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Executive Summary 

With the significant growth in the integrated capacity of wind power generation, the variability of 

wind energy production poses new challenges to power system operations. The need for flexible 

resources is higher than ever. More rapid reserve is required, which results in the scarcity of 

balancing services. While existing practices rely predominantly on conventional generators to 

provide the flexibility to sustain reliable operations, with the push to integrate more renewables, 

there is a need for a paradigm shift. In particular, it is expected that, at some point, these renewable 

sources will have to take part in the electricity system balancing tasks. In this report, the focus is 

on the ability for renewables to provide reserve and ramping capabilities in order to address this 

challenge of integrating high levels of semi-dispatchable resources into the grid. The primary goal 

is to develop models to determine the optimal amount of reserve margins that such renewable 

resources can provide. Due to its significance as one of the most common forms of renewable 

generation, the work is focused on wind farm generation.   

Part I: Flexible Dispatch Margin Optimization 

Part I of the report investigates new methods to improve the energy and reserve scheduling in 

presence of renewable resources and develops an approach to enhance the reliability of service 

from renewable resources in real-time operation.   

While the share of renewable generation is increasing, existing market structure does not 

adequately account for uncertainty that such renewables impose. Uncertainty encourages the use 

of stochastic approaches. However, stochastic programming is complicated, time consuming, and 

poses new challenges for market integration including market pricing issues. Operators prefer to 

use approximate models to schedule energy and operating reserves and the operating reserve is 

usually determined based on an ad-hoc deterministic rule.  

In this report, stochastic models are used offline to derive deterministic operation policies for 

scheduling energy and reserve from renewables. This concept is an extension and enhancement of 

the existing deterministic procedures. Such an offline approach eliminates real-time computational 

burden and market pricing issues, while accounting for uncertainty in the operating conditions of 

the system.   

The proposed approach is based on creating policy functions for real-time operation of the system. 

A policy function is an operation rule which is a function of the operating state of the system. In 

the report, the reserve margin policy is derived through stochastic analysis based on the forecast 

of the wind generation.  

 Given an operating state, the policy function structure can return a scheduling decision for the 

renewable generator, which takes into account both the current and look-ahead operating 

conditions. By shifting computational complexity to offline analysis, the prediction-based policy 

approach has minimal added computational complexity to the existing energy management 

systems in real-time. The results presented for the case study indicate that the policy function based 

approach has performance close to that based on stochastic programming. By using the proposed 
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approach, the risk is reduced with minimal added computational complexity to the existing market 

management structure.   

In summary, the key takeaway points of this project are as follows: 

 A flexible reserve margin based algorithm is applied to generate offline policies for

discounting wind generation and scheduling energy and reserve in the presence of wind

generation. A two-phase framework is described to obtain appropriate policies for

scheduling wind generation. In the first phase, a generation dispatch is performed to obtain

the energy and reserve schedule for generation units. This phase leverages a scenario-based

stochastic programming approach to capture the effect of the representative wind

generation scenarios based on short-term forecast. This initial phase minimizes the

aggregate operating costs and risk costs relative to the modeled scenarios. In the second

phase, the decision from the first phase is tested against a larger set of scenarios to ensure

the adequacy of the scheduled energy and reserve.

 A testing method is derived based on the real-time scheduling procedure to assess the

performance of the policies obtained through the proposed training procedure for

scheduling wind reserve margin. The performance of the proposed policy training

algorithm is compared with its counterparts without applying the trained policies.

 A SCED (security constrained economic dispatch) model is derived for both the prediction-

based method and the no-policy method to enable comparison of the behaviors of the two

models. A notion of quality of service is derived for assessing the performance of the

reserve from renewables.

 The market implications of deploying the proposed prediction-based policy are analyzed

and compared with its counterparts without applying the trained policies. The results

confirm that the prediction-based policy along with a proper market structure can improve

the quality of service for scheduling energy and reserves from renewables.

 While a stochastic approach is used to generate the reserve margin policy functions in this

report, the policy functions can also be derived using other techniques or be designed using

various forms of data mining approaches. The policy function based approach has tractable

computational complexity for a large-scale power system and can also effectively enhance

the operation of renewable generators. The policy function based approach is a scalable

approach that can be applied to power systems and energy market.

Part II: The Value of Flexible Wind Dispatch in Stochastic Unit Commitment 

Renewable power generation, such as wind power, is commonly considered a must-take resource 

in power systems and only curtailed in cases where technical feasibility is compromised. This 

prioritization is currently in force in the European Union (Directive 2009/28/EC), even though the 

discussion to amend it is currently ongoing. We attempt to show that, given the technical 

capabilities of current wind turbines, this approach could lead to major economic inefficiency as 

wind integration levels in power systems increase. More specifically, our methodology consists of 

the following basic steps:  
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 We explore the expected benefit from dispatching wind resources at a lower level than their

available output in a Stochastic Unit Commitment (SUC) setting.  We provide a complete

framework to understand and evaluate the expected benefit from flexible wind dispatch in

the SUC setting.

 We present small motivating examples to offer intuition regarding the most common setups

where such benefit may occur.

 We utilize existing wind speed modeling techniques, which we enhance with a non-

parametric modeling methodology for the aggregate power curve.

 We extend a decomposition technique from recent literature that utilizes global cuts and

Lagrangian penalties to reach an optimal solution and adapt it to solve the problem.

 We propose a combined scenario reduction and decomposition algorithm to provide a

quicker answer by eliminating similar scenarios throughout the iterations of the

decomposition algorithm. The main idea behind this elimination is evaluating the similarity

of two scenarios based on them having comparable impacts when applied to the specific

problem as the decomposition algorithm iterations progress.

 We test our framework on a reduced model of the Western Electricity Coordinating

Council (WECC) system.

Part III: Risk-aware Optimal Bidding for Renewable Farms 

To help renewable farms be marketable while keeping the grid reliable, the focus of a significant 

amount of research in the literature is on devising better methods of integrating renewable energy 

sources (RES) to the existing power grid.   

We derive a criterion for renewable farms' participation in the grid reliability efforts. The 

renewable energy farms' bidding strategy is formulated as a portfolio optimization problem 

assuming a storage system. The portfolio is made of the day-ahead, real-time and reserve offers.  

 We formulate the renewable farm's day-ahead bidding decision as a newsvendor problem.

 We evaluate renewable farm's reliability performance assuming the derived news' vendor

based optimal policy.

 We provide further market opportunity to the renewable farm by assuming it can participate

in the reserve market as well. We assume the farm dispose of energy storage.

The approach developed in this work has two original defining concepts. First, its principal aim is 

not to arbitrage the day-ahead versus the real-time markets. Rather, it purposes to provide a reliable 

and yet economically sound day-ahead energy offer. Second, it provides risk-sensitive real-time 

and reserve offers that account for all possible imbalance penalties and real-time prices along with 

reasonable storage size and cost function.  
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1. Introduction 

1.1 Background 

Due to the increasing environmental concerns and the need for a more sustainable power 
grid, power systems have seen a fast expansion of renewable resources in recent years. In 
the U.S, thirty states have enforced Renewable Portfolio Standards (RPS) or other 
mandated renewable capacities policies [1]. Due to the recent technology and efficiency 
improvements as well as government financial support, the proportion of renewable 
resources in the generation mix is increasing. By the end of 2012, the worldwide installed 
wind capacity has reached 282.5 GW [2] and the installed capacity for solar has reached 
100 GW [3]. As the penetration level of renewable generation increases, the electric 
industry looks for efficient solutions to enable large-scale integration of renewable 
resources. To accommodate the increasing generation from such resources, important 
changes are needed both in the planning and the operation aspects of power systems. 
Emerging developments in computational capabilities within the realm of smart grid 
appear to provide promising solutions for planning and operation of the system in the 
presence of intermittent resources such as wind and solar energy.  

This report discusses the algorithms the operators of power systems can use to deal with 
the uncertainty of generation from renewable resources. The focus of the report is on the 
system operations, namely energy and reserve scheduling, in presence of wind 
generation.  

With the significant penetration of wind generation, the variability and uncertainty of 
wind energy requires the system to have additional flexibility. Flexibility requirements in 
a power system are a function of grid infrastructure, the existing generation mix, and 
operating procedures. When studying the operational aspects, flexibility is usually 
described within the context of operating reserves, entailing the system to be able to 
balance out the deviations of the realized generation and load from their forecasted 
values. 

Due to the uncertainty and variability of renewable generation, additional operating 
reserves may be needed to maintain the reliability of the system. Wind fluctuations in-
crease requirements for rapid reserve, which may result in the scarcity of balancing 
services. While existing practices rely predominantly on conventional generators to 
provide the flexibility to sustain reliable operations, with the push to integrate more 
renewables, there is a need for a paradigm shift. Such a paradigm shift will be based on 
having the renewable resources behave similar to the conventional generators. With the 
increasing share of renewable generation, it is expected that, at some point, these 
renewable resources will take part in providing ancillary services, too. There is also a 
regulatory push for such a paradigm shift. As an example, FERC (Federal Energy 
Regulatory Commission) has proposed an order to eliminate the exemption for wind 
generators from the requirement to provide reactive power  [4]. Recent research works 
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have investigated the possibility of having ancillary services from renewable resources. 
For example, reference [5] discusses the capability of wind and solar plants to provide 
voltage regulation. 
 
It is envisaged that renewable resources may be required to contribute towards the system 
balancing tasks. One approach is to provide operational flexibility by allowing for a 
discounted energy scheduling from wind generation. This will allow wind generators to 
provide a flexible dispatch margin by withholding their own potential production in 
forward markets so as to hold some expected output to balance out their own 
intermittency. Excess wind can then be used as spinning reserve to mitigate forecast 
errors and other system uncertainties. Dispatching the wind generator below the 
forecasted level allows for a higher degree of flexibility in the system operation. 

