 27.88 76.26 70.87 48.76 
MHK VL 68.19 64.40 22.67 65.79 60.49 43.35 
MILLWD 79.79 75.73 27.35 73.58 67.93 48.03 

N.Y.C. 83.42 78.68 29.25 76.24 70.19 49.85 
NORTH 63.72 59.70 20.64 61.72 56.57 39.41 
WEST 54.42 49.53 20.38 53.64 47.77 38.81 

 

Table 6-14 shows that there is considerable forward premium for the reference bus and each 
individual zone. It also indicates the right-skewness of the electricity prices, which is consistent 
with the implication of the model presented in (Routledge, 2001). The forward premiums reflect 
market buyers’ willingness to pay to secure the procurement of electricity.  

Equation (6.31) describes a linear functional relationship between the forward premium on 
the reference bus [ ]S

Ref
F

Ref PEP −  and the forward premium of shadow prices on the flowgates 
[ ]S

k
F
k E λλ − . The PTDF matrix F  determines the effect of [ ]S

k
F
k E λλ −  on [ ]S

Ref
F

Ref PEP − . However, 
since the topology of the NYISO transmission network is not accessible to the public, we can not 
derive a regression model between [ ]S

Ref
F

Ref PEP −  and [ ]S
k

F
k E λλ −  to test the empirical data. To 

estimate the PTDF structure of the system, we resort to relationship between locational marginal 
prices and the reference bus price as revealed in (6.5). Given empirical data of hourly locational 
based marginal prices on the system reference and each zone, and shadow prices associated with 
transmission flowgates over the time horizon of Hh ,,1L= , the following multiple regression 
model can be constructed for all Ν∈n  accordingly,  

 nh

K

k
nkkhnh XY ,

0
,,, εβ +=∑

=

 with 10 ≡iX                   (6.32a) 

where, for, Kk ,,1L= , and Nn ,,1L=  

 hnY ,  price difference between zone n  and the system reference bus at hour h .  
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 hkX ,  shadow price of transmission flowgate k  at hour h . 

 kn,β  regression coefficients representing the negative of PTDF knf , . 

 hn,ε  independent error terms of the regression model with expectation 0 and variance 2σ   

or, in the equivalent matrix form for each zone n  ,  

 
111 ××××

+=
H

n
KKHH

n εβXY                 (6.32b) 

We expect the observational nY  to distribute around the regression surface (a hyper-plane in 
this case since it is more than 2 dimensions) Xβ . To set up interval estimates and make tests, the 
distributions of the residual terms nε  are assumed to be normal. We have ( )2,0.~ nn Niid σε  
   

The normality assumption for the error terms is justifiable since the error terms represent the 
effect of random flowgate congestions omitted from model (6.32) that affect the response to 
some extend and that vary at random without reference to the modeled explanatory variables X . 
Besides, as long as the distributions of error terms do not depart significantly from normality, the 
t-distribution based tests results are reliable. In equation (6.32b), components of β  are the partial 
regression coefficients since they reflect the partial effect of one explanatory variable when other 
explanatory variables are held constant. Since the explanatory variables have additive effects, the 
effect of 1kX  on the mean response does not depend on the level of 2kX , 21 kk ≠ . 

As indicated by the empirical data, in a large electric power system such as New York 
power pool, the system situation can be very complicated. To reduce the reality to a manageable 
proportion for the regression model (6.32), we choose an incomplete list of flowgates as 
explanatory variables for the spatial price differences. However, the flowgates enlisted are the 
most prominent ones for both day-ahead market and the real-time spot market and can make 
good sense for the purpose of the analysis. The major consideration for their choice is the extent 
to which the chosen flowgate contributes to reducing the remaining variation in the dependent 
spatial price difference after allowance is made for the contributions of other flowgate shadow 
prices as predictor variables that have tentatively been included in the regression model. 
Accordingly, in the formulation of the regression model (6.32), we restrict the coverage of the 
empirical data corresponding time intervals when the selected predictor variables are non-trivial. 
The shape of the regression function substantially outside this range should be treated differently. 

Three prominent flowgates which experience transmission congestion most frequently in 
both the day-ahead and the real-time spot markets are picked. The corresponding ID’s in the 
NYISO network are 25091, 23330, and 25546. They are denoted as FG1, FG2, and FG3 
respectively hereinafter. The statistics of the shadow prices associated with the capacity 
constraints represented by them in the market dispatch model are reported in table 6-15 as 
follows. 
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Table 6-15  Statistics of forward and spot shadow prices of the flowgates (in $/MWh) 
 Forward Market Spot Market 
 Mean Median Volatility Mean Median Volatility 

FG1 16.20 11.96 23.12 23.79 10.47 48.61 
FG2 1.10 0.00 5.39 5.53 0.00 143.52 
FG3 3.02 0.00 17.19 3.48 0.00 54.30 

 

As shown in table 6-15, FG1 is the most active transmission flowgate of the three. The time 
series of shadow prices associated with FG1 in the day-ahead and spot markets are illustrated in 
figure 6-5,  
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Figure 6-5  Hourly shadow prices on FG1 in forward and spot markets 

 

According to table 6-10 and figure 6-5, it is observed that shadow prices of flowgates are 
generally less volatile in the forward market compared in the spot market, which conforms to the 
observation of electricity prices as revealed in figure 6-1. Besides, flowgate shadow prices take 
less extreme values in the day-ahead forward market and the averages are lower as compared 
with in the spot market. 

The seasonality of electric load demands lead to similar pattern changes in market prices and 
system conditions. For instance, high market prices and frequent transmission congestions tend 
to be observed in summer and winter season. Transmission network topology may be changed by 
equipment maintenances which are usually scheduled in Springs and Falls when load demands 
are relatively low. Since later in the section, the inferred PTDF coefficients are used for the 
projection of out-of-sample (August 2006) market prices using model (6.31), we limit the 
historical data to be taken from June to August in 2005 and June to July in 2006 when the system 
structure is relatively stable and the explanatory variables’ variation ranges are comparable to 
their counterparts in August 2006. Preprocessing of the data also includes getting ride of price 
spikes (we use 150$/MWh as the criteria for spikes) in locational market prices and shadow 
prices associated with selected flowgates. 
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According to the subset of active flowgates selected for the study of the imbedded statistical 
relation with the spatial price difference of electricity prices as modeled above, the unbiased 
maximum likelihood squares estimates of the set of PTDF coefficients β , denoted as b  can be 
calculated and displayed in table 6-16. 

 

Table 6-16  Estimation of PTDFs 
 FG1 FG2 FG3 

Zone-CAPITL -0.1229 -0.1078 0.0045 
Zone-CENTRL -0.0376 0.0200 0.0782 

Zone-DUNWOD -0.1431 -0.2073 0.0276 
Zone-GENESE -0.0605 0.0615 0.2512 
Zone-HUD VL -0.1409 -0.1722 0.0170 
Zone-LONGIL -0.1493 -0.2172 0.0326 
Zone-MHK VL -0.0215 -0.0266 0.0331 
Zone-MILLWD -0.1513 -0.1775 0.0316 

Zone-N.Y.C. -0.1800 -0.3314 0.0183 
Zone-NORTH 0.0791 0.0652 -0.0341 
Zone-WEST -0.0793 0.1264 0.2810 

 

In regression model (6.32), the variance of the error terms nε  indicates the variability of the 
probability distributions of Y . Its unbiased estimate error mean square (MSE) is calculated and 
displayed in the second column of table 6-17. The adjusted coefficients of multiple 
determinations shown in the third column of table 6-17 measure the proportionate reduction of 
total variation in Y  associated with the use of the set of X variables, and in contrast to un-
adjusted coefficient of multiple determinations, it takes the associated degrees of freedom of 
each sum of squares into consideration. 

To test whether there is a regression relation between the response variable Y  and the set of 
X  variables [ ] KkX k ,,2,1, L= , i.e., to test whether or not 0=kβ  for k∀ , an F test can also be 
conducted to determine between the alternatives: 

 0: 210 ==== KH βββ L  , KkH k ,,1,0: L==βα all not    

We use the test statistic:  

 
MSE
MSRF =   

with the decision rule to control the type I error at α  as follows. 

If ( )( )1,;1* +−−≤ KHKFF α , 0H  is concluded, otherwise, αH  is concluded. 

