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Executive Summary 

In the restructured electric power industries, how to manage the extremely high price 
volatility in the electricity wholesale markets has been a crucial factor to the smooth and 
viable business operations of all parties, including independent power producers, system 
operators and load serving entities and the likes. Compounded with the price risk, 
quantity or volumetric risk that arises from demand uncertainty due to weather conditions 
and load migration, presents major challenges and opportunities for the above mentioned 
market participants. The financial exposures to these two sources of risk that could result 
in severe financial losses are amplified by the positive correlation between load and price, 
which prevails in electricity markets. Therefore, managing these risks is essential to the 
financial success of participants in the electricity industry. 

This project investigates the integration of financial and operational risk 
management mechanisms to facilitate market operations and enhance market efficiency 
in the restructured electricity industry. Financial and operational hedging strategies 
utilizing existing standard and prospective instruments have been studied.  This work has 
developed methods for pricing such instruments and assessing their effectiveness.  

I. Electricity Price Curve Modeling and Forecasting 
       We established a novel non-parametric approach for the modeling and analysis of 
electricity price curves by applying the manifold learning methodology—locally linear 
embedding (LLE). The prediction method is based on manifold learning, and 
reconstruction is employed to make short-term and medium-term price forecasts. Our 
method not only performs accurately in forecasting one-day-ahead prices, but also has a 
great advantage in predicting one-week-ahead and one-month-ahead prices over other 
methods. The forecast accuracy is demonstrated by numerical results using historical 
price data taken from the Eastern U.S. electric power markets.  

II. An Equilibrium Pricing Model for Weather Derivatives in a Multi-commodity 
Setting  

       We developed an equilibrium-pricing model for weather derivatives in a multi-
commodity setting. The model is constructed in the context of a stylized economy where 
market participants optimize their hedging portfolios, which include weather derivatives 
that are issued in a fixed quantity by a financial underwriter. The demand of weather 
derivatives resulting from hedging activities of buyers and the supply by the underwriters 
are combined in an equilibrium-pricing model under the assumption that all participants 
maximize some risk-averse utility function. We analyzed the gains due to the inclusion of 
weather derivatives in hedging portfolios and examined the components of that gain 
attributable to risk hedging and to risk sharing. 

III. Hedging Quantity Risks with Standard Power Options 
       We analyzed the quantity risk in the electricity market, and explored several ways of 
managing it. The research also addressed the price and quantity risk hedging problem of a 
load serving entity (LSE), which provides electricity service at a regulated price in 
electricity markets. Exploiting the correlation between consumption volume and spot 
price of electricity, we derived an optimal zero-cost hedging function characterized by 
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the payoff as a function of spot price. How such a hedging strategy can be implemented 
through a portfolio of forward contracts and call and put options was also illustrated. 

IV. Optimal Static Hedging of Volumetric Risk 
       We developed a static hedging strategy for an LSE or a marketer whose objective is 
to maximize a mean-variance utility function over net profit, subject to a self-financing 
constraint. Since quantity risk is non-tradable, the hedge consists of a portfolio of price-
based financial energy instruments, including a bond, a forward contract and a spectrum 
of European call and put options with various strike prices. The optimal hedging strategy, 
which varies in contract timing, is jointly optimized with respect to contracting time and 
the portfolio mix under specific price and quantity dynamics, and the assumption that the 
hedging portfolio, which matures at the time of physical energy delivery, is purchased at 
a single point in time. Explicit analytical results are derived for the special case where 
price and quantity have a joint bivariate lognormal distribution. 

V. VaR Constrained Hedging of Fixed Price Load-Following Obligations 
       We developed a self-financed hedging portfolio consisting of a risk free bond, a 
forward contract and a spectrum of call and put options with different strike prices. A 
popular portfolio design criterion is the maximization of expected hedged profits subject 
to a Value-at-risk (VaR) constraint. Unfortunately, that criterion is difficult to implement 
directly due to the complicated form of the VaR constraint. We show, however, that 
under plausible distributional assumptions, the optimal VaR constrained portfolio is on 
the efficient Mean-Variance frontier. Hence, we proposed an approximation method that 
restricts the search for the optimal VaR constrained portfolio to that efficient frontier. The 
proposed approach is particularly attractive when the Mean-Variance efficient frontier 
can be represented analytically, as is the case, when the load and logarithm of price 
follow a bivariate normal distribution. We illustrate the results with a numerical example. 

Potential uses of the developed analytical tools 
       In order to show the practical usage of the model discussed in this project, we have 
developed a graphic User Interface for industry members to investigate the hedging 
performance of the optimal portfolios suggested by our model. We implemented the 
model developed in Oum, Oren, Deng 2006 as an illustration. Our intention is that, with 
real market data inputted and utility functions specified by the industry users, the 
interface could provide the corresponding payoff functions, the positions of forward 
contracts and options, and the performance of hedging the price and volumetric risks. 

Future work 
       On the side of hedging with financial instruments, a credit limit constraint, which 
limits the amount of money that can be borrowed to construct the portfolio, needs to be 
considered in future extension of our work. A dynamic hedging strategy rather than the 
static approach is likely to improve the hedging performance and should also be 
considered.  On the other side, we would like to incorporate a broad range of demand-
side management programs into the analytic framework and investigate the impact of 
these programs in hedging the price and volumetric risks. The valuation and role of other 
tools, for example, “out-of -money” power plant should also be explored.   
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1. Introduction 

      In the restructured electric power industries, how to manage the extremely high price 
volatility in the electricity wholesale markets has been a crucial factor to the smooth and viable 
business operations of all parties, including independent power producers, system operators and 
load serving entities and the likes. Compounded with the price risk, quantity, or volumetric, risk 
that arises from demand uncertainty due to weather conditions and load migration, presents 
major challenges and opportunities for the above mentioned market participants. Non-storability 
of electricity, the steep rise in the supply function, limited demand response and demand 
fluctuation which are largely driven by weather conditions are among the major factors 
contributing to high price volatility in restructured wholesale electricity markets. On the other 
hand, vertical unbundling of the generation and distribution sectors has removed some of the 
natural hedging that previously existed in the vertically integrated industry and exposed both 
generation investments and consumers to the spot price risk. This price risk must now be 
managed through financial hedging and long term contracting.  In addition, resources such as 
operating reserves and planning reserves that were deployed through command and control are 
now procured through market and economic incentives, which creates operational risk exposures 
threatening system reliability. Managing such operational risks requires “real options” that come 
with physical assets and operating protocols.  
 
      Overall an efficient electricity industry requires efficient and reliable operation as well as 
competitive and liquid markets for trading and risk allocation.  Unfortunately, while market 
design efforts in the US and abroad over the last decade have focused on the development of 
market mechanisms that ensure spot market efficiency, little has been done toward understanding 
and facilitating efficient markets for trading and allocating risk in the electricity supply chain. 
Exposure to price risk of the three major utilities in California during the electricity crisis in 2000 
and 2001 led them to bankruptcy or near bankruptcy. More recently during the ice storms in 
Texas in February 2003, a retail energy provider went into bankruptcy after incurring a 
devastating loss attributed to high price spikes.  
 
      Significant economic risks in a restructured electricity market do not come from price 
fluctuation alone. Quantity, or volumetric, risk that arises from demand uncertainty due to 
weather conditions and load migration, also presents major challenges and opportunities for 
market participants. For example, an LSE who has purchased a forward contract in order to serve 
its native load (at fixed regulated retail prices) may find that the demand realization will be less 
than expected, requiring the LSE to resell the residual electricity in the spot market at lower 
prices than the purchasing cost. Likewise during a hot day the LSE may become short in supply 
quantity and have to meet the extra demand through purchases in the wholesale spot market at 
prices that may exceed its regulated retail rate. Such exposure that could cause extreme financial 
losses is amplified by the positive correlation between load and price, which prevails in 
electricity markets. A similar situation is faced by energy merchants who bear quantity risk by 
entering into annual “Default Service Contracts” that obligate them to serve a fixed percentage of 
electricity loads at a fixed price per MWh. Such contracts are auctioned off annually in New 
Jersey by the local utility.  The holder of the contract must then decide how to manage its risk 
through a combination of physical generation capacity and financial hedging. 
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      Our project addressed the problem of integrating financial and operational hedging of price 
and volumetric risks.  We examined the design and evaluation of hedging mechanisms utilizing 
both standard electricity financial instruments such as forward contracts and options and non-
standard derivatives such as weather derivatives. Obviously, many industries, including the 
energy industry, are directly or indirectly exposed to weather risk. Although catastrophic events 
such as storms and hurricanes cause serious damage to most industries, even less extreme 
weather conditions can significantly affect the revenue of weather-sensitive industries. In terms 
of the energy industry, it is exposed to weather risk because the energy demand is highly 
dependent on weather conditions. Unexpected weather changes will affect energy demand and 
sudden demand increases result in spot price spikes. Thus, the price, volumetric and weather 
risks are all correlated. Weather derivatives provide an effective way to mitigate financial losses 
due to weather. They are financial instruments providing predetermined compensation in 
proportion to the deviation of the average temperature over a fixed time interval from a fixed 
norm (typically 65̊F), which can be viewed as weather insurance. Such insurance can offset 
losses associated with extreme weather conditions such as those resulting from excess load 
during high price periods. Weather derivatives are particularly attractive as a supplement to 
operational hedges such as tolling contracts or distributed generation facilities since they are 
relatively liquid and they enable risk diversification and risk sharing across multiple 
commodities whose consumption and pricing are correlated with weather.  In order to better 
understand the hedging effectiveness of weather derivatives, first of all, we need to understand 
the major factors driving the electricity price dynamics and identify the linkage between these 
factors to the weather factor. In Chapter 2, we propose a manifold-based dimension reduction to 
identify the non-linear mapping between fundamental supply-demand factors and the dynamics 
of electricity price curves. Local Linear Embedding is demonstrated to be an efficient method for 
extracting the intrinsic low-dimensional structure of electricity price curves. Using price data 
taken from the New York ISO, we found that there exists a low-dimensional manifold 
representation of the day-ahead price curve in the NY Power Pool, and specifically, the 
dimension of the manifold is around 4. The interpretation of each dimension in the low-
dimensional space is attributed to the mean, standard deviation and skewness of the price curve, 
which are all strongly correlated with weather data such as temperature.  The cluster analysis was 
performed to confirm that these identified factors capture the electricity price curve dynamics 
very well in the sense that the cluster pattern based on the first 3 factors match the pattern based 
on the original price curves. 
   
      On the weather derivative pricing end, because the weather derivatives market is incomplete, 
there is no effective pricing model.  In Chapter 3, we formulate an equilibrium-pricing model in 
a multi-commodity setting that is driven by demand of weather derivatives, which is derived 
from hedging and risk diversification activities in weather sensitive industries. Specifically, the 
model is constructed in the context of a stylized economy where risk-averse agents optimize their 
hedging portfolios, which include weather derivatives that are issued in a fixed quantity by a 
financial underwriter.  The supply and demand resulting from hedging activities and the supply 
by the underwriter are combined in an equilibrium-pricing model under the assumption that all 
agents maximize some utility functions.  
 
      As a part of our analysis, we measure the risk hedging and sharing effects of the weather 
derivatives, both of which contribute to increasing the expected utility of agents who trade these 
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hedging instruments. To price the weather derivatives, we assume that there are buyers and an 
issuer in a closed and frictionless endowment economy and all of them are utility maximizers. 
By solving the utility maximization problems of the market participants, we determine the 
optimal demand and supply functions for weather derivatives and obtain their equilibrium prices 
by invoking a market clearing condition. In the multi-commodity economy, the weather 
derivative has two effects: the risk hedging effect and the risk sharing effect. While in a single-
commodity economy, there is only a risk hedging effect since there is no counter-party to share 
risk. We measure these effects in terms of certain equivalent differences among various cases. 
Under the mean-variance utility function, we were able to derive closed form expressions for 
equilibrium prices and the measurement of the risk hedging and sharing effects. Such 
expressions will be useful in future empirical work that will attempt to calibrate the model 
parameters to market data. Numerical examples employing Monte-Carlo simulations show that 
the equilibrium price tends to increase as the correlation between temperature and demand 
increases due to the high demand for the weather derivative. In addition, the numerical examples 
verify that weather derivative improves hedging and risk diversification capability, especially in 
situations where commodity derivatives are not available. 
 
      In addition to weather derivatives, forward contracts and derivatives such as call and put 
options have become common tools for mitigating price and quantity risks in electricity markets. 
An electricity forward contract obligates a party to buy and the other party to sell a specified 
quantity on a given delivery date in the future at a predetermined fixed price. At the delivery date 
if the market price is higher than the contracted forward price, then the buyer will benefit, 
conversely, if the market price is lower than the forward price, then the buyer will suffer. Put or 
call options are used for hedging either downside or upside price risks alone. The buyer of an 
electricity put (call) option pays a premium for the right to sell (buy) electricity at a specified 
price, called strike price, at a specific time in the future. LSEs would use call options to avoid the 
risk of high electricity purchasing cost and still enjoy the benefit of low electricity spot prices.  
While it is relatively simple for a power market participant who has obligations in delivering 
power to hedge price risk for a given quantity, it is more difficult to hedge price risk when the 
quantity demanded is uncertain and correlated with the price.  The price-demand correlation is 
evident in electricity market and should be considered in solving hedging problems. For 
example, the correlation coefficient between price and load in Northern California from April 
1998 to March 2000 was about 0.5. Our research for this PSerc project has exploited this 
correlation in developing hedging strategies that address both price and quantity risks. 
 
      One front is on constructing the optimal static hedge of the volumetric risk of loads through a 
portfolio of a risk-free bond and a set of forwards/standard options contracts written on 
electricity traded in competitive markets, which is discussed in Chapter 4.  This work is based on 
the earlier work of this PSerc project (Oum, Oren and Deng 2006).  We obtained the optimal 
hedging strategy that used electricity derivatives to hedge price and volumetric risks by 
maximizing the expected utility of the hedged profit.  When such a portfolio is held by an LSE, 
the call options with strikes being below the spot price will be exercised so that the amount of the 
options being exercised is procured at the strike prices. Using this strategy, the LSE can set an 
increasing price limit on incremental load by paying the premiums for the options. This strategy 
is shown to be quite effective in managing quantity risk and it was also suggested in the market 
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design literature such as Chao and Wilson 2004, Oren 2005, and Willems 2006 as means to 
achieve resource adequacy, mitigate market power, and reduce spot price volatility. 
 
      We extended the single-period setting in Oum, Oren and Deng 2006 by allowing contract 
procurement to take place anywhere between the decision time at the onset of the period and the 
exercise time at the end of the period (when delivery occurs) as long as the entire hedging 
portfolio is procured at a single point in time. Within this framework we co-optimize the mix and 
procurement time of the hedging portfolio.  We first solve for the optimal payoff of a general 
static hedging function given the procurement time, and then find a replicating portfolio that 
consists of forward, European calls and puts which yields the optimal payoff. Prices of the 
forwards and options contracts that are included in our hedging portfolio change as the time 
approaches delivery time, reflecting the changing expectations in the market. Thus, the mix of 
the optimal hedging portfolio also changes with the hedging time.  
 