This study focuses on the ability of wind generators to provide reserve (in the form of 
dispatch margins) in order to address the challenge of integrating high levels of semi-
dispatchable resources into the grid.  

One primary objective of this study is to determine the optimal amount of dispatch that 
such renewable resources can provide. The aim has been to use stochastic models of wind 
generation to develop an affine policy function for scheduling energy and reserve from 
wind generators, which strikes a balance between the operating costs and the risk 
associated with the mismanagement of wind generation that leads to an imbalance 
between demand and supply. 

Subsequently, the focus of the work has been on developing scheduling and reserve 
policies when multiple dimensions of uncertainty are involved in the operating conditions 
of the system. Uncertainty complicates the process of economic dispatch and reserve 
scheduling for the system and renders the deterministic optimization approach less 
effective. The existing optimization approaches for handling uncertainty, such as 
scenario-based stochastic programming and robust programming are also 
computationally expensive and are thus, less practical for making real-time operation 
decisions. The present study investigates the possibility of exploiting offline stochastic 
calculations for training deterministic operation policies. Such deterministic policies are 
then applied to real-time system models to find the dispatch and reserve schedule. The 
offline policy generation technique is proposed based on stochastic dispatch margin 
scheduling to hedge against the real-time uncertainty of wind farm generation.  

Such offline analysis allows for modeling a broader range of uncertainty, making it 
applicable when there are multiple sources of uncertainty. 

1.2 Summary of Chapters 

This report is structured as follows. Chapter 2 provides a review of wind power 
forecasting approaches. The existing short-term wind power forecasting techniques and 
their general methodologies are discussed. Subsequently, the detailed procedure of the 
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Markov chain model-based wind generation forecast, which is the method used for 
generating wind scenarios in this report, is described.  

In chapter 3, a combined dispatch and reserve scheduling model is proposed by 
determining a flexible wind dispatch margin. A framework is presented to find the 
optimal policy to incorporate the flexible wind dispatch margin into the hour-ahead 
market. A finite-state Markov chain wind power forecast model, based on spatio-
temporal analysis, is utilized to find the appropriate level of wind dispatch margin.  

In chapter 4, an offline policy generation technique is proposed based on stochastic 
dispatch margin scheduling to hedge against the real-time uncertainty of wind farm 
generation. The proposed policy generation structure is developed in a forecast-based 
framework by taking into account both the wind generation status and the loading 
conditions of the system. The proposed approach is tested and the costs are compared to 
those obtained by using ad-hoc rules to analyze the effectiveness of the presented model 
in handling uncertainty. 

Chapter 5 investigates the market implications of deploying the deterministic reserve 
policy based on the offline stochastic analysis. The generators’ bids for energy and 
ancillary services are modeled. In addition, a market settlement scheme is proposed that 
can be used for the proposed policy. In the proposed structure the generators are 
compensated for the energy and reserve that they provide. The reserve providers are 
compensated both for the reserve capacity and the reserve activation. The reserve 
activation payments are dependent upon the performance of the reserve resource for 
various realization scenarios. The proposed approach is compared with a typical 
deterministic approach that uses no policy. 

In chapter 6, the conclusions to this report are presented. 
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2. Wind Farm Generation Forecasting  

2.1 Introduction  

With an expected high penetration level, wind generation integration is expected to 
change the existing power systems operating procedures including unit commitment, 
economic dispatch and ancillary services procurement, which are critical to ensuring the 
adequacy of bulk power systems. Compared to conventional generation (e.g., thermal, 
hydro, nuclear), wind generation has two distinct characteristics: variability and 
uncertainty. This is because wind power is dependent on the volatility of the wind. As a 
result, wind generation is considered to be semi-dispatchable meaning that the power 
output of a wind farm cannot be simply dispatched at the request of power system 
operators. To be specific, semi-dispatchable resources refer to intermittent resources that 
have a limited degree of controllability, unlike conventional generators that have full 
controlability. Due to the aforementioned characteristics, wind generation forecasting is 
critical to ensure that adequate resources for dispatch, ancillary services and ramping 
requirements are available all the time. 

It is worth mentioning that wind power forecasting methods can be classified according 
to forecast time-scale [6][6]. Seasonal or long-term forecast is used for resource planning 
and contingency analysis. Day-ahead forecast is used for market trading and day-ahead 
unit commitment and scheduling. Short-term forecast is used for hour-ahead unit 
commitment, real-time dispatch, regulation and load following [6].  

Due to the semi-dispatchability and uncertainty of wind, accurate forecasting models are 
needed to enable efficient integration of wind energy. The existing forecasting techniques 
for wind power can be categorized into a few broad categories [7][7]; physical methods, 
statistical methods, and artificial intelligence methods. Physical methods are based on 
numerical weather prediction and use comprehensive weather data and advanced 
meteorological techniques for wind speed forecasting [8][8]-[9]. Statistical methods try to 
find the inherent relationship within the interdependent measured power data. These 
models include time-series approaches such as auto regressive (AR) models [10], auto 
regressive moving average (ARMA)[11], and auto regressive integrated moving average 
(ARIMA)[12]. The artificial intelligence based approaches have also been applied in 
forecasting wind speed and power. These methods include artificial neural network 
(ANN) [13]-[14], support vector machine (SVM) [15]-[16], and evolutionary 
optimization algorithms [17]. 

There are also other hybrid approaches that take advantage of multiple forecasting 
methods by combining various individual models and their information [18]-[19].  

A vast amount of work in the existing literature focuses on wind speed forecast, assuming 
that wind generation from the farm can be directly calculated as a function of wind speed 
at one specific location in the farm. In reality, however, the power outputs of wind 
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turbines within the same wind farm can be quite different, even if the wind turbines are of 
the same class as well as being physically located close to each other. Therefore, forecast 
errors for existing approaches can be large [20].  

In this study, a spatio-temporal approach for wind power generation forecast is used, 
which takes into account the diurnal non-stationarity and the seasonality of wind [20]. 
Due to the inherent variability and uncertainty of wind farm generation, distributional 
forecast methods can manage the uncertainty better than point forecast methods. In this 
report, a Markov chain model-based wind generation forecast is used base on the analysis 
provided by authors of [20]. Their model is used in chapter 3 and chapter 4 of this report 
to generate distributional forecasts for wind generation. The critical observations and the 
principles of their forecast model is described in the following sections. 

2.2 Spatio-temporal Dynamics of Wind Farms 

A critical reported observation from the measurement data is the spatial dynamics [21]. 
The power outputs of wind turbines within a wind farm can be quite different, even if the 
wind turbines are of the same class and physically located close to each other [22]. 
Although the variable power outputs of wind turbines are not identical, it is assumed that 
they follow the same probability distribution if the wind turbines are of the same class.  

The other key observation is the temporal characteristic, i.e. the diurnal non-stationarity 
and the seasonality of wind farm generation. The diurnal non-stationarity can be tackeled 
by identifying a time epoch such that the wind generation exhibits stationary behavior 
within each epoch. The forecast model can then be developed for each of these epochs 
separately. According to [20], a three-hour epoch seems to be reasonable, i.e. the 
probability distributions of wind farm generation over three consecutive 1-hour intervals 
are consistent. 

2.3 Markov Chain-based Short-term Forecasting 

The procedure for developing the Markov chain short-term forecast is described in this 
section based on [20]-[22]. The objective is to address the statistical distribution and 
temporal dynamics of aggregate wind farm generation using a Markov chain. 

In this approach, in order to capture the spatial correlation between the power outputs 
from the wind turbines, a minimum spanning tree is constructed based on graph theory. 
The spatial correlation between the individual wind turbines is determined by using a 
linear regression model. The probability distribution of the aggregate wind generation can 
then be characterized using the wind speed measured at the reference meteorological 
tower in the farm. The temporal correlation is analyzed by using a finite state Markov 
chain model. The seasonality is tackled by designing the forecast model for each month 
individually.  
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Assume the Markov chain is discrete time, of order 1, and has  states. Let S denote the 
state space of the Markov chain. Each state  = [Г , Г ) , k ∈ {1, . . . ,	 } is defined 
as an interval of generation level, with extreme values given by Г  = 0 and Г = , 
where  is the maximum generation of wind farm w. The finite state Markov chain 
model is developed as follows: 

Define the quantity  as the average duration that , wind generation, stays in state S . 

Г Г

Г Г
 (2.1) 

where (·) denotes the cumulative distribution function (CDF) of the farm aggregate 
wind generation and (.) denotes the level crossing rate. Level crossing rate is defined 
as the number of times per unit time that the farm aggregate power  crosses Г  in 
positive/negative direction only. The cumulative probability distribution  of farm 
aggregate wind generation is characterized based on the historical data of wind farm 
generation.  

The level crossing rate is given by 

| 1 . (2.2) 

It is worth noting that, τ   plays a critical role in the Markov chain model and determines 
how well the stochastic random process  is captured. A small value of  suggests that 

 is more likely to switch out of the state  within a time slot, i.e., nonadjacent 
transitions are more likely to occur, and hence the transitional behaviors of  are not 
captured efficiently by the discrete-time Markov chain. Large values of   indicate that 
the quantization by the Markov chain is not fine grained, and the corresponding forecast 
would be less accurate. One objective of state space design is, thus, to make each   fall 
into a reasonable range [23]. In order to do that, one way is to introduce a constant  and 
find the variables {Г  ,…,	Г 	}by solving (2.1) numerically with  =	  , ∀k ∈ 
{1,…,	 }. 

