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Executive Summary 

Cybersecurity is a critical concern facing the electric power industry. More needs to be 
learned about how breaches in cybersecurity could affect the industry. In this project, we 
explored impacts of bad data and malicious data attacks on real-time market operations. 
In particular, we investigated the problem from perspectives of an attacker and the 
control center of a Regional Transmission Organization (RTO). 

The overall objectives of this research include: 

(i) providing system operators with a framework and analytical tools to evaluate 
the impact of bad/malicious data on electricity market operations. In 
particular, the tools can help system operators to assess the financial risks of 
bad data attacks in real-time markets. 

(ii) providing software vendors of EMS (Energy Management Systems) and 
MMS (Market Management Systems) with new models and algorithms to 
enhance the robustness of state estimation against bad/malicious data attacks 
in light of secure market operations 

(iii) providing power utilities with the operating protocols to detect malicious data 
attacks when deploying smart grid communication infrastructures. 

This report includes contributions in four related topic areas. The main results are 
highlighted below. 

I.  Impacts of Data Quality on Real-Time Locational Marginal Price 
 
In this work, we characterize impacts of data quality on real-time locational marginal 
price (LMP). We first provide a geometrical characterization of LMP on the state space 
of the power system.  In particular, we show that the state space is partitioned into 
polytope price regions where each polytope is associated with a unique real-time LMP 
vector, and the price region is defined by a particular set of congested lines that 
determine the boundaries of the price region. 

Two types of bad data are considered. One is the bad data associated with meter 
measurements such as the branch power flows in the network. Such bad data will cause 
errors in state estimation. The analysis of the worst case data then corresponds to finding 
the worst measurement error such that it perturbs the correct state estimation to the worst 
price region.  The second type of bad data, one that has not been carefully studied in the 
context of LMP in the literature, is error in digital measurements such as switch or 
breaker states. Such errors lead directly to topology errors therefore causing a change in 
the polytope structure. 

We performed simulation studies using the IEEE-14 and IEEE-118 networks. We 
observe that bad data independent of the system state seems to have limited impact on 
real-time LMPs, and greater price perturbations can be achieved by state dependent bad 
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data. The results also demonstrate that the real-time LMPs are subject to much larger 
perturbation if bad topology data are present in addition to bad meter data. 

While substantial price changes can be realized for small networks by the worst meter 
data, as the size of network grows while the measurement redundancy rate remains the 
same, the influence of worst meter data on LMP is reduced. However, larger system 
actually gives more possibilities for the bad topology data to perturb the real-time LMP 
more significantly. 

II.  Data Attack on LMP in Time-coupled Look-ahead Dispatch 
 
The main objective of this chapter is to study the impact of cyber data attacks on state 
estimation, which subsequently influence the result of the existing static and newly 
emerging look-ahead dispatch models in the real-time power market. It is shown that 
bad/malicious data could be injected into the measurement layer of power system 
operations, which can lead to corrupted estimation of the states of the physical layer. 
Consequently, the attacker could distort the feedback information from 
control/communication layer back to the physical layer in two ways, leading to (1) 
physical insecurity in the power grid operations, and/or (2) financial misconduct in the 
power markets. This chapter contributes to topic (2) using realistic dispatch models in 
power markets. In particular, we propose a novel attack strategy with which the attacker 
can manipulate, in look-ahead dispatch, the limits of ramp constraints of generators. It is 
demonstrated that the proposed attack may lead to financial profits via malicious capacity 
withholding of selected generators, while being undetected by the existing bad data 
detection algorithm embedded in the state estimator. Numerical examples simulated in 
the IEEE 14-bus system demonstrate the undetectability and profitability of the proposed 
cyber data attack. 

III.  LMP Sensitivity Analysis to Data Corruption-induced Estimation Error 
 
In this chapter, we investigate the sensitivity of real-time LMP with respect to continuous 
(e.g., the power injection/flow and voltage magnitude) and discrete (e.g., the on/off status 
of a circuit breaker) data corruption due to state estimation error.  

In the first part, corrupted continuous sensor data are shown to deviate power system 
state estimation from their actual values, which subsequently leads to the distortion of 
real-time market LMPs. We build two matrices: the first with LMP sensitivity at any bus 
to any estimate, and the second with sensitivity of any estimate to data at any sensor. A 
unified matrix that combines these two matrices in multiplication form enables system 
operators to quantify the impact on LMP of data at any sensor at any bus throughout the 
entire transmission network.  

In the second part, we examine the impact of circuit breaker-induced network topology 
errors due to discrete data corruption on real-time LMP. We derive an analytical index to 
compute LMP sensitivity with respect to network topology error, particularly line status 
error, in the power system. The proposed sensitivity index provides system operators an 
analytical tool to identify economically sensitive transmission lines and circuit breakers, 
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whose status error will significantly impact the real-time LMPs. The proposed sensitivity 
index is tested using the IEEE 14-bus system.  

IV. Topology Attack on a Smart Grid: Undetectable Attacks and Countermeasures 
 
Results of this work aim to achieve two objectives. First, we characterize conditions 
under which undetectable attacks are possible, given a set of vulnerable meters that may 
be controlled by an adversary. To this end, we consider two attack regimes based on the 
information set available to the attacker. The more information the attacker has, the 
stronger its ability to launch a sophisticated attack that is hard to detect.  

If the attacker has global information, we obtain a necessary and sufficient algebraic 
condition under which, given a set of adversary controlled meters, there exists an 
undetectable attack that misleads the control center with an incorrect “target” topology. 
This algebraic condition provides not only numerical ways to check if the grid is 
vulnerable to undetectable attacks but also insights into which meters to protect to defend 
against topology attacks. We also provide specific constructions of attacks and show 
certain optimality of the proposed attacks.  A more practically significant situation is the 
local information regime where the attacker has only local information from those meters 
it has gained control. Under certain conditions, undetectable attacks exist and can be 
implemented easily based on simple heuristics.  

The second objective is to provide conditions under which topology attack cannot be 
made undetectable. Such a condition, even if it may not be the tightest, provides insights 
into defense mechanisms against topology attacks. We show that if a set of meters 
satisfying a certain branch covering property are protected, then topology attacks can 
always be detected. In practice, protecting a meter may be carried out at multiple levels, 
from physical protection measures to software protection schemes using more 
sophisticated authentication protocols. 
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CHAPTER 1

INTRODUCTION

The electric power industry is undergoing profound changes as the industry aims to

capture the promise of a smart grid for a sustainable energy future. Enabled by the

advanced sensing devices such as Phasor Measurement Units (PMUs), increasingly

powerful computation capability, and ubiquitous communication and networking

infrastructure, power system operations in a smart grid era are increasingly rely

on real-time information gathered in wide geographical areas. Institutionally, the

increasing presence of demand response programs may open the door to more

integrated SCADA and end-user networks.

Given the stronger coupling between cyber components (sensors and commu-

nication networks, in particular) and physical operations in power systems, smart

grid of the future must cope with a variety of anomalies in this cyber-physical

system. Classical problems such as line outages and meter malfunction are further

complicated by the potential of cyber attacks by adversary. Such attacks can be

coordinated in such a way that renders classical bad data detection ineffective.

The goal of this research is to investigate the impact of bad data and mali-

cious data attack on real-time market operations. In particular, we investigate

the problem from perspectives of an attacker and the control center of a Regional

Transmission Organization (RTO).

The overall objectives of this research include (i) providing system operators

with a framework and analytical tools to evaluate the impact of bad/malicious data
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on electricity market operations. In particular, the tools can help system operators

to assess the financial risks of bad data attacks in real-time markets; (ii) provid-

ing software vendors of EMS (Energy Management Systems) and MMS (Market

Management Systems) with new models and algorithms to enhance the robustness

of state estimation against bad/malicious data attacks in light of secure market

operations; (iii) providing power utilities with the operating protocols to detect

malicious data attacks when deploying smart grid communication infrastructures.

This report includes contributions in four related topic areas, and the main

results are highlighted below.

1.1 Impacts of Data Quality on Real-Time Locational

Marginal Price

In this work, we characterize impacts of data quality on real-time locational

marginal price (LMP). We first provide a geometrical characterization of LMP

on the state space of the power system. In particular, we show that the state

space is partitioned into polytope price regions where each polytope is associated

with a unique real-time LMP vector, and the price region is defined by a particular

set of congested lines that determine the boundaries of the price region.

Two types of bad data are considered. One is the bad data associated with

meter measurements such as the branch power flows in the network. Such bad

data will cause errors in state estimation. The analysis of the worst case data

2



then corresponds to finding the worst measurement error such that it perturbs the

correct state estimation to the worst price region. The second type of bad data,

one that has not been carefully studied in the context of LMP in the literature,

is error in digital measurements such as switch or breaker states. Such errors lead

directly to topology errors therefore causing a change in the polytope structure.

We performed simulation studies using the IEEE-14 and IEEE-118 networks.We

observe that bad data independent of the system state seems to have limited

impact on real-time LMPs, and greater price perturbations can be achieved by state

dependent bad data. The results also demonstrate that the real-time LMPs are

subject to much larger perturbation if bad topology data are present in addition to

bad meter data. While substantial price changes can be realized for small networks

by the worst meter data, as the size of network grows while the measurement

redundancy rate remains the same, the influence of worst meter data on LMP

is reduced. However, larger system actually gives more possibilities for the bad

topology data to perturb the real-time LMP more significantly.

1.2 Data Attack on LMP in Time-coupled Look-ahead Dis-

patch

The main objective of this chapter is to study the impact of cyber data attacks

on state estimation, which subsequently influence the result of the existing static

and newly emerging look-ahead dispatch models in the real-time power market.

It is shown that bad/malicious data could be injected into the measurement layer
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of power system operations, which can lead to corrupted estimation of the states

of the physical layer. Consequently, the attacker could distort the feedback infor-

mation from control/communication layer back to the physical layer in two ways,

leading to (1) physical insecurity in the power grid operations, and/or (2) finan-

cial misconduct in the power markets. This chapter contributes to topic (2) using

realistic dispatch models in power markets. In particular, we propose a novel at-

tack strategy with which the attacker can manipulate, in look-ahead dispatch, the

limits of ramp constraints of generators. It is demonstrated that the proposed

attack may lead to financial profits via malicious capacity withholding of selected

generators, while being undetected by the existing bad data detection algorithm

embedded in the state estimator. Numerical examples simulated in the IEEE 14-

bus system demonstrate the undetectability and profitability of the proposed cyber

data attack.

1.3 LMP Sensitivity Analysis to Data Corruption-induced

Estimation Error

In this chapter, we investigate the sensitivity of real-time LMP with respect to

continuous (e.g., the power injection/flow and voltage magnitude) and discrete

(e.g., the on/off status of a circuit breaker) data corruption due to state estimation

error.

In the first part, corrupted continuous sensor data are shown to deviate power

system state estimation from their actual values, which subsequently leads to the
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distortion of real-time market LMPs. We build two matrices: the first with LMP

sensitivity at any bus to any estimate, and the second with sensitivity of any

estimate to data at any sensor. A unified matrix that combines these two matrices

in multiplication form enables system operators to quantify the impact on LMP

of data at any sensor at any bus throughout the entire transmission network.

In the second part, we examine the impact of circuit breaker-induced network

topology errors due to discrete data corruption on real-time LMP. We derive an

analytical index to compute LMP sensitivity with respect to network topology er-

ror, particularly line status error, in the power system. The proposed sensitivity

index provides system operators an analytical tool to identify economically sen-

sitive transmission lines and circuit breakers, whose status error will significantly

impact the real-time LMPs. The proposed sensitivity index is tested using the

IEEE 14-bus system.

1.4 Topology Attack on a Smart Grid: Undetectable At-

tacks and Countermeasures

We consider covert data attacks on the network topology of a smart grid. In a so-

called man-in-the-middle attack, an adversary alters data from certain meters and

network switches to mislead the control center with an incorrect network topology

while avoiding detections by the control center.

We obtain necessary and sufficient condition for the existence of an undetectable
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attack is obtained for strong adversaries who can observe all meter and network

data. For weak adversaries with only local information, a heuristic method of

undetectable attack is proposed. Countermeasures to prevent undetectable attacks

are also considered. It is shown that undetectable attacks do not exist if a set of

meters satisfying a certain branch covering property are protected. The proposed

attacks are tested with IEEE 14-bus and IEEE 118-bus system, and their effect on

real-time locational marginal pricing is examined.
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CHAPTER 2

IMPACTS OF DATA QUALITY ON REAL-TIME LOCATIONAL

MARGINAL PRICE

2.1 Introduction

The deregulated electricity market has two interconnected components. The day-

ahead market determines the locational marginal price (LMP) based on the dual

variables of the optimal power flow (OPF) solution [1, 2], given generator offers,

demand forecast, system topology, and security constraints. The calculation of

LMP in the day-ahead market does not depend on the actual system operation. In

the real-time market, on the other hand, an ex-post formulation is often used (e.g.,

by PJM and ISO-New England [3]) to calculate the real-time LMP by solving an

incremental OPF problem. The LMPs in the day-ahead and the real-time markets

are combined in the final clearing and settlement processes.

The real-time LMP is a function of data collected by the supervisory control and

data acquisition (SCADA) system. Therefore, anomalies in data, if undetected,

will affect prices in the real-time market. While the control center employs a bad

data detector to “clean” the real-time measurements, miss detections and false

alarms will occur inevitably. The increasing reliance on the cyber system also

comes with the risk that malicious data may be injected by an adversary to affect

system and real-time market operations. An intelligent adversary can carefully

design a data attack to avoid detection by the bad data detector.
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Regardless of the source of data errors, it is of significant value to assess po-

tential impacts of data quality on the real-time market, especially when a smart

grid may in the future deploy demand response based on real-time LMP. To this

end, we are interested in characterizing the impact of worst case data errors on the

real-time LMP. The focus on the worst case also reflects the lack of an accurate

model of bad data and our desire to include the possibility of data attacks.

2.1.1 Summary of Results and Organization

We aim to characterize the worst effects of data corruption on real-time LMP.

By “worst”, we mean the maximum perturbation of real-time LMP caused by

bad or malicious data, when a fixed set of data is subject to corruption. The

complete characterization of worst data impact, however, is not computationally

tractable. Our goal here is to develop an optimization based approach to search for

locally worst data by restricting the network congestion to a set of lines prone to

congestion. We then apply computationally tractable (greedy search) algorithms

to find the worst data and evaluate the effects of worst data by simulations.

In characterizing the relation between data and real-time LMP, we first present

a geometric characterization of the real-time LMP. In particular, we show that

the state space of the power system is partitioned into polytope price regions, as

illustrated in Fig. 2.1(a), where each polytope is associated with a unique real-time

LMP vector, and the price region Xi is defined by a particular set of congested

lines that determine the boundaries of the price region.
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Figure 2.1: Change of real-time LMPs due to bad data.

Two types of bad data are considered in this paper. One is the bad data

associated with meter measurements such as the branch power flows in the network.

Such bad data will cause errors in state estimation, possibly perturbing, as an

example, the correct state estimate x̂ in X0 to x̃ in X3 (as shown in Fig. 2.1(a)). The

analysis of the worst case data then corresponds to finding the worst measurement

error such that it perturbs the correct state estimation to the worst price region.

The second type of bad data, one that has not been carefully studied in the

context of LMP in the literature, is error in digital measurements such as switch

or breaker states. Such errors lead directly to topology errors therefore causing a

change in the polytope structure as illustrated in Fig. 2.1(b). In this case, even

if the estimated system state changes little, the prices associated with each region

change, sometimes quite significantly.

Before characterizing impacts of bad meter data on LMP, we need to construct

appropriate models for bad data. To this end, we propose three increasingly more

powerful bad data models based on the dependencies on real-time system measure-
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ments: state independent bad data, partially adaptive bad data, and fully adaptive

bad data.

In studying the worst case performance, we adopt a widely used approach

that casts the problem as one involving an adversary whose goal is to make the

system performance as poor as possible. The approach of finding the worst data is

equivalent to finding the optimal strategy of an attacker who tries to perturb the

real-time LMP and avoid being detected at the same time. By giving the adversary

more information about the network state and endowing him with the ability to

change data, we are able to capture the worst case performance, sometimes exactly

and sometimes as bounds on performance.

Finally, we perform simulation studies using the IEEE-14 and IEEE-118 net-

works. We observe that bad data independent of the system state seems to have

limited impact on real-time LMPs, and greater price perturbations can be achieved

by state dependent bad data. The results also demonstrate that the real-time

LMPs are subject to much larger perturbation if bad topology data are present in

addition to bad meter data.

While substantial price changes can be realized for small networks by the worst

meter data, as the size of network grows while the measurement redundancy rate

remains the same, the influence of worst meter data on LMP is reduced. However,

larger system actually gives more possibilities for the bad topology data to perturb

the real-time LMP more significantly.

Our simulation results also show a degree of robustness provided by the nonlin-
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ear state estimator. While there have been many studies on data injection attacks

based on DC models, very few consider the fact that the control center typically

employs the nonlinear WLS state estimator under the AC model. Our simulation

shows that effects of bad analog data designed based on DC model may be mit-

igated by the nonlinear estimator whereas bad topology data coupled with bad

analog data can have greater impacts on LMP.

The rest of the paper is organized as follows. Section 2.2 briefly describes

a model of real-time LMP and introduces its geometric characterization in the

state space of the power system. Section 2.3 establishes the bad data models and

summarizes state estimation and bad data detection procedures at the control

center. In Section 2.4, a metric of impact on real-time LMP caused by bad meter

data is introduced. We then discuss the algorithms of finding worst case bad meter

data vector in terms of real-time price perturbation under the three different bad

data models. Section 2.5 considers the effect of bad topology data on real-time

LMP. Finally, in Section 2.6, simulation results are presented based on IEEE-14

and IEEE-118 networks.

2.1.2 Related Work

Effects of bad data on power system have been studied extensively in the past, see

[4, 5, 6]. Finding the worst case bad data is naturally connected with the problem

of malicious data. In this context, the results presented in this paper can be viewed

as one of analyzing the impact of the worst (malicious) data attack.
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In a seminal paper by Liu, Ning, and Reiter [7], the authors first illustrated

the possibility that, by compromising enough number of meters, an adversary can

perturb the state estimate arbitrarily in some subspace of the state space without

being detected by any bad data detector. Such attacks are referred to as strong

attacks. It was shown by Kosut et al. [8] that the condition for the existence of such

undetectable attacks is equivalent to the classical notion of network observability.

When the adversary can only inject malicious data from a small number of

meters, strong attacks do not exist, and any injected malicious data can be detected

with some probability. Such attacks are referred to as weak attacks [8]. In order

to affect the system operation in some meaningful way, the adversary has to risk

being detected by the control center. The impacts of weak attack on power system

are not well understood because the detection of such bad data is probabilistic.

Our results are perhaps the first to quantify such impacts. Most related research

works focused on DC model and linear estimator while only few have addressed

the nonlinearity effect [9, 10].

It is well recognized that bad data can also cause topology errors [11, 12], and

techniques have been developed to detect topology errors. For instance, the residue

vector from state estimation was analyzed for topology error detection [12, 11, 13].

Monticelli [14] introduced the idea of generalized state estimation where, roughly

speaking, the topology that fits the meter measurements best is chosen as the

topology estimate. The impacts of topology errors on electricity market have not

been reported in the literature, and this paper aims to bridge this gap.

The effect of data quality on real-time market was first considered in [15, 16].
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In [16], the authors presented the financial risks induced by the data perturbation

and proposed a heuristic technique for finding a case where price change happens.

While there are similarities between this paper and [16], several significant differ-

ences exist: (i) This paper focuses on finding the worst case, not only a feasible

case. (ii) This paper considers a more general class of bad data where bad data may

depend dynamically on the actual system measurements rather than static. (iii)

This paper considers a broader range of bad data that also include bad topology

data, and our evaluations are based on the AC network model and the presence of

nonlinear state estimator.

2.2 Structures of Real-Time LMP

In this section, we present first a model for the computation of real-time locational

marginal price (LMP). While ISOs have somewhat different methods of computing

real-time LMP, they share the same two-settlement architecture and similar ways

of using real-time measurements. In the following, we will use a simplified ex-

post real-time market model, adopted by PJM, ISO New England, and other ISOs

[17, 3]. We view this model as a convenient mathematical abstraction that captures

the essential components of the real-time LMP calculation. For this reason, our

results should be interpreted within the specified setup. Our purpose is not to

include all details; we aim to capture the essential features.

In real-time, in order to monitor and operate the system, the control center will

calculate the estimated system conditions (including bus voltages, branch flows,

generation, and demand) based on real-time measurements. We call a branch
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congested if the estimated flow is larger than or equal to the security limit. The

congestion pattern is defined as the set of all congested lines, denoted as Ĉ. Note

that we use hat (e.g., Ĉ) to denote quantities or sets that are estimated based on

real-time measurements. Details of state estimation and bad data detection are

discussed in Section 2.3.2.

One important usage of state estimation is calculating the real-time LMP. Given

the estimated congestion pattern Ĉ, the following linear program is solved to find

the incremental OPF dispatch and associated real-time LMP, λ̂ = (λ̂i) [17]:

minimize
∑

cGi ∆pi −
∑

cLj∆dj

subjcet to
∑

∆pi =
∑

∆dj

∆pmin
i ≤ ∆pi ≤ ∆pmax

i

∆dmin
j ≤ ∆dj ≤ ∆dmax

j

∑
i Aki∆pi −

∑
j Akj∆dj ≤ 0, for all k ∈ Ĉ,

(2.1)

where ∆d = (∆dj) is the vector of incremental dispatchable load, ∆p = (∆pi)

the vector of incremental generation dispatch, cG = (cGi ) and cL = (cLj ) the corre-

sponding real-time marginal cost of generations and dispatchable loads, ∆pmin
i and

∆pmax
i the lower and upper bounds for incremental generation dispatch, ∆dmin

i and

∆dmax
i the lower and upper bounds for incremental dispatchable load, and Aki the

sensitivity of branch flow on branch k with respect to the power injection at bus i.

The real-time LMP at bus i is defined as the overall cost increase when one

unit of extra load is added at bus i, which is calculated as

λ̂i = η −
∑

k∈Ĉ

Akiµk. (2.2)

where η is the dual variable for the load-generation equality constraint, and µk is

the dual variable corresponding to the line flow constraint in (2.1).
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Note that in practice, the control center may use the ex-ante congestion pattern,

which is obtained by running a 5 minute ahead security-constrained economic

dispatch with the state estimation results and the forecasted loads (for the next

five-minute interval) and choosing the lines congested at the dispatch solution

[17, 18]. However, to avoid the complication due to ex-ante dispatch calculation, we

assume that real-time pricing employs the estimated congestion pattern Ĉ obtained

from state estimation results. By doing so, we attempt to find direct relations

among bad data, the state estimate, and real-time LMPs. Notice that once the

congestion pattern Ĉ is determined, the whole incremental OPF problem (2.1) no

longer depends on the measurement data.

Under the DC model, the power system state, x, is defined as the vector of

voltage phases, except the phase on the reference bus. The power flow vector f is

a function of the system state x,

f = Fx, (2.3)

where F is the sensitivity matrix of branch flows with respect to the system state.

Assume the system has n+1 buses. Then, x ∈ X = [−π, π]n, where X represents

the state space. Any system state corresponds to a unique point in X. From (2.3),

the branch flow f is determined by the system state x. Comparing the flows with

the flow limits, we obtain the congestion pattern associated with this state. Hence,

each point in the state space corresponds to a particular congestion pattern.

We note that the above expression in (2.2) appears earlier in [1] where the

role of congestion state in LMP computation was discussed. In this paper, our

objective is to make explicit the connection between data and LMP. We therefore
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need a linkage between data and congestion. To this end, we note that the power

system state, the congestion state, and LMP form a Markov chain, which led to a

geometric characterization of LMP on the power system state space, as shown in

the following theorem.

Theorem 2.2.1 (Price Partition of the State Space). Assume that the LMP exists

for every possible congestion pattern∗. Then, the state space X is partitioned into

a set of polytopes {Xi} where the interior of each Xi is associated with a unique

congestion pattern Ci and a real-time LMP vector. Each boundary hyperplane of

Xi is defined by a single transmission line.

Proof. For a particular congestion pattern C defined by a set of congested lines,

the set of states that gives C is given by

Xi
∆
={x : Fi·x ≥ Tmax

i ∀i ∈ C, Fj·x < Tmax
j ∀j /∈ C},

where Fi· is the ith row of F (see (2.3)), and Tmax
j the flow limit on branch j.

Since Xi is defined by the intersection of a set of half spaces, it is a polytope.

Given an estimated congestion pattern Ĉ, the envelop theorem implies that

for any optimal primal solution and dual solution of (2.1) that satisfy the KKT

conditions, (2.2) always gives the derivative of the optimal objective value with

respect to the demand at each bus, which we assume exists, i .e., each congestion

pattern is associated with a unique real-time LMP vector λ. Hence, all states with

the same congestion pattern share the same real-time LMP, which means each

polytope Xi in X corresponds to a unique real-time LMP vector.

∗This is equivalent to assuming that the derivative of the optimal value of (2.1) with respect
to demand at each bus exists

16



Theorem 2.2.1 characterizes succinctly the relationship between the system

state and LMP. As illustrated in Fig. 2.1(a), if bad data are to alter the LMP in

real-time, the size of the bad data has to be sufficiently large so that the state

estimate at the control center is moved to a different price region from the true

system state.

On the other hand, if some lines are erroneously removed from or added to

the correct topology, as illustrated in Fig. 2.1(b), it affects the LMP calculation in

three ways†. First, the state estimate is perturbed since the control center employs

an incorrect topology in state estimation. Secondly, the price partition of the state

space changes due to the errors in topology information. Third, the shift matrix A

in (2.1), which is a function of topology, changes thereby altering prices attached

to each price region.

†In addition to these, the change in topology will affect contingency analysis. Such effect will
appear as changes in contingency constraints in real-time LMP calculation (2.1) [17]. However,
dealing with contingency constraints will significantly complicate our analysis and possibly ob-
scure the more direct link between bad data and real-time LMP. Hence, we consider only line
congestion constraints in (2.1).
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2.3 Data Model and State Estimation

2.3.1 Bad Data Model

Meter data

In order to monitor the system, various meter measurements are collected in real

time, such as power injections, branch flows, voltage magnitudes, and phasors,

denoted by a vector z ∈ Rm. If there exists bad data a among the measurements,

the measurement with bad data, denoted by za, can be expressed as a function of

the system states x,

za = z + a = h(x) + w + a, a ∈ A, (2.4)

where w represents the random measurement noise.

Notice here both conventional measurements and PMU measurements can be

incorporated. The relationship between PMU measurements and system has been

established by researchers, see [19, 20]. To simplify the problem, we can treat

those PMU measurement equations as part of h(x) to fit the PMU data into our

framework. Therefore, we won’t differentiate the types of measurements in the

following discussion, although PMU data seem to have more direct impact on

state estimation and real-time LMP calculation.