      Our result shows that hedging too late can increase risk sharply. Optimizing such timing 
decisions requires solving an integrated problem of selecting the optimal hedging portfolio and 
time. For mean-variance expected utility, we solved for the optimal hedging time, under classical 
assumption regarding the stochastic processes governing forward price and load-estimate. 
Through numerical examples, we showed that generally there is a critical time beyond which the 
uncertainty in profit increases sharply while the uncertainty remains relatively constant before 
this critical time.  Sensitivity analysis results indicate that the optimal hedging time gets closer to 
the delivery period if the positive correlation between the forward price and load-estimate is 
higher, and if the load-estimate volatility is higher.  It is also observed that delaying the hedging 
time past the optimum time can be very risky, while the earlier hedging makes little difference as 
compared with hedging at the optimal time. This suggests that in practice one should err by 
hedging early rather than taking the chance of being too late. 
 
      The other front is to exploit the inherent positive correlation between wholesale electricity 
price and demand volume to develop a hedging strategy which maximizes the expected profit 
subject to a value-at-risk (VaR) constraint. The model is proposed in Chapter 5.  A VaR 
constraint on a portfolio limits the lowest level below which the portfolio value wouldn't fall 
during a specified time period with 95% confidence. Specifically, we developed a hedging 
strategy for the LSE's retail positions (which is in fact a short position on unknown volume of 
electricity) using electricity standard derivatives such as forwards, calls, and puts. However, VaR 
constrained problems are generally very hard to solve analytically unless the value or profit 
under consideration is normally distributed.  In our case, the profit depends on the product of the 
two correlated variables.  Moreover, our hedging strategy is characterized by a nonlinear 
function of a random variable. We addressed this difficulty by limiting our search to feasible 
VaR-constrained self-financed hedging portfolios on the mean-variance efficient frontier. We 
provide theoretical justification to such an approximation and derive, an analytic representation 
of hedging portfolios on the mean-variance efficient frontier as function of the risk aversion 
factor.  The computation of an approximate solution to the VaR constrained problem on the 
mean variance efficient frontier is facilitated by the fact that it corresponds to the smallest risk-
aversion factor whose associated VaR meets the constraint limit. 
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2. Modeling and Forecasting the Electricity Price Curve 

2.1. Introduction 
      In the competitive electricity wholesale markets, market participants, including power 
generators and merchants alike, strive to maximize their profits through prudent trading and 
effective risk management against adverse price movements. A key to the success of market 
participants is to model the electricity price dynamics well and capture their characteristics 
realistically. Researches on modeling electricity price processes focus on the aspect of derivative 
pricing (e.g., Johnson and Barz 1999, Deng 2000, Lucia and Schwartz 2002) and on forecasting 
spot or short- term electricity prices, especially the day-ahead prices (e.g., Davison et al. 2002, 
Nogales et al. 2002, Contreras et al. 2003, Conejo et al. 2005, etc.). While spot price modeling is 
important, successful trading and risk management operations in electricity markets also require 
knowledge on an electricity price curve consisting of prices of electricity delivered at a sequence 
of future times instead of only at the spot. Audet et al. 2004 proposes a parametric forward price 
curve model for the Nordic market, which does not model the movements of the expected future 
level of a forward curve. Lora et al. 2006 employs a weighted average of nearest neighbors 
approach to model and forecast the day-ahead price curve. These works offer little insight on 
understanding the main drivers of the price curve dynamics. We proposed a novel nonparametric 
approach for modeling electricity price curves. Analysis on the intrinsic dimension of an 
electricity price curve is offered, which sheds light on identifying major factors governing the 
price curve dynamics. The forecast accuracy of our model compares favorably against that of the 
ARX and ARIMA model in one-day-ahead price predictions. In addition, our model has a great 
advantage on the predictions in a longer horizon from days to weeks over other models.  
 
      In general, the task of analytically modeling the dynamics of such a price curve is daunting, 
because the curve is a high-dimensional subject. Each price point on the curve essentially 
represents one dimension of uncertainty. To reduce the dimension of modeling a price curve and 
identify the major random factors influencing the curve dynamics, Principle Component 
Analysis (PCA) is proposed and has been widely applied in the real-world data analysis for 
industrial practices. As PCA is mainly suited for extracting the linear factors of a data set, it does 
not appear to perform well in fitting electricity price curves with a linear factor model in a low-
dimensional space. A natural extension to the PCA approach is to consider the manifold learning 
methods, which are designed to analyze intrinsic nonlinear structures and features of high-
dimensional price curves in the low-dimensional space. After obtaining the low-dimensional 
manifold representation of price curves, price forecasts are made by first predicting each 
dimension coordinate of the manifold and then utilizing a reconstruction method to map the 
forecasts back to the original price space. The conceptual flowchart of our modeling approach is 
illustrated by Figure 2-1. Our major contribution is to establish an effective approach for 
modeling energy forward price curves, and set up the entire framework in Figure 2-1. The other 
major contribution is to identify the nonlinear intrinsic low-dimensional structure of price curves. 
The resulting analysis reveals the primary drivers of the price curve dynamics and facilitates 
accurate price forecasts. This work also enables the application of standard times series models 
such as Holt-Winters in the forecast step from box 1 to box 2.  
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Figure 2-1: The conceptual flow chart of the model 

 

2.2. Manifold Learning Algorithm 

2.2.1. Introduction to Manifold Learning 
Manifold learning is a new and promising nonparametric dimension reduction approach. 

Many high-dimensional data sets that are encountered in real-world applications can be modeled 
as sets of points lying close to a low-dimensional manifold. Given a set of data points 

D
N Rxxx ∈,,, 21  , we can assume that they are sampled from a manifold with noise, i.e.,  

 Niyfx iii ,,1,)( =+= ε  (2.1) 

where DdRy d
i <<∈ , , and iε  are noises. Integer d  is also called the intrinsic dimension. The 

manifold based methodology offers a way to find the embedded low-dimensional feature vectors 
iy  from the high-dimensional data points ix .  

Many nonparametric methods were created for nonlinear manifold learning, including 
multidimensional scaling (MDS), locally linear embedding (LLE), Isomap, Laplacian 
eigenmaps, Hessian eigenmaps, local tangent space alignment (LTSA), and diffusion maps.  

      Among various manifold based methods, we find that locally linear embedding (LLE) works 
well in modeling electricity curves. Moreover, LLE and LLE-reconstruction are fast and easy to 
implement. In the next two subsections, we introduce the algorithms of LLE and LLE 
reconstruction, respectively. 
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2.2.2. Locally Linear Embedding (LLE) 

Given a set of data points D
N Rxxx ∈,,, 21   in the high-dimensional space, we are looking 

for the embedded low-dimensional feature vectors d
N Ryyy ∈,,, 21  . LLE is a nonparametric 

method that works as follows:  

1. Identify the k  nearest neighbors based on Euclidean distance for each data point 
Nixi ≤≤1, . Let iN  denote the set of the indices of the k  nearest neighbors of ix .  

2. Find the optimal local convex combination of the k  nearest neighbors to represent each data 
point ix . That is, the following objective function (2.2) is minimized and the weights ijw  of 
the convex combinations are calculated.  

∑ ∑
= ∈

−=
N

i Nj
jiji

i

xwxwE
1

2||||)(                                                 

(2.2) where |||| ⋅  is the 2l  norm and 1=∑
∈ iNj

ijw .  

The weight ijw  indicates the contribution of the j th data point to the representation of the 
i th data point. The optimal weights can be solved as a constrained least square problem, 
which is finally converted into a problem of solving a linear system of equation. 

3. Find the low-dimensional feature vectors Niyi ≤≤1, , which have the optimal local convex 
representations with weights ijw  obtained from the last step. That is, iy ’s are computed by 
minimizing the following objective function:  

 ∑ ∑
= ∈

−=Φ
N

i Nj
jiji

i

ywyy
1

2||||)(  (2.3) 

It can be shown that solving the above minimization problem (2.3) is equivalent to solving an 
eigenvector problem with a sparse NN ×  matrix. The d eigenvectors associated with the d  
smallest nonzero eigenvalues of the matrix comprise the d -dimensional coordinates of iy ’s. 
Thus, the coordinates of iy ’s are orthogonal.  

LLE does not impose any probabilistic model on the data; however, it implicitly assumes the 
convexity of the manifold. It can be seen later that this assumption is satisfied by the electricity 
price data.  

2.2.3. LLE Reconstruction 
      Given a new feature vector in the embedded low-dimensional space, the reconstruction 
method is used to find its counterpart in the high-dimensional space based on the calibration data 
set. Reconstruction accuracy is critical for the application of manifold learning in the prediction. 
There are a limited number of reconstruction methods in the literature. For a specfic linear 
manifold, the reconstruction can be easily made by PCA. For a nonlinear manifold, LLE 
reconstruction is derived in the similar manner as LLE. Among all the reconstruction methods, 
LLE reconstruction has the best performance for the electricity data. This is an important reason 
for us to choose LLE and LLE reconstruction.  
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      Suppose low-dimensional feature vectors  have been obtained through LLE in the 
previous subsection. Denote the new low-dimensional feature vector as . LLE reconstruction 
is applied to find the approximation  of the original data point 

 

x0  in the high-dimensional 
space based on Nxxx ,,, 21   and . There are three steps for LLE reconstruction:  

1.   Identify the  nearest neighbors of the new feature vector  among . Let 

 

N0 
denote the set of the indices of the 

 

k  nearest neighbors of . 
2.    The weights of the local optimal convex combination 

 

w j  are calculated by minimizing 

 

E(w) =|| y0 − w j y j
j ∈N0

∑ ||2,                                                 (2.4) 

subject to the sum-to-one constraint, . 

3.    Data point  is reconstructed by . 

Remark: Solving optimization problems (2.2) and (2.4) is equivalent to solving a linear system of 
equations. When there are more neighbors than the high dimension or the low dimension, i.e., 

 

k > D or 

 

k < d , the coefficient matrix associated with the system of linear equations is singular, 
which means that the solution is not unique. This issue is solved by adding an identity matrix 
multiplied with a small constant to the coefficient matrix (see Saul and Roweis 2003). We adopt 
this approach here.  
 
      Suppose 

 

x0
( j ),1≤ j ≤ D , is the 

 

j th component of vector . The reconstruction error (RE) of 
 is defined as 

∑
=

−
=

D

j
j

jj

x
xx

D
xRE

1
)(

0

)(
0

)(
0

0
|ˆ|1)(                                                 (2.5) 

The reconstruction error of the entire calibration data set (TRE) is defined as 

∑∑
= =

−
×

=
N

i

D

j
j

i

j
i

j
i

x
xx

DN
TRE

1 1
)(

)()( |ˆ|1                                            (2.6) 

 
by regarding each 

 

yi as a new feature vector 

 

y0. 

2.3. Electricity Price Curve Modeling with Manifold Learning 
      The data of the day-ahead market locational-based marginal prices (LBMPs) and integrated 
real-time actual load of electricity in the Capital Zone of the New York Independent System 
Operator (NYISO) are collected and predicted in this project. The data are available online 
(www.nyiso.com/public/market_data/pricing_data.jsp). In this section, two years (731 days) of 
price data from Feb 6, 2003 to Feb 5, 2005 are used as an illustration of modeling the electricity 
price curves by manifold based methodology. Figure 2-2(a) plots the hourly day-ahead LBMPs 
during this period, where the electricity prices are treated as a univariate time series with 24 × 
731 hourly prices. Figure 2-2(b), 2-2(c) and 2-2(d) illustrate the mean, standard deviation and 
skewness of 24 hourly log prices in each day after outlier processing.  
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2.3.1. Preprocessing 
      1) Log Transform: The logarithmic (log) transforms of the electricity prices are taken before 
the manifold learning. There are several advantages to deal with the log prices. First, the 
electricity prices are well known to have the non-constant variance, and log transform can make 
the prices less volatile. The log transform also enhances the efficiency of manifold learning, by 
making the embedded manifold more uniformly distributed in the low-dimensional space and the 
reconstruction error of the entire calibration data set (TRE) reduced. Moreover, the log transform 
has the interpretation of the returns to someone holding the asset.  
 
      2) Outlier Processing: Outliers in this paper are defined as the electricity price spikes that are 
extremely different from the prices in the neighborhood. To deal with the outliers, we replace the 
prices in the day with outliers by the average of the prices in the days right before and right after. 
We remove the outliers because the embedded low-dimensional manifold is supposed to extract 
the primary features of the entire data set, rather than the individual and local features such as 
extreme price spikes. The efficiency of manifold learning is improved after outlier processing. 
Moreover, outliers, which represent rarely occurring phenomena in the past, often have very 
small probability to occur in the near future, so the processing of outliers does not severely affect 
the prediction of the near-term regular prices.  
 
       In the illustrated data set, only one extreme spike is identified on the right of Figure 2-2(a), 
which belongs to Jan 24, 2005. In the low-dimensional manifold, the days of outliers can also be 
detected by the points that stand far away from the other points. Figure 2-3 shows that the point 
corresponding to Jan24, 2005 lies out of the main cloud of the points on the embedded three-
dimensional manifold. Thus, we regard Jan24, 2005 as a day with outliers. Figure 2-4 shows that 
the low-dimensional manifold after removing the outliers is more uniformly distributed.  
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Figure 2-2: Day-ahead LBMPs from Feb 6, 2003 to Feb 5,2005 in the Capital Zone of NYISO 

 
 

 
 

Figure 2-3: Embedded three-dimensional manifold without any outlier preprocessing (but with 
log transform and LLP smoothing). "*" indicates the day with outliers -- Jan 24, 2005 
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Figure 2-4: Embedded three-dimensional manifold after log transform,  

outlier preprocessing and LLP smoothing 

 
      3) LLP Smoothing: The noise in (2.1) can contaminate the learning of the embedded 
manifold and the estimation of the intrinsic dimension. Therefore, locally linear projection (LLP) 
(Huo and Chen 2002, Huo 2003) is recommended to smooth the manifold and reduce the noise. 
The description of the algorithm is given as follows:   
 

ALGORITHM: LLP  

For each observation Nixi ,,2,1, = ,  

1. Find the k -nearest neighbors of ix . The neighbors are denoted by kxxx ~,~,~
21   

2. Use PCA or SVD to identify the linear subspace that contains most of the information in the 
vectors kxxx ~,~,~

21  . Suppose the linear subspace is A . Let 0k  denote the assumed dimension 
of the embedded manifold. Then subspace iA  can be viewed as a linear subspace spanned by 
the singular vectors associated with the largest 0k  singular values.  

3. Project ix  into the linear subspace iA  and let , denote the projected points.  

After denoising, the efficiency of manifold learning is enhanced, and the reconstruction 
error (TRE) of the entire calibration data set is reduced. For the illustrated data set with the 
intrinsic dimension being four, the TRE is 

 

3.89% after LLP smoothing, compared to 

 

4.41% 
without LLP smoothing. The choice of the two parameters in LLP, the dimension of the linear 
space and the number of the nearest neighbors, will be discussed in detail in subsection 2.3.4. 

2.3.2. Manifold Learning by LLE 
      Each price curve with 24 hourly prices in a day is considered as an observation, so the 
dimension of the high-dimensional space D is 24. The intrinsic dimension d is set to be four. The 
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number of the nearest neighbors k for LLP smoothing, LLE, and LLE reconstruction is selected 
to be a common number 23 for all the numerical studies. The details of the parameter selections 
are discussed in subsection 2.3.4. Due to the ease of visualization in a three-dimensional space, 
all the low-dimensional manifolds are plotted with the intrinsic dimension being three. We apply 
LLE to the denoised data , which are obtained after LLP smoothing. Figure 2-4 
provides the plot of the embedded three-dimensional manifold. As the low-dimensional manifold 
is nearly convex and uniformly distributed, LLE is an appropriate manifold based method. 
Figure 2-5 plots the time series of each coordinates of the feature vectors in the embedded four-
dimensional manifold.  

