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Executive Summary 

The real-time economic dispatch (ED) in the current practice relies on a combination of 
optimization tools   and operating rules. The dominant optimization tools used in practice for 
ED are deterministic models,   which dispatch the power system to satisfy a single forecast value 
of future demand and renewable uncertain output, and keep reserve capacities to account for 
unexpected disturbance or outages. With the presence   of significant variable resources such as 
wind and solar power, system operators will frequently face undesirable conditions such as lack 
of reserves, insufficient ramping capabilities, and cycling of thermal units as the variable 
resources experience sudden strong drop of output. Under these conditions, the real-time 
electricity markets may suffer temporary price spikes.  These risky scenarios have already 
occurred in the US as well as other major electricity markets in the world. To deal with reserve 
and ramp shortages, the current operation tools restrict system operators to a limited set of 
actions such as increasing reserve margins, deploying fast-start units, and out-of-market 
dispatch. These actions usually incur high costs, create market distortions, and do not guarantee 
high level of system reliability. 

 
With the recent advances in storage technologies, grid-level storage devices are becoming a 

viable re- source to participate in system operation. Energy storage systems, such as utility-scale 
batteries, pumped hydro, and demand-side response can be important resources for providing 
flexibility into the system.  How   to best deploy and operate different types of energy storage 
systems and demand response resources and to assess their economic value in a system with 
significant variable resources is an important issue for utilities and system operators. 

 
Facing these challenges and opportunities, system operators have recently started looking 

into new operational models for their economic dispatch and real-time energy markets. This also 
motivates the central objective of this project to provide a set of new operational tools for 
operators to improve system flexibility    as well as reliability and at the same time to maintain 
an efficient energy market. This requires us to develop new optimization tools, uncertainty 
modeling methods, and system flexibility and reliability metrics that can be integrated into the 
operational model. 

 
In this project, we have focused on adaptive robust optimization as the central paradigm for 

optimization under uncertainty, and developed new dispatch tools that improve robustness of 
the dispatch operation   for large-scale systems. In particular, robust optimization provides 
several features that are particularly appealing to applications in power systems. For instance, 
robust optimization seeks to optimize system performance in a controlled manner against  the 
worst-case scenario,  which is consistent with the philosophy of operational practice; robust 
optimization can provide a rigorous way to identify the worst-case or near worst-case scenarios 
out of practically infinitely many potential scenarios, rather than restricting to a finite, usually 
small, number of preselected scenarios; robust optimization also offers a data-driven approach 
to  model uncertainty, which scales well with the increasing dimension of data. 

 
The final report is consisted of three parts, reflecting the three main objectives of the project:  

1) Develop new robust optimization models and uncertainty modeling tools for real-time 
dispatch and day-ahead unit commitment; 2) Develop new metrics for quantifying power system 
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flexibility in real-time operation and construct new market models for the procurement of 
flexibility from flexible resources; 3) Develop new and more accurate models for flexible 
components, including energy storage, responsive demand, distributed energy resources, and 
ramp-constrained generation, in AC look-ahead OPF, and develop new tools for remedial action 
and contingency filtering for real-time security analysis. 

1. Part I first develops two-stage robust optimization based models for multi-period 
economic dispatch  and proposes a new type of uncertainty modeling method, called the 
dynamic uncertainty sets, for modeling temporal and spatial correlations of wind and solar 
power. Part I also develops a simulation platform which combines the proposed robust 
economic dispatch model with statistical prediction    tools in a rolling horizon framework. 
Extensive computational experiments are conducted on this platform using real wind data. 
The results are promising and demonstrate the benefits of the proposed approach in both 
reducing cost and increasing system reliability over existing robust optimization models 
as well as recent look-ahead dispatch models. Part I then turns to the unit commitment 
problem and studies effective algorithms for solving the two-stage robust optimization 
model for the unit commitment problem.   Part I also provides insight to the worst-case 
uncertainty scenarios for the   robust UC problem both under static and dynamic 
uncertainty sets. 

2. Part II focuses on developing flexibility metrics and market construct for improving 
flexibility in    power systems. It first develops a new probabilistic metrics, called the lack 
of ramp probability (LORP), for quantifying power system flexibility in real-time 
dispatch. LORP determines the level of risk of ramp capacity shortage associated with a 
dispatch decision. The LORP metric can also be used independently of the proposed robust 
dispatch model, to assess the system flexibility under existing   and other proposed real-
time economic dispatch models, such as conventional dispatch, look-ahead dispatch and 
dispatch with ramp capability constraints. Part II then proposes a two-step multi-period 
robust optimization based framework as a market construct for the procurement of 
flexibility from various flexible resources while observing inter-zonal transmission 
constraints. 

3. Part III focuses on expanding the modeling of the short-term look-ahead dispatch to 
include new flexible components, such as energy storage, responsive demand, distributed 
energy resources, and ramp-constrained generation, as well as more accurate network 
models. Part III also proposes two remedial action schemes to resolve infeasibility in AC 
OPF with flexible devices. Finally, at a given optimal solution, a filtering & analysis 
framework is developed for identifying critical outages with a lowered computational cost. 
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1. Adaptive Robust Optimization with Dynamic Uncertainty Sets for Look-
ahead Economic Dispatch under Significant Wind

1.1 Introduction

The exceptional benefits of wind power as an environmentally responsible energy resource have led
to the rapid increase of wind energy in power systems all over the world. At the same time, wind
energy possesses some characteristics drastically different from conventional generating resources
in terms of high stochasticity and intermittency in production output. Due to this, deep penetration
of wind power will introduce significant uncertainty to the short-term and real-time operation of
power systems, in particular, to the day-ahead unit commitment (UC) and the real-time economic
dispatch (ED) procedures. If the uncertainty of such variable resources is not managed properly,
the system operator may have to face severe operating conditions such as insufficient ramping ca-
pabilities from the conventional generating resources due to the sudden strong loss of wind power,
complicated by other contingencies, load surge, and transmission congestions [11]. These aris-
ing challenges call for new methods and models for power systems operation, and have attracted
significant interests from both the electricity industry and academia.

The current UC and ED procedures rely on a combination of optimization tools and operational
rules. The main optimization models used for UC and ED are deterministic models, where the un-
certainties, such as demand, are assumed to take nominal forecast values. To deal with unexpected
contingencies and sudden demand surge, the deterministic optimization model is complemented
by operational rules that require extra generation resources, the so-called reserves, to stay avail-
able for quick response. The discrepancy between the forecast and realization of uncertainty has
been relatively small in power systems composed of conventional load and supply. However, as
observed in the recent experience, operating power systems with high penetration of variable re-
sources, especially wind power, requires new methods to deal with uncertainty. See [47] for an
overview of the challenges of integrating wind in power systems from the perspective of UC, ED,
frequency regulation and planning.

Facing these challenges, both industry and academia have devoted much effort to improving
the current ED practice. In particular, dynamic dispatch models with look-ahead capabilities have
gained renewed interests. The basic ideas can be traced back to [2] and [35]. Recent works have
made significant advancement. [48] presents a look-ahead ED model with new statistical methods
for wind forecast. The Midcontinent ISO has proposed look-ahead ED models with ramping prod-
ucts [29]. And [30] studies the selection of spinning reserve requirements under generation outages
and forecast errors of demand and wind power. All these models can be characterized as determin-
istic ED models. Their simple optimization structure, improved performance, and closeness to the
current operation make them appealing candidates to impact industry practice. This motivates the
present chapter to propose further advances and compare with these promising models.

Stochastic optimization has been a popular approach and extensively studied in the literature
especially for the day-ahead unit commitment operation. For example, [39] proposes one of the
first stochastic UC models. [41,44] propose security constrained UC models and consider stochas-
tic wind power generation. [8] presents a short-term forward electricity market-clearing model
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under net load uncertainty, for the purpose of allowing high penetrations of wind power while
keeping the system secure. [27] deals with the selection of spinning and nonspinning reserves
through a market-clearing model under stochastic wind power generation. [40] presents a stochas-
tic UC model for significant wind and shows the benefits of more frequent planning and over a
deterministic approach. [33] studies reserve requirements for wind integration using a stochastic
UC model. [32] proposes multiarea stochastic UC models for high wind penetration. [42] proposes
a chance-constrained two-stage stochastic UC for systems with wind power uncertainty.

Regarding stochastic ED, the literature is much less extensive. [20] presents a stochastic pro-
gramming model without recourse actions for a single-period ED problem. [24] presents a stochas-
tic model of a single-period ED problem under post-contingency frequency constraints. [51] presents
a chance-constrained look-ahead ED model where the probability of incurring lost load is con-
strained and a sampling based scenario approximation approach is used for dealing with wind
power randomness, however, transmission constraints are not considered in this work to ease com-
putational burden. We would like to note that UC and ED have quite significant differences in
decision structures and therefore modeling considerations: the UC has a relatively clear two-stage
decision making structure, whereas for ED, the modeling choices are more diverse. Constructing a
stochastic ED model with proper decision structure and desirable computational properties merits
further research efforts. The literature in this respect still leaves much room for new contributions.

Recently, robust optimization has emerged as an alternative methodology for optimization un-
der uncertainty [3,4]. Robust optimization provides several features that are particularly appealing
to applications in power systems. In particular, the robust optimization approach seeks to opti-
mize system performance in a controlled manner against the worst-case scenario, which is indeed
consistent with the philosophy of the current operational practice; robust optimization provides a
data-driven way to model uncertainty, which scales well with the increasing dimension of data and
is flexible and practical for many situations; robust optimization models are usually computation-
ally tractable for large-scale systems.

Recent works have proposed robust optimization models for UC problems [5, 16, 37, 54, 56].
[37] provides a robust formulation for the contingency constrained UC problem. [16], [5], [56]
present two-stage adaptive robust models, with commitment decisions in the first stage and dis-
patch decisions in the second stage. In [5] a two-stage robust UC model with security constraints
is formulated and tested on the power system operated by ISO New England. [16] deals with a
formulation including pumped storage hydro under wind power output uncertainty. Hybrid mod-
els and alternative objectives have also been explored to mitigate the conservativeness of the ro-
bust solution [18, 52]. Efficient solution methods for the two-stage robust UC have been pro-
posed [5, 16, 23, 50]. Recently, [23] presents acceleration techniques based on cutting planes and
column generation for solving the two-stage robust UC problem under full transmission line con-
straints.

On the other hand, the benefits of robust optimization for the ED operation has not been fully
explored. [57] presents a two-stage robust ED model for a single-period regulation dispatch prob-
lem, where the first stage corresponds to dispatch and regulation capacity decisions, and the sec-
ond stage corresponds to the dispatch of automatic generation control (AGC), after observing de-
mand. [15] recently proposes a robust optimal power flow model using affine policies for the AGC
dispatch under renewable energy uncertainty. Affine policy is an approximation to the fully adap-
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tive policy used in [57]; however, as argued in [15], affine dependence on uncertainty may be a
more suitable form for AGC dispatch. The work in [49] applies two advanced statistical meth-
ods for wind forecasting, and integrates these models with a robust look-ahead ED. However, their
model is of a static robust nature, which lacks the adaptability of a two-stage robust model proposed
here; their model also relies on the existing types of uncertainty sets, which will be significantly
improved by a new type of uncertainty sets proposed in this chapter.

If we try to summarize the above works, we can draw the following observations: 1) there
is a great amount of interests to improve the ED practice; in particular, the recently developed
look-ahead ED models have attracted considerable attention in both academia and industry; 2) the
existing works on power system operation under uncertainty have focused on UC problems in a
day-ahead operating environment, while both stochastic and robust ED models are relatively less
explored; 3) the existing robust UC and ED models have used a similar type of uncertainty sets,
which we call static uncertainty sets, whereas it is important to start considering uncertainty sets
that can capture the highly dynamical and correlated variable resources such as wind power.

In this chapter, we propose new robust optimization models for system dispatch under high
wind penetration. In particular, the contributions of our work are summarized below:

1. We propose a two-stage adaptive robust optimization model for the multi-period ED, which
has a different decision structure from the existing two-stage robust UC and robust ED mod-
els. The proposed robust ED model is designed for a rolling-horizon operational framework
to model the real time ED process.

2. We introduce a new type of uncertainty sets, the dynamic uncertainty sets, as a modeling
technique to account for the dynamic relationship between uncertainties across decision
stages. Such uncertainty sets explicitly model temporal and spatial correlations in variable
sources. We also propose a data-driven approach to construct such dynamic uncertainty sets,
which is simple to implement in practice.

3. We develop a comprehensive simulation platform, which integrates the proposed robust ED
model with statistical procedures for constructing dynamic uncertainty sets using real-time
data. Extensive experiments are performed on this platform.

The chapter is organized as follows. Section 1.2 introduces dynamic uncertainty sets and dis-
cusses practical construction methods. Section 1.3 proposes the adaptive robust multi-period ED
model and solution methods. Section 1.4 presents the simulation platform and the evaluation
framework. Section 1.5 shows extensive computational experiments to demonstrate the effective-
ness of our approach. Finally, Section 1.6 concludes.

1.2 Dynamic uncertainty sets

In robust optimization, uncertainty is modeled through uncertainty sets, which are the building
blocks of a robust optimization model and have direct impact on its performance. We may summa-
rize three criteria for constructing uncertainty sets as follows. A well constructed uncertainty set
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should 1) capture the most significant aspects of the underlying uncertainty, 2) balance robustness
and conservativeness of the robust solution, and 3) be computationally tractable.

1.2.1 Static uncertainty sets

Previous works on robust UC have focused on static uncertainty sets, and have treated uncertainty
resources of different characteristics in an aggregated, indistinguishing way, see for example [5,
16, 56]. More specifically, consider the following uncertainty set for net demand vector dt =
(d1t, ..., dNdt):

Dt =

{
dt :

∑
j∈N d

|djt − djt|
d̂jt

≤ Γd
√
Nd,

djt ∈ [djt − Γdd̂jt, djt + Γdd̂jt] ∀ j ∈ N d

}
, (1.1)

where N d, Nd denote the set and the number of loads, and djt is the net demand of load j at time
t. According to (1.1), djt lies in an interval centered around the nominal value djt with a width
determined by the deviation d̂jt. Further, the size of the uncertainty set is controled by Γd. If
Γd = 0, Dt = {dt}, corresponding to a singleton set of the nominal demand. As Γd increases,
more demand vectors are contained in the uncertainty set, thus increasing the protection of the
robust solution against larger demand variations.

The above uncertainty set is called static uncertainty set, because the uncertainties at later time
periods are independent of those in earlier periods. That is, the dynamics of uncertainty evolu-
tion over time is not explicitly captured. Some recent work proposed additional budget constraints
over time periods (e.g. [16, 56]). The modified uncertainty set imposes a coupling of uncertainty
between time periods and uncertain sources, however, similar to (1.1), it still does not directly char-
acterize the temporal and spatial correlations of uncertainty; also, by coupling through the entire
horizon, the realization of uncertainty breaks the time causality with past depending on the future
realization. Yet another drawback of existing models is that uncertain sources of different nature
are treated indistinguishably. For example, the uncertainty characteristics of wind power output are
different from those of the conventional load, yet the existing proposals consider aggregated net
load as the primitive uncertainty [5, 16, 56]. Demand uncertainty is usually much less pronounced
and less dynamic than wind, therefore, a static uncertainty set as (1.1) is an appropriate model.
However, it is important to explore well suited uncertainty models for wind, specially for high
level penetration of such variable resources.

1.2.2 Dynamic uncertainty sets

To explicitly model the correlation between multiple uncertain resources within one time period
as well as the dynamics of each uncertain resource evolving over time periods, we propose the
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following general form of uncertainty sets, called dynamic uncertainty sets: For each time t,

Ξt(ξ[1:t−1]) =
{
ξt : ∃u[t] s.t. f(ξ[t],u[t]) ≤ 0

}
, (1.2)

where ξ[t1:t2] , (ξt1 , . . . , ξt2) and in shorthand ξ[t] , ξ[1:t]. In (1.2), the uncertainty vector
ξt explicitly depends on uncertainty at stages before time t and the u’s are auxiliary variables,
f(ξ[t],u[t]) is a vector of convex functions that characterize the dynamics of uncertainty evolution.
For the uncertainty set to be computationally tractable, f should be semi-definite representable [3].

As an illustrative example, the dynamic uncertainty set could represent a dynamic interval for
ξt:

ξt ∈
[
ξ
t
(ξ[t−1]), ξt(ξ[t−1])

]
,

where the upper and lower bounds of the interval at time t, namely ξ
t
(ξ[t−1]) and ξt(ξ[t−1]), are

functions of uncertainty realizations in previous time periods, rather than fixed values as in static
uncertainty sets (1.1).

A simple and useful specialization of (1.2) is the linear dynamic uncertainty set, given as

t∑
τ=1

(Aτξτ +Bτuτ ) ≤ 0, (1.3)

which mimics linear dynamics and is also computationally tractable. In the following, we will pro-
pose a specific method for constructing linear dynamic uncertainty sets using time series analysis
tools.

1.2.3 Constructing dynamic uncertainty sets for wind power

The proposed dynamic uncertainty set (1.2) is very general. In this section, we present a specific
method to construct a dynamic uncertainty set for wind power using linear systems (1.3). The key
idea is to fuze time series models with the concept of dynamic uncertainty sets.

We denote the wind speed vector of multiple wind farms at time t as rt = (r1t, . . . , rNwt),
where rit is the wind speed at wind farm i and time t. Define the dynamic uncertainty set for rt as:

Rt(r[t−L:t−1]) =
{
rt : ∃ r̃[t−L:t], ut s.t.

rτ = gτ + r̃τ ∀τ = t− L, . . . , t (1.4a)

r̃t =
L∑
s=1

Asr̃t−s +But (1.4b)∑
i∈Nw

|uit| ≤ Γw
√
Nw (1.4c)

|uit| ≤ Γw ∀i ∈ Nw (1.4d)

5



rt ≥ 0
}
, (1.4e)

where vectors rt−L, . . . , rt−1 are the realizations of wind speeds in periods t − L, . . . , t − 1. Eq.
(2.17a) decomposes wind speed vector rτ as the sum of a seasonal pattern gτ , which is pre-
estimated from wind data, and a residual component r̃τ which is the deviation from gτ . Eq.
(2.17b) is the key equation that represents a linear dynamic relationship involving the residual r̃t
at time t, residuals realized in earlier periods t−L to t− 1, and an error term ut. The parameter L
sets the relevant time lags. In Eq. (2.17b), matricesAs’s capture the temporal correlation between
rt and rt−s, and B specifically captures the spatial relationship of wind speeds at adjacent wind
farms at time t. Eq. (2.17c)-(2.17d) describe a budgeted uncertainty set for the error term ut,
where Γw controls its size, and (2.17e) avoids negative wind speeds. Nw and Nw denote the set
and number of wind farms, respectively.

Using the above uncertainty sets (2.17) for wind speeds, we can further construct dynamic
uncertainty sets for wind power through power curve approximations. In particular, we denote the
available wind power of wind farm i at time t as pwit. Given the wind speed rit, pwit is described by
the following constraints

pwit ≥ h0
ik + hik rit ∀i ∈ N g, k = 1, . . . , K, (1.5)

where parameters h0
ik, hik are determined based on a convex piecewise linear approximation with

K pieces of the increasing part of the power curve at wind farm i (in our experiments, we use the
power curve of GE 1.5MW wind turbine to approximate the aggregated output of a wind farm).
Although (1.5) allows available wind power to exceed maxk{h0

ik +hikrit}, the robust optimization
model described in Section 1.3 will always ensure that the available wind power lies on the power
curve including the plateau part for wind speed exceeding a cut-off value.

The dynamic uncertainty set of the available wind power pwt is thus defined as

Pwt (r[t−L:t−1]) =
{
pwt : ∃rt ∈ Rt(r[t−L:t−1])

s.t. (1.5) is satisfied
}
, (1.6)

based on which we can define the uncertainty set for the trajectory of available wind power in time
periods 2 through T , namely pw = (pw2 , . . . ,p

w
T ), as

Pw =
{

(pw2 , . . . ,p
w
T ) : ∃(r2, . . . , rT ) s.t. rt ∈ Rt(r[t−L:t−1])

and (1.5) is satisfied for t = 2, . . . , T
}
, (1.7)

which is used in the robust ED model.

As a summary, we propose dynamic uncertainty sets (2.17) and (1.6) to capture the intrinsic
temporal dynamics and spatial correlations of the wind power. We also distinguish wind power
uncertainty from conventional demand uncertainty, which is modeled by traditional uncertainty
sets (1.1). The proposed dynamic uncertainty set formulation (1.2) is quite general. The specific
models for wind speed (2.17) and wind power (1.6) present one example for its implementation.
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Other models may be constructed using more sophisticated statistical tools. For example, the co-
efficient matrices As and B can be made time dependent as Ast and Bt using dynamic vector
autoregression methods. Also, rt can be replaced by a nonlinear transformation of wind speed
to improve estimation accuracy. However, there is always a tradeoff between model complexity
and performance. Our experiments show the above simple models (2.17)-(1.7) achieve a substan-
tial improvement over existing static uncertainty sets. See more discussion in Section 1.4.1 for
parameter estimation and possible extensions for the dynamic uncertainty sets.

1.3 Adaptive robust economic dispatch formulation and solution method

1.3.1 Mathematical formulation

In this section, we propose an adaptive robust optimization model for the multi-period ED problem.
In particular, the ED problem with T time periods is formulated as a two-stage adaptive robust
model in the following way. The first-stage of the robust ED model comprises the current time
period t = 1, while the second-stage comprises future time periods t = 2, ..., T . In the first-stage,
the decision maker observes demand and available wind power at the current time period, and
determines the dispatch solution, which will be implemented right away for time t = 1. Given the
first-stage decision, the second-stage of the robust ED model computes the worst-case dispatch cost
for the remaining time periods in the dispatch horizon. The overall robust ED model minimizes
the total cost of dispatch at the current time period and the worst-case dispatch cost over the future
periods.

We denote x = (pg1,p
w
1 ) as the vector of first-stage dispatch decisions, composed of generation

of thermal units (pg1) and wind farms (pw1 ). Note that we allow wind generation to be dispatchable.
The uncertainty includes both conventional load d = (d2, . . . ,dT ) ∈ D described by (1.1) and the
available wind power pw = (pw2 , . . . ,p

w
T ) ∈ Pw described by the dynamic uncertainty set (1.7).

The second-stage decisions are dispatch solutions y = (pgt ,p
w
t ,∀t = 2, . . . , T ).

Mathematically, the two-stage robust multi-period ED model is formulated as follows,

min
x∈Ωdet

1

{
c>x+ max

d∈D,pw∈Pw
min

y∈Ω(x,d,pw)
b>y

}
, (1.8)

where the first and second-stage costs are defined as

c>x =
∑
i∈N g

Cg
i p

g
i1 +

∑
i∈Nw

Cw
i p

w
i1

b>y =
T∑
t=2

(∑
i∈N g

Cg
i p

g
it +

∑
i∈Nw

Cw
i p

w
it

)
,

whereN g denotes the set of generators, and Cg
i , C

w
i denote the variable costs of thermal generators

and wind farms. We use linear dispatch costs, but it is straightforward to extend to piecewise linear
approximations of nonlinear cost functions.
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The feasible region Ωdet
1 of the first-stage decision variables corresponds to the constraints of a

single-period dispatch problem, that is

Ωdet
1 =

{
x = (pg1,p

w
1 ) : pg

i1
≤ pgi1 ≤ pgi1 ∀ i ∈ N g (1.9a)

0 ≤ pwi1 ≤ pw,maxi ∀ i ∈ Nw (1.9b)

pwi1 ≤ pw,deti1 ∀ i ∈ Nw (1.9c)
−RDg

i ≤ pgi1 − p
g
i0 ≤ RU g

i ∀ i ∈ N g (1.9d)
−RDw

i ≤ pwi1 − pwi0 ≤ RUw
i ∀ i ∈ Nw (1.9e)∣∣α>l (Egpg1 +Ewpw1 −Edddet1 )
∣∣ ≤ fmaxl ∀ l ∈ N l (1.9f)∑

i∈N g

pgi1 +
∑
i∈Nw

pwi1 =
∑
j∈N d

ddetj1

}
, (1.9g)

where pg
it
, pgit are the minimum and maximum power outputs of thermal generator i at time t;

pw,maxi is the maximum power output at wind farm i, representing the cut-off level of the power
curve; pw,deti1 denotes the available wind power of wind farm i observed at current time t = 1;
RDg

i , RU
g
i are the ramp-down and ramp-up rates of thermal generators (similarly, RDw

i , RU
w
i for

wind farms);N l is the set of transmission lines;αl is the network shift factor for line l;Ed,Eg,Ew

are the network incidence matrices for loads, thermal generators and wind farms; fmaxl is the flow
limit on line l; ddetj1 denotes the observed electricity demand at load j and time t = 1. Constraints
(1.9a), (1.9b) and (1.9c) enforce generation limits for thermal generators and wind farms, with
(1.9c) ensuring that generation of wind farms does not exceed the available wind power at time
t = 1. (1.9d) and (1.9e) enforce ramping rate limits for thermal generators and wind farms. (1.9f)
represents line flow limits. (1.9g) represents energy balance.

Constraints in the second-stage problem are parameterized by the first-stage decision variables
and uncertain parameters realized in the uncertainty sets. The feasible region of the second-stage
dispatch decison y = (pgt ,p

w
t , ∀t = 2, . . . , T ) is defined as

Ω(x,d,pw) =

{
y : s.t. ∀t = 2, . . . , T

pg
it
≤ pgit ≤ pgit ∀ i ∈ N g, (1.10a)

0 ≤ pwit ≤ pw,maxi ∀ i ∈ Nw, (1.10b)
pwit ≤ pwit ∀ i ∈ Nw, (1.10c)
−RDg

i ≤ pgit − p
g
i,t−1 ≤ RU g

i ∀ i ∈ N g, (1.10d)

−RDw
i ≤ pwit − pwi,t−1 ≤ RUw

i ∀ i ∈ Nw, (1.10e)∣∣α>l (Egpgt +Ewpwt −Eddt)
∣∣ ≤ fmaxl ∀ l ∈ N l (1.10f)∑

i∈N g

pgit +
∑
i∈Nw

pwit =
∑
j∈N d

djt

}
, (1.10g)
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where (1.10a)-(1.10g) are similar constraints as in (1.9), except that they are enforced for each
time period t = 2, . . . , T . Notice that (1.10b)-(1.10c) ensure that the dispatched wind generation is
upper bounded by the minimum between the cut-off level pw,maxi and the available wind power pwit.
Also note that the first-stage dispatch decision is involved in constraints (1.10d)-(1.10e) to satisfy
ramping constraints.

A few remarks are in order. First, (1.8) is a fully adaptive robust optimization model, namely
the second-stage dispatch decision adapts to every realization of the uncertainty in the best possible
way, which is similar to the existing robust UC model proposed in [5]. Second, there is a key
difference between the two-stage structure of the proposed robust ED (1.8) and the existing two-
stage robust UC models. In particular, the decision stages of (1.8) correspond to the actual time
periods, so that the first-stage decision can be directly used in the dispatch at the current period,
and the dispatch decisions in the second stage can be re-optimized in the following periods. In
comparison, the two-stage robust UC models have UC decisions in the first stage and dispatch
decisions in the second stage, both for the entire horizon. Third, the two-stage structure of the
robust ED model makes it convenient to incorporate into the real-time dispatch procedure. In
particular, the robust ED model can be implemented in a rolling horizon framework; the dynamic
uncertainty sets can also be updated periodically when new information is available. Fourth, the
use of the DC power flow is consistent with the industry practice [12] and recent works in robust
ED [15,57]. AC power flow feasibility can be enforced by introducing an AC power flow module.
Thus, to emphasize the key proposal of the chapter, we keep with the simple DC power flow model.
Fifth, the robust ED model can also readily include convex piecewise linear costs.

1.3.2 Solution method

Several methods have been reported in the literature for solving two-stage adaptive robust opti-
mization problems [5, 16, 50]. In [16], a Benders decomposition approach is proposed to solve the
outer level problem and an exact method for the second-stage problem. In [50], a constraint and
column generation (C&CG) technique is proposed and rigorously analyzed; an exact method using
mixed-integer reformulations is proposed for the second-stage problem. [5] proposes a Benders de-
composition framework for the outer level and a heuristic method for the second-stage problem. To
speed up the Benders decomposition, [5, Section IV] also proposes a heuristic idea to add extreme
points of the uncertainty sets and associated dispatch constraints to the outer level problem, which
is similar to the C&CG technique in [50].

Problem (1.8) can be equivalently stated as:

min
x,η

{
c>x+ η : η ≥ Q(x), x ∈ Ωdet

1

}
, (1.11)

with

Q(x) = max
ξ∈Ξ

min
{y: Gy≥h−Ex−Mξ}

b>y, (1.12)

where ξ = (d,pw), Ξ = D ×Pw, and the feasible region {y : Gy ≥ h−Ex−Mξ} represents
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the dispatch constraints in (1.10). Problem (1.11) is equivalent to:

min
x∈Ωdet

1 , η, {yl}
c>x+ η (1.13a)

s.t. η ≥ b>yl ∀ l (1.13b)
Ex+Gyl ≥ h−Mξ∗l ∀ l, (1.13c)

where {ξ∗l }Ml=1 is the set of extreme points of Ξ, and for each l, yl is a vector of second-stage deci-
sions associated to ξ∗l . (1.13) is the outer level problem, which shows a nice structure suitable for
constraint generation. Indeed, (1.13) can be efficiently solved by adding (ξ∗l ,yl) and the associated
constraints iteratively [50].

