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Executive Summary 
 

Countries around the world continue to refine their electricity market structures in 
various ways. There are ongoing debates over market design issues, such as how to 
design effective market power mitigation rules, how to incorporate ancillary service 
markets, and how to properly implement a retail electricity market to encourage customer 
participation. Although valuable experience has been gained, there is a lack of a robust 
analysis platform for evaluating the effects of a new market design from both engineering 
and economic points of view.  

The difficulty in creating such a platform arises from the interactions among 
strategic behaviors of market players, various layers of market designs, and the 
underlying physical network. A multi-agent system with a corresponding software 
platform would allow for robust analysis of the complex phenomena of an electricity 
market with its human decision-making in the context of market rules and a physical 
electric system. 

In this research, multi-agent electricity market simulation tools were designed and 
implemented. Three market design areas were investigated: market power mitigation, 
ancillary service market design, and customer participation.  
 
Part I: Multi-Agent System Modeling of Electricity Market and Its Application in 
Evaluation of Market Power Mitigation (work done at Iowa State University) 
 

Local market power is an issue for electricity markets due to transmission 
capability bottlenecks, lack of economical electric energy storage devices, and short-term 
inelasticity of the customer demand. The generators that possess potential local market 
power could leverage it to gain profits, such as by actually withholding or proposing to 
withhold supply. To address the issue of local market power, various market power 
mitigation rules have been proposed and implemented in practice. However, there has 
been no systematic analysis of the effectiveness of those rules against strategic bidding of 
market players with learning capabilities in the context of an electric power system. 

An agent-based market platform was designed and constructed to incorporate 
energy and ancillary service markets with market power mitigation rules. The agents 
were designed to make decisions to maximize their reward through reinforcement 
learning. The platform is based on JADE, a widespread agent-oriented middleware, and 
was programmed in JAVA. As a result of these features, the platform offers a rich set of 
programming abstractions and libraries that can facilitate new analysis applications. 
Important constraints were incorporated, such as ramp rates, reserves, and regulation 
requirements. Heat rate and fuel price data were used to create quadratic cost curves for 
the thermal generators. A PJM-like local market power mitigation process was 
implemented in the simulation platform. The resulting platform includes a 225-bus 
system model that resembles the structure of the Western Electricity Coordinating 
Council (WECC) grid and electricity market. The platform allows for load serving 
entities (LSEs) to also be generation owners.  

The simulation results showed that without market power mitigation rules, large 
generation owners learn to implicitly exercise market power without knowing each 
other’s bidding data. The PJM-like market power mitigation rules performed reasonably 
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well against the supplier agents in enhancing market efficiency and discouraging the 
exercise of market power. The results also showed that generation resources owned by 
LSEs can counteract the exercise of market power by other suppliers during peak demand 
hours. 
 
Part II: Effects of Ancillary Service Markets on Frequency and Voltage Control 
Performance of Deregulated Power Systems (work done at Washington State 
University) 

 
The second research topic was the effect of different ancillary service market 

designs for frequency and voltage control on the control performance of power systems. 
Different market structures were created for the balancing (i.e., regulation) markets. The 
power system control used the standard automatic generation control (AGC) technique. 
Only the market structures were varied to study their effect on frequency control 
performance. By changing the market structure and incorporating generator ramp rates in 
the market design, a more desirable control performance was observed in the study.  

Analyses showed that bilateral load following is viable within the conventional 
AGC framework. In this case, the control was modified to accommodate the market 
structure. Bilateral load following resulted in a faster frequency response as compared to 
separate, third party frequency control. 

The feasibility of VAr markets was investigated. For voltage/VAr control, 
secondary control methods are still evolving and few markets are actually in operation. In 
this project, a new control method and new market structures were analyzed. In a 
comparative study of the feasibility of generator VAr markets, it proved difficult to avoid 
locational advantage (and hence, market power) for certain generators. 
 
Part III: Power System Electricity Market Agent Model (work done at Cornell 
University and Smith College) 
 

To examine the effect of active customer participation, the electricity market was 
modeled as a multi-agent system that included three types of agents: supplier, customer, 
and market. The market agent accepts and processes bids and offers according to market 
rules. The agents’ responses to different market environments were simulated using 
Matlab. 

The simulation results showed that suppliers and customers should learn as much 
as possible about the market environment and from historical data to maximize their 
benefits from participation. The simulation results also highlighted the importance of 
customer participation to deter the supplier market power, to lower electricity prices, to 
promote energy conservation, and to improve the system reliability.  

The results emphasize the need for restrictive laws for the suppliers to protect 
customers as well as market integrity. In addition, customer participation was shown to 
be crucial from an environmental point of view. As customers become more familiar with 
the market mechanisms, they can indirectly improve overall market efficiency and energy 
conservation by simply minimizing their own expenditures.  
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Part 1.  Multi-Agent System Modeling of Electricity Market and 
its Application in Evaluation of Market Power Mitigation Rules 

1.1  Introduction 

1.1.1  Research Background, Motivation and Objective 
Countries around the world continue to refine their electricity market structures in 

various ways. There are ongoing debates over new market design issues such as how to 
correctly design market power mitigation rules, how to properly implement a retail electricity 
market, how to effectively incorporate ancillary service markets, etc. Although years of 
experience has been gained, costly and valuable lessons have been learned, there is a lack of 
a systematic platform for evaluation of the impact of a new market design from both 
engineering and economic points of view. The difficulty arises from the complex interactions 
among strategic behaviors of market players, various layers of market designs, and the 
complex underlying physical network. Therefore, it is desirable to develop a multi-agent 
system based method and the corresponding software platform to model the complex 
phenomena of an electricity market [1].  

Local market power has been known as an issue for electricity market due to limited 
transmission capabilities, lack of economical electricity storage devises and short-term 
inelasticity of demand. During certain peak hours, electricity markets can be temporarily 
isolated into several sub-regions by N-1 and transmission thermal limit constraints. Hence, 
the generators that possess potential local market power could leverage it to gain lucrative 
payment through either economical or physical withholding. The exaggerating factor is that 
electricity suppliers repeatedly play in similar market scenarios which may let them learn 
over time to compete less aggressively [2, 3]. Pivotal suppliers might be able to elicit 
collusive strategies from others by punishing un-cooperative bidding behaviors. To address 
the problem of local market power, various types of market power mitigation rules have been 
proposed and implemented in practice. However, the effectiveness of those rules against 
strategic bidding market players with learning capabilities has not been investigated.  

The literature on the interaction between strategic bidding and market designs can be 
categorized into two approaches: equilibrium analysis and agent-based simulation. In the 
equilibrium analysis approach, oligopoly models such as Bertrand, Cournot, and supply 
function equilibrium (SFE) are used to model the stylized strategic behavior of market 
participants. Younes and Ilic [4] modeled the oligopolistic competition in electricity market 
with SFE and Bertrand model. They recognized that inelastic load and low transmission 
capacities may give the generators incentives to strategically constraint the network and 
profit from the high prices in isolated submarkets. Yao et al. [5] examined the two-settlement 
electricity market taking account of congestion, demand uncertainty and system 
contingencies with a Cournot model. They showed that two-settlement results in a lower spot 
equilibrium prices at most buses than a single settlement. Li and Shahidehpour [6] analyzed 
the strategic bidding behavior and potential market power of generation suppliers with SFE 
model. Their conclusion is that setting a lower price cap is a proper measure for mitigating 
market power in electricity market. Niu et al. [7] modeled the electric firms’ bidding 
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behaviors with SFE model, and studied the effects of forward contracts on ERCOT market. 
They found that a high volume of forward contracts decreases the incentive of major market 
players to raise real-time market prices. Liu et al. [8] studied the impact of learning behavior 
of electricity suppliers on electricity-spot-market equilibrium under repeated linear supply-
function bidding. The result is that under certain conditions the overall learning behavior will 
reduce market-clearing price while in some other conditions the results are just the contrary. 

Although the equilibrium analysis has yielded some useful results in the oligopoly 
electricity market, it may oversimplify the complicated market mechanism [9]. The 
accumulated bidding experience from interacting with other market participants in repeated 
auctions may change the perception a player has on others [10]. The advantage of a learning 
algorithm is that it could capture the market dynamics and provide better insights into the 
market behaviors. In the agent-based approach, variations of reactive reinforcement learning 
and anticipatory reinforcement learning have been used to model the behaviors of electricity 
suppliers. The learning algorithm that Bunn and Oliveira designed [9] for generators share 
the same essence with reactive reinforcement learning algorithm. The average reward γ-
greedy reinforcement learning method was used in [11] to model the learning and bidding 
processes of suppliers. These suppliers are incorporated in a nonzero sum stochastic game 
model to assess day-ahead market power in different auction mechanism. The learning 
configuration for electricity suppliers in [12] is a version of stochastic reactive reinforcement 
learning developed by Alvin Roth and Ido Erev. Agents in the test bed investigate the effects 
of demand-bid price sensitivity and supply-offer price caps on LMPs. Yu et al. [13] modeled 
suppliers as Q-Learning agents. The results demonstrated that Q-Learning facilitates the 
supplier agent exploiting the market in the absence of a market power mitigation process. 

1.1.3  Contents of this Part 
Section 2 provides an introduction to multi-agent systems and a review of their 

applications to power systems. This section discusses the Foundation for Intelligent Physical 
Agents, a popular standard that is used in most industrial and commercial multi-agent system 
applications. A multi-agent system model of the Day-Ahead electricity market is presented. 
The market operator, load serving entities, and supplier agents’ models are incorporated. 

Section 3 provides a literature review of the multi-agent learning algorithms. Multi-
agent learning algorithms are classified into three categories: Model-based approaches, 
Model-free approaches, and regret minimization approaches. In this research, Q-Learning, an 
anticipatory reinforcement learning technique is selected for the study of the electricity 
suppliers’ learning behavior. 

Section 4 presents an application of the proposed modeling methods on evaluating the 
PJM-like market power mitigation rules on a 225-bus system. Simulation results show that 
without market power mitigation rules, Q-learning supplier agents are capable of implicitly 
collude with each other and drive up the LMPs. The market power mitigation rules being 
examined did reasonably well in discouraging the exercise of market power and enhancing 
market efficiency. It is also shown that the generation resources that are owned by LSEs 
would be a source of countervailing market power during peak hours to the suppliers group. 

Section 5 provides the key conclusions of this research and suggestions for the future 
work. 
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1.2  Multi-Agent System 

1.2.1  Introduction 

1.2.1.1  What is an Agent? 
There is not a single definition of an agent that is universally accepted. However, the 

following definition from the Wooldridge and Jennings [14] is commonly adopted in the 
field. An agent is a computer system that is situated in some environment, and that is capable 
of autonomous action in this environment in order to meet its design objectives.  

Note that the agent discussed here is actually a software entity. The two basic 
properties that an agent must have are autonomous, and situated. Autonomous means that a 
software agent must be able to operate without the direct intervention of people or other 
agents and has control over its own action and internal state. Situated means that a software 
agent is situated in some type of environment. These environments may be dynamic, 
unpredictable and unreliable. 

According to Jennings and Wooldridge, to make an agent “intelligent”, the software 
agent should be able to take flexible autonomous actions in order to meet its design 
objectives [15]. Flexible means an agent is reactive, proactive and social. By reactive, it is 
meant that the agent perceives its environment and responds in a timely fashion to changes 
that occur in the environment. By proactive, it is meant that the agent does not simply act in 
response to its environment but is able to achieve a goal by taking the initiative. By social, it 
is meant that in order to achieve its goals, the agent interact with people or other agents. 

1.2.1.2  What is a Multi-Agent System? 
A Multi-Agent System (MAS) is an organization of heterogeneous and self-motivated 

agents that interact with one another. The agents in MAS could have conflicting interests or 
they could coordinate with one another to accomplish the same mission. 

1.2.1.3  When and Why are agents useful? 
Reactive systems that maintain an ongoing interaction in some environment are 

inherently more difficult to design and implement [15]. One can classify these systems into 
three categories: open systems, complex systems, and ubiquitous computing systems. Some 
of the characteristics that these systems have are dynamic, highly complex, and 
unpredictable. With a better encapsulation, and modularity, the agent paradigm can develop a 
number of modular components that are specialized at solving a particular aspect of the 
complex, unpredictable system. In addition, with reactiveness and proactiveness, an agent 
can be relied upon to persist in achieving its goals, trying alternatives that are appropriate to 
the changing environment without continuous supervision and checking [16]. The Agent 
technology also helps to improve the efficiency of software development, especially when 
the data, control, expertise, or resources are physically or logically distributed. 
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1.2.1.4  Agent-Oriented Programming versus Object-Oriented 
Programming 

Agent Oriented Programming has a higher level of encapsulation than Object 
Oriented Programming. An object encapsulates some state, and has some control over its 
own state in that it can only be accessed or modified via the methods that the object provides 
[15]. An agent encapsulates not only state, but also its own behavior. In contrast, an object 
does not encapsulate behavior: in other words, it has no control over the execution of its own 
methods. Note that the autonomous property of an agent allows it to have control over its 
own actions. Due to this distinction, one should not think of agents as invoking methods 
(actions) on agents. Rather, agents are requesting actions to be performed [15]. The agent 
itself could also decide whether to act upon the request. 

1.2.1.5  Applications of Multi-Agent Systems in Power Engineering 
The MAS technologies have been used for modeling and simulation of different 

aspects of power engineering. A major application is the simulation of restructured electricity 
market. With the embedded learning capabilities, agents that are autonomous, proactive and 
reactive are well suited for modeling of various market participants in the electricity market. 
It has been shown that a well-designed software agent can emulate the offer behavior of 
human agents [17]. Thomas et al. proposed to use software agents to test electricity markets 
[18]. Five standardized agents – four different types of speculators and a marginal cost offer 
agent are designed to compete with human subjects in a central auction market. A multi-
agent trading platform for electricity contract market is constructed [19]. Customers’ 
response under time-of-use electricity pricing is studied in a Multi-Agent system [20]. An 
agent-based model is designed in [21] to support decentralized generation expansion in 
electricity market. 

Major challenges in the power system diagnostic and monitoring applications include 
how to handle large volumes of raw data from different sources, how to convert those raw 
data into meaningful information, and how to provide power engineers with correct 
information to support the decision making. These challenges could be overcome with the 
help of MAS technology. In [22], the authors designed and constructed the Protection 
Engineering Diagnostic Agents system (PEDA) for automated disturbance diagnosis. The 
PEDA system was implemented as an on-line post-fault analysis system for the Scottish 
Power Systems which significantly reduces the data retrieval, collection and interpretation 
burden on protection engineers. Condition Monitoring Multi-Agent System (COMMAS) for 
transformer condition monitoring was developed in [23]: the system is intended to provide 
decision support for operational engineers. A MAS was designed for fault detection, 
diagnostics, and prognostics of navy All-Electric Ships (AES) [24]. This fault diagnosis and 
prognosis tool will improve the reliability, availability, and survivability of AES, and support 
the drastic manning reduction requirements for future navy ships. 

Nagata et al. suggests a multi-agent approach to restore a power system to a target 
network that has as many buses as possible [25]. In the proposed MAS, local bus agents 
formulate a restoration plan through negotiation, and then check the restoration plan with a 
global facilitator. In [26], a multi-agent-based approach for navy ship system electric power 
restoration is provided to restore the capacity as much as possible to serve the loads.  
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Through negotiation among three different types of agents, the system can perform the 
restoration work using local information without a central controller. 

The distributed properties of MAS, and potential of local decision making make it 
better suited for certain control scenarios in a power system relative to conventional 
centralized control. There are some common features of those control scenarios. The system 
is highly complex so that optimum control is difficult to accomplish even with centralized 
control and the control decision making time is limited. For example, in microgrid control, 
the operation of micro-sources, storage devices, and controllable loads is highly complex. In 
[27], MAS approach was used to control the microgrid. In the proposed method, Microgrid 
Central Controller coordinates the local controllers and decides whether to connect to the 
main grid, whereas Local Controllers control the distributed energy resources, production 
and storage units, and some of the local loads. Jung et al. proposed an application of multi-
agent system technologies for the development of strategic power infrastructure defense 
(SPID) system that is designed to prevent catastrophic failures and cascading sequences of 
events, an application of which is on adaptive load shedding [28]. 

1.2.2  The Foundation for Intelligent Physical Agents (FIPA) 
FIPA was established in 1996 as an international non-profit association to develop a 

collection of standards relating to software agent technology [29]. FIPA was formally 
reincorporated in mid-2005 as a standards committee of the IEEE Computer Society, lending 
credibility to the use of FIPA as standards for industrial and commercial multi-agent system 
applications. FIPA standards govern the basics of an agent architecture, including agent 
lifecycle management, inter-agent message transport, message structure, inter-agent 
interaction protocols, and security. Users are left with the flexibility to design an agent that 
accomplishes its goals. The most important ideas of FIPA are agent communication, agent 
management, and agent architecture. 

1.2.2.1  Agent Communication 
The FIPA-Agent Communication Language (ACL) states the message representing 

actions or communicative acts that are called speech acts or performatives [29]. There are 22 
performatives in communicative act library, which has 4 basis performatives: request, 
inform, confirm, and disconfirm. FIPA also standardizes a set of interaction protocols such as 
requests, query to coordinate multi-message actions. Different content languages can be 
employed to express the content of FIPA-ACL. The most popular language FIPA semantic 
language (SL) is standardized and specified in [30]. 

1.2.2.2  Agent Management 
The second fundamental aspect of FIPA is addressed by agent management that 

establishes the logical reference model for creation, registration, location, communication, 
migration and operation of the agents. It specifies how a FIPA compliant agent can exist, 
operate and be managed. A FIPA compliant Agent Platform (AP) provides the physical 
infrastructure that consists of the machines, operating system, FIPA agent management 
components, the agents themselves, and any additional support software [29]. An AP has two 
utility agents: the Agent Management System (AMS) and the Directory Facilitator (DF). The 
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AMS is mandatory, as it allocates agent identifiers (AIDs) to each agent that registered with 
it, keeps track of the status of an agent, and terminates the life an agent when it deregistered. 
The DF is optional; it provides yellow page services that allow every agent to advertise its 
services on a non-discriminatory basis. An AP also provides a Message Transport Service 
(MTS) to transport FIPA-ACL messages between agents on the same platform or within 
different platforms. 

1.2.2.3  Agent Architecture  
The FIPA Abstract Agent Architecture provides a common, unchanging point of 

reference for FIPA-compliant implementations that capture the most critical and salient 
features of an agent system [31]. Most important mandatory items specified in the 
architecture are the ACL message structure, message transport, agent directory services, and 
service directory services. As described in Section 2.2.2, the communication between two 
agents relies on a message transport service that transports FIPA-ACL messages. As 
mentioned in Section 2.2.1 the structure of a message is a set of key values written in FIPA-
ACL. The content of the message is expressed in a content language, such as FIPA-SL or 
FIPA KIF [31]. Essentially, the two directory services allow agents to register themselves or 
the services that they provide, and to search for specific agents for services. 

1.2.3  Multi-Agent Approach to Day-Ahead Electricity Market Modeling 
An electricity day-ahead market is composed of interacting units: market operator, 

electricity suppliers and load serving entities. Each one has its own goal to achieve and will 
not only react to the changes in the market condition but also try to exert some degree of 
influence in the market environment. An important attribute of the day-ahead market is that it 
exhibits properties arising from the interaction in the market that are not properties of the 
individual units themselves. Therefore, to evaluate the effectiveness of market rules of the 
day-ahead market, a multi-agent system is proposed that models the complex market 
dynamics among the traders. 

The Day-Ahead electricity market is modeled as a multi-agent system with three 
types of interacting agents: supplier agents, load serving entities (LSEs), and a market 
operator (MO). The Day-Ahead Market works as follows. Before day D begins, MO gathers 
the load prediction data from LSEs, and publishes the forecasted zonal load data for day 
D+1. On the morning of day D, LSEs submit their demand bids and possibly supply offers; 
suppliers submit their supply offers for the Day-ahead Market to MO. During afternoon, MO 
performs market power mitigation and runs the market clearing software. The market-
clearing software minimizes the cost of purchasing all the energy and 100% of the ancillary 
service requirement and then determines the hourly dispatch schedules, and locational 
marginal prices (LMPs) for energy and ancillary services. MO can also perform the ancillary 
service evaluation based on the market clearing results by simulating the AGC performance 
of the interconnected power system [32]. At the end of the process, MO sends the dispatch 
schedules, LMPs and settlement information to supplier agents and LSEs for day D+1. 
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1.2.3.1  Supplier Agent Model 
Supplier agents sell bulk power to Day-ahead market. For simplicity, it is assumed 

that each supplier agent has only one generation plant. However, this model can be extended 
to permit suppliers with multiple generation plants. Suppose the set of supplier agents in the 
Day-ahead market is denoted by I, and the MW power output of generator i in some hour h 
is G

ihP . For generator i, the hourly variable production cost )( G
ii PC for production level G

iP is 
represented by a quadratic form: 

      2)()( G
ii

G
ii

G
ii PbPaPC ⋅+⋅=                                                      (1) 

where ia , ib are given constants. By taking derivatives on both sides of (1), the marginal cost 
function for generator i is obtained, i.e., 

                          G
iii

G
ii PbaPMC ⋅⋅+= 2)(                                                        (2) 

On each day D, the supplier agent submits to the day-ahead market a supply offer for 
day D+1 that includes two components. The first component is its reported marginal cost 
function given by: 

                             )2()( G
iii

B
i

G
ii PbacPMC ⋅⋅+=                                                     (3) 

The second component is its reported bidding price for ancillary services including its 
bidding price for spinning reserve capacity res

ic , regulation up capacity upreg
ic , , and regulation 

down capacity downreg
ic , . Suppose on day D, supplier agents submit their supply offers for day 

D+1 to  MO, and the market clearing program calculates locational marginal prices for real 
power and ancillary services, and dispatch schedules. Then supplier agent i’s profit on day 
D+1 is obtained by summing over 24 hours the profits on that day. 

1.2.3.2  Load Serving Entity Model 
LSEs purchase bulk power from the day-ahead market to serve load. It is assumed 

that some LSEs also have generation units. If a LSE is a net buyer, then its motivation in 
bidding its generation would be to reduce the cost of energy and ancillary services. Suppose 
the set of buses where LSE j serves loads is jL . On day D, LSE j submits a fixed load profile 
for day D+1. The load profile specifies 24 hours of MW power demand PLk(H), H=0, 1…23, 
at each of its load buses jLk ∈ . Suppose, LSE j submits its own generator j’s reported 

bidding price for spinning reserve capacity res
jc , regulation up capacity upreg

jc , , regulation down 

capacity downreg
jc ,  and reported marginal cost function )2()( G

jjj
B
j

G
jj PbacPMC ⋅⋅+= to the 

day-ahead market for day D+1. Then LSE j’s profit on day D+1 is obtained by summing over 
24 hours the profit on that day: 
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G
jhC  LMP of real power at hour h for LSE j’s unit 

upreg
jhC ,  LMP of regulation up at hour h 

dreg
jhC ,   LMP of regulation down at hour h 
res
jhC      LMP of spinning reserve at hour h 

*G
jhP  MW power output scheduled at hour h 

*,upreg
jhP  Cleared capacity for regulation up at hour h 

*,dreg
jhP  Cleared capacity for regulation down at hour h 

*res
jhP  Cleared capacity for spinning reserved 

jR  Retail rates of LSE j’s serving area 
1+D

jhL  Total MW load of LSE j at hour h 
)(hCk  LMP of real power on LSE j’s load bus k at hour h 

jhAS  Average AS price per MW load consumed at hour h 

1.2.3.3  Market Operator Model 
MO implements market power mitigation and market clearing procedures based on 

submitted supply offers and demand bids. The market power mitigation rule considered in 
this paper is similar to the one proposed for local market power mitigation process in CAISO. 
In the first run of pre-market clearing, MO clears the market with only competitive 
constraints enforced. The competitive constraints consist of the CAISO’s pre-defined major 
interface branch groups. In the second run of pre-market clearing, it clears the market with all 
constraints enforced. Mitigation applies to the units that are dispatched up by the “all 
constraints” run of the pre-market clearing. If supplier offers subject to mitigation are higher 
than cost based default proxy bids (i.e., marginal cost + 10%), then energy offers are reduced 
to the level of cost-based default proxy bids. 

