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Executive Summary 

Policies that require large expansions of renewable generation sources pose both 

technical and economic challenges for power systems.  For example, over half the states 

have established Renewable Portfolio Standards, and many have very ambitious goals to 

generate substantial fractions of electricity with renewable sources.  One of the primary 

obstacles is that renewable generation sources are intermittent and thus create challenges 

for both system operators and market designers.  Due to the limited predictability and 

high inter-temporal variability of renewable generation, novel operation and market 

design methods are needed for a cost-effective approach to integrating these resources 

into the power system. 

 

This project addresses these challenges by quantifying the benefits of using price-

responsive demand in conjunction with a dynamic look-ahead dispatch algorithm.  

Importantly, our estimated benefits correspond to a real-world power system, as we use 

actual data on demand-response and wind generation by location, as well as a dispatch 

model calibrated to the actual network topology. 

 

We evaluate the effect of integrating demand response with a dynamic look-ahead 

dispatch model on power system scheduling based on realistic data obtained from 

Electric Reliability Council of Texas (ERCOT). Measures of ERCOT demand response 

and site-specific wind generation data are used.  The project has two major elements: (1) 

estimating demand-response by location on the grid, and (2) applying a look-ahead 

dispatch algorithm to a real-scale system such as ERCOT, using demand-response as 

input parameters.  Figure 1 shows the schematic overview of the project activities.  

 

The major outcome of this project is that (1) real-world price elasticity based on ERCOT 

data is quantified and analyzed. The estimation of own and cross elasticity is critically 

assessed; and (2) the economic benefits of combining look-ahead dispatch with price-

responsive demand is quantified. Such benefits manifest themselves in both economic 
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savings during normal operating conditions, and the economic savings in avoiding 

infeasibilities.  

 

 
Figure 1  Implementation of look-ahead dispatch with price responsive demand 

For the first part of estimating demand elasticity in ERCOT, econometric study is 

conducted based on wholesale level commercial and industrial loads. Both own and 

cross-elasticity is derived based on the commercial & industrial (C&I) load data in 

ERCOT which are subject to time-varying prices. The own elasticity is found to be 

relatively low compared with most literature suggest.  

 

For the second part of the study, we estimate the benefits of introducing time-coupled 

look-ahead dispatch in a realistic system such as ERCOT. The economic benefit of 

introducing look-ahead as compared with static dispatch is the reduced overall system 

dispatch, because of the prepositioning of generation output in anticipation of future net 

load variations. The estimated saving for the ERCOT is approximately $10 million per 

year. In addition to the economic benefits during normal operating conditions, the 

introduction of look-ahead also benefit the system when potential insecurity occurs. Such 

savings can be quantified in avoided load shedding cost. We present the savings of this in 

Chapter 3. 

  

By combining look-ahead dispatch with price responsive demand, the total system 

benefits include: (1) increased overall social welfare; (2) reduced wind-related 

curtailment; and (3) smoothed price performance. The detailed study is described in 

Chapter 4.  
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This project provides empirical study documenting the benefits of advanced dynamic 

look-ahead dispatch with price responsive demand. It could serve as a basis for policy 

and pricing discussions for the ongoing migration toward a clean energy portfolio. While 

all the empirical study is based on one particular region ERCOT (which has the highest 

wind penetration in the U.S. as a region), similar study methodologies can be applied in 

many other regions. Future work could investigate the implication on market price with 

time-coupled look-ahead dispatch. In addition, how to quantify temporal shifts in demand 

response is also another important theoretical and empirical challenge.  
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1. Introduction 

1.1 Background 

Huge technical and economic challenges are posed due to large expansion of renewable 

energy. In contrast to conventional thermal generation resources such as coal power 

plants and natural gas power plants, most renewable power resources (such as wind 

generation and solar generation) are intermittent and variable with limited predictability 

[1-4].  

 

Because of the limited predictability and high inter-temporal variation of those renewable 

resources, existing market design and operational approach may not be sufficient to 

handle all the conditions. Therefore, innovative operation and market design methods are 

needed to cost-effectively integrate the renewable resources into the power system. 

 
One of the major operational changes is that the industry is moving from a static near 

real-time economic dispatch to dynamic look-ahead economic dispatch to allow for more 

flexibility in support of higher penetration of variable renewable resources [5].  

 

This technical report empirically studies the impact of implementing a look-ahead 

dynamic economic dispatch with price responsive demand in Electric Reliability Council 

of Texas (ERCOT) nodal market operations. 

1.1.1 The Operational Challenge of Integrating Variable Generation  

Due to the increasing penetration of renewable generation, new challenges are posed to 

power system operations [6-8].  

 

During past two years, global demand for renewable energy continued to rise, despite the 

international economic crisis, ongoing trade disputes, and policy uncertainty and 

declining support in some key markets. Renewable energy supplied an estimated 19% of 

global final energy consumption by the end of 2011 [9].  
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Among the total renewable energy consumption, only approximately 9.3% came from 

traditional biomass while useful heat energy from modern renewable sources accounted 

for an estimated 4.1% of total final energy use;  

 

Hydropower made up about 3.7%; and an estimated 1.9% was provided by power from 

wind, solar, geothermal, and biomass, and by biofuels.2 Renewables are a vital part of the 

global energy mix. 

 

 

Figure 2  Average annual growth rates of renewable energy capacity  

 

In Figure 2, the average annual growth rates of renewable energy capacity are presented 

[9]. 

 

Globally, total renewable power capacity exceeded 1,470 gigawatts (GW) in 2012, up 

about 8.5% from 2011. Hydropower rose to an estimated 990 GW, while other 

renewables grew 21.5% to exceed 480 GW. Globally, wind power accounted for about 

39% of renewable power capacity added in 2012, followed by hydropower and solar PV, 

each accounting for approximately 26% [9].  
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Passing bio-power, solar PV capacity reached the 100 GW milestone and become the 

third largest renewable technology in terms of capacity (but not generation), after hydro 

and wind. 

