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Executive Summary 

 
The current transmission planning practice in the electric power industry is mainly based on 

the deployment of deterministic techniques. However, transmission planning, by its very nature, is 

faced with a wide range of sources of uncertainty, including growth in demand, renewable energy 

generation, fuel price, environmental requirements and legislation and new generation investment, 

to name just a few. In addition, the restructuring of the electric power industry, the drive for energy 

independence and the push for a cleaner environment have led to additional sources of uncertainty 

in all aspects of power system operations and planning. The competitive electricity markets, the 

more decentralized decision making and the new federal and state initiatives introduce additional 

sources of uncertainty. A particularly good example is the FERC Order No. 1000 requirements. 

The analytic characterization of the various sources of uncertainty is often a challenge and, typi- 

cally, cannot be expressed in terms of probability distributions. Past data may allow the estimation 

of the ranges of values that the uncertain variables may attain so as to make possible the deploy- 

ment of robust optimization approaches. We make use of such approaches to develop a decision- 

support system for transmission planners to allow the explicit consideration of uncertainty in the 

formulation of transmission plans. 

We discuss our studies of two optimization criteria for the transmission planning problem with 

a simplified representation of load and the forecasted generation investment additions within the 

robust optimization paradigm. The objective is to determine either the minimum of the maxi- 

mum investment requirement or the maximum regret with all sources of uncertainty explicitly 

represented. In this way, transmission planners can determine optimal planning decisions that are 

robust against all sources of uncertainty. We use a two-layer algorithm to solve the resulting tri- 

level optimization problems. We also construct a new robust transmission planning model that 

considers generation investment more realistically to improve the quantification and visualization 

of uncertainty and the impacts of environmental policies. With this model, we can explore the 

effect of uncertainty in both the size and the location of candidate generation additions. The cor- 

responding algorithm we develop takes advantage of the structural characteristics of the model so 
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as to obtain a computationally efficient methodology. The two robust optimization tools provide 

new capabilities to transmission planners for the development of strategies that explicitly account 

for various sources of uncertainty. 

We illustrate the application of the two optimization models and solution schemes on a set of 

representative case studies. These studies give a good idea of the usefulness of these tools and 

show their practical worth in the assessment of “what if” cases. We compare the performance 

of the minimax cost approach and the minimax regret approach under different characterizations 

of uncertain parameters. In addition, we also present extensive numerical studies on the IEEE 

118-bus test system and the WECC 240-bus system to illustrate the effectiveness of the proposed 

decision-support system. The case study results are particularly useful to understand the impacts of 

each individual investment plan on the power system’s overall transmission adequacy in meeting 

the demand of the trade with the power output units without violation of the physical limits of the 

grid. 

The decision-support system consisting of the two optimization models and solution approaches 

has wide applicability to transmission planning studies. The so-called minimax criterion models 

determine the set of planning decisions that result in the least-cost or the least-regret solution with 

the explicit consideration of uncertainty during the planning horizon. The set of planning deci- 

sions are optimal under the ranges of uncertainty given for the uncertain variables. The ability 

to represent the uncertainty in the investment decisions for generation addition together with the 

uncertainty in the retirement of units in the resource mix and the environmental regulatory require- 

ments is a major development for the tools available to transmission planners. 
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1 Introduction 

 
Transmission planning (TP) is one of the key decision processes in the power system production 

pipeline. Electricity transmission networks are responsible for reliably and economically deliv- 

ering power from generators to consumers. Thus, a robust and resilient transmission network is 

essential to the operation of power systems for decades to come. Good transmission investments 

have many benefits, including satisfying increasing demand, promoting social welfare, improving 

system reliability and resource adequacy, etc. Transmission planning is also very challenging due 

to various sources of uncertainty that planners need to consider. Besides uncertainty sources, such 

as demand variations and renewable energy intermittency faced by system operators in short-term 

scheduling, planners also need to take into consideration uncertainty of policy changes, techno- 

logical advancements and natural disasters [35]. Such sources of uncertainty cannot be charac- 

terized in terms of analytical probability distributions. For example, to cope with challenges of 

climate change, the power generation industry is facing increasing pressure to reduce greenhouse 

gas emissions. In addition, a large amount of coal plants are anticipated to retire in response to the 

implementation of the EPA clean power plan [8], and their replacement in part by gas-fired plants. 

Moreover, after the restructuring of the power system, certain behavior by generation companies 

introduces additional uncertainty in power system planning in general and TP in particular. How- 

ever, research on the impacts of uncertain future generation developments on TP is scarce in the 

decentralized decision making environment in competitive market. As such, the study of this topic 

is warranted. 

A salient need in TP is to explicitly represent the broad range of uncertainty associated with 

the ramifications of future generation resource investments. Such a representation is critically 

important in the formulation of the transmission investment decisions and leads to the additional 

complications in what is already a very complex decision-making process. In this report, we 

provide a detailed summary of the methodology we developed to address all these concerns in 

TP. We discuss its application to realistic power system test cases to gain new insights into the 

formulation of transmission investment decisions under uncertainty. We devote the remainder of 
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this section to present the context within which our work is developed, provide a brief survey of the 

state of the art in TP methodologies, and delineate the key feature of the methodology developed. 

 
1.1 Need for robust investment strategy in transmission planning 

 
Conventional transmission planning methodologies are typically deterministic and some make use 

of ad-hoc approaches to deal with uncertainty. These methodologies have served the industry 

relatively well in the vertically-structured industry. Present realities brought about, by the open 

access regime and the advent of competitive electricity markets, increased wind and solar resource 

outputs. Their highly time varying, uncertain and intermittent patterns, combined with the more 

dynamically varying and uncertain loads and a world-ranging environmental policy initiative have 

resulted in a more volatile utilization of transmission facilities. Critically needed is the improved 

planning methodologies that can effectively accommodate the realities of the new environment. 

Transmission planning, by its very nature, is subject to a wide range of sources of uncertainty that 

must be taken into account. The new regime indicates many additional sources of uncertainty and 

numerous complications that must be considered. 

Over a 10-20 year planning horizon, major sources of uncertainty faced by transmission plan- 

ning decision makers include load growth, fuel costs, climate change events, atmospheric con- 

ditions, variable generation outputs, generation expansion/retirement events, regulatory and leg- 

islative developments, technology breakthroughs and market outcomes. When the impacts of 

transmission plans are assessed, such studies must be carefully performed with the explicit rep- 

resentation of the sources of uncertainty, in light of the overarching consequences on the power 

system. These sources of uncertainty may be classified into two categories: aleatoric and epis- 

temic sources of uncertainty. Sources of aleatoric uncertainty cannot be replaced by more accurate 

measurements but they can be statistically quantified. For instance, the coincidental uncertainty 

with respect to the electrical system state and network topological state can be both probabilisti- 

cally and stochastically modeled and quantified if the relevant sets of input are made available. On 

the other hand, sources of epistemic uncertainty are due to information we may in principle know, 
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but do not in actual practice. Often, such sources are also called sources of systematic uncertainty. 

For instance, it is hard to assign meaningful probabilities to sources of uncertainty associated with 

government policies, technology breakthroughs, and investment in renewable energy generation. 

Electricity demand is expected to grow continually and steadily for decades to come. In the 

EIA Annual Energy Outlook 2013, forecasts indicate that electricity consumption will increase by 

28% from 2011 to 2040 at an average of about 1% per annum rate [11]. To accommodate such 

growth in electricity demand, new capacity of electricity generation must be built at a pace that 

meets or exceeds the growth of demand and retirement of old generators to maintain power system 

reliability. The additional demand and capacity require commensurate transmission capacity. 

With the additional sources of uncertainty and complications facing transmission planners and 

the need to accommodate increasing demand as well as more variable generation capacity, there is 

a critical need for new TP methodologies that can address the aforementioned concerns. 

 
1.2 Review of the literature 

 
The most common practices in to manage uncertainty in optimization include stochastic program- 

ming and robust optimization. In stochastic programming, scenarios are formulated based on 

an estimated probability distribution of the uncertain data. The weighted sum of the total costs 

under different scenarios form the typical objective function in the optimization. Stochastic pro- 

gramming has been successfully applied to power system capacity expansion planning problems 

in [13, 22, 24, 33]. Sources of uncertainty represented in the cited references include load predic- 

tion inaccuracies, transmission and generator outages, and generation capacity factors. All of those 

sources of uncertainty can be expressed analytically as probability distributions and may be effec- 

tively modeled in stochastic programming. However, the literature focus primarily on sources of 

uncertainty in system operations context and ignore sources of uncertainty in system planning. The 

reason is that it is difficult to obtain probability distributions of certain sources of uncertainty [7], 

such as policy changes and investment behavior of market players. In this project, in addition to 

demand uncertainty, we also take into consideration uncertain generation expansion behavior of 
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resource investment companies and the timing and size of coal power plant retirements. 

In addition to using stochastic programming to manage operation level uncertainty in TP, some 

literature uses scenario analysis to address uncertain events such as policy mandate and new invest- 

ment in generation capacity. In scenario analysis, multiple transmission plans are developed based 

on different scenarios and common investments under most scenarios are adopted [26]. However, 

as shown in [30], such approaches can be distinctly different than the optimal solution of stochastic 

optimization. The authors of [30] propose an approach to use the stochastic programming, where 

3 scenarios of equal likelihood are constructed to describe the different policy mandates and fuel 

costs based on EIA forecasts and some educated assumptions. The optimal average costs under the 

three scenarios are determined. Generation investments are assumed to have the same objective as 

transmission investments in this paper. A similar approach is proposed in [7], where the authors 

construct eight scenarios. The disadvantages of this approach is that only a limited number of sce- 

narios are explored. In addition, the constructed scenarios are more of a “big picture” rather than a 

detailed depiction of possible futures. 

Another approach used to explore the impact of generation profile uncertainty on TP is based 

on game theoretic models to describe the strategic behavior of various market participants, in- 

cluding generation companies (GENCOs). A trilevel model is proposed in [31]. In the first level 

transmission investment decisions are made. In the second level, multiple GENCOs make genera- 

tion investments in response to the transmission investment decisions taken. Operational decisions 

are made in the third level. Perfect information competition between GENCOs is assumed. A 

similar trilevel structure is proposed in [19] and [20], where a Cournot game between GENCOs is 

solved. Similar approaches are also used in [14, 29, 33]. Game theoretical models are useful in that 

they can provide us some insights into the behavior of different participants in the power market. 

However, some strong assumptions about the players are needed. For example, it is assumed that 

complete information is available to all the players. In addition, the high complexity of the models 

means that they are difficult to implement for large realistic-sized systems. 