In every iteration of this algorithm, Q(x) must be evaluated, which involves solving a non-
convex max-min problem. Previous work has dealt with this problem using outer-approximation
techniques [5] and exact methods based on mixed-integer programming (MIP) reformulations
[16, 50, 56]. As will be demonstrated in the computational experiments (Section 1.5.5), the MIP
method is time consuming for solving (1.12). Instead, we apply a simple “alternating direction
algorithm” [22]. Taking the dual over the inner min in (1.12) we obtain

Q(x) = max
ξ∈Ξ,π∈Π

π>(h−Ex−Mξ), (1.14)

where Π = {π ≥ 0 : π>G = b}. For this bilinear program with separate polyhedral feasible
regions Ξ and Π, the alternating direction algorithm optimizes over π with ξ fixed, then over ξ
with π fixed, and alternates; each of these iterations solves a linear program which achieves the
optimum at an extreme point of the corresponding polyhedron Ξ or Π. The alternating algorithm
is formally presented below.

Algorithm 1 Alternating Direction (AD) algorithm
1: Start with some ξ′ ∈ Ξ
2: repeat
3: Solve (∗): C ← maxπ∈Π π>(h−Ex−Mξ′)
4: if C <∞ then
5: Let π′ be an optimal solution of (∗)
6: Solve C ′ ← maxξ∈Ξ π′>(h−Ex−Mξ) and let ξ′ be its optimal solution
7: else
8: C ′ ←∞
9: end if

10: until C ′ =∞ or C ′ − C ≤ δ
11: output: C ′ as estimate of Q(x) with solution ξ′

This alternating direction method always converges to a KKT point of (1.14). The proof is
omitted to save space. Section 1.5.5 also shows empirical evidence that this heuristic achieves
good solution quality and fast convergence on the second-stage problem, comparing to the MIP
method.

The overall two-level algorithm is presented in Fig. 1.1.
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Add constraints (13b)-(13c)

for � = 	 + 1 in (13)

Let 	 ← 	 + 1

End

Figure 1.1: Flow chart for the overall two-level algorithm.

1.4 Simulation platform and evaluation metrics

In this Section, we describe the simulation platform and evaluation metrics for the proposed robust
model. The motivation is to have a realistic simulation environment that integrates the dispatch
optimization model with data analysis procedures which dynamically update the parameters in the
optimization and uncertainty models. Fig. 1.2 illustrates the simulation process.

The simulation process is implemented in a rolling horizon framework. At each time period,
the robust ED model is solved over a time window of T time periods. The first-stage dispatch
solution for the current time period is implemented, while the second-stage dispatch solutions
for remaining periods are not materialized; the time horizon rolls forward by one time interval,
where new realizations of demand and available wind power are observed, and dynamic uncertainty
sets are periodically re-estimated and updated with the new observations (see Section 1.4.1). In
order to focus the comparison on the ED policies, the simulation process uses a simplified UC
schedule where all thermal generators are on all the time. In the future, we would like to extend
the simulation framework to integrate UC decisions into the policy evaluation.

Simulation 

core

ED 

optimization

Uncertainty 

sets 

construction

Every 10 minEvery day

�� , � �� , �

��
�
, ��
�

data

data

Figure 1.2: Simulation platform integrating ED optimization engine and data analysis tools for
uncertainty model construction.

We compare different ED models by evaluating the average and standard deviation (std) of the
production cost for every 10 minutes dispatch interval, which includes both generation cost and
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Figure 1.3: Concept of rolling horizon with 10 minute time periods and T = 6

penalty cost resulting from the use of expensive fast-start units or load shedding.

1.4.1 Estimating the parameters of the dynamic uncertainty set for wind speeds

In order to estimate the parameters of model (2.17), consider the following time series model:

rt = gt + r̃t ∀t (1.15a)

r̃t =
L∑
s=1

Asr̃t−s + εt ∀t, (1.15b)

where rt is the vector of wind speeds at time t, gt corresponds to a deterministic seasonal pattern,
and r̃t corresponds to the deviation of rt from gt. In this model, r̃t follows a multivariate autore-
gressive process of order L, determined by the innovation process {εt}, where εt is a vector of
normal random variables with mean 0 and covariance matrix Σ, and vectors εt are independent
across different time periods.

Once seasonal patterns have been identified, parameter gt can be determined. For example,
daily and semi-daily seasonalities could be used. In such a case, using a 10 min time interval
we would have git = ai + bi cos( 2πt

24×6
) + ci sin( 2πt

24×6
) + di cos( 2πt

12×6
) + ei sin( 2πt

12×6
) (since 24 × 6

is the number of time periods in a day). Parameters ai, bi, ci, di, ei can be estimated using linear
regression [48].

The parameters of the autoregressive component r̃, namely the matrices As and Σ, can be
estimated using statistical inference techniques developed for time series [34], for which many
computational packages are available. B in (2.17) is obtained from the Cholesky decomposition
of Σ.

The linear dynamic model (2.17) and the associated estimation method are appealing in their
simple structure, which serves well our goal to demonstrate the concept of dynamic uncertainty
sets. Computational results also confirm their promising performance. Meanwhile, it is worth
noting that the framework of dynamic uncertainty sets is flexible enough to incorporate more so-
phisticated statistical models, such as the ones proposed in [28], where autoregressive processes
are fitted to nonlinearly transformed wind speeds. Using a piecewise linear approximation similar
to the one proposed in (1.5), but this time for the transformed wind speed and wind power output,
a dynamic uncertainty set can be again constructed using linear constraints.
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1.5 Computational experiments

We conduct extensive computational experiments on the simulation platform to compare the pro-
posed robust ED model and dynamic uncertainty sets with existing robust and deterministic dis-
patch models. The experiments are performed on the 14-bus and 118-bus IEEE test systems, both
of which are modified to incorporate significant wind penetration. In the following, we introduce
the detailed data for the 14-bus system, and present test results in Sections 1.5.1 to 1.5.5. The test
results on the 118-bus system give a similar picture as the 14-bus system. The details are given in
Section 1.5.6.

Table 1.1 summarizes Pmin, Pmax, 10-min ramping rates, and production costs of all three
generators in the 14-bus system. The total generation capacity is 500MW. The system has 20
transmission lines and 11 conventional loads. The daily system demand is between 132.6MW and
319.1MW with an average of 252.5MW. The system has 4 wind farms, each with a capacity of
75MW (equivalent of 50 units of GE 1.5MW wind turbines). The total power output at each wind
farm is approximated by a piecewise linear function of wind speed using the power curve data [13].

Table 1.1: Thermal generators in 14-bus system

Gen Pmax Pmin Ramp Cost
(MW) (MW) (MW/10min) ($/MWh)

1 300 50 5 20
2 100 10 10 40
3 100 10 15 60

The wind speed data is obtained from [9] for four geographically adjacent locations with a
10-minute data interval. The average wind speeds at the four wind farms are 4.8, 5.6, 5.1, 5.5 m/s,
respectively. Using the power curve, the average total available wind power is 104.2 MW, equiv-
alent to a 34.7% capacity factor, which is about 32.7% of peak demand and 20% of conventional
generation capacity, representing a realistically high level of wind penetration. After removing
stationary components, wind speeds at different sites present strong auto and cross correlation at
several lags, which implies that the temporal and spatial dependencies are significant.

The proposed robust ED model has 9 time periods with a 10-min interval for each period
(i.e. 1.5-hour look ahead). The robust ED model is evaluated on the simulation platform in the
rolling-horizon framework. In particular, it is solved every 10 minutes over 35 days, for which
real wind data is used for all wind farms. On each of the 35 days, the simulation engine updates
the parameters of the dynamic uncertainty sets (2.17) using the available wind data up to that
day. The penalty cost is C+ = 6000 $/MWh for under-generation, and C− = 600 $/MWh for
over-generation [32, 52].

The simulation platform is implemented in a Python environment, interfaced with Cplex 12.5.
Each robust ED takes less than a second to solve, and the entire simulation of 5040 periods takes
about 40 minutes on a PC laptop with an Intel Core i3 at 2.1 GHz and 4GB memory.

Before presenting details, we first give a summary of the experiments and main results. We
compare the proposed robust ED with dynamic uncertainty sets versus (1) deterministic look-ahead
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dispatch and its variant with reserve rules; (2) robust dispatch with static uncertainty sets. The ex-
periments show that adaptive robust ED with dynamic uncertainty sets significantly outperforms
both alternative models by substantially reducing average production cost, the variability of the
costs, and the probability of shortage events. Our experiments also show that the robust ED pro-
vides a Pareto frontier for the tradeoff between cost and reliability, which provides an informative
guideline for choosing uncertainty set parameters and system operating points.

1.5.1 Robust ED versus look-ahead ED

In this section, we compare the proposed adaptive robust ED (Rob-ED) with the deterministic look-
ahead dispatch (LA-ED). The robust ED model uses dynamic uncertainty sets (2.17) and (1.6) with
6 time lags i.e. L = 6. The parameter Γw controls the size of the uncertainty sets. Notice that
when Γw = 0, the uncertainty set contains only one path of the forecasted wind speeds, the robust
ED thus reduces to the LA-ED model.

Cost and reliability performance

Table 1.2 shows the performance of the two models: Column 2 for LA-ED, and Columns 3 to 7
for Rob-ED with different Γw’s. The best average total cost of the Rob-ED model is achieved at
Γw = 0.5, where the average cost of Rob-ED is 7.1% lower than that of LA-ED; at the same time,
Rob-ED is able to reduce the standard deviation of the cost by 41.2%. We can also see that as Γw

increases to 1.0, the robust ED can reduce the std of cost by 82.1%, with the average cost reduced
by 3.75%. The shortage event frequency of the robust ED model is decreased by up to 80.1%
and the associated penalty cost is reduced by 97.3% at Γw = 1.0. The change in penalty costs
also implies that Rob-ED incurrs less amount of constraint violation than LA-ED, when penalty
occurs. The results show that the robust ED model is effective at improving economic efficiency
and reducing risk associated with the dispatch solution, where the risk exactly comes from the
highly uncertain wind power. As will be shown in Section 1.5.6, more significant savings on cost
and improvement over reliability are achieved for the 118-bus system.

Table 1.2: Performance of robust and deterministic ED

LA-ED Rob-ED
Γw 0.0 0.1 0.3 0.5 0.7 1.0

Total Cost Avg ($) 771.1 758.5 734.0 716.0 718.2 742.2
Total Cost Std ($) 1231 1172 1000 723 513 221

Penalty Avg ($) 88.2 77.1 54.2 30.6 15.8 2.4
Penalty Freq (%) 1.41 1.21 0.95 0.67 0.46 0.28

Operational insights

We also want to gain some insights about the operational characteristics of the robust model. Table
1.3 shows average thermal generation (Therm avg) and wind generation (Wind avg) of the two
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Table 1.3: Operational Aspects of Robust and Deterministic ED

LA-ED Rob-ED
Γw 0.0 0.1 0.3 0.5 0.7 1.0

Therm avg (MW) 164.6 165.2 167.5 171.7 178.6 191.1
Wind avg (MW) 87.9 87.2 85.0 80.8 74.0 61.5
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Figure 1.4: A snapshot of the product cost of LA-ED and Rob-ED with Γw = 0.5 when available
wind power suddenly drops down.

models. We can see that the robust ED model on average tends to increase the use of thermal
generation and curtail wind output: At Γw = 0.5, Therm avg is up by 4.3% and Wind avg down
by 8.1%, comparing to LA-ED; at Γw = 1.0, Therm avg is up by 16.1% and Wind avg is down by
24.9%.

Fig. 1.4 shows a typical snapshot from simulation. Available wind power starts a fast and large
drop at 21:30PM (green curve), the deterministic LA-ED runs short of ramping capacity and incurs
a spike of penalty cost (blue curve), while the system under robust ED is much less affected by
this sudden wind event (red curve). The example shows that when the system has significant wind
penetration, properly balancing wind and thermal generation becomes very important for system
reliability.

The insight is the following. The two-stage robust ED computes wind scenarios over the future
periods that are the most detrimental to the system, and makes the optimal dispatch solution to
prepare the system against these scenarios. The worst-case wind scenarios often correspond to
scenarios with large wind variation between periods as shown in Fig. 1.4. The robust ED model
hedges against the potential large swing of wind by increasing thermal generation and moderately
curtailing some wind output. In this way, the system maintains enough ramping capability to
deal with potential sudden loss of available wind power. The balance between thermal and wind
generation is controlled by the value of Γw of the uncertainty sets as shown in Table 1.3. In other
words, the robust ED determines the optimal ramping schedule of thermal generators, rather than
resorting to prefixed operation rules.
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Table 1.4: Performance of look-ahead ED with reserve

LA-ED Res-LA-ED Rob-ED
ResFactor (%) 0 2.5 5 10 Γw = 0.5
Cost Avg ($) 771.1 770.0 773.3 790.3 716.0
Cost Std ($) 1231 1223.8 1211.8 1155.1 723

Penalty Avg ($) 88.2 86.7 84.8 71.6 30.6
Penalty Freq (%) 1.41 1.45 1.69 1.35 0.67

Comparing to look-ahead ED with reserve

Reserve is an engineering approach to handle net load uncertainty in a deterministic ED model.
Typically, when UC is solved, reserve levels for the next day are co-optimized, and later in real time
operation, reserves are used in cases of unexpected net load variations and other contingencies.
Consider the following look-ahead ED model with reserve requirement (Res-LA-ED). The LA-
ED model is complemented with reserve variables Rit ∈ [0, Rit], equations (1.9a) and (1.10a) are
replaced by

pg
it
≤ pgit ≤ pgit −Rit ∀ i ∈ N g, t = 1, . . . , T,

and the following reserve requirement constraints are added:∑
i∈N g

Rit ≥ Rreq
t ∀ t = 1, . . . , T.

We test the performance of this model for different reserve requirement levels Rreq
t . We select

Rreq
t as a fraction of the total forecasted net load at time t (i.e. forecast of total demand minus

total available wind power), and modify this proportion, denoted as “ResFactor” [32]. Table 1.4
presents the performance of Res-LA-ED under different values of ResFactor, as well as that of
Rob-ED with Γw = 0.5.

From these results we can see that this reserve rule can improve the performance of LA-ED in
both cost effectiveness and reliability, when the reserve requirement is properly chosen (ResFactor
at 2.5%). As ResFactor increases, the reliability (Cost Std) keeps improving with the tradeoff of
an increasing Avg Cost; the penalty cost and frequency are also reduced.

If we compare Res-LA-ED with Rob-ED, we can observe that the performance of Rob-ED is
significantly better than the best of the three Res-LA-ED test cases: the Cost Avg is reduced by
at least 7.14% (against ResFactor = 2.5%); the Cost Std is improved by at least 37.4% (against
ResFactor = 10%); the penalty cost is reduced by at least 57.2%, and the penalty frequency is
reduced by at least 50.3% (both against ResFactor = 10%).

1.5.2 Dynamic uncertainty sets versus static uncertainty sets

In this section, we compare adaptive robust ED equipped with dynamic uncertainty sets with the
same robust ED model using static uncertainty sets. The goal is to study the benefits of dynamic
uncertainty sets for modeling dynamic relations of wind power uncertainty across time stages and
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spatial locations.

We use dynamic uncertainty sets (2.17) with L = 6 as before (denoted as “DUS”), and
construct two static uncertainty sets: one ignores the temporal correlation in (2.17) (denoted as
“SUS1”), the other further ignores spatial correlations (denoted as “SUS2”). Note that both SUS1
and SUS2 are special cases of the dynamic uncertainty sets for L = 0, i.e. the uncertainty sets at
different time intervals are independent of each other. To have a fair comparison, both in SUS1
and SUS2, gt is improved after estimating B to force a persistent forecast of wind speeds for the
nominal trajectory (improving the accuracy of the nominal trajectory considered).

Fig. 1.5 plots the standard deviation of the cost per 10 minutes interval (x-axis) versus the
average of this cost (y-axis) for DUS, SUS1 and SUS2 with different values of Γw. On each curve,
the right most point corresponds to Γw = 0, i.e. the deterministic LA-ED model. As Γw increases,
both the average and std of the cost start to decrease, then after a certain apex value of Γw around
0.4 to 0.5, the std keeps decreasing but the average cost starts to increase. This behavior endows
a “U” shape for all three curves. Every point on the right half of the “U” shape for Γw smaller
than the apex value can be strictly improved in both average and std of cost by increasing Γw,
while every point on the left half of the “U” shape cannot be strictly improved without trading off
between average and std of the cost. In other words, on the right half of the curve, each point is
dominated by the points to its left, whereas on the left half, no point is dominated by any other.
Therefore, the left part of each curve shows the Pareto frontier of cost vs std performance of the
associated robust ED model. The system should be operated on the Pareto frontier. This provides
an informative guideline for choosing a proper Γw.

Comparing the Pareto frontiers of the three uncertainty sets in Fig. 1.5, we can see that the
dynamic uncertainty set has the lowest Pareto frontier, which means that to retain a same level of
average cost, the robust ED with dynamic uncertainty sets achieves the lowest std (i.e. the highest
reliability); or, to maintain a same level of std (i.e. reliability), the robust ED with dynamic uncer-
tainty sets incurs the lowest cost. That is, robust ED with DUS dominates robust ED with static
uncertainty sets. Between the two static uncertainty sets, SUS1 (that considers spatial correlation)
dominates SUS2, which has neither temporal nor spatial correlation.

The static uncertainty set SUS2 is the first budgeted uncertainty set proposed in the literature [7]
and has inspired its application in modeling net load uncertainty [5]. Works in [16, 56] further
introduced budget constraints over time periods to limit the total variations of uncertain demand
over the entire or part of the planning horizon. Now, we compare these static uncertainty sets
with additional time budgets with DUS. It is worth emphasizing that the fundamental difference
between DUS and SUS remains the same for DUS and SUS with time budgets.

We modify the uncertainty sets SUS1 and SUS2 with the following time budget constraint:

T∑
t=2

∑
i∈Nw

|uit| ≤ ΓTΓw
√
Nw
√
T − 1,

where T = 9 is the number of periods in the multi-period Rob-ED, and time budget parameter
ΓT = 0.5, 1, 2. Note that static uncertainty sets without time budget are equivalent to one with
very large time budget as ΓT ≥

√
8, the time budget constraint becomes redundant.
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Figure 1.5: Cost std and cost average obtained for the policies determined by the different models
with Γw = 0.0, 0.1, ..., 1.0
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Figure 1.6: Cost std and cost average obtained for the policies determined by DUS and SUS1, with
ΓT = 0.5, 1, 2 for SUS1 and with Γw = 0.0, 0.1, ..., 1.0.

Fig. 1.6 plots the std of cost per 10 min interval (x-axis) versus the average of that cost (y-
axis) for DUS and SUS1 with additional time budgets. The curve denoted by SUS1-0.5 means the
SUS1 uncertainty set with time budget ΓT = 0.5 and Γw varies from 0.0 to 1.0. Among the three
curves based on SUS1 with time budgets, we can see that Rob-ED achieves a better Pareto frontier
for higher values of time budget (the red curve for SUS1-0.5 is dominated by the green curve for
SUS1-1, which is further dominated by SUS1-2). SUS1 without time budget (or equivalently with
a time budget ΓT ≥

√
8) has a frontier comparable to the SUS1-2. Furthermore, all four SUS1

based curves are clearly dominated by the DUS curve.

Fig. 1.7 presents a similar comparison for SUS2 with time budgets. Here, the dominance of
DUS over static uncertainty sets with time budgets is more eminent.
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Figure 1.7: Cost std and cost average obtained for the policies determined by DUS and SUS2, with
ΓT = 0.5, 1, 2 for SUS2 and with Γw = 0.0, 0.1, ..., 1.0 for all policies
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Figure 1.8: Cost std and cost average obtained for the Rob-ED with DUS for Γw = 0.0, 0.1, ..., 1.0,
under modified ramping rates.

1.5.3 Impact of system ramping capacity

In this section, we study the relationship between system ramping capacity and the performance of
robust ED models. The intuition is that higher ramping rates better prepare the system to deal with
high variation of wind output. We want to see how much benefit the robust ED model provides
under different system ramping capacities. Fig. 1.8 summarizes the computational results for
three scenarios: base case with no change in ramping rates, and −25% or +25% change on each
generator’s ramping rates.

We can see that the robust ED model saves the average cost by 7.1% in the base case (the same
numbers as in Section 1.5.1) comparing with the look-ahead ED; the saving increases to 21.2%
for the reduced ramping case; even for the system with 25% more ramping for every generator,
the robust ED still demonstrates a 3.7% saving in average cost over LA-ED. This demonstrates the
clear benefit of Rob-ED over a wide range of system ramping conditions.
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Figure 1.9: Cost std and average obtained by the Rob-ED with Γw = 0.0, ..., 1.0 and Γd = 0, 1, 3.

1.5.4 Considering both demand and wind uncertainty

In this section, we further incorporate traditional demand uncertainty into the robust ED model,
using the static uncertainty sets (1.1), where djt and d̂jt are selected as the mean and std of demand
from previously realized values. The parameter Γd limits the total deviation of demand from its
forecast. In simulation, the demand djt of each load j at each time period t is independently
generated as a normal random variable with a std that equals a 5% of its mean, and is truncated to
be nonnegative. Therefore, the generated random demand can be outside the uncertainty set. The
choice of Γd controls the size of the demand uncertainty set.

Fig. 1.9 presents the performance of Rob-ED with dynamic uncertainty set for wind and static
uncertainty sets (1.1) for load, at different values of Γd,Γw. At Γd = 0, the uncertainty set for
demand is a singleton containing the forecast value, i.e. only wind uncertainty is considered (blue
curve). By considering an uncertainty set for load with Γd = 1, the cost-reliability curve is shifted
downward to the green curve, which consistently dominates the blue curve. The two curves are
quite close though, which shows that wind is the dominating factor of uncertainty; the dynamic un-
certainty set for wind significantly improves the system performance, while further incorporating
load uncertainty improves the performance modestly. The purple curve for Γd = 3 shows that too
much conservatism in the load uncertainty model leads to inferior solutions. It again demonstrates
that properly choosing the level of conservativeness of the uncertainty sets is critical to getting the
best performance of the robust ED model. In particular, the best robust ED policy obtained by
setting Γd = 1,Γw = 0.6 reduces the average cost by 13.1% lower than that of the deterministic
LA-ED with Γd = Γw = 0, and reduces the std of the cost by 58.1%. This makes the robust ED
model very attractive.

1.5.5 Performance of the alternating direction method for solving the second-stage problem

As discussed in Section 1.3.2, the proposed algorithm requires solving a bilinear program (1.14) in
each iteration of the outer master problem. Therefore, to practically tackle large-scale problems,
a fast and reliable method for the inner problem is needed. An alternating direction (AD) method
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is proposed in Section 1.3.2 for this purpose. In the literature, several exact MIP methods are
proposed to solve the second-stage bilinear program (e.g. [16,50,56].) The MIP methods in [16,56]
rely on the special structure of the uncertainty sets used in their models, which are not shared by the
dynamic uncertainty sets. The exact MIP method proposed in [50] is based on the KKT conditions,
which are applicable to general polyhedral uncertainty sets. Thus, we compare the AD algorithm
to this MIP method.

In the experiment, we run the Rob-ED model in the rolling-horizon simulator for a 5-day
horizon. This involves solving 720 Rob-ED models of the form (1.8), which amounts to 1592 inner
bilinear programs (1.14). Every time, the bilinear program is solved by both the AD algorithm and
the exact MIP method. We compare both running times and solution qualities.

The AD algorithm achieves convergence for all 1529 instances, and the average running time
is 0.12s. The MIP method achieves convergence in 257 instances with an average time of 13.28s;
for the remaining 1272 instances (83.2% of the total instances), the MIP method does not converge
after 60s, and at that point the solution quality is still worse than the AD solutions (the objective
value is on average 1.02% worse than the AD solutions). Those MIP instances exceeding 60s do
not achieve much improvement after running for another 10 min. In terms of solution quality, the
AD solutions on average obtain an optimality gap of 3.73% compared to the global optimum of
the MIP solutions when MIP converges. These comparisons show that the AD algorithm is an
effective and efficient heuristic for solving the bilinear program.

1.5.6 Tests on 118-bus system

Extensive simulation is also conducted on the 118-bus system. The results for this larger system
support similar conclusions as shown in the 14-bus system. The 118-bus system has 54 generators
of total 7220 MW generation capacity and 273.2 MW/10min system ramping capacity. There are
186 lines with flow limits ranging between 280 MW and 1000 MW, and 91 loads. Total electricity
demand is between 2485.7 MW (3:30 am) and 5982.9 MW (8:20 pm) with an average of 4735.0
MW. There are 8 wind farms, each with a capacity pw,max = 750 MW. The average total available
wind power at any time is 1882.7 MW, equivalent to 31.5% of the peak demand. All the wind
speeds used in simulation are real data collected from [9]. Each robust ED model can still be
quickly solved in about 20 seconds in the laptop described before. For the simulation of 35-day
rolling horizon with a 10-min interval, we use a computer cluster [36].

Table 1.5 shows the performance of the deterministic LA-ED and the Rob-ED with dynamic
uncertainty sets of lags L = 6. From the table, we have the following observations:

(1) Rob-ED reduces the average cost by 43.4% ((15061 − 8528)/15061) at a properly chosen
Γw = 1.5.

(2) Cost std is reduced by 87.7% at Γw = 1.5 and by 93.9% at Γw = 2.0.

(3) The average penalty cost is reduced by 98.4% or 60.7 times at Γw = 1.5 and is almost
eliminated at Γw = 2.0. The frequency of penalty is 7.70% by LA-ED, and is reduced to
0.12% and 0.02% by Rob-ED at Γw = 1.5 and 2.0, respectively.
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Table 1.5: Performance of LA-ED and Rob-ED for 118-bus system

LA-ED Rob-ED
Γw 0.0 0.5 1.0 1.5 2.0

Cost Avg ($) 15061 12193 8914 8528 9075
Cost Std ($) 38138 30903 14671 4703 2325

Penalty Avg ($) 7775 4835 1214 126 1
Penalty Freq (%) 7.70 4.74 1.45 0.12 0.02

Therm Avg (MW) 2969 3007 3132 3399 3660
Wind Avg (MW) 1758 1723 1602 1336 1075

(4) Rob-ED dispatches more thermal and curtails more wind. On average, the thermal gen-
eration is up by 12.7% and 18.9%, and the wind generation is down by 24% and 38.9%,
at Γw = 1.5 and 2.0, respectively. This can be explained by a similar reasoning given in
Section 1.5.1, namely that the robust ED dispatches the thermal generation anticipating to a
potential large drop of wind in the future, optimally balancing thermal and wind generation
in the system.

Comparing to the 14-bus system, the above results for the 118-bus system show a more signif-
icant benefit of the proposed Rob-ED model: the average operating cost is cut to almost half of the
look-ahead ED, the cost variability is reduced by an order of magnitude, and the shortage events
and penalty cost are almost eliminated. Table 1.5 also shows a Pareto frontier exists for the range
of Γw between 1.5 to 2.0.

1.6 Conclusion

In this chapter, we present an adaptive multi-period robust ED model and dynamic uncertainty sets
for power system economic dispatch under high penetration levels of wind resources. The adaptive
multi-period robust ED model mimics the physical dispatch procedure by using a two-stage deci-
sion making structure and a rolling-horizon framework. Dynamic uncertainty sets explicitly model
the relationship between uncertainties across decision stages and capture the temporal and spatial
correlations of wind power output in multiple wind farms: the proposed dynamic uncertainty sets
with linear dynamics in this chapter have general and computationally tractable structure; and the
proposed data-driven estimation procedures are easy to implement. We also develop a simulation
platform that integrates the optimization engine and data analysis tools for updating uncertainty
sets.

Extensive simulation using real wind data shows that the proposed robust ED framework out-
performs look-ahead ED models with and without reserves which recently attracted considerable
interests in practice, and robust ED models with static uncertainty sets. Both cost efficiency and
system reliability are substantially improved. Also, the robust ED model gives an entire Pareto
frontier of operating cost and reliability, which provides an informative guideline for choosing un-
certainty set parameters and system operating points. The proposed robust ED model and dynamic
uncertainty sets are flexible enough to incorporate several extensions, such as using transformed
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wind speeds, bids with piecewise linear costs, and including other types of uncertain renewable
energy sources.
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2. New Algorithms and Worst-Case Analysis for Adaptive Robust Unit Com-
mitment

2.1 Introduction

With the increasing penetration of renewable energy resources, power system operators face new
challenges in managing significant generation uncertainty in day-ahead and real-time markets. One
of the most critical operational problems facing such challenges is the unit commitment (UC) prob-
lem. Great attention has recently been drawn to design new optimization models and algorithms
for the UC problem that produce both high economic efficiency and system reliability under in-
creasing uncertainty.

In the current industry practice, the UC problem is modelled and solved as a large-scale deter-
ministic mixed-integer program (MIP). The commitment status of generating units are scheduled
to balance the net load forecasted for the next day. Renewable resources such as wind and solar
power are intrinsically stochastic and intermittent. As a traditional approach to deal with uncertain-
ties in load forecast and contingencies, system operators require additional generating resources,
called reserves, to be online or quickly available [14]. The system operator can also adjust the level
of reserves according to the system operating status.

In the recent work [6], we propose a two-stage adaptive robust optimization model and solu-
tion methods for the security-constrained unit commitment problem. Computational experiments
on the power system operated by the ISO New England demonstrate that the robust UC model can
significantly reduce operating costs and improve system reliability, comparing to the widely used
deterministic UC model with adjustable reserves. Related models have been studied in several pa-
pers, e.g. [17,43,53,55,56]. For a recent review, see [38]. A significant extension of the two-stage
robust model to a general multistage adaptive robust UC model is proposed and systematically
studied in [26]. New data-driven approaches for constructing uncertainty sets to model dynamic
relationships between uncertainties and decisions are proposed in [25] and [10].