 

Having accounted for an ever-growing share of electric capacity added worldwide each 

year, renewables in 2012 made up just over half of net additions to electric generating 

capacity. By year’s end, renewables comprised more than 26% of total global power 

generating capacity and supplied an estimated 21.7% of global electricity, with 16.5% of 

total electricity provided by hydropower. While renewable capacity rises at a rapid rate 

from year to year, renewable energy’s share of total generation is increasing more slowly 

because many countries continue to add significant fossil fuel capacity, and much of the 

renewable capacity being added (wind and solar energy) operates at relatively low 

capacity factors [9]. 

 

In Figure 3, total renewable power capacity in various regions have been presented. 

 

 

Figure 3  Renewable power capacity in world, EU-27, BRICS, and top six countries. 
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Because of such a rapid development in renewable resources especially for those 

intermittent resources such as wind and solar, a lot of challenges are posed to power 

system operations.  

 

In conventional power system operation, the major uncertainty and variability come from 

the demand. Figure 4 present the day-ahead load forecast and 10 minutes ahead load 

prediction. As we can see, the existing power engineering did a pretty good job in load 

forecast. The difference between the day-ahead load forecast and real-time load forecast 

is small and manageable.  

 

 

Figure 4  Day-ahead and 10-min-ahead load prediction, and timing of UC and ED 
functions.  

In Figure 5, it presents the 10-minute ahead load forecast and second by second actual 

load [2]. As we can see, the 10-minute ahead forecast basically represents the expected 
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value of the actual load. Those variations and deviations away from the 10-minutes load 

forecast are taken care by automatic generation control (AGC). 

 
 

 
Figure 5  10-min-ahead load prediction and second-by-second actual load.  

 

However, under high penetration of renewable generation, the forecast pattern of the 

deviations has changed. The day-ahead and 10 minutes wind prediction are presented in 

Figure 6 [2]. And the zoomed-in 10 minutes wind prediction and actual wind generation 

are presented in Figure 7. As we can observe the deviation and variation are much higher 

than Figure 4 and Figure 5. The conventional AGC system may not be fully responsible 

to the intermittency resulting from the renewable generations. 
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Figure 6  Day-ahead and 10-min-ahead wind prediction, timing of UC and ED functions.  

 

 
Figure 7  Schematic 10-min-ahead wind prediction and second-by-second actual wind.  

 

1.2 Target of Research 

The objective of this project is to address these challenges by quantifying the benefits of 

using price-responsive demand in conjunction with a dynamic look-ahead dispatch 
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algorithm.  Our estimated benefits correspond to a real-world power system, as we use 

actual data on demand-response and wind generation by location, as well as a dispatch 

model calibrated to the actual network topology.   

 

In this project, we use ERCOT demand data and site-specific wind generation data.  This 

project yields realistic estimates of the system benefits that such methods would yield in 

real-world power systems. As more system operators are incorporating towards time-

coupled dispatch into Energy Management Systems (EMS) and Market Management 

System (MMS) [10], this project could provide quantifiable benefits in a specific system.   

 

The project has two major elements:  

• Estimating demand -response by location on the grid. 

• Applying a look-ahead dispatch algorithm to a real -scale system such as ERCOT, 

using demand-response as input parameters.   

1.2.1 Demand Response 

Demand response offers many benefits to power systems, including the ability to 

integrate more intermittent renewable generation sources and to reduce the cost of 

ancillary services.  Although many researchers and policymakers have discussed the role 

of demand response, very little empirical research has been done to quantify the level of 

demand response and benefit of demand response in an actual system.  In particular, in 

ERCOT the market players do not have a solid grasp of how much demand response 

reliably exists, especially with new “enabling technologies” on the customer side of point 

of connection. 

 

The first task of this project to quantify the demand elasticity of commercial and 

industrial (C&I) loads by location. We use customer-level data for C&I customers in 

ERCOT to econometrically estimate the own and cross elasticity of demand for specific 

types of customers in specific hours and seasons. This allows us to understand how 

demand elasticity varies by customer type (e.g. large retail store). 
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1.2.2 Look-ahead Dispatch with Price Responsive Demand 

Another major task of this project is to quantify the economic benefits of conducting 

dynamic look-ahead dispatch with price responsive demand in ERCOT system. Starting 

from the look -ahead market operation procedures that have been implemented in several 

major RTOs [10], we developed a dynamic look-ahead simulation platform which 

includes price responsive demand. Such a simulation platform is based on the preliminary 

work done by the PIs [2, 11-14].  This platform enables quantification of the potential 

economic benefits from look-ahead dynamic dispatch and price responsive demand in 

support of integrating large-scale variable resources. The site-specific variable wind 

generation data and the substation-level elastic demand data obtained from ERCOT are 

the inputs to this simulation platform. In addition, development of look-ahead dispatch 

concepts is also tested in this real world-scale simulation platform.    

1.3 Report Organization  

This technical report is organized in five chapters. The first chapter gives a background 

of the whole research. Chapter 2 presents the price demand response model we used in 

this research. Chapter 3 discusses look-ahead economic dispatch and its advantages using 

ERCOT as an empirical example. Chapter 4 describes the economic benefits of 

implementing the look-ahead economic dispatch with price responsive demand in 

ERCOT market. Chapter 5 provides the concluding remarks and future work.  
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2. Quantifying Actual Demand Response in ERCOT 

2.1 Institutional Background behind Demand Response in ERCOT 

Texas is one of several U.S. states to allow retail competition in electricity. Retail firms 

procure power from generation owners and sell to commercial, industrial, and residential 

end-users. Since 2002, commercial and industrial (C&I) customers served by the Electric 

Reliability Council of Texas (ERCOT) have been able to purchase power from a 

competitive retailer rather than the former vertically integrated utility.  Individual C&I 

customers and electric retailers bilaterally negotiate power contracts. 

 

 
Figure 8  TVP zonal proxy for locations. 

 

The agreements can vary along a variety of dimensions including how risk is shared and 

how much the customer is exposed to the wholesale spot price of power. For example, a 

contract could simply specify a fixed rate for all consumption -- a so-called requirements 

contract.  

 

Other possible contracts could specify a price that varies in the time of day, week, or 

season of usage, and is often referred to as a time-of-use price. For these two types of 
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contracts, the retail price is not directly tied to the wholesale spot price and thus does not 

reflect the short-run variation in supply and demand conditions of the system. 