The market operator runs a market clearing software to determine the hourly dispatch 
schedules and LMPs of energy and ancillary services. The objective is to minimize the 24-
hour purchasing cost of both energy and ancillary services.  

1.2.3.4  Software Implementation of Multi-agent System 
When using an agent-based approach to solve a problem, there are a number of 

domain independent issues that must always be addressed, such as how to allow agents to 
communicate [29]. Java Agent Development Framework (JADE), being the most widespread 
agent-oriented middleware, provides the domain independent infrastructure which allows the 
developers to focus on the construction of key logics. Since JADE is written in Java, it 
benefits from a large set of programming abstractions which greatly facilitate the 
development of multi-agent systems. JADE fully complies with the Foundation for 
Intelligent Physical Agents (FIPA) specifications which is maintained by the standards 
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organization for agents and multi-agent systems, the eleventh standards committee of IEEE.  
The structure of the multi-agent platform is depicted in Figure 1. JADE provides two 

utility agents: the agent management system (AMS) and directory facilitator (DF) and an 
inter-agent messaging system through which the agents communicates with each other. The 
AMS allocates agent identifiers (AIDs) to each agent that registered with it, and provides a 
“white page” service, where an agent can ask for the address of another. The DF provides a 
“yellow pages” service, where agents register the services they provide, and an agent can ask 
for all agents to provide a particular service.  

MO, supplier agents and LSEs are developed fully in Java in this research. A supplier 
agent’s daily sequence of tasks is implemented as follows: collecting forecasted zonal load 
data posted by MO, submitting supplier offers to MO, collecting market settlement 
information posted by MO and adjusting of its bidding strategy based on Q-learning 
algorithm. MO starts the day by collecting forecasted load data from LSEs, and posting the 
MO forecasted zonal load data. Upon receiving all the supply offers and demand bids, it 
performs market power mitigation followed by market clearing. Afterwards, it posts the 
market clearing information and then uses ancillary service evaluation tool to test the system 
frequency performance under potential disturbances. The sequence of actions taken by the 
LSEs is: reports forecasted load data to MO, submits demand bid to MO, and collects the 
market settlement information from MO. If the LSE owns generation unit, it will adjust its 
bidding strategy according to Q-learning rules. 

 

Provided by 
Developer

Provided by Agent 
Platform

FIPA Compliant Agent Platform

Market 
OperatorGenCo LSE

Message Transport System

Directory FacilitatorAgent ManagementSystem

Integrated Forward 
Market Model

Ancillary Service 
Evaluation Tool

Clear bid-in Supply with bid-in Demand plus 
procure 100% of the Ancillary service requirement  

Figure 1: Structure of the Multi-agent Platform for Electricity Day-Ahead Market 

1.2.3.5  Market Clearing Algorithm of Market Operator 
The market clearing software clears the bid-in supply with bid-in demand and 

procures 100% of ancillary service requirement with minimum cost. The objective is to 
minimize the 24 hour total purchasing cost, which is formulated as:  
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where 

bN   Number of buses in the system 

kP   Net power injection at bus k 

gkP   Total MW power generation at bus k 

dkP   Total MW demand at bus k 

H   Line flow matrix 

δ   Vector of voltage angle differences 

maxF      Vector of maximum line flows 
downreg

ihP ,  Unit i regulation down capacity reserved at hour h 
upreg

ihP ,    Unit i regulation up capacity reserved at hour h 
res

ihP    Unit i spinning reserve capacity reserved at hour h  

τ    Delivery time requirement for ancillary service  
reg
iR    Regulation ramp rates of unit i 
res
iR    Operating reserve ramp rates of unit i 
oper
iR   Operational ramp rates of unit i 
res
ic    Bidding price for spinning reserve capacity of unit i 
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upreg
ic ,    Bidding price for regulation up capacity of unit i 

downreg
ic ,   Bidding price for regulation down capacity of unit i 

dreq
hRg ,   System’s requirement for regulation down at hour h 

ureq
hRg ,   System’s requirement for regulation up at hour h 

ureq
hRs ,   System’s requirement for spinning reserve at hour h 

The optimization problem of (4) is subject to real power balance constraints at each 
bus (5), thermal limit constraints for each line (6), upper and lower generation capacity 
constraints (7-8), and ramp rate constraints (9-10). There are also system wide reliability 
requirements constraints (11-13), and energy schedule constraints between hours (14-15). 
The optimization problem is solved by CPLEX which is capable of handling large-scale 
power systems problems. A CPLEX Java interface is built in this project to facilitate the 
sharing of data between the programs. 

1.2.4  Summary 
This section provides an introduction to the multi-agent system technology by 

answering several basic questions, i.e., what is an agent, what is a multi-agent system, when 
and why are agents useful. In subsection 1.2.1.4, the agent oriented programming is 
compared with object oriented programming. Subsection 1.2.1.5 is an overview of the 
applications of multi-agent system in four areas of power engineering field: Modeling and 
Simulation, Monitoring and Diagnostics, System Restoration and Reconfiguration, and 
System Controls. Some core concepts of the FIPA specifications are discussed in subsection 
1.2.2. 

With the multi-agent system technology, the Day-Ahead electricity market is 
modeled as a multi-agent system with three types of agents: supplier agents, LSEs, and the 
Market Operator. Since JADE is an implementation of FIPA specification, it was used to 
develop the proposed multi-agent system. The models for supplier agents, LSEs, and MO are 
presented in detail in subsection 1.2.3.1-1.2.3.3. The software implementation of the 
proposed multi-agent system model and the market clearing algorithm of market operator are 
presented in subsection 1.2.3.4 and 1.2.3.5 respectively.  

1.3  Multi-agent Learning Algorithms 

1.3.1  Introduction 
A basic question that was often asked by researchers in the field of Artificial 

Intelligence (AI) is how to design a learning algorithm that allows a machine to learn about 
the environment in which it resides and to maximize its chances of success.  

Insightful observations and tools from statistics, computer science, psychology, 
cognitive science, and logic are utilized to develop learning algorithms that are implemented 
on machines in different contexts. Some of the key algorithms developed for single-agent 
learning are Artificial Neural Networks (ANN), Bayesian Learning (BL), Computational 
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Learning Theory (CLT), Genetic Algorithms (GA), Analytical Learning (AL), and 
Reinforcement Learning (RL). The applications of these algorithms range from chess-play 
computer program Deep Blue that beats the world champion Garry Kasparov, to data mining 
programs that learn to approve bank loans to lower the bad loan rate, to autonomous cars that 
learn to drive safely from door to door. 

In recent years, multi-agent learning takes the place of single-agent learning and 
becomes an important issue of learning that attracts the attention of many researchers in both 
computer science and game theory. 

1.3.2  Literature Review 
Three major classes of learning techniques were developed—the first one is 

representative of work in game theory, the second one is typical in AI, and the last one seems 
to have drawn equal attention from both communities [33]. The three approaches are model-
based, model-free, and regret minimization approaches. 

1.2.3.5  Model-based Approaches 
In model-based learning algorithms, the presence of other decision making agents in 

the learning environment is taken into account. It usually begins with some models of the 
opponents’ strategy, and then starts an iterative three-step learning process. First, it computes 
and plays the best action based on the model of opponents’ strategies. Then, it observes the 
opponent’s actions and updates the models of the opponents’ strategies. Afterwards, it goes 
back to the first step. 

The early model-based learning algorithm well known in game theory is called 
fictitious play. The model rests on traditional statistician’s philosophy of basing future 
decisions on the relevant past history [34]. The opponent is assumed to pick an action at each 
turn according to a stationary probability distribution function (PDF). The algorithm keeps 
track of opponent’s play, and chooses an action that is optimum against the estimates of the 
opponents’ PDF based on the relative frequencies. 

Fictitious play only allows the agent to exploit all the information that it has so far, 
and play the “optimum” action. The variants of fictitious play such as smooth fictitious play 
[35] and exponential fictitious play [36] allow the agent to explore other actions that is not 
“optimum”. 

1.2.3.5  Model-free Approaches 
In model-free approaches, Q-Learning [37] allows agents to learn how to act in a 

controlled Markovian domain with unknown transition functions. A controlled Markovian 
domain implies that the environment is Markovian in the sense that state transition 
probabilities from state x  to state y  only depends on x , y  and the action a  taken by the 
agent, and not on other historical information. It works by successively updating estimates 
for the Q-values of state-action pairs. The Q-value ( , )Q x a  is the expected discounted reward 
for taking action a  at state x and following an optimal decision rule thereafter. Once these 
estimates have converged to the correct Q-values, the optimal action in any state is the one 
with the highest Q-value.  
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By the procedure of Q-Learning, in the nth step the agent observes the current system 
state nx  , selects an action na , receives an immediate payoff nr , and observes the next system 
state ny . The agent then updates its Q-value estimates using a learning parameter nα and a 
discount factor γ [37] as follows: 

If nx x= and na a= , 

1 1( , ) (1 ) ( , ) [ ( )]n n n n n n nQ x a Q x a r V yα α γ− −= − + +                                                          (16) 
 Otherwise, 
 1( , ) ( , )n nQ x a Q x a−=                    (17) 

where 1 1( ) max{ ( , )}n nb
V y Q y b− −≡                                                                                (18)  

It is proven by Watkins in [38] that if (1) the state and action-values are discrete, (2) 
all actions are sampled repeatedly in all states, (3) the reward is bounded, (4) the 
environment is Markovian and (5) the learning rate decays appropriately, then the Q-value 
estimates converge to the correct Q-values with probability 1. 

The Q-Learning algorithm can be extended to the multi-agent environment by 
redefine the Q-values as a function of all the agents’ actions: 

                    1 1( , ) (1 ) ( , ) [ ( )]n n n n n n nQ x a Q x a r V yα α γ− −= − + +
r r

                                     (19) 
However, in the contexts where the actions taken by other agents are unknown such 

as the electricity market, it is impossible to apply this variation of Q-Learning algorithm. 
Therefore, in the above stated contexts, the only option left is to extend the Q-Learning to the 
multi-agent environment by having each agent simply ignore the other agents and pretend the 
environment is Markovian. The theoretical proof of convergence to the correct Q-values no 
longer holds when an opponent adapts its strategy based on the past experience. It is 
reasonable to expect that such a strong convergence result no long holds, in a non-Markovian 
environment where each agent is learning others’ strategy. 

1.2.3.6  Regret Minimization Approaches 
In the regret minimization model, agents adjust their strategies probabilistically. This 

adjustment is guided by “regret measures” based on observations of the past period [39]. The 
assumption made in this model is that each agent knows the past history of all other agents, 
as well as its own payoff matrix. An instance of the no-regret learning algorithm is presented 
below. The regret of agent i  for playing the sequence of actions is instead of playing 
action ja , given that the opponents played the sequence is−  is defined as ( , )t

i j ir a s  [33]. 

                          
1

( , ) ( , ) ( , )
t

t k k k
i j i i j i i i

k
r a s s R a s R s s− − −

=

= −∑               (20) 

At each round, an agent may either continue choosing the same strategy as in the 
previous round, or switch to other strategies that have positive regret with a probability 
proportional to ( , )t

i j ir a s . 
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1.3.3  Modeling of Suppliers’ Learning Behavior by Q-learning 
The way Q-Learning is implemented for an agent with generation unit is as follows. 

The agent views the day-ahead market as a complex system with different states. Each zone’s 
zonal daily average load is divided into LM levels. For each zonal daily average load level, 
there are PM LMP levels. The perceived system state by an agent with generation units on 
day D is defined as a vector of predicted day D+1’s daily average zonal load level and most 
recent similar day’s average LMP level. Hence, the cardinality of each agent’s state space 
is PL MM ×  . 

The action domain of an agent is defined as a vector of bidding information. This 
vector consists of the bidding mark up for the real power B

ic which has BM possible values, 
and bidding price for regulation up capacity upreg

ic , which has RM possible values. To limit the 
dimension of the action domain for agents, it is assumed that the bidding price for regulation 
up capacity is the same as that of spinning reserve and 3 times that of regulation down. The 
dimension of the action domain is given by RB MM × . 

Consider the beginning of each day D. An agent first makes a prediction of the 
system state based on published load forecasting data and historical LMP data, which is 
represented by x . It next chooses an action according to a Gibbs/Boltzmann probability 
distribution, i.e.,  
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where DT , which depends on D, is a temperature parameter that models a decay over time. 
Having chosen an action a , the agent will submit its supply offer and possibly 

demand bids to MO. Once the market is cleared, the supplier agent will receive its reward, 
which is the profit for day D+1. Then the agent will use this reward to update its Q-value 
estimates according to equations (16) to (18). 

The parameters that are used in the numerical study are set according to Table 1: 
 

Table 1: Q-Learning Parameters 

γ α ω TD ML MP
M
B MR 

0.7 ω
),(/1 axT  0.77 

6−× DNconst
 

4 3 5 3 

 

where
ω

),( axT is the number of times action a has been taken in state x. ND is the number of 
days that have currently been simulated. 

1.3.4  Summary 
In this section, the multi-agent learning techniques are organized into three 

categories: model-based approaches, model-free approaches and regret minimization 
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approaches. Fictitious play, Q-Learning, and no-regret learning are described as 
representative of each of the approaches. Both model-based and regret minimization 
approaches assume that each agent knows all other agents’ historical actions. However, this 
assumption is not valid in the electricity market context. Therefore, Q-Learning in the model-
free approaches is selected to model the learning behavior of electricity supplier agents. The 
application of Q-learning for supplier agents in an electricity market context is presented. 

1.4  Numerical Studies and Simulation Result 

1.4.1  Test System 
The 225-bus WECC system that represents the essentials of the CAISO area is used 

as test case. A system block diagram is shown in Figure 2, where colored blocks represent 
load and generation pockets, and red lines denote simplified network constraints. 

Figure 2: 225-Bus WECC Model – Details of California 

 
Inside the CAISO area, 23 aggregated thermal generators are modeled as supplier 

agents that bid strategically into the market. 15 aggregated hydroelectric and other renewable 
energy generators are modeled by time-varying outputs according to historical resource 
availability. Outside the CAISO area, resources including 22 generators produce net imports 
into CAISO area. The hourly time-varying data reflect a six-month period of operations from 
May 1st 2004 to Oct 31st 2004, and include area loads for 11 local areas within the CAISO as 
well as net exports into a separate control area that is surrounded by the CAISO control area. 

Quadratic fuel cost curve for each of the 23 aggregated thermal generators is fitted 
from step function that represents the heat rates of the aggregated units in a least square 
sense. The fuel cost is assumed to be $6/mcf. The two coefficients of the quadratic fuel cost 
curves are provided in Appendix A. 
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1.4.2  Evaluation of Market Power Mitigation Rules of CAISO 
To demonstrate the exercise of market power by Q-Learning suppliers and evaluate 

the effectiveness of the market power mitigation rules, the following three scenarios are 
simulated. The first scenario is the competitive benchmark where every supplier agent bids 
their marginal cost. The second scenario is the unmitigated scenario where every supplier 
agent bids strategically into the market according to the Q-learning rules in the absence of 
market power mitigation. The third scenario is the mitigated scenario where every supplier 
agent still bid strategically into the market, however, this time subject to the market 
mitigation rule specified in Section III.  

In every scenario, 15 simulation runs are performed and the average results are 
reported in figures 3-5. 

To illustrate how Q-learning facilitates the exercise of market power and implicit 
collusion of large supplier agents, two pivotal suppliers from the SCE area are chosen as case 
study. Supplier 7 and 8 together has a capacity of 7685 MW which comprises of 64% of the 
generation capacities in the SCE area.  

In simulation run 1 of the unmitigated scenario, supplier agent 7 and 8’s updating Q-
tables on August 10th are illustrated in Table 2 and 3. 

 

Table 2: Supplier Agent 7’s Updating Q-table 
 Action Index 

State 1 … 5 … 11 … 15 
… … 
3 … … 3.23 … 2.83 … 1.97 

… … 
6 3.72 … 3.68 … 3.38 … 2.88 

… … 
9 2.86 … 4.47 … … … 2.81 

… … 
12 … … 10.03 … 10.79 … … 

 

Table 3: Supplier Agent 8’s Updating Q-table 
 Action Index 

State 1 2 3 … 7 … 12 … 
… … 
3 … 2.45 3. 19 … 2.28 … 2.42 … 

… … 
6 3.23 3. 56 … … 2.84 … 3.27 … 

… … 
9 4. 03 1.92 … … 2.98 … 3.59 … 

… … 
12 … 3.61 7.86 … 11. 5 … 4.71 … 

 
When the area load is high and historical LMP is high on their generation bus, both 

supplier agents are in state 12. As shown in Table 2 and 3, after several experimental 
bidding, the highest estimated Q-values of both agents in state 12 are from relatively high 
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action indices. This means that the two pivotal suppliers learned to coordinate with each 
other at high markups. The energy bid markup is 12% for supplier 7 and 8% for supplier 8. 
Therefore, it is shown that the Q-learning supplier agents are capable of implicitly collude 
with each other and drive up the LMPs successfully. However, the highest possible bidding 
markup is not so attractive to the two pivotal suppliers because although the LMPs are 
further driven up, they will lose part of previously profitable generation schedule to two other 
relatively smaller suppliers in the area. This result extends the conclusion from [17], in that 
the condition of same level of demand in every trading period is not necessary. Even in a 
rapid changing market environment, large generation owners who interact with each other in 
similar scenarios easily learn to implicitly collude even without knowing others’ historical 
bidding data. This finding further supports the hypothesis in [18]: the generation argues for 
continued confidentiality because the resource owners do not need rapid release of bidding 
data to fall into tacit collusion. 
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Figure 3: Percent Total Market Payment Increase in the Unmitigated and Mitigated 

Scenarios Comparing to the Competitive Benchmark 
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Figure 4: Percent Total Generation Cost Increase in the Unmitigated and Mitigated 

Scenarios Comparing to the Competitive Benchmark 
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Figure 5: Percent Largest Unit’s Profit Increase in the Unmitigated and Mitigated 

Scenarios comparing to the Competitive Benchmark 

 
As shown in Figure 3, the total market payment in the unmitigated scenario is 

significantly higher than that of the competitive benchmark. With the help of Q-Learning, the 
supplier agents are able to exploit the market together and get an average of 9.7 percent 
increase in total market payment comparing to the competitive benchmark. However, the 
total market payment in the mitigated scenario is slightly higher than that of the competitive 
benchmark. Facilitated by the market power mitigation rules, the MO effectively reduced the 
percentage increase in total market payment to only 2 percent. The lower average load level 
and less congestion leads to relatively low percentage increase of total market payment from 
August to the October comparing to June and July. 

Figure 4 demonstrates the percentage increase of total generation cost in the mitigated 
and unmitigated scenario comparing to the competitive benchmark. The simulation result 
shows that the total generation cost increase in the unmitigated scenario is about 1.5 percent 
higher than that of the competitive benchmark. The strategic bidding of the supplier agents 
result in extramarginal capacity being cleared, and inframarginal capacity left not dispatched. 
The reduction of market efficiency is caused by the market power collectively exercised by 
the supplier agents. The total generation cost increase in the mitigated scenario is only about 
0.5 percent higher than that of the competitive benchmark. This result shows that the market 
power mitigation rules not only suppressed the exercise of market power but also enhance 
market efficiency by reducing the total generation cost comparing to the unmitigated 
scenario. 

The largest unit’s profit percentage increase in the unmitigated and mitigated 
scenarios comparing to the competitive benchmark is depicted in figure 5. The largest 
supplier agent’s profit increase is significantly higher than that of the competitive 
benchmark. The average profit increase of 47.9 percent is well beyond the average payment 
increase for all the supplier agents. This shows Q-learning algorithm did help the supplier 
agent realize that the huge size of its unit does provide higher potential of market power to 
exercise. In the mitigated scenario, the strategic bidding of generators is not beneficial to the 
largest supplier agent at all. In some situation, the strategic bidding behavior will even lead to 
a lower profit comparing to the competitive benchmark. The market power mitigation rules 
being examined did reasonably well in discouraging the exercise of market power. 
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1.4.3  Effects of LSE Owning Generation Resources  
To examine the bidding behaviors of LSEs that own generation resource and their 

impacts on suppressing the collective market power, it is assumed that five major LSEs have 
their own generation units. The detailed information about LSEs’ serving area, their units’ 
capacity, and peak load they serve is listed in Table 4. It is assumed that the peak load to 
serve for each LSE is twice its unit’s capacity. 

 

Table 4: LSEs Detailed Information 
 Area Peak Load 

(MW) 
Generation Unit 
Owned 

Unit Capacity 
(MW) 

Peak Load to Serve 
(MW) 

LSE A 16280.3 Generator 7 3718 7436 
LSE B 16280.3 Generator 8 3967 7934 
LSE C 7002.0 Generator 18 2628 5256 
LSE D 6977.8 Generator 20 1478 2956 
LSE E 6977.8 Generator 22 1314 2628 

 
The simulation is carried out in four scenarios categorized by whether mitigation 

rules exist and whether some generation units are owned by LSEs. 15 simulation runs are 
performed in each scenario and the average results are reported below. 
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Figure 6: 9-day Average Bidding Markup of Generator 7 in Unmitigated or Mitigated 

Scenario When Owned by LSE or Supplier Agent 
 

As shown in Figure 6, in unmitigated scenario if generator 7 is owned by a LSE, it 
quickly learned over time to bid at a lower markup when the load level is high. In the 
mitigated scenario, LSE also learned the same strategy to reduce the cost of energy and 
ancillary service however at a slower rate. In unmitigated scenario if generator 7 is owned by 
a supplier agent, Q-Learning algorithm helped it learn to bid at a higher markup during high 
load days. In the mitigated scenario, the generator learned a similar strategy except that the 
actual bidding markup cannot exceed 10% due to the existence of market power mitigation 
rules. The bidding markup of other generators in table 4 also exhibits similar patterns in the 
four simulation scenarios. 
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It is concluded from the above simulation results that if a generator is owned by a 
LSE, it will tend to reveal its true marginal cost. However, if it is owned by a supplier agent, 
it will tend to bid at a much higher markup. Hence, the generation resources that are owned 
by LSEs would be a source of countervailing market power during peak hours to the 
suppliers group. 