We make a distinction here between the measurement noise and bad data;

the former accounts for random noise independently distributed across all meters
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whereas the latter represents the perturbation caused by bad or malicious data. We

assume no specific pattern for bad data except that they do not happen everywhere.

We assume that bad data can only happen in a subset of the measurements, S.

We call S as set of suspectable meters, which means the meter readings with in S

may subject to corruption. If the cardinality of S is k, the feasible set of bad data

a is a k-dimensional subspace, denoted as A = {a : ai = 0 for all i /∈ S}.

We will consider three bad data models with increasing power of affecting state

estimates.

M1. State independent bad data: This type of bad data is independent of

real-time measurements. Such bad data may be the replacement of missing mea-

surements.

M2. Partially adaptive bad data: This type of bad data may arise from the so-

called man in the middle (MiM) attack where an adversary intercepts the meter

data and alter the data based on what he has observed. Such bad data can adapt

to the system operating state.

M3. Fully adaptive bad data: This is the most powerful type of bad data,

constructed based on the actual measurement z = h(x) + w.

Note that M3 is in general not realistic. Our purpose of considering this model

is to use it as a conservative proxy to obtain performance bounds for the impact

of worst case data.
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We assume herein a DC model in which the measurement function h(·) in (2.4)

is linear. Specifically,

za = Hx+ w + a, a ∈ A, (2.5)

where H is the measurement matrix. Such a DC model, while widely used in

the literature, may only be a crude approximation of the real power system. By

making such a simplifying assumption and acknowledging its weaknesses, we hope

to obtain tractable solutions in searching for worst case scenarios. It is important

to note that, although the worst case scenarios are derived from the DC model,

we carry out simulations using the actual nonlinear system model.

Topology data

Topology data are represented by a binary vector s ∈ {0, 1}l, where each entry

of s represents the state of a line breaker (0 for open and 1 for closed). The bad

topology data is modeled as

sb = s+ b (mod 2), b ∈ B, (2.6)

where B ⊂ {0, 1}l is the set of possible bad data. When bad data are present, the

topology processor will generate the topology estimate corresponding to sb, and

this incorrect topology estimate will be passed to the following operations unless

detected by the bad data detector.
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2.3.2 State Estimation

We assume that the control center employs the standard weighted least squares

(WLS) state estimator. Under DC model,

x̂ = argmin
x

(z −Hx)TR−1(z −Hx) = Kz, (2.7)

where R is the covariance matrix of measurement noise w, and K ,

(HTR−1H)−1HTR−1.

If the noise w is Gaussian, the WLS estimator is also the maximum likelihood

estimate (MLE) of state x. By the invariant property of MLE, from (2.3), the

maximum likelihood estimate of the branch flows is calculated as

f̂ = F x̂ = FKz. (2.8)

The congestion pattern used in real-time LMP calculation (2.1) is directly from

state estimation and consists of all the estimated branch flows which are larger than

or equal to the branch flow limits, i .e.,

Ĉ = {j : f̂j ≥ Tmax
j }, (2.9)

where Tmax
j is the flow limit on branch j.

In the presence of bad meter data a, the meter measurements collected by

control center is actually za = Hx+w+a. By using za, the WLS state estimate is

x̂a = Kza = x̂∗ +Ka, (2.10)

where x̂∗ = Kz is the “correct” state estimate without the presence of the bad

data (i.e., a = 0).
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Eq. (2.10) shows that the effect of bad data on state estimation is linear.

However, because a is confined in a k-dimensional subspace A, the perturbation

on the actual system state is limited to a certain direction.

When bad data exist both in meter and topology data, the control center uses

a wrong measurement matrix H̄ , corresponding to the altered topology data, and

the altered meter data za. Then, the WLS state estimate becomes

x̂a = K̄za = K̄z + K̄a, (2.11)

where K̄ , (H̄TR−1H̄)−1H̄TR−1. Note that unlike the linear effect of bad meter

data, bad topology data affects the state estimate by altering the measurement

matrix H to H̄ .

2.3.3 Bad Data Detection

The control center uses bad data detection to minimize the impact of bad data.

Here, we assume a standard bad data detection used in practice, the J(x̂)-detector

in [5]. In particular, the J(x̂)-detector performs the test on the residue error,

r , z − Hx̂, based on the state estimate x̂. From the WLS state estimate (2.7),

we have

r =
(
I −H(HTR−1H)−1HTR−1

)
z = Uz. (2.12)

where U
∆
=(I −H(HTR−1H)−1HTR−1)
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The J(x̂)-detector is a threshold detector defined by

rTR−1r = zTWz

bad data

≷

good data

τ, (2.13)

where τ is the threshold calculated from a prescribed false alarm probability, and

W
∆
=UTR−1U . When the measurement data fail to pass the bad data test, the

control center declares the existence of bad data and takes corresponding actions

to identify and remove the bad data.

In this paper, we are interested in those cases when bad data are present while

the J(x̂)-detector fails to detect them.

2.4 Impact of Bad Data on LMP

In this section, we examine the impact of bad data on LMP, assuming that the

topology estimate of the network is correct.

One thing to notice is that in searching for the “worst” case, we take the

perspective of the control center, not that of the attacker. In particular, we look

for the worst congestion pattern for the LMP computation, even if this particular

congestion pattern is difficult for the attacker to discover. So the focus here is not

how easy it is for an attacker to find a locally worst congestion pattern; it is how

much such a congestion pattern affects the LMP.
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2.4.1 Average Relative Price Perturbation

In order to quantify the effect of bad data on real-time price, we need to first define

the metric to measure the effect. We define the relative price perturbation (RPP)

as the expected percentage price perturbation caused by bad data. Given that

LMP varies at different buses, RPP also varies at different locations.

Let za be the data received at the control center and λi(za) the LMP at bus i.

The RPP at bus i is a function of bad data a, given by

RPPi(a) = E(∣∣∣∣λi(za)− λi(z)

λi(z)

∣∣∣∣
)
, (2.14)

where the expectation is over random state and measurement noise.

To measure the system-wide price perturbation, we define the average relative

price perturbation (ARPP) by

ARPP(a) =
1

n + 1

∑

i

RPPi(a), (2.15)

where n+ 1 is the number of buses in the system.

The worst case analysis to be followed can be used for other metrics (e.g.,

price increase ratios or price decrease ratios, which are closely related to the mar-

ket participants’ gain or loss). Similar results can be showed following the same

strategies. However, the comparison among different metrics is beyond the scope

of this paper.
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2.4.2 Worst ARPP under State Independent Bad Data

Model

First, we consider the state independent bad data model (M1) given in Sec-

tion 2.3.1. In this model, the bad data are independent of real-time measurements.

In constructing the state independent worst data, it is useful to incorporate

prior information about the state. To this end, we assume that system state

follows a Gaussian distribution with mean x0, covariance matrix Σx. Typically, we

choose x0 as the day-ahead dispatch since the nominal system state in real-time

varies around its day-ahead projection.

In the presence of bad data a, the expected state estimate and branch flow

estimate on branch i are given byE[x̂] = x0 +Ka. (2.16)E[fi] = Fi·E[x̂] = Fi·x0 + Fi·Ka, (2.17)

where Fi· is the corresponding row of branch i in F .

Our strategy is to make this expected state estimate into the region with the

largest price perturbation among all the possible regions, Ĉ∗. From (2.9), this

means making all the expected branch flows satisfy the boundary condition of Ĉ∗,E[fi] ≥ Tmax
i for i ∈ Ĉ∗E[fi] ≤ Tmax
j for j /∈ Ĉ∗.

(2.18)

However, due to the uncertainty (from both system state x and measurement
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noise w), the actual estimated state after attack, x̂, may be different from E[x̂].
Therefore, we want to make E[x̂] at the “center” of the desired price region, i .e.,

maximizing the shortest distance from E[x̂] to the boundaries of the polytope price

regions while still holding the boundary constraints. The shortest distance can be

calculated as

β = min{β̃ : |E[fi]− Tmax| ≥ β̃ for all i}. (2.19)

However, the existence of bad data detector prevents the bad data vector a

from being arbitrarily large. According to (2.12), the weighted squared residue

with a is

rTR−1r = zTa Wza = (w + a)TW (w + a). (2.20)

since WHx = 0

Heuristically, since w has zero mean, the term aTWa can be used to quantify

the effect of data perturbation on estimation residue. Then we use aTWa ≤ ǫ to

control the detection probability in the following optimization.

Therefore, for a specific congestion pattern Ĉ, the adversary will solve the

following optimization problem to move the state estimate to the “center” of the

price region Ĉ and keeping the detection probability low.

maxa∈A,β̃≥0 β̃

subject to E[fi]− β̃ ≥ Tmax
i , i ∈ ĈE[fi] + β̃ < Tmax
j , j /∈ Ĉ

aTWa ≤ ǫ,

(2.21)

which is a convex program that can be solved easily in practice. We call a region

Ĉ feasible if it makes problem (2.21) feasible.
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Among all the feasible congestion patterns, the worst region Ĉ∗ is chosen as the

one giving the largest ARPP.

Ĉ∗ = arg max
Ĉ∈Γ

|λ̃i − λi(Ĉ)|, (2.22)

where λ̃i is the LMP at bus i if the x0 is the system state, and Γ the set of all the

feasible congestion patterns. Hence, the worst case constant bad data vector is the

solution to optimization problem (2.21) by setting the congestion pattern as Ĉ∗.

2.4.3 Worst ARPP under Partially Adaptive Bad Data

For bad data model M2, only part of the measurement values in real-time are known

to the adversary, denoted as zo. The adversary has to first make an estimation of

the system state from the observation and prior distribution, then make the attack

decision based on the estimation result.

Without the presence of bad data vector, i .e., a = 0, the system equation (2.5)

gives

zo = Hox+ wo, (2.23)

where Ho is the rows of H corresponding to the observed measurements and wo

the corresponding part in the measurement noise w.

The minimum mean square error (MMSE) estimate of x given zo is given by

the conditional meanE(x|zo) = x0 + ΣxH
T
o (HoΣxH

T
o )

−1(zo −Hox0). (2.24)
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Then, the flow estimate on branch i after attack isE[fi|zo] = Fi·E[x̂|zo]. (2.25)

Still, we want to move the estimation of state to the “center”. On the other

hand, the expected measurement value E[za|zo] = HE[ẑ|zo] + a. Again, we need

a pre-designed parameter ǫ to control the detection probability. Therefore, the

solution to the following optimization problem is the best attack given congestion

pattern A

maxa∈A,β̃≥0 β̃

subject to E[fi|zo]− β̃ ≥ Tmax
i , i ∈ ĈE[fi|zo] + β̃ < Tmax
j , j /∈ Ĉ

(HE[za|zo]T)W (HE[za|zo]) ≤ ǫ.

(2.26)

This problem is also a convex optimization problem, which can be easily solved.

Among all the Ĉ’s which make the above problem feasible, we choose the one with

the largest price perturbation, denoted as Ĉ∗. The solution to problem (2.26) with

Ĉ∗ as the congestion pattern is the worst bad data vector.

2.4.4 Worst ARPP under Fully Adaptive Bad Data

Finally, we consider the bad data model M3, in which the whole set of measure-

ments z is known to the adversary. The worst bad data vector depends on the

value of z. Different from the previous two models, with bad data vector a, the

estimated state is deterministic without uncertainty. In particular

x̂ = Kz +Ka. (2.27)
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And the estimated flow on branch i after attack is also deterministic

f̂i = Fi·x̂ = Fi·Kz + Fi·Ka. (2.28)

Similar to the previous two models, congestion pattern is called feasible if there

exists some bad data vector a to make the following conditions satisfied:

f̂i ≥ Tmax
i , i ∈ Ĉ

f̂i < Tmax
j , j /∈ Ĉ

(z + a)TW (z + a) ≤ τ, a ∈ A.

(2.29)

Among all the feasible congestion patterns, we choose the one with the largest

price perturbation, Ĉ∗. Any bad data vector a satisfying condition (2.29) can serve

as the worst fully adaptive bad data.

2.4.5 A Greedy Heuristic

The strategies presented above are based on the exhaustive search over all possible

congestion patterns. Such approaches are not scalable for large networks with a

large number of possible congestion patterns. We now present a greedy heuristic

approach aimed at reducing computation cost. In particular, we develop a gradient

like algorithm that searches among a set of likely congestion patterns.

First, we restrict ourselves to the set of lines that are close to their respective

flow limits and look for bad data that will affect the congestion pattern. The

intuition is that it is unlikely that bad data can drive the system state sufficiently
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far without being detected by the bad data detector. In practice, the cardinality

of such a set is usually very small compared with the systems size.

Second, we search for the worst data locally by changing one line in the con-

gestion pattern at a time. Specifically, suppose that a congestion pattern is the

current candidate for the worst data. Given a set of candidate lines that are prone

to congestions, we search locally by flipping one line at a time from the congested

state to the un-congested state and vice versa. If no improvement can be made,

the algorithm stops. Otherwise, the algorithm updates the current “worst conges-

tion pattern” and continue. The effectiveness of this greedy heuristic is tested in

Section 2.6.3.

2.5 Bad Topology Data on LMP

So far, we have considered bad data in the analog measurements. In this section,

we include the bad topology data, and describe another bad data model.

We represent the network topology by a directed graph G = (V,E) where each

i ∈ V denotes a bus and each (i, j) ∈ E denotes a connected transmission line. For

each physical transmission line (e.g., a physical line between i and j), we assign

an arbitrary direction (e.g., (i, j)) for the line, and (i, j) is in E if and only if bus

i and bus j are connected.

Bad data may appear in both analog measurements and digital (e.g., breaker
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status) data, as described in Section 2.3.1:

za = z + a = (Hx+ w) + a, a ∈ A,

sb = s + b (mod 2), b ∈ B.
(2.30)

As in Section 2.4, we employ the adversary model to describe the worst case.

The adversary alters s to sb by adding b from the set of feasible attack vectors

B ⊂ {0, 1}l such that the topology processor produces the “target” topology Ḡ as

the topology estimate. In addition, the adversary modifies z by adding a ∈ A such

that za looks consistent with Ḡ.

In this section, we focus on the worst case when the adversary is able to alter the

network topology without changing the state estimate‡. We also require that such

bad data are generated by an adversary causing undetectable topology change, i.e.,

the bad data escape the system bad data detection. For the worst case analysis, we

will maximize the LMP perturbation among the attacks within this specific class.

Even though this approach is suboptimal, the simulation results in Section 2.6

demonstrate that the resulting LMP perturbation is much greater than the worst

case of the bad meter data.

Suppose the adversary wants to mislead the control center with the target

topology Ḡ = (V, Ē), a topology obtained by removing§ a set of transmission lines

E∆ in G (i.e., Ē = E \ E∆). We assume that the system with Ḡ is observable: i.e.,

‡In general, the adversary can design the worst data to affect both the state estimate and
network topology. It is, however, much more difficult to make such attack undetectable.

§Line addition by the adversary is also possible [21]. However, compared to line removal
attacks, line addition attacks require the adversary to observe a much larger set of meter mea-
surements to design undetectable attacks. In addition, the number of necessary modifications in
breaker data is also much larger: to make a line appear to be connected, the adversary should
make all the breakers on the line appear to be closed. Please see [22] for the detail.
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the corresponding measurement matrix H̄ has full column rank¶.

Suppose that the adversary changes the breaker status such that the target

topology Ḡ = (V, Ē) is observed at the control center. Simultaneously, if the

adversary introduces bad data a = H̄x−Hx, then

za = Hx+ a+ w = H̄x+ w, (2.31)

which means that the meter data received at the control center are completely

consistent with the model generated from Ḡ. Thus, any bad data detector will not

be effective.

It is of course not obvious how to produce the bad data a, especially when

the adversary can only modify a limited number of measurements, and it may not

have access to the entire state vector x. Fortunately, it turns out that a can be

generated by observing only a few entries in z without requiring global information

(such as the state vector x) [21].

A key observation is that Hx and H̄x differ only in a few entries corresponding

to the modified topology (lines in E∆) as illustrated in Fig. 2.2. Consider first the

noiseless case. Let zij denote the entry of z corresponding to the flow measurement

from i to j. As hinted from Fig. 2.2, it can be easily seen that H̄x −Hx has the

following sparse structure [21]:

H̄x−Hx = −
∑

(i,j)∈E∆

αijm(i,j), (2.32)

where αij ∈ R denotes the line flow from i to j when the line is connected and the

system state is x, and m(i,j) is the column of the measurement-to-branch incidence

¶Without observability, the system may not proceed to state estimation and real-time pric-
ing. Hence, for the adversary to affect pricing, the system with the target topology has to be
observable.
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Figure 2.2: Hx and H̄x: Each row is marked by the corresponding meter
(i for injection at i and (i, j) for flow from i to j).

matrix, that corresponds to (i, j): i.e., m(i,j) is an m-dimensional vector with 1 at

the entries corresponding to the flow from i to j and the injection at i, and −1 at

the entries for the flow from j to i and the injection at j, and 0 at all other entries.

Absence of noise implies that zij = αij, which leads to

H̄x−Hx = −
∑

(i,j)∈E∆

zijm(i,j). (2.33)

With (2.33) in mind, one can see that setting a = H̄x−Hx and adding a to z

is equivalent to the following simple procedure: as described in Fig. 2.3, for each

(i, j) in E∆,

1. Subtract zij and zji from zi and zj respectively.
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Figure 2.3: The attack modifies local measurements around the line (i, j)
in E∆.

2. Set zij and zji to be 0.

where zi is the entry of z corresponding to the injection measurement at bus i.

When measurement noise is present (i.e., z = Hx+ w), the idea of the attack

is still the same: to make a approximate H̄x−Hx so that za is close to H̄x+ w.

Since zij = αij+wij, zij is an unbiased estimate of αij for each (i, j) ∈ E∆, and this

implies that −∑(i,j)∈E∆
zijm(i,j) is an unbiased estimate of −∑(i,j)∈E∆

αijm(i,j) =

H̄x−Hx. Hence, we set a to be −∑(i,j)∈E∆
zijm(i,j), the same as in the noiseless

setting, and the attack is executed by the same steps as above.

For launching this attack to modify the topology estimate from G to Ḡ, the

adversary should be able to (i) set b such that the topology processor produces Ḡ

instead of G and (ii) observe and modify zij , zji, zi, and zj for all (i, j) ∈ E∆. The

attack is feasible if and only if A and B contain the corresponding attack vectors.

To find the worst case LMP perturbation due to undetectable, state-preserving

attacks, let F denote the set of feasible Ḡs, for which the attack can be launched

with A and B. Among the feasible targets in F, we consider the best target

topology that results in the maximum perturbation in real-time LMPs. If ARPP
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is used as a metric, the best target is chosen as

Ḡ∗[z] = arg max
Ḡ∈F

∑

i

∣∣∣∣
λi(z; Ḡ)− λi(z;G)

λi(z;G)

∣∣∣∣ . (2.34)

where λi(z; Ḡ) denotes the real-time LMP at bus i when the attack with the target

Ḡ is launched on z, and λi(z;G) is the real-time LMP under no attack.

2.6 Numerical Results

In this section, we demonstrate the impact of bad data on real-time LMPs with the

numerical simulations on IEEE-14 and IEEE-118 systems. We conducted simula-

tions in two different settings: the linear model with the DC state estimator and

the nonlinear model with the AC state estimator. The former is usually employed

in the literature for the ease of analysis whereas the latter represents the practical

state estimator used in the real-world power system. In all simulations, the meter

measurements consist of real power injections at all buses and real power flows

(both directions) at all branches.

2.6.1 Linear model with DC state estimation

We first present the simulation results for the linear model with the DC state

estimator. We modeled bus voltage magnitudes and phases as Gaussian random

variables with the means equal to the day-ahead dispatched values and small stan-

dard deviations. In each Monte Carlo run, we generated a state realization from

the statistical model, and the meter measurements were created by the DC model
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with Gaussian measurement noise. Once the measurements were created, bad data

were added in the manners discussed in Section 2.4 and Section 2.5. With the cor-

rupted measurements, the control center executed the DC state estimation and the

bad data test with the false alarm probability constraint 0.1. If the data passed

the bad data test, real-time LMPs were evaluated based on the state estimation

results. For IEEE-14 and IEEE-118 system, the network parameters‖ are available

in [23].

We used the number of meter data to be modified by the adversary as the

metric for the attack effort. For the 14 bus system, in each Monte Carlo run, we

randomly chose two lines, and the adversary was able to modify all the line flow

meters on the lines and injection meters located at the ends of the lines. For the

118 bus system, we randomly chose three lines, and the adversary had control over

the associated line and injection meters. Both state and topology attacks were set

to control the same number of meter data∗∗ so that we can fairly compare their

impacts on real-time LMPs. As for the meter data attack, we only considered

the lines that are close to their flow limits (estimated flows under M1 and M2, or

actual flows under M3) as candidates for congestion pattern search. The threshold

is chosen as 10MW in our simulation.

‖In addition to the network parameters given in [23], we used the following line limit and
real-time offer parameters. In the IEEE-14 simulation, the generators at the buses 1, 2, 3, 6,
and 8 had capacities 330, 140, 100, 100, and 100 MW and the real-time offers 15, 31, 30, 10,
and 20 $/MW. Lines (2, 3), (4, 5), and (6, 11) had line capacities 50, 50, and 20 MW, and
other lines had no line limit. In the IEEE-118 simulation, the generators had generation costs
arbitrarily selected from {20, 25, 30, 35, 40 $/MW} and generation capacities arbitrarily selected
from {200, 250, 300, 350, 400 MW}. Total 16 lines had the line capacities arbitrarily selected
from {70, 90, 110 MW}, and other lines had no line limit. To handle possible occurrence of price
spikes, we set the upper and lower price caps as 500$/MW and -100$/MW respectively. Total
1000 Monte Carlo runs were executed for each case.

∗∗Topology attacks need to make few additional modifications on breaker state data such that
the target lines appear to be disconnected to the topology processor. However, for simplicity, we
do not take into account this additional effort.
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Fig. 2.4 is the plot of ARPPs†† versus detection probabilities of bad data. They

show that even when bad data were detected with low probability, ARPPs were

large, especially for the fully adaptive bad meter data and the bad topology data.

Comparing ARPPs of the three bad meter data models, we observe that the

adversary may significantly improve the perturbation amount by exploiting partial

or all real-time meter data (for the partially adaptive case, the adversary observed

a half of all meters.) It is worthy to point out that bad topology data result in

much greater price perturbation than bad meter data.

Recall the discussion in Section 2.2 and Section 2.5 that bad topology data and

bad meter data employ different price-perturbing mechanisms: bad topology data

perturb real-time LMP by restructuring the price regions without perturbing the

state estimate (the line-removal attack introduced in Section 2.5 does not perturb

state estimate) whereas bad meter data perturb real-time LMP by simply moving

the state estimate to a different price region. Therefore, the observation implies

that restructuring the price regions has much greater impact on real-time LMP

than merely perturbing the state estimate.

2.6.2 Nonlinear model with AC state estimation

The simulations with the nonlinear model intend to investigate the vulnerability

of the real-world power system to the worst adversarial act, designed based on the

††The detection probabilities for the fully adaptive bad meter data and the bad topology data
cases were less than 0.1 in all the simulations. In the figures, we draw ARPPs of those cases as
horizontal lines so that we can compare them with other cases.
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(a) IEEE-14: ARPP of the worst topology data is 66.1%.
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(b) IEEE-118: ARPP of the worst topology data is 22.4%.

Figure 2.4: Linear model: ARPP vs detection prob.

linear model. The simulations were conducted on IEEE-14 and IEEE-118 systems

in the same manner as the linear case except that we employed the nonlinear model

and the AC state estimation.

Fig. 2.5 is the plot of ARPPs versus detection probabilities. The result shows

that the proposed methodology can affect the system to some extent even when

nonlinear estimator is used, especially when the bad data are present in the topol-
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ogy data, although the nonlinear estimator makes this effect relatively less signifi-

cant compared with the linear case results.

2.6.3 Performance of the greedy search heuristic

We also conducted simulation based on the proposed greedy search technique in

Section 2.4.5. The simulation was based on 118 bus system, and all parameters

were the same as those presented in Section 2.6.1. We compared the performance

and computation time of the greedy heuristics with exhaustive search benchmark,

as shown in Table 2.1. Notice here the exhaustive search and greedy search are

both over the lines that are close to their flow limits (estimated flows under M1

and M2, or actual flows under M3), the same as in Section 2.6.1. In Table 2.1,

the second column (average search time) is the average searching time for worst

congestion pattern over 1000 Monte Carlo runs, and the third column (accuracy)

is the percentage that the greedy search find the same worst congestion pattern as

the exhaustive search. From the result, we can see that using greedy heuristic can

give us much faster processing algorithm without losing much of the accuracy.

Table 2.1: Performance of greedy search method
method average search time accuracy

exhaustive search 1.23s -
greedy search 0.51s 97.3%
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(a) IEEE-14: ARPP of the worst topology data is 95.4%.
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(b) IEEE-118: ARPP of the worst topology data is 76.9%.

Figure 2.5: Nonlinear model: ARPP vs detection prob.

2.7 Conclusion

We report in this paper a study on impacts of worst data on the real-time market

operation. A key result of this paper is the geometric characterization of real-

time LMP given in Theorem 2.2.1. This result provides insights into the relation

between data and the real-time LMP; it serves as the basis of characterizing impacts
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of bad data.

Our investigation includes bad data scenarios that arise from both analog meter

measurements and digital breaker state data. To this end, we have presented a

systematic approach by casting the problem as one involving an adversary injecting

malicious data. While such an approach often gives overly conservative analysis,

it can be used as a measure of assurance when the impacts based on worst case

analysis are deemed acceptable. We note that, because we use adversary attacks

as a way to study the worst data, our results have direct implications when cyber-

security of smart grid is considered. Given the increasing reliance on information

networks, developing effective countermeasures against malicious data attack on

the operations of a future smart grid is crucial. See [8, 24, 10, 22] for discussion

about countermeasures.

From a practical viewpoint, our result can serve as the guideline to the real-time

operation. Following the methodology in our paper, worst effect of a specific set

of meters on real-time LMP can be checked. Once a huge potential perturbation

is detected, alarm should be made and the operator needs to check the accuracy

of these specific data, add protection devices, or even add more redundant meters.

Although our findings are obtained from academic benchmarks involving rela-

tively small size networks, we believe that the general trend that characterizes the

effects of bad data is likely to persist in practical networks of much larger size. In

particular, as the network size increases and the number of simultaneous appear-

ance of bad data is limited, the effects of the worst meter data on LMP decrease

whereas the effects of the worst topology data stay nonnegligible regardless of the
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network size. This observation suggests that the bad topology data are potentially

more detrimental to the real-time market operation than the bad meter data.
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CHAPTER 3

DATA ATTACK ON LMP IN TIME-COUPLED LOOK-AHEAD

DISPATCH

3.1 Introduction

The main objective of this chapter is to study the impact of cyber data attacks

on state estimation, which subsequently influence the result of the existing static

and newly emerging look-ahead dispatch models in the real-time power market.