Given the limitations of the methods in the literature, there is need for practical approaches 
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to address the challenges faced by transmission planners in the current environment in the power 

electric industry. A promising approach to manage optimization under uncertainty is robust op- 

timization [3, 5, 12]. Uncertainty parameters in robust optimization are described by parametric 

sets, which can contain any number of scenarios without specific knowledge of the probability 

distributions. Distribution-free description of uncertainty makes robust optimization more suitable 

to tackle sources of uncertainty whose probability distributions are difficult to obtain, including 

future generation expansion and retirement. Another feature of robust optimization is that it mini- 

mizes the objective value under the worst-case scenario (scenario with the largest objective value). 

Such a feature is desirable for a transmission planning problem with its risk-averse nature. Despite 

the advantages of robust optimization, its applications in TP is limited. In [16], a robust TP model 

with explicit representation of demand and renewable energy output uncertainty is proposed. The 

model is solved by a two-level Benders decomposition algorithm. In [34], the authors propose a 

similar model with the uncertainty in equipment outages also represented. Column and constraint 

generation1  with Karush-Kuhn-Tucker (KKT) optimality conditions reformulation of the bilevel 

subproblem is used to solve the model. Robust optimization is also used in [28] with the explicit 

representation of the system with n - k contingencies for transmission planning. The cited refer- 

ences are limited to the operational level sources of uncertainty and fail to represent the uncertainty 

in today’s system with increasing penetrations of renewable resources, competitive conditions, and 

rapidly changing policies. 

 
 

1.3 FERC Order No. 1000 impacts on transmission planning 

 

The FERC decision embodied in its Order No. 10002 is viewed as a watershed event from the 

transmission planning and investment point of view. Prior to its issuance, transmission planning 

1With the column and constraint generation, new variables and constraints are added to the master problem to 
improve the objective value at each iteration 

2FERC, Final Rule, Order No. 1000, Transmission Planning and Cost Allocation by Transmission Owning and 

Operating Public Utilities, FERC Stats. & Regs., Issued July 21, 2011. Available online at: http://www.ferc.gov/ 
whats-new/comm-meet/2011/072111/E-6.pdf 

http://www.ferc.gov/whats-new/comm-meet/2011/072111/E-6.pdf
http://www.ferc.gov/whats-new/comm-meet/2011/072111/E-6.pdf
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included many sources of uncertainty3 and the process was governed by the principles laid out 

in Orders No. 888 and No. 8904. FERC Order No. 1000 puts in place a number of mandates5 

that require–directly and indirectly–transmission planners to integrate additional sources of uncer- 

tainty into the planning process and that increase the scope and computational requirements of the 

planning problem. Specifically, the Order requires planners to: 

 
• explicitly consider transmission needs driven by public policy requirements in local and 

regional planning; 

• explicitly consider non-transmission solutions in regional transmission plans; 

 
• cooperate with neighboring transmission regions6 to develop interregional plans; and 

 
• explicitly define a transmission project cost allocation methodology for projects included 

in regional and interregional plans that satisfies the six allocation principles defined in the 

Order. 

The following paragraphs describe the additional sources of uncertainty introduced by these 

requirements and also discusses their impacts on the computational cost to solve the transmission 

planning problem. 

Planners must explicitly consider transmission needs driven by public policy requirements in 

local and regional planning 

3In this section we describe emerging sources of uncertainty resulting from the implementation of FERC Order 
No. 1000. For examples of conventionally considered sources of uncertainty in transmission and generation planning 
see Ivey, M., et al. White Paper on Accommodating Uncertainty in Planning and Operations. Consortium for Electric 

Reliability Technology Solutions (CERTS) Grid of the Future, at 5-10. Available online at: http://certs.lbl.gov/  
pdf/certs-uncertainty.pdf 

4FERC, Final Rule, Order No. 888, Promoting Wholesale Competition Through Open Access Non-discriminatory 

Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitting Utilities, 

FERC Stats. & Regs., Issued April 24, 1996. Available online at: http://www.ferc.gov/legal/maj-ord-reg/ 
land-docs/order888.asp; FERC, Final Rule, Order No. 890, Preventing Undue Discrimination and Preference 

in Transmission Service, FERC Stats. & Regs., Issued February 16, 2007. Available online at: http://www.ferc.  
gov/whats-new/comm-meet/2007/021507/E-1.pdf 

5We focus on those elements of the order that introduce additional uncertainty into planning. For a detailed synopsis 
of all of the requirements of FERC Order No. 1000, see, for example, Davis, T. FERC’s Regional Transmission Policy 

Takes Shape, The Electricity Journal, Volume 26, Issue 7, August 2013, Pages 22-32. 
6The Order does not, however, require coordination between interconnections, though the Commission encourages 

such coordination. 

http://certs.lbl.gov/pdf/certs-uncertainty.pdf
http://certs.lbl.gov/pdf/certs-uncertainty.pdf
http://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp
http://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp
http://www.ferc.gov/whats-new/comm-meet/2007/021507/E-1.pdf
http://www.ferc.gov/whats-new/comm-meet/2007/021507/E-1.pdf
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The commission requires planners take stakeholder input as to public policy requirements that 

are appropriate to consider in the planning process and that drive additional transmission needs. 

Such policies include any that can reasonably be shown to impact the electricity supply and trans- 

mission system, such as renewable portfolio standards (RPS), carbon pricing or taxation, and more 

stringent pollutant emission standards. 

The inclusion of public policy requirements introduces a significant source of uncertainty into 

the planning process. For example, the introduction of a national RPS may seriously increase 

the need for large-scale transmission to bring wind generated electricity and other renewables 

generation from areas of abundant renewable resources to load centers. However, the amount of 

renewable generation required by the RPS and the timeline for its implementation will have a 

large impact on the magnitude, locations, and timelines for development of potential transmission 

projects needed to meet the RPS requirements. The impacts of uncertainty associated with policy 

design and implementation translate into uncertainty in the planning process. Such a statement 

is equally true for carbon pricing or more stringent emission requirements that may impact the 

construction and retirement of coal-fired generation and therefore add to the uncertainty of future 

power flows in the transmission system. 

Planners must explicitly consider non-transmission solutions in regional transmission plans 

Non-transmission solutions include generation, demand response, energy efficiency, energy 

storage, or other resource that can contribute to ensure that the supply-demand balance is met eco- 

nomically and reliably within the physical constraints of the transmission system. Non-transmission 

solutions may substitute for transmission line additions/modifications by provision of congestion 

relief or counter flows so as to increase the grid’s available transfer capability. Non-transmission 

solutions introduce additional sources of uncertainty, such as the expected level of activity by de- 

mand response resources, and increase the impacts of the conventional sources of uncertainty, such 

as future fuel prices and the timelines for generator interconnection and retirement/decommissioning, 

as well as the investment costs, which must be taken into account. Furthermore, the inclusion 

of non-transmission alternatives in transmission planning increases the scope of the transmission 
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planning problem and as a result increases the computational burden of solving the problem. 

Planners must cooperate with neighboring transmission regions to develop interregional plans 

Many public utility transmission providers currently undertake planning limited to the geo- 

graphic scope of their jurisdiction. FERC Order No. 1000 puts in place the requirement that public 

utility transmission providers form planning regions, consisting of multiple transmission providers. 

The Order extends the nine principles of planning enumerated in Order No. 890 to both regional 

and interregional planning activities7. 

Interregional planning will drive the need for a standard set of metrics to assess the regional 

benefits of transmission projects. The assessment of any specified set of metrics requires treatment 

of conventionally considered sources of uncertainty and those introduced by the Order. Further- 

more, an increase in the geographic scope of transmission studies brings with it increased compu- 

tational  requirements. 

Planners must explicitly define a transmission project cost allocation methodology for projects 

included in regional and interregional plans that satisfies the six allocation principles defined in 

the Order 

FERC Order No. 1000 requires cost allocation methodologies adhere to the following six 

principles: 

• the costs are allocated in a way that is roughly commensurate with the benefits; 

 
• there is no involuntary allocation of costs to non-beneficiaries; 

 
• projects must adhere to a specified benefit to cost threshold ratio; 

 
• allocation must be solely within transmission planning region(s) unless those outside entities 

voluntarily assume costs; 

• there must be a transparent method to determine benefits and to identify beneficiaries; 

 
• different allocation methods may apply for different types of facilities. 

 
 

7The nine principles are coordination, openness, transparency, information exchange, comparability, dispute reso- 
lution, regional coordination, economic planning studies, and cost allocation. 
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The introduction of an explicit requirement to connect the allocation of project costs with the 

distribution of the benefits derived from the project drives the need for more specific definitions of 

the benefits of transmission investments8 and methods to quantify those benefits and the associated 

uncertainties. For example, whether or not a project will be eligible for regional cost allocation 

depends on its ability to meet the cost to benefit ratio principle. The satisfaction of this threshold 

depends on which benefits can be and are quantified and the range of these benefits given the level 

of uncertainty in their quantification. 

The explicit representation of the additional sources of uncertainty and associated computa- 

tional requirements in transmission planning processes poses a key challenge to planners in the 

implementation of the Order. 

Under FERC Order 1000, transmission planners are forced to take a broader view than ever 

before of the transmission needs of the system and how those needs can and are met. Specifically, 

planners must consider system transmission needs driven not simply by reliability and economic 

considerations, but also by public policy requirements. This new requirement represents a signifi- 

cant break from conventional planning practices and are likely to have significant ramifications on 

the integration of renewables and on the system resource mix in the implementation of the Order. 

Further, the Order impact transmission planners as they update and expand planning processes and 

tools to include the new requirements. The development of computationally efficient approaches 

to integrate the sources of uncertainty introduced by the Order into existing planning tools is a key 

requirement for the successful implementation of the Order. Similar statements hold for generation 

planners for the EPA Clean Power Plant rules as the coal plant retirements have to proceed on an 

earlier time line than anticipated. 

Moreover, the Order broadens the scope of the potential portfolios to meet the system’s trans- 

mission needs to include non-transmission solutions, such as generation and demand response. 

The consideration of a wider range of resources to meet the identified system transmission needs 

8The definition of the various components of the benefits of building additional transmission are described in 
detail in Chang, J., et al. The Benefits of Electric Transmission: Identifying and Analyzing the Value of Investments, 

Prepared for WIRES by The Brattle Group, July 2013. Available online at: http://cleanenergytransmission. 
org/uploads/WIRES%20Brattle%20Rpt%20Benefits%20Transmission%20July%202013.pdf 

http://cleanenergytransmission.org/uploads/WIRES%20Brattle%20Rpt%20Benefits%20Transmission%20July%202013.pdf
http://cleanenergytransmission.org/uploads/WIRES%20Brattle%20Rpt%20Benefits%20Transmission%20July%202013.pdf
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increases the complexity of the planning problem but also provides additional degrees of freedom 

to transmission planners to ensure the system has adequate transmission transfer capability. The 

transmission planning process envisioned by the Order is similar in nature to the conventional pro- 

cess of integrated resource planning (IRP) practiced by some planning entities today9. Planners 

can look to the successes and challenges of IRP to inform the effective implementation of Order 

No 1000. 