 
Figure 2-5: Coordinates of the embedded 4-dim manifold 

 
      Table 2-1 shows the TRE of different reconstruction methods. LLE reconstruction has the 
minimum reconstruction error among all the methods. LTSA reconstruction has a very large  
TRE, because it is an extrapolation-like method, and the reconstruction of some of the price 
curves has very large errors. Therefore, LLE and LLE reconstruction are selected to model the 
electricity price dynamics.  
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Table 2-1: The TRE of different reconstruction methods 

 
 

2.3.3. Analysis of Major Factors of Electricity Price Curve Dynamics with Low-
Dimensional Feature Vectors 
      1)  Interpretation of Each Dimension in the Low-Dimensional Space: There are some 
interesting interpretations for the first three coordinates of the feature vectors in the low-
dimensional space. For each price curve, we can calculate the mean, standard deviation, range, 
skewness and kurtosis of the 24 hourly log prices. The sequence of each coordinates of the low-
dimensional feature vectors comprises a time series. The correlation between each time series 
and mean log prices (standard deviation, range, skewness and kurtosis) is calculated. Table 2-2 
shows the one of the four-dimensional coordinates, which has the maximum absolute correlation 
with mean log prices (standard deviation, range, skewness and kurtosis), and the corresponding 
correlation coefficients. The comparison between Figure 2-2 and Figure 2-5 gives more intuition 
about the correlations. It is found that the first coordinates have a very high correlation 
coefficient 0.9964 with the mean log prices within each day, and the second coordinates are 
highly correlated with the standard deviation of the log prices in a day with a correlation 
coefficient 0.7073. This also means that the second coordinates contain some other information 
besides standard deviation, and Table 2-2 demonstrates that the second coordinates are also 
correlated, but not significantly, with range and skewness. The third coordinates show both 
weekly and yearly seasonality in Figure 2-5. Weekly seasonality is well known for electricity 
prices. Yearly seasonality may be caused by the shape change of the price curves over the year. 
The shape of price curves is often unimodal in the summer and bimodal in the winter.  
 

Table 2-2: The one of the four - dimensional coordinates which has the maximum absolute 
correlation coefficient with the mean (standard deviation, range, skewness and kurtosis) of log 

Prices in a day in embedded four-dimensional space. 
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      2) Cluster Analysis: The yearly seasonality of the electricity price curves can be clearly 
demonstrated by the cluster analysis of low-dimensional feature vectors.  
 
      Cluster analysis (also known as data segmentation, see Hastie et al. 2001) groups or segments 
a collection of objects into subsets (i.e., clusters), such that those within each cluster are more 
closely related to each other than those assigned to different clusters.  
 
      The K-means clustering algorithm is one of the mostly used iterative clustering methods. 
Assume that there are K clusters. The algorithm begins with a guess of the K cluster centers. 
Then, the algorithm iterates between the following two steps until convergence. The first step is 
to identify the closest cluster center for each data point based on some distance metric. The 
second step is to replace each cluster center with the coordinate-wise average of all the data 
points that are the closest to it.  
 
      For the electricity price data, we apply K-means clustering with Euclidean distance to the 
low-dimensional feature vectors that are obtained from manifold learning. The number of 
clusters is set to be three, as the yearly seasonality can be clearly illustrated with three clusters. 
The coordinate-wise average of price curves in each cluster is plotted in Figure 2-6. The 
distribution of clusters is illustrated in the first graph of Figure 2-7, where x axis is the date of the 
price curves, and y axis is the corresponding clusters. The two graphs show that the first cluster 
represents the price curves from the summer, which are featured with unimodal shape, and the 
second cluster represents the ones from the winter, which are characterized with bimodal shape. 
The price curves in the third cluster reveal the transition from unimodal shape to bimodal shape. 
The average price curves in the 3 clusters closely resemble the typical load shapes observed in 
summer, winter, and rest-of-year, respectively.  
 

 
Figure 2-6: The coordinate-wise average of the actual price curves in each cluster, where 

clustering is based on low-dimensional feature vectors. 
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Figure 2-7: Distribution of clusters. 

 
      The second graph of Figure 2-7 shows the distribution of clusters by applying K-means 
clustering with correlation distance to the high-dimensional price curves. The two graphs in 
Figure 2-7 have the similar patterns, which gives a good illustration that low-dimensional feature 
vectors capture the major factors of the price curve dynamics.2.3.4. Parameter Setting and 
Sensitivity Analysis 
      1) Intrinsic Dimension: Intrinsic dimension d is an important parameter of manifold learning. 
Levian and Bickel 2005 and Verveer and Duin 1995 provide several approaches of estimating 
the intrinsic dimension. In Levian and Bickel 2005, the maximum likelihood estimator of the 
intrinsic dimension is established. In Verveer and Duin 1995, the intrinsic dimension is estimated 
based on a nearest neighbor algorithm. Without LLP smoothing, the two methods show that the 
intrinsic dimension is some value between 4 and 5. Thus, it is reasonable to set the dimension of 
the linear space as 4 in LLP smoothing. After LLP smoothing, the intrinsic dimension is reduced 
to a value between 3 and 4. The numerical experiments indicate that LLP smoothing cannot only 
denoise, but also improve the efficiency of estimating the intrinsic dimension.  
 
      Another empirical way of estimating the intrinsic dimension is to analyze the sensitivity of 
the TRE to the different values of the intrinsic dimension. Figure 2-8 shows that the TRE is a 
decreasing function of the intrinsic dimension with an increasing slope. The slope of the curve in 
the figure has a dramatic change when the intrinsic dimension is around four. Therefore, we 
choose the intrinsic dimension as four here. 
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Figure 2-8: The sensitivity of TRE to the intrinsic dimension  
(data length=731 days, number of the nearest neighbors=23). 

 
      2) The Number of the Nearest Neighbors: The plot of the TRE against the number of the 
nearest neighbors is used to select the appropriate number of the nearest neighbors. Figure 2-9 
indicates the TRE first falls steeply when the number of the nearest neighbors is small, and then 
remains steady when the number of the nearest neighbors is greater than 22. We set the number 
of the nearest neighbors to be 23 for all the numerical studies. This is only one of the many 
choices as the construction error is not sensitive to the number of the nearest neighbors within a 
range.  

 
Figure 2-9: The sensitivity of TRE to the number of the nearest neighbors  

(data length=731days, intrinsic dimension=4). 
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      3) The Length of the Calibration Data: The plot of the TRE against the length of the 
calibration data in Figure 2-10 illustrates that the TRE is not very sensitive to the data length. 
Two years of data are applied to the manifold learning, and it helps to study whether there is 
yearly seasonality.  
   

 
Figure 2-10: The sensitivity of TRE to the length of the calibration data  

(intrinsic dimension=4, number of the nearest neighbors=23). 

 

2.4. Prediction of Electricity Price Curve 
      The prediction of future electricity price curves is an important issue in the electricity price 
market, because accurate predictions enable market participants to increase their profit by trading 
energy and hedge the potential risk successfully. However, it is difficult to make accurate 
predictions for the electricity prices due to their multiple seasonalities—daily and weekly 
seasonality. Unique features of the electricity price data often results in complicated models to 
forecast future electricity prices, which are often over fitting and fail to make accurate 
predictions in a longer horizon. Our method converts the hourly electricity price time series with 
multiple seasonalities into several time series with only weekly seasonality by manifold learning. 
After conversion, each data point in the new time series represents a day rather than an hour. The  
simplification of the new time series makes the longer horizon prediction easier and more 
accurate. Therefore, our method has an advantage in the longer horizon prediction over many 
other prediction methods.  
 
      A large amount of existing forecasting methods focus on one-day-ahead price predictions, 
i.e., the horizon of prediction is one day (24hours). Misiorek et al. 2006 and Conejo et al. 2005 
give a good review on many prediction methods, and make a comparison on their performance. 
Here, we compare our prediction methods with three models —ARIMA, ARX and the naive 
method. The ARIMA model in Contreras et al. 2003 and the naïve method are pure time series 



 

18 

methods. The ARX model (also called dynamic regression model) includes the explanatory 
variable, load, and is suggested to be the best model in Conejo et al. 2005 and one of the best 
models in Misiorek et al. 2006. The longer horizon prediction has not drawn much attention so 
far. However, it also plays an important role in biding strategy and risk management. Our 
numerical results show that our prediction methods not only generate competent results in 
forecasting one-day-ahead price curves, but also produce more accurate predictions for one-
week-ahead and one-month-ahead price curves, compared to ARX, ARIMA and the naive 
method. Moreover, as the new time series generated by manifold learning are simple, it is very 
easy to identify the time series models or utilize some nonparametric forecasting techniques. Our 
prediction methods also allow larger size of data for model calibration and incorporate more past 
information, but the size of the calibration data for ARIMA and ARX is often restricted to be 
several months. 

2.4.1. Prediction Method 
      In our prediction method, we first make the prediction in the low-dimensional space, and 
then reconstruct the predicted price curves in the high-dimensional space from the low-
dimensional prediction. There are three steps in detail:  
 
      1) Learn the low-dimensional manifold of electricity price curves with LLE. The sequence of 
each coordinates of the low-dimensional feature vectors comprises a time series.  
 
      2) Predict each time series in the low-dimensional space via univariate time series 
forecasting. Three prediction methods are applied: the Holt-Winters algorithm (HW), the 
structural model (STR) in Brockwell 2003 and the seasonal decomposition of time series by 
loess (STL) in Cleveland et al. 1990. Each data point in the time series represents one day, so for 
the one-week-ahead (one-day-ahead or one-month-ahead) price curve predictions, seven (one or 
28) data points are forecasted for each time series. 
 
      3) Reconstruct the predicted price curves in the high-dimensional space from the predictions 
in low- dimensional space with LLE reconstruction. 
 
      The first and third step have been described in the previous sections. In the second step, we 
make the univariate time series forecasting for each coordinates of the feature vectors rather than 
making the multivariate time series forecasting for all the time series in the low-dimensional 
space, because the coordinates are orthogonal to each other.  
 
      There are a variety of methods of univariate time series forecasting, among which Holt-
Winters algorithm, structural model and STL are selected. Both the Holt-Winters algorithm and 
structural model are pure time series prediction methods (models), and do not require any model 
identification as in ARIMA. The STL method can involve the explanatory variable in the 
prediction. All the prediction methods can be easily and fast implemented in statistical software 
R. The following is some brief description of the three prediction methods.  
 
      1) Holt-Winters Algorithm (HW): In Holt-Winters filtering, seasonals and trends are 
computed by exponentially weighted moving averages. In our numerical experiments, Holt-
Winters algorithm is executed with starting period equal to 7 days and 14 days respectively. This 
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choice is due to the weekly effect of the electricity prices.  
 
      2) Structural Models (STR): Structural time series model is a (linear Gaussian) state-space 
model for (univariate) time series based on a decomposition of the series into a number of 
components—trend, seasonal and noise.  
 
      3) Seasonal Decomposition of Time Series by Loess (STL): The STL method can involve 
explanatory variables in the prediction. As the effect of temperature is usually embodied in 
electricity loads, only load is utilized as an exploratory variable. We first learn the manifold with 
the intrinsic dimension four for both prices and loads, and then decompose each time series in 
the low-dimensional space of price and load curves into seasonal, trend and irregular components 
using loess. Let 

 

Pi,t and 

 

Zi,t denote the trend 2 of the ith coordinates of the feature vectors for 
prices and loads at time t. Then, we regress 

 

Pi,t on 

 

Zi,t  and the lagged 

 

Pi,t with the lag three. As 
the relationship between prices and loads are dynamic, the history data we applied to train the 
model are 70 days. The model is written as:  
 

 
 

2.4.2.  The Definition of Weekly Average Prediction Error  
      To assess the predictive accuracy of our methodology, three weekly average prediction errors 
are defined for one-day- ahead, one-week-ahead and one-month-ahead price predictions, 
respectively.  
 
      1) Weekly Average One-Day-Ahead Prediction Error: For the ith day of a certain week,  

, the calibration data are set to be the two-year data right before this day, and then one-
day-ahead predictions are made, i.e., the horizon of the prediction is one day. The predictions are 
denoted as , which is a 24-dimensional vector. The one-day-ahead prediction error for the ith 
day is defined as  

 

where 

 

x (i)
d  is the average of the actual electricity prices on the ith day. 

 

|| ⋅ ||1 is the 

 

L1 norm of a 
vector, which is the sum of the absolute values of all the components in the vector.  
 
      The weekly average one-day-ahead prediction error is defined as  

 

      2) Weekly Average One-Week-Ahead Prediction Error: For the ith day of a certain week, 
, the calibration data are set to be the two-year data right before this day, and then one-

week-ahead predictions are made, i.e., the horizon of the prediction is one week. The jth-day-
ahead predictions are denoted as , . The one-week-ahead prediction error for the ith 
day is defined as  
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where is the average of the actual electricity prices of the one-week-ahead predictions.  
 
      The weekly average one-week-ahead prediction error is defined as  

 

      3) Weekly Average One-Month-Ahead Prediction Error:  
For the ith day of a certain week, , the calibration data are set to be the two-year data 
right before this day, and then one-month-ahead (28-days-ahead) predictions are made, i.e., the 
horizon of the prediction is one month. The jth-day-ahead predictions are denoted as  

28,,1=j . The one-month-ahead prediction error for the ith day is defined as  

 

WPEm
(i) =

1
28 × 24

|| x(i, j ) − ˆ x ( i, j ) ||1
x 

( i )

m
j=1

28

∑  

where  

 

x 
( i )

m  is the average of the actual electricity prices of the one-month-ahead predictions.  
 
      The weekly average one-month-ahead prediction error is defined as  

 

WPEm =
1
7

WPE m
( i)

i=1

7

∑  

 
We define 

 

σ d , 

 

σ w  and 

 

σ m  as the standard deviations of , 

 

WPEw
(i)  and

 

WPEm
(i) , 

respectively.  

2.4.3. Prediction of Electricity Price Curves  
      Our numerical experiments are based on 12 weeks from February 2005 to January 2006, 
which consist of the second week of each month. Three weekly average prediction errors as 
defined above are calculated for each week, respectively. For each data set, the same parameter 
values taken from the previous section are used. The number of the nearest neighbors and the 
intrinsic dimension are set to be 23 and 4, respectively. Only one day, Jan 24, 2005, is identified 
with outliers. As we only have the forecasts of loads for six future days from the NYISO 
website, the weekly average one-week-ahead prediction error for STL and ARX is actually the 
weekly average six-days-ahead prediction error. 
 
      Table 2-3 and 2-4 provides the weekly average one-day-ahead prediction errors for the 12 
weeks and their standard deviations. Our prediction methods—Holt-Winters, structural model 
and STL—are compared with ARX, ARIMA and the naive method. The naive predictions of a 
certain week are given by the actual prices of the previous week. Holt-Winters and structural 
model outperform all the other methods. It seems that involving the exploratory variable does not 
necessarily improve the prediction accuracy. STL performs slightly worse than Holt-Winters and 
structural model, and ARX also has less accuracy than ARIMA. This is not consistent with the 
results in Misiorek et al. 2006 and Conejo et al. 2005, where ARX has better performance than 
ARIMA. A potential cause is that the predictions of loads are not precise, or the correlation 
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between loads and prices is not high enough in NYPP.  
 