The focus of this chapter is to provide deeper exploration on several important issues in the
modeling and solution methods of the two-stage robust UC and economic dispatch (ED) formu-
lation. In particular, Section 2.2 presents the robust UC model. Section 2.3 proposes a general
budget uncertainty model and compares exact and heuristic methods for solving the second-stage
problem. Section 2.4 explores the properties of the worst case scenarios identified by the robust
model. Section 2.5 introduces dynamic uncertainty sets and studies worst case scenarios of wind
power in a two-stage robust economic dispatch problem. Section 2.6 concludes the chapter.

2.2 Two-Stage Adaptive Robust Unit Commitment

The two-stage adaptive robust UC model is formulated as follows:

min
x∈X

{
c>x+ max

d∈D
min

y∈Y (x,d)
b>y

}
. (2.1)
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In this formulation, X is the feasible region for the unit commitment variables (xoit, x
+
it , x

−
it)i,t:

X =
{

(xo,x+,x−) ∈ {0, 1}3NgT :

xoit − xoi,t−1 = x+
it − x−it ∀ i ∈ Ng, t ∈ T , (2.2a)

t+UTi−1∑
τ=t

xoiτ ≥ UTix
+
it ∀ i ∈ Ng,

∀t ∈ [Li + 1 : T − UTi + 1], (2.2b)
t+DTi−1∑
τ=t

(1− xoiτ ) ≥ DTix
−
it ∀ i ∈ Ng,

∀t ∈ [Fi + 1 : T −DTi + 1], (2.2c)
T∑
τ=t

(xoiτ − x+
it) ≥ 0 ∀ i ∈ Ng,

∀t ∈ [T − UTi + 1 : T ], (2.2d)
T∑
τ=t

(1− xoiτ − x−it) ≥ 0 ∀ i ∈ Ng,

∀t ∈ [T −DTi + 2 : T ], (2.2e)
Fi∑
t=1

xoit = 0,

Li∑
t=1

xoit = Li ∀ i ∈ Ng
}
, (2.2f)

where xoit is the on/off commitment status of generator i at time t, x+
it is the start-up decision and

x−it is the shut-down decision. Constraint (2.2a) is the logic relationship between the x variables.
Constraints (2.2b)-(2.2e) are the minimum up and down time constraints, together with boundary
conditions (2.2f). Ng is the number of generators and T is the length of the horizon. See [31] for
details of the above UC formulation.

The set Y (x,d) in (2.1) defines the feasible region for the economic dispatch problem with
fixed commitment decision x and uncertain net load d.

Y (x,d) =
{

(p, q) : pminit xoit ≤ pit ≤ pmaxit xoit, ∀i, t, (2.3a)

pit − pi,t−1 ≥ −RDix
o
it − SDix

−
it , ∀i, t, (2.3b)

pit − pi,t−1 ≤ RUix
o
i,t−1 + SUix

+
it , ∀i, t, (2.3c)∑

i∈Ng

αplipit −
∑
j∈Nd

αdljdjt + qflt ≥ −f
max
l , ∀l, t, (2.3d)

∑
i∈Ng

αplipit −
∑
j∈Nd

αdljdjt − q
f
lt ≤ fmaxl , ∀l, t, (2.3e)

∑
i∈Ng

pit + q+
t − q−t =

∑
j∈Nd

djt, ∀ t, (2.3f)
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qflt, q
+
t , q

−
t ≥ 0, ∀l, t

}
, (2.3g)

where (2.3a) is the bound on production levels, (2.3b)-(2.3c) are ramping up and down constraints
(notice that we distinguish between the normal ramping rates RUi, RDi from the starting-up or
shutting-down ramping rates SUi, SDi), (2.3d)-(2.3e) are transmission line thermal constraints us-
ing DC power flows, and (2.3f) is the energy balance constraint for each hour. We have introduced
penalty variables qflt and q+

t , q
−
t in the transmission and energy balance constraints, respectively.

In this way, the second-stage max-min problem is guaranteed to be feasible and penalty cost is a
measure of infeasibility. This complete recourse property is also important when we reformulate
the second-stage problem as a MIP, as will be shown later.

The objective function is assumed to be linear or piecewise linear in the commitment and
dispatch variables. Linear cost function is used here for simple exposition. Penalty costs for
violations of transmission and energy balance constraints are also considered.

c>x =
∑
i∈Ng

∑
t∈T

(
coit x

o
it + c+

it x
+
it + c−itx

−
it

)
, (2.4a)

b>y =
∑

i∈Ng ,t∈T

Citpit +
∑
t∈T

(
C+q+

t + C−q−t
)

+
∑

l∈Nl,t∈T

Cfqflt. (2.4b)

The formulation (2.1) is a two-stage adaptive robust optimization model. The first-stage deci-
sion is the commitment decision x, which has to be made before the uncertain net load is realized.
The second-stage decision is the dispatch decision y, which fully adapts to the observed realization
of net load d. That is, the second-stage problem produces a solution y(d) that is optimal to each
specific realization of the uncertainty d.

This two-stage adaptive robust UC model has become a fundamental model in the robust UC
literature. It explicitly formulates the operational procedure of the unit commitment phase and the
real-time dispatch phase into two stages, and models uncertainty of net load using an uncertainty
set D. It turns out that solving this two-stage robust UC model heavily depends on the structure
of the uncertainty set. In the following, we first discuss solution algorithms to solve the two-stage
robust model, then we provide a new exact formulation for a general budget uncertainty set, and
compare the exact method and a heuristic for solving the second-stage problem.

2.3 Solution Algorithms: Exact vesus Heuristics

The robust UC model (2.1) can be rewritten as:

min
x∈X

c>x+Q(x), (2.5)
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where the second-stage cost function Q(x) is given by

Q(x) = max
d∈D

min
y∈Y (x,d)

b>y. (2.6)

From the structure of the dispatch problem (2.3), we can see that the feasible set Y (x,d) of the
inner minimization problem is a polyhedron in y of the following compact form:

By ≥ g +Ax+Cd.

In other words, the parameters x and d only appear in the right-hand side of the linear constraints
in (2.3). This is a key feature of (2.6) and allows it to be reformulated as a maximization problem.
In particular, if we take the dual of the inner minimization problem in (2.6), we have

Q(x) = max
d,π

π>Cd+ π>(g +Ax) (2.7)

s.t. d ∈ D
π ∈ P := {π>B = b>, π ≥ 0}.

Since the second-stage problem has complete recourse, the inner minimization is always feasible
and achieves its optimum, therefore (2.6) and (2.7) are equivalent by linear programming strong
duality. Now, problem (2.7) has a bilinear objective function in variables d and π; further, the
constraints on these two groups of variables are disjoint. We have the following two properties of
(2.7):

1. There exists an optimal solution (d∗,π∗) of (2.7), where d∗ and π∗ are an extreme point ofD
andP , respectively. Note that this extreme point property holds even ifD is a non-polyhedral
convex set, e.g. an ellipsoid.

2. Q(x) is a convex function of x. If the uncertainty set D is a polyhedron, then Q(x) is a
piecewise linear convex function.

With these properties at hand, we can design an algorithm to solve the overall problem (2.5),
which also involves evaluating Q(x) for any given x. The fact that Q(x) is a convex function
of x suggests that Q(x) can be approximated from below by linear functions, i.e., a two-level
algorithmic framework can be developed, where the first level solves the master problem of the
form

min
x∈X

c>x+ Q̂(x),

where Q̂(x) is a piecewise linear lower approximation of Q(x). The second level evaluates Q(x)
and updates the approximation Q̂(x). It turns out that, although Q(x) is a convex function, eval-
uating its value for any fixed x is a hard problem. This is indicated by the bilinear structure of
(2.7).
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2.3.1 Two-Level Algorithmic Framework

The two-level algorithm for solving the two-stage robust UC problem consists of writing the prob-
lem in the following extended form:

min
x∈X

c>x+Q(x)

= min
x,η

c>x+ η

s.t. x ∈ X
η ≥ max

d∈D
min

y∈Y (x,d)
b>y

= min
x,η

c>x+ η

s.t. x ∈ X
η ≥ min

y∈Y (x,d)
b>y ∀d ∈ D

= min
x,η

c>x+ η

s.t. x ∈ X
η ≥ min

y∈Y (x,dm)
b>y ∀m ∈M

= min
x,η,{ym}m∈M

c>x+ η (2.8a)

s.t. x ∈ X (2.8b)

η ≥ b>ym ∀m ∈M (2.8c)
ym ∈ Y (x,dm) ∀m ∈M, (2.8d)

where the third equality follows from the extreme point property discussed in the previous section,
and the fourth equality follows from the property of minimization. Here, {dm}m∈M is the set of
extreme points of D, which can be infinite or even uncountable, depending on whether D is a
polyhedron or not. The algorithm is convergent for the general case.

The last reformulation (2.8) suggests that the overall two-stage robust UC problem can be
solved by gradually generating extreme points dm and the associated constraints (2.8c)-(2.8d).
Therefore, the master problem (MP ) at iteration k contains a list of identified extreme points
M̂k ⊆M :

(MP ) min
x,η,{ym}m∈M̂k

c>x+ η

s.t. x ∈ X
η ≥ b>ym ∀m ∈ M̂k

ym ∈ Y (x,dm) ∀m ∈ M̂k.

The subproblem is to identify the worst-case demand scenario for the commitment solution gener-
ated by the master problem, denoted as xk. That is, the subproblem needs to evaluate Q(xk) and
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compare it with the solution ηk from the master problem. This overall two-level procedure, Algo-
rithm 2, has been independently proposed in several works including [6] for solving the robust UC
model, [1] for solving a defender-attacker model, and analyzed rigorously in [50].

Algorithm 2 Constraint and Column Generation Algorithm

1: Initialization: k = 0 and M̂0 = ∅
2: for k = 1, 2, 3... do
3: Solve (MP ) with M̂k. Denote solution as (xk, ηk).
4: Evaluate Q(xk) and denote solution as dk.
5: if Q(xk) > ηk then
6: Update M̂k+1 ← M̂k ∪ {dk}

k ← k + 1
Go to Step 3.

7: else
8: Terminate.
9: end if

10: end for

As we already mentioned, it is difficult to solve the min-max problem (2.6). In the following
section, we will develop an exact reformulation of (2.6) to a mixed-integer linear program, and
compare it with the simple heuristics of alternating direction method proposed in [25].

2.3.2 Exact method for solving the subproblem

After taking the dual of the dispatch problem min
y∈Y (x,d)

b>y, the second-stage problem becomes

max
d,π

∑
i∈Ng ,t∈T

[
pmaxit xoitπ

pmax
it − pminit xoitπ

pmin
it

+
(
RDix

o
it + SDix

−
it

)
πRDit +

(
RUix

o
i,t−1 + SUix

+
it

)
πRUit

]
+

∑
l∈Nl,t∈T

(
fmaxl +

∑
j∈Nd

αdlj djt

)
πf+
lt +

(
fmaxl −

∑
j∈Nd

αdlj djt

)
πf−lt

+
∑

t∈T ,j∈Nd

djtπ
bal
t (2.9a)

s.t. πpmaxit − πpminit + πRUit − πRUi,t+1 − πRDit + πRDi,t+1

+
∑
l∈Nl

αpli

(
πf+
lt − π

f−
lt

)
+ πbalt = Cit, ∀ i, t, (2.9b)

− C− ≤ πbalt ≤ C+, ∀ t ∈ T , (2.9c)

− πf−lt − π
f+
lt ≤ Cf , ∀ l ∈ Nl, t ∈ T , (2.9d)

πpmin,πpmax,πRD,πRU ,πf−,πf+ ≤ 0, (2.9e)
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d ∈ D, (2.9f)

where C+, C− are the penalty cost of violating energy balance constraints and Cf is the penalty
cost of violating transmission constraints.

Notice that the objective function involves bilinear terms of the form:∑
j∈Nd,t∈T

dtjη
t
j, (2.10)

where ηtj is defined as

ηtj = πbalt +
∑
l∈Nl

αdlj

(
πf+
lt − π

f−
lt

)
. (2.11)

To reformulate the bilinear term (2.10), we need to use special structures of the uncertainty set
D. Consider the following uncertainty set Dt at each time t:

Dt =

{
dt = (dt1, . . . , d

t
Nd

) :
∑
j∈Nd

|dtj − d
t

j|
d̂tj

≤ ∆,

dtj ∈ [d
t

j − d̂tj, d
t

j + d̂tj] ∀ j ∈ Nd

}
. (2.12)

This is the so-called budgeted uncertainty set, which is widely used in the robust optimization
literature. There are two types of exact reformulations. The first type uses the KKT conditions
of the bilinear problem, which is generally applicable to any polyhedral uncertainty sets [50].
However, the observed computation performance is quite slow [25]. The second one assumes the
budget parameter ∆ to be integer valued. In this case, the extreme points of Dt have the form of
d
t

j ± d̂tj . Then, the extreme points of Dt can be expressed with binary variables [19]. Bilinear
terms involving a binary variable and a continuous variable can be easily linearized with the big-M
method.

In this chapter, we generalize the second approach by allowing ∆ to be fractional. We have the
following result.

Proposition 1. For ∆ ≤ |Nd|, the set of extreme points of Dt is given by{
dt : ∃ut,ut,vt,vt s.t. (2.13a)

dtj = d
t

j + d̂tj (utj − utj) + (∆− b∆c) d̂tj (vtj − vtj) ∀ j ∈ Nd (2.13b)∑
j∈Nd

utj + utj = b∆c (2.13c)∑
j∈Nd

vtj + vtj = 1 (2.13d)
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utj + utj + vtj + vtj ≤ 1 ∀ j ∈ Nd (2.13e)

utj, u
t
j, v

t
j, v

t
j ∈ {0, 1} ∀ j ∈ Nd

}
. (2.13f)

Using this characterization of the extreme points of Dt, each bilinear term in (2.10) involves
products of utjη

t
j , u

t
jη
t
j , v

t
jη
t
j , v

t
jη
t
j , where ηtj is defined in (2.11). These bilinear terms can be

linearized. Introduce new continuous variables θ
t

j , θ
t
j , ρ

t
j , ρ

t
j
, we have the following linearized

terms:

−Mj u
t
j ≤ θ

t

j ≤Mj u
t
j, (2.14a)

−Mj (1− utj) ≤ ηtj − θ
t

j ≤Mj (1− utj), (2.14b)

−Mj u
t
j ≤ θtj ≤Mj u

t
j, (2.14c)

−Mj (1− utj) ≤ ηtj − θtj ≤Mj (1− utj), (2.14d)

where (2.14a)-(2.14b) are the linearization of utjη
t
j , (2.14c)-(2.14d) are the linearization of utjη

t
j ,

and similarly we can linearize vtjη
t
j and vtjη

t
j . Then, (2.10) is reformulated as∑

j∈Nd,t∈T

[
d
t

jη
t
j + d̂tj(θ

t

j − θtj) + (∆− b∆c) d̂tj (ρtj − ρtj)
]
.

Here Mj is a positive constant big enough to bound the dual variables as in (2.14). It is impor-
tant to choose a value of Mj as tight as possible. From (2.11), (2.9c), (2.9d) and (2.9e) we have
that

− C− − Cf
∑
l∈Nl

|αdlj| ≤ ηtj ≤ C+ + Cf
∑
l∈Nl

|αdlj| (2.15)

must hold. Hence, we can take Mj = max {C−, C+} + Cf
∑

l∈Nl
|αdlj| to ensure the formulation

is correct.

Using the above linearization, the second-stage problem is equivalent to a mixed-integer linear
program. Although solving this MIP can obtain the global optimum, its solution time is usually
quite long. In the following, we introduce a simple heuristics that can obtain a feasible solution
very quickly. Then we will compare the two methods for the solution times and solution quality.

2.3.3 Simple Heuristics for Solving the Subproblem

An outer approximation algorithm is proposed in [6]. Here, we apply another simple heuristic to
solve the disjoint bilinear program, namely the alternating direction (AD) method. It optimizes
over d with π fixed at a given value, then optimizes over π with d fixed at the optimal solution
obtained from the previous iteration, and alternates. Use the compact representation (2.7), the AD
algorithm is outlined below.

The heuristic algorithm in general only identifies a KKT point of the bilinear program. De-
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Algorithm 3 Alternating Direction Algorithm
1: Initialization: t = 0 and d0 ∈ D
2: repeat
3: Solve πt+1 = arg maxπ∈P π

>Cdt + π>(g +Ax)
4: Solve dt+1 = arg maxd∈D π

>
t+1Cd

5: t← t+ 1
6: until convergence criterion is met.

note the objective value obtained by the AD algorithm as Q̂(xk) ≤ Q(xk). It is possible that
Q̂(xk) ≤ ηk < Q(xk). In this case, the heuristic method would stop the upper level algorithm
and potentially find a suboptimal commitment solution. The above AD algorithm is proposed as
a first step heuristics in a cutting plane algorithm for solving general bilinear programs to global
optimality [21]. However, the cutting plane algorithm again has the same complexity as the exact
method.

2.3.4 Computational Experiments

In this section, we study the performance of the exact method using (2.13) and (2.14) and the
heuristic method using Algorithm 3. In particular, we want to empirically show how well the
exact method performs, how good or bad the heuristics is in solving the second-stage problem,
how much it can influence the final solution, and what is the best way to solve the second-stage
problem combining the two methods.

We test on the IEEE 30-bus system with nominal demand as is given in [45, 58]. There are 6
generators and 20 loads in the system. The penalty costs C+, C−, Cf are set to be $5000/MW. All
the codes are implemented in Python and call CPLEX 12.5. Computation is conducted on a laptop
with 2.1GHz CPU and 4GB RAM.

Choosing big-M

The value ofMj gives the upper and lower bounds on the dual variable ηtj in (2.9). Since the primal
polytope of the dispatch problem (2.3) is bounded, by well-known results from LP duality, the dual
polytope defined by (2.9b)-(2.9e) is unbounded. However, since the primal problem always obtains
an optimal solution by adding penalty variables, the dual optimal solution is always bounded. Thus,
there exists a finite Mj , and a tight value of Mj helps speed up the algorithm. Unfortunately, it is
not an easy task to pinpoint a tight value for Mj .

For the 30-bus system, we test different values of Mj at 100, 1000, and 50, 000. With Mj =
100, the exact MIP can be solved to optimality under 1 minute for different levels of budget varying
from ∆ = 2 to 18. However, a closer look at the solution reveals that some dual variables hit the
upper or lower bounds, which implies Mj = 100 is not big enough to bound the optimal dual
solution. With Mj = 1000, the MIP gap cannot be closed below 3% after 10 minutes for ∆ ≤ 10;
furthermore, some dual variables still hit the upper and lower bounds. Therefore, Mj = 1000 is
not large enough either, and it already significant increases the computation time. The bounds on
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ηtj given by (2.15) amount to 44, 950. Therefore, setting Mj = 50, 000 guarantees a valid big-M
value. This value might be an over-estimate for Mj , however, it is the only guarantee we have,
and the results for Mj = 1000 suggest that a smaller Mj may not save much computation time
anyway. This tuning procedure is typical for a MIP model with big-M parameters. It is non-trivial
to find a tight bound and usually even a tight M value is already large enough to slow down the
convergence of the branch-and-bound procedure.

Computation times of solving the second-stage problem

To compare how fast the exact method and the heuristics can solve the second-stage problem, we
conduct the following first set of experiments: For budget ∆ ∈ [2, 18], we solve the two-stage
robust UC using Algorithm 1, where the second-stage problem is solved by the exact method, and
then again solved by the heuristics under the same commitment solution.

We observe that CPLEX takes a long time to improve lower bounds when solving the second-
stage exact MIP formulation. After 10 min, the optimality gaps are still not much improved from
those obtained after 1 min. Therefore, in all the experiments, we terminate the second-stage MIP
after 1 min. In comparison, the AD algorithm solving the same set of second-stage problems
converges on average within 1.52 seconds.

Solution quality

Naturally, the next question is how good the heuristic solutions are. Table 2.1 shows the objective
values obtained from the exact and heuristic methods for solving the same second-stage problem
at each iteration of the two-level algorithm.

For example, with ∆ = 2, the master problem is solved in 3 iterations by Algorithm 1 with
the exact method, i.e., the second-stage problem is also solved 3 times. The objective values
obtained by the exact method for these three second-stage problems are [229830, 88633, 88636];
the heuristic AD algorithm obtains [214543, 88636, 88636] for the same set of problems. From
the table we can see that the Heuristics obtains the same or better second-stage costs toward the
end of the iterations. But in the beginning one or two iterations, the exact method obtains a better
second-stage cost (recall the second-stage problem is maximizing.) This property is also observed
for other values of ∆, which suggests that the heuristics works well when the commitment solution
is close to optimal, and may get stuck at a bad local solution when the commitment solution is far
from optimal, which is the case in the beginning of the master problem iterations.

We conduct the second set of experiments, where the second-stage problem is solved using the
Heuristics alone. That is, the two-stage problem is solved by Algorithm 1 and Algorithm 2. The
extreme points generated by Algorithm 2 can be different from the ones generated by the exact
method. Therefore, the commitment solutions obtained would also be different. We observe that
the second-stage cost of the final commitment solution obtained using Algorithm 1 with Heuristics
is on average 2% lower than that obtained by Algorithm 1 with the exact method. This shows that
the solution obtained from Heuristics is not globally optimal, as is expected. However, the gap is
quite small.
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Table 2.1: Quality of the Second-Stage Solution

∆ Exact Method Heuristics
2 [229830, 88633, 88636] [214543, 88636, 88636]
4 [252040, 90672, 90694, 90707] [225403, 90707, 90707, 90707]
6 [264391, 101064, 91835, 91851, 91853] [231442, 91818, 91863, 91863]
8 [274884, 111671, 92803] [236582, 92759, 92804]

10 [284488, 121382, 93697] [241288, 93690, 93697]
12 [292336, 140564, 94450, 94422] [245136, 94398, 94457, 94422]
14 [297630, 148011, 94939, 94904] [247735, 94874, 94939, 94904]
16 [301445, 155242, 95308, 95273, 95273] [249608, 95263, 95308, 95273]
18 [304633, 161472, 95595, 95560] [251174, 95550, 95595, 95560]

Hybrid method

Combining the results obtained from the first and second sets of experiments, especially the obser-
vation that the exact method does well in the initial iterations and the Heuristics can do better in
the later iterations, we propose a hybrid method which uses the exact method in the beginning few
iterations and then switches to the Heuristics. We conduct the third set of experiments to imple-
ment this hybrid approach, where the second-stage problem is solved by the exact methods in the
first two iterations of the master problem, then is solved by the Heuristics. For all 9 test cases of
∆ = 2, ..., 18, the hybrid approach converges after 1 iteration of Heuristics, and reaches the same
solution as obtained using the exact method.

Summary

In this section, we have conducted a detailed study on the performance of the exact method and the
Heuristics. The experiments suggest that it is important to obtain good commitment solutions in the
beginning iterations of Algorithm 1. Here, it is worth using the exact method to solve the second-
stage problem. As the commitment solution is approaching the optimal, it is more economical and
does not seem to sacrifice performance to use the Heuristics.

2.4 Worst Case Scenario Analysis

Solving the two-stage robust UC model (2.1) not only produces the robust UC solution, but also
identifies the worst-case net load scenario for the UC solution. These worst case scenarios carry
useful information for system security analysis. In this section, we study the worst-case uncertainty
scenarios for the budget uncertainty set (2.12) for different budget levels. The experiments are
conducted on the same IEEE 30-bus system, where all of the 20 loads are uncertain with 10%

variation, i.e. d̂tj = 0.1d
t

j . Table 2.2 summarizes the nominal load levels at the peak hour and load
distribution factors for the largest 6 loads.

From the previous analysis, we know that the worst-case net load is an extreme point of the
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Table 2.2: Nominal Load Levels and Distribution Factors

Bus i 8 7 2 21 12 30
dj (MW) 34.88 26.51 25.23 20.35 13.02 12.33

Factors (%) 15.86 12.05 11.47 9.25 5.92 5.60

uncertainty setD. The question is which extreme point of the uncertainty set will be the worst case.
Intuitively, we may expect the largest net load in the uncertainty set to be the worst case, because
product cost increases with net load. This is indeed the case when the transmission network is not
congested and the ramping limits are not tight. However, if the transmission network is congested,
the worst case net load may not be the largest net load any more. In the following, we analyze both
cases.

2.4.1 Transmission Network Not Congested

In this case, we have the following characterization of the worst case net load.

Proposition 2. Consider a single period dispatch problem. Rank the loads from the largest to the
smallest according to their nominal values: d(1) ≥ · · · ≥ d(n). If the transmission network is not
congested at the worst case net load d∗ and there are no ramping limits, then d∗ has the following
form:

d∗(j) =


d(j) + d̂(j), ∀j = 1, . . . , b∆c,
d(j) + (∆− b∆c)d̂(j), j = 1 + b∆c,
d(j), ∀j > 1 + b∆c.

Essentially, when there is no transmission congestion and ramping limits, the worst case sce-
nario is the net load whose total deviation from the nominal values exactly reaches the budget, and
make the loads with high nominal values deviate to the upper bounds.

For the IEEE 30-bus system, the worst case scenario for ∆ = 6 is the one where the six loads
with the largest nominal values (i.e., the six loads shown in Table 2.2) reach the upper bounds
d
t

j + d̂tj , and all other loads stay at the nominal value.

2.4.2 Transmission Network Congested

This is the more interesting case. Here, the worst case net load may not always be the highest load
scenario. To demonstrate, we lower each tranmission limit in the IEEE 30-bus system by half its
original capacity, and increase each nominal load by 30%. The transmission network is congested
in this case.

Table 2.3 shows the worst case net load scenario for the budget uncertainty set with ∆ = 12.
Each column denotes an hour, from hour 1 to 12. Each row is the bus number of a load. A 1 in a
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cell means the load at that bus and hour reaches the upper limit, i.e. dtj = d
t

j + d̂tj; a −1 means it
reaches the lower limit, i.e. dtj = d

t

j − d̂tj; a 0 means the load stays at the nominal value.

For the budget level ∆ = 12, the worst case scenario at each hour has 12 loads deviating to
upper or lower bounds, i.e., the total number of 1 and −1 in a column is 12. The table clearly
shows that at several hours, it is the lower level demand that causes the worst case dispatch cost.
The reason is that in these hours the lower level demand at certain buses can cause more severe
transmission congestion than a demand at the upper bound.

Table 2.3: Worst Case Load Scenario

i\t 1 2 3 4 5 6 7 8 9 10 11 12
2 1 1 −1 1 −1 −1 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 −1 1 −1 −1 0 1 0 1 1 1
7 1 1 −1 1 −1 −1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 0 1 1 1 1 1 1 1 1
12 1 0 1 1 1 1 0 1 1 1 1 1
14 0 0 0 1 0 0 0 0 0 0 0 0
15 1 −1 1 1 1 1 0 0 0 1 1 1
16 0 0 0 0 1 1 0 0 0 0 0 0
17 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 0 0 0 0 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1
20 0 1 1 0 0 0 1 1 1 0 0 0
21 1 1 1 1 1 1 1 1 1 1 1 1
23 0 0 0 0 0 0 0 0 0 0 0 0
24 0 1 0 1 0 0 1 0 1 0 0 0
26 1 1 1 1 1 1 1 1 1 1 1 1
29 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 −1 1 1 1 1 1

2.5 Dynamic Uncertainty Sets

The budget uncertainty set (2.12) is widely used in the robust optimization literature. In fact,
most of the recent works on robust UC use this type of uncertainty sets, where the uncertainty is
assumed to lie in a hyper-rectangle defined by the nominal value and the intervals of variation.
The budget constraint restricts the total variation of uncertainty sources. A main drawback of the
budget uncertainty set is that it does not explicitly model uncertainty correlations. For this reason,
we call these static uncertainty sets.

In reality, uncertainties such as wind speeds and the resulting available wind power in neigh-
boring wind farms very often exhibit strong temporal and spatial correlations. It is important for a
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robust optimization model to consider these correlations in the uncertainty sets. In the following,
we discuss a new type of uncertainty sets, we call dynamic uncertainty sets, which can model the
dynamic relationships between uncertain parameters, and also the interactions between uncertain
parameters and decisions. We show the general model first, then show a specific construction for
modeling temporal and spatial correlations of available power of wind farms [25]. Another type of
dynamic uncertainty set is proposed in [10], which models the dynamics between uncertainty and
decisions for demand response resource.

2.5.1 General Definition

Dynamic uncertainty sets can be generally defined as the following:

Dt(d[t−1]) =
{
dt : ∃u s.t. f(dt,d[t−1],u) ≤ 0

}
(2.16)

where d[t−1] = (d1,d2, . . . ,dt−1), and f is a function that represents the dynamic relationships
between dt, d[t−1], and the auxilliary variable u.

The key idea here is that the function f captures the correlations between uncertain resources
at different times and locations. A simple example is a dynamic uncertain interval:

Dt(d[t−1]) =
[
f(d[t−1], f(d[t−1])

]
,

where the interval’s upper and lower bounds at time t depend on the realizations of uncertainty in
the previous periods.

2.5.2 Modeling Temporal and Spatial Correlations for Wind

In the recent paper [25], the authors propose a construction of dynamic uncertainty sets for mod-
eling wind power’s temporal and spatial correlations between different wind farms.