The identification of the transmission needs of the system and a broad range of resources to 

meet those needs is accompanied by the requirement to select a portfolio for development based on 

demonstrated benefits. Indeed, FERC Order No. 1000-A requires planners to be “definite” about 

the benefits and beneficiaries of transmission projects so as to provide the impetus for the devel- 

opment of methodologies and tools to quantify the various components of transmission investment 

benefits10. 

Furthermore, the regional cooperation requirements in the Order emphasize the importance of 

data management and data sharing between transmission planning entities. With expanded geo- 

graphic scope and integration of additional sources of uncertainty, the data needs of transmission 

planning increase considerably. Successful interregional planning can be accomplished only if 

accompanied by extensive interregional data coordination. 

In summary, transmission planning has undergone a significant shift with the issuance of FERC 

Order No. 1000. As transmission planners adapt their processes and develop, where necessary, 

new processes to meet the Order’s new requirements, there is a need and ample opportunity to 

apply scenario-based and probabilistic approaches for integrating conventionally considered and 

emerging sources of uncertainty. 

9For an overview of IRP and some recent examples of utility implementation see, Wilson, R. and Biewald, 

B. Best Practices in Electric  Utility  Integrated  Resource  Planning:  Examples  of  State  Regulations  and  Re- 

cent Utility Plans. Prepared  for  The  Regulatory  Assistance  Project  by  Synapse  Energy  Economics,  June 

2013. Available online at: http://www.synapse-energy.com/Downloads/SynapseReport.2013-06.RAP.  
Best-Practices-in-IRP.13-038.pdf 

10FERC, Final Rule, Order No. 1000-A, Transmission Planning and Cost Allocation by Transmission Owning and 

Operating Public Utilities, FERC Stats. & Regs., Issued May 17, 2012. Available online at: http://www.ferc.gov/ 
whats-new/comm-meet/2012/051712/E-1.pdf 

http://www.synapse-energy.com/Downloads/SynapseReport.2013-06.RAP.Best-Practices-in-IRP.13-038.pdf
http://www.synapse-energy.com/Downloads/SynapseReport.2013-06.RAP.Best-Practices-in-IRP.13-038.pdf
http://www.ferc.gov/whats-new/comm-meet/2012/051712/E-1.pdf
http://www.ferc.gov/whats-new/comm-meet/2012/051712/E-1.pdf
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1.4 Motivation 

 
We propose to develop a new decision-support system for transmission planning with explicit 

consideration of various sources of uncertainty. As a starting point, we will specify a set of repre- 

sentative requirements. The salient features of the decision-support system are its two interrelated 

elements: (I) a set of appropriate performance metrics to quantify the economic costs, benefits, re- 

liability and environmental attributes of a transmission plan and (II) a set of models and analytical 

techniques to formulate optimal transmission planning decisions under the explicit representation 

of various sources of uncertainty and their impact. 

In this project, we make detailed applications in robust optimization to construct models to 

solve the transmission planning problem considering generation investment uncertainty. Firstly, 

we compare two optimization criteria—minimax cost and minimax regret, under the robust opti- 

mization paradigm. Demand and generation expansion uncertainty is considered, where we assume 

that generation capacity at specific locations is in a polyhedral set. The models are applied to an 

IEEE 118-bus system. Then, we modify the robust transmission planning model to consider gener- 

ation expansion uncertainty in more detail. The structure of our new model is similar to the models 

in Section 2.1. However, a few key aspects are different, including uncertainty modeling, number 

of decision time points and solution algorithm. Table 1 summaries the comparison between our 

new model and some previous works. 

 
1.5 Contributions of this project 

 
In this project, we develop a decision-support system for transmission planning under uncertainty. 

In this system, we propose two models under the robust optimization paradigm to take into consid- 

eration multiple sources of uncertainty facing transmission investors. We provide two optimization 

criteria, minimax regret and minimax cost, for Model A. Planners have the freedom and flexibility 

to choose the appropriate criterion based on their beliefs on the levels of uncertainty. Uncertainty 

in both the loads and the future generation investment is considered. Effective algorithms are then 

proposed to solve the resulting trilevel optimization problems. We then applied the models and 
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Table 1: Comparison of the proposed model with literature 

Reference Objective 
Generation 
investment 

Uncertainty Model 
Solution 
Method 

Case Study # periods 

[16] minimax cost none 
load, renewable 
intermittency 

RO BD IEEE 118-bus 1 

[30] average cost centralized 
regulatory,  mar- 
ket conditions 

SP MIP WECC 240-bus 3 

[31] costs player load game MIP, KKT SIC 33-bus 1 
 

[34] 
 

minimax cost 
 

none 
load, renewable 
intermittency, 
equipment  failure 

 

RO 
C&CG, 
KKT 

 

RTS 24-bus 
 

1 

[28] minimax cost none n - k contingency RO C&CG, BD IEEE 300-bus 1 
 

[9] 
minimax 
cost, minimax 
regret 

 

uncertainty 
Load,  generation 
capacity 

 

RO 
C&CG, 
KKT 

 

IEEE 118-bus 
 

1 

Our model minimax cost uncertainty 
generation invest- 
ment 

RO 
C&CG, 
dual 

WECC 240-bus 4 

 

RO: robust optimization. BD: Benders decomposition. SP: stochastic programming. MIP: mixed-integer 
programming. C&CG: column and constraint generation 

 

algorithms to an IEEE 118-bus test system to illustrate the effectiveness of the decision-support 

system. The results are analyzed to compare the performances of the transmission plans devised 

by our model with different optimization criteria under different scenarios. 

To provide a modeling framework that enables more detailed representation of generation ex- 

pansion and retirement uncertainty, we also provide another model in our decision-support system. 

With this new model, the uncertainty set of our robust transmission planning model can describe 

uncertainty in not only the capacity of generators but also in their locations. In addition, because of 

the special structure of our new model, we are able to devise a solution method for the trilevel prob- 

lem without the need to directly solve the KKT conditions, making the application to larger-sized 

systems more practical. We applied the model and algorithm on a WECC 240-bus test system and 

compare the performance of the transmission plans yielded by our decision-support system with 

the performance of plans devised by heuristic rules under multiple scenarios with different natural 

gas price and renewable energy policy mandate. The results show that the investment plans our 

decision-support system yields not only have superior performance across different scenarios, but 

also are very robust under natural gas price and renewable energy penetration data variations. 

The remaining sections of this report are the outline of the report. We provide a detailed 
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description of the modeling framework in Sections 2.1 and 2.2, including the model assumptions 

and the formulations. Section 3 reports on the construction of the solution schemes customized for 

our specific models. Section 4 reports the results of our representative case studies on the IEEE 

118-bus and the WECC 240-bus test systems. The case studies illustrate the ability of the project 

to devise robust candidate investment plans under different sensitivity cases. We provide summary 

remarks in Section 5 and restate the key findings and conclusions. We also discuss directions for 

future work in the same section. 
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cT 

cL 

cP 

2 Model formulation 

 
Transmission planning problems are usually modeled as two-stage problems to account for the 

long planning horizon, where the transmission planning decisions are made in the first stage when 

there is limited information on uncertain parameters and the operational decisions are made in the 

second stage after uncertainty realizations are observed. In this section, we first present the model 

with the simplified load and generation uncertainty representation. Then we introduce the model 

with the more realistic generation uncertainty representation. 

 
2.1 Model A: Simplified load and generation uncertainty 

 
2.1.1 Nomenclature 

Sets and indices 

U The polyhedron uncertainty set of demand and new generation capacity profile 

V Set of nodes 

L Set of existing transmission lines  

N Set of candidate transmission lines 

T Set of years in the planning horizon 

M Set of load blocks 

K Set of technology types 

Parameters 

Pi,k,t Capacity of existing generator of technology k at node i at time t 

i j,t Cost of building the new transmission line ij at time t 

i,t Cost of load curtailment at node i at time t 

i,k,t Cost of power production of technology k at node i 
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f C 

P̄ N 

Fmax 

PN,min 

PN,max 

k,t,m Average capacity factor of generation technology k at year t load block m 

ij The maximum power flow on transmission line ij 

Bij Susceptance of transmission line ij  

M A big constant used to linearize the power flow constraint 

d̄ i,t,m The average amount of demand at year t load block m at node i 

i,k,t The average amount of generation expansion of technology k at node i at time t 

qmin The lower bound of voltage angles 

qmax The upper bound of voltage angles 

l Market interest rate (Inflation included) 

i,k,t Minimum amount of new generation at a node 

i,k,t Maximum amount of new generation at a node 

PN,min Lower bound on the total amount of generation at all the nodes 

PN,max Upper bound on the total amount of generation at all the nodes 
 

Decision Variables 

xij Binary variables indicating whether a transmission line is built 

PN N 

i,k,t The amount of new generation capacity of technology k at node i at time t. Pi,k,t is negative 

in the case of power plant retirement 

fi j,t,m Power flow from node i to node j at year t load block m 

pi,k,t,m Power production of technology k at node i at year t load block m 

ri,t,m The amount of load shedding at node i at year t load block m 

qi,t,m Voltage angle at node i at year t load block m 

di,t,m Demand at year t load block m at node i 

2.1.2 Overview 

 
In this section, we propose a robust optimization approach to address two main sources of uncer- 

tainty: load and generation expansion behavior of generating companies. Two criteria, minimax 

cost (MMC) and minimax regret (MMR), are used as the objective of our models. The MMC 
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criterion has been used widely in robust optimization applications [4]. The MMR criterion is con- 

sidered in [18] for the unit commitment problem. In comparison with the MMC criterion, it is 

concluded that MMR outperforms MMC for certain unit commitment problems. However, the 

same conclusion may not apply to transmission planning problems due to the different structures 

of such problems. In [25], regret is considered as one of the objectives in a multi-objective opti- 

mization framework. It is applied to handle non-random sources of uncertainty in [2, 10]. Both 

criteria use the performance of a decision under the worst possible scenario as the objective for 

optimization, but their main difference is how the “worst scenario” is defined. The MMC criterion 

focuses on the cost associated with a decision under a scenario, so the scenario that results in the 

highest cost is identified as the worst scenario. On the other hand, the MMR criterion defines the 

worst scenario as the one that leads to the highest regret for the decision maker. For a given de- 

cision d0 and a given scenario s0, the regret is the highest potential cost savings had the decision 

maker known that scenario s0 would occur and made a decision accordingly. More rigorously, 