Apply regression model (6.32a) to all NYISO zones, the statistical measures including MSE, 
2R , F, and p values, together with the serial correlation ( ρ ) of error terms of the regression 

model are shown in table 6-17: 
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Table 6-17  Statistics of regression 
 MSE 2R F p ρ  

Zone-CAPITL 8.7446 0.7051 4.3573 0.0055 0.0772 
Zone-CENTRL 2.5466 0.7903 4.5583 0.0042 -0.0361 

Zone-DUNWOD 12.7076 0.6564 3.7473 0.0121 0.0819 
Zone-GENESE 12.8970 0.4678 3.2998 0.0217 0.0921 
Zone-HUD VL 8.4994 0.6637 3.7299 0.0124 -0.0687 
Zone-LONGIL 6.0739 0.6494 4.1753 0.0070 -0.0299 
Zone-MHK VL 1.5187 0. 5413 3.2727 0.0225 0.0564 
Zone-MILLWD 11.7480 0.7056 4.0583 0.0081 0.0478 

Zone-N.Y.C. 15.6489 0.6728 2.9149 0.0358 -0.1141 
Zone-NORTH 2.6171 0.573 3.8538 0.0106 0.0802 
Zone-WEST 14.3732 0. 7393 3.1193 0.0275 -0.0744 

 

Given the wide support of explanatory variables X , together with moderate MSE values, 
high 2R  values imply good inference power. The p-value reported in table 6-17 is the probability 
of observing the given sample result under the assumption that the 0H  hypothesis of the F test is 
true, depends on assumptions about the independence and normality of the random disturbances 

iε  in the model equation (6.32). Since all but one of the p-values are less than 05.0=α  in 
general, this is a quite significant and strong indication that the null hypothesis can be rejected. 
F-statistic values as extreme as the ones reported in table 6-17 would rarely occur if the 
differences between a zonal price and the reference bus price are independent of the flowgate 
shadow prices.  

To test whether there is a regression relation between the response variable Y  and each of 
the X  variables [ ]kX , Kk ,,2,1 L= , i.e., the tests whether or not 0=kβ  for each k , t tests can 
also be conducted to determine between the alternatives: 

 0:0 =k  βH , 0: ≠k  βαH  

We use the statistics { }k

k

bs
bt =*  

with the decision rule: 

If ( )⎟
⎠
⎞

⎜
⎝
⎛ +−−≤ 1;

2
1* KHtt α , conclude 0H , otherwise, conclude αH . 

where ( )kbs  are square roots of the diagonal components of 
( ) ( )
{ } ( ) 1

11
'2 −

+×+
⋅= XXbs MSE

KK

 and calculated 

and listed in table 6-18 as below, 
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Table 6-18  Value for the estimation of PTDFs 
 FG1 FG2 FG3 
Zone-CAPITL 0.0344 0.0573 0.0038
Zone-CENTRL 0.0369 0.0082 0.0409
Zone-DUNWOD 0.0539 0.0839 0.0258
Zone-GENESE 0.0375 0.0244 0.1093
Zone-HUD VL 0.0449 0.0772 0.0113
Zone-LONGIL 0.0537 0.0850 0.0200
Zone-MHK VL 0.0070 0.0369 0.0292
Zone-MILLWD 0.0470 0.0746 0.0277
Zone-N.Y.C. 0.0644 0.1173 0.0831
Zone-NORTH 0.0341 0.0499 0.0421
Zone-WEST 0.0483 0.0768 0.1538

 

The following table 6-19 shows the t-values of the PTDF regression estimations, 

 

Table 6-19  t-Value for the estimation of PTDFs 
 FG1 FG2 FG3 
Zone-CAPITL -3.5749 -1.8810 1.1886 
Zone-CENTRL -1.0178 2.4509 1.9125 
Zone-DUNWOD -2.6562 -2.4714 1.0695 
Zone-GENESE -1.6152 2.5175 2.2975 
Zone-HUD VL -3.1412 -2.2309 1.5074 
Zone-LONGIL -2.7794 -2.5545 1.6295 
Zone-MHK VL -3.0777 -0.7206 1.1319 
Zone-MILLWD -3.2180 -2.3803 1.1392 
Zone-N.Y.C. -2.7932 -2.8246 0.2201 
Zone-NORTH 2.3206 1.3079 -0.8106 
Zone-WEST -1.6402 1.6466 1.8274 

 

For most of the t-values associated with FG1 and FG2, the corresponding null hypothesis 
0H ’s can be rejected at confidence level higher than 95%. Even for FG3, the αH ’s are more 

favorable than the corresponding 0H ’s. 

For the normal error regression model (6.32), we also have  

 ( ) ( )( )1~ +−
− KHt
bs

b

k

kk β , Kk ,,1,0 L=  

Note that if only the probability distributions of Y  do not depart significantly from 
normality, the sampling distributions of estimates b  are approximately normal and the t-
distribution based tests can provide approximately the specified confidence coefficient. Even if 
Y departs seriously from normality, the estimators b  have the property of asymptotic normality 
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and approach normality under the general conditions as the sample size increases. Therefore, the 
confidence intervals and the conclusions still apply. The confidence limits for kβ  with α−1  
confidence coefficient are  

 ( ) ( )kk bsKHtb ⎟
⎠
⎞

⎜
⎝
⎛ +−−± 1,

2
1 α , Kk ,,1,0 L=

 
Table 6-20 shows the confidence interval of PTDF estimates with 95% confidence level. 

 

Table 6-20  Confident Interval of PTDFs estimation 
 FG1 FG2 FG3 
Zone-CAPITL [-0.1908, -0.0550] [-0.2209, 0.0053] [-0.0030, 0.0120]
Zone-CENTRL [-0.1105, 0.0353] [0.0039, 0.0361] [-0.0025, 0.1589]
Zone-DUNWOD [-0.2494, -0.0368] [-0.3729, -0.0417] [-0.0233, 0.0785]
Zone-GENESE [-0.1344, 0.0134] [0.0133, 0.1097] [0.0354, 0.4670]
Zone-HUD VL [-0.2294, -0.0524] [-0.3245, 0.0199] [-0.0053, 0.0393]
Zone-LONGIL [-0.2553, -0.0433] [-0.3850, 0.0494] [-0.0069, 0.0721]
Zone-MHK VL [-0.0353, -0.0077] [-0.0995, 0.0463] [-0.0246, 0.0908]
Zone-MILLWD [-0.2441, -0.0585] [-0.3247, 0.0303] [-0.0231, 0.0863]
Zone-N.Y.C. [-0.3072, -0.0528] [-0.5630, 0.0998] [-0.1458, 0.1824]
Zone-NORTH [0.0118, 0.1464] [-0.0332, 0.1636] [-0.1171, 0.0489]
Zone-WEST [-0.1747, 0.0161] [-0.0251, 02779] [-0.0225, 0.5845]

 

Since the regression model (6.32) assumes that the congestion shadow prices are known 
constants, the confidence coefficient and risks of errors are interpreted with respect to taking 
repeated samples in which the congestion conditions are kept at the comparable levels as in the 
observed sample.  

As it is illustrated in tables 6-11 and 6-12, although there exist variations across individual 
zones, the statistical measures provide evidence for a significant relation between the flowgate 
shadow prices and electricity price spatial differences. We conclude that the PTDF coefficients 
are estimated with satisfactory statistical significance. Note that the PTDF matrix as inferred 
above is different from what PTDF is defined in the traditional way since there does not exist a 
specific bus in a zone into which the power injection causes a portion of power flow indicated as 
the PTDF coefficient. Nevertheless, the PTDF matrix indicates the impact of aggregated power 
injection changes in one zone on a specific transmission flowgate. This is of special meaning 
when the locational based marginal prices are calculated for each zone of the NYISO system. 

Previous research finds that the forward risk premiums in electricity forward prices vary 
systematically throughout the day and the forward premium manifests most significant during 
on-peak hours when spot market prices are most volatile. In Longstaff and Wang (2004), hour-
by-hour forward premiums in PJM market tested show that the forward premium tends to be 
positive in on-peak hours but negative in off-peak hours.  