First, we introduce the dynamic uncertainty set for wind speed. Denote the wind speed vector
of multiple wind farms at time t as rt = (r1t, . . . , rNwt), where rit is the wind speed at wind farm
i and time t and Nw is the number of adjacent wind farms. Define the dynamic uncertainty set for
rt as:

Rt(r[t−L:t−1]) =
{
rt : ∃ r̃[t−L:t], ut s.t.

rτ = gτ + r̃τ ∀τ = t− L, . . . , t (2.17a)

r̃t =
L∑
s=1

At,sr̃t−s +Btut (2.17b)∑
i∈Nw

|uit| ≤ ∆t (2.17c)

|uit| ≤ Γt ∀i ∈ Nw (2.17d)

rt ≥ 0
}
, (2.17e)
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where vectors rt−L, . . . , rt−1 are the realizations of wind speeds in periods t − L, . . . , t − 1. Nw

denote the set of wind farms. Eq. (2.17a) decomposes wind speed vector rτ as the sum of a
seasonal pattern gτ such as periodicity of wind speeds over days, which is pre-estimated from the
wind data. The residual component r̃τ represents the fluctuation of wind speeds from the seasonal
pattern gτ .

Eq. (2.17b) is the key equation that represents a linear dynamic relationship involving the
residual r̃t at time t, residuals realized in earlier periods t−L to t− 1, and an error term ut. Here,
matricesAt,s’s andBt are estimated from a vector autoregressive time series model with time lag
L. In particular, At,s’s capture the temporal correlation between rt and rt−1, . . . , rr−L, and Bt

specifically captures the spatial relationship of wind speeds at adjacent wind farms at time t. In the
time series model,Bt characterizes the covariance of the estimation error.

Then, the variable ut is introduced to control the amount of error by a budget uncertainty set
defined in Eq. (2.17c)-(2.17d). The meaning of Γt is to set how many “standard deviations” we
allow the errors to have. The budget constraint (2.17d) controls the total amount of deviations
of the wind speed estimation errors across wind farms. Notice here, the budget uncertainty set is
slightly different from the one used in [25]. In particular, we introduce two budget parameters ∆t

and Γt to control the range of uit and the total deviation of the |uit| separately. This gives more
freedom to the uncertainty sets.

It is important to also notice that we need Eq. (2.17e) to avoid negative wind speeds. This
constraint further restricts the available range of uit within the budget uncertainty set. In other
words, the projection of the dynamic uncertainty set Rt onto the u variables is different from the
budget uncertainty set Eq. (2.17c)-(2.17d).

Worst Case Wind Scenario

Now, we can ask the same questions as for the budget uncertainty sets, namely, in a robust model
using the dynamic uncertainty set, what woud the worst case scenarios be? To study this problem,
we apply the dynamic uncertainty set Eq. (2.17) to a two-stage robust economic dispatch (ED)
model proposed in [25]. The details of the model can be found there. Here we only give a brief
overview of the key components of the model.

The two-stage robust ED model has the same generic structure of a two-stage robust optimiza-
tion model as shown in Eq. (2.1). However, the specific definition of the first- and second-stage
decisions are different from the two-stage robust UC we discussed earlier in this chapter. In partic-
ular, the first-stage decision of the robust ED model is the dispatch decision of the current decision
period. This dispatch decision is to be implemented right now. The second-stage decision is the
dispatch decisions in the future periods. The two-stage robust ED model can be viewed as a gen-
eralization of deterministic look-ahead dispatch models (e.g. see [46]).

We build a rolling horizon simulation engine to mimic the real-time dispatch operation. In
this engine, the robust ED is solved every 10 min with a look-ahead horizon of 90 min. The
rolling horizon simulation runs over a 35-day period. The dynamic uncertainty sets At,s’s and
Bt are estimated from real-world wind data collected from [9] and updated after every day in the
simulation using the newly available data.
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Figure 2.1: Available Wind and Worst Case Wind Scenarios for ∆ = 0.5 and ∆ = 1.

We test on the IEEE 14-bus system with 4 wind farms and 11 loads. We assume the load
forecast is accurate so as to treat the wind uncertainty alone. The wind power is dispatchable in the
robust ED model, i.e., wind farm i’s production pwi,t is a decision variable and satisfies pwi,t ≤ pwi,t,
where pwi,t is the available wind power calculated from wind speed by the power curve of the
wind turbines. And pwi,t is the uncertainty in the robust dispatch model, whose uncertainty set is
constructed through the uncertainty set of wind speeds (2.17).

At each time t, the robust ED model has the observed wind speeds at time t as the input and
generates a worst-case available wind power scenario for all the 4 wind farms during the periods
in the look-ahead horizon (in our test, 8 periods ahead). We can point out several interesting
properties of the worst-case available wind power scenarios identified by the two-stage robust ED
model.

1. Since the wind power can be curtailed in the ED model, high wind scenarios can always
be handled by curtailment without additional cost, therefore, the worst case available wind
scenario will be the low-wind situaton.

2. If we look at the total available wind power summed over all the wind farms, the total wind
power of the worst case scenario in time t + 1 is always lower than that at time t, and so
on for the next periods in the look-ahead horizon. That is, the worst-case wind scenarios
correspond to an overall wind drop from the previous periods.

3. With a more careful study, we can see that the worst-case wind scenario of a period is typ-
ically given by the largest possible wind drop from the previous period allowed by the dy-
namic uncertainty set. This exactly shows the desired property of the dynamic uncertainty set
that the temporal and spatial correlations of the wind speeds consistently restrict the range of
wind power drop. When there is transmission congestion, the picture is more complicated.
Here, the worst-case wind scenario exploits the congested network and may not correspond
to the largest drop in total wind.

4. The worst-case wind power of an individual wind farm at a period may not be always a drop
from the previous period, although the total wind power of the worst case drops. In other
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words, due to the spatial correlation between wind farms, it is possible that some increase of
wind power from previous periods can be more costly for dispatch.

Figure 2.1 plots observed and worst-case wind scenarios over 70 periods with 10 min interval,
i.e., about 12 hours in total time. In particular, each blue dot is the available wind power observed
at time t. Each red and green dot is the total wind power of the worst-case wind scenario for
time t + 1 obtained from solving the robust ED at time t. The red dots are the results of dynamic
uncertainty sets with budget 0.5, whereas the green dots are for budget 1. The following are some
interesting observations.

1. The red and green curves in general lie below the blue curve. This demonstrates that the
worst-case wind scenarios correspond to wind drop events. The red and green curves ba-
sically provide a lower limit on the total available wind power above which the system is
guaranteed to operate safely.

2. If we look carefully, we can see sometimes the red curve crosses with and go above the blue
curve. At these points, the realized wind is even lower than the worst-case wind identified
at the previous period. This could happen because the dynamic uncertainty set only allows a
certain amount deviation from the forecast wind, controlled by the budget parameters Γt and
∆t. If we want to reduce such “surprise” events of realized wind going below the predicted
worst case, we can increase the budget. The green curve is obtained from a higher budget,
and it does move the green curve further down below the red curve, which makes the green
curve cross with the blue curve much less often. This shows the system operating under the
green curve is more conservative and secure.

2.6 Conclusions

In this chapter, we explore several important questions on the robust optimization approach for
the UC and ED problems that have not been addressed extensively in the existing literature. This
includes the question of how to efficiently solve the second-stage problem in the robust UC model,
which is a source of significant computational challenge for fully solving these adaptive robust
optimization models. We also discuss with examples the properties of the worst case net load
scenarios produced by the budget and dynamic uncertainty sets. Many interesting questions are
still open, such as solving the multistage robust UC models, designing new dynamic uncertainty
sets for solar power and demand response resources, and applying the adaptive robust optimization
framework to medium and long term power system planning.
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1. Introduction

The increasing penetration of variable renewable generation in electrical grids worldwide poses
challenges to power system operators [3–5]. The associated increase in uncertainty and variability
will impact many aspects of power systems, from planning to operations. In order to maintain
system reliability under increasing penetration of renewables more reserve capacity will be needed
[6,7]. Moreover, such reserves should be flexible in order to compensate for the variability of wind
and thus avoid ramp insufficiency [8]. The lack of rampable capacity in a system could lead to
curtailment of renewables. This could be a concern when integrating large amounts of variable
renewables such as wind and solar. Thus, recently there has been an increased focus on the topic
of flexibility in power systems [9].

Research on this topic has been focused on how to define, quantify and procure flexibility
for maintaining power system reliability. Menemenlis et al. [10] noted that the notion of flexibility
relates to and should be defined within a specific problem formulation, rather than a single general-
purpose measure. It uses a flexibility index based upon process control literature and applies it to
the selection of level of balancing reserves for maintaining power system reliability under wind
generation integration scenario. The North American Electric Reliability Corporation (NERC)
has emphasized the need for incorporating flexibility metrics in planning studies to accommodate
a greater amount of variable generation in power systems [11]. Lannoye et al. [12] proposed
a flexibility metric called insufficient ramping resource expectation (IRRE) for use in long-term
planning. It argues that this metric should be included in planning methodology for generator
capacity expansion in systems with high penetration of variable generation. Ma et al. [13] proposed
an offline index to estimate the technical ability of both individual generators and a portfolio of
generating units to provide flexibility. A unit construction and commitment algorithm is presented
to consider both investment costs and operational costs in making the optimal generation capacity
expansion decision. Ulbig and Andersson [14] characterized the operational flexibility of a power
system using the ramp-rate, power capacity and energy capacity. These three metrics, which are
related through integration and differentiation operations in time, can be used to determine the
amount of renewables that can be integrated into a given system through extensive simulations.
However, transmission constraints are not considered in this assessment.

While researchers have focused on designing and procuring flexibility at the planning stage
[12], there exists an equally if not more pressing need for flexibility at the operational stage [15].
From the short-term power system operations perspective, the limited controllability and high vari-
ability of renewable power output is a major issue. Net load, which is the difference between elec-
trical load and renewable power, is more variable than electrical load and this variability increases
as the penetration of renewables in a system increases. Also, net load has steeper ramps, shorter
peaks, and lower turn-downs than load by itself [16]. Several examples have been noted of severe
net load ramp events within a one hour timeframe [11].

Failure to meet such steep net load ramp events would cause both physical and market oper-
ations volatilities. Several system operators are facing the issue of temporary price spikes in the
real-time economic dispatch market [17]. These price spikes are mainly caused by a shortage of
system ramp capability and are indicative of a need for greater flexibility in dispatch. Many tech-
nological solutions have been proposed to mitigate the lack of ramp flexibility in power systems
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with high penetration of renewables. Such solutions include energy storage, demand response,
and fast ramping units. While these technologies would provide a portfolio of choices to the sys-
tem operator, there is an urgent need to design a market mechanism so that different technologies
can compete and be valued for their contribution to system flexibility. Some system operators are
currently investigating new market products (based on deterministic approach) in order to create
additional flexibility in the dispatch, so as to reduce the frequency of ramp shortages and price
spikes [18, 19]. However, the deterministic method requires exogenous reserves, leading to a rel-
atively inefficient model. Wang and Hobbs [20] suggest a stochastic approach with endogenously
obtained reserves. Papavasiliou and Oren [21] present a day-ahead stochastic unit commitment
model and a deterministic economic dispatch model to address the ramping issue due to high wind
penetration.

The traditional operation of the grid has focused on controlling generation to follow the stochas-
tic load. The challenge of integrating stochastic renewable generation motivates us to consider
partially controlling the load to match the generation. With the integration of advanced commu-
nication and control technologies, smart grid operation will allow the participation of loads as
resources in energy balancing operations [22]. The energy consumption of individual users can be
managed using either direct load control or incentive-based schemes, in order to provide demand
response (DR). Recent research has focused on the impacts and the benefits of demand response
or deferrable demand. Jeon et al. [23] investigates the cost savings from deferrable demand by
shifting demand to less expensive periods and providing ramping services to mitigate variability
due to wind. Sioshansi and Short [24] uses a detailed unit commitment model to assess the po-
tential of real-time pricing based demand response in managing the increasing integration of wind
generation in the grid. In [25] a stochastic security-constrained unit commitment model is con-
sidered in which demand response is used as reserve. In [26] the centralized control of deferrable
demand by system operator is compared to the decentralized control by aggregators. It shows that
the decentralized approach yields benefits that are close to the centralized approach. Varaiya et
al. [27] proposed a new operating paradigm called risk-limiting dispatch for the future smart grid.
Risk-limiting dispatch uses smart grid information and control technologies to manage the risk of
uncertainty from stochastic inputs such as renewable generation and demand response.

There is a need for a ramp centric metric for inter-temporal flexibility assessment in the real-
time operations time scale, which can be used by system operators for situational awareness. This
report is aimed at creating a rigorous yet intuitive flexibility metric as well as designing a mar-
ket construct for the procurement of such inter-temporal operational flexibility. Inspired by the
commonly used reliability metric, loss of load probability (LOLP), we propose the lack of ramp
probability (LORP) as an operational metric for flexibility in real-time economic dispatch [1]. It
determines the level of risk of ramp capacity shortage associated with a dispatch decision. The
LORP metric can also be used independently of the proposed robust dispatch model, to assess the
system flexibility under existing and other proposed real-time economic dispatch models, such as
conventional dispatch, look-ahead dispatch and dispatch with ramp capability constraints.

Also there is a need for a methodology to predict and quantify DR factoring the uncertainty of
response. In order to determine the value of DR we need to develop models for the aggregated at-
tributes of flexible demand resources. A fast responding DR resource that can reduce consumption
and thus aid the system energy balancing, should receive an incentive payment based on the quality
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as well as impact of its contribution. Therefore, we need an approach to assess the contribution of
the DR resources.

In this report, a multi-period robust optimization based framework is proposed as a market con-
struct for the procurement of flexibility from various flexible resources while observing inter-zonal
transmission constraints. Researchers have proposed the application of the robust optimization ap-
proach to the unit commitment problem in power systems [28–30]. Robust optimization has certain
useful features when compared to the stochastic optimization approach which is used in [20, 21].
The stochastic model solves for the expected value by considering a large number of scenarios,
leading to a large problem size. Through the use of uncertainty sets rather than a large number of
scenarios, the computational effort is reduced in the robust optimization approach. Also, detailed
information on the distribution of the uncertain variable is not required. Further, tractability can be
maintained through an appropriate choice of the uncertainty set [31]. The robust solution is con-
servative since the worst case of uncertainty is considered, but this is acceptable in power systems
where usually there is a high cost associated with constraint violation. For instance, in real-time
electricity markets where Independent System Operators (ISOs) use shortage pricing to incentivize
resources to contribute to maintaining the system energy balance. Wang and Hobbs [20] disregard
transmission constraints in their work, whereas we consider them. Papavasiliou and Oren [21]
consider the commitment and dispatch problems in the day-ahead timeframe. But a lot of ramping
challenges are within the timeframe of about an hour, due to uncertainty and variability in renew-
ables. The forecast error on day-ahead horizon for wind production is quite significant. Therefore,
it is more appropriate to deal with this issue in real-time economic dispatch than in unit commit-
ment.

We propose a two-step robust economic dispatch approach that considers inter-zonal tie-line
flows as well as uncertainty in zonal net load when obtaining the dispatch solution. This allows
for the deliverability of procured ramp capability between operating zones. The two-step dispatch
method combines the idea of procuring ramp capability on a zonal basis with the economic dispatch
on a nodal basis. Currently, in real-time markets system operators procure reserves on a zonal basis.
Thus the proposed approach fits well into the current operating procedure of system operators. By
using a zonal aggregation in the first step, the two-step approach addresses the challenge of scaling
the robust optimization model. Further, the dispatch solution in the proposed approach has lower
generator dispatch costs when compared to a single-step nodal robust approach. Our approach
allows for dispatch decisions to be made based on updated forecast information through a receding
horizon optimization model.

As part of this report we propose an approach that addresses the question of how to procure
flexibility from price-responsive DR resources in real-time operations. This approach fits into
the current real-time economic dispatch and locational marginal pricing framework. We extend
the previous work on the modeling of DR [32], in order to develop a transfer function model
of aggregated DR resources. Also we utilize a probability based approach to characterize the
contribution of DR to system ramping capability. The flexibility assessment is done based on
the proposed Lack of Ramp Probability (LORP) metric [1]. Given uncertainty and variability
in renewable generation, the ISO needs to assess the capability of DR resources to contribute to
system ramping. Thus our goal is to analyze the participation of DR in energy balancing (and in
the future, also potentially ancillary services) in real-time electricity markets.

3



The rest of this report is organized as follows. Chapter 2 presents an overview of the proposed
flexibility metric, its detailed formulation and the robust economic dispatch market construct. Also
a case study is presented on a modified 73 bus IEEE Reliability Test System which illustrates both
the proposed metric as well as the robust economic dispatch approach. Chapter 3 describes the
proposed framework for enabling DR resources to provide flexibility, a methodology for charac-
terizing the net load, the computation of the proposed lack of ramp probability metric and the
transfer function model for DR. Also, in Chapter 3 we present a simulation case study on a mod-
ified IEEE 24-bus Reliability Test System. Concluding remarks and future work is in Chapter
4.
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2. Metric and Market Construct of Inter-temporal Flexibility in Time-coupled
Economic Dispatch

In this chapter an operational flexibility metric called lack of ramp probability (LORP) is proposed
for the real-time economic dispatch. Further, a two-step robust optimization based framework is
introduced to simultaneously guarantee LORP flexibility metric and ensure ramp deliverability in
a multi-zonal setting. The proposed framework is illustrated on a 3-zone modified IEEE 73 bus
(RTS-96) test system. The results show that the proposed framework is better at managing system
ramp capability as compared to existing and industry proposed dispatch models.

Table 2.1: Nomenclature

Indices:
n Index of all buses in the network.
z Index of all zones in the network.
i Index of all dispatchable generators.
j Index of all loads.
k Index of all inter-zonal tie-lines.
m Index of all intra-zonal transmission lines.
t Index of real time dispatch (5 min. intervals).

Sets:
N Set of buses.
Z Set of zones.

I ⊂ N Set of generators.
J ⊂ N Set of loads.

Iz Set of dispatchable generators in zone z.
Jz Set of loads in zone z.
M Set of intra-zonal transmission lines.

Random Variables:
P̃l

j [t] Net load of load j.
u j Net load uncertainty of load j.

P̃l
z [t] Net load of zone z.
uz Net load uncertainty of zone z.

Inputs:
P̂l

j [t] Net load forecast of load j at time t.
Functions:
Cg

i () Cost function of generator i.
Fk[t] Flow in tie-line k at the time t.
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Table 2.2: Nomenclature (continued)

Decision Variables:
Pg

i [t] Dispatched output of generator i at time t.
Parameters and Constants:

T No. of intervals in real-time dispatch horizon.
Pmax

i Maximum output of generator i. (MW)
Pmin

i Minimum output of generator i. (MW)
Ri One interval (5 min.) ramp rate of generator i. (MW)

RCz Ramp capability (5 min.) for zone z. (MW)
Fmax

k Flow limit for tie-line k. (MW)
Fmax

m Flow limit for transmission line m. (MW)
Uz Uncertainty set for net load in zone z.
∆Pl

z Maximum deviation of net load in zone z from the point forecast value.
(MW)

σz Standard deviation of net load for zone z.
αz Constant associated with confidence level in net load forecast for zone z.

Hred
k Row k of the shift factor matrix for equivalent reduced system.

Hm Row m of the shift factor matrix for original system.
S Matrix that sums inter-zonal flows.

2.1 Overview of LORP

In power systems operating reserves are used to maintain reliable system operation despite unpre-
dicted events ranging from generator outages to unpredicted variations in load. Operating reserves
are divided into different categories based on their usage and technical requirements [33]. Under
current industry practice, operating reserves are calculated on a day-ahead basis. Contingency
reserves are used in case of events such as outages of generation or transmission lines. Regu-
lation reserves on the other hand deal with deviations from schedules within a dispatch period.
Traditionally system operators have used deterministic methods for determining operating reserve
requirements. For power systems with significant penetration of renewables, probabilistic methods
of calculating the amount of reserves are being favored [7].

Loss of load probability (LOLP) is often used as a reliability metric for generation adequacy.
It is the probability that the combination of available generation and reserves will fall short of the
system demand. Standard metrics such as the loss of load expectation (LOLE) and the expected
energy not served (EENS) are used in planning studies by the power industry [34]. A system
may have adequate generation capacity to meet the total demand, but may be unable to match
the change in net load due to inadequate ramping capability of available generators. Moreover,
the time frame and triggering condition associated with the deployment of contingency reserves
does not cover unpredicted changes in net load that occur due to variability of renewables in the
real-time dispatch horizon. Thus, the requirement of adequate system-wide ramp capability from
controllable generators in the system falls into a separate category from contingency reserves. In
the future as the penetration of asynchronous resources increases, in addition to ramping capability,
systems may require new Ancillary Services to address the challenge posed by net load variability.
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In power systems load forecasting has become fairly accurate with Mean Absolute Error (MAE)
of forecast error ≈ 1-3% on the day-ahead horizon and MAE ≈ 0.5-2% on the hour-ahead hori-
zon [35, 36]. Whereas, for the regional wind power forecast the MAE can be 15% or higher for
day-ahead, and as high as 11% for hour-ahead [37]. The causes of unpredicted ramp events include
forecast errors in load, renewable power and net interchanges, as well as unscheduled outages of
generators. Since net load forecasts depend on the renewable generation forecasts, the system
operator may face a challenge due to the fact that the ramping requirement cannot be predicted
accurately in advance. In such cases the system operators are not able to dispatch their generation
resources effectively, and may require out-of-market actions by the operator in order to maintain
power balance. Thus, operational flexibility is critical to the power system operator.

The real-time operational flexibility of a power system depends on the dispatch solution of
the economic dispatch model and thus is dependent on the ramping capability of each generation
resource. The flexibility metric proposed in this report measures the ability of a system to use its
generating resources to meet both expected net load changes as well as forecast errors. Analogous
to the way LOLP measures the capacity adequacy of a power system, LORP measures the ability
of the power system to meet the net load changes in the real-time operations time frame. LORP
depends on the available inter-temporal ramp capability of the system. Further, LORP can be used
to quantify the robustness of the dispatch solution, in order to provide guidance to the system
operator. Another important issue is the deliverability of ramp capability between operating zones
in a system. Thus, the LORP index should be calculated not only on a system-wide basis, but also
on a zonal basis taking into account inter-zonal flows and tie-line flow limits.

LORP is independent of the economic dispatch model used by the system operator. It can be
used with any existing or proposed economic dispatch model including the conventional security
constrained economic dispatch (SCED), look-ahead dispatch or dispatch with ramp capability con-
straints. Thus, it can be used to compare the robustness of different dispatch methods. The data
required to calculate LORP includes the minimum and maximum rated output, ramp up and ramp
down rate, and the current dispatch level of each generation resource. While currently conventional
generators are considered as providers of ramp capability, other resources such as energy storage or
demand response can also provide flexibility, if they meet certain technical requirements specified
by the system operator. The total upward or downward ramp capability provided by the resources
may be different depending on the state of the resource.

Traditionally system operators have procured reserves on a zonal basis. Due to tie-line conges-
tion deliverability of these reserves between zones is a concern [38]. Inter-zonal tie-line congestion
would also have an impact on the operational flexibility of the system. Transmission line ratings
can have an impact on the rampable capacity of a zone given that additional ramp power can be
transferred over the tie-lines if needed. The available operational flexibility in a system or a zone
is also a function of the resource mix. For example, a zone containing several fast ramping units
such as natural gas generators would have greater rampable capacity in the short term than a zone
primarily containing nuclear and coal generators. Thus, it is important to present a realistic as-
sessment of zonal ramp capability for the system operator to have awareness of the operational
flexibility of both the system as a whole as well as the zones comprising the system. The proposed
system and zonal LORP metrics represent an attempt at providing such a situational awareness tool
to enable a better understanding of the real-time operational flexibility of the system. The metrics
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alert the operator to the higher probability of a ramp shortage event. The operator can then act to
change the manual load offset in the dispatch system so as to better manage system ramping. For
instance the Midcontinent ISO currently uses manual offsets for load as well as for Net Schedule
Interchange (NSI), for managing resource flexibility. Thus, the LORP metric can be used with
the current conventional real-time economic dispatch model to provide useful information to the
system operator. Additionally, in the future as more flexibility providing resources such as energy
storage and demand response are included in the system, the dispatch decisions for these could be
made based on the LORP metric.

2.2 Detailed Formulations

In this section we present the formulation of the proposed flexibility metric as well as the economic
dispatch model for ensuring ramp flexibility in multi-zonal power systems.

2.2.1 Inter-temporal Operational Flexibility Metric

Due to the increasing penetration of variable renewable generation from sources such as wind and
solar, power system operators are facing the challenge of managing the system under increased
variability and uncertainty in net load. A particular aspect of this challenge is the impact of vari-
able generation on the real-time economic dispatch time scale. At this time horizon it is difficult
for system operators to adjust the output profile of their generation resources to handle large un-
predicted net load ramp events. The lack of flexibility in dispatch leads to temporary price spikes
in the real-time electricity market [17]. It is desirable to have a metric that can indicate when the
system may have insufficient ramp capability and the probability of such a price spike occurring.

The system-wide lack of ramp probability (LORPs) provides an assessment of the adequacy of
the available system ramping capability from dispatched generators to meet both expected changes
as well as uncertainty in forecasted net load [1]. It is defined for the ramp up case as follows:

LORPup,τ
s [t] = Pr

(
∑
i∈I
{Pg

i [t]+min(τRi,Pmax
i −Pi[t])}< P̃l

s [t + τ]

)
(2.1)

Similarly we can define the LORP index for the availability of system ramp down capability.

LORPdn,τ
s [t] = Pr

(
∑
i∈I
{Pg

i [t]−min(τRi,Pi[t]−Pmin
i )}> P̃l

s [t + τ]

)
(2.2)

where P̃l
s [t+τ] is the system-wide net load for the interval τ time steps in the future, and is assumed

to a Gaussian random variable with known mean and standard deviation. The mean can be taken
to be the point forecast value of the net load and the standard deviation can be assumed based on
historical data. The distribution is actually conditional, given knowledge of P̂l

s [t].

If correlation information about load and wind is available then this can be used to improve
the calculation of the pdf parameters. Further, the LORP concept can be applied to any empirical
distribution of net load. Such an empirical distribution can be obtained using the historical data
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Figure 2.1: Illustration of lack of ramp probability

available to the system operator. The LORPs value is the probability that given the current dispatch
levels the system operator will not be able to ramp up or down the dispatched generation resources
to meet the net load in the future time interval. This concept is illustrated in Fig. 2.1 for the case
of τ = 1, where the shaded area under the curve represents the LORPup

s value. If the calculated
LORP value is below the predetermined target value, the system operator may have to take action
to procure additional ramp capability.

Under current ISO practices, reserves are dispatched on a zonal basis. Reserve zones are usu-
ally defined on the basis of utility boundaries, geography or significant congested transmission
lines. However, deliverability of reserves is a concern due to tie-line congestion. We make an
assumption that there is no uncertainty in the short term in the scheduled imports and exports for
the zones. Thus we define the ramp up capability for each zone for τ = 1 as follows.

RCz[t] = Zonal Generator Ramp Power[t]+
(Imports[t+1]-Imports[t])− (Exports[t+1]-Exports[t]) (2.3)

where the Zonal Generator Ramp Power is the total available ramp capability from all the dis-
patched generators in a zone. Based on the definition of zonal ramp capability we can calculate the
zonal LORP as:

LORPup
z [t] = Pr

(
∑
i∈Iz

Pg
i [t]+RCz[t]< P̃l

z [t +1]

)
,∀z (2.4)

Unlike the system-wide LORP, here inter-zonal tie-line flows are considered. The zonal LORP for
the ramp down case can be defined similarly.

For a given grouping of the buses in the system into zones, we can calculate the LORPz for
each zone for a given dispatch solution. The LORPz value can be used by the system operator
as an index for the reliability of the dispatch solution with regards to the ramping capability in a
particular zone. If the LORPz value is too high, the operator may choose to import power from
other zones or other ISOs in order to maintain ramp capability.
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The difference between LORPs and LORPz is that LORPz uses the zonal ramp capability incor-
porating inter-zonal tie-line scheduled flows, whereas the system-wide index considers the total
system ramp capability ignoring the tie-lines. Since we are not considering the intra-zonal trans-
mission constraints when calculating LORPz, it is an optimistic estimate of the true probability of
ramp shortage event. The LORPz metric enables the system operator to make a decision about
sharing of ramping capability between zones. Also, it is not an overly conservative metric. We
recognize that procuring ramp at the nodal level may not make physical sense at the nodes where
there exists only a fixed/non-controllable demand. Therefore, defining the LORP metric at a nodal
level does not provide actionable information to the system operator. Our future work will focus
on a metric that includes limits on injections on a nodal basis.

2.2.2 Two Step Robust Economic Dispatch Model

Given the proposed flexibility metric, how does the system operator create a market mechanism to
ensure the LORP level? A major consideration is to ensure ramp deliverability in a sub-area/zone
of a power system. To accommodate this we have proposed a two-step robust economic dispatch
approach. In the first step, each zone is aggregated as an equivalent node with inter-zonal tie-line
constraints observed. The ramping capability of the system for the worst case of net load is ensured
and the tie-line flows determined. This is fed into the second step dispatch, which is done at the
nodal level while maintaining the tie-line flows and zonal ramping capability. The result of the
proposed two-step dispatch will (i) ensure zonal level ramping capability, (ii) maintain the tie-line
flows, and (iii) observe all transmission constraints.