 

R(d0, s0) = C(d0, s0) - minC(d, s0), 
d2D 

 

where C(d0, s0) is the cost associated with d0 and s0, D is the set of all feasible decisions, and 

R(d0, s0) is the regret associated with d0 and s0. Using these notations, the MMC and MMR 

criteria can be respectively formulated as 

 

⇢ 
min 
d2D 

maxC(d, s) 
s2U 

and 

 
⇢ ⇢ ⇢ 

min 
d2D 

max R(d, s) 
s2U 

= min 
d2D 

max 
s2U 

C(d, s) - min C(d0, s) . 
d02D 

 

 

 

 
 

We use two simple examples in Tables 2 and 3 to demonstrate the differences between MMC 

and MMR. In the first example, under MMC, D2 is the optimal decision because its worst scenario 
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cost, $8, is lower than that of D1, $9. Under MMR, D1 is the optimal decision because its worst 

scenario regret, $1, is lower than that of D2, $5. The argument for MMR is that since scenario 

S1 is a “bad” scenario anyway because D1 and D2 both lead to higher costs in S1 than S2, the 

difference between the costs associated with the two decisions, which is the regret, may provide 

more information for decision making than the absolute value of the cost itself. In the second 

Table 2: Motivating example for the minimax regret model 
Cost / Regret Decision D1 Decision D2 

Scenario S1 $9 / $1 $8 / $0 

Scenario S2 $2 / $0 $7 / $5 
 

example, decision D3 is obviously a bad choice because of its high cost in scenario S4. Decision 

D5 will be selected under MMC because its worst cost, $18, is lower than that of D3, $40, and D4, 

$19. Under MMR, decision D4 will be selected since its worst-case regret is $13 while the regret 

of D5 is $14. We argue the MMC solution D5 is better in this example because it is only slightly 

worse than the MMR decision D4 in terms of regret in scenario S3 only because of the existence of 

decision D3, which cannot be selected anyways, but has a much lower cost in scenario S4. 

Table 3: Motivating example for the minimax cost model 
Cost / Regret Decision D3 Decision D4 Decision D5 

Scenario S3 $4 / $0 $16 / $12 $18 / $14 

Scenario S4 $40 / $34 $19 / $13 $6 / $0 
 

From the previous two examples, we can see that there are no clear cut answers as to which 

criterion is superior. Each of them has advantages and disadvantages. The examples above can 

shed some light on which criterion may perform better in what situations. In the first example, 

both decisions perform better in one scenario and worse in the other. In this case, it makes sense 

to use MMR as the criterion because the MMC criterion is too conservative and does not consider 

non-extreme scenarios. On the other hand, in the second example, there exists a very risky decision 

that performs well under one scenario and extremely poorly under the other. In a planning problem 

where risks should be controlled, such decisions are usually not desirable, but they may affect the 

maximum regret of other decisions and distort the final decision. 
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The two-stage structure of our robust optimization models can capture both the planning and 

operation stages of the transmission planning problem very well. They can be formulated as special 

cases of trilevel optimization problems. However, due to their non-linear, non-convex structure, 

they are very difficult to solve. In previous researches [4, 17], the authors use Bender’s decom- 

position to reformulate the problem into a master problem and a bilinear subproblem, which is 

then solved with outer approximation. However, the outer approximation approach cannot handle 

the binary variables in the subproblem when the MMR criterion is used. In [18], statistical up- 

per bounds are used to complement the outer approximation approach. We propose a two-layer 

algorithm where we decompose our problem into a master problem and a bilevel subproblem. 

The master problem is updated with a branch and cut type procedure, where new constraints and 

variables are iteratively generated and then solved as a mixed-integer program. This algorithm is a 

special case of the bilevel optimization algorithm [36]. Similar algorithms are proposed in [37,38]. 

It works faster than the traditional Bender’s decomposition approach with the use of primal infor- 

mation instead of dual variables. The subproblem is a mixed-integer bilevel optimization problem, 

which is more difficult to solve. In [27], the difficulty of solving a bilevel linear optimization pro- 

gram is discussed and several heuristics are proposed. We use the Karush-Kuhn-Tucker (KKT) 

conditions [6] to reformulate the bilevel problem into a single level problem with complementarity 

constraints, which is then reformulated into a mixed-integer programming problem [15]. 

 
2.1.3 Deterministic model 

 
In the deterministic model, consideration of uncertainty is avoided by assuming perfect information 

for all parameters. For example, in the following deterministic model, the load is fixed as d̄  and 

the new generation capacity is fixed as P̄ N. 
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i j,t i,k,t i,t 

ij , 8i j 2 L (9) 

i j  

 
 

minÂcT
 

 

xij + Â (1 + l )t (cP
 pi,k,t,m + cL ri,t,m) (1) 

i j,t i,k,t,m 

s. t. Â pi,k,t,m + Â f ji,t,m - Â fi j,t,m = d̄ i,t,m - ri,t,m, 8i 2 I , t 2 T , m 2 M (2) 
k j j 

fi j,t,m - Bi j(qi,t,m - qj,t,m) - (1 - xij)M  0, 8i j 2 N (3) 

Bi j(qi,t,m - qj,t,m) - fi j,t,m - (1 - xij)M  0, 8i j 2 N (4) 

fi j,t,m = Bi j(qi,t,m - q j,t,m), 8i j 2 L (5) 
 

fi j,t,m  Fmax 
ij  

i j x 
- fi j,t,m  Fmax

 

, 8i j 2 N (6) 
 
i j  i j x 

fi j,t,m  Fmax
 

, 8i j 2 N (7) 

ij  , 8i j 2 L (8) 

- fi j,t,m  Fmax
 

 

k,t,m(P + P̄ N 
,t ), 8i 2 I , t 2 T , m 2 M , k 2 K (10) 

 

qmin  qi,t,m  qmax, 8i 2 I ,t 2 T , m 2 M (11) 

x binary (12) 
 
 

The objective function (1) is the transmission capital investment cost and total operational cost 

(including cost of power production and load shedding) over the planning horizon. This model 

is a static model, in which the total operational cost over the planning horizon is estimated by 

extrapolating from |T | years. A similar approach has been used by several other related stud- 

ies [13, 21, 22]. Constraint (2) requires that the net influx at a node should be equal to the net 

outflow. Constraints (3) and (4) are equivalent to the equation fi j,t,m = xijBij(qi,t,m - q j,t,m), which 

is nonlinear and complicates the model. We introduce the constant M to linearize this equation [21]. 

When xij = 1, then the two constraints are reduced to fi j,t,m = Bi j(qi,t,m - q j,t,m), where the value 

of M does not matter. When xij = 0, then we need to make sure that M is large enough so that no 

additional constraints are imposed. On the other hand, if M is too large, it may cause computational 

difficulties. In our experiments, we set it to be ten times the largest value of Fmax. Equation (5) 
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calculates the power flow on existing transmission lines. Constraints (6)- (9) dictate that the power 

flow on transmission lines does not exceed their limits. Constraint (10) specifies the generation 

capacity on each node. Constraint (11) limits the range of phase angles at a node. 

To facilitate algorithmic development and simplify the notations, we abstract the deterministic 

model as follows: 

 

minx,zc
>x + b>z (13) 

s. t. Ax + C1z  g1 (14) 

Bȳ  + C2z  g2 (15) 

Jz = d̄  (16) 
 
 

In this more concise abstract formulation, we use x to represent the binary variable indicating 

whether or not a transmission line should be built, y to represent the amount of new generation and 

z to represent operational variables including power production, phase angles, power flow and load 

curtailment. Vectors c and b represent coefficients of variables in the objective function. Matrices 

A, B,C1,C2, J are the coefficients of variables in the constraints. Vectors g1, g2 are the right-hand- 

side parameters in the constraints. Constraint (14) corresponds to equations (3)-(11). Constraint 

(15) corresponds to (10). Constraint (16) corresponds to (2). 
 
 

2.1.4 The MMC model 

 
In the two-stage MMC model, given the first-stage decisions, the second-stage problem is com- 

monly known as the recourse problem [23], where the optimal operation decisions are identified. 

The feasible set of the recourse problem is defined as follows: 

 

Z (x, d, y) = {z : C1z  g1 - Ax,C2z  g2 - By, Jz = d} 
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z c ˆ 

The uncertainty set is defined as 
 
 

U = {(d, y) : Q1d  q1, Q2y  q2} 

 

The matrices Q1, Q2 are the coefficients of d and y in the uncertainty set. Vectors q1, q2 are the 

right-hand-side parameters. They can contain information including the lower and upper bounds 

of the uncertain parameters, the lower and upper bounds of the linear combination of the uncer- 

tain parameters, etc. Such information can be obtained from historical data or statistical tests on 

historical data. In this project we consider both the uncertainty caused by load forecast and the un- 

certainty caused by future generation expansion. In addition, other types of sources of uncertainty 

can be easily plugged into the model without affecting the algorithm. 

The MMC model can be formulated as: 

 
 

min 
⇢ 

c>x + max 
 

min 
  

b>z 
 

. (17) 
x binary (d,y)2U z2Z (x,d,y) 

 

2.1.5 The MMR model 

 
Unlike the MMC model, the MMR model aims to minimize the worst-case regret under all pos- 

sible scenarios. Before presenting the MMR model, we first define the feasible set of the perfect 

information solution G (d, y) and the perfect information cost G(d, y) as follows: 

 
G (d, y) = {(x̂, ẑ) : Ax̂ + C1ẑ  g1,C2ẑ  g2 - By, Jẑ = d}. 

 

 

 
G(d, y) = min 

x̂,ẑ2G (d,y) 

n 
>x̂ + b> 

o 
. 

 

We can see that G(d, y) is only dependent on the uncertain parameters (d, y) and can only be 

known after the uncertainty realizations are observed. We call it the perfect information solution 

because G(d, y) can only be achieved if perfect information about the sources of uncertainty is 

available. 
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Then we can define the MMR model as follows: 

 
 

min 
⇢ ⇢ 

c>x + max 
 

min 
   

b>z - G(d, y) 
 

. (18) 
x binary (d,y)2U z2Z (x,d,y) 

 

Comparing the MMC model and MMR model side by side, their similarities are very notice- 

able. The difference between them lies in their definition of the “worst-case scenario”. With the 

MMC criterion, the worst-case scenario is defined as the scenario with the highest cost, while the 

MMR criterion defines the worst-case scenario where regret is the highest. 

To shed more light on which criterion is more appropriate under different situations, we can 

classify scenarios into two categories: regretful vs. regretless. We use xC to denote the MMC 

solution and xR to denote the MMR solution. R(x, s) is the regret of decision x under scenario s. 