Table 2-3: Comparison of  of one - day- ahead predictions for 12 weeks. 

 
 

Table 2-4: Comparison of  of one - day- ahead predictions for 12 weeks. 

 
 
      In Table 2-5 and 2-6, the weekly average one-week-ahead prediction errors for the 12 weeks 
and their standard deviations are presented. All of our prediction methods outperform ARX, 
ARIMA, and the naive method. The ARIMA model acts even worse than the naive method for 
one-week-ahead predictions. Since the ARIMA model is a very complicated model with multiple 
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seasonalities, it is often overfitting and makes the longer horizon predictions less accurate. The 
ARX model is a little simpler and given more information by the load forecasts, so it performs 
better than ARIMA. However, both ARX and ARIMA need to predict 168 data points for one-
week-ahead predictions, while our prediction methods only need to predict seven data points for 
each time series. Therefore, our prediction methods have a great advantage in the longer horizon 
predictions. Among Holt-Winters, structural model and STL, STL has slightly worse 
performance than other two, and structural model is the most accurate.  
 

Table 2-5: Comparison of 

 

WPEw (%)of one-week-ahead predictions for 12 weeks 

 
 

Table 2-6: Comparison of of one-week-ahead predictions for 12 weeks 
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      The proposed method can be applied to forecast prices in a longer horizon than one week, 
e.g., two weeks or even one month. As there are only a few methods associated with one-month-
ahead price predictions, we apply three naive methods to compare with. The first naive method 
takes the last month prices in the calibration data set as the predictions. The second method 
repeats the last week prices four times, and the third one replicates the prices of last two weeks 
twice, respectively, as the predictions. Table 2-7 and 2-8 provide the weekly average prediction 
errors of the one-month-ahead price predictions for the 12 weeks and their standard deviations.  
The notations—naive1, naive2 and naive3—stand for the three naive methods. From the 
comparison, the proposed methods outperform all the naive methods. We notice that the total 
stand deviation of the structural model is larger than that of the naive methods, and it is mainly 
due to an inaccurate prediction for one day in week five. Thus, Holt-Winters algorithm has the 
best performance among all the methods for one-month-ahead price predictions.  

 

Table 2-7: Comparison of 

 

WPEm (%)of one-month-ahead predictions for 12 weeks 
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Table 2-8: Comparison of 

 

σ m (%) of one-month-ahead predictions for 12 weeks 

 
 
      In summary, our prediction methods without an exploratory variable—Holt-Winters and 
structural model—outperform all of ARX, ARIMA and the naive method in both one-day-ahead 
and one-week-ahead predictions. STL is competent with ARX and ARIMA in one-day-ahead 
predictions, and performs better in one-week-ahead predictions. Our prediction methods have a 
great advantage in the longer horizon predictions spanning days to weeks. 
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3. An Equilibrium Pricing Model for Weather Derivatives 

3.1. Overview of Weather Derivatives Market 
      Early trading of weather based instruments among energy companies started as over-the-
counter (OTC) trades which means that each contract is individually negotiated. OTC trades are 
still used for weather derivatives for local cities which are not listed in exchanges. In September 
1999, the first electronic market place for standardized weather derivatives was launched by the 
Chicago Mercantile Exchange (CME) with the aim of increasing liquidity, market integrity, and 
accessibility. This market experienced phenomenal growth and currently Cooling Degree Day  
(CDD) and Heating Degree Days (HDD) futures and options for 19 cities in the US, 9 cities in  
Europe 6 cities in Canada and 2 cities in Japan, are being traded on the CME. These include New  
York, Chicago, Philadelphia, London, Paris and Berlin. Other types of contracts based on frost 
days and snowfall are also traded on the CME. The weather derivatives markets are expanding 
rapidly as diverse industries seek to manage their exposure to weather risks. The notional value 
of CME weather products in 2004 was $2.2 billion, and grew ten-fold to $22 billion through 
September 2005, with volume surpassing 630,000 contracts traded1

 

. In 2006 the value of traded 
weather instruments rose to 45 billion. 

      The most commonly traded weather indices are monthly or seasonal HDD/CDD strips. The 
calculation of CDD/HDD is based on the average daily temperature on a day i, which is defined 
as the average of the maximum and minimum temperature during that day, i.e.,  

 

Ti =
Ti

max + Ti
min

2
                                                             (3.1) 

      From here on in referring to temperature, we mean daily average temperature. Daily 
CDD/HDD are defined as:  
 

 
 
      Monthly or seasonal CDD/HDD can be defined by summing up daily CDD/HDD over the 
month or season. Seasonal strips bundle two or more consecutive months into a single contract. 
The HDD index can be interpreted as a measurement of the coldness during the contract periods 
relative to the industry standard 65°F at which people are supposed to feel comfortable. Similarly 
CDD is a measure of heat over the contract period relative to the 65°F norm. 
 
      The CME offers weather futures and options which are the same as financial futures and 
options except for the underlying basis. Weather options are agreements to buy or sell the value 
of the CDD/HDD index over the contract periods or alternatively can be interpreted as bets on 
the value of the CDD/HDD. Weather options give the owners the right, but not the obligation, to 

                                            
1 CME (2005). An introduction to CME weather products. www.cme.com/weather. 
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buy or sell at a specified strike level the specified weather index. A tradable weather derivative 
contract specifies six attributes: the contract type, the contract period, the underlying index, the 
contract city where the official temperature will be measured, the strike level, and the tick size 
(i.e., payoff in dollars per index unit). On the CME, for instance, the value of a degree day index, 
called a tick size, is $20. The contract period should be specified as a calendar month or seasonal 
strip from November to March for the HDD and May to September for the CDD. 
 
      In this chapter, we derive an equilibrium pricing model for weather derivatives and measure 
risk hedging and sharing gains that accrue to the market participants due to the inclusion of such 
instruments in their volumetric hedging portfolios. First, we will derive the optimal portfolio 
choices from the expected utility maximization problems of market participants. Using derived 
optimal demand, we calculate an equilibrium price for the weather derivative by applying the 
market clearing condition requiring that the aggregate demand be equal to the aggregate supply. 
The number of the weather derivative supplied will be decided based on the issuer’s single 
period expected utility maximization problem, however, for some industries it may make sense 
to take short positions which effectively increase the supply of the shorted instruments and will 
affect their prices. Clearly, the primary role of weather derivatives is to hedge weather risk. In a 
single-commodity economy, the risk hedging gain is the only gain possible. To measure the risk 
hedging effect, we use the certain equivalent difference of maximized utility between two cases, 
with and without weather derivatives in a single-commodity economy. In a multi-commodity 
setting, weather derivatives also provide a mechanism for risk sharing. Any two agents share risk 
if they employ state-contingent transfers to increase the expected utility of both by reducing their 
risk. Such risk sharing is possible due to the diversity in exposure to weather risk and different 
risk preferences among industries participating in weather derivatives markets. We measure the 
risk sharing effect in terms of certain equivalent difference of maximized utility between a single 
and multi-commodity economy. We note that the risk sharing effect measured by the above 
method includes not only the risk sharing effect but also a price effect, since in the multi-
commodity economy higher demand for weather derivatives due to more market participants 
makes the equilibrium price higher and paying more can reduce the maximized utility level of 
buyers. To correct such distortion, we adjust the risk aversion coefficient for the issuer so as to 
equalize the equilibrium price in a single and multi-commodity economy. 

3.2. Pricing Model for Weather Derivatives 

3.2.1. Assumptions and Notation 
      We assume that our economy is a frictionless endowment economy in a single-period 
planning horizon. It is implicit in the assumption of an endowment economy that the issuer of the 
weather derivative (underwriter) will supply a fixed number of derivatives at time 0 which will 
subsequently be traded in the market. Hence the price of the weather derivative is determined by 
the initial number of instruments issued and by the market demand. This aspect distinguishes our 
model from an actuarial based approach where an insurer issue as many contracts as demanded 
at a price determined by the issuer based on a stochastic model of temperature risk. In addition to 
the issuer who is typically a financial entity, our economy consists of weather-sensitive 
industries whose output is a commodity for which there is a liquid derivatives market (e.g., 
electricity, gas, wheat). We also assume that there are weather sensitive industries with no liquid 
derivative market for their output (e.g., tourism, sky resorts). The economy is closed in the sense 
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that all the supply and demand for weather derivatives comes from the parties described above.        
We further assume that none of the market participants is involved in speculative trades of 
commodity derivatives other than the commodity specific to their industry, thus, all hedging 
activities by parties involve derivatives of the commodity they produce (or consume) if available, 
and weather derivatives. We assume that all market participants are expected utility maximizers. 
We further assume that retail prices for all commodities are stable while wholesale prices and 
demand quantities are volatile and correlated with weather. This is definitely true in the energy 
industry, which is the primary focus of this part of the project. In the electric power industry, for 
instance, electric utilities have an obligation to serve all their customers’ load at fixed regulated 
retail prices, while they procure the power in a competitive wholesale market where spot prices 
are highly volatile. Thus, the buyers’ profit function is given by (retail price - wholesale spot 
price) times demand. From the profit function, we can see that each company faces not only spot 
price risk but also volumetric risk. We assume that the spot price, the demand, and temperature 
are all correlated.  
 
      In the stylized economy described above, there exist three types of financial assets; a risk free 
bond, a plain-vanilla weather call option with a strike K, and commodity derivatives that include 
forward contracts and European call and put options for which the underlying asset is the 
commodity spot price. All the financial instruments mature at time 1, at which point the physical 
commodity is delivered and paid for. Each agent can trade financial assets at time 0 to hedge its 
net revenue risks so as to maximize the expected utility at maturity. In other words, each trading 
party is faced with the problem of maximizing the expected utility of terminal wealth subject to a 
budget constraint at time 0. The issuer decides on the number of the weather call options 
supplied into the market so as to maximize her expected utility of terminal wealth at time 1.  
 
      Under the multi-commodity economy, the weather derivatives create two social welfare 
enhancing effects, a risk hedging effect and a risk sharing effect. When considering a single-
commodity case, only the hedging effect is relevant and it can be measured by the certain 
equivalent difference of the maximized utility with and without weather derivatives. The risk 
sharing effect reflects possible diversification of weather risk across industries with di fferent 
weather dependence (e.g. some industries may benefit from high temperature while others may 
be adversely affected). Such risk sharing effect can be measured by the certain equivalent 
difference of the maximized utility between the multi-commodity and a single-commodity 
economy. In Section 3.3 we will provide a general form of an equilibrium pricing model and 
numerical examples illustrating the results of our analysis.  
 
      Denote a probability space triplet by . Also let Q denote a risk-neutral probability 
measure.  
 
Notation 
 

• },,1,0{ mi ∈ : indices 0 to m-1 represent buyers where u buyers have a liquid derivatives 
market and v buyers don’t and index m represents the issuer of weather derivatives.  

• : The utility function of type i industry where 

 

Ui : R → R  is smooth, increasing and 
strictly concave on R and has a continuous derivative 

 

Ui
' (⋅)  on R. 

• 

 

Π i,n : The profit function of the type i at time n  
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• 

 

Pi
R  : The unit retail price of type i industry  

•  : The unit spot price of type i at terminal time  
• 

 

Pi
' = Pi

R − Pi : The marginal profit of selling a type i commodity  
• 

 

Di: The random demand for type i at terminal time  
• 

 

Bn = (1+ r)n B0 : The riskless bond price at time n, where r is the interest rate and 

 

B0  = 1  
• 

 

Wn : The weather derivative price  
• 

 

Wi,n
1 : The weather derivative price at time n in a type i industry economy  

• 

 

Ii(Di,Pi): The income function of type i industry at terminal time  
• 

 

xi,n (Pi) : The portfolio payoff consisting of a risk-free bond, forwards, and call and put 
options with various strikes in a type i industry  

• 

 

α i,n : A portfolio position of type i industry for the weather derivative at time n  
• 

 

J(Π i,n ) : The maximized expected utility of type i industry at time n 
• 

 

Jwd
1 (Π i,n ) : The maximized expected utility of type i industry at time n in a single-
commodity economy with the weather derivative and commodity derivatives  

• 

 

Jwn
1 (Π i,n ) : The maximized expected utility of type i industry at time n in a single-
commodity economy with the weather derivative and without commodity derivatives  

• 

 

Jnd
1 (Π i,n ) : The maximized expected utility of type i industry at time n in a single-
commodity economy without the weather derivative and with commodity derivatives 

• 

 

Jnn
1 (Π i,n ) : The maximized expected utility of type i industry at time n in a single-
commodity economy without the weather derivative and commodity derivatives  

• 

 

HEi,n : The hedging effect for the type i industry at time n 
• : The risk sharing effect for the type i industry at time n 

3.2.2. Multi-Commodity Economy 

3.2.2.1. Utility Maximization Problem of Buyers with a Liquid Derivatives Market 
      We consider the utility maximization problem of buyers that have a liquid commodity 
derivatives market. For example, electricity and natural gas industry have liquid futures and 
options markets of which underlying asset is the spot price of electricity or natural gas. The 
buyer’s profit function at time 1 is  

                                        (3.2) 

where 

 

xi,1(Pi) represents the optimal payoff of the commodity portfolio which is the function of 
the commodity price 

 

Pi. The corresponding utility maximization problem of buyers at time 0 is  
 

                      (3.3) 
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where the constraint means that it costs zero to construct the portfolio with a commodity 
derivatives payoff  and weather derivatives payoff 

 

α i,1W0 . The expected discounted 
portfolio values under a risk-neutral probability measure Q is the price of the commodity 
derivatives’ portfolio. Note that  is a decision variable. For each realization 

 

p  of the 
random price 

 

Pi  we will find the optimal payoff function 

 

x(p)  by solving the above 
maximization problem (3.3).  
 
      Carr and Madan (2001) show that any twice continuously differentiable function, , of 
the terminal stock price S can be replicated by a unique initial position of 

 

f (S0) − f ' (S0)S0  unit 
discount bonds, 

 

f ' (S0)  shares, and 

 

f '' (K)dK  out-of-the-money options of all strikes K:  

(3.4) 

Using the result (3.4), the optimal payoff function 

 

x(Pi) can be rewritten as:  

                              (3.5) 

where F denotes the forward price at time 0. Because 1, , 

 

(K − Pi)
+  and 

 

(Pi − K)+  
represent the payoff of the bond, forward contracts, and European put and call options 
respectively, the equation (3.5) shows that the optimal payoff  can be replicated by 

 

x(F) 
units of the risk-free bonds, 

 

x ' (F)  units of forwards, 

 

x"(K)dK  units of European put options 
with strike K for all K < F, and 

 

x"(K)dK units of European call options with strike K for all K > 
F . Since in reality there are no derivatives with continuous strikes, we need to approximate the 
replication by existing derivatives. Oum et al. (2006) suggest one possible way to replicate the 
optimal payoff by approximating the option positions 

 

x"(K)dK to the mean of two available 
strike prices. Determining the best discrete approximation to our continuous optimal portfolio is 
out of the scope of this work and will not be elaborated any further.  
 