By examining the empirical data with NYISO, we find a similar pattern in the forward risk 
premium on the reference bus as plotted in figure 6-6. 
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Figure 6-6  Forward premiums on the reference bus at each hour 

 

Bessembinder and Lemmon (2002) note that the existence of large forward premiums 
reflects the lack of risk-sharing in electricity markets with market risk being borne by a subset of 
participants. The higher forward premiums during on-peak hours represent the time period 
within a day when the market participants face the greatest economic risks. Note that the period 
of high forward risk premium corresponds to the high load period. Taking the CENTRL zone as 
an example (and each zonal load has a similar daily pattern), the hour-by-hour loads are plotted 
in figure 6-7 as follows, 
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Figure 6-7  Load level in the CENTRL zone at each hour 
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One interesting observation is that the forward risk premium of the shadow prices on the 
transmission flowgate FG1 as plotted in figure 6-8 shows the opposite direction: the premium is 
high during off-peak hours while low during on-peak hours. 
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Figure 6-8  Forward premium of the shadow price on FG1 at each hour 

 

This is not surprising if we look back at equation (6.31) and the estimated PTDF matrix 
illustrated in table 6-16. Since the power transfer distribution factors of most zones on the 
flowgate FG1 are negative numbers, the forward premium on the system reference bus is 
negatively correlated to the forward premium of flowgate shadow prices. This observation 
provides more insights to the forward premium in the electricity wholesale contracts. Actually, 
part of the premium can be attributed to the effect of having binding transmission capacity 
constraints.  

To evaluate the forward risk premium determining model shown by (6.31), the same set of 
empirical data as used for system PTDF coefficient inference is used to test the following 
regression model,  

 h
p

pphhZ ςτχ +=∑
=

5

0
,  with 10 ≡hχ  

where, for Hh ,,1L=  

 hZ  system reference bus locational based marginal price forward premium term 
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 kh,χ   for 3,2,1=k , transmission flowgate shadow price forward premium term  
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 τ  the regression coefficient vector. 

 hς  independent error terms of the regression model with expectation 0 and variance 2σ   

or, in the matrix form 

 ςτχZ
11661 ××××

+=
HHH

                (6.33) 

We expect the observational Z  to distribute around the regression surface (a hyperplane in 
this case since it is more than 2 dimensions) χτ . Since model (6.33) does not take all flowgates 
into consideration, beside, the empirical prices are subject to some exogenous factors which are 
not modeled in our model, we take normality assumption for the error terms hς  to represent the 
effect of random factors that affect the response to some extend and that vary at random without 
reference to the modeled explanatory variables χ . We have ( )2,0.~ σς Niidh   

We used rolling average of corresponding empirical data at the specific hour in the previous 
14 days for the conditional expectation measures [ ]S

RefPE  and [ ]S
kE λ . For conditional variance and 

covariance measures, ( )( )ϖ*S
GiPVar , ( ) ( )( )ϖϖρ ** , S

GiGi PCov , and ( ) ( )( )ϖϖρ ** , S
LjLj PCov  at hour h , we 

use the corresponding empirical data at the specific hour in the previous 14 days also. The 
regulated retail price at each zone is assumed to be 1.2 times the average of the spot market price 
throughout the interested time period. To distinguish the difference between on-peak and off-
peak hours, we assume on-peak and off-peak retail prices and the averages are taken over on-
peak and off-peak hours, respectively.  

Since the parameters GA  and LA  in equation (6.31) are not directly observable based on the 
empirical data, we do not incorporate them explicitly in the regression function but keep in mind 
that they are positive numbers for risk-averse market participants as in the assumptions indicated 
above. Given that GA  and LA  should be comparable for the market participants modeled, the 
estimation of regression parameters 4τ  and 5τ  based on (6.33) as compared with (6.31) would 
reveal, approximately, the values of parameters GA  and LA .  

The estimates for the regression model coefficients are given in table 6-21, 
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Table 6-21  Estimation of regression coefficients 
1τ  2τ  3τ  4τ  5τ  

0.4783 0.3658 0.2943 -0.0248 -0.0093

 

Based on the normality assumption of the error terms, to test whether there is a regression 
relation between the response variable Z  and the set of χ  variables, i.e., to test whether or not 
τ  for each of its component, an F test can also be conducted to determine between the 
alternatives: 

 0: 6210 ==== τττ L  H , 6,,1,0: L== pH pτα all not    

with the decision rule to control the type I error at α : 

If ( )( )1,;1* +−−≤ KHKFF α , conclude 0H , otherwise, conclude αH . 

The statistical measures including the coefficient of multiple determinations 2R , the F 
value, and p-value, together with the serial correlation ( ρ ) of error terms of the regression 
model, are displayed in table 6-22  as follows, 

 

Table 6-22  Statistics of regression coefficients 
2R  F p ρ

0.5021 3.5583 0.0053 0.1201

  

Since the p-values shows that a F statistic as extreme as the observed F would occur by 
chance close to once in 200 times if the forward premium term is independent of the flowgate 
shadow prices forward premium and the covariance between market participants’ un-hedged 
profit and the spot market price, We conclude that 0H  can be rejected with significant 
confidence level. 

Corresponding to the tests of whether there exists regression relation between the response 
variable Z  and each of the χ  variables, i.e., the tests whether or not 0=pτ  for each p , 

5,,1L=p  , 

 0  : p0 =βH , 0  : p ≠βαH  

the t values corresponding to each partial regression coefficient pτ  are calculated and listed in 
table 6-23, 

Table 6-23  t value of regression coefficients 
 1τ  2τ  3τ  4τ  5τ  
t-Value 2.4352 1.9620 1.9703 1.4326 2.3801 
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The null hypothesis 0H ’s can be rejected with confidence as high as 95% for all pτ ’s expect 
for 4τ . Given the small sample size and the difficulty of estimating the conditional measures, 
however, we think the results support the model in general. 

Although the statistical significance varies according to individual regression coefficient, the 
statistical measures do suggest strong relations exist between the forward risk premium and the 
economic factors modeled. The estimates of τ ’s are different from 1 as suggested by model 
(6.31). This can be attributed to the scale difference between GA  and LA  and to the fact that, as 
mentioned in earlier part of the section, the flowgate list as constructed is not a complete list of 
flowgates which affect the forward risk premium. The values of 4τ  and 5τ  also indicate that the 
risk-aversion coefficients GA  and LA  are of the magnitudes of 23 10~10 −− , which are 
comparable to the values we adopted for the simulation study in section 6.3.1. 

To further test the implications of the forward risk premium model, using the regression 
model based estimates of PTDF coefficients listed in table 6-19 and the reference bus forward 
premium regression coefficients listed in table 6-21, equation (6.33) is used to forecast spot 
market prices.  

The out-of-sample spot price data and their projections are plotted in figure 6-9, 
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Figure 6-9  Historical and forecasted spot price at the reference bus in August 2006  

 

Note that except for a few spikes of the spot market price and sags of the forecasted price, 
the rest sections of the curves fit quite closely. By looking at the shadow price on flowgate FG1 
as illustrated in figure 6-10, we understand the sags come from the shadow price spikes.  
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Figure 6-10  Historical day-ahead shadow prices of flowgate FG1 in August 2006 

 

Assuming normality of the forecast error term (defined as the absolute deviation of 
forecasted prices from the realized spot prices), its distribution parameters and their confidence 
intervals (CI) are estimated in the table 6-24, 

 

Table 6-24  Estimates of forecast error term Parameters ($/MWh) 
μ  95% CI of μ  σ  95% CI of σ  

10.22 [8.97, 11.47] 16.67 [15.85, 17.58]

 

By excluding the LBMP and flowgate shadow price (FGP) spikes (defined at certain 
quantiles of their corresponding distributions), the forecast error term’s distribution parameters 
and their confidence intervals (CI) would be as follows,  

 

 Table 6-25  Estimates of forecast error term parameters by excluding LBMP and FGP spikes 
defined at different quantiles of their distributions ($/MWh) 

Quantile LBMP spike FGP 
spike 

μ  95% CI of μ  σ  95% CI of σ  

95.0% 98.44 76.41 6.98 [5.92, 8.04] 12.96 [12.28, 13.70]
97.5% 120.17 131.45 7.03 [5.93, 8.13] 13.37 [12.67, 14.13]
99.0% 199.79 266.67 11.93 [10.65, 13.21] 17.04 [16.20, 17.97]

 

Empirical study with the NYISO data confirms the relations between the forward premium 
and the factors revealed in model (6.31). The functional relation is insightful for the 
understanding of how the forward premium can be affected by the market participants as well as 
the transmission network constraints. Although the statistics in tables 6-24 and 6-25 do not 
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indicate a price forecasting with high accuracy as compared with some existing models (for 
example, see Conejo et al., 2005), we expect the predictive power of the forward premium model 
can be greatly improved when we have more information about the transmission network 
topology. In that case, the PTDF coefficients can be calculated accurately without using the 
regression model for inference. At the same time, more transmission flowgates can be taken into 
account to determine the forward premium. With more accurate model coefficients and more 
explanatory variables, model (6.31) can be relied on for practical uses. 