The two-step robust economic dispatch model with network constraints is as follows:
Step 1: Robust Dispatch Step based on Zonal Aggregated Model

min
Pg

i [t]

T

∑
t=1

∑
i∈I

Cg
i (P

g
i [t]) (2.5)

s.t.
∑
i∈I

Pg
i [t] = ∑

j∈J
P̂l

j [t], t = 1 (2.6)

∑
z∈Z

∑
i∈Iz

Pg
i [t]≥ ∑

z∈Z
( ∑

j∈Jz
P̂l

j [t]+uz[t]),∀t = 2, . . . ,T, ∀uz[t] ∈Uz[t] (2.7)

Pmin
i ≤ Pg

i [t]≤ Pmax
i , ∀ i, t (2.8)

−Ri ≤ Pg
i [t]−Pg

i [t−1]≤ Ri, ∀ i, t (2.9)

−Fmax
k ≤ Hred

k (∑
i∈Iz

Pg
i [t]− P̂l

z [t])≤ Fmax
k , t = 1,∀k (2.10)

−Fmax
k ≤ Hred

k (∑
i∈Iz

Pg
i [t]− (P̂l

z [t]+uz[t]))≤ Fmax
k ,∀ t = 2, . . . ,T, ∀uz[t] ∈Uz[t],∀k (2.11)

Uz[t] = [P̂l
z [t]−∆Pl

z [t], P̂
l
z [t]+∆Pl

z [t]],∀t = 2, . . . ,T, ∀z (2.12)

In step 1 a robust optimization based economic dispatch is run on a reduced equivalent network.
Using the bus aggregation approach presented in [39] the network can be reduced to one where
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each zone is reduced to a single bus with an aggregated net injection. All the generators and loads
within an administrative zone are assumed to be co-located at this one bus. The intra-zonal flow
limits are ignored and the inter-zonal tie-lines are aggregated to a single equivalent tie-line for each
pair of zones. Then the reduced shift factor matrix Hz is obtained for the reduced network.

The objective is to minimize total generation cost over all the time intervals (2.5). The sys-
tem power balance constraint for the current time interval is given by (2.6). Compared to the
conventional dispatch model additional constraints are added in this model in order to ensure that
the dispatch solution for future time intervals is feasible even in the worst case of zonal net load
uncertainty (2.7). Other constraints include the generator power output limits (2.8) and the inter-
temporal ramp rate limits for each generator (2.9). The inter-zonal tie-line flow limits must be
satisfied for the equivalent reduced system, namely (2.10) and (2.11). At this step we do not con-
sider the transmission line flow limits within the zones. The inter-zonal tie-lines are aggregated
into a single equivalent line which has the combined flow limit of the lines in the original sys-
tem. This approximation is reasonable given that the approach presented in [39] yields inter-zonal
flows in the reduced system that closely match those in the original system for a realistic range of
loading. While the limits on the equivalent tie-line are observed, in the case of multiple tie-lines
between a given pair of zones, the limits on individual component tie-lines may not be observed
for all cases of loading.

For buses without generators we have Pg
n = 0, and similarly for buses without loads we have

Pl
n = 0. The deterministic uncertainty sets (2.12) defines the range of the uncertainty in the net load

for the future time intervals. This is the key feature of robust optimization where the uncertainty is
modeled using a deterministic set. The zonal net load is assumed to be uncertain, but lies within a
defined range around the nominal or forecast value. The parameter ∆Pl

z [t] controls the size of the
uncertainty set. As it increases the solution becomes more conservative and the dispatch considers
a higher level of uncertainty in the net load. We can assume that ∆Pl

z [t] = αzσz, where αz is a con-
stant and σz is the standard deviation for the zonal net load which can be calculated using historical
data. αz can be selected by the system operator. It can be higher or lower based on the confidence
in the net load forecast. For instance, we could select αz = 3 and hence have an uncertainty set
spanning ±3σ i.e., covering 99.73% of cases of uncertainty for a normal distribution. For the as-
sumption of Gaussian distribution of uncertainty, the choice of the uncertainty set for the net load
results in a bound on the value of LORP. Thus, the uncertainty set internalizes the desirable LORP
requirement.

Step 2: Deterministic Nodal Security Constrained Dispatch Step

min
Pg

i [t]
∑
i∈I

Cg
i (P

g
i [t]) (2.13)

s.t.
∑
i∈I

Pg
i [t] = ∑

j∈J
P̂l

j [t], t = 1 (2.14)

Pmin
i ≤ Pg

i [t]≤ Pmax
i , ∀ i, t (2.15)

−Ri ≤ Pg
i [t]−Pg

i [t−1]≤ Ri, ∀ i, t (2.16)
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∑
i∈Iz

min(Ri,Pmax
i −Pg

i [t])≥ RCz, ∀z, t (2.17)

Fk[t]− ε ≤ S.H(Pg
[1:n][t]− P̂l

[1:n][t])≤ Fk[t]+ ε, ∀k, t (2.18)

Fm[t]≤ H(Pg
[1:n][t]− P̂l

[1:n][t])≤ Fm[t], ∀m, t (2.19)

In step 2 a deterministic optimization based economic dispatch is run on the full system. The
inter-zonal flows in this step are constrained by bounds given by ±ε around the flows obtained
from step 1 (2.18). When the generator re-dispatch occurs, the tie-line flows are not necessarily
less than the Fmax

k limit set in step 1, but could be as high as Fmax
k + ε . In general, the likelihood of

violation of the inter-zonal tie-line limits is related to the net load uncertainty in the system. The
value of ε can be selected by the system operator based on acceptable short-term tie-line flow viola-
tions. Thus the deliverability of ramp capability is ensured by taking into consideration inter-zonal
tie-line flows. The objective is to minimize total generator dispatch cost for the current time inter-
val (2.13). The ramp capability from all committed generators in each zone is maintained at the
amount obtained in step 1 (2.17). Other constraints include the demand-supply balance constraint
(2.14), generator output constraints (2.15), generator ramp rate limits (2.16) and transmission line
flow limits for the intra-zonal lines (2.19).

Procedure for Two Step Robust Dispatch:
The procedure for the two step robust dispatch to be run by the system operator is as follows:

1. The ISO receives the real-time market generator bids (Cg
i [t], Pg

i [t]) for all time intervals t in
the horizon T .

2. The ISO chooses the value of deviation ∆Pl
z in net load for each zone. Thus the uncertainty

sets Uz can be defined using (2.12) based on the confidence level in net load forecast. The
uncertainty sets for the net loads for each zone can be defined using ±αzσz deviations from
forecast values.

3. The ISO runs the step 1 robust dispatch, namely (2.5)-(2.12), on the reduced equivalent
system.

4. The tie-line flows Fk and the zonal ramp capabilities RCz obtained from step 1 are fed to step
2.

5. In step 2 the tie-line flows obtained from step 1 are allowed to vary by ±ε . The value of ε

can be set based on the acceptable short term deviations in flows.

6. The ISO runs the step 2 deterministic dispatch, namely (2.13)-(2.19), on the original system.
The optimization model yields the dispatch solution and the locational marginal prices.

7. The step 2 dispatch solution is implemented. The forecast information for net load is updated
and the process is repeated for the next real-time market interval.
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Each time the two-step economic dispatch is solved we get generator dispatch solutions for the
current time interval (t = 1) and future time intervals (t = 2,3, . . . ,T ). The current interval solution
is implemented while the future interval solutions are considered as advisory. Then we move
forward in time and repeat the process, using updated forecast information on load and renewable
power generation. This allows the decision maker to use updated forecast information to make
dispatch decisions using a receding horizon model.

Since intra-zonal constraints are not considered in step 1 of the dispatch model, the dispatch
solution does not consider all realizations of net load uncertainty. Thus, while the dispatch solu-
tion will significantly reduce shortage events, it may not eliminate them completely. In order to
eliminate the price spikes completely the dispatch solution would have to be very conservative.
Our model provides a balanced approach to reducing price spikes while not making the dispatch
solution too conservative.

2.3 Case Study

In this section, a case study is presented on a modified 73 bus IEEE Reliability Test System (RTS
96) [40]. There are three identical areas each of which contain three wind farms (bus 15 = 200
MW, bus 18 = 240 MW and bus 23 = 70 MW) which we treat as negative load, while the rest
are conventional generators which are controllable. The penetration of wind generation is 13% by
capacity. There are 120 transmission lines and the flow limits on all lines are taken from the RTS
96 dataset. The generator costs are calculated using the average of the heat rate data presented
in [41] combined with the fuel costs presented in [42].

In the two-step robust dispatch model, in order to ensure deliverability of ramp capability, we
consider a reduced equivalent 3 bus network. For the reduced system we aggregate the generation
and loads in each zone at a single bus. Thus, the entire 73 bus 3 area system is reduced to 3 buses
each representing one zone. In the reduced system the intra-zonal transmission line constraints are
ignored while the inter-zonal flow limits are considered. For the numerical example presented in
this section we use T = 2 for defining the dispatch horizon.

The simulation duration is 24 hours with dispatch performed for 5-min intervals, using scaled
real load profile data taken from New York ISO [43]. For each dispatch instance, the net load
forecast for the current interval is assumed to be accurate while the forecast for the future intervals
has error. Further, it is assumed that within the current time interval any deviation of the actual net
load from the schedule can be handled by the frequency regulation control.

The uncertainty set for the net load in each zone is defined by considering deviations of±2.5σz
from the forecast net load values. The standard deviation σz for each zone is obtained from the
previous day’s actual net load data. The standard deviations of the net loads for the zones are
σ1 = 176.29, σ2 = 176.29 and σ3 = 180.35. We assume the value of ε to be 5% of the line limits
used in the case study.

The robust optimization dispatch is modeled and solved in MATLAB using the CPLEX LP
solver cplexlp and the YALMIP robust optimization toolbox [44]. The economic dispatch simula-
tion is conducted on a laptop with Intel Core 2 Duo 2.2 GHz CPU with 4 GB RAM.
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Fig. 2.2 shows the output of the wind generators, which are considered as non-dispatchable and
hence are included in the system net load. Further, it is assumed that there is no curtailment of the
wind. The total electrical load and the total net load profiles for the system are shown in Fig. 2.3.
The real-time economic dispatch is simulated using the conventional deterministic single-interval
model, the deterministic look-ahead model (with look-ahead horizon of one step ahead) and the
proposed two-step robust model (with T=2).
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Figure 2.2: System total wind profile for entire day
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Figure 2.3: System total electrical load and net load profiles for entire day
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Figure 2.4: System total coal and nuclear generator profile for entire day
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Figure 2.5: System total oil-fired and hydro generator profile for entire day

The generation profiles of the different fuel types using the proposed robust dispatch model are
shown in Fig. 2.4 and Fig. 2.5. From these results we observe that both Nuclear and Coal units
provide the base load, whereas Oil/Steam units are used for load following. In this scenario the
Oil-fired Combustion Turbines (CT) are not dispatched for most of the day since the net load is not
high and they are the most expensive generators. Thus the Oil/CT units are used as peaking units.

Fig. 2.6 shows the system-wide LORP as well as the zonal LORP values for the two-step robust
dispatch model. The system-wide value does not give a complete picture of the ramp capability
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since it does not consider inter-zonal tie-line flows. A situation may occur where the system-wide
LORP value is acceptable, but the LORP in a particular zone is too high. In such case the system
operator may have to take some action to increase the ramping capability of that zone. Also, it
is observed from the difference between LORPup and LORPdown values that ramp up is a greater
challenge than ramp down. This observation is also seen in operator experience [18].
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Figure 2.6: Mean LORP comparison for different zones using two-step robust dispatch

Table 2.3 shows the results of running the 3 real-time economic dispatch models for the given
day when the net load forecast for the next time interval, namely P̂l[t + 1] has a forecast error of
MAE = 0.3766%. The computation time for the deterministic look-ahead model is larger than
for the conventional model, due to the increase in the optimization problem size. In the two-step
model, the first step (robust optimization) takes up most of the total computation time. The look-
ahead model has higher dispatch costs than the conventional, since it sometimes backs down the
fast ramping generators based on predicted net load changes and instead uses the more expensive
slower units. But, the benefit is that shortage events and price spikes are reduced, as indicated by
the reduction in LORP and mean LMPs. The two-step robust dispatch approach results in higher
dispatch costs than both the conventional and look-ahead dispatch models. The robust optimization
based approach results in a conservative solution which leads to higher dispatch costs. However,
this approach leads to a lower number of shortage events and hence reduces the need for out of
market manual corrections. These corrections add to the cost of electricity since power may have
to be procured from very expensive generators in order to maintain the system energy balance.
Thus, the proposed robust approach gives a significantly lower system-wide LORP. Further, this
approach yields lower mean of Locational Marginal Prices (LMPs), which is a result of reducing
the number of price spikes in the real-time market. These features make the robust approach
attractive to system operators.

The conservatism of the solution can be controlled based on the selection of the uncertainty set.
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A larger uncertainty set around the nominal net load value will lead to a more conservative solution.
Thus, there is a trade-off between dispatch costs and the robustness of the dispatch solution.

Table 2.3: Dispatch results (Forecast MAE = 0.3766%)

Dispatch Model Conventional Deterministic
Look-ahead

Two-Step Robust

Dispatch Costs
(Millions $)

41.77 41.85 50.82

Mean LORPup
s 0.0873 0.0821 0.0013

Mean LMP
($/MWh)

70.39 69.53 46.45

Max LMP
($/MWh)

664.05 676.85 464.72

Computation Time
(sec)

1.96 2.70 Steps (1) 67.38,
(2) 0.70

Table 2.4 shows the economic dispatch results when the net load forecast error is increased to
MAE = 0.5069%. In this case with the two-step robust dispatch approach we get mean LORPup

s =
0.0013, whereas with the deterministic look-ahead dispatch we get mean LORPup

s = 0.0821 and
with the conventional dispatch approach we get mean LORPup

s = 0.0873. Thus the proposed two-
step robust approach is able to ensure the LORP value even with higher net load forecast error. The
LORP is ensured by incorporating operating conditions and forecast quality into the procurement
of the ramp capability.

Table 2.4: Dispatch results (Forecast MAE = 0.5069%)

Dispatch Model Conventional Deterministic
Look-ahead

Two-Step Robust

Dispatch Costs
(Millions $)

41.77 41.85 50.89

Mean LORPup
s 0.0902 0.0847 0.0013

Mean LMP
($/MWh)

70.40 69.74 47.08

Max LMP
($/MWh)

664.05 676.85 464.72

Computation Time
(sec)

1.93 2.69 Steps (1) 67.6, (2)
0.69

Fig. 2.7 shows the mean LORPup index values for the entire day for all the 3 zones. The robust
approach has lower LORPup values than both conventional as well as look-ahead dispatch. Thus,
it is more reliable in terms of zonal ramp capability.
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Figure 2.7: Mean LORP comparison for all zones
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3. Managing System Ramp Flexibility by Utilizing Price-Responsive Demand:
An Empirical Assessment

In this chapter we present an approach to procuring flexibility from price-responsive demand in
order to manage system ramp capability. The proposed approach utilizes a metric termed as Lack
of Ramp Probability (LORP) to assess the contribution from the demand response to the system
ramping flexibility. Our approach fits well into the current real-time economic dispatch framework.
We conduct simulations of our proposed approach using real data from price-responsive loads. The
impact from the price-responsive demand on the system ramp flexibility is illustrated in a modified
IEEE 24-bus Reliability Test System.

3.1 Framework for Flexibility using Demand Response

Traditionally only conventional generation, given its ability to control its power output, has par-
ticipated in the critical energy balancing operation. However, with the advances in control and
communications technologies, and the smart grid paradigm this could change. With smart controls
in place, the aggregate load could be shaped such that it contributes to the balancing operation
through participating in ISO markets. Depending on the ISO market rules, DR resources could
participate in both energy and ancillary service markets [45, 46].

The approaches for DR can be classified into two main categories - direct load control and
time varying pricing schemes. In direct load control (DLC) programs, based on an agreement
between customers and the aggregator/utility, remote control of certain loads (e.g., air conditioners,
pumps etc.) is used to manage their energy consumption [47]. The lack of user privacy is a
major barrier to large scale implementation of this approach. There are a number of time-varying
pricing schemes for DR including time-of-use pricing (TOU), critical peak pricing (CPP), peak
load pricing (PLP), and real-time pricing (RTP) [48, 49]. Under this approach users voluntarily
manage their consumption in response to a time-varying retail tariff [50]. The major barrier in this
approach is the challenge faced by customers to manually respond to time-varying prices. From
the ISO point of view the challenge is to optimally balance the system when uncertainty arises
both in supply and demand. Given that procuring larger amounts reserves is an expensive option,
utilizing DR to provide the needed flexibility could be cost efficient.

We envision a novel framework for flexible loads that will enable ISOs to integrate demand re-
sponse for the provision of flexible ramping services, thereby tapping into the aggregated flexibility
potential of DR resources (Fig. 3.1). Through the use of smart grid technologies the aggregated
load profile could be reshaped over a time horizon of several minutes to hours, without degradation
in the end user quality of service level. In this future smart grid, an automated intelligent controller
can be fed basic information about user comfort and cost preferences, and then learns to manage
the energy consumption schedule of the flexible loads. The controller will receive price signals
from the utility or load aggregator. The utility or aggregator will then aim to achieve load shaping
of the aggregate load, in order to participate in ISO energy balancing markets. Thus, the aggre-
gate load profile could be reshaped to maintain system energy balancing despite the variability in
renewable generation.
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Given the large scale deployment of smart meters, utilities now have access to a large amount
of empirical high granularity data on customers consumption patterns. This streaming big data
can be leveraged for: (1) increasing system ramp flexibility through DR, and (2) the assessment
of system ramp issues in real-time dispatch. By utilizing this big data the aggregate behavior of
DR resources can be characterized using a transfer function approach [32]. The transfer function
model of price responsive demand is better than the traditional econometric models at capturing the
salient features of flexible demand. The traditional econometric approach has been to characterize
the sensitivity of the load using the concept of elasticity. The preliminary work in [32] shows that
price responsive demand exhibits two key features: (1) a nonlinear response to high prices; and
(2) a time delay between the high price interval and the resulting reduction in demand. Using real
data for one price sensitive load in Texas, a transfer function model of price responsive demand
was developed. We build on this work to assess the potential of the price responsive demand to
contribute to system ramp flexibility. In our work we focus on the probabilistic characterization
of DR given a large aggregation of customers. A future avenue of research is the design of the
optimal real-time price signal for eliciting ramp flexibility from DR. Thus providing a closed-loop
approach for procuring desired amount of ramp flexibility from aggregated DR resources.

System Operator

: Smart Meter

: Meter data

Commercial

Residential

Industrial

Price/Control Signal

Flexible DemandDispatch

Load Aggregators

Transfer function model of DR

DR Resources

Figure 3.1: Proposed framework for utilizing demand response for ramp flexibility
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3.2 Net Load Characterization

In this section we look at characterizing net load when price responsive demand is included. Based
on this characterization of net load we obtain an empirical distribution for the net load one-interval
into the future. Built upon the recent work of transfer function modeling of demand response
[32], we obtain the controllable load deviation one step into the future with the excitation of price
signals.

3.2.1 Net Load and Flexibility Metric

We consider the net load (NL) as comprised of 3 components:

NL[t] = l[t]+d[t]−w[t] (3.1)

1. l = aggregation of loads which are not participating in the DR scheme. We assume that
this component can be characterized using a Gaussian distribution with known mean and
standard deviation. Thus l ∼ N(µl,σl). Also we assume that the point forecast at time t +1
is known l̂[t +1].

2. d(u) = aggregation of loads which are participating in DR, i.e., they are receiving a price (or
other control) signal, where u is a vector of prices over time. We assume that this component
is characterized using the transfer function model. Thus d at time t, namely d[t] is a function
of p[t] as well as past prices p[t−1], . . . , p[t−T ]. We neglect the impact of prices beyond T
intervals in the past.

3. w = total system wind power production. We assume that we have a prediction of the system-
wide wind production and that the prediction error is a random variable with known proba-
bility distribution.

We can combine the forecasts of the 3 components to get the net load forecast. Thus the point
estimate of net load at time t is given by N̂L[t] = l̂[t] + d̂[t]− ŵ[t]. If we neglect the correlation
between wind, non participating demand and price responsive demand, we can simply add the
errors eNL = el +ed−ew. We assume that the forecast error of wind follows a Cauchy distribution
[51], while the demand forecast errors are assumed to be from Gaussian distributions. Thus, we
can get the empirical distribution of net load error.

Now that we have a point estimate of net load and its forecast error distribution, we can calcu-
late the flexibility of system ramp using a probabilistic metric. Analogous to the concept of loss
of load probability (LOLP) which is used as a metric in system capacity adequacy studies, we
have proposed a flexibility metric for system ramp capability called the lack of ramp probability
(LORP) [1]. We define the LORP metric for both ramp-up and ramp-down cases as follows:

LORPup[t] = Pr

(
∑
i∈I
{Pg

i [t]+min(Ri,Pmax
i −Pi[t])}< P̃l

s [t +1]

)
(3.2)
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Similarly we can define a reliability index for the availability of system ramp down capability.

LORPdn[t] = Pr

(
∑
i∈I
{Pg

i [t]−min(Ri,Pi[t]−Pmin
i )}> P̃l

s [t +1]

)
(3.3)

where P̃l
s [t + 1] is the system-wide net load for the next time step, and is assumed to a random

variable with an empirically obtained probability distribution. This can be interpreted as the point
forecast value of the net load combined with its forecast error.

Lack of ramp 

MW 

Probability 

Figure 3.2: Illustration of lack of ramp probability (LORP) for empirical case [1]

The LORP index value is the probability that the system will be unable to ramp up or down
to ensure energy balancing. In Fig. 3.2 the term ∑i∈I Pg

i [t] represents the total power output of
all conventional generators in the system for the interval t of the real-time economic dispatch. In
order to balance the system the generation needs to ramp up to the total system load in the next
dispatch interval which is given by Pl

s [t +1]. However, conventional generators have certain ramp
limits (Ri), expressed in MW/min which restrict their ability to change their output. Given the
uncertainty in the load forecast we can consider the total system load to be a random quantity with
a known probability distribution function (pdf). Thus the shaded area under the curve in Fig. 3.2
represents the probability that the system operator can not ramp up the conventional generation
resources to match the demand. A similar case can occur for ramp down as well (3.3). In such
circumstance the ISO is forced to take some out-of-market action, such as dispatching a fast-start
unit, in order to maintain system power balance. Out-of-market actions should be avoided since
they lead to price spikes in the real-time market and also because they distort the market.

Since DR resources enter into this calculation as a component of net load, we can use the LORP
metric to evaluate the impact of DR on system ramp flexibility.
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3.2.2 Transfer Function Model of DR

To estimate the transfer function (TF) of DR, we use the AutoRegression with eXogenous input
(ARX) model. This System Identification tool is widely used for predicting the future values of a
given time series of data.

Table 3.1: ARX model notation

z Delay operator
y[t] Time series of demand
u[t] Time series of price
nk Time delay between input and output

e(t) Gaussian noise

The ARX model can be described as follows:

A(z)y[t] = B(z)u[t−nk]+ e(t) (3.4)

where A(z) = 1+a1z−1 + . . .+anaz−na and B(z) = b1 +b2z−1 + . . .+bnbz−nb+1.

The aim of this approach is to estimate the unknown ai and bi parameters using the least-
squares method. These parameters form the denominator and numerator polynomials of the DR
transfer function model. We use the ARX function from the Matlab system identification toolbox.
The given data is split into two sets - a training data set and validation data set. The training data
set is used to obtain ARX model parameters. The validation data set is used to check the model
using the FIT index.

The FIT index can be used to measure the accuracy of the model compared to the training data.
For a perfect model the FIT index value is 100. The FIT index is defined as follows:

FIT = (1− ||ŷ[k]− y[k]||
||y[k]−mean(y[k])||

)∗100 (3.5)

where ŷ[k] is the forecasted data (i.e., output of model), while y[k] is the measured data.

3.2.3 Data Analysis

We have price and demand data for a number of Commercial & Industrial loads in the Houston
zone of Electric Reliability Council of Texas (ERCOT) which participate in the DR program. The
available data is in intervals of 15 minutes from Nov. 16, 2010 to Oct. 15, 2013. Fig. 3.3 shows
the plot of the average price by time of day for each interval for the given range of data. In this
plot we see a small peak in the morning and a much larger peak in the evening corresponding to
the peak load hours.

Fig. 3.4 shows a particular sample of the price data, for the entire day of Nov. 24, 2010.
Usually in the real time market electricity prices lie within a small range. In this example for most
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Figure 3.3: Average price by time of day at 15 min intervals for given data

intervals in the day the price is around $20 to 40 per MWh, with price reaching $180 per MWh
during peak periods in the evening. However, there are some periods when we observe large spikes
in the price series, usually for a short duration such as 15-30 minutes i.e., 1 or 2 intervals. These
price spikes can usually be explained by the high marginal cost of fast-responding generators or
some reserve shortage event in the system. The fast start units which are typically gas or oil-fired
units, are dispatched by the system operator in response to a short-term energy shortage in the
system. Alternatively, when the system experiences a shortage in reserves, shortage pricing kicks
in, which results in a large increase in the real time electricity price.

Figure 3.4: Real time price data for Nov. 24, 2010

Fig. 3.5 shows the time series of metered energy consumption data of demand for a DR cus-
tomer, following a price spike. The price spike occurs at interval T after which in the next few
intervals we observe a reduction in the electricity consumption. Each interval is of 15 minutes
duration.

We use the price and demand data for a period of close to 3 years, to fit the energy consumption
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Figure 3.5: Demand response by customer to price spike

profiles of three customers to the ARX model described in the previous subsection. Table 3.2 shows
the estimation results of the ARX model for Customer 1. The TF based on the ARX model can be
written as follows:

T F =
β0 +β1z−1

1−α1z−1−α2z−2 (3.6)

The column pValue is the p-value for the t-statistic. If a coefficient has a p-value lower than
the threshold of 0.05 we can consider it to be statistically significant. The Table also shows the
standard deviation of residuals as well as their mean square error (MSE). Additionally, we perform
the F-test to judge the fitting of the transfer function models to the data sets. From the F-test, the
p-value of each transfer function is less than 2.2×10−16, which indicates a good fit. The pseudo
R-square values of the ARX models are high which indicates the goodness of fit.

Table 3.2: ARX model parameters for Customer 1

Coefficient Estimate pValue

α1 0.9785 2 ×10−16

α2 0 n/a
β0 3.796 ×10−3 0
β1 -4.635 ×10−7 0.03816

Standard Deviation of residual = 0.00495
MSE of residual = 2.446 ×10−5

R2 value = 0.9831
p-value of F-test < 2.2×10−16
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We observe from the ARX model in Table 3.2 that the demand of the customer in a given time
interval has a strong relationship with the demand in the subsequent interval. We also observe from
this ARX model that the impact of low to medium prices on the demand in the subsequent time
interval is low. However, when we have a price spike, we can see that it will reduce the demand.
We can use the transfer function model to predict d[t + 1] given a certain p[t] and the vector of
past demands and prices. The standard deviation and Mean Square Error (MSE) of the residual
are terms that can be used to evaluate how well the ARX model fits the actual data in terms of its
predictive ability.

Similarly, Table 3.3 and Table 3.4 shows the estimation results of the ARX models for Cus-
tomer 2 and Customer 3 respectively.

Table 3.3: ARX model parameters for Customer 2

Coefficient Estimate pValue

α1 1.051 2 ×10−16

α2 -0.0696 0.0195
β0 2.864 ×10−2 0
β1 -2.011 ×10−5 0.03

Standard Deviation of residual = 0.2117
MSE of residual = 0.0447

R2 value = 0.9668
p-value of F-test < 2.2×10−16

Table 3.4: ARX model parameters for Customer 3

Coefficient Estimate pValue

α1 0.9542 2 ×10−16

α2 0 n/a
β0 6.67 ×10−2 0
β1 -4.018 ×10−5 0.011

Standard Deviation of residual = 0.36216
MSE of residual = 0.1309

R2 value = 0.8896
p-value of F-test < 2.2×10−16

The ARX model fitting result for Customer 2 suggests some difference from the other two
customers. Namely in this case the demand in a time interval has a relationship with the demand in
the past two intervals. Detailed consumption data allows us to model individual customers using a
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data driven approach which yields good results in terms of our ability to predict their consumption,
at least on the short term horizon. Thus even without knowing the electrical model of the customers
we can extract useful information about the demand from the detailed consumption data.

3.3 Case Study

In this section a case study is presented in a modified 24 bus IEEE Reliability Test System (RTS
24) [52]. The generator parameters have been selected to approximate a scaled down version of
the generation fuel mix in each zone of the ERCOT system. There are a total of 15 generators of
which 3 are wind generators, while the rest are conventional dispatchable generators (Fig. 3.6).
As a portion of the total installed capacity in the test system, wind is 12.3%, gas is 60.3% and
coal is 27.6%. Table 3.5 gives the parameters for the generators. There are 32 transmission lines
and the flow limits are taken from the RTS 24 dataset. The simulation duration is 24 hours with
dispatch performed for 15-min intervals using scaled realistic load data from ERCOT. The DR
capable load is assumed to be aggregated at Bus 12. Price responsive demand data is obtained
from industrial and commercial loads that are exposed to time-varying prices in ERCOT between
2010 and 2013 [53]. To evaluate the impact of price-sensitive load on system flexibility we consider
two cases: (i) Case A: without flexible load (i.e., without DR), and (ii) Case B: with price sensitive
load (i.e., with DR).
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Figure 3.6: IEEE 24 bus RTS system (modified) [2]

Fig. 3.7 shows the total wind power output for the system. The wind production profile shows
great variation during the course of the day. Assuming no imports and exports from outside the
system the net load faced by the generators is the difference between the electrical load and the
wind. The total electrical load and the total net load profiles are shown in Fig. 3.8. Average system
net load is 1,252.8 MW and peak net load is 1,434.5 MW. Average system wind output is 94.2 MW
and peak wind output is 116.7 MW. As discussed earlier in the report we can see here that there
are several periods where the net load ramp is steeper than the electrical load ramp.