 

 

Figure 9  TVP take-up occurs in areas with current and future wind generation.  

 

Besides electric consumption, customers also have to pay for transmission charges, a fee 

for the use of the electric grid. The design of transmission charges is based upon the 

consumer’s contribution to demand during four peak times in summer months (Four 

Coincidental Peaks, 4 CP), thus providing consumers with an incentive to reduce their 

power purchases during the summer peaks [15].  

 

This transmission charge introduces a complication for the empirical work because 

reductions in consumption during summer peak time may be partially driven by 

consumers trying to avoid the transmission fee. These reductions will not be 

distinguishable from reductions driven purely by a high wholesale market price. Thus, we 

may overestimate demand responsiveness to prices. 
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TVP typically take one of two forms. Critical peak pricing (CPP) allows prices to vary 

with short-run system conditions. Under CPP, the retailer/utility can declare a day or hour 

to be a critical peak period, and the price is contracted to be substantially higher during 

those episodes.  In some cases, the critical peak price may be the wholesale spot price for 

that period. CPP contracts typically limit the number of times that the retailer/utility can 

declare critical peak periods. Real-time pricing (RTP) passes the wholesale spot price 

along to customers. 

 

Either of the time-varying contracts could hedge a customer against price risk for a 

portion of the consumption but still expose the customer to the spot price on the margin. 

The existing literature has detailed descriptions of the types of retail pricing schemes (for 

example, see [16]). Retail prices under such bilaterally negotiated contracts will reflect 

factors such as wholesale prices, premia paid to avoid risk, and transmission and 

distribution charges by the distribution utility. For instance, a retailer offering a time-

varying price contract to a particular customer will pass the risk involved in having 

unexpectedly high wholesale prices. At the same time, a customer entering into a time-

varying price contract will have the opportunity to save costs by curtailing demand at 

peak times, or reallocating consumption within the day. 

2.2 Data 

We use a unique dataset of individual customer-level data for virtually all commercial 

and industrial (C&I) customers with interval data recorders (IDRs).1  ERCOT provided 

us with data on the electricity consumption for 8,537 C&I customers that are metered 

with interval data recorders that allow the distribution utility to record consumption every 

15 minute interval. These customers represent approximately 20% of the total energy 

load in ERCOT and the 33% of the C&I energy consumption in Texas. For each of these 

customers, our data include consumption for each 15 minute interval from October 2007 

to September 2008. 

1 During the sample period, all customers with a peak demand higher than 700 kW were required by 
ERCOT to have an interval data recorder installed. The compliance rate for this requirement was almost 
universal. Customers were also allowed to request voluntarily the installation of these devices. 
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Figure 10  TVP take-up varies substantially by industry 

 

For each customer, ERCOT provided us with information about the contract between the 

customer and its retailer. ERCOT requested that each retailer identify for each of the 

retailer’s customers whether the contract provided “a financial incentive or requirement 

to reduce consumption in response to high wholesale spot prices.” In particular, the 

retailers were asked to provide an indicator of whether the contract included either real-
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time pricing, critical peak pricing, or any other pricing structure that created incentives to 

reduce demand when balancing market prices rose. 

 

This measure of exposure to time-varying prices (TVP) is for a single snapshot in time -- 

the survey response was due to ERCOT on April 1, 2009. We assume that the contract in 

place when the retailer responded to the survey had similar properties as the contracts 

governing our sample period of October 2007 to September 2008. According to this 

metric, approximately 15% of customers were on time-varying prices. However large 

customers are more likely to face time-varying prices; 30% of C&I load faces time-

varying prices. 

 

Customers may also sell curtailing capacity though agreements known as Loads Acting 

as Resources (LaaRs), either to ERCOT or directly to load-serving entities. As of the end 

of 2008, 144 firms were qualified to provide load curtailment capacity, with 5 of them 

concentrating about one-half of the total curtail capacity (more than 100MW)[15]. 

Typically, LaaRS are called to reduce load three times a year. Another alternative for 

selling curtailment capacity is the Emergency Interruptible Load Service (EILS). Under 

EILS, interruptible loads that are not providing an operating reserve receive a payment 

for curtailing consumption within a 30-minute of ERCOT declaring an emergency [15]. 

Both programs introduce a challenge for the empirical estimation, because during high-

prices episodes non-TVP firms can reduce consumption because of their participation in 

these programs, and TVP firms could not reduce consumption or do it only marginally in 

order to preserve their curtailment capacity already under contract. Unfortunately, we do 

not have information on which firms participate in EILS. Therefore, the days when 

LaaRs episodes occurred are excluded from our sample. 

 

The total amount of C&I consumption (metered with IDRs) subject to time-varying 

prices has a flatter daily load profile than the C&I consumption not facing TVP. This is 

illustrated in Figure 11 which shows the average daily aggregate consumption profile for 

customers on TVP and those not on TVP. Customers not facing TVP have a daily load 
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shape that peaks later in the day and exhibits a higher peak to trough ratio than TVP 

customers. 

2.3 Empirical Model and Estimation 

To estimate the effect of prices on customer-level load, we estimate jointly the 

conditional input demands (CID) for the 96 intervals of the day, following and modifying 

Patrick and Wolak's (2001) methodology [17]. The CID used for the estimation are 

derived from a Generalized Mc Fadden (GMF) cost function. We opt for this cost 

function among many other used in the literature because of its consistency with the 

conditions imposed by the microeconomic theory. In addition to satisfy homogeneity of 

degree one in input prices, this specification can satisfy the concavity in input prices, 

which cannot be guaranteed using other common cost functions, such as the translog or 

Generalized Leontief functions [18].  

 

These properties of the cost function are important for our setting. In intuitive terms, 

homogeneity of degree one implies that if all input prices increase by certain proportion, 

then total cost will increase by the same proportion. Concavity in input prices imply that 

if the price of one particular input increases, total cost will increase, but less than 

proportionally. In this case, the firm can substitute the use of that input for other cheaper 

inputs. This second condition is particularly relevant in this study, because we want to 

allow firms to shift consumption across intervals within the day for the production 

process. 