Once the state space S is designed, the transition probabilities can be estimated as 
proposed in [24]. The probability of a transition from  to  is given by 

, ∑
, , 	 ∈ 	 1, … , 	 (2.3) 

where  is the number of transitions from  to  occurred in historical data. The 
representative generation level for each state  can be determined using the minimum 
mean square error principle, given by 

, Г , Г   
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Г
Г

Г Г
(2.4)

Therefore, given the current wind generation state of the wind farm output, the 
distributional forecast of the wind farm generation in next interval is given by 

, . , ∀ 	 ∈ 	 1, …	, (2.5)

Using this framework, the probability distribution of the immediate future state of the 
wind farm output can be predicted based on the most recent state of the system. This 
probability distribution expresses the transition probability from the current state to the 
future one.  

The scheduling framework modeled in this study is for the short-term, since it deals with 
hour-ahead decisions for acquiring energy and reserve. To determine the short-term 
schedule, the short-term wind power forecast model based on the finite state Markov 
chain model has been used. This model predicts the wind farm generation level in the 
next time epoch (10-min) to be among a few defined states with certain probabilities, 
thereby improving the tractability for stochastic programming. 
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3. Wind Power Reserve Margin for Flexible Energy and Reserve 
Scheduling 

In this chapter, a method is developed for scheduling energy and reserve from wind 
generators. The method is designed to strike a balance between the operating costs and 
the risk associated with the mismanagement of wind generation, which can lead to an 
imbalance between demand and supply. 

3.1 Introduction  

Due to the uncertainty and variability of renewable generation, additional operating 
reserves may be needed to maintain the reliability of the system. In order to operate the 
system in a secure and stable manner, sufficient reserve capacity must be in place to over-
come load and renewable forecast errors or unexpected failures of generators. When 
renewable resources drop below their anticipated production level, fast acting up reserves 
should be called upon. When the actual wind generation is above the forecasted value, 
however, a different complication arises in terms of ramping down conventional genera-
tors. In some power systems, the operators are required to incorporate all the available 
wind power. Even in deregulated systems, the actual dispatched wind exceeds the cleared 
amount due to the low real-time price of the wind and lack of over-provision penalty. A 
significant amount of down reserve is needed, as a result, to balance these intermittent 
resources. 

These operational aspects give rise to an interest in developing better approaches to 
determine the right amount and the location of reserve for systems with wind resources 
[25] - [29]. In [30], a review of the different assumptions and methods used to calculate 
the amount of different types of reserves with high penetrations of wind power is 
presented. The authors of [31] used a stochastic optimal power flow to supplement 
traditional energy scheduling and reserve procurement while considering the uncertainty 
of equipment outages, errors in demand forecasts, and intermittent generation. Another 
work, [32], balances the costs and benefits of spinning reserve while solving unit 
commitment. Wind power forecast errors are modeled by a Gaussian distribution and the 
benefit is expressed as a function of the reduction in the expected energy not served 
(EENS). Recent work [33] uses probability functions for conventional generator outages 
as well as discretized probability functions for wind power and load to create a 
distribution function of the system generation margin. The authors use a loss of load 
expectation threshold to calculate the required reserve to shift the generation margin 
curve to the right (positive direction). An overview of the current practices of operating 
reserves and methodologies used to estimate the increase in reserve allocation due to 
wind power is presented in [34]. 

As the wind penetration level increases, wind power producers are expected to behave 
similar to other market participants, e.g., renewable resources may be required to 
contribute towards the system balancing tasks. Recent studies [35]-[38] have considered 
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the participation of wind generators in the balancing markets. The results suggest that the 
wind farm is able to play a proactive role in providing downward regulation and increase 
its profits. The above studies have presented specific structures to determine the required 
reserve from conventional generators to cope with the uncertainty of wind generation. 
While this approach is feasible, it will impose a high cost on system operations since 
sufficient flexible capacity must be on-line to manage the uncertainty of the wind 
production. An alternative method is to allow wind generators to provide a flexible 
reserve margin by under-scheduling in forward markets. The concept of flexible wind 
reserve margin is a way to hedge against the uncertainty at an earlier stage. In order to 
provide a flexible reserve margin as proposed by [39], wind generators under-schedule in 
the hour-ahead energy market so as to hold some expected output as reserves. Excess 
wind can then be used as spinning reserve to mitigate forecast errors and other system 
uncertainties.  

Dispatching the wind generator below the forecasted level allows for a higher degree of 
flexibility. The concept of wind reserve margin enables the wind farm generators to 
behave similar to other generators and partake in the system balancing tasks. Fig. 3.1 
illustrates the concept of wind reserve margin. By withholding the potential output in the 
hour-ahead, the wind farm can mitigate the uncertainty related to the various possible 
realizations. 

    

 

Fig. 3.1. Possible realizations with wind reserve margin. 

The importance of operational flexibility has been recognized in the literature. Recent 
works have studied flexibility from both technical and economic perspectives [40]-[41] 
and proposed systematic definition for flexibility [42]-[43].  

The dispatch framework introduced in this report is seeking to provide operational 
flexibility by allowing for a discounted energy scheduling from wind generation. 

It is critical to analyze both the features of the wind power production and the reserve 
procurement approaches, as well as the associated tradeoffs, in order to ensure an 
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efficient energy schedule and flexible wind dispatch margin reserve margin. As the 
operator relies on more wind energy production, the system faces more uncertainty, 
thereby requiring additional reserve. System reliability may be jeopardized if the wind 
energy production is less than what the operator anticipated. Thus, costly ancillary 
services and fast acting reserves have to be called upon to maintain the secure operation 
of the system. Dispatching a low level of wind, on the other hand, will result in 
inefficient utilization of wind power. The operational costs are, thus, expected to be 
higher since more energy will be scheduled from conventional units. To address these 
tradeoffs, one must account for the scheduling costs and the risk imposed to the system 
due to the intermittency of renewable resources.   

In this chapter, a two-phase framework is developed to obtain appropriate policies for 
scheduling wind generation. In the first phase, a generation dispatch is performed to 
obtain the dispatch and reserve schedule for generation units. A scenario-based stochastic 
programming approach is leveraged to capture the effect of various possible wind 
scenarios. This initial phase minimizes the aggregate operating costs and risk costs 
relative to the modeled scenarios. In the second phase, the decision from the first phase is 
tested against a larger set of scenarios to ensure the adequacy of the scheduled energy and 
reserve. 

3.2 Wind Farm Generation Model 

In this subsection, wind generation models used for this study are described.  

3.2.1 Short-term Wind Forecast Model 

In this study, the Markov chain-based wind forecast model is used. This model takes into 
account the diurnal non-stationarity and the seasonality of wind [20] Using this 
framework, the probability distribution of the immediate future state of the wind farm 
output can be predicted based on the most recent state of the system. This probability 
distribution expresses the transition probability from the current state to the future one.  

The scheduling framework modeled in this study is for the short-term, since it deals with 
hour-ahead decisions for acquiring energy and reserve. To determine the short-term 
schedule, the finite state Markov chain model is used. This model predicts the wind farm 
generation level in the next time epoch (10 minutes) to be among a few defined states 
with certain probabilities, thereby improving the tractability for stochastic programming. 

3.2.2 Wind Scenario Generation 

In the current study, the short-term 10-minute wind generation forecast based on the 
finite state Markov chain model is used to develop a scenario tree for the wind generation 
in the next hour, i.e., for the next 6 time intervals of 10 minutes. A scenario tree is 
generally represented by a finite set of nodes. It starts from a root node (state) at the first 
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period and branches into nodes (states) at each next period. Every scenario represents a 
sequence of wind farm states, in the next 6 time intervals. The transition probabilities are 
derived using the finite state Markov chain model developed based on the wind farm 
data. Fig. 3.2 shows the structure of the scenario tree for 6 time intervals.  

10 20 30 40 50 60 t (min)  

Fig. 3.2. Scenario tree generated for the next hour. 

3.2.3 Scenario Selection 

The computational effort for solving a scenario-based stochastic program depends on the 
number of modeled scenarios. In this study, in order to reduce the computational burden, 
a scenario reduction procedure is executed on the original set of scenarios. A clustering 
technique is used to come up with a few scenarios that properly represent the whole set of 
scenarios. In this study, the technique introduced by [44][44] is used, which reduces the 
scenarios to their best approximation based on the Kantorovich distance of probability 
distributions. 

For two discrete probability distributions  and , with scenarios ,  and probabilities 
p , q  respectively, the Kantorovich distance is defined as: 

,
∑ ∑ , : 0,

∑ 	, ∑ 	 , ∀ ,
 (3.1) 

where , ≔ ∑ 	 , 1, … , T measures the distance between scenarios 
over the time horizon. If  is the reduced probability distribution of ξ, the support of  
consists of scenarios  for ∈ 1,… , \	 	where  represents the index set of deleted 
scenarios. For a fixed , the scenario set  that has minimal distance to  can be 
computed. The minimal distance is 

, ∑ 	 ∉ ,∈ . (3.2) 
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The new probability of a remained scenario equals the sum of its previous probability and 
the probabilities of deleted scenarios that were closest to it with respect to . The 
optimal choice of an index set for scenario reduction with fixed cardinality is an optimal 
reduction problem that can be solved using the iterative algorithm in [44]. The algorithm 
omits one scenario at a time till the desired number of scenarios is achieved.  

3.3 Joint Energy and Reserve Scheduling with Flexible Wind Reserve Margin  

In this section, a scenario-based stochastic dispatch and reserve scheduling problem 
based on the short-term wind farm generation forecast is formulated. In the proposed 
structure, it is assumed that the market operator clears the energy and ancillary services 
simultaneously, rather than clearing them sequentially [45]. The goal is to find the 
appropriate energy and reserve that can be scheduled from the wind farm to minimize the 
total cost. This total cost consists of the operational cost associated with procuring energy 
and reserve as well as the expected costs associated with inadequate appropriation of 
ancillary services.  