For the simulation case study we assume that we have an aggregation of 100 customers at bus
12 in the East zone (Houston zone) of the ERCOT system, of which 50 customers are identical to
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Table 3.5: Generator parameters

Bus Type
Pmax Pmin Cost Ramp Rate
MW MW $/MWh % MW/min

1 Nuclear 140 50 15 0.8
2 Coal 540 40 20 2
4 Gas 300 30 40 5
5 Gas 510 25 27 6.5
6 Nuclear 150 45 14 0.9
7 Gas 490 24 49 7
8 Coal 165 15 23 1.9

10 Oil 60 0 250 20
13 Oil 90 0 220 20
14 Gas 170 34 48 9
15 Wind 200 0 4 9
18 Wind 240 0 6 10
21 Coal 300 30 21 1.8
22 Gas 725 50 36 11
23 Wind 70 0 5 11

Real-time dispatch intervals (15 min)
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Figure 3.7: System total actual wind profile for entire day

Customer 1, 20 are identical to Customer 2 and 30 are identical to Customer 3.
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Figure 3.8: System total actual electrical load and net load profiles for entire day

3.3.1 Case A: No flexible load

In this case we assume that there is no price-sensitive load in the system. A simple Auto Regres-
sion (AR) model is used to predict the future load from the demand time series. Fig. 3.9 shows
the comparison of the actual total load to the prediction using the AR model. The AR model is
represented by (3.7).

A(z)y[t] = e(t) (3.7)

where for this case we obtained A(z) = 1−0.96z−1−0.05z−2

3.3.2 Case B: Price-sensitive load

In this case we use the ARX based transfer function models of the 3 customers obtained in the pre-
vious section to predict the future load. The total load prediction is the sum of the load prediction
from each of the 3 models scaled by the number of customers assumed in each type. Thus we can
predict the price-sensitive load.

We run the economic dispatch for both Case A and Case B and then compute the values of
the system wide LORP index for each of the 96 fifteen-minute intervals of the day. Fig. 3.10
shows the comparison of the LORP metric using the two cases - without DR and with DR. In
the case when we do not have DR, the LORP assesses the ramp flexibility of the system when
conventional generation is the only resource the system operator can utilize to balance the net
load. In the case when we have DR resources, the LORP metric assesses the ramp flexibility
when the system operator can utilize conventional generation as well as through the aggregator
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Figure 3.9: Total load prediction for the customers using AR model

it can utilize flexibilty from the DR resources. For most intervals in the day we usually have
adequate ramping available to us from conventional generators. However, during a few intervals
in the day the system can experience ramp shortage. Utilizing DR resources can help to reduce the
probability of shortage events, thereby increasing system reliability, as shown in Fig. 3.10. The
system operator can determine if the system is flexible by calculating the LORP and comparing
it to a pre-defined target or threshold value for the system. Such a comparison would be useful
when it comes to making decisions about the dispatch of various conventional generation units in
the system, and also determining the utilization of the DR resources.

The next logical step is to close the loop and design a price signal for DR such that we can
achieve a target LORP. This approach will help the system operator to reach its flexibility require-
ment using price responsive DR as a resource.
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Figure 3.10: Comparison of the LORP metric using the two cases. Case A: without DR and, Case
B: with DR

31



4. Conclusions

This report presents an operational flexibility metric for evaluating system ramp capability in real-
time economic dispatch. The proposed LORP index can be used by the system operator for situa-
tional awareness of the robustness of the economic dispatch solution to uncertainty and variability
in the net load. Additionally, this flexibility metric is independent of the dispatch model and can
be used to compare different real-time economic dispatch methods.

Also we conduct the empirical study of price responsive demand and assess the potential of
providing ramping flexibility from such demand. Built upon the proposed LORP metric for evalu-
ating system inter-temporal flexibility, we evaluate the one interval ramping capability from price
responsive demand. Demand data from ERCOT is employed to illustrate the LORP metric. We
compare the case of a system without flexible load to the case in which there is price-sensitive
demand in the system.

Further, a two-step robust optimization based real-time economic dispatch model is proposed
to ensure deliverability of ramp capability between operating zones in multi-zonal systems. The
proposed approach meets inter-zonal tie-line flow limits under the worst case of net load uncer-
tainty and thus provides a more reliable zonal ramp capability than in the conventional dispatch
model. A case study is presented on a modified 3 zone 73 bus IEEE (RTS-96) test system to il-
lustrate the proposed system and zonal flexibility metrics, as well as the two-step robust dispatch
model.

Future work will include the application of the two-stage adaptive robust optimization ap-
proach in our proposed two-step dispatch model [28]. We will also study the optimum horizon
for the proposed robust dispatch approach when applied to the multi-interval economic dispatch
problem. Another avenue of future research will focus on reducing the computational effort and
implementation complexity while guaranteeing the operational flexibility. Future work will also
include the design of an optimal pricing signal in order to elicit required demand response from
large aggregated customers, so as to provide demand side ramp flexibility.

Obtaining a good empirical pdf for the system is a challenging problem. It would be necessary
to calculate the correlations between the renewable generation, demand response loads and other
system load. In our future work on this topic we will consider this aspect in greater detail.
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1. Introduction 

1.1 Problem Statement 

A wide range of newly introduced challenges have increased the complexity of power system 
operations. Increasing renewable power penetration has exacerbated temporal variations and 
increased the need for load following reserves. Furthermore, it has increased the uncertainty and 
has given rise to stochastic operations algorithms, especially for day-ahead planning purposes. 
Given the finite ramp rate of conventional units, these effects have in turn led to higher 
operational costs and threats to system reliability due to ramping insufficiencies. In addition, 
gradually increasing system stress combined with aging transmission infrastructure that was 
designed for system loading and generation technologies that were prevalent decades ago have 
increased the potential for transmission line congestion issues, leading to high marginal costs. A 
closely related issue is the threat to power system reliability, due to the gradual aging and 
retirement of transmission and generation assets, which is not associated with equally active 
infrastructure investments. Furthermore, the appearance of large wind farm installations has 
introduced new power flow patterns and in many cases has brought forth unforeseen congestion 
issues and potentially negative marginal prices. This issue is expected to unfold in ways that are 
hard to predict especially as system stress increases and as new load types are widely introduced, 
such as Electric Vehicles. As renewable and distributed generation gains ground in terms of cost 
effectiveness, the traditional methodologies for designing and operating the power grid are 
expected to become less relevant and adequate.  

One particular manifestation of the upcoming challenges in the scheduling of power system 
operation is related to the concept of flexibility. The integration of a large capacity of renewable 
resources in bulk power systems has given rise to step up and down ramps in active power output 
(MW) from renewable sources, which, combined with already existing load ramps, translate to 
large ramps in Net System load. The capability of the system to respond to such large deviations 
in Net Load in short periods of time is known as the system’s flexibility. CAISO’s projection for 
a typical Net Load daily profile curve has become famous as the “duck curve” due to its 
characteristic shape, shown in Figure 1.1 (re-printed from [1]). An additional complication is the 
timing of these ramping events during the day cannot be accurately predicted in day-ahead 
studies, and they typically have to be addressed in shorter planning horizons, when the pool of 
committed generators with sufficient ramping capabilities may be very restricted. Similar 
ramping phenomena have been recorded or are expected to appear in other systems, such as the 
Irish [5] as well as the ERCOT, MISO and NYISO systems [9]. 
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Figure 1.1: The projected duck-curve daily Net Load profile for CAISO [1]. 

However, ramp-rate related flexibility is not the only challenge for power system operations 
documented in the literature. With higher renewable penetration, voltage control is expected to 
become more challenging [5], bringing forth the need for including voltage control to the 
economic dispatch problem. Hence, voltage-agnostic DC-OPF operational tools that are widely 
used in practice are fundamentally ill-suited to address this challenge.  Reactive power capability 
is expected to fall due to the displacement of synchronous generators by wind farms with 
reduced reactive support capability [5], while only 27% of wind farms currently offer reactive 
control dispatch. 

Several studies in the recent years have focused on suggesting institutional, technical and 
infrastructure improvements to address the challenges from renewable integration. A DOE report 
[6] highlights the need for short term flexibility of generating units and particularly the need for 
an operational framework that will allow proper incentives and scheduling for this flexibility to 
be deployed, especially in the real-time operator action domain. Furthermore, the same study 
identifies that the additional flexibility may not be easily obtainable from conventional 
generating units, and suggests alternatives, such as demand side resources, energy storage units 
and Hybrid Electric Vehicles. A more comprehensive list of flexibility-providing technologies, 
and their maturity level, has been compiled in Table 1.1 [7]. 
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Table 1.1: Sources of Flexibility, their technical characteristics & maturity level 

TECHNOLOGY RAMP RATE / RESPONSE TIME MATURITY 

Fossil Fuel Generators 
From 1.5%/min (coal) to 100%/min 

(internal combustion engines) 
Very Mature 

Nuclear 4%-10% per min Very Mature 

Biogas Very fast Mature 

Co-generation 5-20%/min Very Mature 

Active Control for wind 
plants 

100%/min Medium 

Demand management for 
industrial installations 

20-100%/min Medium-High 

Demand Management for 
households 

100%/min Low 

PHEV’s 100%/min Low-Medium 

Pumped Hydro 40%-100%/min High 

Compressed Air Energy 
Storage 

10-20%/min Low 

Flywheels Milliseconds Low 

Batteries Seconds Medium 

 

An IEA study [8] showed that transforming system operation practices and market operation 
may mitigate the high costs of increases renewable resources integration. Specifically, moving 
towards real time operations, where the uncertainty is reduced, is considered very important. 

A NERC report on flexibility [9], [10] stresses the need for additional flexibility due to the 
variability of renewable generation. In ERCOT for example, where wind reaches about 25% of 
load at times, there exist ramps of about 50% of total wind capacity in an hour. The report also 
highlights the importance of the capability to respond to extreme weather events that may 
produce wind cut-outs due to very high wind speeds. According the NERC, the sources of 
flexibility are: 

• Conventional Units with ramping capabilities 

• Demand Response 

• Variable generation Management (renewable curtailment) 

• Energy Storage & PHEV’s 

• Sub-hourly scheduling (look-ahead dispatch) 

• Transmission Planning 
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An NREL report comments on the needs for increased flexibility due to the increasing 
integration of renewable energy. NREL identifies the following as potential solutions to this 
issue: 

• Flexible Operations: Move decision making closer to real time 

• Flexible Demand Side Resources: Responsive distributed storage, customer load 

• Flexible Transmission: Optimize transmission usage & improved access to resources 

• Flexible Generation: units with high ramp-up & ramp-down capability 

The aim of this research is to develop a framework for real-time power system operations that 
will address some of the challenges put forth by the studies mentioned above. Such a framework 
would have to: 

• Rely on a real-time look-ahead scheduling formulation that is solvable in realistic time 
windows and schedules the operation of the system for a certain look-ahead horizon. It 
would be beneficial to model both ramping & voltage control phenomena. 

• Model the novel sources of flexibility mentioned above, including energy storage, 
responsive demand, distributed energy resources, ramp-constrained generation. 

• Include remedial action schemes for unforeseen severe events, such as critical component 
outages 

• Have the capability to model & simulate a large number of potential contingency events 
that threaten the security of power system operations 

This research addresses the challenges above by putting forth contributions in all of these 
areas. A detailed summary of contributions is offered in the next paragraph. 

1.2 Research Objectives & Contributions 

In order to address the challenges discussed above, especially in the short-term operational time-
frame, in this research we focus on expanding the modeling of the short-term look-ahead 
dispatch to include new flexible components as well as more accurate network models. Once the 
model formulation has been set up, we modify the model to produce remedial action schemes in 
infeasible cases. Finally, at a given optimal solution a filtering & analysis framework is 
developed for identifying critical outages with a lowered computational cost. A summary of 
contributions in modeling (Distribution, Transmission, Generation & Storage) and in the real 
time operations & security analysis is given in Figure 1.2. 
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Figure 1.2: Summary of contributions 

A summary of the outlined contributions is as follows: 

1. An implementation & comparison of AC versus DC look-ahead OPF formulations for 
scheduling flexible operations in power systems.  

A multi-period look-ahead AC-OPF is cast as a Quadratically Constrained Quadratic 
Programming (QCQP) problem and solved via primal-dual interior method. The non-convexity 
of the problem may lead to convergence to local minima. For this purpose, a DC-OPF look-
ahead formulation is also put forth. This formulation is solved via Quadratic Programming and 
exhibits desirable convexity properties. In this research, the advantages and disadvantages of 
using either approach for real time operations are discussed. It should be stressed that the DC-
OPF is the current operating practice. In this research, an effort is made to quantify the 
drawbacks of this practice due to reduced voltage control capabilities and inaccuracy of 
congestion modeling. 

2.a. Development of transmission, generation and load models that are currently 
disregarded in look-ahead OPF formulations. 

It is common for look-ahead scheduling to include standard models such as generators with 
ramping constraints and static models of network components, such as transmission lines and 
transformers. However, in this research we introduce physically based models of the following 
components into the look-ahead OPF: 

• Thermal model of transmission line. This model allows for the implementation of dynamic 
line ratings. The benefits of transitioning from static line ratings to dynamic temperature-
based ratings are also quantified. 

• Thermostatically Controlled Load with temperature constraints 

• Utility-scale Battery Energy Storage System, with separate charge and discharge efficiency 
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2.b. Aggregate modeling of active distribution systems for transmission-level look-ahead 
scheduling algorithms & disaggregation of transmission-level commands to individual 
distributed energy resources. 

The effort to enrich the available modeling capabilities is extended to the development of an 
approximate aggregate dynamic model of an active distribution system that can be used to 
schedule its operation via the transmission-level look-ahead formulation. This addresses the issue 
of tractability and scalability for the control of small-scale distributed energy resources. By 
adding their capabilities to the dispatch procedure, a significant source of flexibility is utilized. 
Furthermore, a semidefinite programming approach for extracting this aggregate model from 
Distribution System simulation data is also developed. Finally, a Euclidian distance 
minimization problem is solved to implement the disaggregation of the aggregate distribution 
system schedule given by the look-ahead OPF in order to obtain the set of individual device 
controls that will, in aggregate, produce a consumption pattern as close as possible to the desired 
one, as given by the look-ahead OPF solution. 

3. Remedial action & load shedding scheme formulation, with minimal load shedding 

The look-ahead OPF formulation, both in its accurate AC form and its approximate DC form 
can be an infeasible problem. Two algorithms are put forth for the determination of remedial 
actions, in the form of load shedding, in cases where they are needed, to restore feasibility. The 
first is an iterative stepwise de-relaxation algorithm where the equality constraints are initially 
relaxed but gradually enforced at a given maximum rate per step. The second is a direct & non-
iterative minimal load shedding algorithm that identifies minimal load shedding actions by 
adding the load shedding quantities to the objective function and severely penalizing them. The 
two methods are compared and their applicability in practical test cases is examined 

4. Contingency Filtering & analysis for real time security analysis algorithms 

A real-time security analysis approach must be in place to evaluate the security analysis (N-1 
or higher) of a given solution to the scheduling algorithm. In this research we develop a two 
stage (filtering – analysis) framework, where the first step consists of fast contingency filters for 
critical outages using newly defined margin indices, that quantify overall proximity to constraint 
violations. A first order Taylor expansion is used to obtain fast margin index estimates after an 
outage. The second step consists of performing one or more power flow iterations using the 
Newton method & the post-outage Jacobian matrix. A compensation method, using low-rank 
Jacobian corrections to increase the speed of these Newton iterations without sacrificing 
accuracy, is developed and theoretically justified. 

The above contributions serve one common goal, whose importance was highlighted in 
Paragraph 1.1. That goal is to increase available power system flexibility by utilizing a wider 
range of tools. With the look-ahead dispatch formulation, the security analysis function and the 
remedial action scheme identification, the decision making is moved closer to real time, which is 
a key requirement for “flexible operations”. Also, by including more resources to the flexibility 
pool, the overall system flexibility is extended beyond what conventional fossil fuel plants can 
offer. In particular, aggregate distribution system & dynamic line rating modeling constitute two 
important modeling options that have largely been ignored in the literature and their importance 
is highlighted here. 
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2. The Flexible Optimal Power Flow 

2.1 Introduction 

The issue of flexible assets in power systems operations has been studied for quite some time, 
especially for the provision of ancillary services, such as short-term reserves or ramping. 
Specifically in the domain of flexible demand response assets, efforts to model aggregate 
flexibility have been centered around aggregate stochastic battery models (Hao et al, 2013) or 
Temperature Bin Transition Models (Koch et al, 2011).  

Resource flexibility has the potential to reduce OPF optimal cost in two ways: 

1. Short term flexibility can offer ramping capabilities (i.e. allow “slower” units to ramp 

up/down their generation, by temporarily providing the power surplus or deficit). 

Furthermore it can offer short-term (“spinning”) reserve capabilities. 

2. Long-term flexibility can offer load shifting and peak shaving services. 

Flexible resources exist in both the transmission and the distribution level. A list of flexible 
resources includes: 

In transmission level 

• Pumped hydro 

• BESS (utility scale) 

In distribution level 

• House level storage 

• Thermostatically controlled load 

• PHEV 

• Deferrable & schedulable load 

The following methodology is proposed in this chapter 

• Develop a physically-based aggregate model for the flexible demand response assets in 

the distribution level 

• In the transmission level, solve a multi-period OPF problem, modeling resource 

flexibility using the above models. The aggregate dispatch of the flexible resources will 

be obtained solving the system-wide OPF 

• In the lower (distribution feeder) level, solve a feeder level problem, to allocate that 

dispatch amongst individual loads / resources. 

• Develop physically based models for storage, thermostatically controlled loads & 

dynamic line ratings 

2.2 Quadratized Device Modeling 

One of the fundamental challenges in formulating and solving the flexible OPF problem is the 
capability to model a wide range of power system device models, in addition to the standard 
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models of generators, transmission lines, transformer and loads. Indeed, an effective flexible 
OPF framework must include models for a wide range of storage technologies, explicit models 
of responsive loads with customer convenience constraints, as well as new dynamic models for 
classical devices, such as ramp-limited generators and dynamic thermal line ratings. In the 
context of this work, this issue is addressed by introducing “object-oriented” device models that 
describe the dynamics, algebraic equations and constraints of each device. The device modeling 
is completely decoupled from the algorithms used to handle the device’s connectivity in the 
network, as well as the algorithms for the synresearch and solution of the optimization problem. 

A quadratic device model is adopted, with the syntax as shown in (1): 
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 0puxuxh ≤−− )|,,,( 11 kkkkk
 

(1e) 

 maxminmaxmin , uuuxxx ≤≤≤≤ kk  (1f) 
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fxfkk CCCf uuuxxxubxbaux +++++=),(  (1g) 

The constant vectors )( peqa
 
and )( pineqa  are 1×sn   and 1×hn  vector functions 

respectively. The argument of this function is a vector of device parameters at step k, to allow for 
parameter dependent models. inequineqxequeqx YYYY ,,,  are appropriately sized matrices defining 

the linear terms in equations (1a) and (1c). Furthermore, the quadratic terms, if any, are defined 

by collections of sparse matrices, such as  i
eqxxF . Finally, lower and upper bounds on the 

participating variables are treated separately from general constraints h. In cases of variables 
without lower or upper limits, extremely low or large values are set as the lower and upper 
bounds respectively. 

Without loss of generality, this model can be used to represent any flexible resource. Note that 
constraints (1a) and (1c) include both static and dynamic equalities and inequalities, respectively. 
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The dynamics are captured by the past history vectors (1b) and (1d). If the equations are static 
the past history vectors are zero. 

The cost of operating the system is assumed to have quadratic structure as well (1g). The 

matrices 
fxxC ,

fxuC ,  and fuuC  are stored in sparse format. In the classical OPF problem, it should 

be expected that, for most devices, the factors involved in (1g) have zero values, except for 
generators. However, this formulation allows flexibility for experimentation with other objective 
functions in different settings (such as customer flexibility markets) & future research. 

From an implementation perspective, it is worth noting that, while linear and constant terms (

eqxY , 
equY , 

ineqxY , 
inequY  e.t.c.) can be stored as full matrices, quadratic terms, such as i

eqxxF , must 

always be stored in sparse form, for computational and storage economy reasons. 

This is a quadratic model that accurately represents each device’s dynamics. It is obtained by 
integrating the corresponding differential-algebraic equations (e.g. through quadratic 
integration). The main advantage of this sparse quadratic syntax is that it allows an efficient 
algorithmic computation (object oriented) of Jacobeans, Hessians, etc. of the underlying 
optimization problem, without compromising the capability of utilizing nonlinear device models. 

The device interacts with the rest of the network via its through variables. Specifically, the 
current equations of all devices that are connected to the same node must sum up to zero, in 
order to enforce Kirchhoff’s Current Law. For this purpose, the device model also contains a ns x 
1 connectivity vector to map from the device-level equations to the network-level equations: 

 nmInd
x

d =)(  (2) 

This signifies that the m-th equation of device d maps to the n-th system-level equation. 

2.3 Problem Formulation 

The device data structures defined above are adequate to synthesize the system-level look-ahead 
optimization problem in a concise manner. Specifically, the n-th equality constraint for the 
system level flexible optimal power flow is: 
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A similar process is followed to synthesize the system level inequality constraints h. Note that, 
for this framework to be operational, a mapping between the system-level and the device level 
states, controls and inequalities must also exist.  Namely, the n-th system level inequality 
constraints at each step is: 
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The objective function for the system at step k is given simply as the summation of the 
individual cost functions for the Nd devices: 
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Given the quadratic structure of the device cost functions (1g), the system cost function is also 
quadratic. 

Using these synthesis rules, the following K-step problem is defined: 
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(6) 

 

The flexible OPF problem in (6) is a quadratically constrained quadratic program (QCQP). 

Note that kX , kU  and kP  are the consolidated system state, control and parameter vectors 

respectively. The parameter vector depends on the particular device models employed, but 
typical parameters include load active and reactive consumptions & wind speed values. Hence, 
(6) needs to be solved independently for each possible scenario in the look-ahead K-step horizon. 
This work is focused on the deterministic look-ahead OPF, i.e. solving (6) for a given scenario of 
parameters. 

2.4 Solution Method 

The look-ahead AC-OPF problem is a non-convex Nonlinear Programming (NLP) problem [11]. 
Numerical solutions to such problems are plagued by sensitivity to initial guess, lack of global 
optimality guarantees and potentially lack of global convergence guarantees. Given the large 
scale of the problems under consideration, the class of algorithms used in this research was the 
Primal Dual Interior Point method, which is widely used for the AC-OPF problem ([12], [13]). 
The method is amenable to sparse matrix techniques, which is consistent with the sparse 
structure of network equalities and inequalities.  

The solver used in this research is IPOPT [14], which comes with global convergence 
properties, utilizing an interior point method with a filter line search step that guarantees global 
convergence under mild regularity conditions. Global optimality is not guaranteed; merely 
convergence to a stationary point for the problem’s Lagrangian. Hence, no global optimality 
claims are made in this research, whenever the AC-OPF look-ahead algorithm is concerned.  

The numerical performance of IPOPT is considerably improved if explicit expressions for the 
constraint & objective gradients, as well as the Lagrangian’s Jacobian are provided. The 
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quadratic structure of the flexible OPF enables computationally efficient calculation of sparse 
Jacobian & Hessians. Namely, problem (6) is structured as follows in our framework: 
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The problem cast in variables z, defined as: 
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Hence, the gradients are calculated as follows: 
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The Lagrangian hessian is calculated as follows: 
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The sparse structure of 
hgf HHH ,,  and 

hgf bbb ,,  allows for quick calculation of the sparse 

gradients and hessians This allows, from an implementation perspective, use of IPOPT with 
relatively small external overhead for obtaining Jacobians and Hessians. This is the primary 
benefit the Quadratic formulation of the look-ahead AC-OPF developed in this research. 

2.5 Comparison with DC-OPF flexible OPF 

The DCOPF look-ahead dispatch is a version of the look-ahead problem that relies on the DC 
Optimal Power Flow at each step. In turn, the DC-OPF is based on the assumption that branch 
resistances can be neglected, and that voltage magnitudes remain constant at unity. Hence the 
power flows on lines depend on the voltage phasor angles, which become the only variables in 
the DC-OPF. In order to implement this approach and compare with the AC-OPF look-ahead 
dispatch developed in this work, additional dynamic models of devices, consistent with the DC 
assumptions were developed. In these models: 
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• The interface variables with the point of connection of each device are the node’s angle θ 

and the incoming (absorbed) active power by the device, instead of k
i

k
r II ,  and k

i
k
r VV ,  

respectively. 

• Kirchoff’s current law is enforced by requiring that the sum of active power in a node be 
zero, instead of currents in the AC-OPF. 

• Any reactive power aspects of connected devices are neglected. Indeed, the DC-OPF 
does not consider reactive power dispatch in any way 

• To maintain the main linearity advantage of the DC-OPF, all device models used were 
linear. 

With the above developments, the DC-OPF look-ahead dispatch becomes a Quadratic 
Programming problem (convex quadratic cost function with linear constraints). This problem is 
now essentially a succession of DC-OPF’s with transition constraints for all dynamic devices: 
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(11) 

The DC-OPF look-ahead dispatch problem is a quadratic programming (QP) problem [15]. 
Assuming the problem is feasible and bounded, as is the case in Optimal Power Flow problems, 
(11) is solvable by mature Interior Point Methods. Primal-Dual interior point method is a mature 
method to solve such convex problems to global optimality  [15]. The Interior Point solver used 
in this research is IPOPT [14], however the results are also verified using MIPS, which is part of 
the MATPOWER package [16], in the MATLAB environment. 

Given that the AC-OPF look-ahead dispatch is a non-convex formulation and  the PDIPM 
algorithm may converge to local minima, it is of interest to compare its output with the results of 
the DC-OPF look-ahead dispatch, which is a convex formulation that uses less accurate 
linearized models for the system’s devices. 
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Table 2.1: AC-OPF vs. DC-OPF look-ahead dispatch features 

FEATURES 
DC-OPF LOOK AHEAD 

DISPATCH 
AC-OPF LOOK-AHEAD 

DISPATCH 

TRACTABILITY 
Smaller Size 
QP Problem 

Larger Size 
Non-convex problem 

GLOBAL OPTIMALITY Solved to global optimality 
Global optimality not 

guaranteed 

CONVERGENCE 

GUARANTEES 
Always converges (under 
mild regularity conditions) 

Convergence sensitive to initial 
guess 

MODELING 

ACCURACY 

Approximate Models 
Inaccurate Congestion 

Modeling 

Physically Based & Accurate 
Models 

Models non-linear phenomena 
QUALITY OF 

DISPATCH 
Only active power dispatch Full active-reactive dispatch 

FEASIBILITY OF REAL-
TIME DISPATCH 

Static AC-OPF dispatch may 
be infeasible 

Guarantees feasibility 

 

The difference between the two formulations is summarized in Table 2.1.  The DC-OPF is a 
convex problem, with strong convergence and global optimality guarantees. However, unlike the 
AC-OPF look-ahead dispatch, it utilizes the DC approximation which may misrepresent the 
actual behavior of the electric grid. As such, if dynamic devices (such as storage or ramp-
constrained generation) are scheduled using the DC-OPF, then any errors introduced by the DC 
approximation will have to be corrected in the clearing of the real-time (static) operation of the 
system, either through out-of-market actions or a corrective dispatch using more accurate 
models. These actions may carry more cost or may even be insufficient to restore feasibility, 
under extreme conditions. Hence, the inaccuracy of the DC-OPF problem may lead to higher 
costs or even infeasibility of the real-time dispatch. Finally, unlike the AC-OPF, the DC-OPF 
clearly ignores all non-linear effects and all control variables except for active power dispatch. 
Thus, it does not perform or account for reactive dispatch, load tap changing mechanisms e.t.c..  

In order to explore the tradeoff between the globally optimal DC-OPF and the more accurate 
AC-OPF model, tests were performed in various standard test cases. The same scenarios (load 
variation & renewables output) were solved using a DC-OPF and an AC-OPF look-ahead 
dispatch. In order to consider the corrective dispatch issues of the DC-OPF, the dispatch 
schedules produced by this method were used to schedule the dynamic resources (ramp-
constrained generation and storage in this case) and a static corrective AC-OPF was solved at 
each step, by keeping the dynamic dispatch fixed to the output of the DC-OPF, in a two stage 
fashion. On the other hand, the look-ahead flexible AC-OPF output was used for the scheduling 
of all control variables, and no static dispatch was needed for that case. The comparison 
methodology for the two different look-ahead formulations is shown in Figure 2.1 . 
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(a) 

 
 (b) 

Figure 2.1: AC-OPF versus DC-OPF evaluation method (a) AC-OPF (b) DC-OPF 

 



 15

The total operating cost of these two different frameworks was recorded for each case. The 
first case study used was the IEEE 30 bus system (Figure 2.2). A wind farm with a base case 
capacity of 35MW and a storage unit with base case capacity of 50MW, 100MWh were placed 
in bus 6. The transmission corridor 6-8, which is a 32MVA, 135KV line, is congested in this 
particular system. Because of different congestion models used by the AC-OPF and the DC-OPF 
we expect significant variations in the dispatch results. A summary of different scenarios 
examined, and the corresponding operating cost yielded by the two different look-ahead dispatch 
frameworks under examination is given in Table 2.2. 