Figures 1(a),(b) illustrate the information flow in a three-layered framework (with

physical, measurement, and control/computation layer) without and with such

cyber attacks, respectively. The information includes the physical state such as

the nodal power injection and flow and the dispatch instruction such as the optimal

generation output and nodal price. Compared to Figure 1(a), Figure 1(b) describes

that bad/malicious data injected into the measurement layer can lead to corrupted

estimation of the states of the physical layer. Consequently, the attacker could

distort the feedback information from control/communication layer back to the

physical layer in two ways, leading to (1) physical insecurity in the power grid

operations, and/or (2) financial misconduct in the power markets as shown in

Figures 1(b). This chapter contributes to topic (2) using realistic dispatch models

in power markets.
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Figure 3.1: A three-layered framework illustrating cyber data attack.

3.1.1 Literature Review

A large body of literature has been accumulated recently on the subject of cyber

security in power grids, ranging from risk mitigation [25], generation control secu-

rity (e.g., automatic generation control (AGC) attack [26], [27]), control security

in distribution system [28], and privacy protection [29], [30], [31], [32]. A concise

summary paper is presented in [33], including risk assessment methodology, power

system control application and cyber infrastructure security. Meanwhile, many

researchers have been studying false data injection attacks, which malfunction the

state estimator by injecting false data into sensors. For the subject of false data

injection attacks, two major categories of work have been presented:

• Vulnerability analysis of state estimation: a false data injection attack was

formulated and analyzed in [34], [35]. Efficient algorithm to find sparse at-

tacks and Phasor Measurement Units (PMUs) placement algorithm to pre-

vent sparse attacks were developed in [36], [37]. A distributed joint detection-

estimation approach to malicious data attack was presented in [38]. In [39],
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it was shown that the attacker can hack the power grid without the knowl-

edge of the power network topology, which can be estimated using linear

independent component analysis (ICA).

• Financial risk analysis in electricity market operations: this area examined

the economic impact of false data injection attacks on electricity market op-

erations. In [40], undetectable and profitable attack strategy was formulated

in the real-time electricity market. In [41], the scenario for the attacker and

defender was modeled as a zero-sum game between them, and simulation

results showed the effectiveness of attack on the real-time market prices.

3.1.2 Report Organization

The remainder of this chapter is organized as follows. Section 3.2 provides the brief

overview of DC state estimation and real-time power market with static dispatch

and look-ahead dispatch models. Section 3.3 illustrates the attack model and

attack undetectability. Section 3.4 presents a new class of cyber data attacks on

static dispatch, which is followed by cyber data attack on look-ahead dispatch in

Section 3.5. In these sections, undetectable and profitable attack strategies are

formulated and their performance is evaluated in real-time power markets in the

IEEE 14-bus system. Section 3.6 presents the conclusions and future work.
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3.2 Preliminaries

The notations used in this section are summarized in Table 3.1.

Table 3.1: Notations.

i Index for generators i
n Index for buses n
l Index for transmission line l
K Total number of sampling period
N Total number of buses
L Total number of transmission lines
M Total number of measurements
G Set of generation units
GM Set of marginal units
Gc

M Set of binding units with lower marginal cost than marginal unit

G
c

M Set of binding units with higher marginal cost than marginal unit
D Set of demands
Dn nth bus fixed demand

Dn[k] nth bus fixed demand at time k
Pgi[k] Scheduled ith generator power at time k
Fl Transmission flow at line l

Fl[k] Transmission flow at line l at time k
Ri Ramp rate of generator i
∆T Dispatch interval

Pmin
gi

, Pmax
gi

Min/max generation limits for generator i

Fmin
l , Fmax

l Min/max flow limits at line l

3.2.1 DC State Estimation Model

We consider the linearized DC state estimation model:

z = Hx+ e =




I

Hd


x+ e, (3.1)
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where x is the state vector (nodal power injections), z is the measurement vector

(power injection and flow measurements), e is the independent identically dis-

tributed (i.i.d.) Gaussian measurement error vector following N (0,R), and H is

the system factor matrix specifying the relationship between x and z. Here the

matrix H is concatenated with two submatrices, Hd and I, which denote the dis-

tribution factor matrix and the identity matrix, respectively. The state estimation

problem is to find the optimal estimate of x to minimize the weighted least square

of measurement error:

minimize J(x) = rTR−1r

s.t. r = z−Hx,
(3.2)

where r is the estimated residual vector. If the system is observable (i.e., the

system factor matrix H is full rank), the unique weighted least squares estimate

of x is given by

x̂(z) = (HTR−1H)−1HTR−1z = Bz. (3.3)

3.2.2 Economic Dispatch Model

The electric power market consists of two-settlement system, day-ahead and real-

time spot markets. In real-time spot markets, LMP is obtained as the by-product

of security constrained economic dispatch (SCED) in either of the two main pric-

ing models: Ex-ante (e.g. in ERCOT, NY ISO) and Ex-post (e.g. in ISO New

England, PJM, and Midwest ISO) [42].
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The Ex-ante Model: In ex-ante real-time market models, LMPs are computed

before the actual deployment of dispatch orders. For the system operator, the

Ex-ante dispatch is formulated as follows [43]:

min
Pgi

∑

i∈G

Ci(Pgi) (3.4)

s.t.

∑

i∈G

Pgi =

N∑

n=1

Dn (3.5)

P̂min
gi

≤ Pgi ≤ P̂max
gi

∀i ∈ G (3.6)

Fmin
l ≤ Fl ≤ Fmax

l ∀l = 1, . . . , L (3.7)

where

P̂max
gi

= min{Pmax
gi

, P̂gi(z) +Ri∆T}

P̂min
gi

= max{Pmin
gi

, P̂gi(z)− Ri∆T}.

In this formulation, the objective function is to minimize the total generation

costs in (3.4). (3.5) is the system-wide energy balance equation. (3.6) is the phys-

ical capacity constraints of each generator embedded with its ramp constraints.

(3.7) is the transmission line constraints.

The Ex-post Model: In ex-post real-time market models, LMPs are computed

after the fact using real-time estimates for settlement purposes. Assuming no

demand elasticity, the Ex-post dispatch is written as [44]:

min
Pgi

∑

i∈G

Ci(Pgi) (3.8)
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s.t.

∑

i∈G

∆Pgi = 0 (3.9)

∆Pmin
gi

≤ ∆Pgi ≤ ∆Pmax
gi

∀i ∈ G (3.10)

∆Fl ≤ 0 ∀l ∈ CL+ (3.11)

∆Fl ≥ 0 ∀l ∈ CL− (3.12)

where

∆Pgi = Pgi − P̂gi(z), ∆Fl = Fl − F̂l(z)

CL+ = {l : F̂l(z) ≥ Fmax
l }, CL− = {l : F̂l(z) ≤ Fmin

l }

and ∆Pmax
gi

and ∆Pmin
gi

are usually chosen to be 0.1MWh and -2MWh, respectively.

The Lagrangian of the above minimization problem is defined as

L =
∑

i∈GCi(Pgi)− λ
∑

i∈G∆Pgi +
∑

i∈G µi,max

(
∆Pgi −∆Pmax

gi

)
+

∑
i∈G µi,min

(
∆Pmin

gi
−∆Pgi

)
+
∑

l∈CL+
ηl∆Fl +

∑
l∈CL−

ζl (−∆Fl) (3.13)

It is well known that the optimal solution of the optimization problem must satisfy

the KKT conditions. In particular, we know that the following holds: ηl ≥ 0, ζl ≥

0. To simplify the notation, we define ηl = 0 if l 6∈ CL+, ζl = 0 if l 6∈ CL−. We can

define the nodal price at each bus n (n = 2, . . . , N), given by

λn = λ+
L∑

l=1

(ηl − ζl)
∂Fl

∂Dn

. (3.14)

Now let us write (3.14) in a more compact matrix form. Let us define η =

[η1, . . . , ηL]
′

to be a vector of all ηl and ζ = [ζ1, . . . , ζL]
′

. Since ∂Fl/∂Dn = Hd
ln

where Hd
ln is the element on the lth row and nth column of Hd, (3.14) can be

simplified as

λn = λ+HdT
n (η − ζ) , (3.15)
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where Hd
n is the nth column of Hd matrix. The difference of price at two nodes

n1 and n2 is given by

λn1
− λn2

=
(
Hd

n1
−Hd

n2

)T
(η − ζ) . (3.16)

Look-ahead Dispatch Model: Recently, due to limited predictability in day-

ahead and high inter-temporal variability of renewable resources (e.g., wind and

solar), RTOs are upgrading real-time market clearing engine from static dispatch

to look-ahead dispatch models for more flexible operations in support of high pen-

etration of variable resources [45]. For the system operator, look-ahead dispatch

is formulated as follows,

min
Pgi

[k]

K∑

k=1

∑

i∈G

Ci(Pgi[k]) (3.17)

s.t.

∑

i∈G

Pgi[k] =

N∑

n=1

Dn[k] ∀k = 1, . . . , K (3.18)

|Pgi[k]− Pgi[k − 1]| ≤ Ri∆T ∀k = 1, . . . , K (3.19)

Pmin
gi

≤ Pgi[k] ≤ Pmax
gi

∀k = 1, . . . , K (3.20)

Fmin
l ≤ Fl[k] ≤ Fmax

l ∀k = 1, . . . , K, ∀l = 1, . . . , L. (3.21)

In this formulation, the objective function is to minimize the total generation costs

in (3.17). (3.18) is the system-wide energy balance equations. (3.19) and (3.20)

are the ramp constraints and the physical capacity constraints of each generator,

respectively. (3.21) is the transmission line constraints. In this paper, we define

one-step look-ahead dispatch with K = 1 as static dispatch. The Lagrangian
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function of the aforementioned look-ahead dispatch is written as

L =
K∑

k=1

∑

i∈G

Ci(Pgi[k])−
K∑

k=1

λ[k]

[
∑

i∈G

Pgi[k]−
N∑

n=1

Dn[k]

]

+

K∑

k=1

∑

i∈G

[ωi,max[k](Pgi[k]− Pgi[k − 1]− Ri∆T )]

+

K∑

k=1

∑

i∈G

[ωi,min[k](Pgi[k − 1]− Pgi[k]− Ri∆T )]

+

K∑

k=1

∑

i∈G

[
τi,max[k](Pgi[k]− Pmax

gi
)
]
+

K∑

k=1

∑

i∈G

[
τi,min[k](P

min
gi

− Pgi[k])
]

+

K∑

k=1

L∑

l=1

[µl,max[k](Fl[k]− Fmax
l )] +

K∑

k=1

L∑

l=1

[
µl,min[k](F

min
l − Fl[k])

]
,

where all the Lagrangian multipliers at time k (λ[k], ωi,max[k], ωi,min[k], τi,max[k],

τi,min[k], µl,max[k], and µl,min[k]) are positive. According to the definition of the

nodal price [46], and assuming that bus 1 is the slack bus, the locational marginal

price (LMP) for each bus n (n = 2, . . . , N) at time k is given by

λn[k] = λ[k]−HdT
n (µmax[k]− µmin[k]), (3.22)

where λ[k] is the LMP for the slack bus 1 at time k, Hd
n = [ ∂F1

∂Dn
, . . . , ∂FL

∂Dn
]T ,

µmax[k] = [µ1,max[k], . . . , µL,max[k]]
T , and µmin[k] = [µ1,min[k], . . . , µL,min[k]]

T .

Alternatively, by the first-order KKT condition of look-ahead dispatch formu-

lation, the LMP for each generator i connected to bus n is written as

λi[k] =
∂Ci(Pgi[k])

∂Pgi [k]
+ (τi,max[k]− τi,min[k])

+ (ωi,max[k]− ωi,max[k + 1]1A[k]) + (ωi,min[k + 1]1A[k]− ωi,min[k]) ,(3.23)

where 1A[k] is the indicator function based on the set A = {1 ≤ k ≤ K − 1}. In

other words, 1A[k]=1 when k∈A, otherwise (i.e., k∈Ac = {k = K}) 1A[k]=0.

We can observe from (3.23) that the Lagrangian multipliers, ωi,max[k + 1] and
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ωi,min[k+1], corresponding to the ramp constraints at the future time k+1 influence

the LMPs calculation at the current time k. However, the LMP formulation in

static dispatch (one-step look-ahead) does not capture future constraints.

3.3 Attack Model and Undetectability

We consider the additive attack measurement model:

za = Hx+ e + a, (3.24)

where a is the attack vector, which leads to the corrupted measurement vector za.

The new residual vector ra can be decomposed into two terms, corresponding to

without and with attack, respectively:

ra = r+ (I−HB)a (3.25)

, and by triangular inequality of the L2-norm || · ||2,

||ra||2 = ||r+ (I−HB)a||2 (3.26)

≤ ||r||2 + ||(I−HB)a||2 < η, (3.27)

where η is the bad data detection threshold. For bypassing the bad data detection

algorithm, the attacker aims at constructing the attack vector a so that the value

of ||(I−HB)a||2 added to ||r||2 still makes the above undetectable condition hold

true.
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3.4 Spatial Data Attack on Static Dispatch

3.4.1 Problem Formulation

We assume that the attacker will exploit the virtual bidding mechanism to make

a profit. In many RTOs such as ISO-New England, virtual bidding activities are

legitimate financial instruments in electricity markets. A market participant pur-

chase/sell a certain amount of virtual power at location in day-ahead forward mar-

ket, and will be obliged to sell/purchase the exact same amount in the subsequent

real-time market. Therefore, the attacker’s action can be summarized as:

1. In day-ahead forward market, buy and sell virtual power PO at locations n1

and n2 at price λDA
n1

, λDA
n2

, respectively.

2. Inject the attack vector a to manipulate the nodal price of ex-post market.

3. In ex-post market, sell and buy virtual power PO at locations n1 and n2 at

price λn1
, λn2

, respectively.

The profit that the attacker could obtain from this combination of virtual trading

is

Profit =
(
λn1

− λDA
n1

)
PO +

(
λDA
n2

− λn2

)
PO =

(
λn1

− λn2
+ λDA

n2
− λDA

n1

)
PO.

(3.28)

Let us define

p = λn1
− λn2

+ λDA
n2

− λDA
n1

(3.29)
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Combined with (3.16), (3.29) can be written as

p(za) =
(
Hd

n1
−Hd

n2

)T
(η(za)− ξ(za)) + λDA

n2
− λDA

n1
. (3.30)

3.4.2 Attack Strategy

In this subsection, we consider two scenarios where the subset of compromised

sensors is fixed and only a limited number of measurement sensors could be com-

promised.

Scenario I: predetermined subset of compromised sensors

We develop a heuristic for the attacker to find a profitable input a when the subset

of compromised sensors is fixed. We will show that such a problem can be effec-

tively formulated as a convex optimization problem and solved efficiently. Let us

define the set

L+ = {l : Hd
ln1

> Hd
ln2

}, L− = {l : Hd
ln1

< Hd
ln2

}.

As a result, p(za) can be written as

p(za) =
∑

l∈L+

(
Hd

ln1
−Hd

ln2

)
(ηl(za)− ζl(za)) (3.31)

+
∑

l∈L−

(
Hd

ln2
−Hd

ln1

)
(ζl(za)− ηl(za)) + λDA

n2
− λDA

n1
.

By the fact that ηl(ζl) is nonnegative and it is 0 if the line is not positive (or

negative) congested, we can see that the following conditions are sufficient for

p(za) > 0

(A1) λDA
n2

> λDA
n1

.
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(A2) F̂
′

l < Fmax
l if l ∈ L−, i.e., the line is not positive congested.

(A3) F̂
′

l > Fmin
l if l ∈ L+, i.e., the line is not negative congested.

(A1) can be easily satisfied in the day-ahead market. Hence, the attacker needs to

manipulate the measurement to make sure that (A2) and (A3) hold or at least hold

with a large probability. Following such intuition, we give the following definition:

Definition 3.4.1. An attack input a is called δ-profitable if the following inequal-

ities hold E[F̂ ′

l ] ≤ Fmax

l − δ, ∀l ∈ L−, (3.32)E[F̂ ′

l ] ≥ Fmin

l − δ, ∀l ∈ L+, (3.33)

where E[F̂ ′

l ] = F ∗ +HdBa and F ∗ is the result of the ex-ante dispatch.

Remark 1. It is worth mentioning that δ does not directly relate to the profit (or

expected profit). However, it is related to the probability that (A2) and (A3) hold.

Recall that from the attacker’s perspective, F̂
′

l is a Gaussian random variable with

mean E[F̂ ′

l ]. As a result, a large margin will guarantee that with large probability

(A2) and (A3) are not violated.

Therefore, the attackers strategy during the run time is to find an ǫ feasible a

such that the margin δ is maximized. The problem can be formulated as

max
a∈span(A)

δ (3.34)
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s.t.

||(I−HB)a||2 ≤ ǫ (3.35)E[F̂ ′

l ] ≤ Fmax
l − δ, ∀l ∈ L−, (3.36)E[F̂ ′

l ] ≥ Fmin
l − δ, ∀l ∈ L+, (3.37)

δ > 0 (3.38)

where the set A represents the attack vector space, which describes the attack

pattern related to the type and number of compromised sensors. It is easy to ver-

ify that the objective function and all the constraints are convex. Therefore, the

problem itself is a convex programming problem and can be solved efficiently.

Scenario II: limited resources to compromise sensors

We consider a scenario in which the attacker can select the set of sensors to com-

promise. However, due to limited resources, the total number of compromised

sensor cannot exceed certain threshold κ. As a result, not only does the attacker

need to design an optimal input to system, but also it need to choose the optimal

set of sensors to compromise.

Following the previous argument, we can write the optimization problem as

max
a∈span(A)

δ (3.39)

s.t.

||(I−HB)a||2 ≤ ǫ (3.40)E[F̂ ′

l ] ≤ Fmax
l − δ, ∀l ∈ L−, (3.41)E[F̂ ′

l ] ≥ Fmin
l − δ, ∀l ∈ L+, (3.42)

δ > 0 (3.43)

||a||0 ≤ κ, (3.44)
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where || · ||0 is the zero norm, which is defined as the number of nonzero elements

in a vector. Note that in this formulation we do not require that a lies in the span

of A, but instead we require a to have no more than κ nonzero elements. The

nonzero elements of a correspond to the sensors the attacker needs to compromise.

However, the above formulation is a hard combinatorial problem, since it in-

volves a constraint involving the zero norm of a vector, which is not convex. To

render the problem solvable, we resort to a convex relaxation of the original op-

timization problem. The L0 norm is substituted with a weighted L1 norm, where

the weights are chosen to avoid the penalization, given by the L1 norm, of the

bigger coefficients. In that paper, the authors propose an iterative algorithm that

alternates between an estimation phase and a redefinition the weights, based on

the empiric consideration that the weights should relate inversely to the true signal

magnitudes. The resulting algorithm is composed of the following four steps:

1. Set the iteration count c to zero and set the weights vector to ω0
i = 1 for

i = 1, . . . , Nm. (Nm is a total number of measurements)

2. Solve the weighted L1 minimization problem

max
a∈span(A)

δ (3.45)

s.t.

||(I−HB)a||2 ≤ ǫ (3.46)E[F̂ ′

l ] ≤ Fmax
l − δ, ∀l ∈ L−, (3.47)E[F̂ ′

l ] ≥ Fmin
l − δ, ∀l ∈ L+, (3.48)

δ > 0 (3.49)

∑

i

zai ω
c
i ≤ κ, (3.50)
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Let the solution be za,c1 , . . . , za,cNm
.

3. Update the weights

ωc+1
i =

1

za,ci + ζ
, i = 1, . . . , Nm

where ζ is a small positive constant.

4. Terminate on convergence or when c reaches a specified maximum number

of iterations cmax. Otherwise, increment c and go to step 2.

3.4.3 Simulation Studies

In this subsection we consider the standard IEEE 14-bus system to discuss the

economic impact of malicious data attacks against state estimation. The system

comprises a total of five generators. Three cases, summarized in Table 3.2, are

analyzed. In Case I, only one transmission line is congested and two line flow

sensors are assumed to be compromised using false data injection attack. In Cases

II and III, we assume there are multiple congested transmission lines. Compared

with Case II, Case III only allows a limited number of sensors which can be com-

promised. As a result, the attacker needs to both pick a subset of sensors and its

input.

Table 3.2: Case Description
Case congested lines in day-ahead virtual bidding nodes compromised sensors

I 1-2 2 and 4 line flow sensors 1-2, 3-4
II 1-2, 2-4, 2-5 1 and 2 line flow sensors 1-2, 2-3, 2-4
III 1-2, 2-4, 2-5 1 and 2 line flow sensors 1-2, 2-3

In Cases I and II, an attacker follows the procedure described in Scenario I

with the purpose of gaining profit from virtual bidding. In Case III, the attacker
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follows the limited sensor attack algorithm described in Scenario II. At the pair of

the nodes that are prespecified in the third column of Table 3.2, the attacker buys

and sells the same amount of virtual power in day-ahead market at nodes n1 and n2,

respectively. Based on historical trends, the attacker buys at the lower priced node

and sell at the higher priced node. In real-time market operations, the attacker

compromises the selected line flow sensors by injecting false data without being

detected. By doing so, the congested transmission lines in day-ahead operations

appear no longer congested from the system state estimation. This, in turn, will

result different real-time ex-post LMPs with controllable bias compared to the

day-ahead LMPs.

Figure 3.2: LMP with and without cyber attacks (only one line
congestion).

In Case I, only one transmission line (from bus 1 to bus 2) is congested. The

attacker chooses to buy same amount of virtual power at bus 4 (lower price) and

sells virtual power at bus 2 (higher price) in day-ahead market. By compromising

two line flow measurement sensors with false data injection, the transmission line

congestion appears to be relieved in real-time EMS. This manipulated system state

is then passed to real-time market clearing procedure, which computes a uniform
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Figure 3.3: LMP with and without cyber attacks (three congested lines).

ex-post LMP across the system. Fig. 3.2 shows the LMPs with and without the

cyber attacks. Based on (3.29), the profit of such transaction is about $2/MWh.

In Case II, day-ahead market clearing shows that there are three congested lines,

bus 1 and bus 2 have LMP difference of about $8/MWh. By compromising three

line flow sensors indicated in the third column of Table 3.2, the designated pair of

nodes (buses 1 and 2) has the same LMP in ex-post real-time market. The reason

is that malicious data injection attacks to these three sensors lower the estimated

line flow, thereby setting the shadow prices of the actual congested lines to be

zero. The profit of such transaction is approximately $8.2/MWh. In Case III, we

assume that an attacker can compromise at most two sensors. By applying the

algorithm described in Section V, the attacker chooses to compromise line flow

sensors between nodes 1-2, and nodes 2-3. Compromising only these two sensors

cannot make all the congested lines appear uncongested in real-time operations.

However, as shown in Fig. 3.3, compromising just two sensors can still generate

$6.0/MWh of profit for the attacker.

In Table 3.3 we compare the attack efforts and the associated expected financial
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Table 3.3: Attack Efforts and Profits (ǫ = 1 MWh)

Case relative efforts
(

||a||∞
||z||∞

)
profits (% of transaction cost)

I 1.23% 2.40%
II 1.41% 9.46%
III 1.31% 7.54%

profits for all the three cases. We use the infinity norm of normalized by the infinity

norm of as an indicator of the attackers effort. As the system congestion becomes

more complex, the potential of financial gain by maliciously placing false data

attacks is also higher. One can observe from the comparison between Case II and

Case III that if the attacker can only compromise a limited number of sensors, then

the expected profits decrease. However, even compromising a very small number

of sensors (e.g. two sensors in the Case III) can lead to profits, showing how the

economic losses due to even small false data injection attacks can be significant in

the long run.

3.5 Temporal Data Attack on Look-ahead Dispatch

In this subsection, we present a new type of potential cyber attacks in more realis-

tic economic dispatch model, i.e., look-ahead dispatch. Motivated by the increasing

penetration of variable resources such as wind and solar [47], look-ahead dispatch

has been implemented by major Independent System Operators (ISOs)/Regional

Transmission Organizations (RTOs) in the past few years in order to improve the

market dispatch efficiency [45], [48], [49]. Look-ahead dispatch is different from

conventional static dispatch in that it calculates the optimal dispatch in an ex-

tended period of time, taking into account inter-temporal ramp rates of generators
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of different technologies. In this subsection, an attack strategy is demonstrated,

in which the attacker could withhold generation capacity for financial gain by

stealthily manipulating the ramp constraint limits of generators in look ahead dis-

patch. It should be noted that the proposed attack strategy is different from the

capacity withholding methods used for a generation company to report capacity

noticeably lower than its maximum capacity based on learning algorithm (e.g.,

SA-Q-Learning algorithm) [50], [51].

3.5.1 Problem Formulation

The ith unit’s initial generation power Pgi[0] embedded in (3.19) is replaced, at

every dispatch interval, by its corresponding estimate P̂gi(z), which is processed

and delivered by the state estimator. Therefore, in static dispatch the generation

power of unit i at k = 1 becomes bounded by

Pmax
gi

[1] = min{Pmax
gi

, Pmax
gi,R

(z)} (3.51)

Pmin
gi

[1] = max{Pmin
gi

, Pmin
gi,R

(z)}, (3.52)

where the maximum and minimum limits of the ramp constraints, Pmax
gi,R

(z) and

Pmin
gi,R

(z), are

Pmax
gi,R

(z) = P̂gi(z) +Ri∆T, Pmin
gi,R

(z) = P̂gi(z)−Ri∆T. (3.53)

If the attacker manipulates the estimate P̂gi(z) by injecting false data into z so

that the capacity limits of unit i at k = 1 are binding to stealthily changed ramp

constraint limits, the optimal generation dispatch and nodal price might be mis-

calculated by RTOs. In this paper we define this type of attack as a ramp-induced

data (RID) attack in a potential class of malicious inter-temporal data attacks.
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Figure 3.4: Conceptual diagrams illustrating a ramp-induced data attack.

Figure 3.4 illustrates the RID attack, which withholds capacity of a marginal

unit (a part-loaded generator). Left and right diagrams describe the generation

characteristics of the marginal unit without and with the attack, respectively. W

is the feasible range of generation limited by the ramp rate of the marginal unit,

and ∆L is an incremental (in this figure) or decremental system load from k = 0

to k = 1. We note that as P̂gi[0] (for simplicity, we omit z, instead emphasize

the time) is manipulated by the attacker, ∆L can deviate, upwards or downwards,

from the range of W , leading to capacity withholding or capacity withdrawing,

respectively. The right diagram in Figure 3.4 shows that if P̂gi[0] is decreased to

P̂gi,a[0] by the attacker at k = 0 so that ∆L deviates upwards from the range of W ,

the attacker succeeds in withholding capacity, resulting in a new dispatch output

P̂ ∗
gi,a

[1] at k = 1. As a result, the infra-marginal unit (the unit with the next higher

marginal cost) is dispatched to supply the excess demand, consequently leading to

a uniformly higher market price.
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Remark 2. Define P̂gi,a[0]−P ∗
gi
[0] as the contribution of the attacker to changing

the nodal price. The RID attack fails (i.e., the nodal price remains unchanged) if

the value of this contribution belongs to the following interval:

∆L−Ri∆T ≤ P̂gi,a[0]− P ∗
gi
[0] ≤ ∆L+Ri∆T. (3.54)

The feasible region of P̂gi[0] based on constraint (3.54) is defined as the price-

invulnerable region.