6.5. Conclusions and Discussions   
We examine the risk premium present in the electricity day-ahead forward price over the 

real-time spot price. This study establishes a quantitative model for incorporating transmission 
congestion into the analysis of electricity day-ahead forward risk premium. Through simulations 
with a three-bus study-system, it is illustrated that the more frequently transmission congestion 
happens, the higher the forward prices get at the load buses. Consistent with the implications of 
the model, evidences from empirical studies with the New York electricity market data confirm 
that there exists a significant statistical relationship between the day-ahead forward risk premium 
and the shadow price premiums on transmission flowgates. When applied to the forecasting of 
next day spot prices, this model still has considerable room to improve its accuracy. One 
important factor is that the PTDF coefficients are inferred using historical market price data 
without the knowledge of the transmission network structure. However, for a long-term market 
participant in a specific power pool, who is more familiar with the system transmission 
conditions, these PTDF coefficients would be known. Furthermore, additional important 
transmission flowgates can be identified and the corresponding shadow price premiums can be 
added as explanatory variables in the regression model. With these enhancements, it is 
foreseeable that the forecasting accuracy of the model could be improved.  

Given the encouraging empirical evidences from the New York electricity market, caution 
should still be exercised in generalizing the results to other markets where factors such as market 
power and regulators’ price intervention may affect the market clearing process. 

Future expansion of the model can be made to take into account the generation reserve 
markets in addition to the energy wholesale markets since market participants’ decisions in these 
markets are interdependent. In addition, since the existence of non-zero forward risk premiums 
provide incentives for market speculators to take positions in the electricity derivatives markets, 
their behaviors and the impact on forward premiums need to be studies as well. 

 



 

83 

7. Inherent Inefficiencies of FTR Auctions Under  Simultaneous Feasibility 
Constraints 
Point-to-point financial transmission rights (FTRs)  (see Bushnell and Stoft (1997) and 

Hogan (1992)) and flow-gate rights (FGRs) (see Chao and Peck (1996), (1997), and Chao, Peck 
Oren and Wilson (2000)) are two forms of Congestion Revenue Rights (CRRs) outlined in the 
Standard Market Design put forth by the Federal Energy Regulatory Commission (FERC) of the 
U.S. The purposes of the CRRs are two fold: a) Create a system of property rights to the 
transmission system that will offer economic signals for charging/compensating transmission 
usage/investment and facilitate the implementation of an economically efficient transmission 
congestion management protocol; b) Offer risk management capability to market participants 
entering into forward energy transactions so that they can hedge the uncertain congestion rents 
associated with such transactions. The allocation of FTRs can be done either on the basis of 
historical entitlements and use of the transmission system or through an auction whose proceeds 
are distributed to transmission owners or consumers who funded the construction of the system; 
or, through a combination of the two where unallocated FTRs and FTRs currently held by private 
parties are auctioned off through a centralized auction conducted periodically by an Independent 
System Operator (ISO). The latter approach is currently used by the three major ISOs in the 
northeastern US (New England, New York ISO and Pennsylvania-New Jersey-Maryland). 

In this chapter we primarily focus on the risk management aspect of FTRs and the extent to 
which FTRs are efficient instruments for trading and mitigation of congestion risk. In evaluating 
a financial hedging instruments and its market performance, two questions must be addressed: 
How good is the hedge? Namely, to what extent does the payoff (or payout) of the instrument 
offset the fluctuations in the risky cash flow that the instrument is supposed to hedge. How 
efficient is the market for the instrument? That is, does the forward market price of the 
instrument reflect the expected risky cash flow hedged by the instrument with the proper risk 
premium adjustment. 

Much of the discussion surrounding FTRs focuses on the first question and indeed FTRs 
provide a perfect hedge against real-time congestion charges based on nodal prices. A one 
Megawatt (MW) bilateral transaction between two points in a transmission network is charged 
(or credited) the nodal price difference between the point of withdrawal and the point of 
injection. At the same time (assuming that transmission rights are fully funded), a one MW 
financial transmission right (FTR) between two points is an entitlement (or obligation) for the 
difference between the nodal prices at the withdrawal node and the injection node. Thus 
regardless of how the system is dispatched, a one MW FTR between two nodes is a perfect 
hedge against the uncertain congestion charge between the same two nodes10. The hedging 
properties of FTRs make them ideal instruments for converting historical entitlements to firm 
transmission capacity into tradable rights that hold the owners of such entitlements harmless 
while enabling them to cash out when someone else can make more efficient use of the 
transmission capacity covered by these entitlements. In other words, FTRs make it relatively 

                                            
10Some ISOs derate FTR settlements in order to cover congestion revenue shortfalls due to 
transmission contingencies not accounted for in the FTR auction. In such cases, depending on the 
derating approach, FTRs may not provide acceptable hedges. 
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easy to preserve the status quo while opening up the transmission system to new and more 
efficient use. 

From the perspective of new transmission users who view the FTRs as a mechanism to 
hedge their exposure to congestion risk (as well as old users who are actively evaluating their 
commercial options with respect to FTR entitlements) the second question is as relevant as the 
first. A purchaser of FTRs must assess whether the forward price of the instrument indeed 
reflects the value that it provides in making the decision whether to purchase/hold the instrument 
or to face the exposure to the real-time congestion charges. 

In typical financial and commodity markets, competition and liquidity push the forward 
prices to the expected spot prices with a proper (market based) risk premium adjustment. Such 
convergence is achieved through a process of arbitrage. Such arbitrage, however, may be more 
difficult when dealing with FTRs for several reasons. Most importantly, due to the large number 
of FTR types, the liquidity of these instruments is relatively low; and there is virtually no 
secondary market that enables reconfiguration and re-trading. In order to maintain financial 
solvency of the system operator who is the counter-party to FTRs, the configuration of FTR 
types must satisfy ``simultaneous feasibility conditions" that are dictated by the system 
constraints. Consequently, pricing and trading of FTRs is done through a central periodic auction 
and the liquidity of the FTR depends on the frequency of that centralized reconfiguration 
auction. It is important to recognize that FTR liquidity cannot be measured in terms of the 
number of bids in the FTR auctions which merely reflect bid fragmentation. Indeed, the 
Pennsylvania-New Jersey-Maryland (PJM) ISO have experienced a large volume of FTR bids in 
their auction which may be misinterpreted as an indication of good liquidity. However, volume 
does not necessarily imply liquidity. True liquidity in a financial sense is reflected by the 
frequency of trading opportunities, bid-ask spreads and the ability to sell or buy FTRs for short 
time segment (e.g. one day or specific hours) which represent only small fractions of the time 
intervals between reconfiguration auction. 

Furthermore, because of the interaction among the different FTR types through the 
simultaneous feasibility conditions, prices of the FTRs resulting from the FTR auction as well as 
the congestion charges hedged by these FTRs are highly interrelated. An efficient market (that 
correctly prices FTRs) must anticipate not only the uncertainty in congestion prices due to 
contingencies and load fluctuation but also the shift in the ``operating point" within the feasible 
region which is determined by the economic dispatch procedure. 