 

 
Figure 7: Total Market Payment and Total Generation Cost Percentage Increase in 

Four Scenarios Comparing to the Competitive Benchmark 

 
The total market payment and total generation cost percentage increase from 

competitive benchmark in the four scenarios are shown in Figure 7. The simulation results 
show that both market power mitigation procedure and the LSEs’ ownership of generation 
units contributes to reduction in total market payment and total generation cost. The market 
power mitigation procedure is more effective than LSEs’ ownership of generation in 
suppressing collective market power and enhancing market efficiency. 

1.5  Conclusions and Future Work 

This section presents a multi-agent simulation approach on evaluating electricity 
market rules. It is found that the agent-based simulation approach empowered by carefully 
designed Q-Learning agents is able to capture the dynamic interaction between strategic 
bidding market participants. The PJM-like market power mitigation rules are shown to be 
effective in suppressing the exercise of market power and enhancing market efficiency at the 
same time. It is also shown that the generation resources that are owned by LSEs is a source 
of countervailing market power during peak hours to the suppliers group. 

A drawback of the Q-Learning model for supplier agents is that it suffers from the 
curse of dimensionality. This weakness should be overcome in the future work by designing 
learning algorithm that combines the strength of both Q-Learning and Artificial Neural 
Networks.  

Further research is needed on the development of proposed multi-agent platform to 
enable the negotiation process between supplier agents and LSEs on bilateral contracts and 
study what are the effects of forward contracts on day-ahead market. In addition, it is 
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desirable to incorporate marketers into the model to examine the impacts of virtual bidding 
on electricity market. 



 

22 

Part 2.  Effects of Ancillary Service Markets on Frequency and 
Voltage Control Performance of Deregulated Power Systems 

2.1  Introduction 

2.1.1  General 
Ancillary services are those necessary to sustain the basic operation of power systems 

provided by generators and transmission control equipment. While the number of potential 
services is large, the following services are recognized in the major power systems as 
ancillary services and are asked from those who are capable of providing them: 

• Energy imbalance equalization 
• Frequency regulation 
• Spinning reserve generation 
• Supplementary reserve generation 
• Reactive power supplied from generators 
• Black start 

The function of the frequency regulation service is to maintain the frequency of the 
system at the specified value. At the heart of frequency regulation is the Automatic 
Generation Control (AGC). Whenever there is a random variation in system load, the 
frequency and tie line interchanges deviate from its scheduled value. It is the AGC that 
senses the deviations and brings the values of frequency and tie line interchange back to 
normal by re-dispatching the generators under control. For safe operation of the power 
system, voltage at the network buses is required to be within certain admissible limits. The 
objective of secondary voltage control is to maintain the voltage over the network within 
these limits by managing the reactive power supplied by generators. 

In a deregulated environment generation, transmission and distribution systems are 
owned by separate organizations. Competitive markets have been developed where Load 
Serving Entities (LSE) can buy energy from Independent Power Producers (IPP). Similar 
markets exist for ancillary services but the structures of such markets vary widely influenced 
by rules and regulations of the region. More often than not, these markets are designed to 
maximize the financial interest of certain parties, seldom paying attention to the engineering 
capabilities of the underlying power system. Here, in this work, it is shown that taking the 
engineering aspects of the network components into account may improve control 
performance of the system, which often influences the financial aspects in direct or indirect 
fashion. 

2.1.2  Research Objective 
The focus of this research is on balancing markets, which includes regulation and 

load following, and secondary voltage control markets to analyze the effect of different 
markets for these ancillary services on control performance of the power system. The 
primary objective is broken down into the following subtasks: 
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1. Studying the existing frequency and voltage control markets and the measure 
of control performance 

2. Identifying the attributes that influences control performance of the system 
and possible improvements 

3. Analyzing short and long term impacts of market structures under discussion 

2.1.3  Outline 
This part is organized in three sections as follows: 
Section 2 analyzed the influence of regulation market structures on frequency control 

performance of a system. The comparative studies are presented to examine whether existing 
markets should be changed and exploiting available control options can result in a more 
desirable performance. In a separate section a method is presented to unify the responsibility 
of regulation and load following under classical Automatic Generation Control (AGC). The 
method described here uses the AGC system to dispatch both regulation and load following 
in real-time. Subsequently, feasibility of a competitive market for load following is 
discussed. 

Section 3 studies secondary voltage control. In an attempt to capture the impact of 
VAr markets and associated secondary voltage control methods on voltage control capability 
in terms of controllability, performance and economics of the system, two methods of 
automatic secondary voltage control have been looked into in this work, voltage control by 
adjusting the reference voltage of generators and voltage control by adjusting the reactive 
power injection at the generator bus. Feasibility of competitive markets in VAr using the 
above mentioned generation based voltage control methods have been examined thereafter. 

Appendix B illustrates the reduced WECC model which has been used for the 
simulations. Appendix C elucidates the method of dividing the network into a number of 
voltage-control areas. 

2.2  Effects of Balance Markets on Frequency Control Performance 

2.2.1  Preface 
Regulation is one of the ancillary services (AS) traditionally provided by the 

generating units, under the jurisdiction of a balancing area (BA), to continually compensate 
for the difference between load and generation. After the advent of deregulation, there has 
been much effort to form competitive markets for regulation. These markets have usually 
been markets for capacity reserves and have variously been called regulation, balancing, 
load-following, frequency control or even combined with spinning reserve markets. For 
simplicity it is called the regulation market throughout this paper. While the method of 
frequency control and load following has to be precisely defined within an interconnection, 
the structures of the regulation markets vary greatly. In North America, some regulation 
reserve markets have been developed for secondary control. The payment is for capacity 
made available, up and down, fully dispatchable within 10 minutes [40], the energy supply 
being compensated at spot market rates. In some areas there is no separate regulation market 
and part of the spinning reserve is used for secondary frequency control. In England and 
Wales, where automatic secondary control is not used, there is a power exchange system with 
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a 30-minute short-term market for balancing, operating one hour ahead of real time. There, 
only a few generators are called upon for frequency response replacing free governor action 
by all generators. Likewise, regulation markets exist in Australia, Nordic countries, 
continental Europe, China and other countries; however, the frequency performance 
standards are influenced heavily by regional policies and grid rules [40].  

To design such markets financial factors have so far played more important roles than 
technical considerations. Besides there are other issues, which have come into discussion 
recently [41]-[43], e.g. the problems of involving more suppliers in the market or allocating 
payments to the participants which reflect the impact of each participant in the market. There 
also has been lack of insight about how solutions to such problems are going to affect the 
system as a whole. 

In this chapter, a comparative analysis on the models of regulation markets is 
presented. It is assumed that the balancing authority has secondary control or Automatic 
Generation Control (AGC), i.e. uses tie-line bias control. A systematic control strategy is put 
forward to improve the frequency response.  

In the next section the market models have been described. Section 2.3 has a brief 
description of the traditional AGC. In section 2.4 a case study on WECC 225-bus model has 
been presented and the effects of the markets on its control performance have been compared 
vis-à-vis. 

2.2.2  Regulation Market 
All markets can be designed with many variations and regulation markets are the 

same. To show how such variations can affect system performance, the structure of three 
example regulation markets are laid out in this section. These three are briefly described 
below. 

 
A. A flat-rate regulation market – This is the most common type of regulation market that 

exists (the California market is described in [44]). The features are as follows: 
• 10-minute regulation market, i.e. any spinning unit under AGC control can bid the 

capacity it can make available in 10 minutes. 
• No distinction according to ramp rates of the generators. 
• Uniform second price payment i.e. all qualified suppliers are paid at the rate of 

Market Clearing Price (MCP). 
 

B. A price based regulation market – The generators are paid based on the performance in 
the market. 
• 5-minute or 10-minute regulation market 
• Generators are categorized as fast or slow as per the ramp rates. 
• The fast ramp generators are paid according to the regulation MCP whereas slow 

ramp generators are paid according to their bid price as long as it is less than the 
regulation MCP. 
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C. A response based regulation market – Two separate markets for fast ramp regulation and 
slow ramp regulation. 
• 5-minute market for fast ramp regulation 
• 10-minute market for slow ramp regulation. 
• Generators are allowed to participate in the respective market which its ramp rate 

corresponds to. 
• Generators are paid at the rate of clearing price of the market they participate into. 

 
All the generators participating in the regulation markets mentioned above are 

required to meet certain technical and operating requirements. Primary control by governor 
action is mandatory for participation. The full response of the bid capacity is required to be 
delivered in the dispatch interval (10 or 5 minutes as applicable). Thus the regulation bid 
capacity of each supplier is dependent on its ramp rate. This last point is very important since 
this establishes the connection between market outcome and consequent control 
performance. 

To bid (as shown in Figure 8) in the markets, each supplier specifies three quantities 
in the bid: 1) capacity, 2) price in $/MWh, and 3) operational ramp rate in MW/min. The 
markets are cleared for every dispatch interval during the trading interval ahead of real time. 

The market may be formulated as single auction power pool (Figure 9) where only 
suppliers bid in the market or double auction power pool, where suppliers’ bids are cleared 
against customers’ offers [45]. Single auction pool is assumed for all markets considered. 

 

 
Figure 8: Regulation market bid 
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Figure 9: Market clearing in single auction pool 
Type A market is most straightforward and followed at many places of North 

America and North Africa. The simple nature of such a market makes it attractive; however 
there is good reason for suppliers not to participate in such market as it does not differentiates 
among the participants and pays a flat price irrespective of their performance. Type B market 
on the other hand solves that problem and introduces the performance based pricing. The 
qualified generators receive market payment at the rate of their bid price except the fast ramp 
generators which are paid at the rate of MCP. Since the MCP is the maximum possible 
payment available in auction market, recipients get away with an amount of incentive for 
their service. Type C market is somewhat similar to the contingency reserve market, only the 
control here is on a longer time frame. The separation of fast and slow ramp generators 
makes it possible to call upon the appropriate service depending on the magnitude of the 
disturbance. It is also possible to use a combination of these services for cost effectiveness. 
There is no need of added incentive since separate markets would take care of it 
automatically. 

2.2.3  Frequency Control 
The function of the regulation market is to select a set of generators to provide the 

service and to allocate the amount of regulation each are supposed to provide at the time of 
need. The real-time regulation would be performed by Automatic Generation Control (AGC) 
to keep the frequency of the system within safe operating limits and the interchanges between 
the areas at the scheduled value. 
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Figure 10: Classical ACG for two control areas 
For the purpose of modeling it is assumed that the generators in a control area are tied 

together closely, electrically. As a result they oscillate together under minor disturbances. If 
the deviations in frequency and load are small enough, each control area can represented as 
the linear approximation [46] as shown in the Figure 10. 

While modeling the individual generators (Figure 11), it is to be remembered that 
there are limits on the rate at which generators can move their output due to thermal and 
mechanical stress on the equipments. The ramp rate of hydro units are of the order of 100% 
of the rated capacity within minutes. However, the ramp rates of thermal units are limited 
and thermal turbines can be approximated as shown in Figure 12. 

 

 

Figure 11: Model of generator with classical AGC 
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Figure 12: Output of rate limited units 
 
The performance vector η is defined to express the frequency control performance of 

the markets described earlier as: 
max

s

c

f
t
t

η
Δ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (2.1) 

Where, maxfΔ  is the maximum deviation of system frequency after the disturbance, st , 
settling time is the time taken by AGC to bring the frequency back within safe limits, and ct , 
crossover time is the time taken by ACE to cross zero for the first time after the disturbance. 

2.2.4  WECC Case Study 
The proposed markets have been simulated on a reduced WECC model with 225 

buses where the California ISO (CAISO) and LADWP are represented in more detail than 
the rest. The network has been divided into three balancing areas (BA1 to BA3), which are 
summarized below in Table 5. All three areas are interconnected to each other with tie lines. 

The markets are set up on area BA3 where all of the 40 generators submit their bid in 
the regulation market. The market goal is to procure 600MW up and 200MW down 
regulation capacity at a total load of 25000MW for the hour. The bid prices have been 
obtained from the generator cost curves which are of the form ( ) 2C P a bP cP= + +  and the 
dispatch level as per the Optimal Power Flow (OPF). 

It may be pertinent to mention here that in reality the bids submitted by the 
participants depend on a large number of market factors. Also, the payment of bid price 
instead of the clearing price may change the way suppliers submit bids. Our assumption of 
bid price being same as the marginal cost of generation irrespective of the market is solely to 
present a comparative idea about the impact of different market structures in a common 
framework. 
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a) Market Settlement 

i) Type A and B 10-minute markets 
The outcome of settlement for 10-minute regulation market of type-A and type-B are 

same as far as the generators and contracted quantities are concerned. As expected the market 
payment for type-B is less than that of type-A. The final contracts are shown in Table 6. It 
can be observed that the procurement resulted in 6 contracts; the effective ramp rate of the 
system is 61 MW/min.  

 

Table 5: Summary of Control Area Parameters 

Area code No. of generators H (p.u.) D (% per 1%f) 
BA1 13 1685 1.06 
BA2 9 637 0.26 
BA3 40 1076 0.91 

 

ii) Type B 5-minute market 
The settlement of the type-B 5-minute regulation market is shown in Table 7 for the 

same market goal. 15 generators are contracted for regulation which is noticeably higher than 
the earlier case. The reason of higher number of generators being accepted in a 5-minute 
market is due to the fact that in a market with shorter dispatch interval the generators are able 
to bid less for a given ramp rate. The effective ramp rate for the system resulting from the 
market is 140 MW/min. 
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Table 6: 10-min market – Regulation contracts and prices 

Gen# 

Cost of 

generation c, b, 

a) 

Contracted Regulation

Up/Down 

(MW) 

Ramp rate 

(MW/min) 

6 (0.00378, 20, 0 ) 70, 0 7 

8 (0.00224, 20, 0 ) 90, 0 10 

15 (0.00343, 20, 0 ) 80, -80 8 

16 (0.00768, 20, 0 ) 80, -80 8 

17 (0.00193, 20, 0 ) 200, -40 20 

20 (0.030600, 20, 0) 80, 0 8 

    

ISO's burden from these contracts 

Total payment 
Type A: 23226.00 $/h 

Type B: 23113.20 $/h 

Clearing Price Up 38.71 $/MWh 

Clearing Price Down 22.03 $/MWh 

 

iii) Type C market 
Type C market is comprised of a 5-minute fast ramp market and a 10-minute slow 

ramp market. The markets are settled separately each procuring half of the regulation goal. 
The separate markets for fast ramp regulation and slow ramp regulation are shown in the 
Table 8 and Table 9. The two markets separately result in 8 contracts and total market 
payment is 23200.50 $/h. 
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Table 7: 5-minute market – Regulation contracts and prices 

Gen# 

Cost of 

generation 

(c, b, a) 

Contracted Regulation

Up/Down 

(MW) 

Ramp rate 

(MW/min) 

4 (0.00487, 20, 0 ) 100, 0 20 

5 (0.00591, 20, 0 ) 15, 0 3 

6 (0.00378, 20, 0 ) 35, 0 7 

8 (0.00224, 20, 0 ) 30, 0 10 

9 (0.00223, 20, 0 ) 30, 0 6 

15 (0.00343, 20, 0 ) 40, -40 8 

16 (0.00768, 20, 0 ) 40, -40 8 

17 (0.00193, 20, 0 ) 100, -100 20 

20 (0.0306, 20, 0) 40, -20 8 

23 (0.00395, 20, 0 ) 40, 0 8 

24 (0.00222, 20, 0 ) 25, 0 5 

25 (0.01017, 20, 0 ) 40, 0 8 

28 (0.00595, 20, 0 ) 30, 0 6 

29 (0.00769, 20, 0 ) 20, 0 20 

35 (0.04504, 20, 0 ) 15, 0 3 

    

ISO's burden from these contracts 

Total payment 23541 $/h 

Clearing Price Up 39.70 $/MWh 

Clearing Price Down 22.03 $/MWh 
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It is important to note here that the number of contracted generators changes as the 
market structure changes. The appropriateness of any particular market model for a region 
depends on certain factors. Apart from economic policies mandated by the market operator 
and regulatory organization, availability of resources and willingness of suppliers would play 
an important role to decide the right choice of market for a particular region. It can be seen 
by comparing the 5-minute and 10-minute markets of type-A and type B that a shorter 
dispatch interval results in an increase in the number of generators participating in AGC. 
Now, a direct impediment to form a 5-minute regulation market may simply be bid 
insufficiency, since everyone bids into the market only what they can deliver in 5 minutes. In 
such a scenario a reasonable choice would be to keep a 10-minute market overall and add a 
premium to the single market’s regulation price for capacity that can be delivered in 5 
minutes. 

 

Table 8: 5-minute fast ramp regulation market 

Gen# 
Cost of generation 

(a, b, c) 

Contracted Regulation 

Up/Down

(MW) 
Ramp rate (MW/min) 

4 ( 0.00487, 20, 0 ) 100, 0 20 

8 ( 0.00224, 20, 0 ) 30, 0 10 

17 ( 0.00193, 20, 0 ) 100, -100 20 

30 ( 0.00600, 20, 0 ) 70, 0 20 

   

ISO's burden from these contracts 

Total payment 11700.30 $/h 

Clearing Price Up 39.70 $/MWh 

Clearing Price Down 22.03 $/MWh 
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Table 9: 10-minute slow ramp regulation market 

Gen# 
Cost of generation

(a, b, c) 

Contracted Regulation 

Up/Down (MW) Ramp rate (MW/min) 

6 (0.00378, 20, 0 ) 60, 0 3 

15 (0.00343, 20, 0 ) 80, -80 8 

16 (0.00768, 20, 0 ) 80, -20 8 

20 (0.0306, 20, 0) 80, 0 8 

   

ISO's burden from these contracts 

Total payment 11500.20 $/h 

Clearing Price 

Up 
38.71 $/MWh 

Clearing Price 

Down 
22.03 $/MWh 

 
Besides, there are more choices available for controlling these generators to optimize 

the system frequency response. In the next section we will observe how these different 
markets and control systems can affect the system performance. 

b) Performance consideration 
Generators selected in the market as described above provide regulation and the AGC 

assigns regulation load to each selected generator according to some preset participation 
factors (pf) or regulation factors. There may be four ways to determine these participation 
factors. 

o Equal participation factor for all units 
o Proportional to ramp rate of the units 
o Proportional to bid capacity of the units 
o Inversely proportional to marginal cost of generation 

 
 The following cases demonstrate ways to determine participation factors and 

corresponding system response for a load disturbance of 1 p.u in BA3. 

i) Type A & Type B 10-min markets 
10-minutes markets of both type A and B have essentially same performance for the 

reason that the contracted generators are same in both cases. Depending on the method of 
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determining the regulation participation the system response can vary. The following Table 
10 summarizes the response of 10-minute market with four control schemes mentioned above 
that choose the participation factors differently. 

 

Table 10: Performance comparison of four controls 

Participation fΔ (%) st  (s) ct  (s) 

Equal -0.1445 350 112 

Ramp rate -0.13 185 96 

Bid capacity -0.13333 225 92 

1/Marginal cost -0.14167 350 110 
 

Noticeably, frequency response is best when the participation factors are proportional 
to ramp rate. The reason is, with such participation factor every generator is moved by an 
amount which is equal to   ramp rate dispatch interval× . 

ii) Type B 10-min & 5-min markets 
The different dispatch interval of the markets result in a difference in number of 

generators contracted and amount of service bought from each of them. A 10-minute market 
yields 6 contracts whereas a 5-minute market yields 15 contracts. Consequently the effective 
ramping capacity of the system is higher after the later comes into effect. As can be seen 
from the Figure 13, Figure 14, Figure 15 and Figure 16, the frequency response of the 5-
minute market is faster for all the four participation methods. 

The amount that a generator can bid in the market depends on the ramp rate of the 
generator. In case every generator gets its full bid capacity accepted in the market, 2nd and 3rd 
participation factors are essentially same. But a generator’s bid may be partly accepted in the 
market. In that case the control system with 2nd participation method would be different than 
3rd participation method. 
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Figure 13: Frequency response with equal pf 

 

 
Figure 14: Frequency response with pf proportional to ramp rate 

 

 
Figure 15: Frequency response with pf proportional to bid capacity 
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Figure 16: Frequency response with pf inversely proportional to marginal cost 

 
The Table 11 shows the summary of the effect of four participation methods on a 5-

minute market.  
 

Table 11: Performance comparison of four controls 

Participation fΔ (%) st  (s) ct  (s) 

Equal -0.14167 220 76 

Ramp rate -0.13 150 100 

Bid capacity -0.13333 175 76 
1/ Marginal 

cost -0.14167 221.1 78 
 
The crossover time is important in systems where ACE is expected to change signs 

within a certain time. In North America, NERC imposes statistical bounds on the value of 
ACE and the operators are responsible to maintain the values within these limits. 

iii) Type C market 
Unlike the previous two markets, type-C has separate markets for fast ramp and slow 

ramp regulation. To procure a certain amount of regulation from such a market one has to 
decide how much of fast and slow service are to be bought. Then there are multiple options 
available as to how to use them in time of need. For the purpose of our study we have 
procured half of the regulation from each of the fast and slow markets. While using the 
resources to follow the load we have looked into four scenarios using: 

o Fast ramp only 
o Slow ramp only 
o Fast and slow together 
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o Immediate use of fast, then slow service 
For a load disturbance of 1p.u, it is possible to bring the frequency back to normal 

with fast generators alone, as shown in Figure 17 and Figure 18a. 
 

 
Figure 17: Regulation response with fast generators only with: a) Equal participation, 

b) Ramp rate based participation, c) Bid capacity based participation 
 

 
Figure 18: Regulation response with a) only fast, b) 50-50 fast & slow,  

c) only slow generators 
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Figure 19: Regulation with fast response for 1minute and thereafter, a) slow only 

response, b) 25% fast–75% slow combination, c) 50% fast–50% slow response 

 
If only slow generators are used instead, the recovery of frequency is very slow and 

takes a long time to settle down (Figure 18c). But combined together the fast and slow 
generators can recover the frequency quickly and smoothly (Figure 18b). The latter response 
is almost the same as in Figure 18a. which only uses the fast response generators.  

In a typical case the operator may not wish to exhaust the fast service completely and 
call the slow resources to take up the remaining of the regulation load. Though the fast 
market is designed to sustain the service for 5 minute, for the simulation purposes some part 
of the fast resources are relieved after 1 minute of the occurrence of the disturbance. Figure 
19 shows that a. if only slow generators are used for regulation after 1 minute the frequency 
response is quite slow, b. and c. if a combination fast and slow generators are used, is 
possible the recover the frequency within the dispatch interval. The response of case c. is 
smoother than that of b. because of more fast generators. 

Together these cases show that the structure of the regulation market has a direct 
effect on the control performance of the system. Since the maximum amount of regulation 
that a generator can deliver in the market depends directly on its ramping capability, the 
amount of service (capacity) bought in the market also affects the system response. The more 
the procurement, the more would be the number of generators taking part in regulation, and 
better would be the frequency response. An increased participation of the generators with 
faster ramp rates can also be achieved by reducing the dispatch interval. The added 
advantage is more competition and less stress on generators.  

Also it is necessary to incorporate some payment method which would reflect the 
effect of each supplier on the system performance. Splitting up the payment according to the 
ramp rates of the generators as in the type-B market can solve that issue. 