3.5.2 Attack Strategy

In this subsection we formulate a ramp-induced data attack strategy. The power

system is assumed to have sufficient transmission capacity. As the first step toward

understanding the impact of cyber attack on temporal ramp-constrained economic

dispatch, we exclude the impact of spatial transmission congestion on the market

clearning prices. In practice, temporal ramp constraints are coexisting with spatial

transmission flow constraints. Therefore, for a successful RID attack in congested

networks the attacker should know the targeted power system very well and as

much as the system operator knows, however this scenario is unrealistic. Devel-

oping a feasible RID attack strategy in congested networks is beyond the scope of

this paper and referred to as a future work.

• Marginal unit attack : a injection measurement sensor associated with the

marginal unit is compromised.

• Binding unit attack : injection measurement sensors associated with the bind-

ing units are compromised.
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• Coordinated attack : injection measurement sensors associated with the bind-

ing units as well as the marginal unit are compromised.

Here a binding unit represents two types of units: an intra-marginal unit with the

lower marginal cost or an infra-marginal unit with the higher marginal cost than

a marginal unit. The following proposed attack strategy and simulation results

focus on intra-marginal unit attack belonging to binding unit attack.

Remark 3. When there is no network transmission congestion, it is well acknowl-

edged that static dispatch involves a single marginal unit and multiple binding units

that produce their minimum or maximum outputs. On the other hand, look-ahead

dispatch may involve multiple marginal units even if there is no congestion in the

the transmission network. In this paper the marginal unit attack is associated with

the marginal unit in static dispatch.

For achieving undetectability and profitability, the attacker computes the at-

tack vector a by compromising sensors i ∈ GM or j ∈ Gc
M , which is the solution

of the following optimization problem:

max
a∈span(A)

δ (3.55)

s.t.

||(I−HB)a||2 ≤ ǫ (3.56)

αCM(a) + βCB(a) ≤ ∆L− Ri∆T − δ (3.57)

δ > 0 (3.58)

where

CM(a) = Bia, CB(a) =
∑

j∈Gc
M

[Bja+Rj∆T ].
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CM(a) and CB(a) are the contributions of the attacker to changing the nodal price,

corresponding to the marginal unit and binding unit attacks, respectively. The

derivations of these contribution terms are referred to in Section 3.7. The set A

represents the attack vector space, which describes the attack pattern related to the

type and number of compromised sensors. ∆L−Ri∆T is the minimum amount of

power which the attacker should reduce at k = 0 in order to withhold the capacity

of unit i at k = 1. Constraint (3.56) assures undetectability as the parameter ǫ

is tuned with an appropriate value. Constraint (3.57) assures profitability since

it enables unit i to bind at the limit of the up-ramp constraint, leading to the

increasing nodal price. Therefore, the attacker aims to maximize the margin δ in

order to make a financial gain via capacity withholding with a high probability.

The binary values of α and β in (3.57) determine the following three types of

attacks:

1. α = 1, β = 0: Marginal unit attack

2. α = 0, β = 1: Binding unit attack

3. α = 1, β = 1: Coordinated attack.

Remark 4. Compared to the capacity withholding mentioned above, capacity with-

drawing can benefit a load serving entity (LSE) by manipulating the down-ramp

constraint limit. This type of the attack is feasible when constraint (3.57) is re-

placed with

αCM(a) + βCB(a) ≥ ∆L+Ri∆T + δ (3.59)

where

CM(a) = Bia, CB(a) =
∑

j∈G
c
M

[Bja−Rj∆T ].
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3.5.3 Attack Performance Metrics

The performance of the proposed RID attack is evaluated using the following three

performance metrics.

• Attack Profitability: Assuming that the power injection measurement sen-

sor at generator i is compromised, we define the attack profit efficiency (PE) of

generator i as the ratio of the profit with attack to without attack:

PE(i) =
P ∗
gi,a

[1](λ
(a)
i − ci)

P ∗
gi
[1](λ

(b)
i − ci)

× 100 (%). (3.60)

Here,
(
λ
(a)
i , P ∗

gi,a
[1]
)
and

(
λ
(b)
i , P ∗

gi
[1]
)
are two pairs of the nodal price and optimal

generation dispatch with and without attack, respectively. ci is the marginal cost

for generator i.

• Attack Undetectability: The system operator normally performs the Chi-

squares test [52] for detecting bad data in the measurements. Bad (or malicious)

data will bypass if

J(x̂) ≤ χ2
(m−s),p := ηχ, (3.61)

where p is the detection confidence probability, and m and s represent the number

of measurements and state variables, respectively.

• Attack Vulnerability: Since the measurement noise follows a Gaussian dis-

tribution, the manipulated estimate of the state at generator i is also a Gaussian

random variable

x̂i(za) ∼ N (P∗
i [0] +Bia,BiRBT

i ). (3.62)
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The probability of the distorted estimate x̂i(za) being within the price-invulnerable

region defined in Remark 2 is expressed as in terms of Q(·) functionsPi(a) = P(l(i) ≤ x̂i(za) ≤ u(i)) (3.63)

= Q(l(i))−Q(u(i)), (3.64)

where the complementary Gaussian cumulative distribution function Q(x) is de-

fined as

Q(x) =

∫ ∞

x

1√
2π

exp

(
−ξ2

2

)
dξ (3.65)

and

l(i) =
∆L−Ri∆T −Bia√

BiRBT
i

(3.66)

u(i) =
∆L+Ri∆T −Bia√

BiRBT
i

. (3.67)

We define Pi(a) as the price-invulnerable probability (PIP) with respect to genera-

tor i. From (3.63), (3.65), (3.66) and (3.67), we specify the relationship among the

ramp rate Ri∆T , the diagonal measurement covariance matrix R, and the PIP as

follows:

1. The increase of the Ri∆T leads to the increase of the PIP.

2. The decrease of the values of the diagonal elements in R leads to the increase

of the PIP.

In other words, the deployment of more accurate sensors and generators with a

faster ramp rate enables the power system to become more robust to the RID

attack.
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3.5.4 Simulation Studies

In this subsection the economic impact of the proposed RID attack on the real-time

electricity market operation is illustrated in the IEEE 14-bus system as shown in

Figure 3.5. Measurement configuration includes nodal power injection measure-

ments at all generation and load buses, and power flow measurements at one end

of each transmission line. This system has a total of 34 measurements includ-

ing 14 power injection and 20 power flow measurements, which assure the system

observability. Table 3.4 shows the five generators’ operating characteristics, in-

cluding unit type (generation bus number), physical capacity limit, ramp rate and

marginal cost (MC).

G 
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Figure 3.5: IEEE 14-bus Test system.

In this section, three cases are simulated in the IEEE-14 bus system:

• Case I: Marginal unit attack.

• Case II: Binding unit attack.
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Table 3.4: Generator Parameters of the IEEE 14-bus Test System.
Unit Type Pmin Pmax Ramp Rate MC

Coal(1) 0MW 200MW 10MW/5min 30$/MWh
Wind(2) 0MW 300MW 150MW/5min 20$/MWh
Nuclear(3) 0MW 300MW 8MW/5min 40$/MWh
Coal(6) 50MW 250MW 15 MW/5min 55$/MWh
Oil(8) 60MW 150MW 60 MW/5min 60$/MWh

• Case III: Coordinated attack.

The performance of the proposed RID attack is evaluated based on the one day

load profile with a 5-min resolution. This load profile is obtained by interpolating a

15-min daily data in the ERCOT website. The load is scaled down to be consistent

with the IEEE 14-bus test system’s peak load data. The common goal of all

three cases is to withhold the capacity of generator 3 for the purpose of making

a profit. A power injection sensor at generation bus 3 is compromised in Case I

whereas a power injection sensor at generation 1 is compromised in Case II. Case

III represents the coordinated attack, which compromises both sensors targeted in

Case I and Case II.

Figures 3.6 show the comparison of the LMPs between static (K = 1) and

look-ahead dispatch (K = 6) without attack and with attack in Cases I, II and III.

Due to no network transmission congestion, the prices in these figures denote the

uniform LMPs for all the buses at every dispatch interval. In Figure 3.6(a), the

LMPs in look-ahead dispatch are oscillating around 40$/MWh more than the ones

in static dispatch. This phenomenon is due to the fact that the binding of generator

3 at the up- or down-ramp constraints at time k + 1 makes its corresponding

Lagrangian multiplier, ω3,max[k + 1] or ω3,min[k + 1], become positive. As shown
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Figure 3.6: LMP of static and look-ahead dispatch without attack and
with Case I,II and III attacks.
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in equation (3.23), this leads to different LMPs at time k than the ones from

static dispatch. We observe from Figures 3.6(b),(c),(d) that the LMPs in both

dispatch models tend to increase with attack. This observation implies that the

attacker successfully withholds the capacity of generator 3 by lowering its up-ramp

constraint limit through the reduction of the initial estimate P̂g3,a[0]. Consequently,

this leads to the shift of the marginal unit to another one with a more expensive

marginal cost.

Table 3.5: Attack Performance in Static and Look-ahead Dispatch.
Case Static (PE(3)) Look-ahead (PE(3)) J(ηχ = 37.6)

I 131.9 148.9 28.2
II 101.2 102.6 35.5
III 108.9 113.8 31.5

Table 3.5 shows the attack performance of Cases I, II and III in both static

and look-ahead dispatch. The second and third columns of this table indicate the

attack profit efficiency at generation bus 3. We can observe from the comparison

of these two columns several facts. First, the PE values in all three cases of both

dispatch models are larger than 100. It indicates that the attacker makes an

additional profit using the proposed attack strategy. Second, for all three cases,

the PE in look-ahead dispatch is higher than in static dispatch. This observation

might result from the fact that the attack leads to more increase of the nodal price

in look-ahead dispatch than in static dispatch. Lastly, among three cases, Case I

and Case II attacks yield the largest and smallest PE, respectively. The PE in Case

III is between Case I and Case II. This result is natural since Case II and Case III

attacks require an extra effort for withholding the binding unit’s capacity as well

as the marginal unit’s capacity so that both attacks fail with a higher probability

than Case I attack. Figure 3.7 shows the amount of generator 3’s capacity which

all three attacks withhold between 80 and 90 time intervals. As expected, it is
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verified that Case I, Case III, and Case II attacks withhold capacity the most in a

descending order. This fact also justifies the third observation mentioned above.

The values of the estimated objective functions for all three cases are shown in

the last column of Table 3.5. Based on the measurement configuration with m=34

and s=14, the threshold (ηχ) of the Chi-squares test with a 99% confidence level

is set to 37.6. For undetectability, the parameter ǫ in (3.56) is set to 3. Therefore,

all three attacks in both dispatch models succeed in avoiding the Chi-squares bad

data detection.
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of static and look-ahead dispatch without attack
and with Case I,II and III attacks.

Table 3.6: Attack Performance with Varying Attack Magnitude in Case I.

Attack Relative Magnitude (ARM %) 0.25 0.5 0.75 1
Static (PE(3)) 111.8 120.8 126.4 126.9

Look-ahead (PE(3)) 112.2 125.8 127.6 137.7
J 21.1 25.4 29.2 33.1

PIP 0.433 0.344 0.259 0.188

Table 3.6 shows the sensitivity of Case I attack performance with respect to the

attack magnitude. In this table, the attack relative magnitude (ARM) is defined as

||a||∞
||z||∞

×100 where || · ||∞ denotes an infinity norm. We observe from this table that
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the increase of the ARM leads to more profit (the third and fourth rows) in both

dispatch models. However, the estimated objective function J (the fifth row) used

for the Chi-squares bad data test increases and the PIP (the last row) decreases.

This implies that as the ARM increases the attack becomes more vulnerable to

the bad data detection and fails with an increasing probability. Tables 3.7 and 3.8

show Case I attack performance with the varying ramp rate of generator 3 and

measurement variance of sensors. We first observe from Table 3.7 that as the ramp

rate of generator 3 increases the PE in both dispatch models decreases. Another

observation from Table 3.8 is that the decrease of measurement variance leads to

the decrease of the attack profit. These observations imply that the nodal prices

become less manipulable, which is verified with the increasing PIP in Tables 3.7

and 3.8.

Table 3.7: Impact of Ramp Rate on the Attack Performance in Case I.
Ramp Rate (MW/5min) 8 10 12 14

Static (PE(3)) 131.9 119.7 106.4 100.5
Look-ahead (PE(3)) 148.9 123.5 108.5 103.1

PIP 0.017 0.021 0.037 0.044

Table 3.8: Impact of Measurement Variance on the Attack Performance
in Case I.

Measurement Variance (σ2) 0.0005 0.005 0.05 0.5
Static (PE(3)) 123.2 129.1 130.3 136.9

Look-ahead (PE(3)) 143.5 144.8 146.1 152.8
PIP 0.056 0.041 0.034 0.021
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3.6 Conclusions

In this chapter we examine the possible economic impact of two types of unde-

tectable cyber data attacks against state estimation on real-time electric power

market operations: (1) spatial data attack on static dispatch; and (2) temporal

data attack on look-ahead dispatch.

In spatial attack, we show how an attacker can manipulate the nodal price

of ex-post real-time market without being detected by the state estimators. In

conjunction with virtual bidding, these integrity attacks can lead to consistent

financial profit for the attacker. A heuristic is developed to compute the optimal

injection of false data from the attackers perspective. False data injection attacks

with a limited number of sensors are formulated as a convex optimization problem

and thus solved efficiently by the attacker. Illustrative examples in IEEE 14-bus

system show that the potential economic gain for the attackers are significant even

with small number of sensors being compromised by the attackers.

In temporal attack, we propose a novel attack strategy with which the attacker

can manipulate, in look-ahead dispatch, the limits of ramp constraints of gener-

ators. It is demonstrated that the proposed attack may lead to financial profits

via malicious capacity withholding of selected generators, while being undetected

by the existing bad data detection algorithm embedded in the state estimator.

Numerical examples simulated in the IEEE 14-bus system demonstrate the unde-

tectability and profitability of the proposed cyber data attack.

In future work, a system-theoretical framework to analyze the effect of various
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types of spatial and temporal data attacks on real-time electricity market oper-

ations will be developed. The key challenge lies in how to analytically quantify

the impact of manipulated sensors measurement on the nodal price in space-time

coupled optimization problem. Another important future direction is to design the

robust real-time pricing model as countermeasures to mitigate the financial risks

of a variety of cyber data attacks.

3.7 Appendix

In this appendix, we derive the two types of the attack contribution terms in the

second inequality constraint of the attack formulation described in Section 3.5.2.

We define the contributions of the marginal unit and binding unit attacks in the

expected sense as

CM (a) = E[dMi (a)] (3.68)

CB(a) = E[dB(a)] (3.69)

where

d
(M)
i (a) = P̂gi,a [0]− P ∗

gi
[0] (3.70)

d(B)(a) =
∑

j∈Gc
M

(P̂gj,a[0] +Rj∆T − Pmax
gj

[0]) (3.71)

Here, P̂gi,a[0] is the manipulated estimate of generation power at generation bus i.

Then,

CM (a) = E[d
(M)
i (a)] = E[P̂gi,a[0]]− P ∗

gi
[0] (3.72)

(a)
= E[Bi(Hx+ e + a)]− P ∗

gi
[0]

(b)
= Bia (3.73)
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where Bi is the row vector of matrix B, which corresponds to the injection mea-

surement sensor of generator i. (a) follows from P̂gi,a[0] = Biz. (b) follows from

BiH=[0 . . . 0 1 0 . . . 0] where 1 is the ith element of vector BiH and E[xi] ≈ P ∗
gi
[0]

together with E[e] = 0. Similarly,

CB(a) = E[d(B)(a)] =
∑

j∈Gc
M

[E[P̂gj,a[0]] +Rj∆T − Pmax
gj

[0]] (3.74)

=
∑

j∈Gc
M

[Bja+ P ∗
gj
[0] +Rj∆T − Pmax

gj
[0]] (3.75)

(c)
=
∑

j∈Gc
M

[Bja+Rj∆T ] (3.76)

where (c) follows from P ∗
gj
[0] = Pmax

gj
[0].
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CHAPTER 4

LMP SENSITIVITY ANALYSIS TO DATA

CORRUPTION-INDUCED ESTIMATION ERROR

4.1 Introduction

State estimation is one of the key applications for power system energy man-

agement systems (EMSs). The impact of bad data on power systems has been

intensively investigated in recent decades in power system state estimation litera-

ture. Measurement noise and/or manipulated sensor errors in a supervisory control

and data acquisition (SCADA) system may mislead system operators about real-

time conditions in a power system, which in turn may impact the price signals

in real-time power markets. This chapter attempts to provide a novel analytical

framework with which to investigate the impact of bad sensor data on electric

power market operations. In future power system operations, which will probably

involve many more sensors, the impact of sensor data quality on grid operations

will become increasingly important.

In this chapter, we investigate the sensitivity of real-time LMP with respect

to continuous (e.g., the power injection/flow and voltage magnitude) and discrete

(e.g., the on/off status of a circuit breaker) data corruption due to state estimation

error. Fig. 4.1 illustrates how the corrupted SCADA sensor data impact the state

estimation as well as the security constrained economic dispatch in energy manage-

ment systems (EMSs) and market management systems (MMSs). The two lines

(a) and (b) in Fig. 4.1 represent the flow of manipulated network topology and

78



power flow estimates, corresponding to the corruption of discrete and continuous

data, respectively. The impacts of (b) and (a) on LMP are analyzed in Section 4.3

and Section 4.4, respectively.

SCADA

Telemetry

Topology

Processor

Observability

Analysis

State

Estimation SCED 

Bad Data

Processing

Topology Error 

Processing

EMS MMS SCADA 

Impact flow of continuous data

Impact flow of discrete data
Data corruption

(a)

(b)

Figure 4.1: Illustrating the impact of corrupted continuous and discrete
SCADA sensor data on state estimation and SCED.

4.1.1 Literature Review

Real-time market LMPs are primarily affected by a system’s physical conditions,

which are the results of state estimation routine. A study of LMP sensitivity with

respect to system physical conditions was first conducted by Conejo et al. [53]. In

this work, the LMP sensitivity problem was formulated in nonlinear programming

based on the AC optimal power flow (ACOPF) model. It provided a general-

ized platform for calculating the sensitivity of LMP with respect to changes in

various parameters such as load, generator cost, voltage limit, generation power

limit, and network topology. Sensitivity studies have also been conducted with
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linear programming based on the DC optimal power flow (DCOPF) model with

a DCOPF-based algorithm [43], the probabilistic model [54], and the continuous

locational marginal pricing approach [55]. All previous work has focused mainly

on the impact of physical load variations on LMP sensitivity. More recently, some

work has proposed cyber data attacks which stealthily change power flow estimate

and network topology estimate through the corruption of continuous [40] and dis-

crete data [56], [57], and quantify the economic impact of such attacks on real-time

power market operations. However, no analytic study for quantifying the impact

of such estimation errors on LMP sensitivity has been done yet.

4.1.2 Report Organization

The remainder of this chapter is organized as follows. We briefly review AC state

estimation and two representative real-time pricing models in Section 4.2. In Sec-

tion 4.3, we formulate the problem, derive the quantifying sensitivity of LMP

subject to corrupted continuous data and provide numerical examples that illus-

trate the impact of different SCADA sensors on LMP in IEEE 14-bus and 118-bus

systems with both the Ex-ante and Ex-post pricing models. In Section 4.4, a

LMP sensitivity index with respect to topology error due to discrete data corrup-

tion is derived and the derived sensitivity index is verified and illustrated in the

IEEE 14-bus system. We make concluding remarks and suggest future work in

Section 4.5.
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4.2 Preliminaries

The notations used in this section are summarized in Table 4.1.

Table 4.1: Notations.

ai Linear cost coefficient for generator i
bi Quadratic cost coefficient for generator i

Ci(·) Energy cost for generator i
Pgi Scheduled generator power output for generator i
Ldi Fixed demand at bus i

Pmin
gi

, Pmax
gi

Min/max generation limits for generator i at Ex-ante dispatch

Fmin
l , Fmax

l Min/max flow limits for transmission line l at Ex-ante dispatch
Sli Generation shift factor of transmission line l to bus i

∆Pmax
gi

,∆Pmin
gi

Min/max incremental generation limits for generator i
at Ex-post dispatch

Ri Ramp rate of generator i
∆T Dispatch interval
πi Locational marginal price at bus i
λ Shadow price of the system energy balance equation
τi Shadow price of the capacity constraint for generator i
µl Shadow price of the transmission line constraint for transmission

line l
Nb Total number of buses
Nm Total number of sensor measurements
Nl Total number of transmission lines

CL+, CL− Sets of positively and negatively congested lines at Ex-ante
dispatch

Sv Set of voltage magnitude measurements
Sri Set of real power injection measurements
Sai Set of reactive power injection measurements
Srf Set of real power flow measurements
Saf Set of reactive power flow measurements
Ik k × k identity matrix

1k, 0k k × 1 column vectors with all ones and all zeros, respectively
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4.2.1 AC State Estimation Model

The measurement model for AC state estimation is formulated as

z = h(x) + e. (4.1)

Here z = [zTr zTa zTv ]
T is the Nm×1 measurement vector that consists of real power

injection and the flow vector zr = [zTri z
T
rf ]

T , the reactive power injection and flow

vector za = [zTai z
T
af ]

T , and the bus voltage magnitude vector zv. x = [θT VT ]T is

the state vector that consists of the (Nb − 1) × 1 bus voltage phase angle vector

θ excluding a slack bus and the Nb × 1 voltage magnitude vector V. h(x) is the

Nm × 1 nonlinear vector valued measurement function relating measurements to

states, and e is the Nm × 1 independent identically distributed (i.i.d.) Gaussian

measurement error vector with zero mean and diagonal covariance matrix R. The

state estimator computes the optimal estimate of x by minimizing the weighted

least squares of measurement error:

minimize J(x) = rTR−1r (4.2)

s.t. r = z− h(x). (4.3)

Using the Gauss-Newton method, the weighted least squares estimate vector x̂ is

computed by the following iterative procedure [52]:

∆x̂k+1 = [G(x̂k)]−1HT (x̂k)R−1∆zk (4.4)

where H(x̂k) =
[
∂h(x̂k)
∂x̂k

]
is the Nm × (2Nb − 1) Jacobian matrix at k-th iteration,

and

∆x̂k+1 = x̂k+1 − x̂k (4.5)

∆zk = z− h(x̂k) (4.6)

G(x̂k) = HT (x̂k)R−1H(x̂k). (4.7)
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The iteration process in (4.4) continues until the maximum of |∆x̂k| is less than a

predetermined threshold, otherwise stops and yields the ultimate estimates.

4.2.2 Real-time Electricity Pricing Model

Locational marginal price (LMP) is the core variable in market operations [58]. In

real-time power markets, LMP is obtained as the by-product of security constrained

economic dispatch (SCED) in either of the two main pricing models: Ex-ante (e.g.

in ERCOT, NY ISO) and Ex-post (e.g. in ISO New England, PJM, and Midwest

ISO) [42]. Both pricing models are built on the power flow and network topol-

ogy results given by the state estimator, which uses two types of sensor data: 1)

continuous (e.g., the power injection/flow and voltage magnitude); and 2) discrete

(e.g., the on/off status of a circuit breaker).

The Ex-ante Model: In ex-ante real-time market models, LMPs are computed

before the actual deployment of dispatch orders. For the system operator, the

Ex-ante dispatch is formulated as follows [43]:

min
Pgi

Nb∑

i=1

Ci(Pgi) (4.8)

s.t.

λ :

Nb∑

i=1

Pgi =

Nb∑

i=1

Ldi (4.9)

τ : P̂min
gi

≤ Pgi ≤ P̂max
gi

∀i = 1, . . . , Nb (4.10)

µ : Fmin
l ≤

Nb∑

i=1

Sli(Pgi − Ldi) ≤ Fmax
l ∀l = 1, . . . , Nl (4.11)
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where

P̂max
gi

= min{Pmax
gi

, P̂gi(z) +Ri∆T}

P̂min
gi

= max{Pmin
gi

, P̂gi(z)− Ri∆T}.

In this formulation, the objective function is to minimize the total generation costs

in (4.8). (4.9) is the system-wide energy balance equation. (4.10) is the physical

capacity constraints of each generator embedded with its ramp constraints. (4.11)

is the transmission line constraints.

The Ex-post Model: In ex-post real-time market models, LMPs are computed

after the fact using real-time estimates for settlement purposes. Assuming no

demand elasticity, the Ex-post dispatch is written as [44]:

min
Pgi

Nb∑

i=1

Ci(Pgi) (4.12)

s.t.

λ :

Nb∑

i=1

Pgi =

Nb∑

i=1

P̂gi(z) (4.13)

τ : P̂min
gi

≤ Pgi ≤ P̂max
gi

∀i = 1, . . . , Nb (4.14)

µmax :

Nb∑

i=1

Sli(Pgi − Ldi) ≤ F̂l(z) ∀l ∈ CL+ (4.15)

µmin :

Nb∑

i=1

Sli(Pgi − Ldi) ≥ F̂l(z) ∀l ∈ CL− (4.16)

where

P̂max
gi

= P̂gi(z) + ∆Pmax
gi

, P̂min
gi

= P̂gi(z) + ∆Pmin
gi

.

The above formulation is expressed with different notation than the Ex-post model

formulated in [44] in order to emphasize that the state estimation solution has a

direct impact on the Ex-post model.
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4.3 Impact Analysis of LMP Subject to Power Flow Esti-

mate Errors

In this subsection, we focus on a sensitivity analysis of real-time LMP subject to

corrupted continuous data fed into the state estimator. Fig. 4.2 illustrates that

via state estimation, SCADA measurement z may impact the results of a pair of

Ex-ante nodal price and optimal generation dispatch {π (x̂A(z)), P
∗
g (x̂A(z))} and

the Ex-post price π (x̂P (z)).

G G 

= ( ) +  

( ) =  

State Estimation 

Ex-ante 

Pricing 

Ex-post 

Pricing 

( ) ( ) 

( ( )) 

{ , 

( ( ))} 

Power System 

SCED 
Ex-ante 
Dispatch 

Figure 4.2: A three-layered framework illustrating the coupling of the
physical power system, state estimation, and SCED.

4.3.1 Problem Formulation

Referring to Fig. 4.2, for all buses (i = 1, . . . , Nb) and measurements (j =

1, . . . , Nm), the Nb × 1 vector of LMPs can be expressed in a composite function
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form:

LMP = π(x̂(z))

where

π = [π1, π2, . . . , πNb
]T (4.17)

πi = fi(x̂1, x̂2, · · · , x̂Nm
) (4.18)

x̂j = gj(z1, z2, · · · , zNm
). (4.19)

πi represents the LMP at bus i. zj and x̂j are the measurement and its correspond-

ing estimate at sensor j, respectively. fi(·) is the vector function that describes the

relationship between any estimate and LMP at bus i. gj(·) is the vector function

that describes the relationship between any measurement and estimate at sensor

j.