Empirical evidence reported by Adamson and Englander (2005), and Sinddiqui et al (2003), 
shows that the clearing prices for FTRs resulting from centralized auctions conducted by the 
New York Independent System Operator (NYISO) have differed significantly and systematically 
from the realized congestion revenues that determined the accrued payoffs of these transmission 
rights. Adamson, Noe and Parker (2008) argue that these diviations cannot be explained by risk 
aversion or by risk premium s for non-diversifiable risk. The question addressed by this chapter 
is whether such deviations are only due to transitory risk premiums and price discovery errors 
which will eventually vanish, or there are inherent inefficiencies in the auction structure itself 
that can explain the observed discrepancies. We address this question by presenting a theoretical 
analysis that can potentially explain the empirical findings cited above and then we demonstrate 
the implications of our theoretical results through numerical simulations and sensitivity analysis 
conducted on a DC-flow approximation model of a six-node system and the IEEE-24 bus 
Reliability Test System (see Sun, Deng and Meliopoulous (2004) for a general AC-flow 
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formulation) with known outage probabilities of each element and known statistical demand 
variability. In the example, we simulate the expected value of all point-to-point transmission 
rights taking into consideration all possible 1n −  transmission contingencies and demand 
realizations. We then construct a hypothetical FTR auction in which all FTR bids equal the 
correct expected value of the corresponding congestion rents whereas the bid quantities are 
bounded by some multiple α  of the corresponding average point-to-point transaction volume. In 
making the latter assumption we do not attempt to model bidding behavior in the FTR auction 
but rather to illustrate the effect of quantity limits on the bids and the order of magnitude by 
which bid quantities need to exceed average transaction volumes in order to eliminate price 
distortions in the FTR auction. The homogeneous scaling of bid quantities is simply convenient. 
Similar results can be obtained by assuming alternative patterns of bid quantity limits. In reality 
such quantity limits arise due to the desire of auction participants to match their FTR holdings to 
their hedging needs based on their expected use of the transmission system and due to credit 
limits faced by the bidders. The specific quantity limits on FTR bids and their relation to the 
expected transaction volume will, obviously, vary among FTRs and we do not attempt to predict 
those limits. In general, however, we anticipate that the ratios of FTR bid quantities to expected 
transaction volumes will be relatively low since excessive bid quantities relative to use, 
especially by regulated load serving entities, may be perceived as speculative behavior and 
frowned upon by regulators who are unlikely to pass through the downside risk of such activities 
to consumers. The results of our theoretical and computational analysis shed light on the 
observed discrepancies between realized FTR values and their auction prices. 

The organization of this chapter is as follows. In section 7.1, we formulate an FTR auction 
model which incorporates the simultaneous feasibility conditions under postulated contingencies 
on transmission line availability and load variation. We then provide theoretical results on the 
potential systematic biases in market clearing nodal prices with respect to rational expectations. 
Numerical examples are presented in section 7.2 that confirm our theoretical findings. Finally, 
we conclude this chapter in section 7.3. 

7.1. The Point-to-Point FTR Auction 
We consider an FTR auction conducted by a system operator in an electric power grid with 

n  buses and m  transmission lines. The auction is cleared under the standard FTR auction rules 
that treat all FTR bids as simultaneous bilateral transactions that must satisfy all the line 
operating limits under all 1n −  contingencies and load realizations. The auction is cleared so as 
to maximize FTR revenues and the prices are set to the marginal clearing bids for each FTR. 

We first show that the FTR simultaneous feasibility auction can be represented by an 
equivalent virtual energy auction. We limit the proof to our case of interest where we assume 
that all bidders have perfect foresight of the expected value of the locational marginal price 
(LMP) for energy at all buses of a network. In this special case (assuming perfect competition 
and rational risk neutral bidders), all FTR auction participants bid only one price ijf  for FTR 
contracts with the same origin i  and destination j . Furthermore, for each FTR from bus i  to bus 
j , we can aggregate all bid quantities for this FTR into one single bid quantity ijq . 11 Let 

                                            
11The result can be generalized to the more general case where there are multiple bids with 
different prices for each FTR but the mathematical representation of that general case is more 
complicated and will be omitted here for clarity. 
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1 2( , , , )T
nC c c c≡ L  denote the vector of expected LMPs at the n  buses then ij j if c c≡ −  (since 

the expected value of the difference between two random variables equals the difference of the 
respective expected values of these variables). Let { , , }ijq i j∀  denote the awarded FTR quantity 

from bus i  to bus j  and 1 2( , , , )T
nQ q q q≡ L  denote the energy injection/withdrawal vector 

imputed from all awarded FTR quantities. Then ,i ij kij i k i
q q q i N

≠ ≠
≡ − ∀ ∈∑ ∑  where N  is the 

set of all buses. We adhere to the convention that a positive iq  represents injection while a 
negative iq  represents withdrawal. In an FTR auction market, participants are either hedgers 
who purchase FTRs to hedge the congestion charges of their energy transactions or speculators 
who trade FTRs for speculative profits subject to trading quantity limits set by risk control 
measures. None of these participants would bid for an unlimited amount of FTRs. Thus it is 
natural to assume that the aggregate bid quantity of the FTR from node i  to node j  is bounded 
by ijq  with all bids submitted at the expected settlement price for the corresponding FTR. The 
clearing mechanism for the FTR auction is formulated as follows. The system operator 
maximizes the as-bid value of awarded FTRs over all feasible FTR allocation quantities 
{ , , }ijq i j∀  subject to the corresponding energy dispatch vector Q  satisfying power flow 
constraints under all designated system reliability contingency scenarios. Let R  denote the set of 
all plausible reliability contingencies. Each scenario r R∈  represents the outage of at most one 
transmission line. The FTR auction is cleared through solving the following optimization 
problem.  

 
{ , , }
max ij ij
q i j i N j iij

f q
∀ ∈ ≠

⋅∑∑   

 . . =i ij ki
j i k i

s t q q q i N
≠ ≠

− ∀ ∈∑ ∑  (7.1) 

 rL G Q L r R− ≤ ⋅ ≤ ∀ ∈  

 0 , ,ij ijq q i j and j i≤ ≤ ∀ ≠  

where L  is the vector of transmission line capacity limits and rG  is the power transfer 
distribution factor (PTDF) matrix with bus- n  chosen as the swing bus in each contingency 
scenario r . 

By re-arranging terms in the objective function of the FTR auction problem (7.1), we get the 
following:  

 ij ij
i N j i

f q
∈ ≠

⋅∑∑  

 ( )i j ij
i N j i

c c q
∈ ≠

≡ − + ⋅∑∑  

 = ( ) ( )i ij j ij
i N j i j N i j

c q c q
∈ ≠ ∈ ≠

− ⋅ + ⋅∑ ∑ ∑ ∑  (7.2) 

 = ( )i ij ji
i N j i j i

c q q
∈ ≠ ≠

− ⋅ −∑ ∑ ∑  (7.3) 

 = i i
i N

c q
∈

− ⋅∑  (7.4) 
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The term in (7.4) represents the merchandizing surplus in the network, (i.e. total purchase 
price minus sales price) for all transacted energy Q  when all the awarded FTRs are exercised 
simultaneously. When the willingness-to-pay of all demands at a node and the generation cost at 
a node are constants (as assumed in our case) the merchandizing surplus equals the social surplus 
(i.e., the difference between demand willingness-to-pay and supply marginal cost). 

Moreover, the constraints for the components of Q  (i.e. iq 's) in  (7.1) imply that Q  is a 
balanced energy dispatch. Namely,  

 T
i

i N
e Q q

∈

≡∑  

 = ( ) = 0jm nj
j N m j n j

q q
∈ ≠ ≠

−∑ ∑ ∑  (7.5) 

where e  is a row vector consisting of n  ``1"s and a positive/negative iq  indicates an 
injection/ejection at node i . 

Substituting (7.4) and (7.5) into the FTR auction problem (7.1), we have shown that (7.1) is 
equivalent to the following virtual energy auction conducted by the system operator to maximize 
the social surplus of all transacted energy. In particular, the constraints on the FTR bid quantities 
in (7.1) are implemented by converting the quantity bounds of FTR bids to quantity bounds of 
nodal energy in the virtual energy auction (7.6). Specifically the nodal demand/generation at 
node i  is bounded from below by = ijj ii

q q
≠

−∑  and from above by =i kik i
q q

≠∑ .  

 max i iQ i N

c q
∈

− ⋅∑   

 . . = 0Ts t e Q  (7.6) 
 rL G Q L r R− ≤ ⋅ ≤ ∀ ∈  

 Q Q Q≤ ≤  

where L  is defined in (1), rG 's are the same PTDF matrices as those in  (7.1), and Q  and Q  

denote the n-vectors of upper and lower quantity bounds whose elements are 
i

q  and iq  
( )i N∀ ∈ , respectively. The FTR award quantities for each pair of nodes (which must be 
subsequently allocated to all the bidders tied for each award) can be extracted from the optimal 
dispatch solution *Q  in the virtual optimal power flows by solving the equations:  

 * * *= ,ki ij i
k i j i

q q q i N
≠ ≠

− ∀ ∈∑ ∑  (7.7) 

 *0 ij ijq q≤ ≤  
The corresponding FTR auction prices are determined as the differences of the corresponding 
source and sink nodal prices in the virtual energy auction. 