Forming separate markets for fast ramp and slow ramp regulation service can open up 
a lot of possibilities. Not only does it differentiate among the suppliers as per their rate of 
response, but also the payment is decided in an easy and competitive manner.  

It is necessary to say that the right choice of market will somewhat depend on the 
idiosyncrasies of a particular geographical region, e.g. availability of resource or capacity. 
Once a suitable market has been formed there are also certain choices available for control to 
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optimize the performance. In a type-C market it is necessary to decide how much of fast and 
slow service to be procured and the historical profile of use of regulation in the area under 
consideration will play an important role in that division. Apart from that it is also possible to 
decide on the amount of each service to be used depending on the magnitude of the 
disturbance. 

2.2.5  Remarks 
In this section, it is demonstrated that the structure of the regulation market has a 

direct effect on the control performance of the system. Three different market structures were 
chosen to demonstrate the varying control performance on a reduced WECC system. 
Although the first market structure is similar to what is used by the California ISO today, the 
other two were chosen somewhat arbitrarily to show that control performance can be 
improved by providing more incentives for generators with better response (ramp) rates. 
However, the actual market structure will have to take into account the actual response rates 
of available generators. For example, whether a 5-min regulation market can actually be 
developed depends on the types and capacities of generators willing to be part of such a 
market. It is shown that price based or ramp rate based regulation markets can be formed to: 

i) Increase competition 
ii) Encourage generators with incentive 
iii) Explore more control options to optimize performance 

 
Existing regulation markets are flat priced and does not recognize the difference 

among suppliers or reward them appropriately. As the regulation market provides control, it 
is believed that such markets should make the necessary changes that are needed to elicit the 
best control performance possible. 

2.2.6  Accommodating Third Party Load Following into Classical AGC 
Regulation and load following, both addresses the time varying characteristics of 

balancing the generation and load under normal operating condition. While regulation 
matches the generation with minute-to-minute load change, load following uses the 
generation to meet hour-to-hour and daily variations of load [47]. Though restructured 
markets after deregulation recognize regulation and energy, load following is not a 
recognized service. 

In a restructured power system independent competitive generating units are allowed 
to enter into bilateral transactions with Load Serving Entities (LSE) and industrial 
consumers. When these loads come online, Area Control Error (ACE) detects the change and 
accordingly units are dispatched by AGC. However, if the loads ramp up too fast, ACE 
becomes too large and it takes a long time for the frequency to recover. Hence, the larger the 
variation in load, the more it endangers the dynamic stability of the system. Also as an 
aftereffect of large values of ACE future regulation estimates are increased, which in turn 
increases the cost of procurement. For that reason it is desirable to quantify the load 
following requirement and keep the regulation procurement as low as possible. 

Recent impetus for facilitating load following as an ancillary service has led to the 
conception of a new “AGC like” scheme [48] where a decentralized market for this ancillary 
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service has been proposed, suggesting procurement of load following through bilateral 
contracts. Thus ISO is relieved from this burden and ultimate responsibility for performance 
is moved to the supplier. 

In an alternative approach, load following can still be procured in a bilateral market 
while ISO will control response of each supplier to ensure acceptable performance. To 
incorporate this centralized control over bilateral exchange it is necessary to integrate third 
party load following with the usual AGC. In the next section, a method to provide load 
following service is presented in the existing framework of AGC by changing the method of 
calculation of ACE and unit error. Then a comparative study between the proposed method 
and the separate third party control shows the effectiveness of this method in terms of control 
performance of the system. 

2.2.6.1  AGC with Third Party Load Following 
Let us consider a power system where control areas are connected via tie lines. In classical 
AGC system the ACE after a disturbance is calculated from the change in scheduled 
interchange flows and frequency [46], [49] as follows: 

TieACE P B ω= Δ + Δ  

The change in tie line flow is nothing but the difference between the generation and load in 
the area given by: 

Tie G LP P PΔ = Δ − Δ∑ ∑  

The control signal to a unit is then given by:  
1

0

( )
t

t tu pf ACE ACE dτ τ
−

= × + ∫  

The participation factors pf are empirical for a particular system. 

Let us now assume that generators inside the control area enter into bilateral contracts 
with loads. For any generator with real power output GiP  and bilateral load BiP  the 
instantaneous unit control error (CE) is: 

1
i Gi Bi i

i

CE P P D
R

ω
⎛ ⎞

= − + + Δ⎜ ⎟
⎝ ⎠

 

If the generator also takes part in regulation with a participation factor pf the instantaneous 
unit control error would be: 

( ) 1
i Gi Bi R i

i

CE P P pf P D
R

ω
⎛ ⎞

= − + + + Δ⎜ ⎟
⎝ ⎠

�  

Now, taking sum over all the control errors inside the area we get: 
1

i Gi Bi R g
area area area area area g

CE P P pf P D
R

ω
⎛ ⎞⎛ ⎞

= − + × + + Δ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑  
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1
i Gi Bi R area

area area area area area

CE P P pf P D
R

ω
⎛ ⎞⎛ ⎞

≈ − + × + + Δ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑  

 
Hence    i Tie

area
CE P B ω≈ Δ + Δ∑     

The signal to a participation unit can be written as: 
1

0

t

t tu CE CE dτ τ
−

= + ∫  

It can be seen that the ACE for an area in classical AGC system is equivalent to the 
sum of all the unit control errors in that area. Consequently it is possible to dispatch the 
bilateral load along with the regulation load simultaneously without changing the AGC 
control structure. Although it would be necessary to calculate the control error for each and 
every generator in that area and all the transactions with the generators have to be accounted 
for. It is also possible for the generators to take part in contracts across the control area 
boundary as would be demonstrated in the following simulation results. 

2.2.6.2  Case Study 
The control scheme has been simulated on an experimental three-area system as 

shown in Figure 20. The areas have two, three and four generators respectively. The 
summary of the three balancing areas are shown in Table 12. Bilateral contract of generator 
G3 is in area 3. 

The frequency response of the system has been shown in Figure 21. For the sake of 
comparison the response of third party control [48] on the same system is also shown. It can 
be seen that the proposed scheme bring the frequency back to normal effectively. Comparing 
the response times of the two schemes mentioned, it can be seen that load following AGC is 
faster. 

 

 
Figure 20: 3-area system connected via tie lines 

 
In the proposed method there is no ACE since CE is calculated for each supplier and 

close to the aggregated value of bilateral and regulation load. Figure 22 and Figure 23 
demonstrates that the maximum values of CE and ACE are, in fact, comparable. Hence, such 
a scheme, if implemented, can be configured to perform within the NERC specified control 
performance criteria. 
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Table 12: Summary of three balancing areas 

 Area 1 Area 2 Area 3 

Generators G1 G2 G3 G4 G5 G6 G7 G8 G9 

AGC         

Bilateral Load 0 0.2 0.1 0 0.2 0 0.1 0.1 

Reg. load 0.5 0.2 0 

Reg. pf 0.5 0.5 0.5 0 0.5 0.33 0.33 0.33 

 
Another advantage of AGC with third party load following is that a generator which 

takes part in bilateral contract can participate in regulation too. In area 1 two generators are 
on AGC and one of them has bilateral load. In Figure 24, it shows that with third party 
control the regulation load is supplied solely by G1 since G2 has a bilateral load. But with 
load following AGC the regulation load is shared by both G1 and G2 depending on their 
regulation participation factor (Figure 25). The bilateral load is served by G2 alone. Hence, 
load following AGC helps more generators to take part in regulation making the frequency 
response faster. 

Figure 26 and Figure 27 show the area 2 generations under the two different control 
schemes. The regulation load is supplied only by G3 in Figure 26 but in Figure 27, the 
regulation is shared by G3 and G5 since G4 is not on AGC. In both cases G3 serves a 
bilateral load in area 3. Figure 28 and Figure 29 show the generation response in area 3. In all 
instances the generators which are not on AGC reduce their output to zero at the steady state. 

 

 
Figure 21: Frequency response a) classical AGC and third party control  

b) load following AGC 
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It is imperative for implementation of such control that all the generators entering in a 
bilateral contract should be on AGC even if they are not taking part in regulation. That 
implies almost all the generators in the network should have the communication facility to 
receive command from AGC. 

 
Figure 22: ACE for three areas with classical AGC and third party control 

 
Figure 23: CE for 10 generators with load following AGC 

 
Figure 24: Area 1 generation – third party control 
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Figure 25: Area 1 generation – load following AGC 

 
Figure 26: Area 2 generation – third party control 

 

 
Figure 27: Area 2 generation – load following AGC 
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Figure 28: Area 3 generation – third party control 

 
Figure 29: Area 3 generation – load following AGC 

 

2.2.6.3  Remarks 
The results of the experiment described above show that proposed load following 

AGC scheme can be used for frequency control. With bilateral load following integrated with 
the AGC, frequency can be brought back to desired value faster than separate third party 
control and with reasonable smoothness. Both regulation and bilateral loads can be served 
with such a control without the need of additional control hardware. Since every transaction 
is cleared by the System Operator, such scheme does not bring any additional burden, rather 
it becomes convenient to monitor the performance of individual service providers and 
maintain the power quality.  

It is to be noted that by fixing the participation factor at a proper value the regulation 
participation of a generator in the system can still be controlled. The local control loop for 
third party control would force the output of a generator at its contracted value. Consequently 
the generators entering into bilateral contracts would not be able to participate significantly 
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in regulation. Such restrictions are not present when bilateral load following is integrated 
with the AGC. As a result a supplier can take part in both markets if it wishes to do so. The 
ways in which the regulation participation can be determined is discussed in detail in the 
previous section. 

In case a generator enters into a bilateral contract with a load outside the territory of 
the control area it has to be under control of the AGC of the area where the load is situated. 
In that case it would be expected that the generator would not take part in regulation in the 
home control area, because that would create conflict among two AGC signals. 

The necessity to recognize load following as an ancillary service has already been 
discussed and addressed in the literature. The current deregulated market does not recognize 
load following. As a result the operation and maintenance cost for dispatching the units to 
follow the ramping loads accrue on the price on energy. Hence it is necessary to define and 
quantify load following service in the new market system and that will help to procure this 
service in a competitive manner and reduce overall price of energy. With the proposed 
scheme a load following market can be formed where the service would be procured as 
bilateral contracts between the supplier and load, yet the ultimate responsibility for 
performance would be on the hand of ISO or the equivalent authority. Alternatively a short 
term load following market may also be developed in this framework. Generators can 
competitively bid for a certain amount of load following service in such a market and ISO 
can procure the service for a given market goal. 

2.3  Feasibility of VAR Markets for Secondary Voltage Control 

2.3.1  Preface 
From the system perspective, the task of voltage control can be organized into a three 

level hierarchy, primary, secondary and tertiary. The primary voltage control is essentially a 
local control whose objective is to keep the voltage at the local bus at specified value using 
the automatic voltage regulator (AVR) of the generating unit. The secondary voltage control, 
often automatic centralized control, coordinates the actions of the voltage regulators of the 
generating units in a region of the network, and targets to keep the voltages at multiple buses 
in that region at the proper level. The tertiary control is manual control used to coordinate 
and optimize the reactive power flow across networks. The overall task of all three controls is 
to maintain a proper voltage level over the network, to reduce congestion and to minimize 
transmission losses. 

The provision of primary voltage control is compulsory in most power systems all 
over the world as it is necessary as part of the connection requirement to the grid (just as the 
primary frequency control by generator governor is mandatory). In some regions (Europe, 
China) secondary voltage control is being used sometimes even with a tertiary control that 
coordinates the secondary [50-51]. This service is sometimes paid a regulated price or via 
bilateral contract, but there has never been a competitive market for it. Secondary voltage 
control, on the other hand, is not a compulsory service and has been implemented in only a 
handful of European countries [52]-[54]. The system operator or ISO determines the reserve 
requirement and procures the reactive power resources through bilateral contracts or pay as 
bid contracts. 
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In recent works to investigate the feasibility of voltage control ancillary service 
markets it has been shown that area voltage control is especially suitable to form competitive 
markets for secondary voltage control due to its relatively local nature [55]. To implement 
such control, the network has been divided into a number of independent and uncoupled 
regions, called Voltage Control Areas (VCA) [56]. The voltage profile inside the VCA is 
then maintained by controlling the voltage reference set point of the generators in that region. 

Here through experiments, it is shown that formation of a VAr market is possible 
with a similar method of voltage control by adjusting the reactive power generation at the 
units. The difference of this method from the earlier scheme is that a direct VAr set point is 
sent to the unit instead of voltage reference. In a case study of the same power system 
mentioned earlier, the feasibility of VAr markets with both types of control methods has been 
investigated side by side.  

Apart from the voltage control methods described earlier, which are devoted means of 
secondary control, voltage at the load buses in a radial network can also be controlled by 
using automatic tap changing transformers. In modern power systems transformers on the 
load buses are under the direct control of the ISO and when voltage variation at the load 
buses are relatively small these are corrected by coordinated adjustment of tap changers. Due 
to limited capability transformer tap control may be used only as the preliminary tool of 
voltage control after a substantial disturbance occurs. The responsibility then can be taken 
over by the other specialized secondary voltage control. Before turning our attention to area 
wise voltage control, application of a centralized tap changer control has been explained and 
demonstrated in the next section. In section 2.3.3, voltage support by area voltage control 
methods have been elucidated in detail. 

2.3.2  Voltage Support by Transformer Tap Control 

2.3.2.1  Problem Formulation 
The centralized control of tap changers in a network is shown in Figure 30. With 

controllable transformer buses present in the system, all the buses in the system can be 
categorized into three basic types, viz. PV or generator buses, PQ or load buses and TC or 
transformer controlled buses. Table 13 shows the known and unknown variables for each 
type of bus. TC buses are similar to PQ buses except the voltage is fixed at upper or lower 
limit and the tap ratio is varied to keep the voltage constant at that value. Consequently the 
tap ratio is unknown at a TC bus. 

 

Table 13: Known and unknown variable at different buses 

Bus type PV PQ TC 

Known P, V P, Q P, Q, V 

Unknown δ, Q δ, V δ, t 
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The desired tap ratio can be calculated by solving the power flow. For each bus the 
power flow equations are given by: 

( )
1

cos
N

i gi Li i ij j i j ij
j

P P P VY V δ δ θ
=

= − + − −∑
 

( )
1

sin
N

i gi Li i ij j i j ij
j

Q Q Q VY V δ δ θ
=

= − − − −∑
 

The Jacobean is calculated as: 
P P P

V tJ
Q Q Q

V t

δ

δ

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂= ⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦  

The system operator has to monitor all the transformer buses for violation. When a 
violation occurs the controller will determine desired tap ratio and send it as a control signal 
to the respective bus. 

It is important to note here that this type of control can have cascaded effects on the 
network. Change in tap ratio at one transformer can trigger voltage events at some 
neighboring buses. Consequently a number of complete control cycles may be needed before 
the all buses are at proper voltage level.  

There are also upper and lower limits on tap ratios of a transformer. Naturally, 
voltage control capability of this scheme is limited by the range of the tap changer. Hence 
such scheme cannot be expected to take up the absolute responsibility of voltage control in a 
network, rather it can work as a preliminary control which would come into effect before 
other secondary voltage control are deployed. For example, once the system is perturbed and 
the voltages at the load buses fall outside the reliability limits, tap changer control may be 
deployed to correct the voltages at the buses which are equipped with tap changing 
transformers, and then the reactive injection at the generator buses can be controlled to 
correct the remaining violations. 

 



 

49 

 
Figure 30: Automatic adjustment of tap changers 
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2.3.2.2  Case Study 
The control method has been tested on the same WECC 225-bus model that has been 

mentioned in the frequency control sections. For the sake of convenience the admissible 
limits are assumed to be max 1.06V =  and min 0.94V = .  

Table 14 shows the load buses which are outside the admissible range at the steady 
state condition and the voltage after the tap changers have been modified. The initial and 
final values of the tap ratios at the transformer are shown in Table 15. 

 

Table 14: Buses voltages before and after tap changer control 
Bus No Initial Final 

55 0.935 0.94 

61 0.93 0.94 

67 1.076 1.047 

68 1.073 1.06 

71 1.069 1.059 

143 0.932 0.942 

146 0.923 0.94 

184 0.935 0.942 

187 0.917 0.94 

 
The limited voltage control capability of tap changers makes it suitable for small 

voltage variation at the load buses. If the voltage variation is large more dedicated voltage 
control methods like the ones described in the subsequent sections are necessary to take over 
the control. Hence it can act as the preliminary tool to condition the network for reactive 
injection control or voltage reference control. 

2.3.2.3  Remarks 
The purpose of the above example is to demonstrate that small voltage disturbances 

in a network load buses can be eliminated by systematic control of transformer tap changers. 
The control of these transformers is under direct supervision of ISO. However, no market 
formation is feasible since transformers in a network are owned by the transmission 
companies. 
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Table 15: Tap ratios before and after control action 

From bus To bus
Tap ratio 

Initial Final 

52 51 1.0017 1.001 

53 51 1.0017 1.001 

54 51 1 1.001 

54 51 1 1.001 

56 55 1.0106 0.934 

56 55 1.0106 0.934 

60 61 1.0133 1 

68 67 0.9873 1.002 

69 68 1.0238 1.07 

69 68 1.0238 1.07 

72 71 1.0234 1.022 

140 143 1 0.993 

145 146 1 0.942 

151 187 1 0.929 

151 187 1 0.929 

151 187 1 0.929 

183 184 1 0.983 

183 184 1 0.983 

 

2.3.3  Voltage Support by Area Voltage Control 
Unlike AGC in previous sections, voltage control is almost always done locally (i.e. 

primary control) and only a few regions, mainly in Europe and China, have implemented 
secondary control. It is unlikely that an auction market can be set up with only primary 
control (although bilateral contracts are common), so we assume secondary control in our 
control schemes here. In this section, it is shown that voltage control performance will be 
affected by two factors: 

• Methods of control implementation  
• Methods of setting up the market 

A. Methods of control 
Method of control may typically be either manual or automatic. In the scope of this 

discussion, the focus our attention is on the automatic control of reactive power dispatch 
level of the generators on the network. The automatic area voltage control can be 
implemented by: 

• Adjusting the voltage reference set point of the controlling units 
• Adjusting the VAr injection at the point of dispatch of the generator 
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Scheme 1:  
The control method and logic of voltage reference adjustment is well discussed in 

[55]. For the sake of simplicity it is assumed that voltage control areas (VCA) can be formed 
in a network that are largely uncoupled and have little effect on the voltage at the buses in the 
neighboring VCA s. To make sure that an acceptable voltage profile is maintained 
throughout the network all the load (PQ) buses are continuously monitored and if the voltage 
at a monitored bus falls outside the permissible limits the controller would automatically 
generate an appropriate error signal proportional to the violation. When there are violations at 
multiple buses the largest violation would set the error signal. 

max( )i limitV Vε = − ,  1... PVi N=  
The error signal is then converted to appropriate control signal with the help of a set 

of weighting factors and used to adjust the voltage references of the generators.  

Scheme 2:  
This control scheme (shown in Figure 31) determines the error in the same way. The 

control signal is generated from the error signal by using the sensitivity of the controlling 

units towards the error signal. Assuming there are GN  number of controlling units in the 
VCA and violation VΔ  at bus i  to be the maximum magnitude amongst all the violations in 
the area, the control signal for each generator can be formed as:  

i
j

j

Vcs V
Q

⎛ ⎞∂
= Δ ⎜ ⎟⎜ ⎟∂⎝ ⎠ ,  1... Gj N=  

The value of the reactive sensitivity can be used from the ones derived for separation 
of VCA s [56]. The new level of reactive power generation at controlling unit j can be 
expressed as: 

  
*

j new j oldg g j
i

j

VQ Q K
V

Q

Δ
= +

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠  

The participation of each controlling unit can further be controlled by another set of 

weighting / participation factors jK , which can be determined based on the individual 
characteristics of each generators inside the area. As the quantity jcs  may not be essentially 
zero, the K factors for units outside a VCA can be made zero to prevent them from 
participating in the control action. It is also possible to distribute the responsibility of control 
over a multiple VCA s by setting nonzero values to the participation factors. 

Though the end results of both control schemes are maneuvering of reactive reserve, 
scheme 2 has some transparency in term of VAr, since the operating target of the controlling 
unit would always be explicitly defined. The reactive generation level of the unit is not 
known beforehand when the controlling quantity is the voltage reference. 
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Figure 31: Automatic adjustments of reactive injection 

 

B. Ancillary Market 
The payment expectation of a generator in an ancillary VAr market comprises of two 

components (Figure 32). 
• A cost component proportional to capacity made available 
• A second order cost component to account for the lost opportunity 

 
As a requirement for connection to the grid generators are required to be able to 

operate within a specified power factor limits while serving the load. This usually is not 
considered as an ancillary service, and no payment is associated with it. 

 



 

54 

 

Figure 32: Ancillary service zone and payment 
 
Following this payment method a VAr market can be set up on top of the above 

mentioned control scheme as follows. 
Voltage control market – For the control scheme 1 the reactive power level of the generator 

is not known beforehand. Hence voltage levels can be determined from the generator 
capability curve and payment would be for the VAr needed to maintain the reference 
voltage so that the reactive power in within the ancillary service range. 

VAr control market – For the control scheme 2, the reactive power output is explicitly 
specified. Hence a direct VAr market can be formed with payment for maintaining 
the VAr output of the generator in the ancillary service range. 
Procurement from these markets can be decided by a regular auction method within 

each VCA. It may be desirable to coordinate the voltages across the VCAs through a 
modified Optimal Power Flow [57], sometimes called tertiary control. However, it is not 
consider this in our experiments here. 

2.3.4  Case Study 
Proposed control schemes were tested on the reduced WECC model described earlier. 

Among 225 buses represented in the system 40 are generators. As an initial condition all the 
load buses except the boundary buses are held between the permissible values of 

max 1.08 . .V p u=  and min 0.985 . .V p u=  respectively. To implement area voltage control the 
network has been divided in 24 VCAs. The simulations are focused on the central California 
region, VCA#16 consisting of 37 buses, 8 of which are controlling units. The names and 
types of the buses are shown in Table 16. Using summer 2004 loading data as the base case 
the load profile of the entire network was increased by 10%. The voltage reference refV  at the 
controlling units and the reactive power injection MVAr values at the steady state are shown 
in the Table 17. The voltage at load buses #121, #133, #195, #199 and #204 are found to be 
0.978, 0.962, 0.936, 0.925 and 0.949 respectively. Initially 0.925 drives the control. Starting 



 

55 

from this condition control has been implemented to bring the voltage back within admissible 
range. First automatic voltage reference correction of controlling units (A) has been used, 
and then area voltage control with automatic reactive injection adjustment (B) has been 
implemented. 

A. Voltage reference adjustment 
The voltage sensitivity to reactive injection at the 8 controlling units for the 5 load 

buses are shown in the Table 18. It can be seen that Gen #110, #198 and #218 are most 
influential. Hence natural participation factors of these units are higher than the others in a 
perturbation. 