The primary goal of this paper is to compute LMP sensitivity at any bus i sub-

ject to a measurement change at any sensor j throughout the entire transmission

network.

∂πi

∂zj
= Λ(i,j). (4.20)

By chain rule, for all i and j, (4.20) is written as

∂πi

∂zj
=

∂πi

∂x̂1

∂x̂1

∂zj
+

∂πi

∂x̂2

∂x̂2

∂zj
+ · · ·+ ∂πi

∂x̂Nm

∂x̂Nm

∂zj
. (4.21)

In (4.21), the estimate x̂j is chosen as an intermediate variable for computing

the partial derivative of πi with respect to zj . This variable is used to set the

bounds for: 1) minimum and maximum generation capacity in (4.10), (4.14); 2) the

system balance equation in (4.13); and 3) the positive and negative transmission

line capacity in (4.15), (4.16). Equation (4.21) can be expressed in matrix form as
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shown in (4.22).

Λ(Nb×Nm) =
∂π

∂z
=

∂π

∂x̂

∂x̂

∂z
(4.22)

=




∂π1

∂x̂1

∂π1

∂x̂2
· · · ∂π1

∂x̂Nm

∂π2

∂x̂1

∂π2

∂x̂2
· · · ∂π2

∂x̂Nm

...
...

. . .
...

∂πNb

∂x̂1

∂πNb

∂x̂2
· · · ∂πNb

∂x̂Nm




︸ ︷︷ ︸
ΛA




∂x̂1

∂z1

∂x̂1

∂z2
· · · ∂x̂1

∂zNm

∂x̂2

∂z1

∂x̂2

∂z2
· · · ∂x̂2

∂zNm

...
...

. . .
...

∂x̂Nm

∂z1

∂x̂Nm

∂z2
· · · ∂x̂Nm

∂zNm




︸ ︷︷ ︸
ΛB

.

The sensitivity Λ(i,j) in (4.20) is the element at the ith row and jth column of the

Nb ×Nm sensitivity matrix Λ. The matrix Λ is written as the multiplication form

of two matrices with different types of sensitivities: the Nb ×Nm matrix ΛA = ∂π
∂x̂

quantifies the economic impact of any estimate on any LMP, and the Nm × Nm

matrix ΛB = ∂x̂
∂z

quantifies the cyber impact of any sensor measurement on any

estimate. The derivations of ΛA and ΛB are described in more detail in the next

section.

4.3.2 Derivation of the Proposed LMP Sensitivity Index

• Sensitivity of LMPs to Estimated States

We first derive the sensitivity matrix ΛA using the Ex-ante model. To this end,

the perturbation approach developed in [53] is applied to the Ex-ante model in
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Subsection 4.2.2. The Lagrangian function of the Ex-ante dispatch is written as

L =

Nb∑

i=1

Ci(Pgi)− λ

(
Nb∑

i=1

[Pgi − Ldi ]

)
+

2Nb∑

j=1

τj

(
Nb∑

i=1

AjiPgi − Ĉj

)

+

2Nl∑

l=1

µl

(
Nb∑

i=1

Sli[Pgi − Ldi ]−Dl

)

where Aji, Sli, Ĉj and Dl are the elements of the following matrices

A(2Nb×Nb) =

[
Aji

]
=




INb

−INb


 , B(2Nl×Nb) =

[
Sli

]
=




S

−S


 (4.23)

Ĉ(2Nb×1) =

[
Ĉj

]
=




P̂max
g

−P̂min
g


 , D(2Nl×1) =

[
Dl

]
=




Fmax

−Fmin


 .(4.24)

Here, S is the generation shift factor matrix, and

P̂max(min)
g = [P̂max(min)

g1
, . . . , P̂max(min)

gNb
]T , Fmax(min) = [F

max(min)
1 , . . . , F

max(min)
Nl

]T .

(4.25)

As in [53], unbinding inequality constraints are excluded in our sensitivity analysis.

Let us define Bg and Bf as the number of binding constraints associated with

generation capacity and line capacity, respectively. Then, the KKT conditions of

the Ex-ante problem are written as

(i)
∂Ci(Pgi)

∂Pgi

− λ+

Bg∑

j=1

τjAji +

Bf∑

l=1

µlSli = 0 ∀i = 1, . . . , Nb

(ii)

Nb∑

i=1

Pgi =

Nb∑

i=1

Ldi

(iii)

Nb∑

i=1

AjiPgi = Ĉj ∀j = 1, . . . , Bg

(iv)

Nb∑

i=1

Sli[Pgi − Ldi ] = Dl ∀l = 1, . . . , Bf .
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after which the above KKT equations are perturbed with respect to Pgi, Ldi , Ĉj,

λ, τj, and µj as follows:

(i)
∂

∂Pgi

(
∂Ci(Pgi)

∂Pgi

)

︸ ︷︷ ︸
Mi

dPgi − dλ+

Bg∑

j=1

Ajidτj +

Bf∑

l=1

Slidµl = 0 ∀i = 1, . . . , Nb

(ii)

Nb∑

i=1

dPgi =

Nb∑

i=1

dLdi

(iii)

Nb∑

i=1

AjidPgi = dĈj ∀j = 1, . . . , Bg

(iv)

Nb∑

i=1

SlidPgi =

Nb∑

i=1

SlidLdi ∀l = 1, . . . , Bf .

It should be noted that the variables Dl, Aji, and Sli in the KKT equations are not

perturbed. This is due to the fact that 1) the limits of line flow constraint limits

in the Ex-ante model are not updated by the state estimator, and 2) the network

topology is not affected by corrupted analog data. These perturbation equations

can be expressed in matrix form:




M −1Nb
Υ

1T
Nb

0 0

ΥT 0 0




︸ ︷︷ ︸
Ξ




dPg

dλ

dτ s

dµs




=

[
U1

T U2
T

]

︸ ︷︷ ︸
Φ




dLd

dĈs


 (4.26)

where

M(Nb×Nb) = diag(M1, . . . ,MNb
) (4.27)

Υ(Nb×[Bg+Bf ]) =

[
AT

s BT
s

]
(4.28)

U1(Nb×[Nb+1+Bg+Bf ]) =

[
0 1Nb

0 BT
s

]
(4.29)

U2(Bg×[Nb+1+Bg+Bf ]) =

[
0 0Bg

IBg
0

]
. (4.30)
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Taking the inverse of Ξ on both sides of (4.26),




dPg

dλ

dτ s

dµs




= Ξ−1Φ︸ ︷︷ ︸
Λp




dLd

dĈs


 . (4.31)

The subscript s of the variables in (4.26), (4.28), and (4.29) represents the sub-

vector (submatrix) of the original vector (matrix) that corresponds to the binding

constraints. The matrix Λp in (4.31) is partitioned into two sensitivity matrices—

ΛLd
and ΛĈs

:

Λp =

[
ΛLd

ΛĈs

]
=




∂Pg

∂Ld

∂Pg

∂Ĉs

∂λ
∂Ld

∂λ

∂Ĉs

∂τs

∂Ld

∂τs

∂Ĉs

∂µs

∂Ld

∂µs

∂Ĉs




. (4.32)

Using the sensitivities of two shadow prices with respect to Ĉs

(
∂λ

∂Ĉs
, ∂µs

∂Ĉs

)
in ΛĈs

and according to the definition of LMP [46], we finally construct the matrix ΛA.

On the other hand, in the Ex-post model, (4.26) can be extended as follows:




M −1Nb
Υ

1T
Nb

0 0

ΥT 0 0







dPg

dλ

dτ s

dµs




=

[
U1

T U2
T U3

T

]



dP̂g

dĈs

dD̂s



. (4.33)

D̂s is the subvector of D̂ (the real power flow estimate vector) that corresponds to

the binding constraints, and

U3(Bf×[Nb+1+Bg+Bf ]) =

[
0 0Bf

0 IBf

]
. (4.34)
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Compared to (4.32), Λp in the Ex-post model is written as

Λp =

[
ΛP̂g

ΛĈs
ΛD̂s

]
=




∂Pg

∂P̂g

∂Pg

∂Ĉs

∂Pg

∂D̂s

∂λ

∂P̂g

∂λ

∂Ĉs

∂λ

∂D̂s

∂τ

∂P̂g

∂τ

∂Ĉs

∂τ

∂D̂s

∂µ

∂P̂g

∂µ

∂Ĉs

∂µ

∂D̂s




. (4.35)

• Sensitivity of State Estimation to SCADA Data

Sensitivity analysis of state estimation subject to SCADA measurements was pi-

oneered by Stuart and Herget [59], who investigated the effect of power system

modeling errors on weighted least squares (WLS) state estimation. A more rigor-

ous sensitivity analysis method, based on the same perturbation approach illus-

trated in [53], has been proposed by Mı́nguez and Conejo [60]. This method has

been formulated in a general optimization problem that allows for the sensitivity

analysis of alternative state estimation methods with different objective functions,

such as the least absolute value (LAV) from the weighted least squares. It should

be noted that, in this paper, the sensitivity analysis is based on WLS state esti-

mation. However, one can apply it to various state estimation methods by using

the method proposed in [60].

In this subsection, we first derive the matrix ΛB that illustrates the sensitivities

of the real power injection and real flow measurement estimates with respect to

the changes in all types of measurements. In equation (4.4), the matrix Ψ(x̂k) is

defined and partitioned as

Ψ(x̂k) = [G(x̂k)]−1HT (x̂k)R−1 =




Ψθ̂(x̂
k)

ΨV̂(x̂
k)


 (4.36)

where Ψθ̂(x̂
k) and ΨV̂(x̂

k) represent the sensitivities of the voltage phase angle

estimates and the magnitudes with respect to all perturbed measurements at the
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k-th iteration, respectively. Therefore, (4.4) can be rewritten as




dθ̂
k+1

dV̂k+1


 =




Ψθ̂(x̂
k)

ΨV̂(x̂
k)


 dz. (4.37)

It should be noted that the DCOPF-based SCED is formulated with linearized

real power injection and a flow estimation solution [61]. Using the linear equations

in the upper partition of equation (4.37) and the matrix Ψθ̂ computed with the

converged estimate x̂, we have the following sensitivity equation:

dẑr =




BS
Pθ

BPθ

BFθ



dθ̂ =




BS
Pθ

BPθ

BFθ



Ψθ̂dz = Kdz (4.38)

where

K =




BS
Pθ

BPθ

BFθ



Ψθ̂. (4.39)

dẑr is the perturbed estimate vector of the real power injection and the flow mea-

surements. The matrix BPθ = ArBdA
T
r is defined as the (Nb − 1) × (Nb − 1)

reduced node-to-node susceptance matrix that explains the relationship between

real power injections at any bus except the slack bus and the phase angles. Here

Bd = diag(s1, s2, . . . , sNl
) is the Nl × Nl diagonal branch susceptance matrix and

Ar is the (Nb − 1)× Nl reduced node-to-branch incidence matrix without a slack

bus. According to the law of conservation of power, the 1 × (Nb − 1) matrix

BS
Pθ = −1T

(Nb−1)BPθ is derived, and it explains the relationship between real power

injections at the slack bus and the phase angles. The matrix BFθ = BdA
T
r specifies

the relationship between real power flows and the phase angles. Using (4.39), we

compute the matrix ΛB = K.
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4.3.3 Simulation Studies

In this section, we illustrate and verify the proposed approach to quantifying the

sensitivities of real-time LMP with respect to changes in sensor data. The proposed

sensitivity analysis is applied to IEEE 14-bus and 118-bus systems. System data

for the IEEE 14-bus system are taken from the MATPOWER 4.0 IEEE 14-bus test

case file. Table 4.2 shows the generator parameters in the IEEE 14-bus system.

Table 4.2: Generator Parameters in the IEEE 14-bus System.
Bus Pmin

gi
Pmax
gi

ai($/MWh) bi($/(MW)2h)

1 0MW 332.4MW 20 0.043
2 0MW 140MW 20 0.25
3 0MW 100MW 40 0.01
6 0MW 100MW 40 0.01
8 0MW 100MW 40 0.01

In this simulation, the measurement configuration consists of 8 voltage mag-

nitude measurements, 8 pairs of real and reactive power injection measurements,

and 12 pairs of real and reactive power flow measurements. Vi is the measurement

of voltage magnitude at bus i, Pi and Qi are the measurements of real and reac-

tive power injection at bus i, respectively, and Pi,j and Qi,j are the measurements

of real and reactive power flow from bus i to bus j, respectively. Fig. 4.3 shows

the IEEE 14-bus system with a measurement configuration that consists of the

following five measurement sets:
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Sv = {V2, V3, V7, V8, V10, V11, V12, V14}

Sri = {P2, P3, P7, P8, P10, P11, P12, P14}

Sai = {Q2, Q3, Q7, Q8, Q10, Q11, Q12, Q14}

Srf = {P1,2, P2,3, P4,2, P4,7, P4,9, P5,2, P5,4, P5,6, P6,13, P7,9, P11,6, P12,13}

Saf = {Q1,2, Q2,3, Q4,2, Q4,7, Q4,9, Q5,2, Q5,4, Q5,6, Q6,13, Q7,9, Q11,6, Q12,13}.

In this measurement configuration, the locations of the voltage magnitude mea-

surements are consistent with those of the real and reactive power injection mea-

surements. For each measurement set, the measurement index is numbered from

one to the total number of measurements in each set. We assume that all measure-

G 

G 

G 

G 

G 
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5

3

4

78
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12
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11 10

9

14

: Injection sensor : Flow sensor

: Voltage magnitude sensor

Figure 4.3: IEEE 14-bus system with a given measurement configuration.

ments are corrupted by additive Gaussian noises with equal variances σ2=0.00001.

Finally, for all buses i, j, and k, we compute LMP sensitivities with respect to

the five types of measurements—real/reactive power injection, real/reactive power
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Figure 4.4: Sensitivities of Ex-ante prices with respect to (a) real power
injection measurements, (b) reactive power injection
measurements, (c) real power flow measurements, (d)
reactive power flow measurements, and (e) voltage
magnitude measurements. Line 3-4 is congested and Pg3 is

binding at P̂min
g3

in the IEEE 14-bus system.
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flow, and voltage magnitude—as follows:

∂πi

∂Pj

,
∂πi

∂Qj

,
∂πi

∂Pj,k

,
∂πi

∂Qj,k

,
∂πi

∂Vj

. (4.40)

Units for the sensitivities
{

∂πi

∂Pj
, ∂πi

∂Pj,k

}
,
{

∂πi

∂Qj
, ∂πi

∂Qj,k

}
, and

{
∂πi

∂Vj

}
are

($/MWh)/(puMW), ($/MWh)/(puMVAr), and ($/MWh)/(puV), respectively.

Fig. 4.4 provides snapshots of five different Ex-ante LMP sensitivities in (4.40)

at some buses in the IEEE 14-bus system with line 3-4 congestion. These figures

provide information about the directions of the post-corruption LMPs as well as

their sensitivities with respect to each type of measurement at a given dispatch

time. In this simulation, after the Ex-ante dispatch problem has been solved,

there exist two binding generation capacity constraints: Pg3 and Pg8 are binding at

P̂min
g3

and P̂max
g8

, respectively. We assume that the corruption of the measurements

impacts the binding constraint associated with Pg3 . In other words, the corrupted

measurements affect P̂min
g3

(an intermediate variable in (4.21)), subsequently leading

to changes in all the LMPs. We randomly choose seven buses (buses 1, 2, 3, 4, 5,

10, 13) out of the fourteen to differentiate clearly the LMP sensitivities among the

various buses. The absolute values of the LMP sensitivities at buses 3 and 5 are

the largest and smallest, setting the upper and lower bounds for sensitivity at the

fourteen buses. We obtain from the simulation results the following observations:

(O1) Sensitivity grouping property : all buses can be categorized into two sensitivity

groups. In each group, buses obtain sensitivities with the same sign, but

of different magnitude and subject to all types of measurements. Group I

includes buses 1, 2, 3 and 5, and Group II buses 4, 10 and 13. For example,

in Fig. 4.4(b) the corruption of z2 yields positive sensitivities for Group I and

negative sensitivities for Group II, whereas the corruption of z6 yields the
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reverse: negative sensitivities for Group I and positive sensitivities for Group

II. This grouping property enables system operators to predict rapidly the

direction of LMP’s distortion in response to sensor data corruption.

(O2) Identification of buses that are economically sensitive to data corruption:

buses incident to both ends of the congested line have the highest LMP

sensitivities with respect to sensor data corruption. For example, bus 3 in

Group I and bus 4 in Group II incident to congested line 3-4 have the largest

absolute sensitivities in each group. In particular, it should be noted that

the largest sensitivities are associated with bus 3. This implies that bus 3 is

the most financially vulnerable to any corruption in sensor measurement.

(O3) Identification of influential sensors on LMP : the sensor most influential on

LMP change is identified in each measurement group. In Fig. 4.4(a),(b),

the sensors with z2 (P3 and Q3) have the most significant impact on LMP.

This is due to the fact that the change of the intermediate variable P̂min
g3

is

dominantly affected by P3 and Q3, subsequently leading to more change in

LMP. This effect is also verified in Fig. 4.9(a),(b) based on the IEEE-118 bus

system. In Fig. 4.4(c),(d) and (e), the sensors with z8, z11 and z3 (P5,6, Q11,6

and V7) are the most influential, respectively. In addition, it should be noted

that the localized effects on increasing sensitivity of measurements adjacent

to the congested line and/or the intermediate variable do not always hold

true. For example, z11 (P11,6) is farther away from both the congested line

and the intermediate variable than z5 (P4,9); however, in Fig. 4.4(c), data

corruption in the former leads to a higher sensitivity than in the latter. This

non-localized data effect motivates system operators to use our developed

tool for identifying which sensors impact LMP sensitivity.

(O4) Impact of different types of sensor data on LMP : through a comparison of all
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the figures, LMP appears to be more sensitive to real power injection/flow

measurements than to reactive power injection/flow and voltage magnitude

measurements. In order to compare the sensitivities of different units fairly,

a normalized LMP sensitivity |zj|∂πi

∂zj
is defined, which is incorporated into

the following proposed metric:

Ωi
k =

|Sk|∑

j=1

∣∣∣∣|zj |
∂πi

∂zj

∣∣∣∣ / |Sk| (4.41)

where Ωi
k is the average of the absolute normalized sensitivities at bus i with

respect to any measurement zj in the set Sk (k = v, ri, ai, rf, af). The

cardinality of the set |Sk| means the number of elements in Sk. For example,

at bus 3, we compute Ω3
ri = 0.474, Ω3

rf = 0.253, Ω3
v = 0.175, Ω3

af = 0.013,

and Ω3
ai = 0.012, which is consistent with our expectation that real power

injection and flow measurements have a more significant impact on LMP

sensitivity than other measurements. This is due to the fact that DCOPF-

based SCED is conducted based on a linearized state estimation solution that

is more influenced by real power measurements than by reactive power and

voltage magnitude measurements, as illustrated in (4.37) and (4.38).

(O5) In Fig. 4.4(e), LMP sensitivities at all buses affected by corrupted voltage

magnitude measurements fluctuate more smoothly than the ones affected by

other types of corrupted measurements. In other words, all voltage magni-

tude measurements impact LMP variations almost evenly. In addition, the

non-localized effect mentioned in (O3) is also verified between z2 (V3) and z3

(V7).

Fig. 4.5 provides snapshots of the Ex-post LMP sensitivities at arbitrarily cho-

sen buses (buses 1, 6, 7, 9, 12, 13 and 14) with respect to the aforementioned
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Figure 4.5: Sensitivities of Ex-post prices with respect to (a) real power
injection measurements, (b) reactive power injection
measurements, (c) real power flow measurements, (d)
reactive power flow measurements, and (e) voltage
magnitude measurements. Line 6-12 is congested and the
corresponding line flow is binding at the capacity limit of line
6-12 in the IEEE 14-bus system.
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Figure 4.6: LMP differences between with and without corrupted data
when z8 is corrupted in Fig. 4.4(c).

five types of sensor measurements. In this simulation, line 6-12 is assumed to be

congested at both Ex-ante dispatch and Ex-post dispatch. P̂6,12 is chosen as an

intermediate variable to compute LMP sensitivity. We can observe from Fig. 4.5

the same phenomena as in Fig. 4.4: (O1) Group 1 for buses 1 and 6, and Group

2 for buses 7, 9, 12, 13 and 14; (O2) buses 6 and 12 incident to the congested

line have the largest absolute value of LMP sensitivity in each group; (O3) in

Fig. 4.5(a) and (b), the sensors with z7 (P12 and Q12) have the most significant

impact on LMP, and in Fig. 4.5(c), (d) and (e), the sensors with z8, z12 and z5 (P5,6,

Q12,13 and V10) are the most influential, respectively; and (O4) & (O5) real power

measurements have a stronger impact on LMP sensitivity than the reactive power

and voltage magnitude measurements, and the voltage magnitude measurements

influence LMP sensitivity almost evenly.

Fig. 4.6 shows actual Ex-ante LMP and how they differ when they have or do

not have corrupted data at all buses. It is assumed that the magnitude of z8 is

corrupted by 2% in Fig. 4.4(c). In the Chi-squares test [52] within a 99% confidence
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level, the estimated objective functions and the bad data detection threshold are

computed. J(x̂) = 15.69 and J (b)(x̂) = 30.17 correspond to the values of the

estimated objective functions without and with corrupted data, respectively, and

χ2 = 38.93 is the value of the bad data detection threshold. It should be noted that

since J (b)(x̂) = 30.17 < χ2 = 38.93, the corrupted measurement z8 bypasses the

bad data detection engine, which could then lead to LMP distortion. As expected,

Fig. 4.6 justifies the result of our sensitivity analysis in two main ways. First, the

prices at buses 1, 2, 3, and 5 in Group I change in a positive direction whereas the

prices at the buses in Group II change in a negative direction. This observation

explains the grouping property specified in (O1). Second, the descending order

of the magnitudes of the actual price deviations is in accordance with that of

sensitivity magnitudes. For example, Fig. 4.4(c) shows that buses 3, 2, 1 and 5 in

Group I are in descending order of sensitivity magnitudes, which is consistent with

the descending order of the actual price deviations at those same buses in Fig. 4.6.
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Figure 4.7: LMP differences between with and without corrupted data in
Fig. 4.4 (a) P3, Q3, and V3 corruptions (b) P5,6 and Q5,6

corruptions.

Fig. 4.7 shows the Ex-ante LMP deviations that are caused by the undetectable

same amount of corruption in each measurement group {P3, Q3, V3} and {P5,6,

Q5,6}. These figures show that real power injection and flow measurements have
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a more significant impact on LMP than other measurements. This fact justifies

observation (O4).
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Figure 4.8: Comparison of LMP sensitivities at bus 3 in Fig. 4.4(a) with
varying variances of injection measurements P3 and P11.

Fig. 4.8 shows the impact of sensor measurement accuracy on LMP sensitiv-

ity. In this figure, four plots represent LMP sensitivities at bus 3 in Fig. 4.4(a),

with consistently varying variances of the two injection measurements z2 (P3)

and z6 (P11). These sensitivities are measured at four different variance levels;

σ2=0.00005, 0.0001, 0.0005, and 0.001. We can observe from Fig. 4.8 that, as the

measurement variance decreases (i.e., the measurement accuracy increases), the

corresponding LMP sensitivity increases. In other words, more accurate sensors

lead to more change in LMP while sensor data remain corrupted. This shows

the coupling between state estimation accuracy and LMP calculation. Based on

this observation, one possible guideline for mitigating the financial risk from data

corruption is to make it a high priority to protect accurate sensors.

For the IEEE 118-bus system, with 54 generation buses and 186 transmission

lines as shown in Fig. 4.10, we assume that real and reactive power injection mea-
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Figure 4.9: Sensitivities of Ex-ante prices with respect to (a) real power
injection measurements, (b) reactive power injection
measurements, (c) real power flow measurements, (d)
reactive power flow measurements, and (e) voltage
magnitude measurements. Line 15-17 is congested and Pg19 is

binding at P̂max
g19

in the IEEE 118-bus system.

103



surements are placed at 49 generator buses, voltage magnitude measurements at 9

generator buses, and real and reactive flow measurements at 129 lines. Therefore,

this system has a total of 365 measurements. System data for the IEEE 118-bus

system are taken from the MATPOWER 4.0 IEEE 118-bus test case file.

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G G

G G

G

G G

G

G

G

G

G G G G G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

Figure 4.10: IEEE 118-bus system.

Fig. 4.9 show the Ex-ante LMP sensitivities at buses 15, 17, 35, and 75 in the

IEEE 118-bus system with line 15-17 congestion with respect to the five different

types of measurement. The magnitudes of the sensitivities at buses 15 and 17 are

the highest in each sensitivity group. P̂max
19 is chosen as an intermediate variable

to compute LMP sensitivity. As expected, all observations from Fig. 4.4 are also

verified in the larger IEEE 118-bus system: 1) sensor grouping property (Group
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1: buses 15 and 35, and Group 2: buses 17 and 75); 2) identification of the

most economically sensitive buses in each group (buses 15 and 17) and the most

influential sensors (e.g., z10 with P19 andQ19 in Fig. 4.9(a)(b)) on LMP change; and

3) the impact of different types of sensor data on LMP (e.g., the more significant

impact of real power measurements than other types of measurements).

4.4 Impact Analysis of LMP Subject to Network Topology

Estimate Errors

4.4.1 Preliminaries

We consider a state estimation model based on a linearized DC power flow. The

measurements taken by each sensor are written by

z = Jx + e (4.42)

where x is the state vector of the entire power system, z is measurement vector,

e is independent identically distributed (i.i.d.) Gaussian random measurement

error vector with zero mean and covariance matrix R, and J is the true system

Jacobian matrix of the state vector x. Then, the weighted least squares estimate

of x is calculated by

x̂(z) = (JTR−1J)−1JTR−1z. (4.43)

Topology error processing detects and identifies topology errors based on mea-

surement residuals. The wrongly reported circuit breaker status data generate two
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types of topology errors: (i) line status error; and (ii) substation configuration

error. The former represents an incorrect exclusion/inclusion of transmission lines

from the network model whereas the latter a split/merging error of buses at the

substation. In this section, we focus on line status error and substation configura-

tion error is beyond the scope of this paper. For line status error, the measurement

equation (4.42) is rewritten as

z = JEx+ Ex+ e

where J = JE+E. Here, JE is the incorrect system Jacobian matrix due to topology

errors. E is the system Jacobian error matrix. Then, topology error detection is

performed using the normalized residual vector as follows:

E(rN) = Ω− 1
2 (I−KE)Mf = Sf

H1

≷
H0

η (4.44)

where M is the measurement-to-branch incidence matrix, f is a vector of branch

flow errors, KE = JE(JE
TR−1JE)

−1JE
TR−1, Ω = diag{Cov(r)}, S = Ω− 1

2 (I −

KE)M is the sensitivity matrix for rN with respect to branch flow errors f , and η

is the threshold of topology error detection. H1 and H0 correspond to the cases

with and without topology error, respectively. In this section, we assume that

the attack proposed in [56] successfully changes network topology estimate while

bypassing topology error detection (4.44).