Remark Equations (7.7) always have a solution *{ , , }ijq i j∀  due to the number of variables 

being larger than the number of equations. Furthermore, *{ , , }ijq i j∀  is an optimal solution to the 
FTR auction problem (7.1). 
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Thus, an energy auction where energy bids and offers at all nodes equal the corresponding 
expected locational prices under all transmission contingencies and load scenarios is equivalent 
to an FTR auction where all FTR bids between two points are equal to their expected payoffs. 
Such an FTR auction where all market clearing bids for FTRs between any two nodes are 
identical to the respective expected payoffs of the FTRs over all transmission contingencies and 
load scenarios would represent a perfect price discovery in an auction market with risk-neutral 
bidders. 

The above results can be summarized by the following statement:.  

If market participants had  perfect knowledge of the expected locational marginal prices for 
energy in an electricity grid and all bidderswere rational and risk-neutral price takers, then the 
FTR auction problem (7.1)would be equivalent to the virtual energy auction problem (7.6).  

Since, according to the above, the FTR simultaneous feasibility auction can be represented 
by an equivalent virtual energy auction, in our subsequent analysis and numerical experiments, 
we represent the FTR auction as a virtual energy auction from which we can derive both the 
expected congestion rents and the FTR clearing prices. Under this scheme, the expected 
congestion rent between any two network locations is the expected difference of locational 
energy prices between the two points. Likewise, the FTR clearing price between any two points 
is the difference between the locational clearing prices for energy in the virtual energy auction. It 
follows that correct prediction of expected congestion rents between any two points is equivalent 
to correct prediction of the expected locational energy prices. Thus, an energy auction where 
energy bids and offers at all nodes equal the corresponding expected locational prices over all 
transmission contingencies and load scenarios is equivalent to an FTR auction where all FTR 
bids between two points are equal to their expected payoffs. The outcome of such an FTR 
auction where all market clearing bids for FTRs between any two nodes are identical to the 
respective expected payoffs of the FTRs over all transmission contingencies and load scenarios 
would represent a perfect price discovery when all bids exhibit rational risk-neutral price taking 
behaviors. 

To identify the relationship between the bids/offers and the expected market clearing energy 
prices in the virtual energy auction, we show that the clearing prices in (7.6) depend on the upper 
and lower quantity bounds of energy bids. Let λ , ( rμ

+ , rμ
− ), and (η+ , η− ) be the dual variables 

associated with the constraints in (7.6) where λ  is a scalar associated with the energy balance 
constraint, ( rμ

+ , rμ
− ) ( r R∀ ∈ ) are m-vectors associated with the transmission line capacity 

constraints and (η+ , η− ) are n-vectors associated with the bid quantity bound constraints. The 
dual problem of the linear programming (LP) problem (7.6) is as follows (see Luenberger 
(1984)).  

 

, , , ,
min ( ) ( ) ( )
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∑

∑  (7.8) 

We can show that If none of the quantity bound constraints in (7.6) are binding, then the market 
clearing nodal prices resulting from the virtual energy auction are equal to the bid vector C . 
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However, if a bid quantity bound constraint at a bus i  is binding, then the resulting market 
clearing nodal price iP  differs from the bid price ic . Specifically, iP  is greater/less than ic  if bus 
i  is a generation/load bus. This observation follows from the fact that the market clearing nodal 
price vector P  of the FTR auction (7.6) is given by:  

 ( ) .T T
r r r

r R
P e Gλ μ μ+ −

∈

≡ ⋅ + −∑  (7.9) 

By the duality theory from linear programming (Luenberger (1984), the conclusions are drawn 
through inspecting the dual problem (7.8) and applying the strong duality result between the 
primal LP problem (7.6) and the dual problem (7.8).  

When the nodal clearing price at a node in the virtual energy auction differs from the 
expected nodal price at that node under the various transmission contingencies and load 
scenarios, the resulting FTR clearing prices for FTRs involving that node also differ from their 
expected payoffs. In the following section we demonstrate this phenomenon by means of 
numerical examples. 

7.2. Numerical Examples 
We have argued above, on theoretical grounds that the FTR auction clearing prices deviate 

systematically from the ex ante FTR bids whenever the energy injection/ejection quantity bounds 
in (7.6), as implied by the FTR bid quantity bounds in (7.1), become binding. We now use two 
numerical examples to illustrate the impacts by the FTR quantity bounds on the deviation of the 
FTR market clearing prices. To compute the outcomes of an energy auction, the energy bid 
quantity bounds in (7.6) need to be specified. 

For the ease of exposition, we assume that the bid quantity bound for each FTR type is given 
by a constant α  times its expected transaction volume between the corresponding points. 
Consequently, the quantity of an energy bid at each node is bounded by the corresponding 
component of �Qα ⋅  where � � � �

1 2( , , , )nQ q q q≡ L  denote the expected quantities of energy 

transactions implied by the aggregate FTR transactions. Namely, �=i iq qα ⋅  and �=i iq qα− ⋅  
( i N∀ ∈ ) in (7.6). This characterization of the quantity bound enables simple sensitivity analysis 
by varying the multiplier α . Two test systems are considered in our simulation experiments. 
One is a 6-bus system and the other is the IEEE 24-bus Reliability Test System (RTS). 

7.2.1 A 6-bus Example 
First consider a 6-bus network example used by Chao and Peck (1998) and by Chao et al 

(2000) (see Fig. 1). Buses 1, 2 and 4 are generation nodes while bus 3, 5 and 6 are load nodes. 
The supply and demand functions at the 6 nodes are assumed to be linear in quantity q  with 
parameters given in table 7-1.  

Table 7-1  Bid Functions of Generation and Load 
  Bus-ID   Supply Bids  Bus-ID   Load Bids  
 Bus-1   10 0.05 q+ ⋅    Bus-3   37 0.05 q− ⋅   
Bus-2   15 0.05 q+ ⋅    Bus-5   75 0.1 q− ⋅   
Bus-4   

42 0.025 q+ ⋅  
 Bus-6   80 0.1 q− ⋅   
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The transmission line capacities (MW) and admittances (p.u.) are shown in figure. 7-1. Bus-
6 is designated as the swing bus. We choose a set of 5 transmission reliability scenarios that are 
accounted for in the FTR auction: no line outage, line-13 out, line-45 out, line-16 out, and line-
25 out. 

 
 

Figure 7-1  A 6-Bus Test System 
 

7.2.1  Case 1: transmission line contingency but no load variation 
We use the same supply and demand bid functions as in Chao et. al. (2000). The ex post 

nodal prices in each of the 5 contingencies are given in Table 7.2 (The quantity inside the 
parenthesis in the first column indicates the line on outage). The assumed probabilities of the 
contingencies are [0.6 0.1 0.1 0.1 0.1]. The expected nodal prices ( [ ]E P ) are given in the last 
row of table 7-2.  

 

Table 7-2  Ex Post Nodal Prices and Expected Nodal Prices 
  Scenario   bus-1   bus-2   bus-3   bus-4   bus-5   bus-6 
 Normal   26.5  26.5   26.5   48.5   48.5   48.5  
(L-13)   24.13   24.13   31.25   48.5   48.5   48.5  
(L-16)   20.63  25   29.38   50   50   50  
(L-25)   24.17   22.27   26.042   47.98   59.41   53.69  
(L-45)   26.11   26.48   26.92   48.49   48.56   48.49  
 [ ]E P    25.40   25.69   27.26   48.60   49.75   49.17  

 
 

Suppose the FTR market participants submit FTR bids that are equal to the expected payoffs 
over all contingencies. These bids are the differences in the expected nodal prices given in table 
7-2. Then the corresponding nodal price bids ic 's in the equivalent virtual energy auction can be 
set to the expected nodal prices given at the bottom of table 7-2. The FTR bid quantity bounds 
are given by �Qα− ⋅  and �Qα ⋅  where the expected dispatch quantities �Q  obtained over all five 
reliability contingencies at all nodes are: 
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       � = (308.053, 213.733, 204.837, 243.855, 252.535, 308.320)Q  MW. 