If R(xC, s) 2: R(xR, s), then we call scenario s a regretful scenario for decision xC. Otherwise, we 

say it is regretless. When MMR is used, regret is redistributed among the scenarios. The regretful 

ones become less regretful and the costs in the regretless scenarios increase. As an uncertainty set 

consists of both regretful scenarios and regretless scenarios, it is unpractical to predict accurately 

which type of scenario will occur in the future. However, the classification of scenarios compares 

and illustrates the advantages of the MMR and MMC approaches for decision-makers to choose the 

criterion more appropriately for their specific problem. For example, if they are more confident that 

regretful scenarios will occur, they can choose the MMR criterion. Otherwise, they may choose 

the MMC criterion. 
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cL 

cP 

FC 

Fmax 

2.2 Model B: More realistic generation uncertainty 

 
2.2.1 Nomenclature 

Sets and indices 

I Set of nodes 

L Set of existing transmission lines 

N Set of candidate transmission lines 

T Set of time periods in the planning horizon 

M Set of load blocks 

K Set of technology types 

Parameters 

Pi,k Capacity of existing and future generators of technology k at bus i 

i, j,t Cost of building the new transmission line (i, j) at time t 

i,t Cost of load curtailment at node i at time t 

i,k,t Cost of power production of technology k at node i 

k,t,m Average capacity factor of generation technology k at year t load block m 

i, j The maximum power flow on transmission line (i, j) 

Bi, j Susceptance of transmission line (i, j) 

M, M0 Big constants used to linearize the power flow constraints and the products between two 

variables 

di,t,m Demand at node i at time period t load block m 

q min The lower bound of voltage angles 

q max The upper bound of voltage angles 

l Cash flow interest rate (with inflation) 

gi,k,0 Current availability of generators of technology type k at bus i 
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Variables 

xi, j,t Binary variables indicating whether a transmission line is built at time t 

gi,k,t Binary variables indicating whether a generator of technology type k exists at bus i in time 

period t 

fi, j,t,m Power flow from node i to node j at year t load block m 

pi,k,t,m Power production of technology k at node i at year t load block m 

ri,t,m The amount of load shedding at node i at time t load block m 

qi,t,m Voltage angle at node i at time t load block m 

z Abstract variable representing all dispatch variables, including fi j,t,m, pi,k,t,m, ri,t,m, and 

qi,t,m 

CI(x) Total investment cost 

CO(z) Total operation cost 

 
2.2.2 Overview 

 
In this section, we present a new multi-period robust optimization framework for transmission 

planning considering generation expansion and retirement uncertainty. To tackle robust TP prob- 

lems under generation profile uncertainty, our proposed model has the following features: 

1. We minimize the sum of investment cost and estimated operation cost under the worst-case 

scenario—including generation cost and load curtailment cost, over the planning horizon. 

2. To model generation profile uncertainty, we assume a predefined set of new generators in 

addition to the existing generators. In the uncertainty set, we use binary variables to represent 

whether a new generator is going to be built, or if an existing generator is going to be retired. 

Policy and total capacity constraints can be added to the uncertainty set as needed. 

3. The model enables multiple decision time points, at the beginning of which new investment 

decisions can be made. 

4. The two-stage robust optimization framework mimics the real decision making process. 
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Transmission investment plans is proposed in the first stage, before uncertainty realization. 

Operation decisions are made in the second stage, after uncertainty has been observed. In 

addition, the minimax structure adds a layer of protection against uncertainty by identifying 

the worst-case scenario. 

The model is decomposed into a master problem and a subproblem using the column and 

constraint procedure [38]. The subproblem is a bilevel optimization problem. As is demonstrated 

in [9], using KKT reformulation to solve the subproblem is not very efficient computationally. In 

this project, we first dualize the subproblem, resulting in a nonlinear mixed-integer optimization 

problem. It is then linearized by exploiting the binary variable in the nonlinear term. The model 

and algorithm is then tested on the WECC 240-bus system. The effects of policy natural gas price 

change is also explored in the case study. 

 
2.2.3 Model formulation 

 
To account for the long planning horizon and multiple sources of uncertainty, transmission plan- 

ning problems are usually formulated as two-stage problems. In this section, we present a two- 

stage robust TP model in which uncertainty in future generation profile are considered. A summary 

of the modeling framework is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Summary of the robust optimization modeling framework 

 
In our robust optimization model, candidate lines are selected for construction with limited 

information on uncertainty during the first decision making stage. In the second stage, operation 

decisions are made after uncertainty realization. The goal of robust optimization is to identify a 

Transmission plan proposition 

plan 
 

? 
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max cost 

Worst scenario identification 
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i, j,t 

i,k,t i,t 

combination of new transmission lines that can achieve the lowest total cost, including construction 

cost and estimated operation cost. 

 

 

min 
✓ 

CI(x)+ max 
 

min 
◆ 

CO(z) 
 

(19) 
x2X g2G z2Z (x,g) 

 

where 
 
 

X ={x| Âxi, j,t  1, 8(i, j) 2 N , x Binary} (20) 
t 

CI(x)= Â(1 + l )-tcT
 xi, j,t (21) 

t,i, j 

CO(z)= Â(1 + l )-t [ÂcP
 pi,k,t,m + cL ri,t,m] (22) 

i,t,m k 

 

and 
 
 
 
 

Z (x, g) = {z : fi, j,t,m = Bi, j(qi,t,m - q j,t,m), 8t, m, (i, j) 2 L [µ(1)] (23) 
t 

| fi, j,t,m -Bi, j(qi,t,m - q j,t,m)| (1 - Â xi, j,k)M, 8t, m, (i, j) 2 N [µ(1)] (24) 
k=1 

t - Fmax x )  f t  Fmax( x ), 8t, m, (i, j) 2 N [µ(2), µ(3)] (25) 
i, j    ( Â 

k=1 

- Fmax 

i, j,k i, j,t,m 

 

max 

i, j Â 
k=1 

i, j,k 
 

 
 

(2) 

 

 
(3) 

i, j  fi, j,t,m  Fi, j  , 8t, m, (i, j) 2 L [µ , µ ] (26) 

k,t,mP  g 

, 8i, k,t, m [µ(4)] (27) 

0  pi,k,t,m  FC
 

i,k i,k,t 

q min  qi,t,m  q max, 8i,t, m [µ(5), µ(6)] (28) 

Â pi,k,t,m + Â f j,i,t,m - Â fi, j,t,m = di,t,m - ri,t,m, 8i,t, m} [µ(7)] (29) 
k j j 

 

From the objective function (19), we can see the two-stage structure of the robust TP model. 

It minimizes the investment cost and the projected operation cost under the most costly scenario. 

Investment and operation costs are represented by equations (21) and (22) respectively. The op- 

eration cost includes generation cost and load curtailment cost. The set G is the uncertainty set, 



27  

k=1 

which can be defined by planners’ belief on uncertain parameters. Constraints (20) means that a 

transmission line only needs to be built once in the planning horizon. 

Constraints (23)-(29) defines Z (x, g), the set of feasible power flow solutions once new trans- 

mission and generation is fixed. Equation (23) defines the power flow on existing transmission 

lines, while constraints (24) defines the power flow on candidate lines. It is equivalent to the con- 

straint fi, j,t,m = (Ât
 xi, j,k)Bi, j(qi,t,m - q j,t,m), which is nonlinear and can complicate the compu- 

tation. By using the auxiliary parameter M, it is linearized. Constraints (25)-(26) impose power 

flow limits on candidate and existing transmission lines. Constraints (27) requires power gener- 

ation to be within the capacity limit of generators after capacity factor is considered. Constraint 

(28) limits the range of phase angles at each node. Constraint (29) requires the net influx at a node 

to be equal to the net outflow. 

 
 

3 Solution techniques 

 
In this section, we develop three customized trilevel optimization algorithms to solve the robust 

optimization problems, which we decompose into two levels: the master problem and the subprob- 

lem. We first present the algorithm for the MMC model. This algorithm is then modified for the 

MMR model. Since we use a cutting plane procedure that does not require duality information, 

we can reformulate the sub-problem as a mixed-integer linear programming problem. In [18], the 

worst-case scenarios are identified via statistical upper bounds with Monte Carlo simulation. In 

contrast, our algorithm provides a theoretical global optimality guarantee to find the worst-case 

scenarios as the entire problem is solved as a mixed-integer linear programming problem after 

reformulating the sub-problem. Then we present the solution methods for our Model B. Bilinear 

terms exists in the subproblem. However with the discrete structure of the uncertain parameter, the 

bilinear terms can be linearized without incurring too much computational burden. 
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3.1 Algorithm for Model A 

 
The master problem is designed to provide a relaxation of the MMC model (17), in which the 

search for the worst-case scenario is restricted to be within a given finite set of scenarios, WC = 

{(di, yi), 8i = 1, ..., |WC|}, rather than the complete set of scenarios, U . As such, the master prob- 

lem yields a lower bound of the MMC model (17). We denote the master problem as MC(WC), 

and it is formulated as the following single level mixed integer linear program. 

 

min 
x,x ,zi 

c>x + x (30) 

s. t. x 2: b>zi 8i = 1,...,|WC| (31) 

Ax + C1zi  g1 8i = 1,...,|WC| (32) 

Byi + C2zi  g2 8i = 1,..., |WC| (33) 

Jzi = di 8i = 1,...,|WC| (34) 

x binary. (35) 
 
 

The subproblem is defined as the MMC model (17) with a given first-stage decision, x. As 

such, the subproblem yields an upper bound of the MMC model (17). We denote the subproblem 

as SC(x), and it is formulated as the following bilevel linear program. 

 

max min b>z. (36) 
(d,y)2U z2Z (x,d,y) 

 

This model can be further reformulated as the following linear program with complementarity 
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constraints (LPCC). 
 

 

max 
d,y,z,a,b,g 

b>z (37) 

s. t. Q1d  q1 (38) 

Q2y  q2 (39) 

0  g1 - Ax - C1z ? a 2: 0 (40) 

0  g2 - By - C2z ? b 2: 0 (41) 

Jz = d (42) 
 

1 a + C2 b + J g + b = 0 (43) 
C> > > 

 
 

LPCC problems can be solved by several algorithms ( [15] Branch-and-Bound, Bender’s, Big- 

M). The big-M approach [15] was found to be one of the most computationally efficient in our 

computational experiments. This approach reformulates (37)-(43) as the following mixed-integer 

linear program (MILP). 

 
max 

d,y,z,a,b,g,w 
b>z (44) 

s. t. Constraints (38), (39), (42), (43) (45) 

0  g1 - Ax - C1z  Mw1 (46) 

0  a  M(1 - w1) (47) 

0  g2 - By - C2z  Mw2 (48) 

0  b  M(1 - w2) (49) 

 
Here, M is a sufficiently large constant (big-M) and w1 and w2 are auxiliary binary variables that 

are introduced to enforce the complementarity conditions in (40) and (41). 