Ex-ante and Ex-post models rely on the network topology and the cost func-

tions of generators. Therefore, our results illustrated in the next subsection are

applicable to both models. In this section, we consider a real-time Ex-ante market

model where LMPs are computed before the actual deployment of dispatch orders.

For the system operator, the Ex-ante dispatch is formulated as follows,

min
pi

∑

i∈G

Ci · pi (4.45)
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s.t.

λ :

Nb∑

n=1

Pgn =

Nb∑

n=1

Ldn (4.46)

τ : pmin
i ≤ pi ≤ pmax

i ∀i ∈ G (4.47)

µ : Fmin
l ≤

Nb∑

n=1

Hl,n(Pgn − Ldn) ≤ Fmax
l ∀l = 1, . . . , Nl (4.48)

In this formulation, the objective function is to minimize the total generation

costs in (4.45). (4.46) is the system-wide energy balance equation. (4.47) is the

physical capacity constraints of each generator. (4.48) is the transmission line

constraints. λ, τ , and µ are the dual variables associated with the aforementioned

equality and inequality constraints. τ and µ are expressed as τ = [τ T
max, τ

T
min]

T

and µ = [µT
max,µ

T
min]

T where subscript max(min) represents max(min) inequality

constraint. Hl,n is the element at the lth row and nth column of the Nl × Nb

distribution factor matrix H. This matrix explains the sensitivity of branch flows

to nodal injection powers. The real-time LMP vector π is computed using the

following equation [46]:

π = λ1Nb
−HT [µmax − µmin] . (4.49)

4.4.2 Derivation of the Proposed LMP Sensitivity Index

In this subsection, we derive a simple sensitivity index to quantify the impact

of network topology errors on LMP. This derivation is based on the following

assumptions:

(A1) Only one single transmission line is congested for both cases with and without

topology error.
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(A2) Network congestion patterns and marginal units remain unchanged with

topology error.

(A3) The value of λ (LMP at slack bus) remains unchanged with topology error.

In (A2), a marginal unit is defined as a unit that generates power between its min-

imum and maximum capacity. The above assumptions would hold true under the

situation in which other lines except a congested line have sufficient transmission

capacity. It should be noted that these assumptions do not capture all the possible

scenarios in actual operation. However, a large number of scenarios would fit into

these assumptions under normal to lighted loading situations. Future work will

expand the analysis to a broader set of scnarios.

We first present Proposition 1 where the shadow price associated with a con-

gested line is expressed as the ratio of the gap of the energy costs of marginal units

to the gap of distribution factors that correspond to the intersections of marginal

units and the congested transmission line. It serves as the theoretical basis for

the main result of this paper (equation (4.65)), which does not require extensive

numerical simulations in order to determine the sensitivity of LMP to network

topology errors.

Proposition 1. Let i and j be two marginal units with Cj > Ci, belonging to

different buses. Then, the shadow price for the congested transmission line l is

expressed as

µl =
∆C(j, i)

∆Hl(i, j)
(4.50)

where ∆C(j, i) = Cj − Ci and ∆Hl(i, j) = Hl,i −Hl,j.

Proof. The shadow price of a congested transmission line is defined as the change of
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total dispatch cost via relaxing the transmission constraint by one unit. Therefore,

the shadow price for the congested transmission line l can be written as

µl = −
∑

i∈G

Ci∆pi, (4.51)

which satisfies the following two constraints:

Nb∑

n=1

∆Pgn = 0 (4.52)

Nb∑

n=1

Hl,n∆Pgn = 1. (4.53)

(4.51) is the increasing total generation cost. (4.52) represents that the overall

demand still needs to be balanced. (4.53) is the line flow equation obtained by

relaxing the constraint of the transmission line l by 1MW. Then, using (4.51)

and (4.52),

µl

(a)
= −Ci∆Pgi − Cj∆Pgj

(b)
= −Ci∆Pgi + Cj∆Pgi = (Cj − Ci)∆Pgi (4.54)

where (a) follows from the property that a single transmission line congestion yields

two marginal units [62], thus setting the variable ∆Pi associated with any other

unit to be zero, and (b) follows from (4.52). Similarly, (4.53) can be rewritten as

1 = Hl,i∆Pgi +Hl,j∆Pgj = Hl,i∆Pgi −Hl,j∆Pgi = (Hl,i −Hl,j)∆Pgi. (4.55)

Finally, the combination of (4.54) and (4.55) provides the following desired result,

µl =
[Cj − Ci]

[Hl,i −Hl,j]
=

∆C(j, i)

∆Hl(i, j)
. (4.56)

Proposition 1 together with (A1)-(A3) implies the following corollaries.
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Corollary 4.4.0.1. Consider the situation under (A1)-(A3). Suppose that the line

l is congested. Then, the LMP sensitivity index with respect to the line k status

error (k 6= l) is written as

∆πk
l = ∆C(j, i)vk

l (4.57)

where

∆πk
l =

[
∆πk

l,1, . . . ,∆πk
l,Nb

]T
(4.58)

vk
l = [vkl,1, . . . , v

k
l,Nb

]T (4.59)

vkl,n =
H̃k

l,n

∆H̃k
l (i, j)

− Hl,n

∆Hl(i, j)
. (4.60)

Proof. For simplicity, the shadow price corresponding to only a positive line con-

gestion is considered in (4.49). Under assumption (A1)-(A2), the LMPs vectors

without and with the line k status error are written as

πl = λ1Nb
− µlH

T
l (4.61)

π̃k
l = λ̃k1Nb

− µ̃k
l H̃

kT
l (4.62)

where Hl is the lth row vector of the distribution factor matrix H. In (4.62), a

tilde symbol over characters refers to topology error. Then, under assumption (A3)

(i.e., λ = λ̃k) the LMP sensitivity vector that illustrates the differences between

LMPs without and with topology error is written as

∆πk
l = πl − π̃k

l = µ̃k
l H̃

kT
l − µlH

T
l . (4.63)

From Proposition 1, the shadow price corrupted by topology error is expressed as

µ̃k
l =

[Cj − Ci][
H̃k

l,i − H̃k
l,j

] =
∆C(j, i)

∆H̃k
l (i, j)

. (4.64)
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Finally, substituting (4.56) and (4.64) into (4.63),

∆πk
l =

[
∆C(j, i)

∆H̃k
l (i, j)

]
H̃kT

l −
[
∆C(j, i)

∆Hl(i, j)

]
HT

l (4.65)

= ∆C(j, i)

[
H̃kT

l

∆H̃k
l (i, j)

− HT
l

∆Hl(i, j)

]

= ∆C(j, i)vk
l .

That is, the sensitivity of LMP at any bus to any line status error is written as the

multiplication form of two independent functions which depend on: (i) the energy

costs of marginal units; and (ii) congested line-related distribution factors at any

bus and marginal units, respectively.

Corollary 4.4.0.2. For any buses n and m (n 6= m),

1. If vkl,n > 0, LMP at bus n with topology error decreases, otherwise it remains

the same or increases.

2. |vkl,n| > |vkl,m| implies that LMP sensitivity at bus n is higher than at bus m.

3. The increase (decrease) of ∆C(j, i) leads to the increase (decrease) of LMP

sensitivity at any bus.

By Corollary 4.4.0.2(a), buses can be categorized into three groups with pos-

itive, negative and zero sensitivities. This grouping property enables system op-

erators to make a quick prediction for the direction of post-LMPs by topology

error. By Corollary 4.4.0.2(b), economically sensitive buses to topology error can

be identified through the comparison of |vkl,n|. Corollary 4.4.0.2(c) allows system

operators to assess the impact of the energy costs of marginal units on LMP sen-

sitivity. Furthermore, it may provide guidelines for making a bidding strategy of
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market participants such as generation company. Fig. 4.11 illustrates a linear re-

lationship scaled by ∆C(j, i) between ∆πk
l and vk

l , as well as sensitivity grouping,

identification of economically sensitive buses and impact of varying ∆C(j, i) on

LMP sensitivity, all of which are mentiond in Corollary 4.4.0.2.
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Figure 4.11: Illustration of a linear relationship between ∆πk
l and vk

l .

4.4.3 Simulation Studies

In this subsection, we illustrate and verify the proposed analytical results in quan-

tifying the impact of network topology errors on LMP in the IEEE 14-bus system.

Fig. 4.12 shows the detailed bus-breaker model for the IEEE 14-bus system. In

this figure, one scenario is illustrated where the misconfigured status of the circuit

breaker at bus 5 leads to the (dotted) line 4-5 exclusion error as long as the line 5-6

is congested. It is assumed that this misconfiguration occurs due to a natural error
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or man-made attack [56], [57] and hence the corrupted network topology informa-

tion is fed into economic dispatch module without being detected by topology error

processing. Table 4.3 shows generator parameters in the IEEE 14-bus system.
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open: line 4-5 exclusion  : congested line 5-6 

Figure 4.12: IEEE 14-bus system including bus-breaker model.

Figs. 4.13 show the LMPs from the scenario illustrated in Fig. 4.12. Fig. 4.13(a)

shows LMPs at all buses with and without the line exclusion error, respectively.

These LMPs are obtained as the by-product of SCED formulated in Section 4.4.1.

It should be noted in this scenario that the exclusion of the line 4-5 keeps both

marginal units (at buses 1 and 8) and congestion pattern (the line 5-6 congestion)

unchanged. Fig. 4.13(b) shows two LMP sensitivity plots for all buses with respect

to the line 4-5 exclusion. Each plot is obtained using a different approach, which
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Table 4.3: Generator Parameters of the IEEE 14-bus Test System.
Bus Pmin Pmax Marginal Cost

1 0MW 330MW 30$/MWh
2 0MW 140MW 20$/MWh
3 0MW 100MW 40$/MWh
6 0MW 100MW 55$/MWh
8 0MW 100MW 60$/MWh

is based on SCED and the proposed analytical approach in Corollary 4.4.0.1. We

emphasize again that in comparison with SCED approach the proposed approach

computes LMP sensitivities using the derived sensitivity index without further

economic redispatch. This could lead to reduced computational time compared

with exhaustive numerical simulations. We can observe from Fig. 4.13(b) that the

result of the proposed approach is consistent with that of SCED. This observation

also holds true in other line exclusion cases under different network congestions.

However, due to limited space, the validity of the test results for all other cases is

not shown in this paper. We note that LMP sensitivities in all subsequent figures

are computed in the proposed approach.
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Figure 4.13: LMP results in Fig. 4.12: (a) comparison of LMPs between
with and without line exclusion error; (b) comparison of
LMP sensitivities obtained by SCED and the proposed
approach.
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Figure 4.14: Impact of a varying gap between the energy costs of
marginal units on LMP sensitivity.

Fig. 4.14 illustrates the impact of a varying gap between the energy costs of

marginal units on LMP sensitivity. The results in this figure are based on the

same system condition as in Fig. 4.12 so that marginal units are connected to

buses 1 and 8, respectively. The energy cost of generator at bus 8 in Table 4.3 is

assumed to increase from 60$/MWh to 75$/MWh with a step size of 5$/MWh,

thus changing the value of ∆C(8, 1) from 30 to 45. We can observe from Fig. 4.14

that as the gap between the energy costs of marginal units increases, the absolute

value of LMP sensitivity at any bus increases as well. This observation justifies

Corollary 4.4.0.2(c).

Fig. 4.15 shows LMP sensitivities with four different line exclusion errors under

the identical congestion pattern where the line 5-6 is congested. For a clear com-

parison of sensitivities, we randomly choose four different lines (lines 1-2, 1-5, 2-4

and 6-12) out of twenty lines and then exclude each line from the network model to

evaluate the impact of the line exclusion on LMP. First, we observe from Fig. 4.15

that LMP sensitivities at all buses with respect to the line 1-2 exclusion are higher
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Figure 4.15: Comparison of LMP sensitivities with four different branch
exclusion errors under the line 5-6 congestion.

than those with respect to other line exclusions. Therefore, the line 1-2 among

chosen four lines has the most significant impact on LMP sensitivity at any bus.

From a cybersecurity perspective, sensors collecting the status of CBs associated

with the line 1-2 should be protected against bad data or malicious cyber attack

with a high priority. Second, the most economically sensitive bus to topology error

is identified in each line exclusion. For example, bus 6 has the highest sensitivity

to the exclusion of the lines 1-2, 1-5 and 2-4 whereas bus 12 to the exclusion of

the line 6-12. Lastly, we verify that buses are grouped according to the sign of

sensitivity. For the line 1-2 exclusion, buses (6, 9∼14) obtain positive sensitivities,

buses (2∼5) negative sensitivities and buses (1, 7∼8) have zero sensitivities. In

particular, using the sign of sensitivity system operators are capable of predicting

a market participant’ profit or loss. For example, the sensitivities at generation

bus 6 to the exclusions of lines 1-2 and 2-4 are positive so that post LMPs decrease,

consequently providing a generation company a financial loss. On the other hand,

since the sensitivities at the same bus to the exclusions of lines 1-5 and 6-12 are

negative, a generation company makes a profit with increasing LMP.
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Figure 4.16: Comparison of LMP sensitivities with four different
congestion patterns under the line 4-5 exclusion.

Fig. 4.16 shows the sensitivities with respect to the line 4-5 exclusion under

four different congestion patterns (the congestions of the lines 1-5, 2-4, 4-9 and

5-6 ). In this figure, the impact of different congested lines on LMP sensitivity is

quantified for all buses. For example, it is observed that the line 2-4 congestion

among the chosen four line congestions leads to the highest sensitivity at bus 4.

4.5 Conclusions

In this chapter, the main research consists of two parts where we present an an-

alytical framework for calculating LMP sensitivity in response to variations in

power flow and network topology estimate due to the corruption of continuous

and discrete sensor data.

In the first part, corrupted continuous sensor data are shown to deviate power
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system state estimation from their actual values, which subsequently leads to the

distortion of real-time market LMPs. We build two matrices: the first with LMP

sensitivity at any bus to any estimate, and the second with sensitivity of any

estimate to data at any sensor. A unified matrix that combines these two matrices

in multiplication form enables system operators to quantify the impact on LMP

of data at any sensor at any bus throughout the entire transmission network. Our

simulation results suggest that the proposed sensitivity matrix can provide system

operators with a quick and accurate method to identify the buses most vulnerable

to measurement errors. In addition, we verify that more accurate sensors impact

LMP much more significantly.

In the second part, we examine the impact of circuit breaker-induced network

topology errors due to discrete data corruption on real-time LMP. We derive an an-

alytical index to compute LMP sensitivity with respect to network topology error,

particularly line status error, in the power system. The proposed sensitivity in-

dex provides system operators an analytical tool to identify economically sensitive

transmission lines and circuit breakers, whose status error will significantly im-

pact the real-time LMPs. The proposed sensitivity index is tested using the IEEE

14-bus system. Future work could expand the analysis and study the sensitivity

of LMP due to topology error in a more general sense without assumptions (A1)-

(A3) in this paper. The LMP sensitivity index due to topology error could also

be extended toward a comprehensive financial risk management tool for system

operators and market participants.
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CHAPTER 5

TOPOLOGY ATTACK OF A SMART GRID: UNDETECTABLE

ATTACKS AND COUNTERMEASURES

5.1 Introduction

A defining feature of a smart grid is its abilities to monitor the state of a large

power grid, to adapt to changing operating conditions, and to react intelligently

to contingencies, all of which depend critically on a reliable and secure cyber-

infrastructure. It has been widely recognized that the heavy reliance on a wide

area communication network for grid monitoring and real-time operation comes

with increasing security risks of cyber-attacks. See [63] for a vulnerability analysis

of energy delivery control systems.

While information security has been a major focus of research for over half a

century, the mechanisms and the impacts of attack on cyber physical systems such

as the power grid are not yet well understood, and effective countermeasures are

still lacking.

We consider a form of “man-in-the-middle” (MiM) attack [64] on the topology

of a power grid. An MiM attack exploits the lack of authentication in a system,

which allows an adversary to impersonate a legitimate participant. In the context

of monitoring a transmission grid, sophisticated authentications are typically not

implemented due to the need of reducing communication delay and the presence of

legacy communication equipment. If an adversary is able to gain access to remote
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terminal units (RTUs) or local data concentrators, it is possible for the adversary

to replace actual data packets with carefully constructed malicious data packets

and impersonate a valid data source.

MiM attacks on a power grid may have severe consequences. The adversary

can mislead the control center that the grid is operating under a topology different

from that in reality. Such an attack, if launched successfully and undetected by

the control center, will have serious implications: a grid that is under stress may

appear to be normal to the operator thereby delaying the deployment of necessary

measures to ensure stability. Similarly, a grid operating normally may appear to

be under stress to the operator, potentially causing load shedding and other costly

remedial actions by the operator.

Launching a topology attack, fortunately, is not easy; a modern energy man-

agement system is equipped with relatively sophisticated bad data and topology

error detectors, which alerts the operator that either the data in use are suspi-

cious or there may indeed be changes in the network topology. When there are

inconsistencies between the estimated network topology (estimated mostly using

switch and breaker states) and the meter data (e.g., there is significant amount of

power flow on a line disconnected in the estimated topology,) the operator takes

actions to validate the data in use. Only if data and the estimated topology pass

the bad data test, will the topology change be accepted and updates be made for

subsequent actions.

The attacks that are perhaps the most dangerous are those that pass the bad

data detection so that the control center accepts the change (or the lack of change)
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of network topology. To launch such attacks, the adversary needs to modify si-

multaneously the meter data and the network data (switch and breaker states) in

such a way that the estimated topology is consistent with the data. Such attacks

are referred to as undetectable attacks; they are the main focus of our study.

5.1.1 Related Works

Liu, Ning, and Reiter [7] appear to be the first to introduce the concept of data

injection attack (also referred to as malicious data attack) of a power grid. As-

suming that the attacker is capable of altering data from a set of meters, a similar

scenario assumed in our problem setting, the authors of [7] show that if the set

of compromised meters satisfies certain condition, the adversary can perturb the

network state by an arbitrarily large amount without being detected by any detec-

tor. In other words, the data attack considered in [7] is undetectable. The main

difference between [7] and our work is that the attacks considered in [7] perturb

only the network state, not the network topology. It is thus most appropriate to

refer to attacks in [7] and many follow-ups as state attack, in distinguishing the

topology attack considered in our work.

The work in [7] is influential; it has inspired many further developments, e.g.,

[65, 66, 67, 68] and references therein, all focusing on state attacks. A key observa-

tion is made by Kosut et al. in [69, 8], showing that the condition of non-existence

of an undetectable attack is equivalent to that of network observability [70, 71].

This observation leads to graph theoretic techniques that characterize network vul-

nerability [8]. The condition to be presented in this chapter on the non-existence
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of an undetectable topology attack mirrors the state attack counterpart in [8].

The problem of adding protection on a set of meters to prevent undetectable

state attacks was considered by Bobba et al. [65]. We consider the same problem in

the context of topology attack. While meter protection problem for state attacks

is equivalent to protecting a sufficient number of meters to ensure observability

[65, 8], the corresponding problem for topology attacks is somewhat different and

more challenging.

The problem of detecting topology error from meter data is in fact a classical

problem, casted as part of the bad data detection problem [12, 11, 13]. Monticelli

[14] pioneers the so-called generalized state estimation approach where, once the

state estimate fails the bad data test, modifications of topology that best represent

the meter data are considered. Abur et al. [72] extend this idea to the least

absolute value state estimation formulation, and Mili et al. [73] apply the idea

to the state estimation with the Huber M-estimator. Extensive works followed to

improve computational efficiency, estimation accuracy, and convergence property

over the aforementioned methods (e.g., see [74, 75, 76] and references therein).

The use of fuzzy pattern recognition [77] was also proposed to identify topology

errors based on analog measurements.

Finally, there is a limited discussion on the impact of a malicious data attack on

power system operations. Should state estimates be used in closed-loop control of

the power grid, such an attack may cause serious stability problems. The current

state of the art, however, uses state estimates for real-time dispatch only in a

limited fashion. However, state estimates are used extensively in calculating real-
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time locational marginal price (LMP) [17]. Thus, attacks that affect state estimates

will affect the real-time LMP calculation [16, 78, 9]. The way that a topology attack

affects LMP is significantly different from that of a state attack. We demonstrate

that a topology attack has significant impact on real-time LMP.

5.1.2 Summary of Results and Organization

We aim to achieve two objectives. First, we characterize conditions under which

undetectable attacks are possible, given a set of vulnerable meters that may be

controlled by an adversary. To this end, we consider two attack regimes based on

the information set available to the attacker. The more information the attacker

has, the stronger its ability to launch a sophisticated attack that is hard to detect.

The global information regime is where the attacker can observe all meter and

network data before altering the adversary-controlled part of them. Although it is

unlikely in practice that an adversary is able to operate in such a regime, in ana-

lyzing the impact of attacks, it is typical to consider the worst case by granting the

adversary additional power. In Section 5.3, we present a necessary and sufficient

algebraic condition under which, given a set of adversary controlled meters, there

exists an undetectable attack that misleads the control center with an incorrect

“target” topology. This algebraic condition provides not only numerical ways to

check if the grid is vulnerable to undetectable attacks but also insights into which

meters to protect to defend against topology attacks. We also provide specific

constructions of attacks and show certain optimality of the proposed attacks.
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A more practically significant situation is the local information regime where

the attacker has only local information from those meters it has gained control.

Under certain conditions, undetectable attacks exist and can be implemented easily

based on simple heuristics. We present in Section 5.4 intuitions behind such simple

attacks and implementation details.

The second objective is to provide conditions under which topology attack

cannot be made undetectable. Such a condition, even if it may not be the tightest,

provides insights into defense mechanisms against topology attacks. In Section 5.5,

we show that if a set of meters satisfying a certain branch covering property are

protected, then topology attacks can always be detected. In practice, protecting a

meter may be carried out at multiple levels, from physical protection measures to

software protection schemes using more sophisticated authentication protocols.

The rest of the chapter is organized as follows. Section 5.2 presents mathemati-

cal models of state estimation, bad data test, and topology attacks. In Section 5.3,

we study topology attacks in the global information regime. The algebraic condi-

tion for an undetectable attack is presented, and construction of a cost-effective

undetectable attack is provided. Section 5.4 presents a heuristic attack for the

attacker with local information. Based on the algebraic condition presented in

Section 5.3, Section 5.5 provides a graph theoretical strategy to add protection to

a subset of meters to prevent undetectable attacks. Section 5.6 presents simulation

results to demonstrate practical uses of our analysis and feasibility of the proposed

attacks, and Section 5.7 finishes the chapter with concluding remarks.
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5.2 Preliminaries

In this section, we present models for the power network, measurements, and

adversary attacks. We also summarize essential operations such as state estimation

and bad data detection that are targets of data attacks.

5.2.1 Network and Measurement Models

The control center receives two types of data from meters and sensors deployed

throughout the grid. One is the digital network data s ∈ {0, 1}d, which can be

represented as a string of binary bits indicating the on and off states of various

switches and line breakers. The second type is the analog meter data z, which is

a vector of bus injection and line flow measurements.

Without an attack or a sensing error, s gives the true breaker states. Each s ∈

{0, 1}d corresponds to a system topology, which is represented by a directed graph

G = (V,E), where V is the set of buses and E is the set of connected transmission

lines. For each physical transmission line between two buses (e.g., i and j), we

assign an arbitrary direction for the line (e.g., (i, j)), and (i, j) is in E if and

only if the line is connected. In addition, E0 denotes the set of all lines (with

the assigned directions), both connected and disconnected. Assigning arbitrary

directions for lines is not intended to deliver any physical meaning, but only for

ease of presentation.

The state of a power system is defined as the vector x of voltage phasors on all
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buses. In the absence of attacks and measurement noise, the meter data z collected

by the SCADA system are related to the system state x and the system topology

G via the AC power flow model [4]:

z = h(x,G) + e (5.1)

where z typically includes real and reactive parts of bus injection and line flow

measurements, h is the nonlinear measurement function of x and G, and e the

additive noise.

A simplified model, one that is often used in real-time operations such as the

computation of real-time LMP, is the so-called DC model [4] where the nonlinear

function h is linearized near the operating point. In particular, the DC model is

given by

z = Hx+ e (5.2)

where z ∈ Rm consists of only the real parts of injection and line flow measurements,

H ∈ Rm×n is the measurement matrix, x ∈ Rn is the state vector consisting of

voltage phase angles at all buses except the slack bus, and e ∈ Rm is the Gaussian

measurement noise with a diagonal covariance matrix Σ.

The fact that the measurement matrix H depends on the network topology G

is important, although we use the notation H without explicit association with

its topology G for notational convenience. For ease of presentation, consider the

noiseless measurement z = Hx. If an entry zk of z is the measurement of the line

flow from i to j of a connected line in G, zk is Bij(xi − xj) where Bij is the line

susceptance and xi is the voltage phase angle at bus i. The corresponding row of
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H is equal to

h(i,j) , [0 · · · 0 Bij︸︷︷︸ 0 · · ·0 −Bij︸ ︷︷ ︸ 0 · · ·0].

ith entry jth entry

(5.3)

On the other hand, if zk is the measurement of the line flow through a disconnected

line in G, zk is zero, and the corresponding row of H consists of all zero entries.

If zk is the measurement of bus injection at i, it is the sum of all the outgoing

line flows from i, and the corresponding row of H is the sum of the row vectors

corresponding to all the outgoing line flows.

We consider both AC and DC power flow models. The DC model allows us

to obtain a succinct characterization of undetectable attacks as described in Sec-

tion 5.3. However, these results hold only locally around the operating point,

because the results are obtained from the linearized model. General results for

the more realistic (nonlinear) AC model are difficult to obtain. We present in

Section 5.4 a heuristic attack that are undetectable for both AC and DC models.

It was shown in [9] that using the DC model and linear state estimator in

numerical analysis of an attack tends to exaggerate the impact of the attack.

Hence, for accurate analysis, we use the AC model and nonlinear state estimator

in the numerical simulations presented in Section 5.6.

5.2.2 Adversary Model

The adversary aims at modifying the topology estimate from G = (V,E) to a

different “target” topology Ḡ = (V, Ē). Note that G and Ḡ have the same set
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Figure 5.1: Attack Model with Generalized State Estimation

of vertices. In other words, we only consider the attacks aimed at perturbing

transmission line connectivities∗. In addition, we assume that the power system is

observable regardless an attack is present or not: i.e., , the measurement matrix

in the DC model always has full rank. This means that the adversary avoids

misleading the control center with drastic system changes (e.g., division into two

diconnected parts) that may draw too much attention of the control center†. We

call the lines not common to both Ē and E (i.e., , lines in Ē△E , (Ē \E)∪ (E \ Ē))

target lines and the buses at the ends of the target lines target buses.

To alter the network topology, the adversary launches a man-in-the-middle

attack as described in Fig. 5.1: it intercepts (s, z) from RTUs, modifies part of

them, and forwards the modified version (s̄, z̄) to the control center.