From this data we compute the resulting market clearing nodal prices iP 's to examine 
whether =i ic P , = 1,2, ,6i∀ L . We vary the bounds for FTR quantity bids by varying the value 
of α . When = 1α , none of the FTR bid quantity bounds is binding and the resulting iP 's, as 
reported in the second column of table 7-3, are the same as the ic 's (last column of table 7-3). 
When = 0.7α  or = 0.5α , some of the FTR bid quantity bounds reach the upper bounds thus 
resulting in market clearing prices iP 's (see table 7.3) that are different from the bid prices ic 's. 
In particular, Gen-1, Gen-4 and Load-5 reach their respective upper bounds when = 0.7α  while 
Gen-1, Gen-2, Load-5 and Load-6 reach the upper bounds when = 0.5α . The market clearing 
nodal energy prices for different α 's are shown in table 7-3.  

 
Table 7-3  FTR Auction Market Clearing Nodal Prices 

       = 1α    = 0.7α   = 0.5α   FTR Bids 
 bus-1   25.40   25.69   27.26   25.40  
bus-2   25.69   25.69   27.26   25.69  
bus-3   27.26   27.26   27.26   27.26  
bus-4   48.60   49.17   48.60   48.60  
bus-5   49.75   49.17   48.60   49.75  
bus-6   49.17   49.17   48.60   49.17  

 

Table 7-4 shows the sensitivity of FTR auction market clearing prices to bid quantities under 
the assumption that bid quantities are constant multiples of the average transaction volume 
between any two points. It provides a comparison of the FTR values for three different values of 
the multiplier α . The last column reports the  ex ante FTR price bids.  

Table 7-4  FTR Price Comparison under Transmission Contingencies Only 
     FTR \  α    = 1α    = 0.7α    = 0.5α    FTR bids 

(ex ante) 
 FTR-12   0.28   0   0   0.28  
FTR-13   1.86   1.57   0   1.86  
FTR-14   23.19   23.48   21.34   23.19  
FTR-15   24.34   23.48   21.34   24.34  
FTR-16   23.77   23.48   21.34   23.77  
FTR-23   1.57   1.57   0   1.57  
FTR-24   22.91   23.48   21.34   22.91  
FTR-25   24.06   23.48   21.34   24.06  
FTR-26   23.48   23.48   21.34   23.48  
FTR-34   21.34   21.91   21.34   21.34  
FTR-35   22.49   21.91   21.34   22.49  
FTR-36   21.91   21.91   21.34   21.91  
FTR-45   1.15   0   0   1.15  
FTR-46   0.57   0   0   0.57  
FTR-56   -0.58   0   0   -0.58  
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7.2.1 Case 2: both transmission line and load contingencies 

We then assume that under each transmission contingency there are three equally likely 
scenarios for loads: no change in loads, 25%  more loads, and 25%  less loads. Table 7-5 lists the 
load curves in all three scenarios at nodes 3, 5 and 6.  

 
Table 7-5  Load Contingencies 

    Node 3   Node 5   Node 6  
 no-load 
change  

 37.5-0.05q   75-0.1q   80-0.1q  

load 25%+    46.875-
0.05q  

 93.75-0.1q   100-0.1q  

load 25%−    28.125-
0.05q  

 56.25-0.1q   60-0.1q  

 

The assumed joint probability distribution of the load and transmission line contingencies is 
given in Table 7-6. 

 
Table 7-6  Joint Probability Distribution of Transmission and Load Contingencies 

    Normal   (L-13)   (L-16)   (L-25)   (L-45)  
 Base Load   0.2   0.04   0.04   0.04   0.04  
load 25%+    0.2   0.03   0.03   0.03   0.03  
load 25%−    0.2   0.03   0.03   0.03   0.03  

 

The computational results on market clearing nodal energy prices, energy quantities, and 
auction-clearing FTR prices are given in Tables 7-7 and 7-8. Specifically, Table 7-7 shows the 
nodal clearing prices and the dispatch quantities in the virtual energy auction as functions of the 
multiplier α , which is the ratio of the energy bid quantity bound to the expected dispatch 
quantity at each node. The first row in Table 7-7 contains the expected nodal energy prices and 
the expected dispatch quantities at the 6 buses over the 15 combined load and transmission line 
contingencies. We then assume that the FTR auction is conducted based on the price bids being 
set by the expected nodal energy prices (upper numbers in the first row) and the quantities of 
bids being bounded by α  times the expected dispatch quantities (lower numbers in the first 
row), which corresponds to an FTR auction under the assumption of perfect price discovery. The 
rest of Table 7-7 contains the resulting nodal prices and the dispatch quantities at the 6 buses for 
α  being 1.5 , 1.0 , 0.7 , and 0.5 . 
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Table 7-7  FTR Auction Bids and Market Clearing Prices and Quantities under Load and 
Transmission Contingencies 

    bus-1   bus-2   bus-3   bus-4   bus-5   bus-6 
 P ($)   24.3   25.5   28.5   47.1   53.9   50.8  
Q(MW) FTR  286.4   210.6   180.0   185.4   210.8   291.6  
 P ($)   24.3   25.5   28.5   47.1   53.9   50.8  
Q(MW) :1.5α   250.0   75.0   125.0   241.7   133.3   308.3  
 P ($)   24.3   25.5   28.5   47.8   53.9   50.8  
Q(MW) :1.0α    250.0   75.0   125.0   185.4   189.6   195.8  
 P ($)   25.5   25.5   28.5   50.8   50.8   50.8  
Q(MW) : 0.75α    200.5   124.5   125.0   129.8   147.5   182.3  
 P ($)   28.5   28.5   28.5   47.1   47.1   47.1  
Q(MW) : 0.5α    143.2   105.3   48.5   51.2   105.4   145.8  

 
 

Comparisons of the FTR values in the 4 cases of different α 's are shown in table 7-8.  
 
 

Table 7-8  FTR Price Comparison under Both Load and Transmission Contingencies 
  α    1.5    1   0.7    0.5   

 ( )
FTR Bids

exante   

 FTR-12   1.21   1.21   0   0   1.21  
FTR-13   4.18   4.18   2.97   0   4.18  
FTR-14   22.82   23.43   25.31   18.64   22.82  
FTR-15   29.60   29.60   25.31   18.64   29.60  
FTR-16   26.52   26.52   25.31   18.64   26.52  
FTR-23   2.97   2.97   2.97   0   2.97  
FTR-24   21.60   22.22   25.31   18.64   21.60  
FTR-25   28.39   28.39   25.31   18.64   28.39  
FTR-26   25.30   25.30   25.31   18.64   25.30  
FTR-34   18.64   19.25   22.34   18.64   18.64  
FTR-35   25.42   25.42   22.34   18.64   25.42  
FTR-36   22.34   22.34   22.34   18.64   22.34  
FTR-45   6.79   6.17   0   0   6.79  
FTR-46   3.70   3.09   0   0   3.70  
FTR-56   -3.09   -3.09   0   0   -3.09  
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7.2.2 An IEEE 24-bus RTS Example 
Next, we consider the IEEE 24-bus RTS with system topology shown in figure 7-2. 

Generators are located at buses 1, 4, 7, 11, 13, 15, 17, 21, 22 and 23. The rest of the buses are 
loads. Generation and load are represented by linear supply and demand functions, respectively.  

 

   
Figure 7-2  IEEE 24-Bus Reliability Test System 
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In the base case (or, the no-contingency case), the supply and demand bid functions are 
given in table 7-9.  