 

For estimation, as in [17], we assume that firms choose production to minimize costs, and 

we use a modified Generalized McFadden cost function: 

 

 ( )

96 96 96

1 1 1

96 96

1 1

1( , )
2kd ij id jd d ii id d

i j i

i id i id k ikd id
i i
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= = =
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 
= + + 
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From Shephard’s Lemma, the partial derivative of the cost function with respect to each 

input price yields the conditional input demand for input i: 

 

 
( )

96

1

1( , )
2 iikd d i ij jd ii i k

i
d ikdE p y yc b d f W F Up b θ

=

+
 

= + + + +  
∑

 
(2)

 

 

In the most general specification, this model contains many parameters, so in order to 

make the model more parsimonious, we incorporate “smoothness” across the intervals’ 

substitution patterns by employing a Fourier series.  Details are included in [19].  As a 

result, we are able to estimate a matrix of 96x96 own- and cross-price elasticities to 

capture substation among all intervals in a given day. 

2.4 Results 

To estimate the price elasticities, we focus on the intervals when there was potentially a 

strong incentive to curtail electricity consumption. Hence, we analyze only the days 

during the summer of 2008 when unusually high prices occurred. The criteria used for 

defining an unusually high price were 1.5 times the standard deviation above the mean 

price for the interval and congestion zone (Houston, North, West, South). Using this 

criteria, 50 days out of the 91 days were selected.  Details on the selection process can be 

found in [19]. 

 

Next, we divided C&I firms into quartiles of consumption based upon the firm's 

consumption data from June 2008 to August 2008.  This separation of firms by “size” 

generates more homogeneity and facilitates the model estimation. 

 

We obtain some important conclusions from these results. First, the estimated magnitudes 

of elasticity are modest. All the reported median values are below 0.02 in absolute value, 

with most of them being below 0.01. This result is consistent with previous results in the 

literature. For instance, [20] find that aggregate own-price elasticity of demand in 
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ERCOT is -0.000008, while [21] find that the 20 largest customers in Houston have no 

significant response to prices. 

 

 

Figure 11  Quartile 4:  own price elasticity for the Largest Firms on TVP 

 

As an illustration of our results, the figure below reports the own-price elasticities by 

interval of the day for the firms in the highest quartile. 

 
The figure above is an illustration of the own-price elasticities (e.g. the on-diagonal terms 

of the elasticity matrix).  We generated the full matrix of 96x96 elasticities for each zone, 

and these matrices of substitution patterns are used as inputs into the look-ahead dispatch 

model described in the next chapter. 
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3. Look-ahead Dispatch with Price Responsive Demand 

In this chapter, we formulate and apply look-ahead dispatch with price responsive 

demand in the ERCOT equivalent system. The benefits of both look-ahead dispatch and 

price responsive demand are quantified and analyzed.  

 

 

Figure 12  Quantifying system benefits using real-world data 

 

3.1 Background 

Dynamic look-ahead dispatch is motivated by the need for a more advanced dispatch 

algorithm with enhanced capability to manage the security risks (for much broader set of 

conditions [22-24]) due to the high variation and uncertainty introduced by intermittent 

resources and contingencies in electric power systems. In recent years, as an alternative 

to conventional static security constrained economic dispatch (SCED), look-ahead SCED 

has become a new industry standard in real-time energy market operations [5, 25]. In 
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contrast with the single-stage optimization of static SCED, look-ahead SCED works out a 

scheduling plan for a future period (e.g., the next 2 hours). By (i) utilizing the accurate 

most recently updated load and intermittent generation forecasts (e.g., 10-minute ahead 

forecast) and (ii) incorporating the inter-temporal constraints (e.g., ramp rate), look-ahead 

SCED exhibits an improved economic performance over static SCED [2]. 

 

Although the efforts in industry for doing look-ahead dispatch are recent, the concept of 

the look-ahead (dynamic) dispatch originated to the 1980s [26, 27]. The major motivation 

behind conducting look-ahead (dynamic) economic dispatch was to incorporate the near-

term variable load forecast and schedule the system resources cost-effectively. Our recent 

work extends and justifies the joint benefits when taking into account the environmental 

impacts (emission costs, primarily), intermittent resources, responsive demand resources 

and uncertainty management as well as security benefits [13, 14, 28-33]. 

3.1.1 Economic Benefits of Dynamic Look-ahead Dispatch 

As is discussed in many valuable existing works [26, 27], one of the major advantages of 

dynamic look-ahead dispatch is the improvement in economic performance. Figure 13 

presents an illustrative example. There is a three bus system with three generators. The 

wind generator (Wind farm) has a capacity of 80 MW at 3$/MWh marginal cost. The 

natural gas generator has a capacity of 120 MW at 40$/MWh. The coal generator has a 

capacity of 150 MW at 30$/MWh marginal cost. The ramping rates for the natural gas 

unit and for the coal unit are 20 MW/5 mins and 15 MW/5 mins respectively. 
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Figure 13  Illustrative example of look-ahead dispatch in economic performance: 

In Table 1, it then shows the conventional static dispatch results, when it is applied to this 

system. For the first time interval, given the wind production potential of 65 MW and 

load of 110 MW, the coal unit is to be dispatched to 40 MW and the natural gas unit is to 

be dispatched to only 5 MW because of their marginal costs. However, at the second time 

interval, wind production potential increase to 80 MW and load decrease to 90 MW. Due 

to the ramping limit, the coal unit can only go down to 25 MW and the wind farm has to 

go down to 60 MW, which results in wind curtailment of 20 MW.  

 

Table 1  Illustrative Example: Static Dispatch 

 0:00 0:05 

Ava. Wind 65MW 80MW 

G1 65MW 60MW 

G2 40MW 25MW 

G3 5MW 5MW 

Load 110MW 90MW 
 

However, if the dynamic look-ahead dispatch is applied to this system, the economic 

benefits will change, as shown in Table 2. For the same first time interval, given the wind 

production potential of 65 MW and load of 110 MW, despite the low marginal cost, the 

coal unit is to be dispatched at 20 MW and the natural gas unit is to be dispatched at 25 

MW. By doing this, it allows extra room reserved for wind ramping in the next time 

interval. At the second time interval, wind production potential increase to 80 MW and 

load decrease to 90 MW. This time the pre-reserved room allows the wind farm to go up 

to 80 MW and both coal and natural gas units go down to 5 MW. Therefore, the look-

ahead dispatch avoids the potential wind curtailment and yields about 10% economic 

benefit improvement.   
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Table 2  Illustrative Example: Look-ahead Dispatch 

 0:00 0:05 

Ava. Wind 65MW 80MW 

G1 65MW 80MW 

G2 20MW 5MW 

G3 25MW 5MW 

Load 110MW 90MW 
 

3.1.2 Security Benefits of Dynamic Look-ahead Dispatch 

Another major advantage of dynamic look-ahead dispatch, besides the improvement in 

the economic benefits, is the improvement in operational security to the dispatch problem 

[33]. In Figure 14, an illustrative example is presented. 