The proposed procedure has a two-phase structure and aims to find the expected level of 
wind farm generation, relative to the predicted value, that the operator can utilize. It is 
assumed that the operator intends to perform the scheduling procedure for the next hour. 
This look-ahead dispatch allows for better planning of the resources, considering the 10-
minute ramp up and ramp down constraints of the conventional generators. 

In this study, the expected amount of the wind generation that the operator can utilize is 
expressed as a fraction of the predicted wind generation for that hour. This fraction is 
referred to as the flexible wind reserve margin policy factor throughout this report. 

To find the best policy, the proposed two-phase procedure is performed for various 
factors. Initially, a certain fraction of the predicted wind generation is assumed to be 
utilizable. In the first phase, a stochastic program is solved. In the second phase, a risk 
analysis model is run to test the robustness of the first phase decisions. Section 3.3.1 and 
Section 3.3.2 describe these two phases. The process is repeated for various policy factors 
in order to find the optimal policy. The complete hour-ahead scheduling procedure can be 
viewed in Fig. 3.3. 
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Fig. 3.3. Procedure to determine flexible wind reserve margin policy. 

 

3.3.1 Mathematical Formulation of the Hour-ahead Risk-aware Energy and 
Reserve Scheduling 

The stochastic energy and reserve scheduling problem can be shown by (3.3)-(3.28): 

 

Min ∑ ∑ ,, ∑ , ∑

	∑ 			∑ 		∑ 	∑ ∆  (3.3) 
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, ∀ ,  (3.5) 

0 , ∀ ,  (3.6) 

∑ ∈ ∑ , ∀ ,  (3.7) 

, ∀ ,  (3.8) 

, , ∀ , , 1, , 1 (3.9) 
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Second-stage constraints: 
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∑ ∈ ∑ ∈ ∑ ∈ ∑ ∈
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	, ∀ , ,  (3.25) 

∆ , ∀ , ,  (3.26) 

∑ ∈ ∑ ∈ , ∀ , , , 	 (3.27) 

, ∆ , , , 0, ∀ , , , . (3.28) 

 

In the objective function (3.3), the first two summation terms represent the cost for 
scheduling energy and reserve capacity from generation units, including both 
conventional and wind generators. The remaining terms express the expected cost 
incurred over the set of considered scenarios. This part includes the load shedding cost, 
the penalty cost associated with the wind farm not being able to abide by its scheduled 
output, the cost of exercised reserve in each scenario, and the cost of the residual reserve 
from the wind. This last term will be further explained in the description of the 
constraints. Please note that	  would be set to a relatively high value to prevent load 
shedding/generation surplus as much as possible. For situations where additional wind 
production is not beneficial, it is assumed that there will be wind spillage, preventing the 
generation surplus to occur. 

Equation (3.4) provides the lower bound on generation dispatch. Equation (3.5) provides 
the upper limit on the energy and reserve scheduled from a conventional unit. Equation 
(3.6) enforces the reserve scheduled from each unit for each time interval to be within the 
10-min ramping capability of the unit. Equation (3.7) presents the reserve requirement of 
the system; it indicates that the total reserve scheduled from conventional generation 
units should account for the outage of any single generator (N-1 reliability criterion) as 
well as a security margin added to account for the uncertainty of the scheduled wind 
energy.  

Equation (3.8) presents the security margin considered for acquiring reserve in the 
presence of wind generations. Here, it is assumed that the operator should obtain 
additional reserve if the amount of scheduled wind is higher than a certain threshold. The 
threshold is set to be equal to the mean of the wind probability distribution function 
(predicted value) minus a factor  of the standard deviation. It is worth noting that this 
factor can also be used to set up a policy to determine reserve. A methodology similar to 
the one described for obtaining wind reserve margin can be applied for coming up with 
this reserve policy by addressing the trade-off between the scheduling and the risk costs. 
In the present study, however, this factor is assumed to be previously known and fixed, to 
avoid replicating the procedure.  

Equations (3.9)-(3.10) show the ramp up and ramp down constraints for generators. 
Equation (3.11) sets the limit on the total energy and reserve that is scheduled from the 
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wind generator. This limit is expressed as a factor α of the predicted value. This factor is 
referred to as the flexible wind reserve margin policy factor.  is the point forecast of 
the output of wind unit w for period t and is determined by calculating the expected value 
of wind generation for each time period, based on the generated scenarios. 

Equation (3.12) describes the linearized line flow for each transmission asset. Equation 
(3.13) represents the transmission line operational limits. Equation (3.14) enforces the 
power balance at each node.  

The second-stage constraints are intended to check the security of the first-stage decisions 
and must be satisfied for each of the modeled scenarios. Equation (3.18) enforces power 
balance in each node for each scenario. The second-stage generator outputs are based on 
the fixed first-stage generation dispatch plus the available reserve that is procured from 
the first-stage. The load violation terms have been added to ensure the feasibility of the 
problem for all scenarios.  

Equations (3.19)-(3.20) enforce the actual implemented reserve to be less than the 
amount scheduled in the first-stage. Note that  is the amount of reserve procured for 
both the upward and downward directions and, hence, has a positive value. Variable  
is the actual exercised reserve and can be both positive and negative. Equation (3.22) 
shows the residual reserve from conventional units, which is the amount of acquired 
reserve in the first-stage that has not been exercised in the recourse stage. This residual 
reserve can count toward the N-1 reliability criterion.  

Equation (3.23) states that if the implemented downward reserve happens to be greater 
than the amount scheduled in the first-stage (due to wind intermittency), it should be 
penalized (a penalty term is added to the objective). Note that it is also possible to have a 
violation of the upward reserve; for situations where additional wind production is not 
beneficial, it is assumed that there will be wind spillage. Equation (3.24) ensures that the 
implemented downward-reserve will not exceed the scheduled energy from wind. 
Equation (3.25) indicates that if the realization of wind is more than the amount used as 
energy and reserve in the second-stage, it can be considered as residual reserve and count 
towards the N-1 reserve criterion. Equation (3.26) shows the amount of potential reserve 
provided by wind unit in scenario s that has not been compensated for in the first-stage. 
Equation (3.27) conveys that the residual reserve after dealing with wind power 
uncertainty should suffice for satisfying the N-1 contingency reserve requirement. 

The solution of this first phase determines the dispatch and reserve decisions, i.e., , 
	 , , . The optimal values of these variables are then fed as inputs to the risk 
analysis phase. 
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3.3.2 Mathematical Formulation for the Risk Analysis Phase 

The risk analysis phase is a verification of the first-stage decisions. In this phase, a 
deterministic model is used to test the first phase decision against every possible scenario 
in the scenario tree. Given the first phase decisions for energy and reserve schedule, the 
second phase tries to minimize the realized costs associated with each possible scenario, 
including the cost of exercised reserve, the penalty cost associated with the wind farm not 
being able to abide by its scheduled output, the cost of the residual reserve from the wind, 
and the load shedding cost. The model is formulated as follows: 

Min ∑ ∑ ∑ ∑ ∆ ∑
	∑  (3.29) 

Subject to: 

constraints (3.18)-(3.28). 

In this phase , 	 , ,  are fixed parameters determined in the previous phase. 
The risk analysis model is run for a larger number of scenarios to test the performance of 
the model from the first phase. The cost in this second phase is a measure of the risk 
imposed to the system operation by the decisions made in the first phase. If the decisions 
of the first phase are robust against the deterministic runs in the second phase, less cost 
would be incurred in this second phase. 

3.3.3 Wind Scheduling Policy Determination 

As mentioned in the previous section, parameter α is introduced into the dispatch 
structure to allow for determining the appropriate policy for scheduling energy and 
reserve from wind. Beginning with a small value for α, the optimization problem 
described in Section 3.3.1 is solved. The obtained solution gives the optimum schedule as 
well as the operational cost for that specific value of α. The resulting energy and reserve 
schedule is then used as the input for the risk analysis problem described in Section 3.3.2 
to come up with the risk cost associated with that scheduling policy.  

This procedure is repeated for various α values and the optimum operational and risk cost 
associated to each policy is recorded. The policy that has the minimum sum of the 
scheduling cost and the risk cost is expected to be the least-cost policy for scheduling 
energy and reserve from wind. 
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3.4 Numerical Results   

3.4.1 Test System and Simulation Setup 

The proposed structure has been applied to the IEEE Reliability Test System (RTS)-96 
[46]. It is assumed that each generator’s reserve bid is 15% of its energy bid. The test 
system is modified by integrating a 500 MW wind farm, at bus 4. The wind generation 
data of a wind farm for the year 2010 [20] is used after proper scaling to suit the chosen 
wind farm capacity. The average wind penetration (energy produced by wind generation / 
load capacity) is 7%.  

Before running the hour-ahead dispatch, a deterministic day-ahead unit commitment 
(UC) is performed using the day ahead persistent point forecast to determine the 
commitment schedule for the 24-hour horizon. The restrictions, such as the minimum up 
and down time limits, are enforced in this stage. While it is assumed that wind is not 
allowed to provide reserve within the day-ahead UC model, the proposed model is 
amenable to such a day-ahead UC solution. The resulting on/off status of the generators 
is fed into the modeled hour-ahead energy and reserve scheduling program. 

The optimality gap for the unit commitment problem has been set to 0.01. The original 
problem has 7128 binary and 9360 continuous variables, with 42278 constraints. This is 
decreased to 7008 binary and 9184 continuous variables with 26086 constraints in the 
reduced MIP problem. The resulting on/off status of the generators is fed into the 
modeled hour-ahead energy and reserve scheduling program. 