      Back to our constrained maximization problem (3.3), the corresponding Lagrangian function 
is  

         (3.6) 

where 

 

fi(p)  is a marginal probability density function of commodity spot price 

 

Pi under the real 
probability measure P and  is a risk-neutral probability density function of 

 

Pi . If the 
commodity market is incomplete there may exist infinitely many risk-neutral probability 
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measures. The ratio 

 

gi(p)
fi(p)

 is a Radon-Nicodym derivatives for the type i commodity and 

satisfies 

 

E gi(p)
fi(p)

 

 
 

 

 
 =1. One of the decision variables, , is a function of 

 

Pi and we need the 

Euler equation for the functional derivatives. Taking partial derivative with respect to , 
 and 

 

λi  gives us the first order necessary conditions as  

                       (3.7) 

                                   (3.8) 

                          (3.9) 

Note that the first order conditions are sufficient for optimality because the utility function is 
assumed to satisfy 

 

U ' (⋅) > 0  and 

 

U"(⋅) < 0 . Moreover under the assumption 

 

E0[|Ui(⋅) |] < ∞  the 
partial derivative and the expectation operator are interchangeable. By solving the above three 
equations with three unknowns we can determine the optimal portfolio choices,  and  
i.e., the structure of the optimal derivatives portfolio payoff of type i industry, and the quantity of 
weather derivatives that should be purchased at time 0 in order to maximize the expected utility.  
The optimal  is a function of an equilibrium price  and will be used as a demand function 
for the weather derivative.  

3.2.2.2. Utility Maximization Problem of Buyers without a Liquid Derivatives Market 
      If a type i industry does not have a liquid derivatives market, a risk-free bond and the weather 
derivative are the only available financial assets for hedging volumetric and price risk. Then the 
profit function is of the form 

                                          (3.10) 

where  is the amount of money invested in a risk-free bond. The corresponding utility 
maximization problem of buyers at time 0 is;  

                           (3.11) 
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where the constraint implies that the portfolio with 

 

α j,1 and  has zero cost at time zero. The  

constraint can be rewritten as 

 

β j ,1 = −
α j,1W0

B0

 and can be substituted into the profit function 

(3.10). Then we have the unconstrained maximization problem:  

                                                                  (3.12) 

where . Since there is only one decision variable 

 

α j,1 , the 
optimality condition will be  
 

                                                                          (3.13) 

From the above optimality condition (3.13), we can find the optimal quantity of weather 
derivatives in the case of no commodity derivatives market and the derived quantity will be 
regarded as the demand function for weather derivatives with an argument .  

3.2.2.3. Utility Maximization Problem of an Issuer 
      Now we consider the issuer’s or under-writer’s problem. The issuer is assumed to be a purely 
financial firm that specializes in weather derivatives and balances its budget by trading a risk-
free bond, but it takes no positions in any commodity derivatives. At time 0 the underwriter will 
issue the weather derivatives and receive a price . At time 1 the issuer will pay the realized 
payoff 

 

W1 for the issued weather derivatives. Consequently the issuer’s profit function at time 1 
is 

                                               (3.14) 

The corresponding problem of the issuer is as follows. 

                                                                 (3.15) 

The first order condition is 

                                                                  (3.16) 

The issuer can determine the quantity of weather derivatives that will be supplied in this 
economy. Only this number of the weather derivatives, , will prevail in the market. 

3.2.2.4. Equilibrium Price 
      We next derive an equilibrium pricing formula by applying the market clearing condition. 
The market clearing condition means the aggregate demand should be equal to the aggregate 
supply and can be graphically interpreted as the intersection of the demand and supply curve. 
The market clearing condition is given by 
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                                  (3.17) 

From the above equation we can derive the equilibrium price for the weather derivative. Then, 
the optimal choices can be expressed as real numbers and the maximized expected utility of the 
buyer i at time 1 with a liquid derivatives market, denoted by 

 

Jwd (Π i,1) , is 

        (3.18) 

The certain equivalent, denoted by 

 

CEwd , will be  

                                                                  (3.19) 

If there is no liquid derivatives market the maximized utility and its certain equivalents are 
written as 

             (3.20) 

                                                           (3.21) 

3.2.3. Single Commodity Economy 

3.2.3.1. Utility Maximization Problem of Buyers with a Liquid Derivatives Market 
      In the case that there is a weather derivative in the type i commodity economy the 
corresponding problems of the buyer and the issuer are exactly the same as the case of the multi-
commodity economy case resulting in the same optimality conditions (3.7) and (3.16) for the 
buyer and the issuer respectively. The only difference between a single and multi-commodity 
economy is the market clearing condition since a single-commodity economy has one buyer and 
one issuer. Instead of the aggregated demand, we use a single buyer’s demand function in the 
market clearing condition.  

                              (3.22) 

This condition gives us the equilibrium price for a single-commodity economy. The maximized 
expected utility of the buyer with the weather derivatives in a single-commodity economy is of 
the form  

                    (3.23) 

And the corresponding certain equivalent is . 
 
      If the weather derivative is not available and only a risk-free bond and type i commodity 
derivatives are traded, the profit function of the buyers will be changed. The buyers will hedge 
risk only via the type i commodity derivatives and a risk-free bond. The issuer does not have any 
role in this case. The buyer’s profit function is of the form  
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                                                      (3.24) 

The corresponding maximization problem is  

                            (3.25) 

The above problem (3.25) is solved by Oum et al. (2006) under the CARA and the mean-
variance utility function. The optimality condition can be obtained by defining the Lagrangian 
function and taking derivatives with respect to 

 

xi,1(P)  and 

 

λi .  

                      (3.26) 

                                              (3.27) 

After solving the above optimality conditions we can find the maximized utility and the certain  
equivalent as 

                             (3.28) 

                                                           (3.29) 

3.2.3.2. Utility Maximization Problem without a Liquid Derivatives Market 
      If weather derivatives are available but there is no market for type j commodity derivatives, 
the optimality condition is the same as (3.13). After applying the market clearing condition with 
a single, not aggregated, demand and supply we can find a new equilibrium price in this single-
commodity economy and the maximized utility has the form of 

    (3.30) 

The corresponding certain equivalent is 

                                                            (3.31) 

If there is no weather derivatives and liquid derivatives market, the buyers are exposed to all the   
risk. Then the buyer’s profit function is 

 

Π j,1 = I j (Dj ,Pj )  and the expected utility and the certain  
equivalent are written as 

               (3.32) 

                                                          (3.33) 

3.2.4. Hedging and Risk Effects 
      In this section, we evaluate the hedging and the risk sharing effect. As mentioned before one 
role of the weather derivative is to hedge the volumetric risks of the buyers. The hedging effect 
can be measured by subtracting the certain equivalent without the weather derivative from the 
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certain equivalent with the weather derivative in a single-commodity economy. Thus, with a 
liquid derivatives market the hedging effect is given by  

                                 (3.34) 

Without a liquid derivatives market the hedging effect is given by 

                                  (3.35) 

The risk sharing effect exists only in the multi-commodity economy with weather derivatives. By 
holding weather derivatives buyers can increase their expected utilities. The difference between 
the certain equivalent in a single and multi-commodity economy will represent the risk sharing 
effect. With a liquid commodity derivatives market the risk sharing effect is 

                               (3.36) 

Without a liquid commodity derivatives market the risk sharing effect is 

                                   (3.37) 

3.3. Mean-Variance Utility Case 

3.3.1. Multi-Commodity Economy 
      Under the mean variance utility the Lagrangian function corresponding to problem (3.3) is 
given by 

             (3.38) 

If we take the point-wise partial derivative with respect to 

 

xi,1
* (p)  and the partial derivatives with 

respect to 

 

α i,1and 

 

λi  we have the following optimality conditions. 

                 (3.39) 

                    (3.40) 

                               (3.41) 

By solving the above three equations we obtain the optimal 

 

xi,1
* (Pi) as 
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                (3.42) 

where 

                      (3.43) 

Finally, we can find the optimal quantity of the weather derivative from the optimality condition 
(3.41) as  

           (3.44) 

      If there is no commodity derivatives market in the type j commodity we have the following  
optimal choice from the equation (3.13).  

                           (3.45) 

 

α j,1
*

 is linear in 

 

W0.  
 
      Next the issuer’s problem (3.15) under the mean-variance case becomes;  

                                     (3.46) 

From the optimality condition (3.16), the number of the weather derivative supplied in this 
economy will be  

                                                             (3.47) 

Here the supply function for weather derivative is also linear in 

 

W0. Therefore, in the mean-
variance utility function, the demand and supply of the weather derivative are all linear. The 
intersection of the aggregate demand and the supply function will clear the weather derivative 
market. In other words, the equilibrium price of the weather derivative can be calculated from 
the following market clearing condition.  
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                      (3.48) 

From the above equation, the equilibrium price of the weather derivative can be obtained if we 
specify a probability density function of the spot price Pi for the commodity i under P and Q and 
the income structure of type i industry. As a result, the maximized utility of type i buyer is  

                (3.49) 

The maximized utility of type j buyer without a liquid commodity derivatives market is  

                 (3.50) 

3.3.2. Single-Commodity Economy 
      In a single-commodity economy with weather derivatives and a liquid commodity derivatives 
market, there is one buyer and one issuer. The revised market clearing condition under the mean-
variance utility is 

              (3.51) 

The maximized utility in this case will be 

              (3.52) 

If there is a weather derivative but no commodity derivatives market, the market clearing 
condition is  

                                     (3.53) 

And the maximized utility is given by 

              (3.54) 

In a single-commodity economy without weather derivatives and with a liquid derivatives 
market, the optimal solution to the type j buyers is  
 

                 (3.55) 
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Then the buyer’s maximized utility is given by 

                  (3.56) 

If there are no weather derivatives and liquid commodity derivatives market, the buyer’s 
maximized utility is the form of  

                        (3.57) 

Now we can measure the hedging effect (3.34) and (3.35) and the risk sharing effect (3.36) and 
(3.37) under the mean-variance preference. 

3.4. Numerical Example 
      In this section we illustrate the equilibrium pricing model and the risk hedging and sharing 
effects with a numerical example based on the mean variance utility function. We apply our 
pricing model to a plain-vanilla weather call option with a strike of 85°F, which may be in the 
money during a hot summer day. However, this example can be extended to CDD/HDD indexed 
call or put options if we specify the probability density functions of CDD/HDD indices during 
the contract period. We assume that there are 5 market participants, an issuer and the four types 
of the buyers. Each buyer’s commodity demand and spot price are positively or negatively 
correlated with temperature and they may have a liquid derivatives market. For convenience we 
label the four buyers as buyer 1 trough buyer 4. Buyer 1, which may be an electricity distribution 
company, faces positive correlation among demand, spot price, and temperature and it can trade 
commodity derivatives in the liquid derivatives market. Demand faced by buyer 2 is negatively 
correlated with temperature and there are tradable commodity derivatives. Buyer 3 faces a 
positive correlation between demand and temperature but does not have a commodity derivatives 
market. Buyer 4 faces a negative correlation between demand and temperature and has no 
derivatives market to trade in. All the buyer types have the same form of the income function 
which reflects selling at a fixed retail price and buying in a volatile wholesale price (a typical 
situation for energy utilities in the restructured electricity or gas markets), 
i.e.

 

Ii(Di,Pi) = (Pi
R − Pi)Di . We also assume that P = Q in each commodity market. This 

assumption has been justified in the Nordic electricity market by Audet et al. (2004). 
 
      We define temperature, demand, and the spot price as  
   

 

T = µT + σT Z                                                                                    (3.58) 

 

Di = eai Z +bi Z i ,1 +ci
                                                                               (3.59) 

 

Pi = edi Z +ei Z i ,1 + fi Z i ,2 +gi ,∀i =1,2,3,4                                                      (3.60) 

where 

 

ai  , 

 

bi , 

 

ci , 

 

di  , 

 

ei  , 

 

fi  , and 

 

gi  are constant and 

 

Z , 

 

Zi,1, and 

 

Zi,2  are independent standard 
normal random variables. We then have the mean vector of demand and the spot price as  

 

(µDi
,µPi

) = (eci +0.5(ai
2 +bi

2 ),egi +0.5(d i
2 +ei

2 + fi
2 )                                           (3.61) 

and the covariance matrix Σ as shown in Table 3-1. Because we have 7 parameters and 7 
equations from the mean vector and the covariance matrix for each i, we can determine the 
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parameters 

 

ai  , 

 

bi , . . . , 

 

gi  so that random variables 

 

T , 

 

Di , and 

 

Pi  have the specified 
correlations. 
  

Table 3-1: Covariance matrix 

 
 
      In this example, we vary the correlation coefficient corresponding to buyer 1, denoted by ρ 
with temperature. All other parameters are fixed. In addition, temperature 

 

T  is assumed to be 
normally distributed as N(80,25). The risk aversion coefficients of all buyers are equal to 0.1. 
The issuer’s risk aversion coefficient is assumed to be 0.01. Table 3-2 shows the correlation 
coefficient corresponding to the four buyers among temperature, demand, and spot price. Other 
market parameters for buyer 1 which represent an electricity distribution company are estimated 
from Energy Information Administration web sites 2

 

106
. Demand and spot price are 9.474 × 

MWh and $99.47/MWh. Finally, we assume that the variances of demand and spot price of 
buyers are 3 and 2; 2 and 2; 2 and 2;and 2 and 2. 
 

Table 3-2: Correlation Coefficient of the Buyers 

 
 
      Figure 3-1 shows the equilibrium price and the optimal quantities of weather call options of 
the four buyers. As the correlation between 

 

T  and 

 

D1  increases, the price and the optimal 
quantities also increase. This means that all buyers want to buy more weather call options to 
effectively hedge the volumetric risk. High correlation and the increased demand 

 

α1,1
*  cause the 

higher equilibrium price.  
 

                                            
2 www.eia.doe.gov 
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Figure 3-1: Equilibrium Price and Choices 

 
      Figure 3-2 shows the linear aggregated demand and supply curves under the mean-variance 
utility function with correlation 0.8.  

 
Figure 3-2: Supply and Demand Curve 

 
      The hedging and the risk sharing effects corresponding to each buyer are shown in Figure 3-
3. Figure 3-3 demonstrates how buyers can increase their maximum utility by employing weather 
call options under high correlation between 

 

T  and 

 

D1. The risk hedging and sharing effects for 
buyer 1 and 2 are relatively small but more significant for buyers 3 and 4. This result is due to 
the existence of commodity derivatives. Because buyers 1 and 2 can construct portfolios 
consisting of commodity derivatives with continuous strike prices and the weather call options 
are only one part of their hedging portfolios, the impact of the weather call option for buyers 1 
and 2 is much smaller than the corresponding impact for buyers 3 and 4 that must rely only on 
weather call options in order to hedge risk. Importantly, if the strike prices of commodity options 
are discrete with only a few number of the strike prices, which is more realistic, the risk hedging 
and sharing effects attributable to weather derivatives are expected to be higher.  
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Figure 3-3: Hedging and Risk Sharing Effects 

 
      The utility improvement shown by Figure 3-3 is caused by reducing the variance of demand 
and spot price via the weather call option and other commodity derivatives (if available) and 
sharing the volumetric risk with other market participants. This risk (or variance) reduction can 
be shown by the probability density functions (p.d.f.) of the profit function Πi before and after 
hedging risk. 
 