 

 
Figure 14  Illustrative example of look-ahead SCED security improvement 

 

In the illustrative system, there are two power sources: a wind farm with a capacity of 40 

MW and a coal power plant with a capacity of 80 MW and a ramping capability of 10 

MW/15 minutes. In the illustrative example, to the same scenario, both static SCED and 

look-ahead SCED are applied, as shown in Table 3 and Table 4, respectively. 
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Table 3  Illustrative Example: Static Dispatch (Infeasible) 

 0:00 0:05 

Ava. Wind 35MW 25MW 

G1 60MW 70MW 

G2 35MW 25MW 

Total G 95MW 95MW 

Load 95MW 105MW 
 
 
When the wind generation, under static dispatch, drops from 35 MW to 25 MW and 

demand increases from 95 MW to 105 MW, the coal power plant cannot ramp up in such 

a short moment and therefore it results in a loss of load of 10 MW. 

 

Table 4  Illustrative Example: Look-ahead Dispatch (Feasible) 

 0:00 0:05 

Ava. Wind 35MW 25MW 

G1 70MW 80MW 

G2 25MW 25MW 

Total G 95MW 105MW 

Load 95MW 105MW 
 
 
This infeasible issue can be avoided with look-ahead SCED. The change in wind 

resources and demand will be considered beforehand; although more coal capacity is 

used instead of inexpensive wind generation in the first interval, the demand can be 

satisfied by the total generation in the second interval. This example illustrates that, due 

to the fact that multi-stage is considered within look-ahead SCED, the security of the 

dispatch with look-ahead SCED improves upon the conventional dispatch approach. 
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3.2 Look-ahead Dispatch with Inelastic Demand 

This section presents the look-ahead dispatch model with inelastic demand. In Figure 15, 

the conceptual diagram of a look-ahead dispatch with inelastic demand is provided. 

Different from the conventional static dispatch model, look-ahead dispatch does not only 

make optimization decision over next step but make an overall optimal decision over a 

look-ahead window.  

 

 

Figure 15  Look-ahead dispatch conceptual diagram 

 

Typical look-ahead windows in look-ahead dispatch can range from 10 minutes to up to 1 

hour. The dynamic programming decisions will be made for every step and an optimal 

plan for the whole horizon. Nevertheless, only the first step decision will be 

implemented. Before next step decision making, all the input information such as wind 

generation forecast, load forecast will be updated for the improved quality of decision-

making. 
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The mathematical formulation of a look-ahead dispatch with inelastic demand are 

formulated as (3)-(13), where, G  is the set of all available generators; ( )
i i

k
G GC P  is the 

generation cost of generator i ; 
i

k
GP  is the output level of generator i  at time step k , with 

max
iGP  and min

iGP  as its upper and lower bounds; 
i

k
DP  is the load level of bus i  at time step 

k ; ( )
j

k
NP θ  is the nodal power injection in bus j  at time step k ; kF  is the vector of the 

branch flow at time step k  and maxF  is the vector of the branches’ capacity. 
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Figure 16  Framework of enhanced look-ahead dispatch 

 

Among the formulation presented above, the objective function (3) is to minimize the 

total generation cost. Equality constraints (4) are the energy balancing equations. 

Inequality constraints (5) and (6) are the constraints of upward/downward STDC 

requirement constraints. The inequality constraints from (7) to (13) are transmission 

capacity constraints, ramping capability constraints, mixed generator capacity constraints, 

and the upper and lower bounds of the decision variables, respectively. 

3.3 Early Detection and Optimal Corrective Measures of System Insecurity 

One of the major advantages of look-ahead economic dispatch is to better utilize 

available resources to enable a larger feasibility region, as discussed in the previous 

section. However, due to the uncertainty of the renewable resources and potential 

contingencies [34], there is always the chances that a feasible dispatch plan which 

satisfies all security constraints does not exist. We define these situations as infeasibility 

in look-ahead SCED. The infeasibility is related with insecurity of system operation. It is 

possible to improve the robustness and security of scheduling operation by handle 

infeasibility issues appropriately. 
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In two of our major works [30, 33], we proposed an enhanced look-ahead dispatch 

framework. Besides the core look-ahead dynamic dispatch functionality, two more 

modules are introduced into look-ahead dispatch decision-making.  

 

One is the look-ahead security management. It detects the potential security problems for 

power system operation and works out an optimal recovery plan to help the system avoid 

the security challenge at minimized cost. The other is the weighted predictive scheduling. 

It is used to reduce the negative impacts of uncertainty in power system decision making. 

3.3.1 Relaxing Variables 

We define Relaxing variables in previous our paper [33]. Relaxing variables are 

introduced to handle infeasibilities. They are deployed to relax the constraints and make 

the problem feasible. High penalty terms associated with the relaxing variables are added 

in the objective function to eliminate the chances that the relaxing variables become 

alternatives to the original decision variables when the problem is feasible. 

 

 

Figure 17  Conceptual illustration of relaxing variables 
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In Figure 17, the relaxing variables are illustrated by distinguishing them with slack 

variables. A slack variable characterizes the distance from the current operating point to 

the boundary of the feasible region, which can ensure that the current operating point is 

within its feasible region. The relaxing variable r  at optimality indicates the minimal 

distance from the current status to the status which gives a feasible solution. 