 

 

Figure 2.2: IEEE 30-bus system 

 

Table 2.2: AC-OPF versus DC-OPF dispatch operating cost results – IEEE 30 bus 

Scenario 
Storage 
Energy 

Storage 
Power 

Wind 
Penetration 

DC-OPF 
Cost 

AC-OPF 
Cost 

Cost w/o 
storage 

A 100MWh 50MW 35MW 5.6228e+04 5.5623e+04 5.6381e+04 

B 200MWh 100 MW 35MW 5.6095e+04 5.5068e+04 5.6381e+04 
C 50MWh 25MW 35MW 5.6313e+04 5.6048e+04 5.6381e+04 
D 300MWh 150MW 35MW 5.5479e+04 5.4618e+04 5.6381e+04 
E 100MWh 50MW 70MW 4.8897e+04 4.8281e+04 4.9142e+04 
F 100MWh 50MW 135MW 4.2105e+04 4.1348e+04 4.2448e+04 
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Figure 2.3: Cost Reduction from Battery Operation – ACOPF vs. DCOPF in 30 Bus Case 

As shown in Table 2.2, for the scenarios under examination, the AC-OPF dispatch yields 
lower operational cost than the DC-OPF dispatch with AC-OPF corrective actions. Although this 
case study does not allow for general conclusions to be drawn, in this particular case the AC-
OPF look-ahead dispatch is preferable since it allows more efficient utilization of installed 
storage capacity. In order to further quantify this, Figure 2.3 shows the Storage Cost Reduction, 
i.e. the reduction in operating cost compared to what the cost would be if storage was completely 
removed from the system, for the two different look-ahead dispatch procedures. For 
completeness, that cost value is given in the last column of Table 2.2. It is clear that in all cases 
the AC-OPF look-ahead dispatch allows better utilization of the storage installed in bus 6. This is 
attributed mostly to the more accurate modeling of the congestion in line 6-8 in the AC 
formulation. 

  
(a) Case A - Battery Power (b) Case A- Battery Energy 
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(c) Case B – Battery Power (d) Case B – Battery energy 

  

(e) Case C – Battery Power (f) Case C – Battery Energy 

  

(f) Case D – Battery Power (g) Case D – Battery Energy 

  

(h) Case E – Battery Power (i) Case E – Battery Energy 
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(j) Case F – Battery Power (k) Case F – Battery Energy 

Figure 2.4: Storage Dispatch Patterns – Cases A - F 

The different dispatch patterns of the storage unit schedules via the look-ahead problems are 
shown in Figure 2.4, where the differences between the two dispatch results are clearly shown. 

However, the IEEE 30 bus system is a small test case and all storage capacity was placed near 
a congested transmission corridor. By repeating this test in a 2383 bus of the Polish Test system, 
we can draw some conclusion regarding larger, more realistic systems. The results are shown in 
Table 2.3 and the cost reduction comparison results are shown in Figure 2.5. 

 

Table 2.3: AC-OPF versus DC-OPF dispatch operating cost results – Polish 2383 bus 

Scenario 
Storage 
Energy 

Storage 
Power 

Wind 
Penetration 

DC-OPF 
Cost 

AC-OPF 
Cost 

Cost w/o 
storage 

A 24 GWh 8GW 3.21GW 4.2674e+07 4.2568e+07 4.8148e+07 

B 46GWh 12 GW 3.21GW 4.1034e+07 4.0886e+07 4.8148e+07 

C 12 GWh 4GW 3.21GW 4.4763e+07 4.4700e+07 4.8148e+07 

D 46GWh 12GW 4.1730 4.0057e+07 3.9901e+07 4.7169e+07 

 
Figure 2.5. Cost Reduction from Battery Operation – ACOPF vs. DCOPF in 2383 Bus Case 
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From the results in Figure 2.5 it is evident that, while the cost reduction is still greater in the 
AC-OPF look-ahead case, the difference is much less pronounced (not exceeding 2%) than the 
30 bus case.  

  
(a) Case A - Battery Power (b) Case A- Battery Energy 

  

(c) Case B – Battery Power 
• Case B – Battery energy 

Figure 2.6: Storage Dispatch Patterns – Bus 100 

In order to demonstrate a sample of the different dispatch patterns that result from the two 
look-ahead dispatch paradigms, the power and energy plots for the storage unit in bus 100 are 
provided in Figure 2.6. 

2.6 Sample Timing Results 

The AC-OPF look-ahead dispatch was tested on various standard power system test cases, using 
an 1-hour look-ahead horizon. The timing results, on an un-optimized personal computer with an 
Intel Core i7-4510U 2GHz processor are reported in Table 2.4. It should be noted that 
convergence speed relies heavily on initialization and algorithm parameters, such as the Hessian 
scaling parameter in the PDIPM algorithm. Hence, timing results are only indicative and not 
definitive. 
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Table 2.4: Timing Results for Various Case Data – 1 hour look-ahead horizon 

SYSTEM CASE 
STATE 

VARIABLES 
CONTROL 

VARIABLES 
INEQUALITY 

CONSTRAINT 

AC-OPF 

EXECUTION 

TIME (S) 

DC-OPF 

EXECUTION 

TIME 

IEEE 24 Bus 288 396 516 0.1960 0.1050 

IEEE 118 Bus 1,416 648 2,532 0.7780 0.0760 

IEEE 300 Bus 3,600 828 6,066 2.0280 0.0960 

PEGASE 1354 16,248 3,120 28,194 17.1200 0.3030 

2383 Polish 
System (Winter 

Peak) 
28,596 3,924 45,972 53.3560 2.9174 

PEGASE 2869 34,428 6,120 61,920 59.5810 0.7120 

3120 Polish 
System (Spring 

Peak) 
37,440 3,576 59,598 48.5290 2.8620 

British 2224 
System 

26,688 4,728 45,930 33.1470 0.8620 

PEGASE 9241 110,892 17,340 207,186 235.8153 10.3530 

 

However, timing results serve to indicate that the look-ahead dispatch problem is solvable 
within reasonable time frames, even in a retail machine, with average computational power. For 
the larger test case, the PEGASE 9241 system, a 1-hour look-ahead problem was solved within 
less than 4 minutes. For reference, the DC-OPF look-ahead timing results are also provided. 
They are obviously advantageous compared to the AC-OPF formulation, given the strong 
convergence properties of the QP formulation and the smaller size of the problem, due to the 
modeling restrictions of the DC-OPF formulation.  
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3. Component Modeling for Flexible OPF 

3.1 Introduction 

In this Chapter we cover the new component models introduced in the multi-period OPF problem 
by this research, in order to expand flexibility options. Namely, battery energy storage systems 
(BESS), thermostatically controlled loads (TCL), dynamic line ratings (DLR) and aggregate 
control of distribution systems will be addressed. 

3.2 Nomenclature 

dd jbg +  Generator direct-axis admittance 

k
i

k
r

k
jVVV +=

~
 

Device Terminal Voltage phasor at step k in Cartesian 
Coordinates 

k
i

k
r

k
jEEE +=

~
 

Generator internal EMF phasor at step k in Cartesian 
Coordinates 

k
i

k
r

k
jIII +=

~
 Device incoming current in Cartesian Coordinates 

R  Generator Ramp Rate in MW/min 

t∆  Chosen step size for look-ahead FOPF 

ggg cba ,,  Generator’s quadratic cost function coefficients 

321 ,, KKK  Line thermal model coefficients 

kT  Line average conductor temperature at step k 

k
ambT  Ambient Temperature at step k 

k
thQ  Heating / cooling rate from TCL at step k 

tcla  TCL efficiency factor 

tcltcl CR ,  
TCL parameters – Conditioned Space to Ambient thermal 
resistance and Conditioned Space thermal capacitance 

tclu  TCL duty cycle 

ss jbg +  Admittance of Battery Energy Storage System 

minmax , EE  Maximum and Minimum Energy of Battery Energy Storage 
System 

+
kP  Battery charge power 

−
kP  Battery discharge power 

−+
ss nn ,  Battery charging and discharging efficiency respectively 

kSOC  Battery State of Charge, at step k 
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sss cba ,,  Storage quadratic cost function coefficients 

k
dP  

Active Power Consumed by Aggregate Distribution System 
at step k 

k
dQ  

Reactive Power Consumed by Aggregate Distribution 
System at step k 

k
B  Positive Definite Matrix defining the ellipsoidal feasible 

region of the Aggregate Distribution System at step k 

k
d  Vector defining the ellipsoidal feasible region of the 

Aggregate Distribution System at step k 

−+ ∆∆∆∆ parparqp BBBB ,,,  
22× matrices, defining the Active Distribution System state 

transition model 

−+ ∆∆∆∆ parparqp dddd ,,,  
12× vectors, defining the Active Distribution System state 

transition model 
k
jp  Value of j-th parameter of device model at step k 

3.3 Ramp-Rate Constrained Generation 

The effect of ramp-up and ramp-down constraints in the economic operation of power systems 
are very well studied for the unit-commitment problem [17], [18] and the look-ahead dispatch 
problem [19]. The inclusion of this model is particularly important in systems with high 
penetration of renewable energy sources. The quadratized model for the ramp-rate constrained 
generators used in this research is obtained by combining the steady-state single-axis model [20] 
with the addition of a ramp constraint: 
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Where the state and controls vectors are given as: 
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The objective function contribution at each step can be a quadratic cost function of the active 
power control variable: 

 gkgkgkk cPbPaf ++= 2),( ux  (14) 

Where a, b, c are cost coefficients provided by each generator’s cost curve. 

3.4 Transmission Line with Dynamic Line Rating 

Transmission line current magnitude is typically constrained due to the heat generated by Ohmic 
losses within the conductor. Such thermal limits are considered essential in virtually all Optimal 
Power Flow formulations and are usually treated as static maximum current magnitude limits. 
However, the observation has been made that the actual physical constraint with regard to this 
phenomenon is the transmission line’s temperature, and not its current. This gave rise to 
increasing interest in thermal modeling of transmission lines [21]. More recently, an IEEE 
Standard [22] was published, detailing a comprehensive line temperature model, including 
meteorological effects, such as ambient temperature, precipitation, solar irradiation and 
prevailing winds, all of which affect the dynamic thermal model of the transmission line. It has 
been recorded that static line ratings often underestimate the actual loading capability of the line 
by as much as 15% and that higher reliability can be attained if dynamic line ratings of lines are 
monitored [23]. Further work has focused on actual implementations of real-time dynamic rating 
monitoring installations [24].  

The dynamic thermal model of transmission lines is a good candidate for addition to the 
flexible dispatch formulation. Benefits in operating cost and reliability have been recorded in 
cases where dynamic ratings are taken into account in system operation. Furthermore, the 
dynamic nature of the flexible dispatch procedure outlined above allows the modeling of 
phenomena such as “temporary” overloading of critical lines, which a static OPF dispatch fails to 
capture. The hard constraint on line current magnitude can be removed, in favor of the actual 
conductor temperature limit. 

A model for dynamic line rating can be incorporated in the flexible OPF dispatch by using the 
simplified first-order model put forth in [22] that assumes the conductor temperature model is a 
first order linear ODE with the line current magnitude as an input. It must be stressed that a fully 
detailed model of conductor temperature variations is nonlinear and convoluted, but the first 
order approximation, derived from [21] and [25] and mentioned in the standard is adequate for 
the purposes of this research. In fact, a linear model is obtained by linearizing the radiation heat 
losses from the line, which is itself a less significant factor in the model, which strengthens the 
validity of the approximation used here. The fact that the time constant for the thermal 
phenomena in a transmission line is approximately 10-15 minutes means that a look-ahead 
dispatch with 5 minute time steps should be adequate to capture the underlying phenomena. 

The thermal model of the transmission line is as follows: 
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maxTT k ≤  

(15b) 

The state vector is given as: 

 



























=

k

k

k

i

k

r

k

i

k

r

k

T

z

V

V

V

V

1

,2

,2

,1

,1

x  (16) 

where kz1  is an auxiliary variable, representing the line current magnitude squared. It was 

introduced for quadratization purposes. The last equation in (15a) is a simple Euler integration of 
the simplified thermal dynamics of the line: 

 3

2

21 )( KIKTTK
dt

dT
amb ++−=  (17) 

Note that 3K  depends on solar heating of the line (and hence depends on metrological 

conditions). Hence, it is treated as a parameter for this model, extracted from the meteorological 
forecast. The term 1K  depends on convection heat loss of the line, as well as the line’s thermal 

capacitance and a linearized version of radiation heat loss. Hence variable wind speed & 
direction is to be considered, then  is also a parameter, whose value for the look-ahead 

horizon depends on the weather forecast, which in turn affects the forced convective heat loss 
due to the wind. A simplified version of this model, with constant  can be extracted, if 

constant wind pattern is assumed for the look-ahead horizon, or if the convective losses due to 
wind are altogether neglected. The latter will result in an overly conservative dynamic line rating 
model, because forced convection always has a cooling effect for the line. Finally, 2K  is due to 

ohmic effects within the line and it depends on conductor material only. Hence, it can always be 
considered constant. 

3.5 Thermostatically Controlled Responsive Loads 

A responsive TCL load is defined as a power consumption device whose primary purpose is to 
regulate the temperature of a monitored space so that it lies within a pre-determined tolerable 

1K

1K
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range: ],[ maxmin TTTin ∈ . Space air conditioning, electric water heaters and freezers are some 

prominent examples. The common characteristic of such loads is that the binding hard constraint 
on their operation is the minimum and maximum temperature of the regulated space. Hence, 
their operation can be scheduled by a look-ahead dispatch, so as to consume / refrain from 
consuming in order to support economic and reliable operation of the system.  

It should be noted that the provided system by such loads does not come at the expense of the 
customer. Since the temperature constraint is explicitly modeled, the load’s main function is 
served without customer inconvenience and any system support provided is within the 
capabilities of the load.  

The model employed for responsive TCL’s is: 
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Where the state and controls vectors are given as: 
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The ambient temperature is a time-varying parameter for this model, provided by the weather 
forecast.  

For our purposes, the electrical behavior of the TCL is modeled as a constant impedance load 

tcltcl jbg + . The thermal model includes the effect of ambient temperature and space temperature 

on the efficiency of the thermodynamic cycle and the temperature dynamics are modeled using a 

simple first-order model. Note that the duty cycle control variable k

tclu  is factored in when 

evaluating the device absorbed current, as well as the actual heat/cool rate in (18a). The 
equations in (18a) are obtained from a quadratization of the following equations: 
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This model captures both the active and reactive consumption of TCL’s, as well as the thermal 
losses of the house and the effects of control actions on TCL efficiency. 

3.6 Battery Energy Storage System 

The value of energy storage in addressing issues arising from renewable penetration, and 
providing ramping, regulation or peak shaving services has been recognized in the literature [26], 
[27]. Hence, consideration of high-accuracy energy storage models is a salient feature of the 
look-ahead dispatch framework. The energy storage model considers charging and discharging 
losses, as well as the capability of the storage plant to provide reactive power support. 
Obviously, the dynamic aspects of the battery’s state of charge, as well as the limitations in 
active power and energy capacity must be included in the model. 

The quadratized model for the battery energy storage system is as follows: 
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The state and control vectors for this model are: 
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This battery model includes losses in the electrical subsystem (through the admittance 

ss jbg + as well as internal losses in the battery. In fact, discharge efficiency −
sn  may be different 

from charging efficiency +
sn , and this phenomenon is appropriately modeled. For this purpose, 

charging power +
kP  is treated as a separate control variable from discharge power −

kP , each with 

their own control bounds. Note that  and  are constant parameters with a positive value less 

than one. Furthermore, the state of charge variable SOC is between zero and one and expresses 
the level of charge of the battery. Note that it is simply a scaled version of the battery’s currently 
stored power. 

In case it is desirable, the charge/discharge control terms can also participate in the objective 
function for this device: 

 
( ) ( ) gkkgkkgkk cPPbPPaf +−+−= +−+− 2

),( ux  (23) 

Note that the net power output from the battery is +− − kk PP . Also note that, unlike generating 

plants whose cost is non-negative in every period, storage plants are characterized by a negative 
cost when they are charging. 

3.7 Active Distribution System 

A large number of distributed active devices are expected to be connected in the future 
distribution feeder, including rooftop solar, plug-in hybrid electric vehicles, small scale storage 
and responsive loads. Each of these devices may be small in rating (a few kW), serving 
individual residential or small commercial customers. While it would be beneficial to include 
them in the transmission-level look-ahead dispatch formulation, such a choice is faced with 
important hurdles: 

• The transmission level dispatch is concerned with optimizing large transmission and 
generation assets, whose typical magnitudes are in the order of several Megawatts. 
Hence, a scaling issue arises, if all distribution devices are included individually in the 
dispatch 

−
sn

+
sn



 28

• Thousands of these devices may be connected to each feeder, and the typical distribution 
system may be composed of hundreds of such feeders. Hence, individual consideration of 
every active device will require the full inclusion of millions of state-space models in the 
look-ahead dispatch, thus increasing considerably the size of the look-ahead dispatch, 
which is already a computationally challenging problem, as discussed above. 

• The devices connected to the distribution system have their own set of binding 
constraints that need to be considered. Specifically, responsive loads must serve their 
main function without exception (no customer inconvenience), storage devices must 
remain within their physical limits etc.  

In order to solve the scaling and tractability issues that arise from introducing distributed 
resources to transmission-level dispatch, one approach is to obtain an aggregate representation of 
the distribution system. In this paragraph we formulate an aggregate model that relies on the 
description of the feasible set for the aggregate active and reactive power consumption of the 
active distribution system. Furthermore, a time-domain model is developed, that provides a 
description for the feasible P-Q set in period t given the power consumption in period t-1. Since 
this model aggregates a multitude of distributed resources that add up to several Megawatts of 
capacity, this approach addresses both the scale and the tractability issue. 

Ellipsoidal Model for Active Distribution System 

The adopted model for the active distribution system represents a compromise between 
tractability, simplicity and accuracy. To represent the available control capability in terms of 
active & reactive consumption of the distribution feeder, we assume that the feasible region of 
this feeder is an ellipsoid in the P-Q plane: 

 







≤+=







∈







= 1,:2 uudBu

Q

P
R

Q

P
F T

d

d

d

d

pq  (24) 

Where 0≻B  is a 22×  symmetric matrix and  2
Rd ∈  . 

An example of such a feasible region for a representative feeder with 800 8kW Air-
Conditioned Homes and 200 4.4kW, 6kWh batteries is shown in Figure 3.1. The physical 
meaning of this representation is that the center d of the ellipsoid is the “base case” consumption 
of the feeder – equivalent to a static representation of the feeder as a constant PQ load, and B 
represents the active-reactive control capabilities of the feeder. 
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Figure 3.1: P-Q feasible region for a sample feeder 

However, given that dynamic devices are connected to the feeder, the feeder’s consumption at 
one period affects the feasible consumption in the next. Intuitively, in a feeder with responsive 
loads, increased consumption in one period leads to reduced feasible consumption region in the 
next step and vice versa. For this purpose, the following time-domain ellipsoidal model for the 
active distribution feeder is adopted: 
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The model defined in (25a)-(25b) defines an ellipsoidal feasible region for the active and 

reactive power consumption in the k-th step, as well as a linear update for the matrix kB  and the 

vector k
d  defining the feasible ellipsoid at step k. The linear update depends on the 

consumptions at step k-1, as well as the value of the exiting parameter 1−k

jp  and the entering 

parameter k

jp . Notice that the exiting parameter models the prevailing conditions determining 

the feasible region at the previous step, while the entering parameter models the prevailing 
conditions at the current step, hence it is conceptually reasonable to include both in the state 
transition model linking the two steps. 
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Figure 3.2. Feasible Region Transition for aggregate distribution system 

An example of feasible region transition for the same sample feeder is shown in Figure 3.2. 

The model of (25a)-(25b) is already in quadratic form. It is not given exactly in the form 
presented above, as the expressions for the currents are missing. However, these are straight-
forward to obtain. Even though the implementation of this model in the look-ahead OPF dispatch 
includes the current equations, this model is not given here in the interest of conciseness.  

The values for −+ ∆∆∆∆ parparqp BBBB ,,,  and −+ ∆∆∆∆ parparqp dddd ,,,  are constant parameters for 

this model, as well as the initial values for B and d. Their choice seems arbitrary at this point. 
However, a procedure for their data-driven derivation will be outlined in the upcoming 
paragraphs. 

The inner ellipsoidal approximation of Convex Polyhedra 

Let us define the representation of the ellipsoid ),( dBE  with B  positive semidefinite as the 

image of the unit ball under an affine mapping.  

 }1,:{),(
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≤+== udBuxxbBE  (26) 

The ellipsoid ),( bBE  has a non-empty interior iff 0≻B  [30]. Let nRX ⊂  be a nonempty 

convex set. The inner approximation problem consists of finding the maximal ellipsoid contained 
in X. There can be several measures for “size” of an ellipsoid, including the determinant or the 
sum of the eigenvalues of B [30]. 

The following facts are known: 

Fact 1 [28], [29]. Let  be a nonempty convex set. Then the set of parameters ),( bB  of 

image representation of ellipsoids that are contained in X is convex (i.e. the set 
}),(:),{( XdBEdBY ⊂= ). 

Fact 2. The following functions are concave in ),( dB : 
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Where )(B
p
iλ  represents the i-th eigenvalue of B. 

The first fact means that the set of image representations of ellipsoids that are contained in X is 
convex, and thus tractable in theory, and the second fact means that some common measures of 
“size” of an ellipsoid, given its image representation are easy-to-maximize functions of the 
image representation. This leads us to the following result [28], given without proof: 

Fact 3 [28]. Let },,1,:{ mibxaRxP i
T
i

n
…=≤∈=  be a nonempty polyhedral set. Then, the 

maximal volume ellipsoid ),( dBE  contained in P can be found by the following problem: 
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(27) 

This is a solvable semi-definite program. 

Note that the constraints in (27) guarantee that the ellipsoid  is contained in X and the 

maximization of the determinant yields the maximum volume ellipsoid contained in X.  

Data-Driven Identification of Aggregate Distribution System Model 

Consider a simulation of the Active Distribution System for S steps. Suppose that for each step 

we have a polyhedral description of the feasible set in the P-Q domain, given by )(kA  and )(kb : 

 { })()(2)( : kkk bxARxF ≤∈=  (28) 

Furthermore, suppose that the consumption of the active distribution feeder between step k 

and k+1 is k

dP  for active power and k

dQ  for reactive power, given as the sum of active and 

reactive power consumption by all devices in the feeder: 
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 (29b) 

Suppose that the parameter vectors k

jp , the consumption values (29a), (29b) and the 

polyhedral descriptions of feasible sets (28) are known at each step. Then, the unknown 
parameters of the aggregate ellipsoidal model can be obtained by the following problem. 

),( bBE
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(30) 

The problem in (30) is semidefinite programming problem, since the added equality 
constraints with respect to (27) are linear in the decision variables. However, this problem can 

potentially be infeasible, i.e. such kB  and k
d  may not exist. For this purpose, it is best to relax 

the ellipsoid inclusion constraints using variables ikµ  and penalize their value by the norm of kµ

: 
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(31) 

It is worth noting that, unlike (27), the problems (30) and (31) do not maximize the sum of the 

determinants of kB , i.e. are not volume maximization problems. However, since the eigenvalues 

of kB  are the magnitudes of the half-axes [30], the objective function remains a measure of 
“size” of the ellipsoid, and hence the purpose of the inner ellipsoidal approximation remains. 
This choice is made for reasons of numerical stability, since the numerical experiments with the 
chosen objective function proved much more reliable compared to the ones using the 
determinant objective. 

Hierarchical Receding Horizon Control of Aggregate Distribution System 

The linear update assumption for the aggregate distribution system model, used in (25) allows 
for the formulation of a tractable SDP problem (31), but it is not necessarily accurate. It is, in 
essence, a simplification of the problem which does not necessarily guarantee accurate modeling 
of the aggregate behavior of the distribution system. Especially as the prediction horizon 
increases, larger errors are expected to accumulate due to the approximation. For this reason, a 
receding horizon control of the distribution system is developed here. The main idea is to use the 
K-step look-ahead OPF problem to determine the control (P-Q commands) of the distribution 
system over a smaller number of M steps. A disaggregation algorithm is used to distribute the P-
Q commands to individual devices. Subsequently, the new state of the distribution system is used 
to re-extract the aggregate model after the M steps conclude. This results in an aggregation – 
dispatch – disaggregation feedback loop. 
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The aggregate distribution model is used in a multi-step look-ahead optimal power flow 
problem, which includes AC power flow & dynamic transition constraints and minimizes the 
cost over a horizon of K steps. Upon convergence, the active and reactive dispatch of a smaller 
number of M steps (M<K) is taken as the distribution system’s dispatch for the dispatch horizon. 
This dispatch is then disaggregated to individual devices in the distribution system by solving an 
L2 norm minimization of the distance between the actual consumption of the feeder for the next 
M steps from the target dispatch, subject to device constraints. This results in individual device-
level commands for thousands of devices. The approach is depicted in Figure 3.3. It is important 
to note that the method has been developed on the assumption that an infrastructure of data 
acquisition and control capability exists at the distribution level to implement approach [31]. 

 
Figure 3.3: Two Level Distribution System Scheduling 

The aggregation phase consists of a solution of the SDP problem (31). The data for the 
problem come from a S-step simulation of the Active Distribution System. While this simulation 

is performed, the aggregate power consumption k

dP  at step k, the aggregate reactive power 

consumption k

dQ   as well as the parameters k

jp  are recorded. Furthermore, the feasible P-Q 

polyhedron for the aggregate consumption of the Distribution Network at each step are also 

recorded, i.e. a 2x2 matrix )(kA  and a 2x1 vector )(k
d . This simulation is deployed randomly, i.e. 

the control inputs at each step are drawn randomly from a uniform distribution. Upon collection 
of that data, an Aggregate Distribution System Ellipsoidal model (25) is fit to this data using 
(31). 

This model is subsequently added to the look-ahead OPF formulation (6) for a chosen look-
ahead horizon of K steps. Solution of this problem yields a P and Q time series target for the 
distribution system for the next K steps, which is the desirable aggregate consumption of the 
Distribution System. However, only M of these steps are committed as the actual target 
consumption. 
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This commitment is realized by solving a disaggregation problem, whereby the aggregate P-Q 

commands k

dP̂  and k

dQ̂  are distributed to the multitudes of devices connected to the distribution 

system. Because an approximate aggregate Distribution System P-Q model was used in the look-
ahead OPF, there are no guarantees that these P-Q targets are actually feasible. For this reason, 
the disaggregation problem is cast as an L2 norm minimization problem, where the normalized 
distance between the actual consumption and the target consumption over the next M steps is 
minimized. This problem is formulated as: 
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(32) 

Where: 

k

dP̂ , k

dQ̂  Target aggregate consumption of active and reactive 
power  at step k 

λ Reactive fitting importance parameter 

k
j

k
j QP ,  Active and reactive power consumption of device j at step k 

k
jx  State vector of device j at step k 

k
ju  Controls of device j at step k 

kp  Parameter vector (shared by all devices) at step k 

jjj DBA ,,  Matrices defining the state update model of device j in the 
discrete time domain 

jjj FEC ,,  Matrices defining the output model of device j  

jjj GH r,,  
Matrices and vector defining the inequality constraint model 
of device j 

1
jx  Initial state of device j, which is given 



 35

A weighting factor λ multiplies the normalized error of the reactive power in (32). This is used 
to regulate the relative importance of reactive power fitting with respect to active power fitting. 
Because the two commands are possibly conflicting, it is of interest to explore the tradeoff 
between them. More importantly, a greater weight should be given to active power, since errors 
in reactive power dispatch can cause serious mismatches between generation and load in the 
system, and this power will need to be provided by a standby generator, forcing an out-of-market 
action. Hence, ensuring perfect tracking of the active power commands provided by the look-
ahead OPF is more important than tracking reactive power commands. This is the reason why a 
value of λ smaller than one is typically chosen in our applications. 

Note that all device models in (32) are linear, with linear constraints. This is an obvious 
simplification. However, it is necessary to maintain the polyhedral assumption for the feasible 

set )(kF  of the active and reactive power at step k, as well as the tractability of the L2 norm 
minimization problem. The inequality constraints represent limits of device operation or 
customer inconvenience constraints. The latter are very important when considering active load 
devices, such as Thermostatically Controlled Loads of residential houses. Such devices must 
participate in active-reactive control without disruption of customer temperature requirements. 

The formulation in (32) is perhaps too high level and vague. In order to facilitate 

understanding for the interested reader, we provide a specific example with TCLN  air-conditioners 

and BATTN  batteries. A simple linear first-order model is used for both devices. Each house air-

conditioner j is assumed to have a constant reactive-to-active power ratio φj. For batteries a 
charging efficiency of 

icn ,  and a discharging efficiency of idn ,  is assumed for battery i. A 

separate active and reactive power control is assumed for each battery device, subject to 

maximum and minimum active/reactive limits. Note that temperature limits minθ  and maxθ  are 

enforced for each house, as well as energy limits minE  and maxE  for each battery. The control 

variables for the air-conditioner is the duty cycle of operation k

jTu ,
 of device j for period k and the 

control variables for batteries are k

jP

k

jP uu ,, , −+  and k

jQu ,
, the power charge, power discharge and 

reactive consumption per period. Negative values for these control variables correspond to active 

and reactive power generation by the battery. The only parameter involved here is outθ , the 

ambient temperature, which is common for all thermal house models. The thermal parameters of 
the first-order thermal model for the residential house are 

ja  and 
jb . 

The disaggregation problem now becomes: 
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(33) 

Note that the above formulation in (33) is consistent with the high-level framework in (32).  

Upon solution of (32), the actual controls ( )*k

ju  for each device j and each step k are obtained. 

These controls minimize the distance between the desired aggregate consumption and the actual 
consumption of the distribution feeder. This explains the use of the term “disaggregation 
problem” for (32). The value of the objective is a good metric for the performance of the 
ellipsoidal approximate model for the aggregate distribution system. Since this model 
approximates the feasible region of the aggregation, we expect the aggregate commands to be 
close to feasible. However, such guarantees cannot be provided, since the SDP fitting problem 
(31) is only a data fitting problem and does not ensure inclusion of the resulting feasible region 
within the actual polyhedral feasible region of the Distribution System. Hence, infeasibilities of 
the aggregate commands can and do occur in practice. They manifest as nonzero objective values 
for (32). The performance of the framework will be evaluated in the results section. 