      Figure 3-4 illustrates the p.d.f. of the buyers 1 and 2’s profit functions for three cases; 
exposure to all risk, after hedging with commodity derivatives only, and after hedging with 
commodity derivatives and the weather call option. The p.d.f. before hedging is widely spread, 
which means that the buyer is exposed to high net revenue risk, but after including commodity 
derivatives, the risk is greatly reduced. However, the p.d.f. of the profit function after including 
commodity derivatives and the weather call option is very similar to the p.d.f. of the profit 
function with commodity derivatives only.  
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Figure 3-4: P.D.F. of Buyer 1 and 2’s Profit Function (ρ1=0.6) 

 
      Figure 3-5 shows the p.d.f. of the profit function for buyers 3 and 4 before and after hedging. 
By employing the weather call options, buyers 3 and 4 can reduce the variance of the profit 
function, which improves their mean-variance utility values. 
   

 
Figure 3-5: P.D.F. of Buyer 3 and 4’s Profit Function (ρ1=0.6) 

 
      Table 3-3 shows the variance of the profit function when the buyer1’s correlation to 
temperature is 0.6.  
 

Table 3-3: Variance of the Profit Function 
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      Finally, Figure 3-6 illustrates the optimal payoff of the portfolio with commodity derivatives 
for buyers 1 and 2 when the correlation ρ between temperature 

 

T  and demand

 

D1 is 0.3 and 0.6.  
Because we change the correlation ρ but not the correlation between temperature and spot price,  
the resulting graphs look very similar. 
 

 
Figure 3-6: Optimal Payoff 

 

x*(P) of the Commodity Derivatives Portfolio 
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4. Static Hedging of Volumetric Risk 

4.1.  Optimal Static Hedging in a Single-period Setting 

4.1.1. Obtaining the Optimal Hedge Payoff Function 
      Consider an LSE who is obligated to serve an uncertain electricity demand q at the fixed 
price r. Assume that the LSE procures electricity that it needs in order to serve its customers, 
from the wholesale market at spot price p. To protect against price risk, the LSE can enter into 
forward contracts to fix the buying price at the forward price F. First, the number of forward 
contracts to be purchased needs to be determined. Suppose that the LSE decides to purchase an 
amount 

 

q  of forwards; then, the actual demand would be 

 

q +Δq. Then, the profit that is at risk is 
Δq · (r − p ). The LSE would want to protect against the situation where either spot price p is 
higher than r and Δq > 0, or p is less than r and Δq < 0. The LSE’s strategy could be buying call 
options with strike prices which are higher than r and exercised when Δq > 0 and buying put 
options with strike prices less than r and exercised when Δq < 0. Of course, prices of the call/put 
options are not negligible.             
 
      Suppose that a hedging portfolio consisting of electricity derivatives is constructed at time 0 
whose payoff at time 1, x(p), is a function of the spot price p at time 1, is received at time 1. The 
hedging portfolio may also include money market accounts, allowing the LSE to finance hedging 
instruments through loans payable at time 1. Let y(p, q) be the LSE’s profit from serving the 
customers’ demand q at the fixed retail rate r at time 1. Then, the hedged profit Y (p, q, x(p)) - 
total profit including the net payoffs of the hedging portfolio - is given by 
 

 

Y (p,q,x(p)) = y(p,q) + x(p)                                                      (4.1) 
 
where 
 

 

y(p,q) = (r − p)q  
 
      The LSE’s risk preference is characterized by a concave utility function U defined over the 
total profit Y (·) at time 1. LSE’s beliefs on the realization of spot price p and load q are 
characterized by a joint probability function f (p, q) for positive p and q, which is defined on the 
probability measure P. On the other hand, let Q be a risk-neutral probability measure based on 
which the hedging instruments are priced, and g(p) be the probability density function of p under 
Q. Because the electricity market is incomplete, there may exist infinitely many risk-neutral 
probability measures. In our work, it is assumed that a specific measure, Q, was picked 
according to some criteria. 
 
      Then, the formulation of the optimal static hedging problem is as follows: 

                                                 (4.2) 
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Where E[·] and EQ[·] denote expectations under the probability measure P and Q, respectively; 
Y is a function that defines the profit; x(p) is the outcome of the hedge portfolio; U is a concave 
utility function which can give us a unique solution to the maximization problem. It is important 
to note that E(x(p)) = 0; which implies that the cost of setting up the hedge portfolio is zero. 
 
      We require the manufacturing cost of the portfolio to be zero under a constant risk-free rate. 
This zero-cost constraint implies that purchasing derivative contracts may be financed from 
selling other derivative contracts or from the money market accounts. In other words, under the 
assumption that there is no limits on the possible amount of instruments to be purchased and 
money to be borrowed, our model finds a portfolio from which the LSE obtains the maximum 
expected utility over total profit. 
 
      The goal here is to find a portfolio x(p) that maximizes the utility function. This is done by 
considering the Lagrangain function of the optimization as a function of x(p), and equating its 
partial derivative with x(p) with zero (since we are trying to maximize the problem). 
 

 
CARA Utility (Proposition 4.1) 

       A CARA utility function has an exponential form:     
 

 
 
where a is the coefficient of absolute risk aversion. With CARA utility, the optimal payoff 
function x*(p), which satisfies the above equation, is obtained as  
 

                (4.3) 
 

 
Mean Variance Approach (Proposition 4.2) 

      The mean-variance approach is to maximize a mean-variance objective function, which is 
linearly increasing in the mean and decreasing in the variance of the profit:  
 

 
 

It follows from Var(Y) =     that  
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for the mean-variance objective function in an expected utility form. Then, the optimal solution 
x*(p) that satisfies the above equation is obtained as  
 

     (4.4) 
 
 

 
Bivariate Longnormal-normal distribution for price and load 

      Suppose the marginal distributions of p and q as follows: 
 

 
 
Then, we can get the explicit functions for the optimal payoff. For the CARA utility, the optimal 
payoff function reduces to 
 

                                               (4.5) 

 
 
and for the mean-variance utility, the optimal payoff function reduces to  
 

                                    (4.6) 
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Bivariate Lognormal distribution for price and load 

      Suppose the marginal distributions of p and q, on the other hand, follow 
bivariate lognormal distributions as follows: 
 

 
 
Then, we can get the explicit functions for the optimal payoff for the mean variance utility: 
 

                                 (4.7) 

 

4.1.2. Replicating the Optimal Payoff Function 
      In this analysis, we replicate a portfolio that replicates payoff x(p). It can be written in the 
following form for any arbitrary positive value of s. 
 

 
Let F be the forward price for a delivery at time 1. Evaluating the equation at S=F and 
rearranging it gives  
 



 

47 

 
 
Note that 1, (p−F), (K−p)+ and (p−K)+ in the above expression represent payoffs at time 1 of a 
bond, forward contract, put option, and call option, respectively. 
 

 
 
      The above implies that unless the optimal payoff function is linear, the optimal strategy 
involves purchasing (or selling short) a spectrum of both call and put options with continuum of 
strike prices. This result proves that LSEs should purchase a portfolio of options to hedge price 
and quantity risk together. Even if prices go up with increasing loads, more call options with 
higher strike prices are exercised, having an effect of putting price caps on each incremental 
load. 

4.1.3. An Example 
      In this section, we illustrate the method that we derived in the previous sections. We consider 
the on-peak hours of a single summer day as time 1. Parameters were approximately based on 
the California Power Exchange data of daily day-ahead average on-peak prices and 1% of the 
total daily on-peak loads from July to September, 1999. Specific parameter values are imposed 
as follows:  

• Price is distributed lognormally with parameters m1 = 3.64 and s = 0.35 in both the real 
world and risk-neutral world: log p ~ N (3.64, 

 

0.352) in P and Q. The expected value of 
the price p under this distribution is $40.5/MWh. 

• The fixed rate r = $100/M W h is charged to the customers who are served by the LSE.  
• For CARA utility, the risk aversion is a = 1.5.  
• Load is either normally distributed with mean m = 300 and 

 

u2 = 302 , or lognormally 
distributed with parameter m = 5.77 and u = 0.09.  

 
      We would like to point out a significant correlation-effect in the profit distributions. Figure 
4-1 shows that the profit distributions become quite different as the correlation between load and 
logarithm of price changes. Considering that the correlation coefficient of our data is 0.7, we 
observe that the correlation coefficient cannot be ignored in the analysis of profit. The optimal 
payoff functions for a CARA utility LSE are drawn in Figure 4-2 for various correlation 
coefficients between log p and q. Generally, low profit from high loads for very high spot prices 
and from low load for very low spot price is compensated with the cases where spot prices and 
loads are around the expected value. This can be seen from the graph where as the spot price 
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goes away from r, positive payoff is received from the optimal portfolio while the payoff is 
negative around r. We also note that larger payoff can be received when the correlation is 
smaller. This is because the variance of profit is bigger when the correlation is smaller as we can 
see from Figure 4-1. Therefore, even when the correlation is zero, the optimal payoff function is 
nonlinear. Figure 4-3 illustrates the numbers of contracts to be purchased in order to obtain the 
payoff x*(p) for an LSE with a CARA utility function. We see that the numbers of option 
contracts are very high relative to the mean volume. This is because we don’t restrict the model 
with constraints such as credit limits. The zero-cost constraint (4.2) that we only included in our 
model enables borrowing as much money as needed to finance any number of derivative 
contracts.  
 

 
Figure 4-1: Profit distribution for various correlation coefficients.  

 
Generated 50000 pairs of (p,q) from a bivariate normal distribution of (logp, q) with a various 
correlation ρ’s, where logp ~N(3.64, 

 

0.352 ) and q~N(300, 

 

302 ), and plotted estimated 
probability density functions of the profit using normal kernel (assuming r=$100/MWh). 
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Figure 4-2: The optimal payoff function for an LSE with CARA utility  

 
Price and load follow bivariate lognormal-normal distribution logp~N(3.64, 

 

0.352 ), and 
q~N(300, 

 

302) with correlation coefficient ρ 
 

 
Figure 4-3: Optimal numbers of forward and options contracts for the LSE with CARA utility 

 
      The graphs show numbers of forward and option contracts to be purchased in order to 
replicate the optimal payoff x*(p) that is obtained for the LSE with CARA utility. In this 
example, the forward price is $40.5/MWh, thus, the optimal portfolio includes forward contracts 
for x′(40.5)MWh, put options on x′′(K)*dK MWh for K<40.5 and call options on x′′(K)*dK 
MWh for K>40.5 
 
      For an LSE with mean-variance utility, the optimal payoff functions are drawn in Figure 4-4. 
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They show the tendency of mean-variance utility to protect against high price and low quantity. 
For an illustration of the numbers of contracts to be purchased in order to obtain payoff x*(p), 
see Figure 4-5. Note that in our examples the number of option contracts to be purchased in the 
optimal portfolio is positive for any strike prices. This implies that we borrow money from the 
bank and purchase a portfolio of option contracts.  
 

 
Figure 4-4: Optimal payoff functions for an LSE with mean-variance utility. 

 
(a) corresponds to (logp,q) ~N(3.64,300,

 

0.352,

 

302,ρ), and (b) corresponds to  
(logp,logq) ~N(3.64,5.77, 

 

0.352,

 

0.092,ρ). 
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Figure 4-5: Optimal numbers of forward and options contracts for the LSE  

with mean-variance utility 

 
      The graphs show numbers of forward and option contracts to be purchased in order to 
replicate the optimal payoff x*(p) that is obtained for the LSE with mean-variance utility. In this 
example, the forward price is $40.5/MWh, hence, the optimal portfolio includes the forward 
contract for x′(40.5)MWh, put options on x′′(K)*dK MWh for K<40.5 and call options on 
x′′(K)*dK MWh for K>40.5. The upper panels (a) and (b) correspond to price and load following 
a bivariate lognormal-normal distribution, and the lower panels correspond to price and load 
following a bivariate lognormal distribution. 
 
      Figure 4-6 compares distribution changes between profit without hedging, profit after price 
hedge and profit after the optimal price and quantity hedge. The graph shows significant 
improvements in reducing risks when we hedge price and quantity risk together.  
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Figure 4-6: The comparison of profit distribution for an LSE with mean-variance utility 

 
      The comparison of profit distribution for an LSE with mean-variance utility for three cases: 
before hedge, after price hedge, and after price and quantity hedge, assuming the correlation 
coefficient between price and load to be 0.7. 
 
      In Figure 4-7 we explore the sensitivity of the optimal payoff function with respect to the 
divergence between the risk-neutral distribution and the assumed physical distribution of prices. 
Specifically we assume that the joint distribution for quantity and price under both measures P 
and Q are represented by a bivariate lognormal-normal density function with possible differences 
in the mean logarithmic price, which we vary. The results depend on the utility function used. 
For CARA utility, the overall payoff is higher than the optimal payoff if the expected price is 
higher than the market price, but the difference is not that significant with respect to the payoff 
changes for differing p. For the mean-variance case, however, the difference between payoffs for 
varying mean logarithmic price m2 is more noticeable.  
 

 
Figure 4-7: Sensitivity of the optimal payoff function 
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The graphs correspond to the case when price and load follow a bivariate lognormal-normal 
distribution with correlation coefficient 0.5. m2 represents the mean of logarithm of price under 
the risk-neutral probability measure with m2=3.64 corresponding to the case 

 

P ≡ Q. 
 
      Figure 4-8 shows how hedging strategies change with risk aversion. Figure 4-8(a) displays 
the optimal payoff functions for CARA utility with different levels of risk aversion. It shows the 
payoff function with high risk aversion is more sensitive to the unit change in spot price, 
indicating that a more risk averse LSE will enter into more active hedging. On the other hand, 
mean-variance utility shows different aspects. In Figure 4-8(b), as 

 

a  gets close to 0.01, the 
optimal payoff doesn’t change much; the mean-variance objective function gives more weight to 
variance as 

 

a  gets bigger, so 

 

a  won’t affect the optimal payoff function above a certain level 
and the objective turns into minimizing variance. However, for smaller risk aversion, the mean-
variance objective function puts more weights on the mean of profit; LSEs with low risk 
aversion will protect more against the lower spot price worrying that the expected profit is low 
from decreased load when spot price is low. 

 
Figure 4-8: Optimal payoffs with different risk aversion 

 
Optimal payoffs for the case when price and load follow a bivariate lognormal-normal 
distributions: N(3.64,300, 

 

0.352 ,

 

302 ,0.5) under P while the log-price distribution is 
N(3.66,0.352) under Q.  

4.1.4. Potential Use of Developed Tools 
      In order to show the practical use of the model discussed in the previous section, we have 
developed a graphic User Interface for industry members to investigate the hedging performance 
of the optimal portfolios suggested by our model. Our intention is that, with real market data 
inputted and utility functions specified by the industry users, the interface could provide the 
corresponding payoff functions, the positions of forward contracts and options, and the 
performance of hedging the price and volumetric risks. 
 
      To start with, we developed a simpler version to reproduce the results of the example in the 
last section. The screen shot is showed in Figure 4-9. Users need to provide the following 
parameters as inputs and specify their desired plots as outputs. 
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Figure 4-9: Screen Shot for the Basic User Interface 

 
INPUTS: 

• The utility function: CARA, Mean-Variance Bivariate Lognormal-normal and Mean-
Variance Bivariate Lognormal. 