 

Table 16: VCA#16 bus type and location 

Bus # Type Bus # Type Bus # Type Bus # Type 

110 Gen. Bus 133 Load Bus 204 Load Bus 218 Gen. Bus 

111 Load Bus 134 Load Bus 210 Gen. Bus 219 Gen. Bus 

116 Gen. Bus 173 Load Bus 211 Load Bus 220 Load Bus 

117 Load Bus 192 Load Bus 212 Load Bus 221 Load Bus 

118 Gen. Bus 193 Load Bus 213 Load Bus 222 Load Bus 

119 Load Bus 195 Load Bus 214 Load Bus 223 Load Bus 

121 Load Bus 198 Gen. Bus 215 Load Bus 224 Load Bus 

122 Load Bus 199 Load Bus 216 Load Bus 225 Load Bus 

132 Load Bus 202 Load Bus 217 Load Bus 226 Gen. Bus 

 

Table 17: Steady state condition after perturbation 

Bus No Vref MVAr 

110 1.013 36.52 

116 1.05 948.64 

118 1.035 1504.01 

198 1.035 366.87 

210 1.035 290.76 

218 1 613.35 

219 1.007 835.99 

226 1.035 129.17 
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Table 18: Voltage to reactive injection sensitivity 

 Bus #121 Bus #133 Bus #195 Bus #199 Bus #204

Gen #110 0.021 0.017 0.036 0.029 0.028 

Gen #116 0.005 0.001 0.024 0.021 0.022 

Gen #118 0.005 0.001 0.024 0.021 0.022 

Gen #198 0.017 0.012 0.048 0.038 0.037 

Gen #210 0.006 0.001 0.04 0.035 0.039 

Gen #218 0.014 0.012 0.023 0.018 0.017 

Gen #219 0.008 0.003 0.028 0.025 0.026 

Gen #226 0.009 0.005 0.027 0.023 0.024 

 

From a control point of view there are three cases that can be considered. 

Case A.1. All units are used for control together 
The new steady state condition is shown in Table 19 when all of the 8 generators are 

used for control by adjusting voltage set point. The voltages at all the 5 load buses are now 
within the admissible range. The weighting factor used for all 8 units is 1. Total reactive 
power generated is 20102.71 MVAr and the reactive power generated by the controlling units 
is 4828.78 MVAr. It can be seen that the reactive power produced by the controlled units 
have increased from 2531.81 MVAr while total reactive power is less than 22703.35 MVAr 
without voltage control. 
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Table 19: Case A.1. Voltage reference adjustment at all 7 units 

Bus No Vref MVAr 

110 1.073 193.99 

116 1.1 831.37 

118 1.095 1458.68 

198 1.095 489.15 

210 1.095 299.42 

218 1.06 600.45 

219 1.067 826.73 

226 1.095 128.99 

Case A.2. Most influential units are used first 
Now, initially three most influential units #110, #198, #218 are used to control the 

voltage. When these units reach maximum voltage limit other less influential units are used. 
The participation factors for all units are 1. The steady state values of   and reactive power 
MVAr are shown in Table 20. The total reactive injection is 20229.98 MVAr. Total reactive 
power generated by the controlled units is 5024.42 MVAr. 

Case A.3. Less influential units are used first 
Units #116, #210, #219 and #226 are used for control initially, all with weighting 

factor 1. After these units reach their maximum voltage limit other units are called upon for 
control. The steady state values of voltage reference and reactive power injection at the 
generators are shown in Table 21. Total reactive injection in this case is 20039.68 MVAr. 
Reactive power generated by the controlling units is 4980.99 MVAr. 

 

Table 20: Case A.2. Voltage reference adjustment of most influential units 

Bus No Vref MVAr 

110 1.1 212.4 

116 1.1 736.03 

118 1.065 810.57 

198 1.095 457.11 

210 1.1 287.85 

218 1.1 1056.69 

219 1.1 1343.78 

226 1.1 76.56 
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Table 21: Case A.3. Voltage reference adjustment of less influential units 

Bus No Vref MVAr 

110 1.1 205.41 

116 1.06 688.36 

118 1.084 1310.21 

198 1.1 463.68 

210 1.084 316.43 

218 1.1 1321.98 

219 1.056 603.23 

226 1.084 115.12 

 
These three cases above show that as more reactive power is generated inside an area 

to counteract a voltage disturbance, total reactive power consumption of the system is 
reduced. For example, in absence of voltage control the generators inside VCA #16 supply 
2531.81 MVAr. When voltage control is used total VAr consumption of the system for all 
three cases is less than this value. The reason is intuitive; higher availability of reactive 
power inside an area reduces the need to transport it from units far from the area, thus 
reducing absorption and loss over the network. Again, use of the most influential units first 
result in reduced reactive injection inside the VCA than using less influential units, which is 
justified, since more influential units would improve the voltage at the neighboring buses 
more effectively, i.e. at the cost of less reactive power. 

B. Reactive injection adjustment 
Now, control scheme 2 is used to manage the same disturbance. To implement the 

control the sensitivity of each unit towards the voltage variation, which drives the control, is 
determined. The sensitivities of the 8 controlling units inside VCA#16 towards a voltage 
variation at bus #195 are 0.036, 0.024, 0.024, 0.048, 0.04, 0.023, 0.028 and 0.027 
respectively. Then K is chosen accordingly for three scenarios. 

Case B.1. All units are used for voltage control 
All units are used simultaneously for voltage control by adjusting reactive injection. 

Table 22 shows the new steady state voltage reference and reactive injection at the generators 
with K values of 1 for all 8 controlling units. The voltages at all the five load buses are within 
limits and the new reactive injection is 19971.47 MVAr compared to the reactive injection of 
22703.35 MVAr before voltage control. Less amount of reactive injection indicates less 
congestion and lower loss. The reactive power generated by the controlled units is 4974.69 
MVAr. 

Case B.2. Most influential units are used 
Units #110, #198 and #218 are used for voltage control. The K values for these three 

units are 2.5 and others are 0. Due to higher participation factors these units increase their 
reactive injection more than others. The steady state voltage and reactive injections at the 
generators are shown in Table 23. Total amount of reactive injection in this case is 20191.96 
MVAr. The reactive power generated inside the VCA is 4460.75 MVAr. On contrary to A.2, 
voltage control is possible by adjusting the reactive injection of the most influential units 
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only. Higher reactive injection inside the VCA result in an overall lower reactive power 
consumption in this case. 

 

Table 22: Case B.1. Reactive injection adjustment at all units 

Bus No Vref MVAr 

110 1.1 204.91 

116 1.1 723.99 

118 1.075 914.43 

198 1.1 452.46 

210 1.1 290.76 

218 1.1 1025.29 

219 1.1 1286.3 

226 1.1 76.55 

 

Table 23: Case B.2. Reactive injection adjustment at most influential units 

Bus No Vref MVAr 

110 1.1 209.9 

116 1.1 869.01 

118 1.075 1146.08 

198 1.1 465.07 

210 1.072 251.34 

218 1.1 765.46 

219 1.062 618.82 

226 1.1 135.07 

 

Table 24: Case B.3. Reactive injection adjustment at less influential buses 

Bus No Vref MVAr 

110 1.085 10.28 

116 1.1 724.59 

118 1.075 931.71 

198 1.075 348.36 

210 1.1 277.28 

218 1.1 1213.66 

219 1.1 1289.53 

226 1.1 76.54 
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Case B.3. Least influential units are used 
In this case the less influential units at bus #116, #210, #219 and #226 have K value 

2.5 and two of the most influential units #110 and #198 have K values 0.5 and 2.5 
respectively. The steady state voltage and reactive power injection at the generating units are 
shown in Table 24. Noticeably most of the reactive power is produced by the less influential 
units. As in this case it is not possible to rectify all the voltage violations by adjusting the less 
influential units. Hence some of the most influential units have also been called upon to 
correct the violations. Total reactive injection in this case is 20085.04 MVAr. Reactive power 
generated inside the VCA is 4871.95 MVAr. 

Comparing the total VAr consumption in B.1, 2 and 3 it can again be observed that 
overall power consumption of the system is reduced as the generators close to the perturbed 
buses increase reactive power injection. In B.1, generators in VCA #16 supply 4974.69 
MVAr to achieve overall consumption of 19971.47 MVAr, whereas in B.2, supply in the 
VCA is 4460.75 MVAr for a total consumption of 20191.96 MVAr. When a system is 
divided into a number of areas and using types of voltage control methods described here, it 
may be particularly helpful for system operator to utilize the above mentioned knowledge for 
reserve requirement planning. 

2.3.5  Impact Analysis 

Controllability 
The type of voltage control scheme dictates the way reactive resources can be 

controlled and to the extent they can be controlled. In case A.2 all of three most influential 
units are used first to correct the low voltages at the load buses. But as these generators 
reached their maximum reference voltage level, it was necessary to call upon the other less 
influential units for control. In case B.2, direct reactive set points were sent and these three 
units turned out to be sufficient to provide the VAr needed for the situation. Comparing the 
examples A.2 and B.2, in both of the cases most influential units are used to control the 
voltage, but clearly the later is advantageous because the reactive power to be produced by 
the units were predefined by the control. When controlling by the reference voltage, no 
control action can be taken on a generator once their voltage reaches maximum limit, but 
when units are controlled by direct VAr adjustment, the reactive output level of the generator 
is precisely known and it is the responsibility of the local primary control to produce it in 
whichever way is convenient. Hence there is certain amount of advantage in terms of control 
that can be gained from such a scheme. Also this gives the operator flexibility to use the 
resources which he thinks best from reliability or economic point of view. 

The conventional way of allocating the reactive power to a unit is through OPF. But it 
is necessarily a manual control. In real-time the voltage incident may occur in dynamic range 
i.e. within a few seconds. The discussed methods of secondary voltage controls are automatic 
and can perform in real-time like automatic generation control (AGC). So the operator has 
some time to react and move the point of operation in safe zone. 
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Performance 
It is evident from all the examples above that the more the number of controlling 

units in a VCA is used to control a voltage event the lower is the total consumption of 
reactive power and loss. In case B.1 all 8 generators have been used at once and the total 
reactive injection is 19971.47 MVAr. In B.2 and B.3, generators are used according to the 
sensitivity and the total reactive power injections are 20191.96 MVAr and 20085.04 MVAr 
respectively. In A.1, A.2 and A.3, all the eight units have been used. In A.3, practically all 
the units except two have reached the maximum voltage level. Naturally A.3 results in least 
system VAr consumption amongst those three cases. Hence involving more generators inside 
a VCA reduces the overall reactive injection because when generators close to the perturbed 
buses are able to supply the necessary reactive power, the need for transporting reactive 
power into the area is minimized and absorption and transmission loss is decreased. 

While comparing the control performances of the methods described in this paper it 
should be mentioned that scheme 2, i.e. voltage control with direct VAr adjustment is better 
in terms of control, since reactive generation of each controlling unit is precisely known and 
hence total power consumption and VAr reserve can managed with relative ease. However, 
such control, being based on OPF, will behave conservatively and try to keep voltage levels 
close to lower limits. Scheme 1 i.e. generator voltage adjustment, on the other hand, may be 
more likely to maintain a better voltage profile by pushing the voltage at controlling units at 
higher value. 

Economic consideration 
The secondary voltage control methods discussed earlier are particularly suitable for 

creating competitive markets for VAr. For control scheme 1 a voltage control market can be 
formed where suppliers would bid reactive capacity and will be paid according to uniform 
clearing price calculated by OPF. The real time control of units will, however, be in voltage. 
Necessary measure has to be taken to operate the units within market awarded reactive limits. 
Similar VAr market can be formed for control scheme 2 as well. 

While considering competitive markets for voltage control it is to be kept in mind that 
unlike frequency, voltage behavior of a network is locally influenced. Naturally, some of the 
generators may be absolutely necessary for voltage support due to their locational advantage. 
For example in almost all the cases described here, generator #110 has to be used to rectify 
all the bus voltages. In cases A.2 and A.3 it is necessary to involve both types of generators 
in control. In real market such units would be aware of their advantage and given the profit 
seeking nature of market participants, may try to influence the clearing price. If that be the 
case, market power may be unavoidable. One way to avoid that situation may be to split the 
market. Some amount of service can be made mandatory and the ISO can go into long term 
bilateral contracts with the generators and then create a short term market for the balance 
quantity. 

It is also to be noted that the availability of the resources would not only be affected 
by its location in the network, but also by the market that it participates in. If a market fosters 
competition and involves more generators to procure the goal, it is better for the performance 
and thus minimizes congestion and loss. Importance has to be given on the performance 
considerations, not only the cost and a tradeoff have to be made to maintain a balance 
between to two. 



 

62 

2.3.6  Remarks 
A comparative study of area voltage control schemes is presented in this section. 

Control of voltage is possible by adjusting the reactive power injection at the generators. 
Compared to controlling the voltage reference of a unit, this scheme provides the operator 
with better controllability over the reactive resources while being equally effective in 
reducing the congestion and loss. A competitive VAr market seems feasible in this control 
framework.  

To achieve a better performance in terms of voltage profile, the market should make 
sure that sufficient amount of service is procured. For that purpose it may be necessary to 
involve more number of service providers. Consequently some resources may turn out to be 
crucial for control and stability of the system. In a spot market these resources may acquire 
market power. 

2.4  Conclusions 

In this work, it is demonstrated that the structure of ancillary service markets affect 
system performance. Those ancillary services that provide control, like the regulation market 
to control frequency and the VAr market to control voltage, are particularly important to 
design properly so that the desired control performance is obtained at the best price. This 
means that the structure of the ancillary markets should be such that those generators that can 
contribute more towards better control should be encouraged by the proper incentives. In the 
case of the regulation market this usually means the recognition that generating units with 
faster response (ramp) rates are more important to load balancing and frequency control. In 
the case of VAr markets, the speed of response is not as important as the location of the units 
and their VAr production capacities, i.e. voltage control is more sensitive to the electrical 
proximity of the VAr sources. 

A simple experiment is chosen to show that the regulation market has a direct effect 
on the control performance of the system. Three different market structures were chosen to 
demonstrate the varying control performance on a reduced WECC model: the first is similar 
to what is used by the California ISO today but the other two were chosen somewhat 
arbitrarily to provide more incentives for generators with better response (ramp) rates. In the 
second structure, a second bid market for 5-mintue capacities is developed in addition to the 
existing 10-minute capacity market. The 5-minute market can be used for better control than 
the 10-min market and at the same time these faster generators can be rewarded with higher 
prices. In the third structure, separate markets for fast and slow units based on ramp rates are 
formed. 

A comparative study of two different area voltage control schemes is presented to 
demonstrate feasibility of voltage control by adjusting the reactive power injection from the 
generators. A competitive VAr market seems feasible in either of these control frameworks. 
To achieve better performance in terms of the voltage profile, the market has to procure 
sufficient amount of reactive power reserve. A market for VArs for that purpose will provide 
the option to choose amongst resources. Unlike frequency control which is controlled very 
close to 60Hz, voltages are controlled within a band so that the robustness of the voltage 
profile maintained determines the VAr resources utilized. However, it is shown that just as in 
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the regulation market certain generators provide better voltage control because of their 
location and VAr capacities and either scheme used in this paper will provide market 
incentives to the more effective generators. 

This work shows that ancillary markets should be structured to reward those 
properties of the generator that better helps the ancillary service. It should however be made 
very clear that it may not always be possible to create such a market and there has to be 
enough generators in the market with similar capabilities to generate competition. For 
example, if there are only one or two generators with fast ramp rates in a balancing area of 
largely slow thermal units, these fast units will have too much market power in a spot market 
that incentivizes ramp rates. Similarly, if there are not enough generators near a load center 
to control the voltage, the few nearby generators will exercise too much market power to 
develop a viable VAr market. 
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Part 3.  Power System Electricity Market Agent Model 

3.1  Introduction 

Active customer participation in electricity markets is expected to improve market 
performance and to improve profit for suppliers and lower expenditures for customers. In this 
project, the electricity market is modeled using three agents: the supplier, the customer and 
the market. The objective is to conclude on the possible improvements to the electricity 
markets if active customer participation was allowed.  

The first part of our work consisted of an extensive research on the electricity markets 
to understand the need for customer participation. Thanks to this background knowledge, the 
design choices for our model were made. The main difficulty of the implementation of our 
model was to create an efficient learning algorithm for our agents and to program the 
market’s mechanisms correctly to map the agents’ interactions. Once the program code was 
done, data are gathered to create our agents’ bid history. Another problem that we 
encountered was the small amount of accurate data for the load and the market prices we had 
access to. Therefore, most of the data used for the simulations was generated while trying to 
remain as close as possible to real data for more accurate and realistic simulation results. 

Simulations were run to study the behavior of the agents responding to different 
market settings. Our results can provide insight to the policy makers as to what laws are 
needed for the market to allow customer participation. Indeed, the need of restrictive laws for 
the suppliers to protect the customers and the sanity of the market has been emphasized. 

Our results are also interesting to the industry, as the electricity markets are being 
currently restructured; suppliers and customers need to learn how they can bid efficiently in 
the market. Our simulations showed that the suppliers and customers should learn as much as 
possible about the market environment and the bid history to maximize their profit and lower 
their expenditures, respectively. Customer participation is also important from an 
environmental point of view, as customers more aware of the market’s mechanisms help 
improve the overall system efficiency and energy conservation. Since they are trying to 
minimize their expenditures, our simulations showed that they would lower their energy 
consumption to their exact needs. 

3.2  Research Method 

3.2.1  Intelligent Agents 
Agents are able to view as perceiving its environment through sensors and acting 

upon that environment through effectors. By definition, software agents are programs which 
must measure up to several marks to be agents. Intelligent agents are software agents that 
exhibit some form of artificial intelligence that helps the user and will perform repetitive 
computer-related tasks. Intelligence implies the system has the ability to adapt and learn. In 
some literature, intelligent agents are also called autonomous agents. An autonomous agent is 
a system that it act independently and will learn and adapt to effect what it senses in the 
future. 
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The elements to compose an intelligent agent are the agent program and the 
architecture. The agent program is a function that implements the agent mapping from 
percepts to actions. The program chosen can accept and be run by some sort of computing 
device. The computing device is the architecture. The basic components for distinguishing 
different intelligent agents are environments, percepts, actions, and goals. Table 25 shows the 
PAGE (percepts, actions, goals, environments) description of the intelligent agent in our 
design system. In our system, the agent is based on the idea of goal-based agents which 
means the agent needs to find a way to achieve the goal. This kind of agent appears less 
efficient but is more flexible.  

 

Table 25: Agent Types and PAGE descriptions 

 
Agent 
Type Percepts Actions Goals Environment 

Power 
System 
Market 
agent 

Energy 
demands, 

supplier price 
and quantities 

Determine market 
clearing price and 

quantity. Report the 
results to supplier and 

customer agents 

All 
demand 
is met 

Accessible, 
Deterministic, 
Episodic, and 

Dynamic, discrete 

 

Properties of environments: 

Accessible: The agent needs to maintain internal state to keep track of the world. 
There is interaction between suppliers, market agents; customers and market agents. 

 
Deterministic: The next state of the environment is completely determined by the 

current state and the actions selected by the agents.  
 
Episodic: The agent’s experience is divided into “episodes” and each episode consists 

of the agent perceiving and then acting. The agent does not need to think ahead. 
 
Static: The environment can change while an agent is deliberating, then the 

environment is considered to be dynamic for the agent. Otherwise, it is static. 
 
Discrete: There are limited number of distinct, clearly defined percepts and actions 

that make the environment discrete. In our power market, a simple uniform price auction is 
assumed to determine market clearing price and quantity from the overlap of the curves for 
both suppliers and customers. 
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3.2.2  Electricity Market Agents 
In our model, three classes are created to map the different agents involved in the 

simulation: Customer, Supplier and Market. 
The main function of the program takes care of organizing the simulation, according 

to the following sequence: 
• it reads the input files giving all the necessary data (demand and prices for 

customers and offer and prices for suppliers) 
• then it creates as many instances of the Customer and Supplier classes as needed 

for the simulation, according to data from the input file 
• and it creates one market, where the agents will interact together 
• once all the agents necessary for the simulation have been created, the market’s 

closing can start. A loop iterates the calculation every hour (day or month 
depending on the time parameter the simulation wants to study): 

o the market asks for the bids and offers of all the agents for the current hour 
o it computes the data collected to find the price clearance 
o finally, it returns the price and bids to the customers and suppliers 

• each agent will then learn from the results of the market’s closing implementing 
our algorithm, and adjust its bids for the next closing. 

 
The format of the input file is simply two matrices used to group all the data about the 

customers on the one hand, and about the suppliers on the other hand. Both matrices are 
described in more details in the following parts, along with each agent’s description. 

As the learning algorithm is implemented, the history of the agents (storing the past 
bids and offers) will be used instead of the input file. From the memory, the agent will 
generate its bids for each hour (the details of the agents’ logic is explained in the learning 
part of the report). 

3.2.2.1  The customer Agent 
Each customer wants to buy a specific amount of energy to satisfy his needs. So, for 

each market closing hour, he will bid the amount of energy he wants and the price he is 
willing to pay for this energy. The needs of each customer can be decomposed into a 
necessary part and a supplementary part: the necessary part is the minimum amount of 
energy that the customer absolutely needs even if the price is very high and the 
supplementary part groups all extra needs that the customer is willing to buy if the price is 
lower. 
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Figure 33: Model of Customer Demand Curve 

 
Therefore, for each hour, the demand curve of the customer will be modeled as a 

downward-sloping step curve as shown in Figure 33. For this example, in the first hour, the 
minimum amount of energy needed by the customer is 108 kWh. He is willing to pay a high 
price for that, up to 41 cents/kWh. Then, if the price is between 33 and 41, the customer 
wants to buy more energy: 117 kWh. In our simulation, the curves are built in a cumulative 
way, so the amount of energy desired for each price is given by the length of the 
corresponding step. 

At the beginning of the simulation, the demand and price bids of all the customers can 
be given in an input file. This data is stored in a 4 dimensional matrix, whose indices are the 
following: (hour, value, quantity or price, customer number). The number of step for each 
curve will be limited to three every hour: a low bid, a mid-bid and a high bid are considered. 

Then, the quantity and price bids of the first customer, for our example, are given by:  
 
CustDemandCurves(:,:,MW,1)=[ 148 117 108 ; 

     130 120 110]; 

CustDemandCurves(:,:,Prc,1)=[ 22 33 41 ;  

  30 35 40]; 

 

The rows correspond to the different hours, and the columns to the different bids. 
The customer agents’ bids are calculated knowing the structure and organization of 

the market. The knowledge of the agents will grow with each market’s closing: each agent 
stores in its database its past bids and how successful they were. This knowledge is used to 
predict the next bids, using the learning algorithm detailed in the following part.  

As the learning algorithm is implemented, the memory attribute, storing the bid 
history, will be used instead of the input file. From the memory file, the agent will generate 
its bids for each hour. After each hourly market closes, the information about the quantity 
and price obtained is given back to the customers. Then, implementing the learning 
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algorithm, they will adjust their bids to get the best deals possible. Their objective is to get 
the maximum amount of energy for the minimum price. 

However, each agent knows only the results of its bids. In theory, the market cannot 
give more information about the other agents’ bids, to prevent manipulation of the market 
and its prices. But in reality, each customer has a general idea of the competitive market’s 
participants. Our simulation will study how the knowledge of the other customers’ bids can 
help a customer improve its profit. 

The data of each customer (attributes) and their range of actions (member functions) 
are summarized in the following class schema. 