Throughout this chapter, except in Section 5.4, we assume that the adversary

∗The attacks aiming to split or combine buses are out of scope of this study. Such attacks
require modifying the measurements of breaker states inside substations. If the control center
employs generalized state estimation [79], such modification invokes substation-level state esti-
mation which leads to a robust bad data test. Hence, such attacks are harder to avoid detection.

†In fact, the results to be presented in this chapter also hold for the general case where the
target topology can be anything (e.g., the system may be divided into several disconnected parts),
if the control center employs the same bad data test even when the network is unobservable.
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has global information, i.e., , it knows network parameters and observes all entries

of (s, z) before launching the attack, although it may modify only the entries it

gained control of. Such an unlimited access to network parameters and data is

a huge advantage to the attacker. In Section 5.5, countermeasures are designed

under this assumption so that they can be robust to such worst case attacks.

The mathematical model of an attack to modify G to Ḡ is as follows (the

notation that a bar is on a variable denotes the value modified by the adversary):

s̄ = s+ b (mod 2),

z̄ = z+ a(z), a(z) ∈ A,
(5.4)

where s̄ is the modified network data corresponding to Ḡ, b ∈ {0, 1}d represents

the modifications on the network data s, a(z) ∈ Rm denotes the attack vector

added to the meter data z, and A ⊂ Rm denotes the subspace of feasible attack

vectors.

We assume that the adversary can modify the network data accordingly for any

target topology that deems to be valid to the control center. This is the opposite of

the assumption employed by most existing studies on state attacks where network

data that specify the topology are not under attack.

For the attack on analog meter data, we use the notation a(z) to emphasize

that the adversary can design the attack vector based on the whole meter data

z. This assumption will be relaxed in Section 5.4 to study an attack with local

information. In addition, A has a form of {c ∈ Rm : ci = 0, i ∈ IS} where IS

is the set of indices of secure meter data entries that the adversary cannot alter

and {1, . . . , m} \ IS represents the adversary-controlled entries. Note that A fully
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characterizes the power of the adversary, and the mapping a : Rm → A fully defines

the attack strategy.

5.2.3 State Estimation, Bad Data Test, and Undetectable

Attacks

As illustrated in Fig. 5.1, the control center executes generalized state estimation

(GSE) [79] with network and meter data as inputs; the inputs are (s, z) in the

absence of an attack and (s̄, z̄) if there is an attack. GSE regards both network

and meter data as possibly erroneous. Once the bad data test detects inconsistency

among data and estimates, GSE filters out the outliers from the data and searches

for a new pair of topology and state estimates that fit the data best. Our focus

is on the attacks that can pass the bad data test such that no alarm is raised by

GSE.

Under the general AC model (5.1), if (s, z) is the input to GSE, and Ĝ is the

topology corresponding to s, the control center obtains the weighted least squares

(WLS) estimate of the state x:

x̂ = argmin
y

(z− h(y, Ĝ))tΣ−1(z− h(y, Ĝ)). (5.5)

Note that Ĝ = G in the absence of an attack while Ĝ = Ḡ in the presence of an

attack. In practice, nonlinear WLS estimation is implemented numerically [4].

Under the DC model (5.2), the WLS state estimator is a linear estimator with
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a closed form expression

x̂ = argmin
y

(z− Ĥy)tΣ−1(z− Ĥy)

= (Ĥ tΣ−1Ĥ)−1Ĥ tΣ−1z,

(5.6)

where Ĥ is the measurement matrix for Ĝ. The linear estimator is sometimes used

as part of an iterative procedure to obtain the nonlinear WLS solution.

The residue error is often used at the control center for bad data detection [4].

In the so-called J(x̂) test [5], the weighted least squares error

J(x̂) = (z− h(x̂, Ĝ))tΣ−1(z− h(x̂, Ĝ))

is used in a threshold test:




bad data if J(x̂) > τ ,

good data if J(x̂) ≤ τ ,
(5.7)

where τ is the detection threshold, and it is determined to satisfy a certain false

alarm constraint α.

We define that an attack is undetectable if its detection probability is as low as

the false alarm rate of the detector. We assume that the J(x̂) test is used as the

bad data detector.

Definition 5.2.1. An attack a to modify G to Ḡ is said to be undetectable if, for

any true state x, the J(x̂)-test with any false alarm constraint detects the attack

with the detection probability no greater than its false alarm rate.

In the absence of noise, the only source of bad data is, presumably, an attack.

In this case, the probabilistic statement of undetectability becomes a deterministic
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one. A data attack (z + a(z), s̄) that modifies the topology from G to Ḡ is unde-

tectable if for every noiseless measurement z, there exists a state vector x̄ such

that z + a(z) = h(x̄, Ḡ). Unfortunately, such a nonlinear condition is difficult to

check.

Under the DC model, however, the undetectability condition has a simple al-

gebraic form. Let (s, z) be the input to GSE and H is the measurement matrix

for the topology corresponding to s. In the presence of an attack, GSE receives

(s̄, z̄) instead of (s, z), and H̄–the measurement matrix for the target topology

Ḡ–replaces H . In the absence of noise, the J(x̂)-detector is equivalent to checking

whether the received meter data is in the column space of the valid measurement

matrix. Thus, the equivalent undetectable topology attack can be defined by the

following easily checkable form:

Definition 5.2.2. An attack to modify G to Ḡ with the attack vector a is said to

be undetectable if

z+ a(z) ∈ Col(H̄), ∀z ∈ Col(H), (5.8)

where H and H̄ are the measurement matrices for G and Ḡ respectively, and Col(H)

is the column space of H and Col(H̄) the column space of H̄.

5.3 Topology Attack with Global Information

We assume the DC model (5.2) and present the result for the existence of unde-

tectable topology attacks.
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5.3.1 Condition for an Undetectable Attack

We first derive a necessary and sufficient algebraic condition for existence of an

undetectable attack that modifies G to Ḡ with the subspace A of feasible attack

vectors. To motivate the general result, consider first the noiseless case.

Noiseless Measurement Case

Suppose there is an undetectable attack a with a(z) ∈ A, ∀z ∈ Col(H). Then,

undetectability implies that z+a(z) ∈ Col(H̄), ∀z ∈ Col(H), and thus, Col(H) ⊂

Col(H̄,A).‡

Now suppose Col(H) ⊂ Col(H̄,A). There exists a basis {c1, . . . , cp,d1, . . . ,dq}

of Col(H̄,A) such that {c1, . . . , cp} is a subset of columns of H̄ and {d1, . . . ,dq}

is a set of linearly independent vectors in A. For any z ∈ Col(H), since Col(H) ⊂

Col(H̄,A), there exist unique (αi)
p
i=1 ∈ Rp and (βj)

q
j=1 such that z =

∑p

i=1 αici +
∑q

j=1 βjdj . If we set a(z) = −∑q

j=1 βjdj, z + a(z) =
∑p

i=1 αici ∈ Col(H̄). In

addition, a(z) ∈ A for all z. Hence, there exists an undetectable attack with the

subspace A of feasible attack vectors.

The above arguments lead to the following theorem.

Theorem 5.3.1. There exists an undetectable attack to modify G to Ḡ with the

subspace A of feasible attack vectors if and only if Col(H) ⊂ Col(H̄, A).

‡Col(H̄,A) denotes the space spanned by the columns of H̄ and a basis of A.
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Noisy Measurement Case

The following theorem states that the algebraic condition in Theorem 5.3.1 can

also be used in the noisy measurement case.

Theorem 5.3.2. There exists an undetectable attack to modify G to Ḡ with the

subspace A of feasible attack vectors if and only if Col(H) ⊂ Col(H̄, A).

In addition, if an attack a is such that Col(H) * Col(H̄, A), then for almost

every§ x ∈ Rn, when x is the true state, the detection probability for the attack

approaches 1 as the noise variances uniformly decrease to 0 (i.e., , maxi(Σii),

where Σii is the (i, i) entry of Σ, decays to 0).

Proof: See Section 5.8.

Note that when the algebraic condition is not met, the attack can be detected

with high probability if the noise variances are sufficiently small. With this alge-

braic condition, we can check whether the adversary can launch an undetectable

attack with A for the target Ḡ. The condition will be used in Section 5.5 to con-

struct a meter protection strategy to disable undetectable attacks for any target

topology.

By finding the smallest dimension of A satisfying the condition, we can also

characterize the minimum cost of undetectable attacks for Ḡ; in the adversary’s

point of view, a smaller dimension of A is preferred, because increasing the dimen-

sion of A necessitates compromising more RTUs or communication devices. In the

§This means “for all x ∈ Rn \ S, for some S ⊂ Rn with a zero Lebesgue measure”.
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following section, we present an undetectable attack requiring a small number of

data modifications and prove its optimality for a class of targets by utilizing the

algebraic condition.

5.3.2 State-preserving Attack

This section presents a simple undetectable attack, referred to as state-preserving

attack. As the name suggests, the attack intentionally preserves the state in order

to have a sparse attack vector. We again motivate our result by considering first

the noiseless case.

Noiseless Measurement Case

Given z = Hx ∈ Col(H), the state-preserving attack sets a(z) equal to (H̄ −H)x.

Then, z + a(z) = H̄x ∈ Col(H̄); the attack is undetectable. Note that the state

x remains the same after the attack. Since H has full column rank, a(z) can be

simply calculated as

a(z) = (H̄ −H)x = (H̄ −H)(H tH)−1H tz. (5.9)

For a(z) above to be a valid attack vector, it is necessary to be a sparse vector

constrained by the meters, the data of which can be altered by the adversary.

To see an intuitive reason why H̄x−Hx is sparse, consider the simple case that

a line is removed from the topology while the state is preserved. In this case, the
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line flows through all the lines, except the removed line, stay the same. Because,

the line flow from i to j is determined by (i) (xi, xj) and (ii) whether i and j are

connected, and for most lines, these two factors remain the same. Hence, only few

entries are different between H̄x and Hx. Below, we will show that, for all state

x ∈ Rn, all entries of (H̄ −H)x are zeros except those associated with the target

lines.

As noted in [71], H can be decomposed as H = MBAt, where M ∈ Rm×l is the

measurement-to-line incidence matrix with l , |E0|, B ∈ Rl×l is a diagonal matrix

with the line susceptances in the diagonal entries, and At ∈ Rl×n is the line-to-bus

incidence matrix. Each column of M (each row of At) corresponds to a distinct line

in E0. For 1 ≤ j ≤ l, if the jth column of M corresponds to (a, b) ∈ E0, let v
+
j , a

and v−j , b. Then, M is defined such that Mij = ±1 if the ith meter (the meter

corresponding to the ith row of M) measures (i) the line flow from v±j to v∓j or (ii)

the injection at bus v±j ; otherwise, Mij = 0. For At, (At)ji = ±1 if v±j = i, and the

line corresponding to the jth row of At (or equivalently the jth column of M) is

connected in G; otherwise, (At)ji = 0. Note that M and B are independent of the

topology, but At does depend on G. Fig. 5.2 provides an example to illustrate the

structures of M , B, and At. Similarly, H̄ is decomposed as H̄ = MBĀt.

As illustrated in Fig. 5.2, the entries of BAtx ∈ Rl×1 correspond to the line flows

of all the lines in E0 when the state is x and the topology is G. Similarly, BĀtx is

the vector of line flows when the state is x and the topology is Ḡ. Since the states

are the same, the kth entry of BAtx and that of BĀtx are different only if the

corresponding line is connected in one of G and Ḡ while disconnected in the other.

Therefore, (BĀt − BAt)x has all zero entries except the entries corresponding to
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M =

0     1     1    -1     0
0     0    -1     0    -1
1     0     0     0     0
0     1     0     0     0
0     0     1     0     0
0     0     0     1     0
0     0     0     0     1

At =

0   -1    0
1    0    0
1    0   -1
0    0    0
0    1   -1

B = diag(B13, B21, B24, B32, B34)
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B13(-x3)
B21(x2)

B24(x2 - x4)
0

B34(x3-x4)

BAt x =

B13(-x3)
B21(x2)

B24(x2 - x4)
B32(x3-x2)
B34(x3-x4)

G

G

Ḡ

Figure 5.2: The measurement, line, or bus corresponding to each row or
column is labeled. Bus 1 is the slack bus. For the rows of M ,
ī denotes the injection meter at bus i, and (i, j) the meter for
the line flow from i to j.

the lines in Ē△E. Specifically, the entry corresponding to (i, j) ∈ Ē \ E assumes

fij(x) , Bij(xi−xj), and the entry corresponding to (i, j) ∈ E\Ē assumes −fij(x).

Hence, (H̄ −H)x = M(BĀt −BAt)x is equal to

∑

(i,j)∈Ē\E

fij(x)m(i,j) −
∑

(i,j)∈E\Ē

fij(x)m(i,j) (5.10)

where m(i,j) is the column vector of M corresponding to (i, j). Note that m(i,j) is

a sparse vector that has nonzero entries only at the rows corresponding to the line

flow meters on the line (i, j) and the injection meters at i and j.

From (5.10), for any state x ∈ Rn, (H̄−H)x is a linear combination of elements

in {m(i,j) : (i, j) ∈ Ē△E}. Hence, the state-preserving attack, which sets a(z) =
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(H̄−H)x, modifies at most the line flow meters on the target lines and the injection

meters at the target buses.

We now show in the next two theorems that, under certain conditions, the state-

preserving attack has the least cost in the sense that it requires the adversary to

modify the smallest number of meter data (i.e., , the smallest dimension for A).

Theorem 5.3.3. Assume that (i) the actual and target topologies differ by only

one line, i.e., , |Ē△E| = 1, and (ii) every line in Ē, incident¶ from or to any target

bus with an injection meter, has at least one line flow meter on it. Then, among

all undetectable attacks, the state-preserving attack modifies the smallest number

of meters, which is the total number of line flow and injection meters located on

the target line and target buses.

Proof: See Section 5.8.

Another scenario that the state-preserving attack has the minimum cost is

when the adversary aims to delete lines from the actual topology.

Theorem 5.3.4. Let G∗ and Ḡ∗ denote the undirected versions of G and Ḡ respec-

tively. Suppose that the adversary aims to remove lines from G, i.e., , Ē ( E, and

the following hold:

• Every line in Ē, incident from or to a target bus with an injection meter, has

at least one line flow meter on it.

• In G∗, target lines do not form a closed path.

¶A line (i, j) is said to be incident from i and incident to j.
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• Ḡ∗ does not include a tree T satisfying the following:

1) (number of nodes in T) ≥ 4, and

2) every node in T is a target bus with an injection meter.

Then, among all undetectable attacks, the state-preserving attack modifies the

smallest number of meters, which is the total number of line flow and injection

meters located on the target lines and target buses.

Proof: See Section 5.8.

Roughly speaking, the assumptions in Theorem 5.3.4 hold when target lines are

far from each other such that there is no big tree in Ḡ consisting solely of target

buses.

The main advantage of the state-preserving attack is that by preserving the

system state during the attack, the attack can be launched by perturbing only local

meters around the target lines; hence, only few data entries need to be modified.

Theorem 5.3.3 and Theorem 5.3.4 supports the claim by stating the optimality of

the state-preserving attack under the mild assumptions. The theorems also imply

that the minimum cost of an undetectable attack can be easily characterized if the

target topology satisfies the theorem assumptions.
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Noisy Measurement Case

Following the intuition behind the state-preserving attack in the noiseless case, we

will construct its counterpart for the noisy measurement case. Recall the relation

(5.10):

(H̄ −H)x =
∑

(i,j)∈Ē\E

fij(x)m(i,j) −
∑

(i,j)∈E\Ē

fij(x)m(i,j).

The above implies that

(H̄ −H)x ∈ M , span{m(i,j) : (i, j) ∈ Ē△E} (5.11)

We set a(z) as a minimizer of the J(x̂)-test statistic‖:

a(z) , argmin
d∈M

‖(z+ d)− H̄x̂WLS[z + d]‖2Σ−1 (5.12)

where x̂WLS[z + d] denotes the WLS state estimate when the topology estimate

is Ḡ, and z + d is observed at the control center. Note that, since a(z) ∈ M, the

attack with a modifies at most the line flow measurements of the target lines and

the injection measurements of the target buses.

Now, suppose that the adversary modifies breaker state measurements such

that the topology estimate becomes Ḡ and simultaneously modifies the meter data

with a(z). Then, the J(x̂)-test statistic at the control center is upper bounded as

‖(z+ a(z))− H̄x̂WLS[z+ a(z)]‖2Σ−1

≤ ‖(H̄x+ e)− H̄x̂WLS[H̄x + e]‖2Σ−1,

‖We use ‖r‖2
Σ−1 to denote the quadratic form r

tΣ−1
r.
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because (H̄−H)x is an element ofM. Note that the right hand side is the J(x̂)-test

statistic when the meter data are consistent with the topology estimate Ḡ. Hence,

it has χ2
m−n distribution, the same as the distribution of the J(x̂)-test statistic

under the absence of bad data [5]. This argument leads to the following theorem

stating that this attack is undetectable.

Theorem 5.3.5. The state-preserving attack a, defined in (5.12), is undetectable.

Note that x̂WLS[z + d] in (5.12) is a linear function of z + d, so a(z) can be

obtained as a linear weighted least squares solution. Specifically, a(z) has a form

of a(z) = Dz where D ∈ Rm×m depends on G, Ḡ, and Σ, but not on z. Hence, D

can be obtained off-line before observing z.

Note also that the state-preserving attacks in the noiseless and noisy cases

modify the same set of meters. In addition, recall that the condition for existence

of an undetectable attack is the same for both noiseless and noisy cases. The

optimality statements for the state-preserving attack in Theorem 5.3.3 and Theo-

rem 5.3.4 were derived purely based on the condition for undetectability. Hence,

the same optimality statements hold for the noisy measurement case, as stated in

the following corollary, and the same interpretation can be made.

Corollary 5.3.5.1. For the noisy measurement DC model, suppose that the con-

dition in Theorem 5.3.3 or the condition in Theorem 5.3.4 hold. Then, among all

undetectable attacks, the state-preserving attack modifies the smallest number of

meters, which is the total number of line flow and injection meters located on the

target lines and target buses.
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5.4 Topology Attack with Local Information

In this section, we consider the more realistic scenario of a weak attacker who

does not have the measurement data of the entire network; it only has access

to a few meters. The information available to the adversary is local. We also

generalize the linear (DC) measurement model to the nonlinear (AC) model. The

resulting undetectable attacks, however, are limited to line removal attacks, i.e., ,

the adversary only tries to remove lines from the actual network topology.

We first consider the noiseless measurement case under the DC model. Since we

are restricted to line-removal attacks, Ē is a strict subset of E. Therefore, recalling

(5.10), we have

(H̄ −H)x = −
∑

(i,j)∈E\Ē

fij(x)m(i,j) (5.13)

where fij(x), as defined in Section 5.3, denotes the line flow from i to j when the

line is connected, and the state is x.

Let zij denote the measurement of the line flow from i to j. Due to the absence

of noise, zij = fij(x) = −fji(x) = −zji. With this observation and (5.13), we have

(H̄ −H)x = −
∑

(i,j)∈E\Ē

zijm(i,j) (5.14)

Therefore, setting a(z) = (H̄ −H)x, which is the state-preserving attack, is equiv-

alent to setting

a(z) = −
∑

(i,j)∈E\Ē

zijm(i,j) (5.15)

From (5.15), one can see that adding the above a(z) to z is equivalent to the

following heuristic described in Fig. 5.3:
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Observed
measurements

Attack-modified
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ii jj
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zj zi − zij

0 0

zj − zji

Figure 5.3: Heuristic Operations Around the Target Line (i, j)

1. For every target line (i, j), subtract zij and zji from the injection measure-

ments at i and j respectively.

2. For every target line (i, j), modify zij and zji to 0.

This heuristic simply forces the line flows through the target lines, which are

disconnected in Ḡ, to be zeros, while adjusting the injections at the target buses

to satisfy the power balance equations [4]. If a target line (i, j) has only one line

flow meter (e.g., zji), we can use −zji in the place of zij. But, if some target line

has no line flow meter, this heuristic is not applicable. Note that the heuristic

only requires the ability to observe and modify the line flow measurements of the

target lines and the injection measurements at the target buses. The adversary can

launch it without knowing the topology or network parameters (i.e., , H and H̄

are not necessary). Since the heuristic is equivalent to the state-preserving attack,

it is undetectable.

The same heuristic is applicable to the noisy measurements z = Hx + e.

To avoid detection, the adversary can make a(z) approximate H̄x − Hx such

that z + a(z) is close to H̄x + e. Because zij = fij(x) + eij, zij is an unbi-

ased estimate of fij(x). Similarly, −∑(i,j)∈E\Ē zijm(i,j) is an unbiased estimate of

−∑(i,j)∈E\Ē fij(x)m(i,j), which is equal to H̄x−Hx. Hence, it is reasonable to set
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a(z) = −∑(i,j)∈E\Ē zijm(i,j) even in the noisy measurement case.

The same idea is applicable to the AC power flow model with the nonlinear

state estimator. Suppose that z is the real power measurement from the AC power

flow model: z = h(x)+e, where x is the vector of the voltage phasors at all buses,

and h is the nonlinear measurement function for G. Let h̄ denote the measurement

function for Ḡ. If a(z) is equal to h̄(x)− h(x),

z̄ = (h(x) + e) + a(z) = h̄(x) + e, (5.16)

which is consistent with Ḡ, so the attack cannot be detected. We will show that

the attack vector of the heuristic approximates h̄(x)− h(x).

For simplicity, assume that the attacker aims at removing a single line (i, j)

from G. Then, h(x) and h̄(x) are different only in the entries corresponding to the

injections at i and j and the line flows through (i, j). Specifically, h̄(x)− h(x) has

all zero entries except −hij(x) at the rows corresponding to the injection at i and

the line flow from i to j, and −hji(x) at the rows corresponding to the injection at j

and the line flow from j to i, where hij(x) denotes the entry of h(x) corresponding

to the line flow from i to j. Since zij = hij(x)+eij and zji = hji(x)+eji, zij and zji

can be considered as unbiased estimates of hij(x) and hji(x) respectively. Hence,

the attacker can use zij and zji to construct an unbiased estimate of h̄(x)− h(x).

Adding this estimate to z is equivalent to the heuristic operation of Fig. 5.3, which

subtracts zij and zji from zi and zj respectively, and sets zij and zji to zeros. The

same argument holds for the reactive measurement part and multiple-line removal

attacks. In practice, the heuristic attack should be executed twice separately,

once for real measurements and second for reactive measurements. In Section 5.6,

numerical simulations demonstrate that the heuristic attack on the AC power flow
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model with the nonlinear state estimation has a very low detection probability.

5.5 Countermeasure for Topology Attacks

In this section, we consider countermeasures that prevent attacks by a strong ad-

versary with global information. In particular, we assume that a subset of meters

can be secured so that the adversary cannot modify data from these meters. In

practice, this can be accomplished by implementing more sophisticated authenti-

cation protocols. We present a so-called cover-up protection that identifies the set

of meters that need to be secured.

The algebraic condition in Theorems 5.3.1-5.3.2 provides a way to check

whether a set of adversary-controlled meters is enough to launch an undetectable

attack. Restating the algebraic condition, there exists an undetectable attack with

the subspace A of feasible attack vectors, if and only if Col(H) ⊂ Col(H̄, A) for

some Ḡ (different from G).

Let IS denote the set of indices for the entries of z corresponding to the pro-

tected meters. Then, A is {c ∈ Rm : ci = 0, i ∈ IS}. The objective of the control

center is to make any undetectable attack infeasible while minimizing the cost of

protection (i.e., , minimizing |IS| or equivalently, maximizing the dimension of A).

To achieve the protection goal, A should satisfy that for any target topology

Ḡ, Col(H) * Col(H̄, A). However, finding such A by checking the conditions for

all possible targets is computationally infeasible. To avoid computational burden,
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the following theorem gives a simple graph-theoretical strategy.

Theorem 5.5.1 (Cover-up strategy). Let Ẽ and Ẽ0 denote the undirected counter-

parts of E and E0 respectively. For i ∈ V, let Li denote the set of edges in (V, Ẽ0)

that are incident to i.

Suppose there is a spanning tree T = (V,ET) of (V, Ẽ) (the current topology)

and a vertex subset B (B ⊂ V) that satisfies

ET ∪ (∪b∈BLb) = Ẽ0. (5.17)

Then, if we protect (i) one line flow meter for each line in ET and (ii) the

injection meters at all buses in B, an undetectable attack does not exist for any

target topology.

Proof: See Section 5.8.

The condition (5.17) means that the edges of T and the edges incident to

vertices in B can cover all the lines (both connected and disconnected) of the grid.

One can easily find such T and B using available graph algorithms.

Fig. 5.4 describes a cover-up strategy for IEEE 14-bus system. The strategy

used the spanning tree T marked by red dash lines, and B = {1, 4, 13}. The

unprotected meters and protected meters are marked by black rectangles and blue

circles respectively. In this example, the strategy requires protection of 30% of

meters. In addition, numerically checking the algebraic condition showed that if

the control center removes any of the protections, the grid becomes vulnerable to
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Figure 5.4: Rectangles (or circles) on buses and lines represent injection
meters and line flow meters respectively. We assume that
E = E0. The attacker may attempt to remove lines from G.

undetectable topology attacks. This suggests that the strategy does not require

protection of an excessive number of meters. For IEEE 118-bus system, a cover-up

strategy required protection of 31% of meters.

The cover-up strategy also prevents undetectable state attacks [7]. It follows

from Theorem 1 in [8], which states that an undetectable state attack does not

exist if and only if the secure meters, protected by the control center, make the

system state observable. Because the strategy protects one line meter for each line

in the spanning tree T, the system state is always observable with the protected

meters [71].

147



5.6 Numerical Results

We first present practical uses of the algebraic condition for undetectable attacks.

Then, we test the proposed attacks with IEEE 14-bus and 118-bus systems, and

present their effect on real-time LMPs.

5.6.1 Application of Undetectability Condition

In Section 5.3.1, the necessary and sufficient algebraic condition is given to check

whether an adversary can launch an undetectable attack for a target Ḡ with a

subspace A of feasible attack vectors. Here, we provide examples of how the

condition can be used by both attackers and the control center.

Suppose that an attacker with global information aims to remove a specific

set of lines from the topology. In Section 5.3.1, we have shown that the state-

preserving attack requires the smallest dimension of A among undetectable attacks

under mild conditions. If the conditions are met and the attacker can perform

the necessary meter modifications, the state-preserving attack can be launched

with the guaranteed optimality. However, if the attacker cannot perform some

meter modification required by the state-preserving attack, it should search for an

undetectable alternative with a reasonably small dimension for A. The algebraic

condition can be used to find such an alternative∗∗. For instance, for a line-removal

∗∗One heuristic way to find an alternative, which we employed, is to begin with a large set K of
adversary-controlledmeters that satisfies the algebraic condition and the constraint (e.g., exclude
a certain injection meter) and remove meters from K one by one such that after each removal of
a meter, K still satisfies the algebraic condition. If no more meter can be removed, we take K

as an alternative. The final set depends on the initial K and the sequence of removed elements.
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Table 5.1: The adversary-controlled meters for the attacks to remove
lines (2, 4) and (12, 13): i → j denotes the meter for the line
flow from bus i to bus j. i denotes the injection meter at bus i.