• The risk aversion parameter, “a”. 
• Fixed rate charged to customers, “r”. 
• Price parameters: mean of log price under real probability “m1” and under risk neutral 

probability “m2”, standard deviation of log price “s”. 
• Volume parameters: Mean of load “m” and standard deviation of load “u”. 
• The correlation between log price and load.   

 
OUTPUTS: 

• Optimal Payoff Function 
• Number of the Forward Contracts in optimal hedge portfolio 
• Number of the Option Contracts in optimal hedge portfolio 
• Profit distribution before hedge 
• Profit distribution after just the price hedge 
• Profit distribution after both price and quantity hedge 

After providing the required information, users need to click “Draw Plot” to see the plots in the 
right bottom panel. 
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      For illustration, we implement the model by using the same sets of parameters in the previous 
example.  
 

 
Figure 4-10: Screen Shot: Optimal Payoff Function under CARA Utility 
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Figure 4-11: Screen Shot: Profit Distribution under CARA Utility 

 
Figure 4-12: Screen Shot: Number of Forwards under CARA Utility 
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Figure 4-13: Screen Shot: Number of Options under CARA Utility 

 
Figure 4-14: Screen Shot: Profit Distribution Before Hedging  

under Bivariate Lognormal-normal Utility 
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Figure 4-15: Screen Shot: Profit Distribution After Price Hedging  

under Bivariate Lognormal-normal Utility 

 
Figure 4-16: Screen Shot: Profit Distribution After Price and Quantity Hedging  

under Bivariate Lognormal-normal Utility 
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Figure 4-17: Screen Shot: Profit Distribution Before Hedging under Bivariate Normal Utility 

 

 
Figure 4-18: Screen Shot: Profit Distribution After Price Hedging under Bivariate Normal Utility 
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Figure 4-19: Screen Shot: Profit Distribution After Price and Quantity Hedging  

under Bivariate Normal Utility 
 

     The interpretation of these plots is given in Section 4.1.3. Now we improve our interface by 
using the parameters for price and load based on historical data rather than an editable text box 
for the user to fill in. The interface provides for the user to select the hour of the day and a 
selection of regions for which we can provide the parameters based on historical data. This is 
expandable to other regions (if desired by the user). One simply needs to add data into a new 
sheet in the workbook already provided and simply add the name of the sheet in the list of 
variables for the list box in its properties. Click on the ‘Load data’ button provides these 
parameters based on the historical data from the selected region and for the given hour selected.  
The screen shot of the extended interface is shown in Figure 4-20. 
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Figure 4-20: Screen Shot of the Extended Interface 

 
Users have more options for inputs in this interface. 
 
INPUTS: 

• Hour of the day and Load Serving Region (specify these two information to locate the 
desired data set saved in the .xls file). 

• Utility function. 
• The risk aversion parameter, “a”. 
• Fixed rate charged to customers, “r”. 

 
      Then you click “Load Data” to get the estimated parameters based on the chosen market data. 
We also provide for an option to select the theoretical optimal hedging or a practical hedging 
version (practical hedging is left for future development). For the practical hedging part the user 
can enter the number of call options as desired and the range in which he/she would like these 
options to have their strike prices. This simple feature allows the user to decide the strike prices 
approximately based on the liquidity is the OTM/ITM option market. The out of sample 
price/load point can be provided by the user or left to us, where we use the last point from the 
historical set as out of sample (we do not use the last point in parameter calculation). 
 
       The “Calculate” button will give the profit before and after hedge for this out of sample 
point based on either Theoretical/Practical method as selected. Options for outputs and the draw 
plot feature is same as the earlier interface. 
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      For illustration, we have downloaded the data for our analysis from www.nyiso.com. Data 
has been collected for four LSE’s: Long Island, NYC, North NY and West NY. Day Ahead 
Market and Load data have been downloaded for the period of Summer 2008 (June, July and 
August) on an hourly basis. Seasonality is a major issue in electricity prices and thus a particular 
period of the year is chosen.  
 

 
Figure 4-21: Screen Shot: Optimal Payoff Function under CARA Utility for 10 AM North NY 

 

http://www.nyiso.com/�


 

63 

 
Figure 4-22: Screen Shot: Optimal Forward Contracts under CARA Utility for 10 AM North NY 
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Figure 4-23: Screen Shot: Optimal Options under CARA Utility for 10 AM North NY 

 
Figure 4-24: Screen Shot: Optimal Payoff Function under Bivariate Lognormal Normal Utility 

for 10 AM North NY 
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Figure 4-25: Screen Shot: Optimal Forward Contracts under Bivariate Lognormal Normal Utility 

for 10 AM North NY 

 
Figure 4-26: Screen Shot: Optimal Options under Bivariate Lognormal Normal Utility  

for 10 AM North NY 
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Figure 4-27: Screen Shot: Optimal Payoff Function under Bivariate Lognormal Utility 

for 10 AM North NY 

 
Figure 4-28: Screen Shot: Optimal Forward Contracts under Bivariate Lognormal Utility  

for 10 AM North NY 
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Figure 4-29: Screen Shot: Optimal Options under Bivariate Lognormal Utility for 10 AM North 

NY 

 

4.2. Timing of a Static Hedge in a Continuous-time Setting 
      Let T be the delivery period and maturing date of the hedging instruments. We will assume 
that all the hedging instruments for the delivery period T are to be contracted at the same time τ. 
Contracting earlier reduces the risk by locking in the price of the contracts; while delaying the 
contracting enables more profitable hedging by exploiting more information that becomes 
available as we approach maturity. We will assume that the optimal hedging time is determined 
at time t0 based on the information available at that time but the composition of the hedging 
portfolio is determined at hedging time based on the realized spot price. It should be noted that 
the optimal hedging time determined at t0 might be no longer optimal at time t1 > t0 because more 
information on time T becomes available at time t1, however we will assume that the contracting 
time is chosen irreversibly at time t0.  

 4.2.1. Mathematical Formulation 
      Let 

 

{pt}t ∈[0,T ) be a process of forward price for delivery at time T and 

 

{qt}t ∈[0,T )be a process 
for load estimate for period T calculated at time t. Assume the forward price and load estimate 
processes evolve as the following Ito processes:  

                                    (4.8) 

                              (4.9) 
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where 

 

Bt
1 and 

 

Bt
2 are independent Wiener processes. Then, 

 

pT  and 

 

qT  denote the spot price and 
demand at time T.  
 
      The solution of the following problem is the best hedging timing determined at time t0 for a 
mean-variance optimizer:  
 

               (4.10) 
 

 

xτ (pT )  denotes the payoff from the optimal portfolio to be constructed at time τ. Thus, the 
formulation finds a time 

 

τ *, hedging at that time maximizes the expected utility of the optimally 
hedged profit.  
 
      Throughout the section, it is assumed that the physical probability measure and risk-neutral 
probability measure are the same. It follows that from the zero-cost constraint, maximizing a 
mean-variance objective function is reduced to minimizing the variance of the hedged profit. The 
formula for 

 

xτ (pT )  can be obtained from the results of the Section 4.1.1. Thus, the problem 
becomes a single-variable unconstrained optimization problem that can be easily solved 
numerically. 

4.2.2. Finding the Optimal Payoff Function at Contracting Time 
Proposition: Suppose 

 

{pt}t ∈[0,T )  and 

 

{qt}t ∈[0,T )  follow Ito processes given (4.8) and (4.9). 
Assuming P = Q, then 

 

xτ (pT )  that solves (4.10) for a mean-variance utility function is obtained 
as follows: 
 

                      (4.11) 
 
where 

 
 
Equation (4.11) is the payoff of the optimal portfolio to be constructed when hedging at time τ. 
One can see that the optimal portfolio incorporates the information of the forward price and load 
estimate available at the hedging time τ. 
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4.2.3. Determining the Optimal Hedging Time 
      With the assumption P = Q and the zero-cost constraint Eτ [xτ ] = 0, maximizing (4.9) 
reduces to minimizing 
 

 
 
Given 

 

xτ
*  obtained in Section 4.2.2, the problem (4.9) is in fact an unconstrained optimization 

problem with a single decision variable in the interval [0, T]. Once Π is obtained as a function of 
τ, the problem is solvable numerically even though Π(τ) is neither convex or concave. This 
section is concluded with the calculation of Π(τ):  
 

 
 
Where 
 

 
 
Each term of Π(τ) is calculated as a function of τ as follows: (For notational convenience, 
subscript τ for 

 

Aτ , 

 

Bτ , 

 

Cτ  and 

 

Dτ  is omitted.)  
 

 
 
The expectation terms were calculated using 
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From 

 

4.2.4. An Example 
      We now illustrate the optimal hedging timing with a concrete example. The example assumes 
that the maturity of the portfolio is one year from now. Base values of the parameters are set 
according to the empirical estimates of Audet et al 2004, which were also used by Nasakkala and 
Keppo 2005. Specifically, set  
 

 
 
where σ is the spot volatility and ψ is a mean-reversion rate of the spot price process, i.e., a rate 
at which forward volatility is discounted from the spot volatility. We also set

 

µq (t) = 0 . In 
addition, 

 

σ pq (t)  and 

 

σ q (t)  are assumed as constants, so as to have a constant load volatility and 
correlation:  
 

 
 
The resulting process is then 
 

 
 
      The forward price and load estimate for a month one year later is assumed to be 
20Euro/MWh and 1000 MWh. The following table summarizes the base values of the 
parameters:  

 
      To study how the optimal hedging time is affected by various parameters, a sensitivity 
analysis of optimal hedging time with respect to parameter values is illustrated Figure 4-30.  
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Figure 4-30: Optimal Hedging Time versus Other Parameter Values 

 
      Figure 4-30 (a) plots the optimal hedging time against the spot price volatility σ, and it shows 
that a higher spot volatility favors earlier hedging. Intuitively, a higher spot volatility increases 
uncertainties in the future information, which justifies locking in the price of hedging contracts 
earlier.  
 
      Figure 4-30 (b) plots the optimal hedging time against the load volatility σL. It shows that a 
higher volatility in the load estimate postpones the hedging time, confirming the intuition that the 
inaccuracy in the load estimate will delay the hedging so as to obtain more information.  
 
      Figure 4-30 (c) plots the optimal hedging time against the correlation between forward price 
and load estimate. It shows that a lower correlation makes earlier hedging more favorable which 
can be explained by the fact that high correlation reduces uncertainties in profit and thus delays 
hedging to take advantage of more information.  
 
      Figure 4-30(d) plots the optimal hedging time against the mean-reversion rate of spot price. 
The figure shows that increase in mean-reversion rate of the spot price postpones the hedging 
time, since higher mean-reversion rate of spot price decreases the volatility of forward prices, so 
it will not be as risky to postpone the hedging time.  
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Figure 4-31: Standard Deviation of Hedged Profit Versus Hedging Times 

 
      Figure 4-31 the variance of the optimally hedged profit as function of the hedging time. We 
note that hedging at time 0 versus the optimal time τ make little difference in the variance of 
hedged profit inmost cases. However, the variance of profit increases rapidly if hedging is 
delayed beyond the optimal time.  
 
      Figure 4-31 also show the level of uncertainties changes with respect to the changes in σ, σL, 
φ, and ψ. The data displayed in the figure indicates that the profit uncertainty increases with the 
increases in spot and load volatility, and decreases with the mean reversion rate and correlation 
coefficient.  
 
      It is also note worthy that hedging at the optimal time may not make any differences in the 
variance of hedged profit even for different parameters such as volatility and mean-reversion rate 
of spot price. In other words, the increased uncertainty from higher volatility in the forward price 
can be overcome by the optimal choice of hedging time.  
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Figure 4-32: The distributions of profits when hedging at different times. The τ=0.56 is the 

distribution of the profits with hedging at the optimal hedging time, based on the information 
given at time 0. 

 
      Figure 4-32 compares the distributions of profits at delivery time when the hedging portfolio 
is purchased at time 0, at the optimal hedging time (0.56), and at time (0.9) close to delivery 
time. It also confirms that earlier hedging does not increase profit risk very much as compared to 
the optimal hedging time, but late hedging can have adverse consequences. 
  
      Finally, the optimal hedging strategy at time 0 under the base values of the parameters, is 
illustrated in Figure 4-33 which shows the optimal payoff function and its approximate 
replication (developed in Section 4.1.1) under the assumption that the hedging portfolio is 
constructed at time 0. 
  

 
Figure 4-33: The optimal payoff function and its replication when the hedging portfolio is 

constructed at time 0 
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5. VaR Constrained Static Hedging of Volumetric Risk 

5.1. VaR-constrained Hedging Problem 
      We define VaR as a  maximum possible loss at a (1 − γ) confidence level. In other words, 
VaR is the (1 − γ) percentile of the loss distribution. In this section, we present a model  for the 
hedging portfolio subject to a VaR limit set by the risk manager for a specified horizon. This 
preset VaR level will reflect the risk tolerance of the risk manager.  
 
      Consider the LSE whose revenue is determined by a fixed retail price r and the uncertain 
demand q. Denoting uncertain wholesale electricity price per unit as p, the profit y(p, q) from 
retail sales at time 1 depends on the two random variable p and q. i.e.,  
 

 

y(p,q) = (r − p)q  
 
      Let LSE’s beliefs on the realization of spot price p and load q be characterized by a joint 
probability function f (p, q) for positive p and q, which is defined on the probability measure P.  
 
      Suppose the LSE hedges the profit through an exotic electricity option maturing at time 1. 
Let Y (x) be the hedged profit, then  
 

 

Y (x) = y(p,q) + x(p) = (r − p)q + x(p) 
 
where x(p) is a payoff function of the exotic option, which is contingent on the price of p.  
 
      With the VaR limit 

 

V0 , the VaR-constrained hedging problem is formulated as follows:  
 

                                             (5.1) 
 
for a random variable X , and with E[·] and EQ [·] denoting expectations under the probability 
measures P and Q, respectively. The formulation seeks the payoff function of a self-financing 
hedging portfolio at time 1, which maximizes the expected profit while requiring that a 1  
− γ percentile of the loss distribution does not exceed 

 

V0 . 
 
      The zero-cost constraint 

 

EQ[x(p)] = 0 requires the manufacturing cost of the portfolio to be 
zero under a constant risk-free rate. This zero-cost constraint implies that purchasing derivative 
contracts may be financed from selling other derivative contracts or through money market 
accounts. In other words, under the assumption that there is no limit on the possible amount of 
instruments to be purchased and money to be borrowed, the model finds a portfolio from which 
the LSE obtains the maximum expected utility over total profit.  
 
      One might question the use of the optimal payoff function solved from the formulation (5.1). 
The optimal payoff function will eventually be used to derive the optimal quantities of forwards 
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and options at different strike prices of which the hedging portfolio consists. This approach of 
getting the payoff function first and then calculating the portfolio composition that replicates the 
payoff, not only makes the problem solvable but also provides valuable insights regarding the 
optimal hedging portfolio.  

5.2. Optimal Payoff Function in the Mean-Variance Efficient Frontier 
      The VaR constraint in the formulation (5.1) cannot be written in a tractable form for 
optimization without very restrictive assumptions on the distribution of Y (x). If Y (x) is linear in 
the risk factors which are normally distributed, then it is possible to write VaR in a closed form. 
However, in the formulation (5.1), Y (x) has a multiplicative term of two risk factors and, 
moreover, a term of the unknown function x(p). Thus, a closed form of VaR(Y (x)) cannot be 
obtained in a form amenable to simple optimization.  
 