The hour-ahead model includes 10-minute intervals across a 1-hour horizon. For the 
current simulation, the finite state Markov model of the spatio-temporal analysis for the 9 
AM-12 AM epoch is used since the output of the wind farm exhibits a high variability in 
this epoch [20]. In this report, the hour-ahead scheduling has been performed for four 
typical days in different seasons. The wind scenarios are generated in a scenario tree 
format for the next 6 time intervals, i.e., a 6-stage scenario tree is constructed. As 
explained in Section 3.2.2, in each stage a set of branches are added to the tree to 
represent the possible transitions to the next interval based on the 1-step Markov chain 
transition matrix. Due to the strong time-correlation that the wind data exhibit, the 
number of probable paths of this tree stays within a reasonable range (about 3000 
scenarios for a 100-state Markov model, instead of 100^6). For the first phase, i.e., the 
stochastic programming phase, the number of scenarios is further reduced using the 
clustering algorithm described in Section 3.2.3 and a total of 50 scenarios are considered. 
The standard deviation factor for (8) is set to 1 (β=1). The problem is a linear program; 
existing commercial grade linear programming solvers can efficiently handle this SCED 
problem today for large-scale systems.  

In the second phase, the risk analysis model is run for all the possible scenarios. The 
optimal policy is determined based on the results obtained from these two phases. 
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All simulations are performed using the Gurobi solver in AMPL environment on an Intel 
(R) Core (TM) i7-3770 CPU @3.4 GHz computer with 16 GB of memory. The solution 
time is of the order of a few seconds for each scheduling run in the first phase and less 
than 0.1 second for each risk analysis run in the second phase. 

3.4.2 Results and Discussions 

Starting from an initial wind policy, the first and second phase optimizations are solved 
for various values of α as described in Section 2.3. These simulations started from a no 
wind policy (α 0 , but the initial policy can be set to a higher value, e.g., the minimum 
predicted level in the scenario tree to speed up the process. The simulation results for the 
9 AM-10 AM epoch of April 1st are plotted in Fig. 3.4. As Fig. 3.4 shows, the scheduling 
cost decreases monotonically as the expected utilizable generation from wind is 
increased. The reason is that more energy is scheduled from the cheap wind generators. 
The risk cost, however, increases with α since, by scheduling more wind, there will be a 
higher probability of not being able to supply the load. In other words, there are more 
instances that the actual wind is less than what is counted on in the first-stage. The figure 
suggests that, for the simulated hour, the total cost of the two stages reaches its minimum 
around α 1.1, i.e., when the total scheduled energy and reserve is 1.1 times the 
predicted value. Figures 3.5, 3.6 and 3.7 show the scheduling cost versus the risk cost for 
the same time interval on 3 other days in other seasons. The optimal policy factor α is 
different for different months, ranging from 0.7 to 1.1, but the trends are similar in all of 
the figures.  

Note that in this procedure the simulations are performed for a discrete set of values for α 
and thus, the lowest total cost found in this way is not the exact minimum cost for the 
continuous range of α. 

 

Fig. 3.4. Scheduling cost and risk cost as a function of the flexible wind reserve margin 
policy factor (April). 
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Fig. 3.5. Scheduling cost and risk cost as a function of the flexible wind reserve margin 
policy factor (August). 

 

Fig. 3.6. Scheduling cost and risk cost as a function of the flexible wind reserve margin 
policy factor (October). 
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Fig. 3.7. Scheduling cost and risk cost as a function of the flexible wind reserve margin 
policy factor (February). 

 

Fig. 3.8 presents the scheduled energy and reserve from wind unit for the 6 future 10-min 
intervals, with respect to the predicted value. Note that the energy scheduled from the 
wind is below the forecasted mean but the total energy and reserve scheduled from the 
wind can go above the forecasted mean to provide an opportunity of using extra wind for 
balancing tasks. Also note that, as explained earlier, a scenario tree structure has been 
used for deriving the future possible scenarios. The number of possible outcomes 
increases as we move forward in the scenario tree. Hence, the standard deviation of the 
forecast error increases with the prediction horizon. As a result, the operator is less 
confident about the outcome of the wind farm and commits less energy and instead more 
reserve from wind generation in later time intervals as suggested by Fig. 3.8.  

 

Fig. 3.8. Scheduled energy and reserve from wind vs. the forecasted level. 



 

22 
 
 
 

 

As described in Section 3.3.3, the stochastic procedure to determine the wind policy is 
performed offline. To evaluate the actual performance of the selected policy, the obtained 
policy needs to be tested against real-time data. In this study, the data for a specific hour 
of one day have been used to come up with the optimum policy factor. For this particular 
example, it is assumed that the determined policy based on this offline analysis is then 
used for the same hour in the following day. Fig. 3.9 shows the simulation results for the 
first week in October. The results are compared to a benchmark policy for the assumed 
set of scenarios; this benchmark policy would be obtained if the operator had the ability 
to run this offline approach in real-time. As Fig. 3.9 suggests, using the proposed forecast 
based policy can decrease the operational costs compared to the case where no flexible 
wind reserve margin policy factor is applied. The forecast based policy also performs 
well relative to the benchmark, without imposing the same real-time computational 
burden to the system. 

Fig. 3.10 illustrates the amount of energy and reserve under different wind penetration 
schemes. Compared with the case of 10% penetration level, more energy and reserve is 
scheduled from wind farms for higher penetration levels. Also, the amount of energy 
scheduled from conventional units is less when wind penetration is increased. The results 
suggest that the proposed model is beneficial for dealing with the large integration of 
wind, which is assumed to introduce more uncertainty to the operation of the system. 

It is worth noting that the optimal choice for the flexible wind reserve margin policy 
factor depends on the wind generation forecast, as well as the operating conditions of the 
power system. Therefore, the policy factor is going to be different for different wind 
generation levels, load levels, and the system operation conditions. Future work should 
investigate various load parameters (e.g., hourly data, weekday and weekend data) as 
well as other system operational parameters (e.g., transmission congestion patterns) to 
assort the policy factors based on wind generation levels and system operational 
conditions. These issues are further discussed in the next chapter. 
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Fig. 3.9. Performance of the proposed policy determination vs. no policy and benchmark 
policy for a sample week in October. 

 

 

Fig. 3.10. Scheduled energy and reserve vs. penetration level. 

 

The proposed flexible dispatch model seeks a balance between the operational costs and 
risk by allowing for flexible scheduling from wind power producers. Underestimating 
wind power allows the wind producer to ramp up when extra wind power production is 
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available. Control mechanisms such as controlling the blade pitch would allow for 
adjusting the rotation speed and the generated power. Another simple way is to allow the 
wind production from the previously locked turbines. To elaborate, out of the entire wind 
farm turbines, a subset are producing power whereas the rest are locked and not 
producing even though they could. They can be unlocked and allowed to produce. In the 
proposed model, if the wind is underestimated and there is the ability to generate more 
and the system needs it, other turbines can be turned on as required by the system to 
provide reserve. If the system does not need the extra wind generation, wind curtailment 
is allowed, which would be performed by shutting down the extra wind turbines. 

It is apparent that the optimal choice for the wind policy depends on the cost of curtailing 
load. In this study, the demand is considered to be perfectly inelastic and a fixed value of 
lost load (VOLL) has been applied to penalize the load shedding. However, if the demand 
is considered to be elastic, i.e., if demand response is taken into account, the risk costs 
can be reduced. Considering demand response can allow for larger wind reserve margin 
policy factors by introducing another degree of freedom in the proposed flexible dispatch. 

3.5 Conclusions 

Integration of large-scale wind generation in the power system increases the uncertainty 
that the operator has to deal with due to the variability of the wind energy. The predicted 
wind generation using forecasting methods may not be the amount that is reliable for the 
operation of the system. Utilizing the concept of flexible wind reserve margin allows the 
operator to allocate a discounted amount of wind for energy, leaving a reliability margin 
to hedge against uncertainty. The extra production of the wind farm can then be used for 
balancing purposes. In this report, a joint hour-ahead energy and reserve scheduling 
framework is proposed. A finite-state Markov chain 10-minute-ahead wind power 
forecast model, based on spatio-temporal analysis, has been utilized to calculate the 
conditional probability distribution of the wind farm generation for each step. The 
presented framework is used to find the appropriate level for allocating wind based on the 
predicted output. Numerical studies, via the IEEE-96 test case, demonstrate the 
significant benefits obtained by incorporating the flexible wind reserve margin using a 
Markov-chain-based forecast. The actual and forecasted wind generation data are used to 
analyze the effectiveness of the presented model. The results communicate that 
scheduling the flexible wind reserve margin will allow the operator to increase the 
reliability margin of the system while reducing the total cost. Discounting the scheduled 
generation from wind would improve the reliability through handling the uncertainty at 
an early stage. It also addresses the existing cost trade-off between scheduling generation 
from wind and the risk associated with wind farm uncertainty and improves the overall 
cost of supplying the demand. The proposed structure can be effectively used to deal with 
the forecast errors and achieve a more secure system operation. 
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4. Offline Optimization of Reserve Policy Factors for Scheduling 
Wind Energy and Reserve  

The focus of the present chapter is on developing a structure that uses offline analysis to 
develop wind reserve margin policies, which can be employed in real-time operations to 
deal with uncertainty. An algorithm, based on the approach used in chapter 3, has been 
applied to create offline policies for discounting wind generation and scheduling energy 
and reserve in presence of wind. 

4.1 Introduction 

Wind generation uncertainty encourages system operators to apply stochastic approaches. 
Stochastic programming methods can be too time-consuming to obtain an efficient 
solution in real-time operations, which would make them impractical. For this reason, 
inefficient, but fast, deterministic approaches are preferred over efficient, but slow, 
stochastic ones. The challenge to implement stochastic programming is also due to the 
computational burden that virtual bidding is adding to market security constrained unit 
commitment (SCUC) and security constrained economic dispatch (SCED) models by 
increasing the amount of active transmission constraints. Market pricing is also another 
barrier against the adoption of stochastic programming.  