The proposed algorithm for the MMC model, which we call AlgMMC, is an iterative one, in 

which the master problem is solved to provide an increasing series of lower bound solutions, and 
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then the subproblem is solved to provide a series of decreasing upper bound solutions using the so- 

lution from the master problem, x, as an input. The input for the master problem, WC, is iteratively 

enriched by the solutions from the subproblem until the gap between the lower and upper bounds 

falls below a tolerance, e. Detailed steps of this algorithm are described as follows: 
 

 

AlgMMC(c, b, A, B,C1,C2, g1, g2, J, Q1, q1, Q2, q2) 
 

 

Step 0 : Initialization. Create WC that contains at least one selected scenario. Set LB = -•, 

UB = •, and k = 1. Go to Step 1. 

 

Step 1 : Update k   k + 1. Solve the master problem MC(WC) and let (xk, xk) denote its optimal 

solution. Update the lower bound as LB  c>xk + xk and go to Step 2. 

Step 2 : Solve the sub-problem SC(xk) and let (dk, yk, zk) denote its optimal solution. Update 

WC      WC [ {(dk, yk)}, and UB    c>xk + b>zk. 

Step 3 : If UB - LB > e, go to Step 1; otherwise return (xk, dk, yk, zk) as the optimal solution to 

(17) and LB as the optimal value. 

 
The MMR model can be solved using a similar algorithmic framework to AlgMMC after the 

following simplifying yet equivalent reformulation. 

 

 

min 
⇢ ⇢ 

c>x + max 
 

min 
   

b>z - G(d, y) 
x binary 

⇢ 
(d,y)2U 

⇢ 
z2Z (x,d,y) 

n o   

= min c>x+ max min b>z- min c>x̂ + b>ẑ 
x binary 

8 

>< 

(d,y)2U z2Z (x,d,y) 

⇢ 

(x̂,ẑ)2G (d,y) 9 

 >= 
= min c>x + max min b>z - (c>x̂ + b>ẑ) 

x binary>: (x̂,ẑ)2G (d,y) 

(d,y)2U 

z2Z (x,d,y) >; 

 

To solve this reformulation of the MMR model, which is structurally similar to the MMC model 

(17), only slight modifications to the master and sub-problems are required. The master problem 

is defined for a different set of input scenarios, WR = {(di, yi, x̂i, ẑi), 8i = 1, ..., |WR|}, in which the 
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two additional variables, x̂i and ẑi, represent the optimal investment and recourse decisions with 

hindsight of the uncertainty realization (di, yi). We denote the master problem as MR(WR), and it 

is formulated as the following single level mixed integer linear program. 

 

min 
x,x ,zi 

c>x + x (50) 

s. t.x 2: b>zi - (c>x̂i + b>ẑi)8i = 1, . . . , |WR| (51) 
 

Ax + C1zi  g1 8i = 1,...,|WR| (52) 

Byi + C2zi  g2 8i = 1,...,|WR| (53) 

Jzi = di
 8i = 1,...,|WR| (54) 

x binary.  (55) 

 

We denote the subproblem as SR(x), and it is formulated as the following bilevel linear pro- 

gram. 

max 
⇢ 

min 
  

b>z - (c>x̂ + b>ẑ) , 
(d,y)2U ;(x̂,ẑ)2G (d,y) z2Z (x,d,y) 

 

which can be solved using the same big-M approach with the following MILP. 
 

 

max 
d,y,z,x̂,ẑ,a,b ,g ,w 

b>z - (c>x̂ + b>ẑ) (56) 

s. t. Constraints  (45)-(49) (57) 

Ax̂ + C1ẑ  g1 (58) 

By + C2ẑ  g2 (59) 

Jẑ = d (60) 
 

x̂ binary. (61) 
 
 

With the new definitions of master and sub-problems, the same algorithm AlgMMC can be used 

to solve the MMR model with the following minor modification to Step 2, besides the apparent 

need to change the superscript “C” to “R”: 
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Step 2 : Solve the sub-problem SR(xk) and let (dk, yk, zk, x̂k, ẑk) denote its optimal solution. Update 

WR     WR [ {(dk, yk, x̂k, ẑk)}, and UB    c>xk + b>zk - (c>x̂k + b>ẑk). 

 
3.2    Algorithm for Model B 

The master problem is a relaxation of the robust TP problem and provide a first-stage solution. The 

original trilevel problem requires the most costly scenario in the entire uncertainty set G . In the 

master problem, the search for master problem is restricted in a smaller set of scenarios S ⇢ G . 

We denote the master problem as M(S ), and it is formulated as the following mixed-integer linear 

program: 

 

minx,zsCI(x)+ z (62) 

s. t. x 2 X (63) 

z 2: CO(zs), 8s 2 S (64) 

zs 2 Z (x, gs), 8s 2 S (65) 

 

When S = G , the master problem M(S ) is equivalent to the trilevel formulation (19). How- 

ever, due to the enormous number of possible scenarios in G , it is unrealistic to search the entire 

uncertainty set. Instead, we search the subset S . As such, the master problem provides a lower 

bound to the actual optimal objective value. New scenarios are iteratively added to the set S and 

the lower bound increases at each iteration. 

The subproblem is defined as the robust TP problem with a given first-stage solution x. Since 

the performance of such solution can only be worse than the optimal first-stage solution, the sub- 

problem provides an upper bound to the optimal objective value for the original trilevel problem. 

We denote the subproblem as R(x) and it can be formulated as the following bilevel linear program: 

 

max min CO(z) (66) 
g2G z2Z (x,g) 
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s. t. µ + µ i,k,t 

i,t 

Bj,i( Â x j,i,k)µ
(1)

 

k=1 

k,t,m i,k,t,m 

The subproblem defined in (66) is a bilevel optimization problem. In order to solve it, we write 

out the dual of the operation cost minimization problem min CO(z), denoted as D(x, g), where 
z2Z (x,g) 

D(x, g) can be expressed as the following optimization problem: 
 

 max - Fmax(µ
(2) + µ

(3) 
) - FC Pi,kgi,k,t µ

(4) 
- 

(q max µ
(5) 

Â 
t,m 

Â 
(i, j)2L [N 

- q min µ
(6) 

i, j i, j,t,m 

 

di,t,mµ
(7)

 

i, j,t,m 

l 

Â 
i,k 

k,t,m i,k,t,m Â 
i 

i,t,m  

 
(67) 

i,t,m) - Â 
i 

i,t,m 

(4) 
i,k,t,m 

µ
(7) 

(7) 
i,t,m 2: (1 + l )-tcP

 , 8i, k,t, m [p] (68) 

i,t,m 2: (1 + l )-tcL , 8i,t, m [r] (69) 

µ
(1) (2) (3) (7) (7) 

i, j,t,m + µi, j,t,m - µi, j,t,m - µi,t,m + µ j,t,m = 0, 8(i, j) 2 L [ N ,t, m [ f ] (70) 
t 

µ
(5) (6) (1) (1) (1) 

i,t,m - µi,t,m - Â 
(i, j)2L 
t 

Bi, jµi, j,t,m + Â 
( j,i)2L 

Bj,iµ j,i,t,m - Â 
(i, j)2N 

Bi, j( Â xi, j,k)µi, j,t,m 
k=1 

+ Â j,i,t,m = 0, 8i,t, m [q ] (71) 
( j,i)2N k=1 

µ(k) 2: 0, k = 2, 3, 4, 5, 6. (72) 

 
In this formulation, µ(k) are the dual variables of constraints (23)-(29). Note that because xi, j,t 

is a parameter, we can replace (24) with their equivalent form fi, j,t,m = xi, j,t Bi, j(qi,t,m - qj,t,m) to 

simply the formulation. In addition, with the previous replacement, we can combine constraints 

(25) and (26) by removing the term Ât
 xi, j,k. 

Then the bilevel subproblem is simplified as the following single level optimization problem 
 
 

max D(x, g) 
g2G 

 

In the objective function (67), the terms FC
 Pi,kgi,k,t µ

(4)
 are bilinear. Since they are multi- 

 

plications between a continuous variable and a binary variable, they can be replaced by the follow- 

µ 
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ing equations. 
 
 

gi,k,t µ
(4)

  
i,k,t,m i,k,t,m =h 

(73) 
 

s. t. hi,k,t,m 2: µi,k,t,m - M0(1 - gi,k,t ) (74) 

hi,k,t,m 2: 0 (75) 

 
Then the subproblem can be easily solved as a mixed-integer linear program. 

The algorithm uses the column and constraint generation procedure to iteratively generate new 

scenarios to be included in the subset S . The master problem is solved in each iteration to provide 

an increasing series of lower bounds and a first-stage solution. Given the aforementioned first-stage 

solution, the subproblem is solved to provide a decreasing series of upper bounds and a worst-case 

scenario to be included in set S . The algorithm terminates after the gap between the upper bound 

and the lower bound falls below a user defined threshold e. A flow chart of the algorithm is 

summarized in Figure 2. Detailed steps of this algorithm are described as follows: 

 

Step 0 : Initialization. Create S that contains at least one selected scenario. Set lower bound 

LB = -•, UB = •, and s = 1. Go to Step 1. 

 

Step 1 : Update s    s + 1. Solve the master problem M(S ) and let (xs, z s) denote its optimal 

solution. Update the lower bound as LB  z s. Go to Step 2. 

Step 2 : Solve the subproblem R(x) and let (gs, zs) denote the optimal solution. Update S    

S [ {gs}, and UB   CO(zs). 

Step 3 : If UB - LB > e, go to Step 1; otherwise return xs as the optimal investment plan and 

CI(xs)+ z s as the optimal value. 



35  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

Figure 2: Flow chart of the decomposition algorithm 
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4 Case study 

 
In this section, we apply our decision-support system to an IEEE 118-bus test system and the 

WECC 240-bus system. The model with simplified representation of load and generation invest- 

ment uncertainty is applied to the IEEE 118-bus system. The performances of the model using 

different optimization criteria is compared. The model with the more detailed representation of 

generation investment and retirement uncertainty is applied to the WECC 240-bus system. The 

transmission plan obtained by this model is tested under various scenarios with different renew- 

able energy policy mandates and fuel prices. 

 
4.1 IEEE 118-bus test system 

 
The IEEE 118-bus test system consists of 186 transmission lines, 5 wind farms, 5 coal plants, 5 

gas plants and 33 loads. The network data is available in [1]. We consider 10 candidate lines. The 

operation costs are calculated based on the data of 4 load blocks. We consider a planning horizon 

of 20 years, with the operation cost extrapolated from the cost of year 1. Then the operation cost 

is assumed to increase at the same rate each year. The characteristics of generation and candidate 

lines are summarized in Table 4 and Table 5 respectively. In our case study, generation capacity 

data in the system is set to be able to satisfy all demand levels if there is no network congestion. 