 
 

Customer Attributes: 

- demand 

- price 

- intelligence level 

- bidHistory 

- name 

Member functions: 

- Customer() 

- display() 

- getDemand() 

- getPrice() 

- getIntelligence() 

- getBidHistory() 

- getName() 

- sorter(customerAgents, order_flag) 

- update(price, quantity) 

 

The demand and price attributes of this class are matrices to store the demand and 
price of the current hour of the day. The intelligence level sets how much data the customer 
has access to, from the total memory of the market. The bidHistory is the private memory of 
the customer storing all its past bids and how successful they were. 

The constructor of the class takes two matrices for parameters to initialize the demand 
and price attributes of the instance. 

Then, getDemand(), getPrice(), getIntelligence(), getBidHistory() and getName() are 
simple functions to access the private attributes of the class. display() is used to show these 
attributes. sorter() can sort an array of customer according to their price, in decreasing order 
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(more details about this function will be given with the market class’ description, as it is used 
by this instance to build the supply and demand curves). This function will be used by the 
market to build the demand curve. 

Finally, update(price, quantity) gathers the price and quantity given back after the 
market’s closing to update the customer and implement the learning algorithm. 

3.2.2.2  The supplier Agent 
The supplier agent is built on the same framework as the customer agent. Even 

though they do not have the same objectives, they have similar characteristics and range of 
actions. 

Each supplier wants to sell a specific amount of energy. So, for each market closing 
hour, he will bid the amount of energy he is offering and the price for this energy. As it has 
been explained in the first part of the report, the suppliers have: 

- fixed costs, related to the activation of their generators or power plants 
- and variable costs, which change in proportion to the amount of energy produced. 

That is why, the supply curve indicating the price in cents per unit of energy can be modeled 
as an upward-sloping step curve. 
 

 
Figure 34: Model of Supply Curve 

 
As shown in the example of figure 34, up to 275 kWh, the price is 30 cents per kWh 

for the first hour. If a higher demand has to be supplied, the supplier can respond in two 
ways: 

- If the generators that are currently running are not at their maximum output, 
the supplier could increase the output from one of those generators. 

- Otherwise, if all of his generators are already at their maximum, he has to turn 
on an additional one. 
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In order to determine their offers, the suppliers do not consider the fixed costs: they 
are assumed to be sunk costs, since the fixed costs cannot be changed whether or not a 
generator is on. Therefore only the incremental costs are taken into account to determine the 
price. The two previous possible responses of suppliers will affect the price: 

- to increase the output of a generator, the supplier may need to run it at an 
output level with a lower efficiency than the previous output level, thus 
causing the operating costs to increase  

- the suppliers turn on their generators in increasing order of costs. Therefore, if 
a new unit is required to be turned on, it will necessarily be a more expensive 
unit than those already running. 

In our example, the price increases to 35 cents per kWh. 
At the beginning of the simulation, the offers of all the suppliers can be given using 

the same format as the customers’ bids in the input file. As a reminder, this data is stored in a 
4 dimensional matrix, whose indices are the following: (hour, value, quantity or price, 
customer number). The number of step for each curve will be limited to three every hour: a 
low offer, a mid-offer and a high offer are considered. 

Then, the offer and price bids of the last example are given by:  
 

SupplyCurves(:,:,MW,1)=[ 275 350 400 ;  
     275 350 400]; 
SupplyCurves(:,:,Prc,1)=[ 30 35 40 ;  
      33 39 45]; 
 
After each market’s closing, the information about the quantity and price obtained is 

given back to the suppliers. They will then adjust the first bids given as inputs of the 
simulation. Their objective is to maximize their profit, that is getting the highest price per 
unit of energy possible. Therefore, as the learning algorithm is implemented the memory 
attribute will be used instead of the input file. 

Similarly as the customer agents, the supplier agents know about their bids and profit 
for past market closings. They use this database to adjust their bids, thanks to the learning 
algorithm. Market manipulation is prevented by disclosing to each supplier only the results of 
its bids. 
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Supplier Attributes: 

- supply 

- price 

- intelligence level 

- bidHistory 

- name 

Member functions: 

- Supplier() 

- display() 

- getSupply() 

- getPrice() 

- getIntelligence() 

- getBidHistory() 

- getName() 

- sorter(supplierAgents, order_flag) 

- update(price, quantity) 

 
The Supplier class is built on the same schema as the Customer class, but its attributes are the 
supply offers and the price asked for the energy. 

3.2.2.3  The Market 
The market’s role is to gather the bids of all the agents and compute the clearing price 

for each hour (day or month depending on the time parameter the simulation wants to study). 
It will then give back the information about the final market price and the different quantities 
purchased or sold by the agents. In order to remain as fair as possible, the market only 
communicates to each agent the results of its own bids. 

As explained in the previous part (cf. paragraph I 3 c.), different types of auction 
mechanisms can be used to determine the clearing price. To start our simulation, a uniform 
price auction was first considered. In the following will be explained the implementation 
structure of the Market class and the different algorithms used to calculate the price and 
report the information to the agents. 

 
- Implementation structure 
The market class has two attributes that are two arrays to store the customer and 

supplier agents currently involved in the market.  



 

72 

Then, the demand and supply step curves of the agents will be divided into blocks: 
each block represents the amount of energy asked for a price. Two additional arrays are used 
to store these blocks.  

The constructor of this class takes four matrices for parameters to initialize the 
attributes of the instance initializes. 

 
 

Market Attributes: 

- customerAgents 

- supplierAgents 

- SortedCblocks 

- SortedSblocks 

Member functions: 

- Market(allCustomers, allSuppliers) 

- ask4bids(hour, allCustomers, allSuppliers) 

- priceClearance(resultFile, hour, nbOfHour) 

- report(hour, LMP, MktQ, allCustomers, 

allSuppliers, resultFile) 

 

ask4bids(hour, allCustomers, allSuppliers) gets the demands and offers from the customers 
and suppliers for the current hour. The demand and supply curves of all the agents are 
divided into blocks. Then, the member function sorter() of the Customer and Supplier classes 
are called to sort the blocks respectively in decreasing and increasing order of price. The 
sorted blocks of all the agents are finally stored in the SortedCblocks and SortedSblocks 
attributes of the market. 

The priceClearance(resultFile, hour, nbOfHour) function builds the supply and 
demand curves in a cumulative way (i.e. the amount of energy of all the blocks are added as 
the curves are built) from the two lists of sorted blocks. The function then calculates the price 
depending on where the curves intersect following the algorithm detailed in the following 
pseudo-code: 

 
 

IF maximum price offer of the suppliers < minimum price bid of the 
customers 

amount of energy supplied = sum of the maximum amounts of energy 
demanded by the costumers 

clearing price = maximum price offered by the suppliers 
ELSE IF minimum price offer of the suppliers > maximum price bid of 

the customers 
amount of energy supplied = 0 
clearing price = 0 
ELSE 
 DETERMINE intersection of the curves 
amount of energy supplied = abscissa of the curve intersection 
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IF both curves are at a step change 
clearing price = higher price of the two curves 

ELSEIF only the price of the supply curve is constant 
 clearing price = price of the supply curve 
ELSE 
 clearing price = price of the demand curve 
ENDIF 
ENDIF 

 
The output of this function is the clearing price and the total amount of energy 

supplied for this hour. 
Since a uniform price auction is considered, all agents in the market will get the same 

price. The report(hour, LMP, MktQ, allCustomers, allSuppliers, resultFile) function transmits 
the clearing price to the customer and supplier agents currently involved in the auction and 
how much energy each agent is getting depending respectively on their initial bids and offers. 
The algorithm used is detailed in the following pseudo-code: 

 
// Give the results back to the customers 
SET customer count to the block of the demand curve which closest to 

the clearing price 
REPEAT 
 IF the current customer is in the list of customers who 

already received energy 
  DECREMENT customer count 
 ELSE 
  amount of energy supplied to customer = demand of this 

block 
  ADD customer to the list of customers who received 

energy 
  ADD amount of energy supplied to the total amount of 

energy 
  CALL update function of this customer with clearing 

price and 
   energy amount parameters 
 DECREMENT customer count 
ENDIF 
UNTIL customer count = 1 
FOR all the customers not in the list of customers who received 

energy 
 amount of energy supplied to customer = 0 
 CALL update function of this customer with clearing price and 
 energy amount parameters 
ENDFOR 
 
// Give the results back to the suppliers 
STORE all the supplier blocks whose offer is lower than the clearing 

price in the list of possible winning suppliers in decreasing order of 
price (keep only the closest block to the clearing price for each 
supplier) 

STORE the rest of suppliers (who offered a higher price than the 
clearing price) in the list of “losing” suppliers 

FOR all the supplier blocks of the winning list 
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 STORE the suppliers with the same price offers on the same row 
in a 2-dimensional matrix 

ENDFOR  
SET number of suppliers paid to 0 
FOR each row of the matrix 
 IF total amount of energy = 0 
  BREAK the for loop 
 ENDIF 
 FOR each column of this row 
  SUM the offers of the suppliers 
 ENDFOR 
 IF total amount of energy > sum of suppliers’ offers 
  FOR each column of this row 
   amount of energy = offer of this block 
       DECREMENT the total amount of energy from the 

offer of this block 
   INCREMENT number of suppliers paid 
   CALL update function of this supplier with 

clearing price and energy amount parameters 
  ENDFOR 
 ELSE 
  COMPUTE ratio = total amount of energy / sum of 

suppliers’ offers 
  FOR each column of this row 
   amount of energy = offer of this block * ratio 
       DECREMENT the total amount of energy from the 

offer of this     block 
   INCREMENT number of suppliers paid 
   CALL update function of this supplier with 

clearing price and energy amount parameters 
  ENDFOR 
 ENDIF 
SET supplier count in the winning list to number of suppliers paid + 

1 
REPEAT 
 amount of energy = 0 
  CALL update function of this supplier with clearing price and 

energy amount parameters 
 INCREMENT supplier count 
UNTIL supplier count = size of winning list 
  
FOR each supplier of the “losing list” 
 amount of energy = 0 
  CALL update function of this supplier with clearing price and 

energy amount parameters 
ENDFOR 

 
A pro-rating solution has been implemented to break the tie between suppliers 

offering the same price. For example, if the total amount of energy demanded by the 
customer is 100 kWh. And there is two suppliers offering the same price for respectively 80 
kWh and 70 kWh. The total amount of energy offered by the suppliers is higher than the 100 
kWh demanded. Then, to choose how much energy each supplier should be awarded a pro-
rating solution has been implemented. The first supplier will get (100/150) * 80 = 53 kWh 
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and the second one will be awarded (100/150) * 70 = 47 kWh. Therefore the demand is 
distributed between the suppliers. It can be noted that the supplier who offered more energy 
for the same price will be favored by this method. 

- Example of market clearance 
Let’s consider a simple example of market clearance. This auction will only run for 

two hours. There is two customer and two suppliers. The input data is the following: 
 
 

CustDemandCurves(:,:,MW,1)=[148 117 108 ; 130 120 110]; 
CustDemandCurves(:,:,Prc,1)=[22 33 41 ; 30 35 40]; 
 
CustDemandCurves(:,:,MW,2)=[230 218 208 ; 200 180 170]; 
CustDemandCurves(:,:,Prc,2)=[25 28 32 ; 30 38 40]; 
 
SupplyCurves(:,:,MW,1)=[275 350 400 ; 275 350 400]; 
SupplyCurves(:,:,Prc,1)=[30 35 40 ; 35 40 45]; 
 
SupplyCurves(:,:,MW,2)=[65 125 185 ; 65 125 185]; 
SupplyCurves(:,:,Prc,2)=[25 26 28 ; 28 29 31]; 
 
SupplyCurves(:,:,MW,3)=[200 250 300 ; 200 250 300]; 
SupplyCurves(:,:,Prc,3)=[27 32 35 ; 29 35 39]; 
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The market computes the supply and demand curves to calculate the clearing price. 
The figures 35 and 36 show the supply and demand curves for both hours, as well as the 
clearing price and quantity: 

 

Figure 35: Cumulative supply and demand curves 
 

 

Figure 36: Market clearing price and quantity 
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The results given to the agents are: 
Market clearance for hour 1 
Price cleared: 28 
Total energy supplied: 335 
  
Report results to each customer 
update customer 2 with price 28 and quantity 218 
update customer 1 with price 28 and quantity 117 
  
Report results to each supplier 
update supplier 2 with price 28 and quantity 185 
update supplier 3 with price 28 and quantity 150 
update supplier 1 with price 28 and quantity 0 
  
   
Market clearance for hour 2 
Price cleared: 35 
Total energy supplied: 300 
  
Report results to each customer 
update customer 1 with price 35 and quantity 120 
update customer 2 with price 35 and quantity 180 
  
Report results to each supplier 
update supplier 3 with price 35 and quantity 143 
update supplier 1 with price 35 and quantity 157 
update supplier 2 with price 35 and quantity 0 

 

3.2.3  Learning Algorithm 

3.2.3.1  Algorithm Overview 
 
- Customer agent 
 
The customer agent learns based on two memories. One type of memory is the 

general memory in which the accumulated bids for each hour are added and one is the 
customer’s private memory.  

 
The general idea is to use the previous data to make new estimates. The notion of 

external factors is also included in the agents learning through the previous data. The way an 
agent analyzes previous data to find new estimates is what makes the agents thinking viable. 
It looks at the previous 2 months data and the previous 2 years data for the same month. This 
makes the estimates very relevant to how a human agent would think. 

The following provides a walkthrough for the learning algorithm: 
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1. Customer agent looks at previous data to make the estimate for the customer curve. 
a. The previous data comes from a pool of data. This pool of data lists time, 

demand and price of a transaction. 
b. Previous data also comes from a history of the data of the current customer. 

2. Customer makes an estimate of the price. 
a. The price is estimated by looking at the customer’s market clearing price of 

the MWh for the past 3 months. Monte Carlo simulation is used to find the 
price range. 

b. The price is also estimated by looking at the price of the MWh for the next 
month for the past 3 years. We find the price interval using Monte Carlo 
simulation. 

c. Now two ranges of values are possible. The lower of the two values could be 
found and used for the prices. 

3. Customer posts the price. 
a. The customer agent makes a quick check before posting the price to the 

market. The price for the previous bid (for the current customer) is checked. If 
the customer notes that the previous bid failed then there is a good chance the 
current bid will also fail. So, the customer increases its estimated bid by some 
dollar amount. 

4. Customer waits for the market to close. 
a. The customer now adds this result from the market to its local memory. 
b. The shared memory pool of data is also updated by the market. 

 
The customer agent also has an intelligence level. This level just tells the agent how 

many past bids it remembers, e.g. a customer with an intelligence level of 5 will have access 
to 50% of its historical data. Using less data will make the customer make estimates that are 
not close to what the simulations result in. 

 

- Supplier agent 
 
The supplier agent has a similar learning algorithm as the customer’s agent except 

that the supplier tries for the maximum price in the range. Because the scope of the project is 
focusing on the customer side, a simpler agent model is used for the suppliers, in particular 
they do not have a private memory. They work on the global shared memory to make the 
estimates. 

3.2.3.2  Agent Learning Details 
A quick overview of the learning algorithm is given in the previous two sections. In 

this section, the details of the learning algorithm are studied. The following is the generic 
pseudo code for the different parts of an agent’s learning. 

 
- Finding the price 
 
Getting the estimates using the past ‘x’ days 
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To find a price range using the past few days’ data, the following procedure is carried 
out: 

a. SET startDate equal to current date minus ‘x’ number of days. 
b. SET endDate equal to current date 
c. Gather the data that lies within startDate and endDate 
d. Run Monte Carlo simulation using a confidence interval between 70-80%. 

This confidence interval percentage is a uniform distribution between 70 
and 80. 

e. Store the interval found in step 4, into a data buffer. 
 
To find a price range using the past days’ from last ‘y’ years 

1. WHILE y >= 0 
2. SET yearNumber equal to current year minus ‘y’ 
3. SET startDate equal to current date minus ‘x’ number of days using 

yearNumber as the year. 
4. SET endDate equal to current date using yearNumber as the year 
5. Gather the data that lies within startDate and endDate. Store this data in a 

buffer. 
6. SET y = y - 1 
7. END WHILE 
8. Run Monte Carlo simulation on the collected data using a confidence 

interval between 70-80%. This confidence interval percentage is a uniform 
distribution between 70 and 80. 

9. Store the interval found in step 4, into a data buffer. 
 

- Agents Intelligence Level 
 
The intelligence level of each agent ranges from 1-10. 1 meaning 10% of the data and 

10 means 100% of the data. This means that if the agent has an intelligence level of 1 then 
the agent will only view 10% of the data available for the time period. After this data 
acquisition the learning logic will find the price ranges based on the algorithm explained 
previously. 

 
To get a normalized view of the data, we skip the data with equal interval. This means 

if an agent has access to 50% data then 5 data elements will be skipped within each block of 
10 data elements. The following example shows how an intelligence level of 5 is executed: 

1. index = 0 

2. WHILE startDate <= endDate 

i. IF (index MODULUS 5 == 0 ) 

1. SKIP data element 

ii. ELSE 

1. STORE data element 
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iii. END IF 

3. index = index + 1 

4. END WHILE 

 

- Finding the MWH per customer or per supplier 
 
The agents find this range using the previous MWH (demand/supply) and adding a 

uniform random variable in ± x percentage of the previous MWH. 
 

- Minimum price in Customer Agents 
 
After calculating the ranges using the previous data the customer agents strive to pay 

the minimum price. This is done using the idea of reducing the calculated price by some very 
small percentage. This will not have a huge impact on the market in the short term. But on a 
longer timescale this brings the competition in the market. The price reduction be seen in the 
following pseudo-code: 

1. Find estimates based on the history 
2. Reduce the estimated price by some tiny percentage 

 
The customer agents also have the logic that checks if the customer agent is losing 

bids. If the customer is losing the bid then the customer increases the price he is offering 
immediately. This makes sure that the customer is not always losing. After a few time 
periods of using this price increment the customer returns to his normal estimates and uses 
them. This is explained in the following pseudo-code: 

a. IF one of the last 3 last bids lost 
i. Increase the price offerings 

b. END IF 
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- Maximizing price in Supplier Agents 
 
Similar to the customer agents the supplier agents get estimated price. After getting 

the estimated range the supplier agents add a small price percentage to the price to try and 
increase the price. Before giving the price range to the market the supplier agent does the 
following: 

1. Find estimates based on the history 
2. Increase the estimated price by some tiny percentage 

 

The supplier agents will be wary of the fact that if the price is increased too much 
then they will end up losing the bid. So the supplier agents keep the track of the market and 
see if the suppliers are selling most of the offers they put into the market. If the supplier sees 
that he is not selling more than 80% of their offer in the market, they reduce the price. This 
can be seen in the following pseudo-code: 

 
1. IF supplier agent sold less than 80% of the supplies in the last market 

closing 
i. decrease price than the estimated 

2. END IF 
 
The different simulations require us to change the code and the learning with tiny 

modifications. 

3.2.4  Data Extraction 

3.2.4.1  The Customer Agent 
For our simulations, data needs to be collected in order to build the memory files of 

the customer agents. Our learning algorithm needs data about the successful bids of the past 
two years in order for each customer to make appropriate guess about the following bids. The 
demand data represent our approximation of the actual data from the California ISO. 
Unfortunately, the ISO does not disclose the price bids of its customers. Therefore, the prices 
were generated using a curve fit with other available data. We based our calculations for the 
price on real data to stay as close as possible to reality and thus obtain coherent and 
meaningful results from our simulations. 

- Load data 
 
The data contain the metered load for every hour of the year 2000 for different large 

customers from Southern California. To run our simulations, we chose four of these 
customers and extracted their data to build the load memory of our agents. Different sizes of 
customers were chosen in order to study how the variations in size can affect the agents’ 
behavior during the simulation. The customer set chosen is detailed in Table 26. 
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Table 26: Customer set for simulations 

NAME SC_ID CNGS_ZONE
Mean load 

(MWh) 

City of Anaheim ANHM SP15 30.7 

PGAE & COTP COTP NP15 119.9 

Southern California Edison PXC1 / SCE SP15 871.9 

San Diego Gas & Electric PXC1 / SDGE SP15 182.2 
 
To extract the desired data, a VBA (Visual Basic for Applications) macro was used. 

The code is detailed in the following: 
 
Sub Data() 
' 
' Data Macro 
' Keyboard Shortcut: Ctrl+w 
' 
    'Activate the .xls file from which the data should be extracted 

(original 
    'data file with all the customers 
    Windows("Load_data.xls").Activate 
     
    'Set the names of the customer to be extracted 
    Name1 = Range("C2").Value 
    Name2 = Range("C30").Value 
     
    Dim NbRows As Double 
    NbRows = ActiveSheet.UsedRange.Rows.Count 
    Dim Cpt As Double 
 
    'Go through the column of customers’ names 
    For Cpt = 1 To NbRows Step 1 
        Windows("Load_data.xls").Activate 
        Cells(Cpt, 3).Select 
         
        'If the name corresponds to the wanted customer, the data is 

copied to the corresponding file 
        Select Case ActiveCell.Value 
            Case Name1 
                ActiveCell.EntireRow.Select 
                Selection.Copy 
                Windows("LoadData_name1.xls").Activate 
                'Go to the last cell of the spreadsheet 
ActiveSheet.UsedRange.SpecialCells(xlCellTypeLastCell).Offset(1, -

20).Select 
                ActiveSheet.Paste 
            Case Name2 
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                ActiveCell.EntireRow.Select 
                Selection.Copy 
                Windows("LoadData_name2.xls").Activate 
                

ActiveSheet.UsedRange.SpecialCells(xlCellTypeLastCell).Offset(1, -
20).Select 

                ActiveSheet.Paste 
        End Select 
    Next Cpt 
End Sub 
 

 

- Price data 
 
The total hourly load and price of New England is made available by the ISO of this 

region. We gathered data for a few days equally distributed throughout the year 2006 and 
plotted the price as a function of the normalized load. As shown on figure 37, the curve fit 
function obtained is: 366.50_63.109 −×= loadnormalizedprice . 
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Figure 37: Price curve fitting for the customer agent 
 

The load is normalized by the mean load of the data set so that the curve fit can be 
applied to different size of customers. If their load for one day is close to their mean load 
over the year, then the price will be about $60/MWh. And the price will grow linearly if their 
load is below or above average. 
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 From this partial data, the price history of our agents was then generated adding a 

random variation for every hour and a price inflation of 3% per year. 

3.2.4.2  The Supplier Agent 
Since our project is focusing on the influence of the customer participation on the 

market, simpler agents are used for the supplier side. Therefore, the history of the supplier 
agents was entirely generated. Even if the supply curves of the agents are not as realistic as 
possible, it is then easier to create the appropriate supplier agents for our simulations. Indeed, 
we want to study how the customer agents will react to different type of price evolution from 
the supplier side. More details about the types of simulations run is given in the next part. 

 
Given the customer agents participating in the market, their total demand is summed 

up, to make sure that the suppliers will have enough energy to respond to their demand. 
Then, a weighed mean of the customers’ price is used to calculate the global price of the 
suppliers. 

This total amount of energy is then divided up between the suppliers participating in 
the simulation. We decided to create three suppliers, called simply SUP1, SUP2 and SUP3. 
As it was explained in the learning algorithm part, the private memory of the supplier agents 
is only used to store the bids of the current simulation. The agents base their bid calculations 
on the global memory of the market. 