3.3.2 Early Identification of Infeasibility 

In an economic dispatch problem, infeasibility is usually related to security issues in the 

physical power system, which refers to certain violations of the operating constraints 

(e.g., the overloading of transmission lines, generators' ramping constraints and so on) or 

to regional or system-wide imbalances between the energy supply and demand. Any of 

these violations may cause contingencies or blackouts in the power system, and lead to 

severe consequences. 

 

In power system real-time operations, it is very important to identify potential security 

problems in advance. The available measures for handling security problems depend on 

how much time remains for taking the measures. If the security issue is detected one to 

two hours ahead, a much broader set of corrective measures can be deployed. On the 

other hand, if the security violation is detected only 10-15 minutes prior to real-time, the 

number of corrective measures available will be much fewer. 

 

The value of our proposed approach is that this approach implemented in a look-ahead 

scheduling framework will enable the scheduling framework to identify future security 

risks. 

 

With the introduction of relaxing variables into security constraints and the problem can 

be formulated as follows: 
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j
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where 
j

k
Nr  are the relaxing variables of the nodal energy balance equations, k

Fr  are the 

relaxing variables of the transmission constraints, 
i

k
Rr  are the relaxing variables of the 

ramping constraints, 
i

k
Gr  are the relaxing variables of the generator capacity constraints, 

and 
i

k
SUr , 

i

k
SUr  are the relaxing variables of the upward/downward short-term dispatchable 

capacity constraints, respectively. 

 

By incorporating the relaxing variables, the objective function of the look-ahead SCED 

can be formulated as (20). 

 

 0

min ( ) ( , , , , , )
i i j i i i i

T
k k

G G N F R G SU SD
k k i G

f C P I r r r r r r
= ∈

= +∑∑  (20) 

(.)I  is defined as the identification function of the violated constraints. (.)I  is suggested 

to be modeled as a linear or a quadratic function 2. The coefficients of the relaxing 

variables in (.)I  indicate the sensitivity of the detection of constraints from various 

categories (e.g., ramping, transmission capacity). Because infeasibility may be caused by 

a violation of multiple constraints, the sensitivity of the different constraints must be 

specified according to the interest of detection. For example, if the system operator is 

more concerned with (or more interested in) the violation of the energy balance constraint 

2 If (.)I   is a linear function, the relaxing variables should be non-negative and then the relaxing variables 
of bidirectional constraints such as ramping constraints, capacity constraints can be split into two parts 
which indicate the violations of upward and downward constraints, respectively. 
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than of the other constraints, the sensitivity ,j is j C∈  of the constraints in that category 

iC  should be higher than the sensitivity of the constraints in the other categories ,lC l i≠ . 

A later section will discuss how to find out all the potential factors causing the same 

infeasible scenario. 
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The coefficients of relaxing variable jη  are given by (21). In (21), ( )j kγ  is the 

discrimination degree among the constraints over different time-steps. ( )j kγ  is the 

function of time step k , iξ  is the coefficient of the i th decision variable in the original 

objective function, and χ  is the parameter to differentiate the relaxing variable terms 

from the original decision variable terms. Therefore, χ  is suggested to be a large number 

(e.g., 410 ). 

 

It is preferred, for a conservative look-ahead strategy,  to identify the potential risks in an 

earlier rather than a later stage. The sensitivity of function (.)I  subject to constraints at 

different stages is suggested to be monotonically decreasing as time step k  increases. 

This is implemented by the discrimination degree ( )j kγ , which is a function of time step 

k  in a look-ahead plan, as described in (22). In addition, the choice of coefficient jς  

needs to obey (22) in order to guarantee the priority relationship of the various constraint 

categories at all-time steps (e.g., ramping constraints versus transmission capacity 

constraints). 
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The linear form of (.)I  is presented in (23), where the relaxing variables and the 

corresponding coefficients are in vector form. 

 28 



 

 

 
( ) T T T T T

el el E E F F R R G GI r r r r r rη η η η η= + + + +
 

(23)
 

 

If the whole plan is feasible, in look-ahead SCED real-time operations, all the relaxing 

variables are equal to zero and the optimal solution is the same as for the look-ahead 

SCED in (23). However, if infeasibility exists, the corresponding relaxing variable will 

become positive. The value of the relaxing variable indicates how much the violation of 

that constraint is. With the appropriate configuration of the relaxing variables in (23), the 

solution of the relaxed problem identifies and quantifies the potential insecurity in the 

system. 

 

Because of the sophistication of power system operations, sometimes infeasibility can be 

caused by the violation of multiple constraints belonging to different categories (e.g., 

ramping rates v.s. transmission constraints). It is helpful to identify all of the potential 

factors causing the security issues and report the information by category in terms of 

system operators' prioritized concerns. We propose an enumeration tree approach in the 

LSM to accomplish this. 

 

 
Figure 18  Enumeration tree approach to the identification of multiple factors 
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We define the security constraint categories set. The sets of security constraint categories 

jC =  { constraints | belong to security constraint category j  } are defined in terms of 

their priority to the operators' concerns (or interests): jC  has a higher priority to the 

system operator than iC , where 0 j i< < . The algorithm doing the enumeration is 

described as follows. 

 
STEP 1 (Initialization): Generate the initial full constraint set 1 2 ...T NC C C C=    , 

configure the coefficients of relaxing variable iη . Go to Step 2. 

 

STEP 2 (Optimization): Solve the infeasibility identification problem (20) subject to (14)

-(19). Go to Step 3. 

 

STEP 3 (Termination test): If the feasibility region of the relaxed problem is empty, 

namely kS =∅ , the identification process is terminated. It is reported that the constraints 

of the category at the current level of concern k  do not cause the infeasibility and any 

constraints with lower priority { | }j j k>  do not cause the infeasibility either. End the 

program, otherwise go to Step 4. 

 

STEP 4 (Extension): If the feasibility region of the relaxed problem is not empty, namely 

kS ≠ ∅ , however, all the non-zero relaxing variables do not belong to the category of the 

current level of concern k . The system operator is to be informed that the constraints of 

the category at the current level of concern k  do not cause the infeasibility and the 

infeasibility is caused by some lower prioritized constraints { | }j j k> . Go to Step 6, 

otherwise, go to Step 5. 