 
Table 7-9  IEEE 24-bus RTS: Generation and Load Bid Functions 

  Bus-ID   Supply Bids   Bus-ID   Demand Bids  
 1 15.483 0.0150q+   2  65.000 0.0820q−   
 4 20.000 0.0161q+   3  75.517 0.1129q−   
 7 12.555 0.0352q+   5  63.000 0.0925q−   
11  29.000 0.0362q+   6  42.289 0.0847q−   
13  39.859 0.1012q+   8  62.517 0.1016q−   
15  29.678 0.0220q+   9  50.517 0.0876q−   
17  23.180 0.0295q+   10  59.517 0.0502q−   
21  30.031 0.0270q+   12  45.289 0.0733q−   
22  20.966 0.0268q+   14  64.517 0.0851q−   
23  35.330 0.0552q+   16  58.289 0.1146q−   
    18  76.547 0.0792q−   
    19  72.517 0.0682q−   
    20  63.289 0.1033q−   

    24  72.289 0.0733q−   
 
 

7.2.2  Case 1: transmission line contingency but no load variation 
Following the same procedure as the one outlined in the 6-bus example, we first consider the 

transmission line outages over links connecting buses 10 and 11, 14 and 16, 15 and 21, as well as 
19 and 20 in computing FTR price bids. The outage probability of each of the 4 lines is 0.1. We 
then compute the market clearing prices of FTRs with different multiple α . Table 7-10 provides 
a comparison of the FTR values for 4 different α  values. The last column reports the  ex ante 
FTR price bids. We observe that there are notable differences between the market clearing FTR 
prices and the FTR bids over buses 6, 9, 12 and 23 even when the multiple α  is 8. The auction 
clearing FTR prices converge to the bids (which reflect correct expected settlement values) when 
α  reaches a large value of 30.  

 
 
 
 
 
 
 
 
 



 

96 

Table 7-10  IEEE 24-bus with Line Contingency Only: FTR Auction Market Clearing Nodal 
Prices 

  Bus   = 1α    = 3α    = 8α    = 30α    FTR Bids  
 1   29.9   21.5   21.5   21.5   21.5  
2   40.8   40.8   40.8   40.8   40.8  
3   39.2   43.8   43.8   43.8   43.8  
4   25.2   25.2   25.2   25.2   25.2  
5   40.1   40.1   40.1   40.1   40.1  
6   40.4   40.6   40.7   41.3   41.3  
7   18.7   18.7   18.7   18.7   18.7  
8   40.2   40.6   42.4   42.4   42.4  
9   41.4   42.2   41.8   43.3   43.3  
10   40.5   41.4   41.4   41.4   41.4  
11   41.6   41.6   41.6   41.6   41.6  
12   40.5   41.1   41.0   41.6   41.6  
13   41.4   41.4   41.4   41.4   41.4  
14   39.1   40.1   40.9   40.9   40.9  
15   40.2   39.7   39.7   39.7   39.7  
16   40.0   39.9   40.0   40.0   40.0  
17   40.2   40.1   40.1   40.1   40.1  
18   40.1   40.1   40.1   40.1   40.1  
19   40.1   40.1   40.1   40.1   40.1  
20   40.1   40.3   40.3   40.3   40.3  
21   40.3   40.3   40.1   40.1   40.1  
22   40.2   40.1   40.1   40.1   40.1  
23   40.5   40.7   40.7   40.5   40.5  
24   39.8   46.9   46.9   46.9   46.9  

 
 

7.2.2  Case 2: both transmission line and load contingencies 
As we incorporate load variation besides the line contingency in computing the  ex ante FTR 

bids and then compute the FTR market clearing prices, we still find that the multiple α  needs to 
be increased to 30 in order to achieve the convergence between the FTR auction clearing prices 
and the corresponding expected settlement values reflected by the bids (see table 7-11). Again, 
table 7-11 contains the market clearing FTR prices for 4 different α  values and the FTR bids 
(the last column). A joint probability distribution (similar to the one defined by table 7-6 in the 6-
bus example) on load variation (25% up or down) and line outages is assumed in computing the 
prices in table 7-11. 
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Table 7-11  IEEE 24-bus with Line Contingency and Load Variation: FTR Auction Market 
Clearing Nodal Prices 

  Bus   = 1α    = 3α    = 8α    = 30α    FTR Bids  
 1   21.6   21.6   21.6   21.6   21.6  
2   42.7   41.4   42.7   42.7   42.7  
3   38.3   45.8   45.8   45.8   45.8  
4   24.9   24.9   24.9   24.9   24.9  
5   34.0   41.8   41.8   41.8   41.8  
6   40.7   40.9   41.2   41.2   41.4  
7   18.7   18.7   18.7   18.7   18.7  
8   40.1   40.7   42.7   42.7   42.7  
9   41.5   42.5   40.9   43.5   43.5  
10   39.7   42.0   42.0   42.0   42.0  
11   41.7   41.7   41.7   41.7   41.7  
12   40.3   40.2   40.8   41.6   41.6  
13   43.2   43.2   43.2   43.2   43.2  
14   37.1   41.1   41.1   41.1   41.1  
15   40.1   39.4   39.4   39.4   39.4  
16   39.8   40.0   40.0   40.0   40.0  
17   39.8   38.8   38.8   38.8   38.8  
18   39.3   39.3   39.3   39.3   39.3  
19   40.0   40.0   40.0   40.0   40.0  
20   39.9   39.9   39.9   39.9   39.9  
21   40.6   40.8   39.5   39.5   39.5  
22   40.3   39.1   39.1   39.1   39.1  
23   40.6   40.6   40.6   40.6   40.6  
24   39.4   49.5   49.5   49.5   49.5  

 
 

7.3. Summary and Conclusions  
We demonstrated in this chapter that FTR auctions enforcing the simultaneous feasibility 

constraints have inherent properties that result in a fundamental inefficiency in the FTR market. 
Specifically, the auction clearing prices do not converge to the expected payoffs of the auctioned 
instruments. Our analysis indicates that such divergence, which has been proved theoretically 
and demonstrated empirically, cannot be attributed just to lags in price discovery. It is indeed a 
convoluted effect of the current FTR auction clearing mechanism design and the bounded FTR 
bid quantities at all the network nodes. We show that even when bidders are risk neutral and 
have perfect foresight of expected payoffs (which they bid) the FTR auction would produce 
clearing prices that differ from the expected FTR payoffs. Based on our analysis, it is evident 
that the clearing prices depend on the natural quantity bounds of submitted FTR bids. When the 
FTRs serve primarily as hedging instruments, bid quantities for FTRs tend to track expected 
transaction volumes and FTR bids are spread over large number of node pairs. Such spread, 
however, has the effect of imposing quantity limits on certain FTR awards causing the clearing 
prices to deviate from the initial bid prices. In a more speculative market where FTR bid 
quantities exceed hedging needs, larger quantities of fewer FTR types would be awarded and 
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auction clearing prices are likely to better match their expected  ex ante valuations. We conclude 
that price discovery alone does not remedy the discrepancy between the auction prices and the 
realized values of the FTRs. Such convergence is essential if the FTRs are to fulfill the need for 
efficient risk management and provision of correct price signal for transmission usage and 
investment. More liquidity in the FTR market through frequent reconfiguration auctions and the 
introduction of flowgate rights that can be traded in secondary markets are ways through which 
better convergence between forward prices and spot realization of the congestion rents can be 
achieved. Characteristics of a liquid secondary market for FTRs include the presence of a set of 
standardized trading quantities for FTRs and finer granularity in trading time intervals such as 
hours and days. To facilitate the computational analysis on the sensitivity of the price divergence 
with respect to the FTR bid quantity bounds, it is assumed that the bid quantities are fixed 
multiples of expected transaction volume. In reality the ratio of bid quantity to average 
transaction volume can vary across FTRs. Our theoretical analysis ensures that the qualitative 
conclusion is valid as long as the bid quantities are a relatively low multiple of the expected 
volume which is the case when FTRs are allocated or auctioned off as hedging instruments. 

Finally, the above conclusions also suggest that from a property rights perspective it might 
be more appropriate to allocate the FTRs themselves based on historical entitlements leaving it to 
the recipients to re-trade these rights as opposed to auctioning the FTRs and allocating the 
auction revenues. 
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Appendix A: Procedures of Sensitivity Coefficient Calculation 
 

According to equation (7.11), we have  
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Appendix B:  Solving for Equilibrium Forward and Spot Prices 
  

According to the characterization of PTDF  matrix in the day-ahead forward wholesale market, 
take equations (7.15) and (7.20) into (7.23), we get the following, 
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Taking (7.5a) into (B.1), we have, 
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Combined with market balancing condition (7.22), we have (7.24a-c) 
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Appendix C:  Solving for Forward Risk Premium 
According to the market balancing conditions in the day-ahead forward markets 
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Taking (7.15) and (7.20) into (C.1)  
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Based on  
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(C.2) can be rewritten as, 
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Reorganize the items of (C.4) leads to (7.30b)  
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