3.3  Simulations 

3.3.1  Functioning of the Model 
The model used to simulate the electricity market has been explained in extensive 

details in the  Research Method’s part. The functioning of the model is recapitulated using 
the flow chart shown on Figure 38. 

Two types of input data are needed to run the simulation. The first is required to 
initiate the agents participating in the market. In order for them to implement the learning 
algorithm, they need enough data about their past bids, at least two years of hourly data is 
required. They are given as .csv files, stored in the “data” folder, each file name being the 
agent’s name. Table 27 shows the history of one of the agent for one day, in order to 
highlight the format used for the data table. 
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Table 27: Sample data history of one agent 
Date Hour Price ($/MWh) Load (MWh) 
1/1/2000 1 25.46 213.54 
1/1/2000 2 20.85 200.34 
1/1/2000 3 17.70 189.12 
1/1/2000 4 13.01 179.64 
1/1/2000 5 12.42 175.08 
1/1/2000 6 13.71 176.88 
1/1/2000 7 13.59 180.3 
1/1/2000 8 13.55 178.86 
1/1/2000 9 16.04 188.7 
1/1/2000 10 21.67 201.06 
1/1/2000 11 24.59 211.08 
1/1/2000 12 26.12 213.54 
1/1/2000 13 26.69 213.84 
1/1/2000 14 24.19 211.08 
1/1/2000 15 23.46 205.86 
1/1/2000 16 21.48 203.7 
1/1/2000 17 25.49 212.46 
1/1/2000 18 38.35 248.94 
1/1/2000 19 41.64 256.2 
1/1/2000 20 40.59 252.72 
1/1/2000 21 37.98 247.38 
1/1/2000 22 35.13 238.08 
1/1/2000 23 29.32 224.46 
1/1/2000 24 24.58 207.66 

 
The second type of input data is necessary to set the parameters of the simulation. 

Three files are stored in the “config” folder to set the values of these parameters. 
customer.csv and suppliers.csv set the intelligence level of the agents. And settings.csv can 
turn on and off the following options: 

- controlVagueness: this configuration setting helps in running the simulation with data 
entered into the pool with some degree of vagueness. The vagueness is entered into 
the data to simulate the real world situation in which a supplier might not know the 
exact transactions the customers do. With this control variable turned on, the data 
entered in the common data pool is not exact. 

- controlFallback: this control helps the customer react to losing bid. In this condition, 
if a customer loses a bid at a time unit then the customer agent will increase the price 
to much higher than the estimated for the next time unit. This copies the human 
reactive impulse into the software agent. 

- constantSuppliers: this control variable helps us simulate the condition in which the 
suppliers do not react to the bid closing. In this simulation the suppliers put up a 
constant offer to the market no matter what. This variable helps us quickly start the 
simulation condition. 

- linearPriceIncrease: the simulation in which the suppliers increase the price without 
regard to the market condition is linear price increase. We turn this simulation on 
using this control variable. So, if linearPriceIncrease is turned on, then the suppliers 
will increase the price with some constant factor after each time unit. 
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Figure 38: Flow chart of the model used in the simulations 
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Information from the market is added 
to the memory to calculate the next bid 

Customer Input Data 
  
History of past bids 
Intelligence level 

Market Operator Agent 
For Each Hour:  

1. Gather the bids and offers of all the agents 
2. Construct supply and demand curves  
3. Assuming a uniform-price auction, determine market clearing 

price (and quantity) from the intersection of these curves 
4. Report market clearing price to all agents 
5. Report demand that will be served to each customer agent 

(assuming all demand is met) 

Price & 
Quantity
offered 

Market 
Price & 
Quantity 

Market 
Price & 
Quantity 

Supplier Agent 
 

Input data:  History of past offers 
Output:  MW and MC offers 
 
 
 
Input from market:  Amount of capacity 
sold AND price to be paid 

Update function:  private 
Information from the market is added to 
the memory to calculate the next bid 

 

Supplier Input Data 
  
History of past offers: 
 - Generator capacity in MW 
 - Generator marginal cost, 
(MC) in $/MWh or cents/kWh 
Intelligence level 

Price & 
Quantity 
bid 
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After each market closing hour, the clearing price and how much energy the agents 
were able to buy or sell is calculated. The total amount of energy and the clearing price is 
stored in the global data file. The successful or unsuccessful bids are also stored in the 
individual memory of each customer. This output information can then be plotted to study 
the evolution of price depending on different parameters. 

3.3.2  Simulation Descriptions 
Thanks to the simulations, the customers’ behavior in different market settings can be 

studied. Different parameters can be changed to modify the market settings: for example, the 
price evolution of the suppliers’ bids, the intelligence level of the agents, etc. The different 
simulations run are described in the following. For each simulation, the four customers of the 
created set and the three suppliers are participating in the market for 3 months. 

3.3.2.1  Base case: simulation of the current electricity markets 
If there is no customer participation in the market, the suppliers only set the clearing 

price for energy. The passive customers simply state how much electricity they want to buy, 
at any price. It is then expected that, as the supplier agents are learning, the price should 
increase with time. In reality, if the price increases too much, the government will set 
limitations to the energy suppliers. 

This base case is simulated by having the customer agents bid all their demand at a 
very high price showing willingness to buy everything at whatever the suppliers offer. The 
four customers of the set and the three suppliers are playing in this simulation running over 3 
months. 

3.3.2.2  Analysis of the customer agents’ learning ability 
In order to study only the customer agent’s learning ability and conclude on the 

efficiency of the chosen learning algorithm, the suppliers’ offers should be kept constant. 
Then the intelligence level of the customer agent can be studied to see how the knowledge of 
other customers’ bids can help the agent maximize its profit. 

3.3.2.3  Influence of the price evolution of suppliers 
Thanks to their learning ability, the customer agents should be able to anticipate the 

offers of the suppliers to maximize their profit. We want to study how the customer agents 
react to changes in the price coming from suppliers. In this simulation, a linearly increasing 
price is modeled. This is controlled by setting the linearPriceIncrease option on. The supplier 
agents then calculate their offers using the learning algorithm, and then add an increasing 
value to the price. 

The results from this simulation will then be compared to the previous simulation 
where the suppliers’ offers were constant to see the differences in customers’ behavior. 

3.3.2.4  Vague data for suppliers 
The intention of this simulation is to copy the real world scenario in which the 

suppliers don’t know exactly what the customers are doing. But, the suppliers have an idea as 
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to what the customers are paying and expecting. This notion is modeled into the simulations 
by adding vague data in to the data pool for the suppliers. So, this means that the market does 
not give out exact data to the suppliers and the suppliers have to make estimates using not so 
accurate data. 

3.3.3  Results Analysis and Discussion 

3.3.3.1  Base case: simulation of the current electricity markets 
For this simulation, the demand of customers was kept constant and they had very 

high bids. As expected, with customers willing to buy energy at any price, only the suppliers 
control the evolution of the clearing price: as shown on figure 39, it increases continually 
with time. Starting from 53.76 $/MWh, it reaches 74.89417 $/MWh after three months. 
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Figure 39: Price evolution of the base case simulation 

 

However, it can be noticed that after 8 weeks, the price increases more slowly than at 
the beginning. This can be explained by the logics of our learning algorithm: to calculate 
their bids, the agents use the history of the past bids over at least two years and the data set 
that was used in the simulation does not show such an increase. Therefore, taking into 
account both the price evolution of the past years and of the more recent bids will make the 
supplier agents increase their price in a more reasonable way. If the simulation were to run 
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over a longer period of time (one or two years), it is expected that the suppliers will then see 
the increasing trend more clearly and increase their price faster. 

This simulation also shows that, in order to simulate the behavior of more aggressive 
agents, the learning algorithm can be modified to give more importance in the calculations to 
the recent bids than the history. Then if the price increases over the last market closings, the 
suppliers will keep increasing their price. In reality though, the suppliers are not allowed to 
increase their price indefinitely. The government will set limitations or require the suppliers 
to justify their prices. 

3.3.3.2  Analysis of the customer agents’ learning ability 
In this simulation, we wanted to study how the intelligence level of the customer 

agent could affect his efficiency at making the right bids to maximize his profit. Two 
opposite cases were studied: 

- in the first one, all the customers had the minimum level of intelligence, that is they 
do not have much access to the global memory of all the bids 

- in the second one, all the customers had the maximum level of intelligence, which 
means they know everything about their environment. It is thus expected that the 
more intelligent agents will be more likely to win their bids. 
The simulation results confirm these predictions. As shown in table 28, the 

percentage of successful bids is larger for the more intelligent agents. For example, with a 
higher intelligence level, ANHM improves its percentage of successful bids by 10 points: it 
reaches 94.6% with the maximum intelligence level. 

 

Table 28: Percentage of successful bids for the customers  
with different intelligence level 

NAME SC_ID Mean load 
(MWh) 

Percentage of successful bids 

Intelligence 
level: 1 

Intelligence 
level: 10 

City of Anaheim ANHM 30.7 83.9% 94.6% 

PGAE & COTP COTP 119.9 95.8% 99.2% 

Southern California Edison PXC1 / SCE 871.9 89.0% 98.20% 

San Diego Gas & Electric PXC1 / SDGE 182.2 94.4% 99.10% 
 
It is also interesting to analyze how the agents modified their bids in order to increase 

their probability of winning the bids. The results show that a higher intelligence level helps 
the agents avoid making unnecessarily high bids. As depicted on Figure 40, the agents with 
an intelligence level of 10 managed to always maintain the clearing price between 53 and 55 
$/MWh, while still maximizing their percentage of successful bids. Whereas the less 
intelligent agents saw the clearing price increase up to 58 $/MWh. 

Figure 41 shows that the bidding strategy of the two types of agents was different: 
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- the agents with an intelligence level of 1 tried to modify their demand as little as 
possible (the total demand remained around 900 MWh) and find the optimum price. 
This strategy leads to a higher clearing price: after 3 months, the average clearing 
price is 54.1 $/MWh. 

- whereas the agents with an intelligence level of 10 reduced their total demand to 
around 750 MWh, which helped them reach a lower clearing price of 53 $/MWh. 
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Figure 40: Price evolution over 3 months for different intelligence level 
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Figure 41: Energy evolution over 3 months for different intelligence level 
 
These results show an important advantage in customer participation in the market: it 

can help improve the system efficiency and the energy conservation. Indeed, responding to 
the price, the intelligent agents reduce their demand of energy to optimize their profit. Instead 
of consuming all the energy that can be offered to them, they lowered their energy utilization 
to their exact needs.  

In addition, these results also emphasize the importance of access to data on the 
customer side, as this simulation has shown that it is the agents with the highest intelligence 
level who optimized their energy consumption the most. 

3.3.3.3  Vague data for suppliers 
This simulation was intended to see the overall affect on the market by feeding vague 

data to the suppliers. The other parameters considered in this simulation are that the customer 
and the supplier agents are participating fully in the bidding. The participation of both the 
suppliers include increasing and decreasing the price based on the requirements, i.e. if the 
customers realize that they are not winning bids then they increase the price per MWh and 
similarly if the suppliers realize that they are not selling more than 70% of their offered 
capacity then they reduce the price per MWh. 

The essence of this simulation is to study the affect of feeding vague data to the 
supplier agents. The supplier agents will then make their price estimates based on this 
slightly false data. 
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Overall market analysis 

We look at the overall market analysis. The following graph shows the trend for the 
market clearing price over the 3 month period. 
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Figure 42: Comparison of prices between the actual market closing and vague data 
 
In the above Figure 42, the bids are averaged over each day, i.e. the 24 hours prices in 

each day are averaged over a single day. This is done for readability. The graph is a 
comparison of the actual bids versus the vague data bids. The first thing that we gather from 
this data is that the vague data follows the same trend line as the real data. This conclusion is 
not very surprising because the vagueness data is based on the real bids with a fixed range of 
random increases or decreases. 

The important result to extract from this simulation is that even with the vague data 
fed to the supplier agent, the market trend goes from prices going higher to prices going 
lower and then back higher up. So the trend follows a sine wave even though the data is 
vague. The reason for a sine wave is that initially the vague data does not have much impact 
on the agents’ estimates but as the supplier agents start making bad estimates of the price, the 
customer agents benefit this and keep lowering the price. When the prices go too down too 
much the supplier agents estimate that they are selling their supply easily and start increasing 
the price. The price increases based on the past data and goes up very close to the original 
price. The vagueness factor does give benefits to some customers or suppliers in the short 
term, but the overall affect is the same as a price war between customers and suppliers. 
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Supplier’s Behavior 

The intent of this simulation is to see the reaction of the supplier using the vague data 
as input. We used three suppliers for this simulation but the parameters for each supplier 
were similar, so studying a single supplier should give us a good idea of the suppliers’ 
behavior. 

The summary for the supplier’s bids are given below in table 29. 

Table 29: Bids won/lost by supplier 1 
Supplier 1 

Bids won 812

Bids lost 04

 
The above results are not so bad for the supplier, i.e. the supplier get’s to sell 88.7% 

of the bids he makes in the market. What is more interesting is the time when the supplier 
starts losing bids. This can be seen below in Figure 43. 

Supplier 1's Lost Bids Frequency
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Figure 43: Supplier 1’s lost bid frequency plot 

We notice that the frequency of the lost bids increase after the second month. The 
plausible reason for this is that the suppliers’ estimates are significantly different from 
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acceptable prices during the last month. But the interesting questions is why this occurs in the 
third month and not so much in the first two months. The reason for that is that the supplier 
agents also look at the previous data and when the supplier gets in to the third month and 
looks back at the data, he sees a lot of vague data. The vagueness of the data comes into play 
more strongly in the third month and leads the supplier into making not so useful estimates. 
This makes the supplier’s lost bids frequency increase towards the end of the period. 

We note that the supplier agent is not so intelligent in reducing the price to keep up 
with the market. The following plot shows this: 
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Figure 44: Price trend for Supplier 1 
 
In the above Figure 44, we see that the agent is consistent in asking the price for the 

MWh. Normally with the accurate data, a supplier agent would reduce the price with the 
trend. But we note that the price trend remains the same throughout the period. 

 

Customer’s Behavior 

We see a very odd behavior in the customer agents’ behavior. The prices for the 
demand are consistent but the demands reduce abruptly. The demands reduce after some time 
passes by. The reason for this is that the customer agents are responding to the odd behavior 
of the suppliers at this time. It takes some time for the vague data to affect the supplier 
agents’ prices estimates and when this happens the customer agents also feel the affect. The 
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following bubble chart shows the intensity of demand decrease and the date at which each 
customer decreases its demand. 
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Figure 45: Demand reduction for each customer’s bubble chart 
 
In the above Figure 45, we see that the customers decrease their demand towards the 

end of the first month and into the middle of the second month. So, it takes the suppliers 
about a month to act oddly and this is when the customers start responding to the odd 
behavior. 

In the previous figure the size of the bubble shows the degree of decrease of the 
demand by each customer. 

3.4  Analysis 

Using our agent models, we wanted to study how the electricity markets could be 
improved if the customers were more active in the market. The results of our simulations 
would be interesting to the industry as well as the policy makers. Indeed, as the electricity 
markets are being currently restructured, it is interesting for the electricity companies and the 
customers to learn how they can bid in the market in the most efficient way to maximize their 
profit. These simulations can also give insights to the policy makers as to what laws are 
needed for the market to allow customer participation. 

Our base case simulation showed that if there is no customer participation (e.g. the 
customers are willing to buy the energy at any price), the suppliers will continually increase 
their prices to maximize their profit. In reality, government’s limitations prevent the suppliers 
from raising their prices unreasonably. However, this simulation points out the importance of 
both customer participation and restrictive laws for the suppliers in order to have efficient 
electricity markets. 

The learning ability of our agents has been studied as a function of the amount of 
information they had about their environment. The simulation results showed that for the 
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customers to be efficient and competitive in the electricity markets, they need to learn as 
much as possible about the bid history. The more information they have, the better their 
prediction of the market’s bids and clearing price will be. In reality, the market discloses to 
each customer only the information regarding his own bids. However, large customers often 
conduct studies to evaluate the market environment and have a general idea of their 
competitors. 

This simulation also underlined the importance of customer participation in the 
market, as it can help improve the system efficiency and energy conservation. As the 
customers had more information about the market, they optimized their energy consumption 
the most, lowering their energy utilization to their exact needs. 

The customer participation in the market is also noted in the case when the suppliers 
try to sell at prices that are not very realistic. The customers initially try to get the price 
down. If the erratic behavior of the suppliers continues, the customers cut down on their 
MWh demand. This automatic effect on the market relieves the regulatory bodies to 
completely control the suppliers. 

The need for regulation laws in the market is emphasized by the simulation where 
suppliers increased their price linearly. In any case, this strategy is helpful neither to the 
suppliers nor the customers, not being able to anticipate and pay such a high price, will 
reduce their demand and eventually lose their bids. Therefore, to protect the customers and 
the sanity of the market, regulation laws have to set limitations to the suppliers’ offers. 

3.5  Future Work 

3.5.1  Customer Agent 
As the learning algorithm is a key feature of our simulations, future work should 

study how to improve it. In particular, different possibilities, such as Q-learning and game 
theory, should be implemented to develop different bidding strategies for the customer 
agents. The results of the simulations can then be compared to see which algorithm is the 
most efficient in maximizing the customers’ profit. 

Q – Learning is a reinforcement learning algorithm that learns by adjusting value for 
each action. In reinforcement learning, the algorithm uses the environment to learn and 
improve the reward over long term. Q-learning has the ability to learn without modeling the 
whole environment beforehand. This requires us go through an extensive training process. 
 

Benefits of Q learning: 

Looking at the advantages of Q learning we see a direct relation with this project. The 
idea of not modeling the while environment is favorable to us. We cannot have all the actions 
that an agent can perform right at the beginning of the simulations. The learning makes 
predictions based on the actions that come along as the agent learns. The other attractive 
feature of Q learning is that it is a reinforcement learning algorithm (increasing rewards over 
long-term). Normally, humans tend to have the reasoning to maximize rewards over long 
term. Using this algorithm can help us model the real life scenario very closely. 
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Drawbacks of Q learning: 

Q – learning has the property of improving one parameter based on its learning but 
what we need in this project is to change that result depending upon other parameters. We 
have many variations for this project, e.g. the price cannot just increase as time passes over a 
year, the price has to vary in holidays or over the summers. The other modeling problem we 
see with Q-learning for this project is that the demand or supply also varies with time. There 
are not fixed rules that govern this but it can be just based on environmental factors e.g. a 
supplier might cut down supply because of natural disaster that might consume his 
generators. We couldn’t come up with appropriate mapping between cost predictions for 
different supplies. These reasons led us in using our own learning mechanism (described in 
the next section). 

 

Explanation of Q-learning: 

The ideology of learning in this algorithm is based on the following formula. 

 
The three parameters in the above formula are Q, R and γ. Q and R are matrices. The 

R matrix is an initial state matrix that holds the state-transition and goal information for the 
system that is being modeled (this will be more clear after the example next). The Q matrix is 
the memory of the learning algorithm. So whatever the agent learns will be stored in matrix 
Q. Q also has a similar structure like R in that it models the different states in it. 

Parameter γ is the learning parameter. The value for γ can be in between [0, 1]. The 
significance of this parameter is that with smaller value the algorithm will try to maximize 
short term rewards and vice versa. 

So the formula provided previously gives a mechanism for the algorithm to learn. To 
make the algorithm actually learn we have go through episodes of runs. An episode is a 
complete run from the start state to the end state. After each episode the Q matrix is updated, 
which means that the agent has learned from the experience. We have to run a few episodes 
to make the agent capable of making useful decisions. After learning is done, the information 
in the Q matrix is used to make decisions. 

The following example provides some insights into Q-Learning [58]. 
Suppose we want to design an agent that can move from any state in {A, B, C, D, E } 

to state F. So, state F is the final goal starting from any of the states. The following picture 
visualizes using doors and walls: 
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We now create the R matrix that contains the state-transition. R matrix looks like the 
following: 

 

 
 

The values of 100 are assigned to one step transitions to state F, which means that 
these are the most desirable transitions. A value of 0 is set to all the other connections but a ‘-
‘ sign is assigned to all the other elements because there is no direct one step transition from 
the states to the others. Example: there is no door opening from C to B, so we see a ‘-‘ in the 
R matrix from row C to column B. 

Now, using the formula: 

, 
we can calculate the Q matrix. 

Now, we have the Q matrix created appropriately with the environment. We can 
utilize this Q matrix by starting from state x and going to the next state that has the maximum 
weight. We keep on repeating this process until we reach our destination state. 
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3.5.2  Market 
In order to improve the complexity of the market’s algorithm, especially for the report 

function, the structures used to store the data about the bids of all the agents should be further 
investigated. We simply used matrix structures. If dynamic data structures, giving faster 
access to the stored elements (by indices or search), can be used with Matlab, they would 
help improving the algorithm.  

Also, the demand and supply curves are stored using matrices. If the size of these 
matrices is proportional to the total amount of energy respectively demanded by the 
customers and offered by the suppliers. Therefore, our algorithm is slowed down by large 
customers and suppliers participating in the market. More efficient way of storing the 
demand and supply data for the market curves should be investigated. 

3.5.3  Data 
Lacking accurate and detailed data for the load and price of the customer agents, we 

generated part of the data in order to run our simulations. Further investigations can look for 
more sources of information and/or study how to create more realistic data. In particular, it 
could be interesting to see how the weather variations can influence the market. With the 
changes of climate, more or less energy is used in winter or summer. There are also 
variations during the day: more energy is used during the day time than the night time. 

3.5.4  Simulations 

3.5.4.1  Other types of simulations using our current model 
More simulations can be run using our model. 
The bidding strategy of the customer agents can be studied. When an agent loses a 

bid, it can either increase its price or lower its demand for the next iteration of the market. It 
would be interesting to study how fast each of these possibilities converges to the maximum 
profit for the customer agent. The control fallback option used in our simulations helped the 
customers win more bids, but may have reduced their overall profit. 

The influence of the number of agents in the market can be simulated. If the 
customers are outnumbered by the suppliers, it is expected that they will have little influence 
on the suppliers offers and thus on the clearing price. Inversely, if there are many customers, 
they should be able to get the suppliers to lower their price more easily. 

More simulations to study the influence of the price evolution of suppliers can also be 
run. In particular: 

- a volatile price (e. g. a price that changes a lot all the time) should make it harder for 
the customer agents to predict the price and thus maximize their bids 

- a spike in the price at instant in time can offset the customer agents bids calculations. 
In this situation, it is especially interesting to see how long it will take for the 
customers to get the right bids again. 
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3.5.4.2  Ancillary Services 
To allow the customers to have more influence on the electricity market, the ancillary 

services available to the customers should also be modeled. We want to know how the 
customers can participate in the ancillary services market. In a first simple model, the 
customers’ bids will be composed of two elements: the amount of energy they want and the 
amount to which they are willing to lower their demand if they participate in demand side 
programs.  

3.5.4.3  Auction mechanisms 
For our simulations, we only used a uniform-price auction. Other types, such as 

discriminatory, single-round or sequential auction, can be implemented to study how the type 
of auction can influence the behavior of the agents. 