 

STEP 5 (Selection): The system operator is going to be reported the constraints with non-

zero relaxing variables which are responsible to the infeasibility. Go to Step 6. 
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STEP 6 (Configuration): Set the coefficients of all the constraints which belong to the 

category of the current level of concern k  to zero, namely 0,j kj Cη = ∈ . Move to the 

next level 1k k= + . Go back to Step 2. 

 

For illustrative purpose, the whole process is depicted in Figure 18. By means of this 

process, the system operators will be informed of not only the factors about which they 

care the most but also of all the other potential factors causing this infeasibility, ranked in 

the order of their prioritized concerns. 

3.3.3 Optimal Corrective Solution 

By facilitating the concept of relaxing variable, the optimal corrective solution can be 

worked out at a minimal operating cost when system operations are infeasible. 

 

 
{ | available measures for system recovery}

iM MR r=
 

(24)
 

In power system operation, there are various corrective measures which can help the 

system recover from infeasibility (e.g., spinning reserve, non-spinning reserve, 

responsive demand, the fast-response unit, and tie-line support). Different corrective 

measures have different response speeds and operating costs. Generally, fast resources 

are more valuable (and expensive) than slow resources. Each corrective measure can be 

represented by a relaxing variable 
iMr . The set of all the available measures for system 

recovery is represented by MR  in (24). 

 

 
min ( )R Mf f R r= +

 
(25)

 
 

The objective function of the optimal corrective solution can be modified from the 

original objective function (3) to the objective function of (25).  ( )R r  is the recovery cost 

function, which can be defined as a linear function of the relaxing variables Mr . 

Sometimes, there might be a non-linear relationship between the cost and capacity of the 

corrective measures. It is suggested to use a linear step-wise model to formulate this 
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relationship for the sake of algorithm efficiency and simplicity. The coefficients of ( )R r  

are given by the marginal operating cost of the various corrective measures. 

 

 
( ) 0, , 0M Mg x r r r+ … …

 
(26)

 
 

In the relaxed problem, the security constraints are formulated as (26). The original 

constraints ( )g x  may be impacted by some corrective measures and thus get relaxed. Mr  

are the relaxing variables of the corrective measures. By solving this problem, an optimal 

corrective plan is worked out, which can recover the system from infeasibility at the 

lowest operating cost. 

 

Due to the various conditions of various power systems, it should be noted that the 

mathematical model should be modified according to the practical circumstances of the 

power system. The introduction of relaxing variables is suggested to take into account the 

results of the infeasibility identification in terms of the time steps and areas impacted by 

the infeasibility as well as by the degree of the violation.  

3.4 Look-ahead Dispatch with Price Responsive Demand 

This section discusses the modeling of look-ahead dispatch with price responsive 

demand. As the demand elasticity comes into the picture, the modeling of the economic 

dispatch changes. In Figure 19, the dispatch system will handle both offers from the 

supply side and the bids from the demand side.  
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Figure 19  Information exchange for look-ahead dispatch with price-responsive demand 

 

For a look-ahead dispatch with price responsive demand, the every-step dispatch decision 

will be made upon overall optimal benefit for the look-ahead horizon which considers the 

generation cost and demand benefits (in modern electricity market, these factors represent 

themselves in terms of bids.). For each time step, only the first step decision will be 

implemented in the real operation and the forecast of all the resources in the rest of the 

plan will be updated for next-step decision-making. 
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The mathematical formulation of a look-ahead dispatch with inelastic demand are 

formulated as (27)-(38), where, G  is the set of all available generators; ( )
i i

k
G GC P  is the 

generation cost of generator i ; 
i

k
GP  is the output level of generator i  at time step k , with 

max
iGP  and min

iGP  as its upper and lower bounds; D  is the set of all price responsive 

demand, ( )
i

k
Di DB P  is the benefit of price responsive demand i,

i

k
DP  is the dispatched 

demand level of bus i  at time step k ; k
LP  is the inelastic portion of the demand at time 

step k; kF  is the vector of the branch flow at time step k  and maxF  is the vector of the 

branches' capacity. 

 

The objective function (27) is to minimize the total generation cost. Equality constraints 

(28) are the energy balancing equations. Inequality constraints (29) and (30) are the 

constraints of upward/downward STDC requirement constraints. The inequality 

constraints from (30) to (38) are transmission capacity constraints, ramping capability 

constraints, mixed generator capacity constraints, and the upper and lower bounds of the 

decision variables, respectively. 
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4. Application of Look-ahead Dispatch with Price Responsive Demand  

We implement the look-ahead dispatch in a real-scale power system to quantify and 

evaluate the benefits of advanced dispatch model with price responsive demand. This 

chapter presents the real-scale system setup and provides the analysis and discussion for 

the numerical experiments. 

4.1 Real-scale Power System Setup 

The benchmark system we used in this project is the ERCOT system (2011 planning 

case). ERCOT covers 85% of Texas load supporting 23 million consumers in Texas. In 

the ERCOT system, there are 40,530 circuit miles of high-voltage transmission lines, 550 

generating units. The peak demand last summer was 68, 305 MW. The total installed 

capacity is 74,000 MW. Total energy consumption in 2012 was 324 billion kilowatt-

hours. The market size of ERCOT is about $34 billion USD. 

 

 

Figure 20  ERCOT quick facts 2012 

 

The generation portfolio in ERCOT is presented in Figure 20. The major power sources 

in ERCOT are natural gas units and coal units. However, ERCOT is leading in wind 

generation penetration in US for 13% installed capacity. For the energy usage, natural gas 
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generation counts for 45%, coal generation counts for 34%, nuclear generation counts for 

12% and wind generation counts for 9%. The rest (less than 1%) includes solar, biomass, 

hydro etc. 

4.2 Numerical Experiments and Results Analysis 

For the benchmark system, it is necessary to use published market information to verify 

its effectiveness. To accomplish this, we developed and conducted a static dispatch in the 

benchmark system and compare the dispatch results with the published dispatch results. 

The comparison is presented in Figure 21. As is observed, for most of the major units, the 

dispatch levels are fairly close to each other, which justify the effectiveness of our 

benchmark system.  