In real-world operational practices, the operating reserve is usually determined based on 
an ad-hoc deterministic rule. In existing market models, deterministic reserve proxy 
constraints are applied in SCUC and SCED. One basic policy, which is a necessary 
condition for N-1, states that the scheduled reserve quantity should exceed the single 
largest contingency. Other deterministic rules describe the required reserve as a function 
of both load level and wind generation level. The 3+5 rule suggests that the reserve 
should not be less than 3% of predicted load plus 5% of predicted wind generation [54]. 

It is worth noting that these rules are operational state independent except for acquiring 
reserves based on some fixed percentage of wind, hydro, or load level. This motivates 
developing improved deterministic policies to better exploit the flexibility of power 
systems in presence of operating condition uncertainty. Offline stochastic simulations can 
be used to generate such deterministic policies. Offline approaches eliminate real-time 
computational issues of stochastic programming.  

This report aims to assess the benefit of such hybrid methods in dealing with uncertain 
operating conditions. In the previous chapter a framework was presented that enhanced 
the flexibility of the system by allowing the wind generators to leave a flexible reserve 
margin. The proper level of wind reserve margin can be determined using an optimization 
framework that tries to strike a balance between the operating costs and the risk 
associated with the mismanagement of wind generation.  
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With the advent of computing and data storage capabilities, utilities are going to be 
capable of handling extremely large data sets. These data sets, often called big data, are 
used to improve decision-making. The development of data mining techniques provides a 
promising solution to handle the mentioned challenge regarding running real-time 
stochastic programs. 

Data mining approaches have been applied in various domains of power system studies 
including dynamic security assessment [55]-[58], load forecasting [59]-[60] and wind 
generation prediction [61]-[64]. Learning schemes have been proposed to leverage the 
power of data mining tools. In such schemes a knowledge base is, first, prepared through 
comprehensive offline studies, in which a number of forecasted operating states are used 
to create a set of training cases. Then, the knowledge base is used to create classification 
models that characterize the decision rules to determine policies. The decision rules are, 
finally, used to map the real-time measurements to the classifications of the system 
conditions for making operation decisions.  

In this chapter, an optimization model serves as a hypothetical, ideal reference case to 
determine the dispatch and reserve policies. Given the large number of possible operating 
conditions, in order to be able to use this approach, one needs to classify the operating 
conditions and find the optimal policy for each category. The wind flexible reserve 
margin is assumed to be a function of the generation and load conditions. The system 
operator can then use the near real-time measurements fro m the wind farm to choose a 
proper policy based on the classified operating conditions.  

In this study, a training procedure has been proposed for using stochastic methods as well 
as the wind forecasting models to come up with proper policies for deploying wind 
generation in power system. The merits of the proposed method are twofold. First, the 
uncertainty is addressed by leveraging the scenario-based stochastic method in offline 
analysis. Second, the real-time procedure stays easy to implement by deploying 
deterministic policies resulted from offline studies. 

Subsequently, a testing method is derived to assess the performance of the policies 
obtained through the proposed training procedure for scheduling wind reserve margin. 
The performance of the proposed policy training algorithm is compared with its 
counterparts without applying the trained policies. The results show that the training 
based on the risk-aware scheduling can reduce the overall cost. Therefore, it is shown that 
the proposed structure allows for capturing the benefits of a stochastic scheduling without 
having to deal with a large set of scenarios in real-time. 

4.2 Training the Policy Factors (Offline Analysis)  

As described in chapter 3, a flexible wind dispatch policy is used, where the amount of 
the wind generation that the operator can utilize is expressed as a fraction of the 
forecasted wind generation. This fraction is referred to as the wind reserve margin policy 
factor throughout this report. 



 

27 
 
 
 

The algorithm proposed in the previous chapter for developing such policy factors, solves 
a scenario-based stochastic dispatch and reserve scheduling problem based on the short-
term wind farm generation forecast. The short-term 10-minute wind generation forecast 
based on the finite state Markov chain model is used to develop a scenario tree for the 
wind generation in the next hour, i.e., for the next 6 time intervals of 10 minutes. 

The resulted policy should tell the operator the level of wind farm generation that can be 
scheduled for the next hour. One challenge in performing this look-ahead dispatch is that 
the number of scenarios increases with the increase in the length of interval. Furthermore, 
if the system includes multiple wind farms, the total number of scenarios will increase 
rapidly. Running a stochastic optimization program for such cases would take a 
significant time and cannot be performed in real-time.  

As mentioned in Section 4.1, one way to overcome this challenge is to resort to offline 
simulations for training the dispatch model. The results can be classified based on the 
initial conditions. In real time, the operator can use the near real-time measurements to 
map the current conditions of the system to the classified set and select the proper policy 
based on the results of the offline procedures. Fig. 4.1 presents an overview of the offline 
and real-time procedures. 

 

Fig. 4.1. The offline training and the real-time implementation procedures. 

Note that the Markov chain wind forecast models that are used for this study are designed 
offline and their parameters, although different for different months and epochs, are 
assumed to be constant. This allows us to train the flexible wind dispatch policies for 
various initial conditions in an offline manner, based on the constant parameters of the 
forecast model.  

The forecast model outlines the spatial and temporal dynamics of the wind farm 
aggregate power output using data-driven analysis. Due to the non-stationary 
distributions of wind farm generation, the models (Markov chains) used to derive 
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distributional forecasts, can have quite different parameters for different months and 
different epochs. 

Therefore, forecast models are generated separately for each month and each epoch. 
Furthermore, when estimating the parameters of Markov chains, relevant historical data, 
i.e., the historical data from the same month and the same epoch, can be used. It is worth 
noting that the forecast Markov models can be updated, periodically, based on the new 
data. 

Please note that the scenario sets used for the policy training procedure are chosen based 
on the assumptions regarding the wind forecast model that is used. The policy training 
procedure would be designed differently if a different wind forecast model is used. It is 
worth noting that the assumptions made when choosing a forecast model would impact 
the performance of the policy training algorithm. In other words, the training procedure 
must be designed in accordance with the observations from the wind farm data. 

Another operating condition that affects the dispatch policy is the load condition. To take 
into account the diversity of load profiles and weather conditions, the calculations must 
be repeated for as many days as required to represent the modeled month/epoch. In the 
present study, the analysis has been performed for two load types (weekday and 
weekend).   

Fig. 4.2 shows the training procedure for various time epochs and months; for each 
Markov model, 20 initial wind states have been trained and 2 different load levels have 
been considered. For each condition set, {month, epoch, load, wind state}, the policy 
factor is obtained using the two-phase method proposed in chapter 3. The outline of this 
two-phase method is briefly reviewed in the following section.  

Fig. 4.2. Offline prediction-based policy training procedure. 
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In real-time, the actual wind power realization is compared to the trained initial wind 
levels and the nearest initial level is determined. Similarly, the nearest trained load level 
is deter-mined. The policy obtained for that nearest wind level and the nearest load level 
is then implemented in the real-time model. 

4.3 Outline of Joint Energy and Reserve Scheduling  

As described earlier in chapter 3, the approach for finding the best policy has been 
formulated in two phases. In the first phase a scenario-based stochastic dispatch and 
reserve scheduling problem is solved based on the short-term wind farm generation 
forecast. This problem uses a reduced set of scenarios and its goal is to find the 
appropriate energy and reserve that can be scheduled from the wind farm to minimize the 
total cost. The total cost consists of the operational cost associated with procuring energy 
and reserve as well as the expected costs associated with inadequate reserve allocation.  

The solution of this first phase determines the dispatch and reserve decisions, i.e., , 
, , . The optimal values of these variables are then fed as inputs to the risk 

analysis problem in the second-phase. In this phase, a deterministic model is used to test 
the first phase decision against every possible scenario. This phase aims to model the 
uncertainty that has not been modeled in the first phase in the reduced set of scenarios. 

Please note that the result of the first phase is not the true optimal value (extensive 
scenario-based stochastic model). This requires ensuring the stability of the scenario-
based stochastic program, which is solved using the reduced set of scenarios. The 
stability of a stochastic program can be stated in form of in-sample and out-of-sample 
requirements [24]. Here, the results of the stochastic programming on the reduced set of 
scenarios is tested against all the scenarios to ensure out-of-sample stability. Given the 
first phase decisions for energy and reserve schedule, the second phase minimizes the 
realized costs associated with each possible scenario. 

To find the best policy, the two-phase procedure is performed repetitively for various 
factors. Initially, a certain fraction of the predicted wind generation is assumed to be 
utilizable. Beginning with this small value for α, a stochastic program is solved using the 
reduced set of scenarios in the first phase. The obtained solution gives the optimum 
schedule as well as the operational cost for that specific value of α. In the second phase, a 
risk analysis model is run to come up with the average risk cost associated with that 
scheduling policy.  
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The overall problem can be described in the following simplified form: 

Min 	 ∑ 	 ∗ , ∗ , ∗ , ∗   (4.1) 

Subject to: 

∗ , ∗ , ∗ , ∗ ∈ , , , 	 		 (4.2) 

0 1. (4.3) 

In order to obtain an approximate solution to this problem, the value of α is varied. The 
described procedure is repeated for various α values and the optimum operational and 
risk cost associated to each policy is recorded. The policy that has the minimum sum of 
the scheduling cost and the risk cost is expected to be the least-cost policy for scheduling 
energy and reserve from wind. 