3.5.4.4  User interface 
The parameters of our simulations are now being entered with the .csv files of the 

“config” folder, turning on and off the different options is done by changing the text in the 
files. A user input interface should be added to set the parameters more easily when starting a 
simulation. 
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Part 4.  Conclusion 

 To evaluate the economical impact of market rules on market and system 
performance, this research results in a multi-agent based electricity market platform that 
incorporates energy and ancillary service markets and market power mitigation rules. Since 
the platform is built upon an agent oriented middleware and is fully programmed in JAVA, it 
facilitates the future extension of the models and techniques. The multi-agent platform built 
in this project includes three types of interaction agents: supplier agents, load serving entities, 
and market operator. The supplier agents are enabled with an anticipatory reinforcement 
learning algorithm called Q-learning.   
 To illustrate the usefulness of the proposed multi-agent platform in evaluating market 
rules, an important market design issue of market power mitigation is investigated here. The 
PJM-like local market power mitigation process is implemented in the simulation platform 
for the market evaluation. Three simulation scenarios are developed. The first scenario is the 
competitive benchmark where every supplier agent bids their marginal cost. The second 
scenario is the unmitigated scenario where every supplier agent bids strategically into the 
market according to the Q-learning rules in the absence of market power mitigation. The 
third scenario is the mitigated scenario where every supplier agent bid strategically into the 
market, however, the market adopts the PJM-like market power mitigation rules.  
 The simulation results indicate that, without market power mitigation rules, even in a 
rapid changing market environment, large generation owners who interact with one another 
in similar scenarios easily learn exercise their market power even without knowing others’ 
historical bidding data. It is also shown that the PJM-like market power mitigation rules not 
only suppressed the market power exercise against strategic bidding supplier agents but also 
enhance the market efficiency by reducing the total generation cost comparing to the 
unmitigated scenario. 
 The effect of LSEs owning generation resources is examined in this report by 
assigning some generation units to certain LSEs. It is concluded from the simulation results 
that if a generator is owned by a LSE, it will tend to reveal its true marginal cost. However, if 
it is owned by a supplier agent, it will tend to bid at a much higher markup. Hence, the 
generation resources that are owned by LSEs would be a source of counteracting market 
power during peak hours to the suppliers group. 

This report demonstrates that the structure of ancillary service markets affect the 
power system performance. The ancillary service markets should be designed to ensure that 
the desired control performance is achieved at the lowest price. This implies that the structure 
of the ancillary markets should be designed in such a way that those generators that can 
contribute more toward better control should be encouraged by the proper incentives. In the 
case of the regulation market this usually means the recognition that generating units with 
faster response (ramp) rates are more important to load balancing and frequency control. In 
the case of VAr markets, the speed of response is not as important as the location of the units 
and their VAr production capacities, i.e. voltage control is more sensitive to the electrical 
proximity of the VAr sources. 

Three different market structures were chosen to demonstrate the varying frequency 
control performance on a reduced WECC model: the first is similar to what is used by the 
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California ISO but the other two are chosen somewhat arbitrarily to provide more incentives 
for generators with better response (ramp) rates. In the second structure a bid market is 
developed for 5-minute capacities in addition to the existing 10-minute capacity market. The 
5-minute market can be used for better control than the 10-min market and at the same time 
these faster generators can be rewarded with higher prices. In the third structure separate 
markets are formed for fast and slow units based on ramp rates. 

This report presented a comparative study of two different area voltage control 
schemes to demonstrate the feasibility of voltage control by adjusting the reactive power 
injection from the generators. A competitive VAr market seems feasible in either of these 
control frameworks. To achieve better performance in terms of the voltage profile, the 
market has to procure a sufficient amount of reactive power reserves. A market for VArs for 
that purpose will provide the option to choose amongst resources. However, it is shown that 
just as in the regulation market, certain generators provide better voltage control because of 
their location and VAr capacities and either scheme used in this report will provide market 
incentives to the more effective generators. 

This report shows that ancillary markets should be structured to reward those 
properties of the generator that better achieve the desired performance of the ancillary 
service. It should, however, be made clear that it may not always be possible to create such a 
market and there has to be enough generators in the market with similar capabilities to 
generate competition. 

Customer participation in the electricity market is modeled and analyzed in this 
project. The simulation results have shown the importance of having more active customer 
participation in order to deter the supplier market power, to lower electricity prices, to 
promote energy conservation and to improve the system reliability. 

 The electricity market was simulated using intelligent agents, whose behavior 
evolved depending on the market’s environment and interactions. The agents learned from 
their historical bidding information and knowledge about the market’s mechanisms. 
 In order to investigate how the market performance can be improved if the customers 
were more active, the behaviors of the learning agents are studied under different market 
structures. The simulation results show that restrictive laws for the suppliers are needed to 
protect the customers and the integrity of the market. 
 The simulation result illustrates that the market participants should learn as much as 
possible about the market environment and the bidding history to maximize their profit. The 
overall system efficiency and energy conservation could be enhanced if the customers are 
more familiar with the market’s mechanisms. When the customers are trying to minimize 
their expenditures, they would lower their energy consumption to their exact needs. 
Therefore, customer participation is important from an environmental point of view. 

Further research is needed on extensions of the proposed multi-agent platform to 
enable the negotiation of bilateral contracts between supplier agents and LSEs, so that the 
effects of forward contracts on day-ahead markets can be investigated in a comprehensive 
manner. In addition, it is desirable to incorporate marketers into the model to examine the 
impact of virtual bidding on the electricity market. Furthermore, the interaction between fuel 
market and electricity market could be studied by having the supplier agents trade in energy 
commodity markets. A limitation in this research is the use of only Q-learning to model the 
suppliers’ learning behavior. This limitation arises from the curse of dimensionality. This 
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weakness could be overcome in the future by designing other new algorithms that combine 
the strengths of both Q-learning and Artificial Neural Networks.     
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Appendix A.  Quadratic Fuel Cost Curve Coefficients 

Quadratic fuel cost curve coefficients of the 23 aggregated thermal units 
GENCO NUMBER a b 

0 0.00471795 55.189 

1 0.0419865 53.793 

2 0.029041 41.782 

3 0.017112 55.645 

4 0.022362 50.573 

5 0.0 52.5 

6 0.0032185 55.559 

7 0.0022191 53.386 

8 0.00287755 51.984 

9 0.0055025 54.565 

10 0.00359045 63.403 

11 0.0087925 59.731 

12 0.0434865 54.908 

13 0.056835 54.64 

14 0.0 66.72 

15 0.0161175 34.674 

16 0.0303945 53.881 

17 0.0 78.0 

18 0.0017795 56.601 

19 0.12856 62.022 

20 1.9517E-4 55.425 

21 0.0123615 35.924 

22 0.0106315 57.127 

 

The marginal cost curve of an aggregated thermal unit can be expressed as following: 

PbaPMC ⋅⋅+= 2)( . 
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Appendix B.  WSCC 225-Bus Model 

 

Figure 46: Major Substations of WSCC Reduced Model (courtesy CAISO) 
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Appendix C.  Voltage Control Area 

A power system can be divided into a number of voltage control areas consisting of 
coherent buses and reactive resources able to sustain the reactive requirement of the area. 
The systematic method to determine such VCA s has been described in [57]: 

1. Calculation of electrical distance between all the nodes of a system 
2. Identification each area using topological classification within the border of 

the network 
The electrical distance between the buses in a network can be derived from[ ]P θ∂ ∂ , 

which is a part of the Jacobean matrix J. Since we are interested in the reactive power 
sensitivity of the buses, it is necessary to obtain [ ]Q V∂ ∂  and the [ ]Q V∂ ∂  part of the 

Jacobean does not include generator buses, the complete matrix can be derived from[ ]P θ∂ ∂  
as follows: 

i i

j j

Q P
V θ
∂ ∂

=
∂ ∂

,   for  i j≠  

2i
i ii i

i

Q Q B V
V
∂

= −
∂

,  for  i j=  

Hence, the sensitivity[ ] [ ] 1V Q Q V −∂ ∂ = ∂ ∂  is the measure of propagation of voltage 
variation following a reactive power injection at the bus. The magnitude of voltage coupling 
between two buses can be quantified by the maximum attenuation of voltage variation 
between these two buses: 

    i ij jV VαΔ = Δ  
The attenuation is given by: 

   ji
ij

j j

VV
Q Q

α
⎛ ⎞ ⎛ ⎞∂∂

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

The attenuation matrix thus obtained is non-symmetric. To ensure positivity and 
symmetry the electrical distance between any two nodes i  and j  is calculated as: 

   ( )10logij ji ij jiD D α α= = − ⋅  
Once the electrical distance between any two nodes of the network has been defined 

VCA s can be formed by grouping the electrical distance into certain ranges. Starting from a 
generator bus, all the buses whose electrical distances from that bus is less than the range is 
included in one area. A number of areas can be formed like this until every bus belongs to at 
least one area. In case a bus belongs to more than one area some judgment is to be used to 
classify it in any one area. 

 
 
 



 

107 

Appendix D.  Additional Material 

Source: New England ISO (http://www.isone.org/markets/hst_rpts/hstRpts.do) 
Type of data: Day-Ahead LMPs and Hourly Day-Ahead Cleared Demand 
 

Load 
(MWh) 

Normalized 
load 

Price 
($/MWh) 

11014 0.740835407 39.7347368
11257 0.757180332 45.7562947
11307 0.760543486 40.3267263
11688 0.786170714 48.3895684
11721 0.788390395 48.7298316
11915 0.80143943 50.6046 
11919 0.801708482 31.8204984
12011 0.807896684 36.1393354
12011 0.807896684 31.7237072
12195 0.820273088 34.6539564
12208 0.821147508 42.7742783
12355 0.831035179 37.1192939
12380 0.832716755 42.5440291
12405 0.834398332 44.9429907
12768 0.858814825 50.6992316
12817 0.862110715 54.0380947
13335 0.896952983 39.2253583
13403 0.901526872 45.723053 
13578 0.913297908 43.6457632
14439 0.971211408 45.6993977
14516 0.976390664 46.353676 
14570 0.980022869 45.652866 
14638 0.984596758 48.026812 
14753 0.99233201 47.9604881

 

Load 
(MWh) 

Normalized 
load 

Price 
($/MWh) 

14770 0.993475483 45.8412253
14799 0.995426112 50.3134787
14964 1.006524517 47.9076636
15614 1.05024551 55.5433437
15686 1.055088451 68.7326842
15930 1.071500639 61.1879789
16378 1.101634493 59.9716615
16412 1.103921437 56.054621 
16548 1.113069214 77.1209684
16976 1.141857806 63.7465628
17179 1.155512208 81.1833789
17282 1.162440304 67.5497508
17453 1.173942288 78.0907158
17549 1.180399543 88.4682105
17679 1.189143741 95.3946211
17805 1.197618887 83.1271579
17860 1.201318356 81.8139789
17976 1.209120872 86.6355895
18046 1.213829286 90.2136 
18166 1.221900854 89.2688 
18265 1.228559898 93.5804105
18276 1.229299791 93.0004737
18389 1.236900518 93.3438105
18415 1.238649358 94.2875789

Mean load: 14867.08 
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y = 109.63x - 50.366
R2 = 0.8123
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Figure 47: Price Curve Fitting for the customer agent 



 

109 

Bibliography 

[1] S. D. J. McArthur et al., "Multi-agent systems for power engineering applications ─ 
Part I: concepts, approaches, and technical challenges," IEEE Trans. on Power 
Systems, vol. 22, no. 4, pp. 1743-1752, Nov. 2007. 

 
[2]  S. Borenstein and J. Bushnell, "An empirical analysis of the potential for market 

power in California’s electricity industry," Journal of Industrial Economics, vol. 47, 
no. 3, pp. 285-323, Sep. 1999. 

 
[3]  J. B. Bushnell and F. A. Wolack, "Regulation and the leverage of local market power 

in the California electricity market," (May 2, 2000). Competition Policy Center. Paper 
CPC00-013. [Online]. Available: http://repositories.cdlib.org/iber/cpc/CPC00-013. 

 
[4]  Z. Younes and M. Ilic, "Generation strategies for gaming transmission constraints: 

will the deregulated electric power market be an oligopoly?," Decision Support Syst., 
vol. 24, no. 3\-4, pp. 207-222, 1999.  

 
[5]  J. Yao, I. Adler, and S. Oren, "Modeling and computing two-settlement oligopolistic 

equilibrium in a congested electricity network," Operations Research, vol. 56, pp. 34-
47, 2008. 

 
[6]  T. Li and M. Shahidehpour, "Market power analysis in electricity markets using 

supply function equilibrium model," IMA Journal of Management Mathematics, vol. 
15, no. 4, pp. 339-354, 2004. 

 
[7]  H. Niu, R. Baldick, and G. Zhu, "Supply function equilibrium bidding strategies with 

fixed forward contracts," IEEE Trans. on Power Systems, vol. 20, no. 4, pp. 1859-
1867, Nov. 2005. 

 
[8]  Y. F. Liu, Y. X. Ni, and F. F. Wu, "Impacts of suppliers’ learning behaviour on 

market equilibrium under repeated linear supply-function bidding," IEE Proc.-Gener. 
Transm. Distrib., vol. 153, no. 1, pp. 44-50, Jan, 2006. 

 
[9]  D. W. Bunn and F. S. Oliveira, "Agent-based simulation: An application to the new 

electricity trading arrangement of England and Wales," IEEE Tran. on Evolutionary 
Computation, vol. 5, no. 5, pp. 493-503, Oct. 2001. 

 
[10]  M. H. Rothkopf, "Daily repetition: A neglected factor in the analysis of electricity 

auctions," Electricity J., vol. 12, pp. 61-70, Apr. 1999. 
 
[11]  V. Nanduri and T. K. Das, "A reinforcement learning model to assess market power 

under auction-based energy pricing," IEEE Trans. on Power Systems, vol. 22, no. 1, 
pp. 85-95, Feb. 2007. 



 

110 

 
[12]  H. Li, J. Sun and L. Tesfatsion, "Effects of price-sensitive demand and price cap on 

LMP volatility and separation in restructured wholesale power markets," Working 
Paper, ISU Economics Department, in progress. 

 
[13]  N. P. Yu, C. C. Liu, and L. Tesfatsion, "Modeling of suppliers’ learning behaviors in 

an electricity market environment," Proc. 14th Int. Conference on Intelligent System 
Applications to Power Systems (ISAP), Nov, 2007. To appear in Int. J. Engineering 
Intelligent Systems.  

 
[14] M. Wooldridge and N. Jennings, “Intelligent agents: theory and practice,” The 

Knowledge Engineering Review, vol. 10, pp. 115-152, 1995. 
 
[15] N. Jennings and M. Wooldridge (Ed.), “Agent technology: foundations, applications, 

and markets,” Springer-Verlag, 1998. 
 
[16] L, Padgham and M, Winikoff, “Developing intelligent agent systems: a practical 

guide,” John Wiley & Sons, July. 2004. 
 
[17] H, Oh and T. Mount, “Testing the effects of holding forward contracts on the 

behavior of suppliers in an electricity auction,” Proc. 38th Hawaii Intl. Conf. on 
System Sciences, 2005. 

 
[18] R. J. Thomas and T. D. Mount, “Using software agents to test electric markets and 

systems,” IEEE Power Eng. Soc. Summer Meeting, Vol. 3, pp. 2808-2812, 2005 
 
[19] P. Wei, Y. Yan, Y. Ni, J. Yen, and F. Wu, “A decentralized approach for optimal 

wholesale cross-border trade planning using multi-agent technology,” IEEE Trans. on 
Power Systems, vol. 16, pp. 833-838, Nov 2001. 

 
[20] J. H. Yuan, J. Wang, and Z. G. Hu, “Simulation of large customer price response 

under time-of-use electricity pricing based on multi-agent system”, Intl. Conf. on 
Power System Technology, 2006. 

 
[21] E. Gnansounou, J. Dong, S. Pierre, and A. Quintero, “Market oriented planning of 

power generation expansion using agent-based model,” IEEE Power Eng. Soc. 
Summer Meeting, Oct. 2004. 

 
[22] S. D. J. McArthur, C. D. Booth, J. R. McDonald, and I. T. McFadyen, “An agent-

based anomaly detection architecture for condition monitoring,” IEEE Trans. on 
Power Systems, vol. 20, pp. 1675-1682, Nov. 2005. 

 
[23] S. D. J. McArthur and E. M. Davidson, “Multi-agent systems for diagnostic and 

condition monitoring applications,” IEEE Power Eng. Soc. Summer Meeting, Vol. 1, 
pp. 50-54, June 2004. 



 

111 

 
[24] L, Liu, K. P. Logan, D. A. Cartes, and S. K. Srivastava, “Fault detection, diagnostics, 

and prognostics: software agent solutions,” IEEE Trans. on Vehicular Technology, 
vol. 56, pp. 1613-1622, July. 2007. 

 
[25] T. Nagata and H. Sasaki, “A multi-agent approach to power system restoration,” 

IEEE Trans. on Power Systems, vol. 17, pp. 457-462, May. 2002. 
 
[26] J. A. Momoh, “NAVY ship power system restoration using multi-agent approach,” 

IEEE Power Eng. Soc. Summer Meeting, June. 2006. 
 
[27] A. L. Dimeas and N.D. Hatziargyriou, “Operation of a multiagent system for 

microgrid control,” IEEE Trans. on Power Systems, vol. 20, pp. 1447-1455, Aug. 
2005. 

 
[28] J. Jung, C. C. Liu, S. L. Tanimoto, and V. Vittal, “Adaptation in load hedding under 

vulnerable operating conditions,” IEEE Trans. on Power Systems, vol. 17, pp. 1199-
1205, Nov. 2002. 

 
[29] F. Bellifemine, G. Caire, and D. Greenwood, “Developing multi-agent systems with 

JADE,” John Wiley & Sons, Feb. 2007. 
 
[30] FIPA, FIPA 2000 Specification: FIPA SL Content Language Specification, SC00008. 

[Online]. Available: http://www.fipa.org/. 
 
[31] FIPA, FIPA 2000 Specification: FIPA Abstract Architecture Specification, SC00001. 

[Online]. Available: http://www.fipa.org/. 
 
[32] J. Roy, A. Bose and J. Price, "Effect of ancillary service market design on control 

performance of power systems," Accepted by 2008 Power System Computation 
Conference (PSCC). 

 
[33] Y. Shoham, R. Powers, and T. Grenager, “If multi-agent learning is the answer, what 

is the Question?” Artificial Intelligence, vol. 171, pp. 365-377, Mar. 2007. 
 
[34]  G. Brown, “Iterative solution of games by fictitious play,” Activity Analysis of 

Production and Allocation, John Willey and Sons, New York, 1951. 
 
[35] D. Fudenberg and D. Kreps, “Learning mixed equilibria,” Games and Economic 

Behavior, vol 5, pp. 320-367, 1993. 
 
[36] D. Fudenberg and D. Levine, “Universal consistency and cautious fictitious play,” 

Journal of Economic Dynamics and Control, vol. 19, pp. 1065-1089, 1995. 
 



 

112 

[37] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. Thesis, University of 
Cambridge, England, 1989. 

 
[38] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, 3:279-292, 1992. 
 
[39] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to correlated 

equilibrium,” Econometrica, vol. 68, No.5, pp. 1127-1150, Sep. 2000. 

[40] I. Arnott, G. Chown, K. Lindstrom, M. Power, A. Bose, O. Gjerde, R. Morfill and N. 
Singh, “Frequency control practices in market environments,” Quality and Security of 
Electric Power Delivery Systems 2003, CIGRE/IEEE PES International Symposium 
pp. 143 – 148, October 2003  

[41] M. Ilic´, P. Skantze, C. N. Yu, L. Fink and J. Cardell, “Power exchange for frequency 
control (PXFC),” Proceeding of the 1999 IEEE PES Winter Meeting, pp. 809–819, 
February. 1999. 

[42] J. Kumar, K. H. Ng and G. Sheblé, “AGC simulator for price-based operation—Parts 
I–II,” IEEE Trans. on Power Systems, vol. 12, no. 2, pp. 527–538, May 1997 

[43] R. D. Christie and A. Bose, “Load frequency control issues in power system 
operation after deregulation,” IEEE Trans. on Power Systems, vol. 11, no. 3, pp. 
1191–1200, August 1996 

[44] California Independent System Operator, “Business practice manual for market 
instruments,” version 2.0, January 2007, available at http://www.caiso.com 

[45] K. Bhattacharya, M. H. J. Bollen, and J. E. Daalder, “Operation of restructured power 
systems,” Kluwer Academic Publishers, 2001 

[46] A. J. Wood and B. F. Wollenberg, “Power generation, operation & control,” J. Wiley 
& Sons Inc., 2005 

[47] E. Hirst and B. Kirby, “Separating and measuring the regulation and load-following 
ancillary services,” Utilities Policy, vol. 8, Issue 2, pp. 75 – 81, June 1999 

[48] E. Nobile, A. Bose, and K. Tomsovic, “Bilateral market for load following ancillary 
services,”  IEEE Trans. on Power Systems, vol. 16, no. 4, Nov. 2001 

[49] N. Jaleeli, L. S. VanSliyck, D. N. Ewart, L. H. Fink, and A. G. Hoffmann, 
“Understanding automatic generation control,” IEEE Trans. on Power Systems, vol. 
7, no. 3, pp. 1106–1122, Aug. 1992. 

[50] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994. 

[51] S. Corsi, P. Marannino, N. Losignore, G. Moreschini, and G. Piccini, “Coordination 
between the reactive power scheduling function and the hierarchical voltage control 



 

113 

of the EHV ENEL system,” IEEE Trans. on Power Systems., vol. 10, no. 2, pp. 686–
694, May 1995. 

[52] UCTE Operation Handbook, v 2.5E, UCTE, July 20, 2004. Available: 
http://www.ucte.org 

[53] VDN, Germany, Transmission Code: Network and System Rules of the German 
Transmission System Operators, Aug. 2003. Available: http://www.vdn-berlin.de 

[54] NEMMCO, Australia, Market Ancillary Service Specification, No 1.5, Final, Feb. 27, 
2004.Available:http://www.nemmco.com.au 

[55] E. Nobile and A. Bose, “An area-wise voltage control scheme suitable for setting up a 
VAr ancillary market”, International Conference on Power System Technology, Vol. 
2, pp. 1948-1953, Nov. 2004 

[56] P. Lagonotte, J. C. Sabonnadiere, J. Y. Leost, and J. P. Paul, “Structural analysis of 
the electrical system: Application to secondary voltage control in France,” IEEE 
Trans. on Power Systems, vol. 4, pp. 479–486, May 1989. 

[57] K. Bhattacharya and J. Zhong, “Reactive power as an ancillary service,” IEEE Trans. 
on Power Systems, vol. 16, pp. 294–300, May 2001 

[58] Q-learning, http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-
Learning-Algorithm.htm 

 
 


	Cover
	Title
	Contact information
	Executive summary
	Table of contents
	Part 1: Multi-Agent System Modeling of Electricty Market and its Application in Evaluation of Market Power Mitigation Rules
	Part 2: Effects of Ancillary Service Markets on Frequency and Voltage Control Performance of Deregulated Power Systems
	Part 3: Power System Electricity Market Agent Model
	Part 4: Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Bibliography