 

 
Figure 21  Generation output during peak load time 

 

Before introducing the price responsive demand, preliminary study by comparing the 
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Table 5  Comparison of Two Dispatch Methods for a Typical Day (Jul 11, 2009) 

Period Benchmark SCED Look-ahead (30 min) Difference 

Entire Day Cost $    26,191,710 $   26,144,585 $ 47,125 

Early Morning Cost $       3,514,925 $     3,506,689 $   8,326 

Peak Wind Period Cost $       1,226,447 $     1,219,948 $   6,499 

Wind Generation  96,071 MWh 96,432 MWh 361 MWh 
 
 
As we can see from Table 5, the look-ahead dispatch enables a higher overall total 

economic benefit. The advantage is even more obvious during peak wind period. In 

addition, by adopting the look-ahead dispatch, the wind generation (wind resource 

utilization) also increases and avoids some of the wind curtailment.  

 

 
Figure 22  Look-ahead horizon response of total savings 
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benefit saturation. After a certain length of the look-ahead horizon, the additional benefits 

by extending the horizon is very limited. 

 

 
Figure 23  Comparison of computation efforts for different look-ahead horizons 

 

Computation efforts are another key factor which needs to be considered when 

implementing the look-ahead dispatch, especially in real-time markets. The comparison 

of such impacts is depicted in Figure 23. Looking at the curve, we can learn that the 

longer look-ahead horizon causes more computation power. In correlation to Figure 22, 

we suggest there is an optimal selection of the look-ahead horizon which gives a good 

tradeoff between the benefits improvement and computational efforts. 
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Figure 24  Price responsive demand: model behavior 

 
The next part of this section evaluates the benefits of look-ahead dispatch with price 

responsive demand. Figure 24 and Figure 25 present the basic demand response under 

given pricing signal. Provided the pricing signal in Figure 25, the price responsive 

demand behavior is shown in Figure 24. 

 

 
Figure 25  Price responsive demand: LMP pattern 
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As we can see from Figure 24, when the price goes high, the demand will drop and when 

the price goes low, the demand will increase.  

 

Table 6  Economic Benefits: Elastic versus Inelastic Case 

 Elastic Case 

(Million Dollars) 

Inelastic Case 

(Million Dollars) 

Ratio 

(%) 

Overall Social Welfare  $  17,122.67   $             15,921.61  7.54% 

Generation Revenue  $    6,320.84   $               6,251.17  1.11% 

Generation Cost  $    4,816.62   $               4,808.72  0.16% 

Generation Surplus  $    1,504.22   $               1,442.44  4.28% 

Inelastic Demand Expenditure  $    7,127.66   $               7,280.06  -2.09% 

Elastic Demand Benefit  $    2,539.95   $                            -    - 

Inelastic Demand Benefit  $  20,671.27   $             21,759.23  -5.00% 

Elastic Demand Expenditure  $        465.11   $                            -    - 

Total Demand Surplus  $  15,618.45   $             14,479.17  7.87% 

 
 
Then we introduce the price responsive demand into the look-ahead dispatch model. The 

comparison of economic benefits between look-ahead dispatch and static dispatch is 

presented in Table 6. As we can see from Table 6, by incorporating the look-ahead 

dispatch, both parties in the market can get more benefits. On generators side, the 

generation profit has increased by about 4%. On demand side, the total demand surplus 

has increased by about 8%. Overall social welfare has increased by about 7.5%. 
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Figure 26  Market behavior: system-wide highest LMPs 

 

 
Figure 27  Market behavior: system-wide lowest LMPs 
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Besides the economic benefits, the impact of look-ahead dispatch and price responsive 

demand on price behavior also requires careful investigation. Figure 26 and Figure 27 

present the system-wide highest and lowest LMP patterns, respectively. As we can see, 

by incorporating the look-ahead dispatch with price responsive demand, the temporal 

price volatility is reduced. This observation is also confirmed by conducting the whole 

statistical analysis as shown in Table 7. 

 

Table 7  Standard Deviation of the LMPs: Impacts due to Demand Elasticity 

 Elastic Inelastic Difference 

Temporal LMP STD 63, 098 72, 567 13.05% 

Spatial LMP STD 985, 466 1, 103, 669 10.71% 

 
 
As provided in Table 7, the standard deviation of look-ahead dispatch with price 

responsive demand is 13% lower than the static dispatch with inelastic demand 

temporally (over the whole year). Similarly, the standard deviation of look-ahead 

dispatch with price responsive demand is 10% lower than the static dispatch with 

inelastic demand spatially (over the whole system). 
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Figure 28  Price responsive demand behavior: summer case 

 

In Figure 28, a typical high demand (one of the summer day) demand is selected to see 

the behavior of price responsive demand. As we can observe, the look-ahead dispatch 
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Figure 29  Price responsive demand behavior: high wind case 

 

Another important scenario of interest is the high wind scenario. As is presented in 

Figure 29, the look-ahead dispatch with price responsive demand can effectively increase 

the wind generation utilization, and reduces the wind generation curtailment.  
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5. Conclusions 

This project conducts first-of-its-kind empirical study quantifying the benefits of 

combining look-ahead dynamic dispatch with price responsive demands for integration of 

variable energy resources.  

 

Based on substation level demand response data and site-specific wind generation data 

from ERCOT, this project developed algorithms and a case study to quantify: (i) The 

price elasticity of demand for typical users, and (ii) the economic benefit of look -ahead 

dispatch with price responsive loads. The benefits include not only improved social 

welfare, but also reduced wind curtailment and smoothed price behavior. While the study 

is based on a particular system, the methodologies are generalizable towards other 

regions as well.  

 

This empirical study opens the door to many future research questions. While the 

observation from this project suggests that look-ahead dispatch reduces the price 

volatility in the real-time markets, it remains further investigation to fully understand the 

fundamental coupling among look-ahead, elastic demand, and price volatility. The 

econometric estimation of price elasticity is based on classical econometric methods; 

however, it will be important to recognize the context of different loads in order to gain 

better models of price responsive loads with temporal shifts. How to reconcile tradeoff of 

physics-based load modeling and data-driven load modeling in markets with time-varying 

prices still remains an open challenging question. Last but not least, future work will 

investigate other alternative demand response programs such as coupon incentive-based 

DR to harness flexibility from various categories of loads in the smart grid.  
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