      The reason behind the normal distribution having been a common assumption when 
calculating VaR is the fact that the quantiles of the normal distribution (actually, VaR) can be 
expressed using mean and variance. Likewise, when VaR can be expressed using mean and 
variance - even in cases when a closed form of the VaR cannot be obtained - the VaR-
constrained problem could be solved using the mean-variance framework.  
 
      Therefore, a key assumption throughout this section is that VaR(Y (x)) is solely determined 
by mean and variance of Y (x). In the following theorem adopted from Kleindorfer and Li 2005 
we show that under such an assumption, monotonicity of the VaR in the mean and variance of 
the Y (x) corresponding to feasible hedging functions x(p) is sufficient to ensure that the mean-
maximizing VaR-constrained solution to (5.1) lies on the efficient mean-variance frontier. 
 
Theorem 1:  
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Theorem 2: 

 
 

5.3. The Optimal Payoff Function when the Demand and Log Price Follows Bivariate 
Normal Distribution 

      It is often assumed that the electricity demand and logarithm of price are normally distributed 
with some correlation. In Proposition 4.2 and equation (4.6), we show that under such 
assumption a closed form of 

 

xk (p)can be obtained. We have also shown in the previous section 
that 

 

E[Y (xk (p))] and the variance 

 

V[Y (xk (p))] are non-increasing in k. We will now describe an 
approximation procedure that searches for an approximate solution to the VaR-constrained 
Expected-value-maximizing self-financed hedging function along the mean-variance efficient 
frontier. The justification for this approximation is motivated by the intuitively plausible 
properties of the VaR that make such an approximation exact. The approximation is also 
supported by the fact that the required properties are met by the Chebyshev upper bound on the 
VaR so that tightening the VaR constraints by replacing the VaR with its Chebyshev 
approximation will also produce results that lie on the mean-variance efficient frontier.  
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      To obtain the approximate solution we characterized above, we start with ε=k . ( ε  is a 
small constant). Using the formula for 

 

xk (p)  given in equation (4.6), we compute the 
corresponding VaRγ (k) =VaRγ (Y (x(p))) using a Monte-Carlo simulation such that 
 

 
 
We then repeat the process incrementing k until VaRγ (k) ≤ V0 at which point we set kk =∗ . 
The monotonicity of the mean in k coming from Theorem 2 guarantees that the first k at which 
the VaR constraint is satisfied will yield the largest expected value. We can replicate such exotic 
payoff functions by means of the formula suggested in Chapter 4. 

5.4. An Example 
In this section we demonstrate the computation of an approximate optimal VaR-constrained 
volumetric hedging problem using the method developed in the previous section. Consider a 
hypothetical LSE that charges a flat retail rate r = $120/MWh to its customers. The wholesale 
spot price p at which the LSE must purchase its power and the load q it is obligated to serve in 
any fixed time interval (typically 15 minutes), are distributed according to a bivariate distribution 
in quantity and log price: 
 

 
 
Note that we assume here 

 

P ≠ Q. Otherwise, the mean-variance problem has the same solution 
for all k. In such case, the VaR-constrained problem either has the same solution as the variance-
minimizing problem, or is infeasible.  

 
Figure 5-1: Distribution of the unhedged profit y(p,q)=(r −p)q 
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      Figure 5-1 shows a distribution of unhedged profit, 

 
95% VaR is also indicated in the figure, which is about $20, 000. The mean of the distribution is 
$127, 000. This implies that there is 5% chance that the LSE can take a loss of more than $20, 
000. The VaR-constrained problem for the LSE which seeks a hedging strategy that maximizes 
the expected profit with at least $60, 000 profit with 95% probability is formulated as follows:  
 

 
Where 
 

 
 

 
Figure 5-2: −VaR(k) in the left y-axis and E[Y(xk(p))] in the right y-axis. The optimal ∗k  is 

obtained as the first k that provides-VaR no less than the required level 60,000. 

 
      Motivated by Theorem 1 we restrict our search for solution to the VaR constrained problem 
to optimal solutions for the mean-variance problems for various risk-aversion levels k and for 
each such candidate solution we compute the corresponding VaR. The relationship between VaR 
and k is drawn in Figure 5-2 as an example. The figure also shows the mean of the hedged profit, 
E[Y (xk )], on the right axis, which is non-increasing in k as proven in Theorem 2. Because of the 
monotonicity of the mean in k selecting the first value of k that meets the VaR constraint as ∗k  = 
3.5 × 

 

10−6  gives the largest mean value with −VaR γ (k) ≥ 60000 among all hedging portfolios 
that maximize a mean-variance criterion.  
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Figure 5-3: Mean-variance frontier and mean-VaR frontier 

 
      Figure 5-3 illustrates the mean-variance efficient frontier and the corresponding mean-VaR 
frontier for our example. Note that the mean-VaR frontier is the efficient mean-VaR frontier only 
if the distribution of hedged profit satisfies the monotonicity properties postulated in Theorem 1. 
 

 
Figure 5-4: Hedging strategy for an LSE that maximizes the expected pay-off with VaR 
constraints of −$60,000. The underlying distributions of spot prices and load are logp 

~N(4,0.72), q ~N(3000,6002), and Corr(logp,q)=0.8 (assuming r=$120/MWh) 
 
      The optimal mean-variance hedging strategy corresponding to ∗k  and hence, the 
approximation to the optimal mean-VaR hedging strategy, is shown in Figure 5-4. Figure 5-4(a) 
shows the payoff function

 

x*(p) = xk
*(p)  obtained as an approximation for the VaR-constrained 

problem, and Figure 5-4(b) illustrates its replicating strategy consisting of forwards, calls, and 
puts, as described in Section 5.3.  
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Figure 5-5: Profit distributions and VaRs before and after the optimal hedge 

 
      Figure 5-5 compares profit distributions before and after hedging. One can see that the hedge 
obtained as an approximate solution to the VaR-constrained problem reduces the left-tail of the 
profit distribution significantly.  
 

 
Figure 5-6: Profit distribution and its VaR for various levels of k 

 
      Figure 5-6 shows the profit distributions for different k. The corresponding VaR is 
represented as the vertical line from the distribution to the x-axis. 

 

k = 3.5 ×10−6
 corresponds to 

profit after the optimal hedge. One can see that 

 

k = 2 ×10−6
 gives the higher expected value, 

 

1.13×105, than the optimal one, but it was rejected from the feasible hedge because its VaR level 
exceeds the required level of −$60,000. The  graph for 

 

k = 5 ×10−6
 shows a case of VaR 
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satisfying the required level, but it was not chosen for the optimum since it provides a lower 
expected profit than the optimal one. 
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6. Conclusion 

       We apply manifold-based dimension reduction to electricity price curve modeling. LLE is 
demonstrated to be an efficient method for extracting the intrinsic low-dimensional structure of 
electricity price curves. Using price data taken from the NYISO, we find that there exists a low-
dimensional manifold representation of the day-ahead price curve in NYPP, and specifically, the 
dimension of the manifold is around 4. The interpretation of each dimension and the cluster 
analysis in the low-dimensional space are given to analyze the main factors of the price curve 
dynamics. Numerical experiments show that our prediction performs well for the short-term 
prediction, and it also facilitates medium-term prediction, which is difficult, even infeasible for 
other methods.  
       We also propose an equilibrium pricing model in a multi-commodity setting that is driven by 
demand for weather derivatives which is derived from hedging and risk diversification activities 
in weather sensitive industries. As a part of our analysis, we measure the risk hedging and 
sharing effects of the weather derivative, both of which contribute to increasing the expected 
utility of risk averse agents that include these instruments in their hedging portfolios. To price 
the weather derivative we assume that there are buyers and an issuer in a closed and frictionless 
endowment economy and all of them are utility maximizers. By solving the utility maximization 
problems of the market participants we determine the optimal demand and supply functions for 
weather derivatives and obtain their equilibrium prices by invoking a market clearing condition. 
In the multi-commodity economy the weather derivative has two effects: the risk hedging effect 
and the risk sharing effect, while in a single-commodity economy there is only a risk hedging 
effect since there is no counter-party to share risk. We measure these effects in terms of certain 
equivalent differences among various cases.  
 
      Under the mean-variance utility function we were able to derive closed form expressions for 
equilibrium prices and the measurement of the risk hedging and sharing effects. Such 
expressions will be useful in future empirical work that will attempt to calibrate the model 
parameter to market data. Numerical examples employing Monte-Carlo simulations show that 
the equilibrium price tends to increase as the correlation between temperature and demand 
increase due to the high demand for the weather derivative. In addition, the numerical examples 
verify that weather derivative improves hedging and risk diversification capability, especially in 
situations where commodity derivatives are not available. 
 
      In addition, we developed a method of mitigating volumetric risk that load-serving entities 
(LSEs) and marketers of default service contract face in providing their customers’ load 
following service at fixed or regulated prices while purchasing electricity or facing an 
opportunity cost at volatile wholesale prices. Exploiting the inherent positive correlation and 
multiplicative interaction between wholesale electricity spot price and demand volume, we 
developed a hedging strategy for the LSE’s retail positions (which is in fact a short position on 
unknown volume of electricity) using electricity standard derivatives such as forwards, calls, and 
puts.  
 
      The optimal hedging strategy was determined based on expected utility maximization, which 
has been used in the hedging literature to deal with non-tradable risk. We derived an optimal 
payoff function that represents the payoff of the optimal costless exotic option as a function of 
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price. We then showed how the optimal exotic option can be replicated using a portfolio of 
forward contracts and European options. The examples demonstrated how call and put options 
can improve the hedging performance when quantity risk is present, compared to hedging with 
forward contracts alone. While at present the liquidity of electricity options is limited, the use of 
call options has been advocated by Oren 2005 and Chao and Wilson 2004 in the electricity 
market design literature as a tool for resource adequacy, market power mitigation, and spot 
volatility reduction. These authors advocated capacity payments in the form of option premiums 
that will incent capacity investment, and ensure electricity supply at a predetermined strike price. 
Our research contributes to better understanding of how options can be utilized in hedging the 
LSE’s market risk, and hopefully increase their liquidity in the electricity market.  
 
      We also extended our framework by considering the optimal timing of a hedging portfolio as 
well as the co-optimization of the portfolio mix taking account of the timing. For mean-variance 
expected utility, we solved for the optimal hedging time, under classical assumption regarding 
the stochastic processes governing forward price and load-estimate. The example showed that 
generally there is a critical time beyond which the uncertainty in profit increases sharply while 
the uncertainty remains relatively constant before this critical time.  
 
      Sensitivity analysis results indicate that the optimal hedging time gets closer to the delivery 
period if the positive correlation between the forward price and load-estimate is higher, and if the 
load-estimate volatility is higher. It is also observed that delaying the hedging time past the 
optimum time can be very risky, while the earlier hedging makes little difference as compared 
with hedging at the optimal time. This suggests that in practice one should err by hedging early 
rather than taking the chance of being too late.  
 
      Finally, the hedging strategy is extended to maximize the expected profit under the VaR 
constraint, which limits the lowest level below which the hedged profit wouldn’t fall with 95% 
confidence. However, VaR constrained problems are generally very hard to solve analytically 
unless the value of profit under consideration is normally distributed. In our case, the profit 
depends on the product of the two correlated variables. Moreover our hedging strategy is 
characterized by a nonlinear function of a random variable. We address this difficulty by limiting 
our search to feasible VaR-constrained self-financed hedging portfolios on the mean-variance 
efficient frontier. We provide theoretical justification to such an approximation and derive, an 
analytic representation of hedging portfolios on the mean-variance efficient frontier as function 
of the risk aversion factor. The computation of an approximate solution to the VaR-constrained 
problem on the mean variance efficient frontier is facilitated by the fact that it corresponds to the 
smallest risk-aversion factor whose associated VaR meets the constraint limit.  
 
      When one uses the mean-variance formulation, it is usually easy to solve the problem, but 
hard to decide what the appropriate risk-aversion factor is. The analysis in this section implies 
that one can use a VaR-constrained formulation as an alternative, which takes one of the mean-
variance solutions but automatically chooses associated risk aversion at which the maximum 
mean is achieved while maintaining the required VaR level. The advantage of using the VaR-
constrained formulation is that VaR is easier to interpret, and it is a widely used risk-measure in 
practice.  
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      The model presented in Chapter 4 and 5 determined the best hedging portfolio assuming that 
an LSE has unlimited borrowing capability. In practice, credit limits can become an impeding 
factor in purchasing the optimal hedging portfolio. An LSE may not be able to borrow enough 
upfront money to finance the option contracts. Therefore, a credit limit constraint, which limits 
the amount of money that can be borrowed to construct the portfolio, needs to be considered in 
future extension of our model. A dynamic hedging strategy rather than the static approach 
adapted in this project is likely to improve the hedging performance and should be considered in 
future extension of this work. 
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Appendix A: Optimal Payoff Function under CARA Utility 

Proof of Proposition 4.1: 
 
We see from the special property 

 

U ' (Y ) = −aU(Y )  of a CARA utility function that the following 
condition holds:  

 
which implies that the utility which is expected at any price level 

 

p  is proportional to

 

g(p)
f p (p)

. 

Then the optimal condition is reduced to  

 
 
for an LSE with a CARA utility function. Then,  
 

                  (A.1) 
The Lagrange multiplier 

 

λ* in the equation should satisfy the zero-cost constraint, which is  

 

x*(p)g( p)dp = 0
−∞

∞∫ . That is,  
 

           (A.2) 
Solving (A.2) for 

 

lnλ* gives  
 

              (A.3) 
 
Substituting this into equation (A.2) gives the optimal solution. QED. 
 
 



 

93 

Appendix B: Optimal Payoff Function under Mean-Variance Utility 

Proof of Proposition 4.2: 
 
The Lagrangian function for the optimization problem (4.2) is given by  
 

 
 
with a Lagrange multiplier 

 

λ  and the marginal density function 

 

f p (p) of 

 

p  under P . 
Differentiating 

 

L(x(p)) with respect to x(·) results in  
 

                        (B.1) 
 
by the Euler equation. Setting (B.1) to zero and substituting ∂ Y/∂ x = 1 yields the first order 
condition for the optimal solution 

 

x*(p) as follows:  
 

                                  (B.2) 
Here, the value of 

 

λ* should be the one that satisfies the constraint 

 

EQ[x(p)] = 0. 
 
It follows from 

 

Var(Y ) = E[Y 2]− E[Y ]2 that  
 

 
 
From 

 

U ' (Y ) =1− aY , the optimal condition (B.2) is as follows: 
 

 
 
Equivalently,  

                               (B.3) 
 
Integrating both sides with respect to p from −∞ to ∞, we obtain 

 

λ* =1− aE[Y *]. By substituting 

 

λ* and 

 

Y * = y(p,q) + x*(p) into (B.3) gives  
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 (B.4) 
 

By rearranging, we obtain 
  

         (B.5) 
 
To cancel out 

 

E[x*(p)] in the right-hand side, we take the expectation under Q to the both sides 
to obtain  
 

    (B.6) 
 

and subtract Eq.(B.6)

 

×
g(p) / f p (p)

EQ[g(p) / f p (p)]
 from Eq.(B.5). This gives the final formula for the 

optimal payoff function under mean-variance utility as 
  

        (B.7) 
 
QED. 
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