Adversary-controlled meters

State-preserving

attack

2 → 4, 4 → 2, 12 → 13,

13 → 12, 2, 4, 12, 13

Alternative 1

(not modifying 12)

2 → 4, 4 → 2, 12 → 13, 13 → 12,

6 → 12, 12 → 6, 2, 4, 6, 13

Alternative 2

(not modifying 4)

2 → 4, 4 → 2, 12 → 13, 13 → 12, 2 → 3,

3 → 2, 3 → 4, 4 → 3, 2, 3, 12, 13

attack on the IEEE 14-bus network in Fig. 5.4, Table 5.1 shows some alternatives

to the state-preserving attack when the attacker cannot modify some injection

meter.

When the set of adversary-controlled meters is fixed, the algebraic condition

can be exploited to find the target topologies, for which the attacker can launch

undetectable attacks. For instance, in the IEEE 14-bus network in Fig. 5.4, assume

that the attacker can modify the data from the injection meters at 11, 12, and

14, and all the line flow meters on (6, 12), (6, 11), (10, 11), (9, 10), (9, 14), and

(13, 14). Then, numerically checking the algebraic condition show that the attacker

cannot launch an undetectable attack for any target. However, if the attacker can

additionally control the line flow meters on (12, 13), it can launch an undetectable

attack to remove any set of lines listed in Table 5.2 from the current topology.

The control center can also utilize the algebraic condition to decide which me-

ters to put more security measures on. For instance, in the IEEE 14-bus network,

One can try this procedure multiple times with different initial Ks and removal sequences, and
pick the one with the smallest size.
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Table 5.2: The Sets of Lines Undetectable Attacks Can Remove

|Ē△E| Ē△E (lines to be removed by the attack)

1
{(6, 12)}, {(6, 11)}, {(10, 11)}, {(9, 10)},

{(9, 14)}, {(13, 14)}, {(12, 13)}

2

{(10, 11), (13, 14)}, {(9, 14), (12, 13)}, {(9, 10), (13, 14)},
{(6, 12), (13, 14)}, {(6, 12), (10, 11)}, {(6, 12), (9, 10)},

{(6, 11), (12, 13)}, {(6, 11), (9, 14)}

3
{(6, 11), (9, 14), (12, 13)}, {(6, 12), (9, 10), (13, 14)},

{(6, 12), (10, 11), (13, 14)}

suppose that the control center protects all the injection meter. In the worst

case, the attacker may be able to modify all the line flow measurements. In this

case, checking the algebraic condition shows that the attacker can launch an un-

detectable line-removal attack for any target topology, as long as the system with

the target topology is observable. However, checking the algebraic condition also

shows that if the control center can additionally protect any line flow meter, an

undetectable attack does not exist for any target. Therefore, it is worthwhile for

the control center to make an effort to secure one more line flow meter.

5.6.2 Undetectability and Effects on Real-time LMP

We tested the state-preserving attack with global information and the heuristic

with local information on IEEE 14-bus and IEEE 118-bus system, and investigated

their effect on real-time LMPs. The AC power flow model and nonlinear state

estimation were used to emulate the real-world power grid.
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For simulations, we first assigned the line capacities, generation limits, and

estimated loads, and obtained the day-ahead dispatch. Then, we modeled the

voltage magnitudes and phases of buses as Gaussian random variables centered

at the system state for the day-ahead dispatch, with small variances. In each

Monte Carlo run, we generated a state vector from the distribution and used the

nonlinear AC power flow model†† with Gaussian measurement noise to generate

the noisy measurements. The attacker observed the noisy measurements, added

the corresponding attack vector to them, and passed the corrupt measurements

to the control center. The control center employed the nonlinear state estimator

to obtain the residue and performed the J(x̂)-test with the residue. If J(x̂)-test

failed to detect the attack, the real-time LMPs were calculated based on the state

estimate.

In simulations, we assumed that the attacker aims to remove a single line from

the topology. Fig. 5.5 presents the detection probability of the proposed attacks

on IEEE 14-bus system, for different target lines. The attacks on most target

lines succeeded with low detection probabilities, close to the false alarm constraint

0.1. Table 5.3 shows the detection probability averaged over all possible single-line

removal attacks. In both IEEE 14-bus and 118-bus systems, the proposed attacks

were hardly detected. In most cases, detection probabilities were as low as the false

alarm rates. The performance of the heuristic was remarkably good, considering

that it only requires to observe and control few local data.

We also examined the absolute perturbation of the real-time LMPs (see [17]

††In simulations, we have reactive measurements, which were not considered in our analysis of
the state-preserving attack. We simply applied the same analysis for the reactive components of
the linearlized decoupled model [4] and derived the reactive counterpart of the state-preserving
attack.
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Figure 5.5: Detection Probability of Single-line Attack: the x-axis is for
the index of the target line. Measurement noise standard
deviation is 0.5 p.u., and 1000 Monte Carlo runs are used.

Table 5.3: Average Detection Probabilities of Single-line Attacks: 1000
Monte Carlo runs are used. The false alarm constraint of the
bad data detector is set as α in the table.

14-bus

(α = 0.1)

14-bus

(α = 0.01)

118-bus

(α = 0.1)

118-bus

(α = 0.01)

state-preserving 0.061 0.009 0.075 0.005

heuristic 0.105 0.019 0.095 0.009

for real-time LMP). The parameters in the real-time LMP calculation include the

estimated set of congested lines and the shift-factor matrix; both depend on the

topology estimate. Hence, we expect that topology attacks would disturb the real-

time LMP calculation. In our simulations, both the state-preserving attack and

the heuristic perturbed the real-time LMPs by 10% on average for IEEE 14-bus

system and 3.3% for IEEE 118-bus system. In the 118-bus system, attacks on

some target lines had effects on only the buses near the target lines, so the average

perturbation was lower than the 14-bus case.
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5.7 Conclusion

In this chapter, we have considered undetectable malicious data attack aimed at

creating a false topology at the control center. We obtain a necessary and sufficient

condition for an attack launched by a strong attacker to be undetectable. We also

present a class of undetectable line removal attacks that can be launched by weak

attackers with only local information. Finally, we present a countermeasure against

strong attackers by protecting a subset of meters.

Some of the results presented in this chapter are obtained under strong condi-

tions. Here, we mention several of such limitations as pointers for further study.

First, the DC model assumed in Section 5.3 makes the results valid only near the

operating point. It has been demonstrated in [9] that the DC model tends to

exaggerate the effect of state attacks, and the nonlinear state estimator has the

ability to significantly reduce the attacks’ impact on the state estimate. Obtaining

conditions for undetectable topology attacks under the AC model is of considerable

interest.

Second, we have focused mostly on state-preserving topology attacks. Even

though such attacks are optimal under certain scenarios, to understand the full

implication of topology attacks, it is necessary to consider attacks that affect both

topology and states.

Finally, we consider only one particular form of countermeasure, namely im-

plementing authentication at a subset of meters. Other mechanisms should be

studied, including one with more sophisticated bad data detection and those tak-
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ing into accounts of system dynamics.

5.8 Proofs

5.8.1 Proof of Theorem 5.3.2

The if statement can be proved by constructing an undetectable attack following

the arguments used to prove Theorem 5.3.1 and Theorem 5.3.5. Due to the space

limit, we only provide the proof of the only if statement.

Let a be any attack with Col(H) * Col(H̄, U) where U , {u1, . . . , uK} denotes

the basis of A consisting of unit vectors in Rm and U ∈ Rm×K is the matrix having

the vectors in U as its columns. Without loss of generality, we assume that the

columns of H̄ and the unit vectors in U are linearly independent; if not, we can

just work with a smaller set of U satisfying the independence condition.

Because Col(H) * Col(H̄, U), Col(H)∩Col(H̄, U) is a subspace of Col(H) with

a strictly smaller dimension. Hence, S , {x ∈ Rn : Hx ∈ Col(H) ∩ Col(H̄, U)}

has the dimension less than n and thus a zero Lebesgue measure in Rn. Let x be

an arbitrary element of Rn \ S. Then, y , Hx /∈ Col(H̄, U). When x is the true

state, z = y + e, and the J(x̂)-test statistic for a is

J = ‖W (y + e+ a(y + e))‖Σ−1

where W = I − H̄(H̄ tΣ−1H̄)−1H̄ tΣ−1. Since a(z) ∈ Col(U) for all z, J is lower
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bounded by

L , min
(ak)

K
k=1

‖W (y + e +
K∑

k=1

akuk)‖Σ−1.

The minimization in L is achieved by the linear WLS solution, and one

can show that L = (Ŵ (y + e))tΣ−1Ŵ (y + e) where Ŵ , W −

(WU)[(WU)tΣ−1(WU)]−1(WU)tΣ−1W . W and Ŵ are idempotent and Σ−1W

is symmetric. Using these properties, one may derive that

L = (Σ− 1
2 (y + e))tΣ

1
2 Ŵ tΣ− 1

2 (Σ− 1
2 (y + e)).

The above quadratic form has the following properties: (i) Σ
1
2Ŵ tΣ− 1

2 is idempotent

and symmetric, (ii) Σ− 1
2 (y + e) ∼ N (Σ− 1

2y, Im), and (iii) rank(Σ
1
2 Ŵ tΣ− 1

2 ) =

m− n−K. With these three properties, Theorem B.33 and Theorem 1.3.3 in [80]

imply that L has the noncentral chi-squared distribution with the (m − n − K)

degree of freedom and the noncentral parameter λ , (Ŵy)tΣ−1(Ŵy).

It can be shown that y /∈ Col(H̄, U) implies Ŵy 6= 0. Hence, if the diagonal

entries of Σ (denoted by σ2
ii, 1 ≤ i ≤ m) uniformly decrease to 0, then λ =

∑m

i=1 σ
−2
ii (Ŵy)2i grows to infinity. Suppose that the J(x̂)-test uses a threshold τ .

The detection probability of the attack is Pr(J > τ), and it is lower bounded by

Pr(L > τ). And, Pr(L > τ) approaches 1 as the noncentral parameter λ grows to

infinity. Therefore, if the diagonal entries of Σ (i.e., , noise variances) uniformly

decreases to 0, then λ grows to infinity and Pr(J > τ) approaches 1. Hence, the

only if statement and the additional statement are proved.
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5.8.2 Proof of Theorem 5.3.3

Let Ē△E = {(a, b)}. We prove the statement for the case that the attack removes

(a, b), and there are two line flow meters on (a, b) (one for each direction) and

injection meters at both a and b. For the line addition attack and other meter

availabilities, the similar argument can be made.

Suppose there exists an undetectable attack with A, and let U = {u1, . . . , uK}

denote the basis of A consisting of unit vectors in Rm. Theorem 5.3.1 implies

Col(H) ⊂ Col(H̄, A). It can be easily verified that m(a,b) ∈ Col(H̄, A), and this

implies m(a,b) = H̄x +
∑K

k=1 αkuk for some x ∈ Rn and (αk)
K
k=1 ∈ RK . Then,

m̄ , m(a,b) −
∑K

k=1 αkuk ∈ Col(H̄).

Let m̄ij (m̄i) denote the row entry of m̄ corresponding to the line flow from i to

j (the injection at i) and u(i,j) (u(i)) denote the m-dimensional unit vector with 1

at the row corresponding to the line flow from i to j (the injection at i). Physically,

m̄ ∈ Col(H̄) means that m̄ is a vector of meter data consistent with the topology

Ḡ. It implies that (i) m̄ab and m̄ba are zeros, since (a, b) is disconnected in Ḡ, and

(ii) the Kirchhoff’s current laws (KCL) should hold at bus a and b in Ḡ, i.e., , the

sum of all outgoing line flows from a should be equal to the injection amount at

a. Using the special structure of m(a,b) and m̄, the following can be proved. From

(i), one can prove that u(a,b), u(b,a) ∈ U. From (ii), one can show that U should

include u(a) or some u(a,k) (or u(k,a)) with a and k connected in G. Similarly, U

should include u(b) or some u(b,l) (or u(l,b)) with b and l connected in G. Hence, |U|

is no less than the total number of meters located on the target line (a, b) and the

target buses a and b.
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5.8.3 Proof of Theorem 5.3.4

Suppose a is an undetectable attack with A for the target topology Ḡ satisfying

the theorem conditions. Let U = {u1, . . . , uK} be the basis of A consisting of unit

vectors in Rm, and J ⊂ V denote the set of target buses with injection meters.

For ease of presentation, we assume that each target line (i, j) has two line flow

meters, one for each direction. For other meter availabilities, the similar argument

can be made.

Theorem 5.3.1 implies that Col(H) ⊂ Col(H̄, U). It can be easily shown that if

the target lines do not form a closed path in G, then Col(H) ⊂ Col(H̄, U) implies

that m(i,j) ∈ Col(H̄, U) for all target lines (i, j) ∈ E \ Ē.

m(i,j) ∈ Col(H̄, U) means that it is possible to find a linear combination of

vectors in U,
∑K

k=1 αkuk, such that m̄(i,j) , m(i,j)+
∑K

k=1 αkuk ∈ Col(H̄). m̄(i,j) ∈

Col(H̄) implies that (i) the row entries of m̄(i,j) corresponding to the line flows of

the disconnected lines in Ḡ are zeros, and (ii) the entries of m̄(i,j) satisfy KCLs at

all buses in Ḡ.

For each (i, j) ∈ E \ Ē, since (i, j) is disconnected in Ḡ, m̄ij

(i,j) = m̄ji

(i,j) = 0. On

the other hand, mij

(i,j) = 1 and mji

(i,j) = −1. Hence, U should include u(i,j) and

u(j,i). Therefore, U should contain {u(i,j),u(j,i) : (i, j) ∈ E \ Ē}.

For each i ∈ J, the assumptions imply that each line adjacent to i in Ḡ has at

least one line flow meter. We let ni denote the set of the line flow meters on the

lines incident to i in Ḡ, and mni

(i,j) denote the vector of the corresponding entries in
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m(i,j). Because m(i,j) has nonzero entries only for the injections at i and j and the

line flows through (i, j), mni

(i,j) has all zero entries. On the other hand, mi
(i,j) = 1.

Hence, for m̄(i,j) to satisfy the KCL at bus i in Ḡ, at least one of mi
(i,j) or entries

of mni

(i,j) has to be modified by
∑K

k=1 αkuk. Thus, U should contain u(i) or u(a,b)

for some (a, b) ∈ ni.

In case that u(i) /∈ U, for m̄(i,j) to satisfy the KCL at bus i in Ḡ, at least one

entry of m̄ni

(i,j) should have a nonzero value: suppose m̄ik
(i,j) takes a nonzero value.

If k ∈ J, we can make a similar argument based on the KCL at k: U should contain

u(k) or u(a,b) for some (a, b) ∈ n(k)\{(i, k), (k, i)}. Following this line of argument,

we can derive that for each i ∈ J, U should contain unit vectors corresponding

to at least one of the following sets: (i) injection meter at i, (ii) line flow meters

on all the lines in some path (i, v2, . . . , vn) in Ḡ∗ and injection meter at vn where

v2, . . . , vn ∈ J, or (iii) line flow meters on all the lines in some path (i, v2, . . . , vn)

in Ḡ∗ where v2, . . . , vn−1 ∈ J and vn is either equal to one of {v2, . . . , vn−1} or not

in J. For each i ∈ J, U should contain at least one set of unit vectors corresponding

to any of the above three cases: we let Si to denote an arbitrary one of such sets.

Note that {u(i,j),u(j,i) : (i, j) ∈ E \ Ē} does not overlap with ∪i∈JSi. Hence,

|U| ≥ | ∪i∈J Si| + |{u(i,j),u(j,i) : (i, j) ∈ E \ Ē}|. Proving | ∪i∈J Si| ≥ |J| gives us

the theorem statement, because |J| + |{u(i,j),u(j,i) : (i, j) ∈ E \ Ē}| is the exact

number of meters the state-preserving attack modifies.

We will prove the following statement for all n ≤ |J|, by mathematical induc-

tion: for any subset J̄ ⊂ J with |J̄| = n, | ∪i∈J̄ Si| ≥ n. For n = 1, 2, 3, the

statement can be easily verified. Suppose the statement is true for all n ≤ k
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(k ≥ 3), and J̄ is an arbitrary subset of J with |J̄| = k + 1. The tree con-

dition guarantees that J̄ can be partitioned into two nonempty sets J̄1 and J̄2

such that for any b1 ∈ J̄1 and b2 ∈ J̄2, every path in Ḡ∗ between b1 and b2 con-

tains a node not in J. This implies that ∪b∈J̄1Sb and ∪b∈J̄2Sb are disjoint. By

the induction hypothesis, we have | ∪b∈J̄1 Sb| ≥ |J̄1| and | ∪b∈J̄2 Sb| ≥ |J̄2|. Thus,

| ∪b∈J̄ Sb| = | ∪b∈J̄1 Sb| + | ∪b∈J̄2 Sb| ≥ |J̄1| + |J̄2| = |J̄|. Therefore, the induction

implies | ∪i∈J Si| ≥ |J|, and the theorem statement follows.

5.8.4 Proof of Theorem 5.5.1

Suppose meters are protected as described with T and B. Let A be the resulting

subspace of feasible attack vectors and U , {u1, . . . , uK} denote the basis of

A consisting of unit vectors in Rm. Assume that an undetectable attack can be

launched for some target topology Ḡ (different from G). We will show that this

assumption leads to a contradiction.

Note that U cannot contain the unit vectors corresponding to the protected

measurements. In addition, Theorem 5.3.2 implies that Col(H) ⊂ Col(H̄, U).

These two imply that the lines in ET cannot be removed by the attack, because

each line has a protected line flow meter.

Let Ĥ ( ̂̄H) denote the submatrix of H (H̄) obtained by selecting the rows

corresponding to the protected meter measurements. One can easily verify that

Col(H) ⊂ Col(H̄, U) if and only if Col(Ĥ) ⊂ Col( ̂̄H). Hence, we have Col(Ĥ) ⊂

Col( ̂̄H). This means that for all x ∈ Rn, there exists y ∈ Rn such that ̂̄Hy = Ĥx.
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Let HT denote the submatrix of Ĥ obtained by selecting the rows corresponding

to the protected line flow meters on the spanning tree T. Since the lines in ET

cannot be removed by the attack, the HT part of H remains the same in H̄ ; hence,

HT is also a submatrix of ̂̄H . Thus, ̂̄Hy = Ĥx implies HTy = HTx. Since T is

a spanning tree and it has one protected line flow meter per line, the protected

line meters on T makes the grid observable [71]. Hence, HT has full column rank.

Consequently, HTy = HTx implies y = x, and we have ̂̄Hx = Ĥx. This holds for

all x ∈ Rn.

Let a be any element in B. We will show that any line in La cannot be a

target line. Note that the injection meter at a is protected, so Ĥ and ̂̄H have

the row corresponding to the injection at a. ̂̄Hx = Ĥx for all x ∈ Rn implies

that the injection at bus a should be the same for G and Ḡ as long as the state

is the same for the two cases. When the state is x, the injection at a in G is
∑

k:{a,k}∈ẼBak(xa − xk), and the injection at a in Ḡ is
∑

l:{a,l}∈˜̄
E
Bal(xa − xl). Thus

we have,
∑

k:{a,k}∈Ẽ

Bak(xa − xk) =
∑

l:{a,l}∈˜̄E

Bal(xa − xl), ∀x ∈ Rn,

which can be rewritten as follows: for all x ∈ Rn,

∑

k:{a,k}∈Ẽ\˜̄E

Bak(xa − xk)−
∑

l:{a,l}∈˜̄
E\Ẽ

Bal(xa − xl) = 0.

If La ∩ (˜̄E△Ẽ) is not empty, the above statement is true only when Bak = 0

for all {a, k} ∈ La ∩ (˜̄E△Ẽ). Bak is the susceptance of the line {a, k} when it is

“connected”, and this value is nonzero in practice for every line. Hence, La∩(˜̄E△Ẽ)

should be empty; i.e., , a line in La cannot be a target line.

It was shown that the lines in T and ∪a∈BLa cannot be a target line. Thus, the
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condition (5.17) implies that no line can be a target line, and this contradicts the

assumption that there exists an undetectable topology attack.
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and M. D. Ilić, “Wind integration in power systems: Operational challenges
and possible solutions,” Proceedings of the IEEE, vol. 99, no. 1, pp. 1890–1908,
Jan 2011.

[48] ERCOT, “Functional description of core market management system (MMS)
applications for look-ahead SCED,” White paper, 2011.

[49] CAISO, “Business Practice Manuals (BPM) Library: Mar-
ket Operations, Version 11,” Aug 2010. [Online]. Available:
http://bpm.caiso.com/bpm/bpm/version/000000000000096

[50] H. Li and L. Tesfatsion, “Capacity withholding in restructured wholesale
power markets: An agent-based test bed study,” in Proceedings of Power
System Conference and Exposition, Mar 2009.

[51] A. Tellidou and A. Bakirtzis, “Agent-based analysis of capacity withholding
and tacit collusion in electricity markets,” IEEE Transactions on Power Sys-
tems, vol. 22, no. 4, p. 17351742, Nov 2007.

[52] A. Abur and A. G. Expósito, Power System State Estimation. Theory and
Implementation. New York: Marcel Dekker, 2004.

166



[53] A. J. Conejo, E. Castillo, R. Mı́nguez, and F. Milano, “Locational marginal
price sensitivities,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp.
2026–2033, Nov 2005.

[54] F. Li, “Continuous locational marginal pricing (CLMP),” IEEE Transactions
on Power Systems, vol. 22, no. 4, pp. 1638–1646, Nov 2007.

[55] R. Bo and F. Li, “Probabilistic LMP forecasing considering load uncertainty,”
IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1279–1289, Aug
2009.

[56] J. Kim and L. Tong, “On topology attack of a smart grid,” in 2013 IEEE PES
Innovative Smart Grid Technologies (ISGT). Washington, DC, Feb 2013.

[57] A. Ashok and M. Govindarasu, “Cyber attacks on power system state esti-
mation through topology errors,” in Proc. IEEE Power Eng. Soc. General
Meeting, July 2012.

[58] W. W. Hogan, “Contract networks for electric power transmission,” Journal
of Regulatory Economics, vol. 4, no. 3, pp. 211–242, Sep 1992.

[59] T. A. Stuart and C. J. Herget, “A sensitivity analysis of weighted least squares
state estimation for power systems,” IEEE Transactions on Power Apparatus
and Systems, vol. PAS-92, no. 5, pp. 1696–1701, Sep 1973.

[60] R. Mı́nguez and A. J. Conejo, “State estimation sensitivity analysis,” IEEE
Transactions on Power Systems, vol. 22, no. 3, pp. 1080–1091, Aug 2007.

[61] A. L. Ott, “Experience with PJM market operation, sysem design, and im-
plementation,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 528–534, May
2003.

[62] D. Kirschen and G. Strbac, Fundamentals of Power System Economics. New
York: Wiley, 2004.

[63] “Vulnerability Analysis of Energy Delivery Control Systems,” Idaho National
Laboratory, September 2011, INL/EXT-10-18381.

[64] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Students
and Practitioners. Springer, 2010.

167



[65] R. B. Bobba, K. M. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T. J.
Overbye, “Detecting false data injection attacks on dc state estimation,”
in First Workshop on Secure Control Systems,CPSWEEK 2010, Stockholm,
Sweeden, Apr 2010.

[66] H. Sandberg, A. Teixeira, and K. H. Johansson, “On security indices for
state estimators in power networks,” in First Workshop on Secure Control
Systems,CPSWEEK 2010, Stockholm, Sweeden, Apr 2010.

[67] G. Dán and H. Sandberg, “Stealth attacks and protection schemes for state es-
timators in power systems,” in Proc. IEEE 2010 SmartGridComm, Gaithers-
burg, MD, USA., Oct 2010.

[68] O. Vukovic, K. C. Sou, G. Dan, and H. Sandberg, “Network-layer protection
schemes against stealth attacks on state estimators in power systems,” in
Smart Grid Communications (SmartGridComm), 2011 IEEE International
Conference on, oct. 2011, pp. 184 –189.

[69] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on
smart grid state estimation: attack strategies and countermeasures,” in Proc.
IEEE 2010 SmartGridComm, Gaithersburg, MD, USA, Oct 2010.

[70] A. Monticelli and F. Wu, “Network observability: Theory,” IEEE Trans.
Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1042–1048, May 1985.

[71] G. R. Krumpholz, K. A. Clements, and P. W. Davis, “Power system observ-
ability: a practical algorithm using network topology,” IEEE Trans. Power
Apparatus and Systems, vol. 99, no. 4, pp. 1534–1542, July 1980.

[72] A. Abur, H. Kim, and M. Celik, “Identifying the unknown circuit breaker
statuses in power networks,” IEEE Transactions on Power Systems, vol. 10,
no. 4, pp. 2029 –2037, nov. 1995.

[73] L. Mili, G. Steeno, F. Dobraca, and D. French, “A robust estimation method
for topology error identification,” IEEE Transactions on Power Systems,
vol. 14, no. 4, pp. 1469 –1476, nov 1999.

[74] E. Lourenco, A. Costa, and K. Clements, “Bayesian-based hypothesis test-
ing for topology error identification in generalized state estimation,” IEEE
Transactions on Power Systems, vol. 19, no. 2, pp. 1206 – 1215, may 2004.

[75] A. Jaen, P. Romero, and A. Exposito, “Substation data validation by a lo-

168



cal three-phase generalized state estimator,” IEEE Transactions on Power
Systems, vol. 20, no. 1, pp. 264 – 271, feb. 2005.

[76] F. Vosgerau, A. Simoes Costa, K. Clements, and E. Lourenco, “Power sys-
tem state and topology coestimation,” in Bulk Power System Dynamics and
Control (iREP) - VIII (iREP), 2010 iREP Symposium, aug. 2010, pp. 1 –6.

[77] D. Singh, J. P. Pandey, and D. S. Chauhan, “Topology identification, bad
data processing, and state estimation using fuzzy pattern matching,” Power
Systems, IEEE Transactions on, vol. 20, no. 3, pp. 1570–1579, 2005.

[78] L. Jia, R. J. Thomas, and L. Tong, “Malicious data attack on real-time elec-
tricity market,” in Proc. 2011 IEEE Intl. Conf. Acoust. Speech & Sig. Proc.
(ICASSP), Prague, Czech Republic, May 2011.

[79] O. Alsac, N. Vempati, B. Stott, and A. Monticelli, “Generalized state estima-
tion,” IEEE Transactions on Power Systems, vol. 13, no. 3, pp. 1069 –1075,
aug 1998.

[80] R. Christensen, Plane answers to complex questions: the theory of linear mod-
els. Springer, 2011.

169


	Cover
	Title
	Contact information
	Executive summary
	Table of contents
	1. Introduction
	2. Impacts of Data Quality
	3. Data Attack on LMP
	4. LMP Sensitivity
	5. Topology Attack
	Bibliography