4.4 Real-time Implementation of Policies 

This section describes the real-time implementation of proposed policy, i.e. the 
prediction-based policy, as well as three benchmark methods which are used for 
comparison. The real-time structure of the proposed prediction-based policy is explained 
in Section 4.4.1. The next policy, which will be described in Section 4.4.2, makes use of 
the forecasted distribution to schedule a certain percentile of the forecasted generation. 
The third policy, which is described in Section 4.4.3, is a fixed policy that utilizes a fixed 
fraction of the forecasted mean. Section 4.4.4 introduces the base case where no policy is 
used. Section 4.4.5 develops a structure for analyzing the performance of the described 
policies. Specifically, a risk analysis structure is proposed to test the real-time 
implementations.  

4.4.1 Prediction-based Policy 

In order to evaluate the results of the proposed training method, one should examine the 
policy derived by the offline procedure against a large set of scenarios. The testing 
procedure should be compatible with the way the policy has been determined. Note that 
the online implementation tool does not perform the risk analysis phase, i.e., it deploys 
the generated policy into the first phase problem to determine the energy and reserve 
schedule ( , , , ). The real-time procedure implemented in the current study 
is, thus, as follows: 

Assume that the policies have been obtained for a number of condition sets, {month, 
epoch, load profile, wind state}, using the stochastic optimization model. For different 
initial wind states in any epoch, choose the policy 	based on the one developed for the 
nearest load and wind state. Put the policy in the optimization described below and solve 
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the stochastic process for the reduced set of scenarios. Fig. 4.3 shows the flowchart for 
this procedure. Note that the constraints in the following formulation are the same 
constraints as presented in chapter 3 and are not explicitly presented again for the sake of 
brevity. 

Min ∑ ∑ ,, ∑ , ∑

	∑ 			∑ 		∑ 	∑ ∆  (4.4) 

Subject to: 

constraints (3.4)-(3.10), 

, ∀ ,  (4.5) 

constraints (3.12)-(3.28). 

In order to evaluate the performance of this policy, the results of this problem ( , , 
, ) can be sent to a risk analysis program. This risk analysis is described in Section 

4.4.4. 

 

Fig. 4.3. Real-time implementation procedure of the proposed policy. 
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4.4.2 Probability Distribution Percentile-based Policy 

In this approach a probabilistic metric (90% percentile of the cumulative distribution of 
predicted wind) has been used. Fig. 4.4 displays the procedure. This percentile is applied 
instead of the policy factor in the original 2-stage stochastic process for a reduced set of 
scenarios to allow for comparison with the proposed approach: 

Min ∑ ∑ ,, ∑ , ∑

	∑ 			∑ 		∑ 	∑ ∆  (4.4) 

Subject to: 

constraints (3.4)-(3.10), 

, ∀ ,  (4.6) 

constraints (3.12)-(3.28). 

 
Fig. 4.4. Real-time implementation procedure of the probability distribution-based policy. 
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4.4.3 Fixed Policy 

The fixed policy assumes a fixed value for policy factor , regardless of the value of 
input for wind generation. This fixed policy is put in the original 2-stage problem 
formulation as shown below: 

Min ∑ ∑ ,, ∑ , ∑

	∑ 			∑ 		∑ 	∑ ∆  (4.4) 

Subject to: 

constraints (3.4)-(3.10), 

, ∀ ,  (4.7) 

constraints (3.12)-(3.28). 

In this study, α for the deterministic approach is assumed to be equal to 90%.  

4.4.4 Base case 

The base case is when no policy is employed, meaning that the operator doesn’t discount 
the wind, or α  =1. 

4.4.5 Performance Analysis Structure 

A risk analysis program, similar to the one described in (3.29), can be used to evaluate 
the performance of the different policies. Fig. 4.5 shows the risk evaluation procedure 
used for testing the results of the described policies. 

 

Fig. 4.5.Testing procedure based on risk evaluation. 

The next section presents the numerical test results, performed on a test system, for the 
three policies described in Sections 4.4.1, 4.4.2 and 4.4.3. 
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4.5 Numerical Results 

4.5.1 The Single Wind Farm Case 

As mentioned before, the major limitation in a stochastic model is that modeling all the 
scenarios is not time efficient. If the number of scenarios is large, modeling all scenarios 
can make the problem intractable, especially, in a large system. Usually, a reduced set of 
scenarios is used instead. In this section the 3 different policies, which were proposed in 
Section 4.4, are tested. Note that all the three approaches described have a similar 
structure. First, a stochastic problem is solved for a reduced set of scenarios. To evaluate 
the performance, the energy and reserve schedule is then sent to a risk analysis stage that 
runs for all possible scenarios. To create a comparison benchmark, two more test 
structures are developed. The studies have been performed in a deterministic structure 
and for a large set of scenarios, as well. The three proposed algorithms have been 
performed for the deterministic case (1 scenario), the reduced set (5 scenarios) and a 
large set of scenarios (100 scenarios). These 6 algorithms are summarized in Table 4.1, 
where their name, their decision making technique and their scenario modeling 
approaches are shown. 

The proposed structure has been applied to the IEEE-96 test case [65]. The test system is 
modified by integrating a 1500 MW wind farm, at bus 40, which accounts for roughly 
30% of the total system-wide generation capacity. The wind generation data of a wind 
farm for the year 2010 [20] is used after proper scaling to suit the chosen wind farm 
capacity. For the current simulation, the finite state Markov model of the spatio-temporal 
analysis for the 9 AM-12 AM epoch is used.  

Table 4.1: Policy generation algorithms classification 

PB_D Prediction-based policy Deterministic 
PB_RS Prediction-based policy Reduced set of scenarios
PB_LS Prediction-based policy Large set of scenarios 
DPB-D Distribution percentile-based policy Deterministic 
DPB-RS Distribution percentile-based policy Reduced set of scenarios
DPB-LS Distribution percentile-based policy Large set of scenarios 
F-D Fixed policy Deterministic 
F-RS Fixed policy Reduced set of scenarios
F-LS Fixed policy Large set of scenarios 

 

The load classification used in this study is based on data from IEEE-96 system [65]. In 
the dataset, the daily load profiles are given for specific seasons and day types. In real-
world case, having the real load data, the daily profiles could be clustered into classes to 
form different day types and seasons that may not actually correspond to a real season or 
day type.  
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In the current study, the attention has been focused on one month to be able to model 
more initial states. All simulation results presented are for month April, henceforth. All 
scenario reductions are performed using the procedure introduced in [44], which reduces 
the scenarios to their best approximation based on the Kantorovich distance of probability 
distributions. The algorithm eliminates one scenario at a time until the desired number of 
scenarios is achieved. For each initial wind level, the risk analysis phase has been run for 
all the possible scenarios created by the Markov chain forecast model. The results are 
expressed in terms of average scheduling and risk cost.  

In order to analyze the performance of the above methods, a set of base case studies with 
no policies have been run where the operator counts on the wind predicted mean (in other 
words, 1) for 3 different problem structures. The first one, which is referred to as the 
benchmark case, is a deterministic version of the scheduling problem, the second one 
models a reduced set of scenarios, and the third one models a large set of scenarios. 

Note that all tested methods have the same foresight regarding wind forecast and none of 
them is shortsighted. This ensures that the difference in the presented results reflect the 
difference in the applied policy. 
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Table 4.2 presents the average scheduling and total cost for each initial wind condition 
for the case with reduced set of scenarios. The results are for multiple initial levels which 
accounts for various penetration levels up to 30% penetration level. The number of 
scenarios that encountered load shedding in the testing stage is also listed for each test 
level. The sixth column shows the cost improvement beyond the benchmark case. The 
results show that the prediction-based policy has a lower total cost in almost all the 
studied wind penetration levels. It also has a significantly less number of the scenarios 
where load shedding occurs. 

Table 4.2. Comparison between the Fixed, Distribution percentile-based and Prediction-
based approaches (reduced set of scenarios) 

Policy 
Wind 
level 
(%) 

Scheduling 
cost ($) 

Total cost 
($) 

Number of 
scenarios 
with load 
shedding 

Improvement 
in total cost 

(%) 

EENS 
(MWh) 

LOLP 

F -RS 3 270325.9 273860.1 0 8.7 0 0 
F –RS 6 261300.6 263067.6 0 6.26 0 0 
F –RS 9 253163.1 258297.0 0 13.46 0 0 
F –RS 12 247146.7 253124.4 0 11.04 0 0 
F -RS 15 229262.3 235805.9 2 13.98 0.0001 0.0006 
F –RS 18 222984.5 226252.8 2 18.04 0.0001 0.0006 
F –RS 21 212396.8 220599.6 0 17.07 0 0 
F –RS 24 204860.3 214388.1 5 24.06 0.0005 0.0025 
F –RS 27 196204.7 220114.5 190 32.20 0.0202 0.0154 
DPB -RS 3 270664.7 273851.1 0 8.7 0 0 
DPB –RS 6 261438.8 265869.5 0 5.3 0 0 
DPB –RS 9 253146.6 258553.7 0 13.4 0 0 
DPB –RS 12 248045.4 255352.4 0 10.3 0 0 
DPB –RS 15 228880.6 237527.1 10 13.4 0.0003 0.0027 
DPB –RS 18 221784.0 227265.4 2 17.7 0.0001 0.0006 
DPB –RS 21 211848.1 223870.1 0 15.8 0 0 
DPB –RS 24 204950.6 216958.1 42 23.1 0.0023 0.0163 
DPB –RS 27 194758.9 232768.2 355 28.3 0.307 0.258 
PB-RS 3 270416.4 273866.0 0 8.70 0 0 
PB-RS 6 262086.1 262691.4 0 6.39 0 0 
PB-RS 9 254357.7 257999.9 0 13.56 0 0 
PB-RS 12 247146.7 253124.4 0 11.04 0 0 
PB-RS 15 229262.3 235805.9 2 13.98 0.0001 0.0006 
PB-RS 18 222984.5 226252.8 2 18.04 0.0001 0.0006 
PB-RS 21 212396.8 220599.6 0 17.07 0 0 
PB-RS 24 207533.9 211699.2 0 25.01 0 0 
PB-RS 27 200085.1 212229.5 129 34.63 0.111 0.1120 
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Table 4.3 shows the results when the same procedure is deployed, with the exception that 
the first phase stochastic optimization is performed for a large number of scenarios. The 
results show that the proposed stochastic approach performs better when more scenarios 
are modeled.  