Uncertainty in future generation capacity consists of two parts, expansion and retirement. For 

wind and natural gas fired plants, we set the lower and upper bounds for new capacity. For coal 

plants, the range of reduced capacity is also provided. We use negative capacity to depict coal 

retirement. In addition to bounds on individual plants, we also set the lower bound and upper 

bound on total new generation capacity to control the randomness of the uncertainty set. The mean 

of our demand (d̄ ) and the capacity factor are modified based on the real data from WECC [32]. 
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i,k,t  P 

i,k,t 

Table 4: Generation parameters 

Bus 
No. 

 

Type 
Current 

Capacity 
(MW) 

Fuel 
Cost 

($/MWh) 

Min New 
Capacity 

(MW) 

Max New 
Capacity 

(MW) 

25 Wind 1,000 0.0 2,000 3,000 
31 Wind 500 0.0 150 400 
32 Coal 300 43.0 –160 –80 
36 Wind 1,100 0.0 800 1,500 
49 Wind 1,000 0.0 1,200 2,000 
61 Coal 400 28.2 –200 –70 
65 Coal 1,500 52.7 –800 –600 
66 Coal 300 28.3 –150 –100 
76 Gas 200 31.0 80 100 
85 Gas 300 63.9 150 200 
87 Wind 900 0.0 1,300 2,500 
89 Gas 150 49.1 100 150 
92 Gas 200 32.0 200 250 
99 Coal 300 27.5 –150 –80 

113 Gas 200 65.0 200 300 

Total  8,350  6,000 8,500 

 

We generate four instances by changing the uncertainty sets. Their definitions are listed as follows: 
 
 

U1= {0.95d̄ i,t,m  di,t,m  1.05d̄ i,t,m (76) 

PN,min N N,max 

i,k,t  Pi,k,t  Pi,k,t (77) 

PN,min  Â PN 
N,max } (78) 

i,k,t 

U2= {0.85d̄ i,t,m  di,t,m  1.15d̄ i,t,m (79) 

Equations (77) - (78)} (80) 

U3= {0.95d̄ i,t,m  di,t,m  1.05d̄ i,t,m (81) 

[1.25 - 0.5 sgn(PN,min)]PN,min  PN
 

i,k,t i,k,t i,k,t 

 [0.75 + 0.5 sgn(PN,max)]PN,max
 (82) 

i,k,t i,k,t 

0.75PN,min  Â PN
  1.15PN,max} (83) 

i,k,t 

U4= {0.85d̄ i,t,m  di,t,m  1.15d̄ i,t,m (84) 

Equations (82) - (83)} (85) 
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Table 5: Candidate line parameters 
 

From 
 

To 
Susceptance 

(W-1) 

Transmission 
Capacity 
(MW) 

Construction 
Cost 
($M) 

25 4 30 390 40.60 
25 18 30 390 32.48 
25 115 30 390 40.60 
32 6 30 390 50.75 
36 34 30 390 28.42 
36 77 30 390 44.66 
70 25 30 390 97.44 
86 82 30 390 36.54 
87 106 30 390 62.93 
87 108 30 390 52.78 

 
where (PN,min, PN,max 

i,k,t i,k,t ) and (PN,min, PN,max) are listed in the last two columns in Table 4, with 

(PN,min, PN,max) in the last row. The load curtailment cost is set as $2000/MWh. The interest rate 

is set to be 0.1. 

The experiment is implemented on a computer with Intel Core i5 3.30GHz with 4GB memory 

and CPLEX 12.5. The computation time of each instance is around 9 hours. The numbers of 

iterations for solving each instance are summarized in Table 6. 

Table 6: Number of iterations for each instance 
 
 
 
 

 

The transmission plans, investment costs and objective values of each criterion under the four 

uncertainty sets are summarized in Tables 7 and 8. We then compare the performances of the 

MMC solution and the MMR solution under various scenarios in Tables 9 and 10, where we use 

Dc, Dr and Dd to denote the optimal MMC solution, the optimal MMR solution and the optimal 

deterministic solution. The lower cost and regret between Dc and Dr are highlighted. The deter- 

ministic solution is derived by setting the mean demand as the load levels and the median of new 

capacity as the future expansion plans. The scenarios are generated by our algorithms when solv- 

ing the MMR problems and MMC problems. Each scenario corresponds to an optimal solution 

 U1 U2 U3 U4 

MMC 3 3 2 2 
MMR 3 6 2 3 
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to a sub-problem at an iteration of our algorithm and is the worst-case scenario for the first-stage 

solution obtained at the same iteration. Scenarios S1 - S3 and S6 - S10 are generated by solving 

the MMR problems. Scenarios S4, S5, S11 and S12 are generated when solving the MMC problems. 

Those scenarios typically have very high costs or regrets, thus are representative of bad scenarios 

that robust optimization tries to hedge against. The investment and operational costs of both the 

MMC and MMR decisions under the above scenarios are summarized in Table 11. 

Table 7: Transmission plans of the MMC approach 

Lines (from bus, to bus) 
Uncertainty Set 

U1 U2 U3 U4 

Candidate Line (25, 4) 1 0 1 1 

Candidate Line (25, 18) 1 0 1 1 

Candidate Line (25, 115) 0 1 0 0 

Candidate Line (32, 6) 0 1 0 0 

Candidate Line (36, 34) 1 1 1 1 

Candidate Line (36, 77) 1 1 1 1 

Candidate Line (70, 25) 0 1 0 0 

Candidate Line (86, 82) 1 1 0 0 

Candidate Line (87, 106) 1 1 1 1 

Candidate Line (87, 108) 1 1 1 1 
Investment Cost ($M) 298 414 262 262 
Maximum Cost ($M) 1,233 1,960 1,927 2,802 

 
 

Table 8: Transmission plans of the MMR approach 

Lines (from bus, to bus) 
Uncertainty Set 

U1 U2 U3 U4 

Candidate Line (25, 4) 1 1 1 1 

Candidate Line (25, 18) 1 1 1 1 

Candidate Line (25, 115) 1 0 1 0 

Candidate Line (32, 6) 0 0 0 0 

Candidate Line (36, 34) 1 1 1 1 

Candidate Line (36, 77) 1 1 1 1 

Candidate Line (70, 25) 0 1 0 1 

Candidate Line (86, 82) 1 1 1 1 

Candidate Line (87, 106) 1 1 1 1 

Candidate Line (87, 108) 1 1 1 1 
Investment Cost ($M) 339 395 339 395 
Maximum Regret ($M) 89 234 110 235 
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Table 9: Comparison of the MMC, MMR and deterministic solutions for uncertainty set U1 

Cost/Regret ($M) Dc Dr Dd 

Scenario S1 1,137 / 117 1,109 / 89 1,085 / 65 

Scenario S2 1,039 / 0 1,080 / 41 1,263 / 224 

Scenario S3 803 / 0 844 / 41 1,125 / 422 

Scenario S4 1,126 / 0 1,167 / 41 1,325 / 199 

Scenario S5 1,233 / 27 1,272 / 66 1,367 / 161 

 

Table 10: Comparison of the MMC, MMR and deterministic solutions for uncertainty set U2 

Cost/Regret ($M) Dc Dr Dd 

Scenario S6 1,730 / 170 1,597 / 37 1,861 / 301 

Scenario S7 1,375 / 133 1,354 / 112 1,519 / 277 

Scenario S8 1,309 / 497 1,046 / 234 836 / 24 

Scenario S9 1,398 / 288 1,266 / 156 1,473 / 363 

Scenario S10 776 / 246 701 / 171 666 / 136 

Scenario S11 1,959 / 201 1,862 / 104 2,082 / 324 

Scenario S12 1,960 / 31 1,962 / 33 2,173 / 244 

 

From Tables 7 and 8, we can see that as the uncertainty in demand increases, although the nu- 

merical value of the maximum regret and worst-case cost increases, the change in the transmission 

plan is not very substantial. It means many of the candidate lines are necessary regardless of the 

demand levels with our unchanged depiction of generation capacity uncertainty. The reason is that 

those candidate lines connect regions with very high locational marginal price differences due to 

the presence of large amount of wind energy. On the other hand, when uncertainty in generation 

expansion is increased, although the total cost also increases, fewer lines are actually built with 

the MMC criterion. That is because in the worst-case scenarios, the system contains less renew- 

able energy capacity and the differences in the locational marginal prices between the otherwise 

connected regions are not substantial enough to justify new transmission lines. When the MMR 

criterion is used, however, the final transmission plan does not seem to be sensitive to the change 

of uncertainty in generation expansion. One possible explanation is that since the MMR criterion 

does not make decisions only based on the boundary scenarios, it is less sensitive to the changes in 

uncertainty sets. 

From the more detailed comparisons of results from the MMC and MMR approaches in Ta- 
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Table 11: Investment and operational costs for scenarios ($M) 
 Dc Dr  Dc Dr 

Invest S1 - S5 298 339 Invest S6 - S12 414 395 

Operation S1 839 770 Operation S6 1,316 1,202 

Operation S2 741 741 Operation S7 961 959 

Operation S3 505 505 Operation S8 895 651 

Operation S4 828 828 Operation S9 984 871 

Operation S5 935 933 Operation S10 362 306 
 Operation S11 1,545 1,467 

Operation S12 1,546 1,567 

 

bles 9 and 10, we can gain more insights about which criterion is more appropriate under different 

situations. Both robust optimization solutions outperform the deterministic solution under most of 

the scenarios. When the uncertainty set is U1, the MMC solution outperforms the MMR solution 

under most of the listed scenarios. When the uncertainty set is U2, on the other hand, the MMR 

solution has a lower total cost under more listed scenarios. The solutions of the cases when the 

uncertainty sets are U3 and U4 yield similar results. According to our definition at the end of sec- 

tion 2.1.2, scenarios S2 - S5 in Table 9 and scenario S12 in Table 10 are regretless scenarios for the 

MMC decision, while scenarios S1 and S6 - S11 are regretful ones. Which criterion should be used 

depends on the decision-maker’s perception on the uncertainty sets. In typical regretless scenarios 

for MMC decisions, there usually exists high demand and low renewable energy penetration. If 

decision-makers care more about such scenarios or believe they are more likely, then MMC should 

be used. Otherwise, choosing MMR might be better. Both criteria provide good upper bounds 

for the total costs under scenarios contained in an uncertainty set. The MMC criterion provides 

a smaller upper bound with higher average costs while the costs of MMR decisions are lower on 

average but have higher variability. 