Once the distance-minimizing controls ( )*k

ju  for the next M steps have been applied, the 

Distribution System will reside in a new state. Leveraging data acquisition and state estimation 
techniques that have been described in prior works [31], the new state is extracted, and a new 
simulation is performed, to obtain data for a new solution of the SDP problem (31). This results 
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in a new aggregate model for the feasible region of the Distribution Network, and subsequently a 
new solution of the Transmission-Level look-ahead OPF. Note that each time, the OPF 
commands after the M-th step are discarded and are never applied as Distribution-Level 
commands. 

3.8 Numerical Results and Examples 

This paragraph is dedicated to results from the application of the models formulated above. 
Various test cases, ranging from small instructive examples to larger, more realistic systems, are 
studied. Emphasis is given in the Active Distribution System Case. 

Energy Storage Results 

Energy storage system dispatch is, from an applications perspective, one of the most important 
justifications behind the look-ahead dispatch formulations discussed in this chapter. Detailed 
results from the dispatching of storage units in the IEEE 30 Bus system and the Polish 2383 
Winter Peak systems were presented above, where the comparison of storage dispatch between 
AC-OPF and DC-OPF methodologies was discussed. Hence, this result section will focus mostly 
on a sensitivity analysis of System Cost as a function of storage penetration for various 
renewable energy scenarios. 

 

Figure 3.4: IEEE RTS 24 Bus Total System Cost under various storage scenario 

The AC-OPF look-ahead methodology was applied to the small-size IEEE 24 Bus test case, 
for a given loading scenario, and various renewable and storage penetration scenarios. The 
scatter plot of operating costs for various scenarios is shown in Figure 3.4. Note that, for each 
storage penetration scenario, renewable penetration was increased up to the point that no feasible 
solution with full absorption of wind (no wind shedding) could be attained. The maximum 
feasible wind penetration for each storage penetration scenario is given in Table 3.1 

The following conclusions can be drawn from this small case study: 1. Maximum Feasible 
Wind Penetration increased with wind penetration, but at a decreasing rate, and saturates at some 
point. This is due to the fact that after a given penetration of storage, issues arise that storage 
penetration cannot address (for example congestion patterns not affected by the current location 
of storage). 2. Total cost decreases with storage for all scenarios. The marginal value of storage 
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(the decrease in total cost for a small change in storage) seems to be initially roughly the same 
for small renewable capacity (roughly 0.2$/MW/day), but it gradually decreases, in extreme 
levels of renewable penetration. 

Table 3.1: Maximum Feasible Wind as Function of Storage Capacity 

STORAGE POWER 

CAPACITY (MW) 
STORAGE ENERGY 

CAPACITY (MWh) 
MAXIMUM FEASIBLE WIND 

PENETRATION (MW) 

126 984 1,230 

252 1,968 1,425 

504 3,936 1,800 

756 5,904 2,010 

1,008 7,872 2,040 

1,260 9,840 2,040 

 

Thermostatically Controlled Loads 

For the purposes of investigating the potential applicability of the Thermostatically Controlled 
Active load introduced in Paragraph 3.5, we vary the level of penetration of TCL’s as a 
percentage of system load and record the results in terms of total operational cost as well as total 
energy consumption by thermostatically controlled loads. Subsequently, a version of the dispatch 
problems were TCL’s are passive (not under centralized dispatch) and the same quantities are 
monitored. The purpose of the comparison is to investigate whether a decrease in cost runs a risk 
of increase in energy consumption, due to less efficient operation of TCL’s. 

Table 3.2: Effect of TCL control on Cost & TCL Consumption 

 With TCL Control Without TCL Control 

TCL LOAD 

(%) 

Total 
Operating 

Cost ($) 

TCL Energy 
Consumption 

(MWh) 

Total 
Operating 

Cost ($) 

TCL Energy 
Consumption 

(MWh) 

5% 6.9788e+06 959.5052 6.9966e+06 904.1704 

7.5% 7.0496e+06 1.4421e+03 7.0711e+06 1.3560e+03 

10% 7.1257e+06 1.9269e+03 7.1502e+06 1.8080e+03 

12.5% 7.2048e+06 2.4113e+03 7.2344e+06 2.2601e+03 

15% 7.2874e+06 2.8950e+03 7.3230e+06 2.7121e+03 
 

The test was run in the 24 Bus IEEE Reliability Test system and the results are shown in Table 
3.2. It is interesting to note that centralized TCL dispatch achieves important cost reductions, 
reaching up to 0.7% reduction in total cost for a 15% penetration of controllable TCL loads. This 
reduction potential in total cost, coming exclusively from a small change in system operations, 
i.e. the inclusion of TCL’s in centralized dispatch, seems extremely attractive. However, it 
should be noted that significant investments in real-time TCL monitoring and communication 
equipment are needed to achieve their inclusion to the dispatch procedure. Nevertheless, the 
existence of this untapped potential is worth noting. 
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Another significant observation is that the TCL dispatch comes at a cost of less efficient 
operation of these loads, as their total energy consumption is evidently higher in all cases, if they 
are under centralized dispatch. Even though total energy consumed increases, total cost is lower. 
This means that, while TCL dispatch has value for the system, appropriate incentives must be 
designed for customers to participate in TCL dispatch, given that their individual consumption 
will actually increase. 

Sample results for the effect of centralized TCL dispatch are shown in Figure 3.5. The total 
system load with and without centralized dispatch, as shown in Figure 3.5a, is characterized by a 
smaller peak load in the dispatched case. Of course, increased consumption is required in earlier 
periods to pre-cool the air-conditioned space and avoid temperature violations. The duty cycle 
(dispatch decisions) and the corresponding temperatures for three sample TCL’s are shown in 
Figure 3.5b,c, where the pre-cooling effect is evident. 

 
(a) 

 

(b) 



 40

 
(c) 

Figure 3.5: TCL dispatch results (a) Net Load (b) Sample TCL temperatures (c) Sample 
TCL controls 

Dynamic Line Ratings 

The purpose of this case study is to investigate the effects of dynamic line rating used in 
conjunction with the look-ahead AC-OPF formulation. Namely, we will focus on the comparison 
between static (MVA based) line ratings and dynamic (temperature based) line ratings. Dynamic 
line ratings provide additional flexibility, since they provide the capability to plan ahead the 
overload of a certain transmission line, either to maintain feasibility of the OPF, or simply to 
reduce cost. In this paragraph, we will compare results for two power systems that are identical 
in all aspects except one: in System A, all transmission line models feature static ratings, 
whereas in System B, transmission lines are modeled using the dynamic line rating model of 
Paragraph 3.4. 

It should be noted that, whenever feasibility of the OPF cannot be achieved in a certain period, 
load shedding (rejection) is required in that period to attain a feasible solution. Load shedding 
consists of selectively reducing loads in specific buses. In order to highlight the capabilities of 
the Dynamic Line Rating model in guaranteeing feasibility in otherwise infeasible cases, 
minimal load shedding, for both active and reactive load, will be reported for each system. 
Minimal load shedding results are obtained a relevant look-ahead AC-OPF formulation that is 
interesting in its own accord and is discussed in other publications. For feasible cases (where no 
load shedding is needed), cost results will also be reported. 
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Table  3.3: Comparison of Static versus Dynamic Line Ratings for IEEE 30 Bus System 

 STATIC RATING (SYSTEM A) DYNAMIC RATING (SYSTEM B) 

LOAD  
(% OF 

BASE) 

Pshed  
(MW) 

Qshed 

(MVAr) 

Total 
Operating 

Cost ($) 

Pshed  
(MW) 

Qshed 

(MVAr) 

Total 
Operating 

Cost ($) 

94 0.0640 0.0306 6.4518e+04 3.3191e-04 1.5907e-04 6.4515e+04 

96 0.4301 0.1974 6.6281e+04 0.0015 7.3634e-04 6.6271e+04 

98 1.9291 1.6880 N/A 0.0034 0.0016 N/A 

100 6.4477 6.1939 N/A 0.0983 0.0951 N/A 

102 18.2616 18.0085 N/A 1.9294 1.9291 N/A 

104 35.9374 35.6559 N/A 5.4511 5.4506 N/A 

 

Table 3.4: Maximum Lagrange Multiplier – IEEE 30 Bus System 

LOAD  
(% OF BASE) 

STATIC RATING DYNAMIC RATING 

maxλ  maxλ  
94  535.3731 395.2749 

96  712.6980 398.4069 

98  988.0519 569.3133 

100  1.0088e+03 803.4572 

102  1.0297e+03 995.6196 

104  1.0506e+03 1.0195e+03 

Our first system of interest is the IEEE 30 bus system. The results for System A and System B 
are presented in Table  3.3 and  

Table 3.4. The results verify that the magnitude of load shedding is reduced if Dynamic Line 
Ratings are used, compared to the static ratings case. Furthermore, the total operating cost, for 
cases where load shedding is not needed, is reduced in the case of System B. It should be noted 
that reporting operational cost in cases where load shedding is required would not be meaningful, 
because the removal of load is bound to lead to reduced operational cost, due to the reduction of 
net load. Furthermore, the Lagrange multiplier at bus 8, which is the highest Lagrange multiplier 
for equality constraints, is evidently smaller in the dynamic ratings case. 
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(a) 

 

(b) 

 

(c) 

Figure 3.6: Results for base case scenario a. Load Pattern b. Load Shedding Schedule c. 
Lagrange Multiplier at bus 8 

 

The reasons behind the results of Table  3.3 and Table  3.4 can be explained with the help of 
Figure 3.6. In this figure it is evident that, in case A, load shedding is needed during all peak load 
periods. On the other hand, load shedding is largely avoided in the dynamic rating case, except 
for a minor load shedding needed during the largest peak. Finally, the Lagrangian multiplier in 
bus 8, shown in Figure 3.6c, is evidently larger during the critical periods for the static ratings 
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case. If the interpretation of the Lagrangian multiplier as a marginal cost of electric power is 
used ($/MW), this means that dynamic line rating has a sizeable effect in reducing the Locational 
Marginal Price (LMP) in the most constrained region of the system. The reason of the high LMP 
in bus 8 is due to the congestion of line 6 – 8. Thus Figure 3.6c highlights the capability of this 
modeling technique to stabilize electricity prices and alleviate the negative effects of congestion. 

Some details regarding the first order dynamic transmission line rating model are shown in 
Figure 3.7. The two congested lines in the system, line 6-8 (135kV, 35 MVA) & line 25-27 
(135kV, 16MVA) are examined. As shown in Figure 3.7a,c, use of the dynamic line rating 
allows temporary overload of both lines, in order to service the load, contrary to the static line 
rating methodology. As shown in Figure 3.7b,d the first order dynamic line model indicates that 
this mode of operation will not, in fact, violate the thermal limit of the line. 

  

(a) (b) 

  

(c) (d) 

Figure 3.7: Dynamic Line Rating Results in base case scenario 

 

The above observations were made on a rather simplified sample IEEE standard case with a 
small number of buses. In order to more properly study the benefits of dynamic line rating 
modeling in a realistic system, a similar testing methodology was applied to the PEGASE 1354 
system, a reduced equivalent of the entire European interconnected system, complete with 
comprehensive line rating data [32]. Unfortunately, dynamic line rating data was not readily 
available. As a result, realistic line parameters and thermal constant were assumed, using the 
corresponding IEEE standard [22]. A 7 hour loading scenario, with peak load 80,365MW was 
tested. This results in a look-ahead AC-OPF model with 223,482 variables and equality 
constraints and 195,804 inequality constraints. The results are summarized in Table 3.5 and 
Table 3.6. 
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Table 3.5: Comparison of Static versus Dynamic Line Ratings for the PEGASE 1354 System 

 STATIC RATING (SYSTEM A) DYNAMIC RATING (SYSTEM B) 

LOAD  
(% OF 

BASE) 

Pshed  
(MW) 

Qshed 

(MVAr) 

Total 
Operating 

Cost ($) 

Pshed  
(MW) 

Qshed 

(MVAr) 

Total 
Operating 

Cost ($) 

96 1.5245 -0.1705 2.8679e+06 1.6513 -0.2097 2.8678e+06 

100 1.6754 -0.1109 2.9893e+06 1.3256 -0.1858 2.9891e+06 

104 1.4186 -0.1155 3.1109e+06 1.6530 -0.1069 3.1107e+06 

110 3.6608 0.2000 3.2940e+06 2.2641 0.0131 3.2936e+06 

115 314.4635 45.4552 N/A 3.7350 0.2812 N/A 

120 2.7904e+03 459.3964 N/A 694.0905 136.8818  
 

 

Table 3.6: Maximum Lagrange Multiplier – PEGASE 1354 System 

LOAD  
(% OF BASE) 

STATIC RATING DYNAMIC RATING 

maxλ  maxλ  
96  113.7307 112.9966 

100  115.131 114.3696 

104 116.7387 115.8559 

110 121.6062 120.3828 

115 515.8255 190.2477 

120 537.3071 523.1247 

 

The results indicate that a negligible amount of load shedding is required in the base case 
(indicating a feasible solution). The effects of Dynamic Line Ratings in total system operating 
cost seem to be negligible, less that 0.1%. However, if load is gradually increased (in an effort to 
increase system stress) the load shedding required in order to restore feasibility is evidently less 
if Dynamic Line Ratings are considered in the look-ahead formulation. In fact, at 115% loading, 
load shedding can be largely avoided and at 120% loading it can be greatly reduced by 
introducing dynamic line ratings. The same picture can be painted by looking at maximum 
Lagrangian multipliers. Indeed, these multipliers are consistently larger for the static line rating 
case. As constraints become binding and load shedding is required, Lagrange multipliers in the 
corresponding buses abruptly rise. If dynamic line rating is modeled, however, congestion can be 
relieved, thus reducing the Lagrange multipliers in the neighboring buses. If these lagrangian 
multipliers are used for pricing, the beneficial effect of dynamic line ratings in mitigating price 
spikes is, once again, apparent. 

Active Distribution System 

The active distribution system modeling methodology was applied to a sample active 
distribution system. The distribution system consists of a population of thermostatically 
controlled loads and battery storage systems, which means that the disaggregation of P-Q 
commands is eventually cast as the least squares problem given in (32). 
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To test the generality of results, the parameters of all devices are drawn from a uniform 
random distribution around certain chosen central values. The various classes of devices are 
defined as shown in Table 3.7. 

 

Table 3.7: Devices in Sample Feeder 

DEVICE PARAMETERS 

Thermostatically 
controlled loads 

R 
(kW) 

C 
(kWs/0C) 

Prated 
(kW) 

nTCL 
Power 
Factor 

θmin 

(0C) 
θmax 
(0C) 

Class A TCL 2.9±5% 350±10% 8.0±10% 0.95 0.91±10% 18.0 24.0 

Class B TCL 3.4±5% 350±10% 8.0±10% 0.95 0.94±10% 17.0 23.0 

Class C TCL 2.9±5% 450±10% 8.0±10% 0.95 0.88±10% 18.5 24.5 

Class D TCL 3.4±5% 450±10% 8.0±10% 0.95 0.91±10% 17.5 23.5 

Batteries nc nd 
Pmax 
(kW) 

Emax 
(kWh) 

Emin 
(kWh) 

  

Class A Battery 0.9±1% 0.9±1% 4.4±1% 0.1±1% 6±1%   
 

A test feeder of 1,000 active devices, consisting of 200 TCL’s from each class and 200 
batteries was created. The maximum consumption of the feeder is approximately 7MW. A 
scatterplot with R & C values in the feeder considered in this Chapter is shown in Figure 3.8. 

 
Figure 3.8: TCL Classes in Sample Feeder 

The aggregation problem for this feeder is addressed by solving the ellipsoidal feasible region 
approximation problem (31). The data for this problem comes from a simulation of the feeder, 
where the inputs for the batteries and TCL’s are randomly decided. A sample execution of this 
“aggregation phase” is shown in Figure 3.9. The choice of penalty factor γ in (31) crucially 
affects the resulting model. A smaller γ yields a larger feasible ellipsoid, but may overestimate 
the actual polyhedral feasible region, while the a larger γ will yield a more conservative 
approximation and may lead to severe contraction of the feasible set if the number of steps 
increases. We consider erring on the conservative side is always preferred, and a penalty factor 

200=γ is chosen for the remaining results in this chapter, unless otherwise stated. 
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Figure 3.9: Feasible Polyhedron versus Ellipsoidal approximation for various penalty terms 
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As a first numerical experiment, we run a 100-step random simulation of this feeder and 
obtain an aggregate model by solving (31). Subsequently, we connect this feeder to bus 17 of the 
IEEE RTS 24 bus system and run the look-ahead OPF with a 10 minute interval to schedule this 
distribution system. The results are shown below: 

 

(a) 

 

(b) 

 

(c) 

Figure 3.10. Single-Run Distribution System Scheduling a. Net System Load b. Active 
Power Schedule c. Reactive Power Schedule 
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It should be noted that for this first experiment, we do not implement the receding horizon 
scheme of Figure 3.3. Instead, we perform a single run of the optimization algorithm for the 
entire day, and then we fit the operation of the feeder to the look-ahead OPF result, using the 
minimization scheme of (33). As shown in Figure 3.10b, the algorithm manages to schedule the 
distribution system so that consumption is reduced during the peak load of the system, at around 
12pm. The dashed line at Figure 3.10b is the schedule provided by the solution of the look-ahead 
OPF with the aggregate model obtained by the simulation data, while the solid black line is the 
closest L2 norm fit resulting from the solution of (33). Hence, even though the model proves 
useful in scheduling the distribution system using the look-ahead algorithm, it does not guarantee 
feasibility of the target schedule (i.e. the objective of (33) is not zero). This was expected, since 
our aggregate model is an approximation to allow for  transmission system optimization, not an 
exact modeling approach. This suggests the need for the receding horizon optimization approach 
of Figure 3.3. The TCL schedules for four TCL’s of different classes, which result from the 
solution of the L2 norm fit problem are shown in Figure 3.11. 

 
Figure 3.11: TCL temperature for the consumption schedule of Figure 3.10. 

Note that, according to Figure 3.11 all TCL’s are turned OFF during the peak times, in order 
to reduce distribution feeder consumption, which explains the temperature rise. Furthermore, 
their temperature does not violate the maximum temperature settings for each class, which are 
shown in Table 3.7. This is due to the constraints enforced in the fit problem (33). 

If the target dispatch is not realizable, this is a significant problem for the decision-maker (e.g. 
the balancing authority of the transmission system), especially if the active power consumption is 
different from the scheduled one. Large errors, such as the one showed in Figure 3.10 should be 
unacceptable. Use of the receding horizon framework is suggested as a solution of the modeling 
accuracy problem. Renewal of the model at specified intervals and re-solving of the look-ahead 
scheduling algorithm will allow a reduction of the inaccuracies, because it allows extraction of 
renewed state information for all TCL’s and Batteries in the system and obtaining of a renewed 
aggregate model, thus not allowing an accumulation of errors in the aggregate model.  

The results for the distribution system scheduling, for the same net load pattern as Figure 
3.10a, in the same transmission system (RTS ’79) and the same feeder composition as in Figure 
3.8, are shown in Figure 3.12. The dashed lines denote the target consumption schedules given 
for the rest of the day by the look-ahead OPF. There are 10 different dashed lines, each 
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corresponding to a different target schedule, as the look-ahead OPF is solved every two hours. 
The black line corresponds to the actual consumption, given by the solution of the L2 norm 
minimization problem. Note that only two hours of each target set point are committed. 

 

 

(b) 

 

(c) 

Figure 3.12: Aggregate Distribution System Scheduling for a 2h Dispatch Horizon 

 

From Figure 3.12a it should be noted that there is no error between the target active power 
consumption and the actual consumption. However, there is some error in the reactive power 
consumption, due to the small weight factor λ=0.3 used in (32), to reduce the importance of 
reactive power fitting. Active power mismatches can be much more threatening to power system 
operation than reactive power imbalances. It is also of note that, as shown in Figure 3.12, the 
schedule shows abrupt changes every two hours, as the model is updated, as expected. Note that 
the general schedule pattern is quite similar to the one yielded by the single-pass approach in 
Figure 3.10. 
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Figure 3.13: TCL temperature for the aggregate consumption of Figure 3.12 

Figure 3.13 shows the result of the L2 norm fit problem when it comes to the home 
temperature for four different TCL classes, in order to get the response shown in Figure 3.12. 
Note the general pattern of pre-cooling the houses in the early off-peak hours and turning-off the 
air-conditioners in peak times. Furthermore, note that different TCL classes have different 
thermal models, and are scheduled in different manners by the L2 norm minimization algorithm. 

In the final results for this section, we will show the operation of the distribution system with a 
receding horizon dispatch, and a 1h dispatch horizon. This results in 20 different dispatch 
schedules within our 20h period of consideration. The results are shown in Figure 3.14. We see 
that we achieve a zero error between target and realizable dispatch for active power (Figure 
3.14a), but occasional errors exist again in the reactive power scheduling (Figure 3.14b).  

 

(a) 
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(b) 

Figure 3.14: Aggregate Distribution System Scheduling for a 1h Dispatch Horizon 

In an effort to explain the operation of this framework, we accompany Figure 3.14 with Figure 
3.15. In Figure 3.15 we show the feasible region the approximate aggregate model yields with a 
dashed black line. The circle shows the look-ahead OPF target consumption, as given by the 
dashed lines of Figure 3.14, while the square shows the realizable consumption given by the 
solid black line of Figure 3.14, which is the result of the L2 minimization scheme. Only 12 steps 
(the first two dispatch horizons) are shown in Figure 3.15. 
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Figure 3.15: Feasible regions of the aggregate model, target consumption & L2 closest 
consumption per step, for the results of Figure 3.14 

 

It is evident that the two points overlap in most cases, showing a zero error between target 
consumption and actual consumption, verifying the applicability of the approach. However, in 
some cases such as step 7, the two points do not overlap, allowing for an error in reactive power 
consumption, which is also shown in Figure 3.14b. 

It should be noted that the following tools were used in this chapter. The L2 norm 
minimization problem was modeled using YALMIP [33] and the polyhedral feasible regions of 
distribution systems were obtained using the MPT toolbox [34]. The SDP problem to obtain the 
parameters for the aggregate modeling of distribution systems was solved using the SDPT solver 
[35], but the modeling was done using CVX [36] in MATLAB. 
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4. Company Enterprise Needs 

Although the need for this data in operation and control is very sensitive to latency, a much 
larger set of engineering and business functions need this data not as urgently. Thus, this data 
needs to be stored in a historical database that can be accessed by many functions and people 
inside and outside the enterprise. 
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5. Conclusions & Future Research 

5.1 Conclusions 

In this research, a real time operations framework for enhancing power system flexibility was 
presented and modeling of flexible resources was expanded. The following is a summary of the 
conclusions drawn from this body of work. 

With respect to the study of the look-ahead dispatch problem, the AC-OPF and the DC-OPF 
version of the problem were formulated and studied. It was verified that the AC-OPF version can 
be substantially more accurate, yielding to decreased costs, mainly due to accurate congestion 
modeling. However, it was also seen that the DC-OPF is a much more tractable model, with 
attractive convexity properties, and does not display the sensitivity to initial conditions that is an 
adverse characteristic of the AC-OPF. This explains its attractiveness for power system 
operators, who almost exclusively base their operating models on the DC-OPF formulation. 
While current AC-OPF solvers are not robust enough to justify a transition to AC-OPF look-
ahead scheduling, this research provided enough evidence to justify its benefits in terms of 
producing solutions that are feasible in real time. Furthermore, the proposed AC-OPF 
formulation is applicable as a necessary operating tool for issues of voltage control which the 
DC-OPF is incapable of modeling. 

As a next step of this research, several models were added to the look-ahead OPF procedure, 
and their benefits were analyzed. The first model added was a first-order dynamic TCL model 
for large-scale loads with thermal characteristics and temperature constraints. The resulting 
analysis showed that, with 15% penetration of thermal loads, cost savings of 0.8% can be 
achieved simply by scheduling load operation, without violating their temperature constraints. 
The control did have an adverse effect (increase) in TCL energy consumption, which was around 
10%, compared to the non-dispatched case. 

Our study of Dynamic Line Ratings resulted in important findings regarding their benefits in 
multi-step operations algorithms. Specifically, when studying heavily loaded test-cases, it was 
found that implementing dynamic line ratings in selected critical lines could achieve significant 
reductions in the amount of load shedding needed to restore feasibility. In many cases, load 
shedding could be altogether avoided, because critical lines could be temporarily overloaded 
without violating their temperature constraints. A study of Lagrange multipliers in critical buses 
showed that dynamic line ratings allow for increased stability in locational marginal prices, by 
alleviating congestion. The cost benefits of dynamic line ratings, on the other hand, do not seem 
to be significant. Compared to existing literature, the Thermal Line Model developed here 
provides a physically-based background for exceeding the very harsh restrictions of static MVA 
ratings. 

In terms of Aggregate Distribution System modeling and controls, a time-dependent 
ellipsoidal model was developed to capture the time-varying flexibility offered by active 
Distribution Networks. A model extraction procedure was developed, whereby thousands of 
small scale DER’s were aggregated into a single model by maximizing the resulting feasible 
region volume. The model’s linear nature & unavoidable aggregation gives rise to inaccuracies. 
However, it was verified that we can obtain a desirable response from aggregate active 
distribution systems – e.g. curtailed consumption during up-ramps and net load peaks. Also, a 
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disaggregation algorithm was developed to dispatch the active & reactive consumption targets to 
each individual distribution-connected device. The aggregation – optimization – disaggregation 
approach results in a viable hierarchical control scheme and solves the problem of scalability & 
dimensionality of the look-ahead optimization problem. 

5.2 Future Directions 

Many open problems associated with this research topic remain open. In the area of AC-OPF 
formulations, the presented algorithms obviously do not come with global optimality guarantees, 
and more work should be done towards obtaining a robust look-ahead AC-OPF solver. The 
benefits for transitioning from the DC-OPF to the AC-OPF have been documented here, but the 
AC-OPF must reach a maturity level consistent with the operator’s current requirements.  

In the area of dynamic line ratings, a very important next step would be to design to 
measurement infrastructure, particularly using PMU data, in order to identify and maintain 
thermal line models, in order to implement the approach. Dynamic state estimation may be a key 
element in order to acquire the data required to add dynamic line models to the system’s 
scheduling algorithms. Validation of such models in the field should be an immediate first step, 
in order for the outlined modeling approach to hold any real value. 

Related to aggregate modeling of distribution systems, two areas of research are the most 
promising: extending the approach to nonlinear models & including the distribution feeder’s 
power flow equations will be important augmentations to the work presented here. It is worth 
mentioning that the inclusion of all distribution customer models, as well as the feeder three-
phase unbalanced power flow equations in the distribution-level optimization will give rise to a 
formulation with a very large number of constraints and variables. Leveraging high-performance 
computing methods will be very important in addressing the tractability of this problem. As we 
suggested in this work, including this level of accuracy of distribution system modeling to the 
transmission scheduling problem is prohibitive, and aggregate model extraction is of paramount 
importance.  

 Furthermore, experimental verification in pilot feeders should be a good first step in 
demonstrating the applicability of hierarchical optimization. Such a research endeavor would 
have to cover the very important issues of data acquisition & distribution state estimation, in 
order to obtain the data and models needed to implement the suggested approach. These issues 
were not covered in this research, but they are an important area of future research. 

In the area of security analysis there is substantial open ground for future research. However, 
one key element in this topic would be to expand the static security analysis framework that we 
developed here to dynamic security assessment methods. In many cases, the system may be N-1 
secure in terms of static constraints, but it may still be dynamically unstable if a component 
outage happens. In that case the system is not in a de facto secure state, and thus it does not meet 
NERC criteria for security. The computational burden for this problem is increased. However, 
advances in high-performance computing and parallelization, along with decomposition 
algorithms, should also be leveraged to make such a framework implementable in current real-
life systems. 
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6. Appendix A. Thermal House Model 

6.1 A.1. Introduction 

 

Figure 16.1 Thermal House Model Drawing 

This document presents a simplified quadratized electro-thermal model of a house. A 
quadratized State and Control Algebraic Quadratic Companion Form is derived. As shown in 
Figure 16.1, the house is modeled as a single – area house with a single air-conditioning source. 
We assume a simple constant admittance matrix for the air-conditioner load (although a 
motor load should be examined for full detail). The effect of temperature in the efficiency of the 
air conditioner is also modeled.  

A simple first-order model for the house temperature dynamics is assumed, and a constant 
thermal capacitance and thermal conductance is assumed for the house. The model is assumed to 
be a “quasi-dynamic” model. 
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6.2 A.2 Compact Quadratic Form 

Here we derive the SCAQCF form of the House Thermal Model 

A.2.1 Compact Equations 

The device equations in compact form are: 
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where: 

I
~

 Vector of Current Phasors (A) 

V
~

 Vector of Voltage Phasors (V) 

Q  Heat Rate (W) 

P  Active Power (W) 

C
 House Thermal Capacitance CWs 0/  

R  House – Ambient Thermal Resistance CW 0/  

)(xh
 Heaviside step function 

)(tTin  House indoor temperature 

)(tTa  Ambient Temperature 

outT  Output air temperature, e.g. 130 C. 

sx  0=sx  if highlow TTT <<  and T is decreasing 

1=sx  if highlow TTT <<  and T is increasing 

u
 FOPF Control Variable (1: turn OFF AC, 0: AC stays as is) 

lowT
 Thermostat Low Temperature Setting 

highT
 Thermostat High Temperature Setting 

It is worth noting that the efficiency of this AC depends on the difference between the inside 
and the outside temperature. The control equation is the following: 
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A.2.2. Quadratized Equations 

The quadratized model must look like this 
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After the quadratization process, the equations are as follows: 
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where: 
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The control variable vector is: 

 ][ 1uu =  (38) 

 

The constraints are: 

 10 1 ≤≤ u  (39) 

 

 

The matrix assignments are: 
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