From the above results, it is obvious that both the future generation expansion behavior of 

generation companies and demand uncertainty play important roles in transmission planning. In 

addition, we can also conclude that both criteria have their merits and can yield relatively reliable 

expansion plans that guarantee zero curtailment for uncertainty realizations contained in the un- 

certainty sets. However, depending on the characteristics of uncertainty sets and the preference 
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of decision-makers, they may outperform each other under different situations. Thus, a compar- 

ative analysis of the MMC and MMR criteria can shed more light on better utilization of both 

approaches. 

 
4.2 WECC 240-bus test system 

 
The topology of the WECC 240-bus test system [32] is shown in Figure 3, which was from [30]. 

 

 
 
 

Figure 3: WECC from [30] 
 

The system has 240 buses, 448 transmission lines, 139 load centers and 124 generation units, 

including coal, gas-fired, nuclear, hydro, geothermal, biomass, wind and solar generators. 

We consider 18 candidate lines. The planning horizon is 20 years, which is divided into four 

five-year periods. We selected the load of two representative hours from the typical week market 

data to be the baseline of our demand data. An annual growth rate of 1% is assumed based on the 
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projections of EIA [11]. 

Uncertainty in future generation capacity is due to the success in the implementation of new 

capacity and the timing and amount of capacity retired. We consider 70 uncertain generators, of 

which 17 are existing coal power plants set to retire over the study period. The rest are possible 

gas-fired resources and wind and solar farms as well as geothermal units at various locations in 

the system. In the uncertainty set, we specifies several requirements for the uncertain generators. 

Firstly, we require that all coal plants retire at the end of the planning horizon. Secondly, 50% 

of the new capacity needs to be included at the end of the planning horizon. Thirdly, the total 

additional capacity at a decision point cannot be lower than 50% of the total additional capacity at 

the next decision point. Finally, we require that renewable energy generation account for at least a 

certain percentage of the total additional capacity. These restrictions on the uncertainty set can be 

adjusted based on available information as well as planners’ belief on future generation profiles. 

The load curtailment cost is set as $2000/MWh. The interest rate is set to be 10%. 

We visualize the test system as well as the transmission planning problem in Figure 4. The 

240 buses are arranged in a circle, with bus #1 starting at the three o’clock position and going 

counter-clockwise; bus #240 also comes back to the three o’clock position. Although the geo- 

graphic information is completely distorted by this arrangement, it allows for more informative 

visualization of the big picture for the transmission planning problem. The 448 transmission lines 

are represented by black line segments connecting the corresponding bus pairs. The relative lengths 

of the line segments in the figure do not necessarily represent the actual length of the transmission 

lines. The 18 candidate lines are also plotted in green. These lines do not exist in the test system 

yet, and it is up to the planner to decide which (if any) lines should be built and when. The squares 

surrounding the inner circle represent the 139 load centers, with the areas of the square propor- 

tional to the magnitudes of the loads at the corresponding nodes. The colorful dots surrounding 

squares represent the existing 124 generators, with the areas of the dots proportional to the capac- 

ities of the generators at the corresponding nodes. The colorful stars represent the potential new 

generators that may be added to the corresponding nodes. The color map on the left sub-figure is 
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for both existing and potential new generators. Multiple generators at the same nodes are plotted 

at different orbits to avoid overlap. 
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Figure 4: Visualization of the transmission planning problem 

 
Depending on the policy requirement on renewables and the uncertain gas prices over the 

twenty-year horizon, we define the following four futures, which will be used for sensitivity anal- 

ysis of our model. 

• Future 1: 20% additional renewables and high natural gas prices (double the current price) 
 

• Future 2: 20% additional renewables and low natural gas prices (at the current level through- 

out the next twenty years) 

 

• Future 3: 40% additional renewables and high natural gas prices 
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• Future 4: 40% additional renewables and low natural gas prices 

 
The experiment was implemented on a desktop computer with Intel Core i7 3.4GHz CPU, 8 GB 

memory and CPLEX 12.5. We adjust the uncertainty sets and natural gas price to create multiple 

test instances. The computation time of each instance is around 20 hours. 

We obtained the following six transmission plans. 

 
• Plan 1: Optimal transmission plan under future 1. 

 

• Plan 2: Optimal transmission plan under future 2. 
 

• Plan 3: Optimal transmission plan under future 3. 
 

• Plan 4: Optimal transmission plan under future 4. 
 

• Plan 5: Too little and too late investment. This is an arbitrarily created transmission plan to 

represent the case of very little and very late investment in new transmission lines. 

 
• Plan 6: Too much and too early investment. This is an arbitrarily created transmission plan to 

represent the case of a very high level of investment implemented very early in the planning 

horizon. 

These six transmission plans are visualized in Figure 5. Each column represents a plan, and 

each row represents a five-year period in the planning horizon. The green lines are to be added 

to the system in the period according to the transmission plan. Although the added new lines are 

cumulative, only new additions are shown in green. It can be seen that the first four transmission 

plans are similar and all build new lines gradually in the first three periods. Plan 5 has only a small 

number of lines, and plan 6 almost adds all candidate lines at once in the first period. 
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Figure 5: Six transmission plan 
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A by-product of the algorithm from Section 3.2 is a set of scenarios that represent either the 

best (with lowest cost) or worst (with highest cost) case scenarios for a given transmission plans. 

We have collected twelve of these scenarios under the four futures and use them to illustrate the 

robustness performances of the six plans under these scenarios. The scenarios are shown in Figure 

6. The four orbits of the stars indicate the periods in which the new generators are added to the 

generation portfolio. The higher the orbit, the later in time. 

 

 
 

Figure 6: Twelve best and worst case scenarios 
 

Finally, the robustness performances of the six transmission plans under the twelve scenarios 

were evaluated with respect to the investment cost, the operations cost, and load curtailment (as a 

percentage of total load) over the planning horizon in Figure 7. The colored regions in the bottom 

two rows in Figure 7 are outlined by the upper and lower bounds performances under the twelve 

scenarios. The white curves inside the colored region are the intermediate scenarios. The figure 
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suggests that the first four plans have similar investment costs, with plan 4 being the least costly. 

Their performances in operational costs and load curtailments are also comparable. Plan 5 has a 

negligible amount of investment, which is a $1.4B savings from plan 4. However, as a consequence 

of the lack of enough investment, its operational cost is almost $20B more than plan 4, and its load 

curtailment in the worst case is also much sever than plan 4. On the other extreme, plan 6 makes 

about 20% more investment than plan 4, but its performance in operations cost and load curtailment 

are similar, if not even worse than the cheaper counterpart. These results demonstrate the need for 

making enough and smart investment in transmission planning in order to reduce the long-term 

operations cost as well as enhancing the reliability of the grid. 

 
 
 
 
 

 
 

plan 1 plan 2 plan 3 plan 4 plan 5 plan 6 
 
 

Figure 7: Performance of six plans under twelve scenarios 
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5 Concluding remarks 

 
In this section we discuss in detail the analytical basis for our decision-support system, analyze the 

case study results and provide an interpretation of the ramifications of investment decisions made 

with the our decision-support system. 

 
5.1 Overview 

 
As a facilitator for generation expansion, transmission planning is critical to the reliable and eco- 

nomic operation of power systems. Traditionally, transmission planning is usually studied as de- 

terministic problems. However, in addition to operation level sources of uncertainty including load 

prediction error and renewable energy intermittency, with the restructuring of the power system, 

generation expansion plans of generation companies also become uncertain. Increasingly strict 

environmental legislation imposes additional uncertainty for transmission planners. With the lim- 

itations of previous researches, new models and algorithms are needed to address the difficulties 

occurring with the increased level of uncertainty. 

 
5.2 Findings and conclusions 

 
In this project, we develop a decision-support system for transmission planning, which contains 

two models, both using robust optimization to address the challenges posed by generation expan- 

sion uncertainty. For Model A, we propose two robust optimization framework for the transmission 

planning problem under uncertainty, where we take into consideration both the high-frequency un- 

certainty caused by load forecast errors and the low-frequency uncertainty caused by future gen- 

eration expansion and retirement. We use two criteria: minimax cost and minimax regret, and 

compare their performances. The uncertain parameters are described by a polyhedral uncertainty 

set. With this approach, we can derive a transmission plan that is robust under all scenarios. The re- 

sulting models can be formulated as trilevel mixed-integer problems. We use a branch and cut type 

mechanism to decompose the problem into a master problem and a subproblem. The subproblem 
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generates scenarios and returns them to the master problem to cut off sub-optimal solutions. The 

bilevel mixed-integer subproblem is reformulated into a single level mixed-integer-programming 

problem with the KKT conditions to obtain the global optimal solution. Our model and algo- 

rithm are then tested on an IEEE 118-bus system, where we compare the results of our MMR and 

MMC models and analyze their differences. We conclude that the MMR and MMC criteria may 

outperform each other depending on the uncertainty set and decision-maker’s preference. 

For Model B, we propose a robust transmission model that can explore the impact of generation 

expansion uncertainty in a more detailed manner. When describing future generation expansion 

and retirement, we use binary variables to represent whether a generator exists at a node or not, 

which enables a more flexible description of the uncertain parameters. Under the new modelling 

framework, uncertainty concerning both the location and size of generators can be modeled in the 

uncertainty set. We use a similar column and constraint generation procedure to decompose the 

problem into a master problem and a subproblem. Due to the special structure of our model, the 

bilinear subproblem can be equivalently reformulated as a mixed-integer linear problem without 

utilizing the KKT conditions, which also makes testing a larger test size possible. In the second 

case study, our model and algorithms are tested on a WECC 240-bus test system. We compared 

the performance of the robust transmission plans derived by our model to the performance of plans 

derived from solving deterministic models or other heuristic rules under four different scenarios, 

which are obtained by adjusting natural gas price and renewable energy policy mandate. The 

results show that our transmission plans not only out-perform plans obtained from other means but 

also remain robust under different scenarios. 

 
5.3 Future work 

 
Several directions of possible future work for this project are worth pursuing. In this project, de- 

mand and generation profile uncertainty is modeled by uncertainty sets. However, since probability 

distributions of load may be obtained from historical data, it is possible to model various sources 

of uncertainty with different methods. We can combine stochastic programming with robust opti- 
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mization by representing operation level uncertainty such as load and renewable energy generation 

with probability distribution, and representing other types of uncertainty including generation in- 

vestments and retirement with uncertainty sets, which reduces the conservativeness of the plan. 

To solve such a problem, and to improve the computational efficiency of current models, new al- 

gorithms and heuristics need to be developed. Another way to extend the work done to date is 

to incorporate additional details into the model, including more explicit representations of various 

existing and possible policies, changes in demand caused by demographic development, climate 

change and recovery from natural disasters. 
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