Table 4.3. Comparison between the Fixed, Distribution percentile-based and Prediction-
based approaches (large set of scenarios) 

Policy 
Wind 
level 
(%) 

Scheduling 
cost ($) 

Average 
risk cost 

($) 

Total cost 
($) 

Number of 
scenarios with 
load shedding 

Improvement 
in total cost 

(%) 
F -LS 3 268259.6 5794.6 274054.3 0 8.64 
F –LS 6 263562.4 45.3 263607.7 0 6.07 
F –LS 9 259114.8 52.1 259166.9 0 13.17 
F –LS 12 255547.2 36.3 255583.6 0 10.17 
F -LS 15 240800.2 89.6 240889.9 0 12.13 
F –LS 18 231853.5 36.5 231890.1 0 16.00 
F –LS 21 216857.9 2672.65 219530.6 0 17.48 
F –LS 24 217293.2 63.3 217356.5 0 23.01 
F –LS 27 203945.1 908.9 204854.1 0 36.90 
DPB -LS 3 268991.1 5671.7 274662.8 0 8.43 
DPB –LS 6 268469.2 5779.6 274248.8 0 2.27 
DPB –LS 9 263146.6 5407.1 268553.7 0 10.03 
DPB –LS 12 256810.8 8.7 256819.5 0 9.74 
DPB –LS 15 241307.2 32.5 241339.7 0 11.96 
DPB –LS 18 232724.2 14.1 232738.3 0 15.69 
DPB –LS 21 217301.1 2667.5 219968.6 0 17.31 
DPB –LS 24 218826 4.0 218830.0 0 22.48 
DPB –LS 27 205511.8 720.6 206232.4 0 36.48 
PB-LS 3 268130.7 5954.8 274085.5 0 8.63 
PB-LS 6 263527.1 57.4 263584.5 0 6.07 
PB-LS 9 259114.8 52.1 259166.9 0 13.17 
PB-LS 12 255547.2 36.4 255583.6 0 10.17 
PB-LS 15 240273.1 170.1 240443.2 0 12.29 
PB-LS 18 231813.6 41.4 231855 0 16.01 
PB-LS 21 216070.5 2905.9 218976.4 0 17.68 
PB-LS 24 217293.2 63.3 217356.5 0 23.01 
PB-LS 27 203099.9 980.2 204080.1 0 37.14 

 

As expected, the number of scenarios that lead to load shedding is decreased when a 
larger number of scenarios are modeled since modeling a larger number of scenarios in 
the first phase will leave less space for uncertainties to perturb the results. The simple 
fixed policy also performs well in comparison to the distribution percentile based policy. 
This serve as a reference that some very simple reserve rules can perform adequately if 
chosen based on the historical trends.  
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Please note that this deterministic policy (here, 0.9) has not been chosen based on 
extensive analysis. In other words, having chosen another deterministic policy could lead 
to better or worse results. This may be an indication that solving the problem for a simple 
uncertainty set for wind generation may ease the computation burden of stochastic 
analysis, especially, when drastic wind ramps are not modeled. The investigation of the 
performance of such uncertainty sets is left for future work. 

All simulations are performed using the Gurobi solver in AMPL environment on an Intel 
(R) Core (TM)2 Duo CPU @3.16 GHz computer with 4 GB of memory. The average 
solution time of the offline model including the scheduling phase and the risk analysis 
phase for each specific alpha was about 124 seconds. The average solution times of the 
online hour-ahead model for the proposed algorithms are reported in Table 4.4. 

The SCED problem has 4404 variables and has 6378 constraints for the deterministic 
model. These numbers are increased to 15732 variables and 20562 constraints in a two-
stage stochastic program with a small set of scenarios. The two-stage stochastic program 
with a large set of scenarios had 285996 variables and 363464 constraints. 

Table 4.4. Average solution times for the tested policies 

Policy Avg. solution time (S) Policy Avg. solution time (S) 
F –RS 1.39 F –LS 82.30 
DPB –RS 1.46 DPB –LS 80.21 
PB-RS 1.36 PB-LS 75.31 

 
In order to show the performance of the proposed method in alleviating the need for 
modeling all scenarios, the cost savings of the PB-RS approach, with respect to the 
benchmark are presented in Table 4.5. The second column shows the maximum potential 
cost savings by switching from a determinist structure (benchmark case) to a stochastic 
structure with a large set of scenarios. The last column shows what portion of the 
potential cost savings is captured by the proposed policy in a reduced scenario case. The 
results corroborate that the prediction-based method is capable of capturing the same cost 
savings while modeling fewer scenarios.  
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Table 4.5. Cost savings captured in the Prediction-based method 

Wind 
level (%) 

Cost savings in 
PB-RS 

Potential Cost 
savings 

Ratio 

3 26098.7 25910.6 1.01 
6 17941.5 17048.3 1.05 
9 40482.6 39313.8 1.03 
12 31409.8 28950.7 1.08 
15 38331.8 33641.6 1.14 
18 49807.0 44204.8 1.13 
21 45418.7 47046.9 0.97 
24 70601.6 64944.3 1.09 
27 112433.8 120455.2 0.93 

 

Fig. 4.6 shows the total cost for different wind levels, in comparison to the benchmark 
and the base case with a large set of scenarios, for two different cases. The first case is 
where the obtained policy, from the prediction-based method, is used in a deterministic 
structure. The second one is where the obtained policy is used in a stochastic structure 
with a reduced number of scenarios. As can be seen, the policy obtained from the 
prediction-based method performs closely to the base case modeling a large set of 
scenarios, both in a deterministic and a reduced stochastic structure. 

 

Fig. 4.6. Total cost for the proposed prediction-based method compared to the base case. 
PB: prediction-based policy, RS: reduced set of scenarios, LS: large set of scenarios. 
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4.5.2 Multiple Wind Farms 

An extension for the problem is when there are multiple wind farms in the system. 
Discounting the generation from multiple wind farms would be more challenging in such 
situations. One important aspect when considering multiple wind farms is the fact that a 
large set of scenarios should be modeled. The need for modeling larger number of 
scenarios in a multi-wind farm system can be alleviated by taking advantage of offline 
analysis.  

In this section, the proposed policy has been performed for two more test cases, one with 
two wind farm and one with three wind farms. For the two wind farm case, the same test 
system is modified by integrating two 750 MW wind farms, at buses 22 and 40, 
accounting for roughly 30% of the total system-wide generation capacity. For the three 
wind farm case, the system is modified by integrating three 500 MW wind farms, at 
buses 22 and 40 and 68. The results are shown in Table 4.6 and Table 4.7, respectively. 
The results confirm that the proposed reserve policy outperforms traditional techniques 
by capturing the majority of the potential savings.  

Table 4.6. Comparison between the Fixed and Prediction-based approaches for two wind 
farms 

Policy 
Wind 

level (%) 
Average 

risk cost($) 
Total 

cost($) 
Captured portion of 

potential cost savings 
F –RS 6 511.2 275233.0 0.51 
F –RS 12 361.1 269859.6 0.43 
F –RS 15 639.6 267479.0 0.57 
F –RS 18 436.8 264240.9 0.69 
F –RS 21 0.8 259756.1 0.58 
F –RS 24 0.1 259170.2 0.50 
F –RS 27 0.0 254279.0 0.57 
F –RS 30 0.0 249858.6 0 
PB-RS 6 551.5 275082.6 0.82 
PB-RS 12 401.1 269653.4 0.67 
PB-RS 15 666.7 267249.7 0.81 
PB-RS 18 585.5 264195.3 0.74 
PB-RS 21 1.2 259550.9 0.76 
PB-RS 24 0.0 258448.1 0.85 
PB-RS 27 0.0 254083.3 0.7 
PB-RS 30 0.0 249858.6 0 
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Table 4.7. Comparison between the Fixed and Prediction-based approaches for three 
wind farms 

Policy 
Wind 

level (%) 
Average 

risk cost($) 
Total 

cost($) 
Captured portion of 

potential cost savings 
F –RS 6 72 257.3 0.4 
F –RS 12 234 248.4 0.2 
F –RS 15 142 240.37 0.8 
F –RS 18 144 225.3 0.1 
F –RS 21 182 215.7 0.1 
F –RS 24 175 205.7 0.1 
F –RS 27 214 194.4 0.1 
F –RS 30 142 256.5 0.7 
PB-RS 6 234 248.4 0.2 
PB-RS 12 775 237.2 0.9 
PB-RS 15 651 223.3 0.7 
PB-RS 18 412 213.6 0.6 
PB-RS 21 1170 201.4 0.5 
PB-RS 24 214 194.4 0.1 
PB-RS 27 72 257.3 0.4 
PB-RS 30 234 248.4 0.2 

 

4.6 Conclusions 

In this chapter the benefits of the prediction-based policy training method have been 
investigated. A flexible reserve margin based algorithm has been applied to train offline 
policies for discounting wind generation and scheduling energy and reserve in presence 
of wind. A scenario-based stochastic programming approach is leveraged to capture the 
effect of various possible wind scenarios based on short-term wind forecast. 

A testing method is derived to assess the performance of the policies obtained through the 
proposed training procedure for scheduling wind reserve margin. The performance of the 
proposed policy training algorithm is compared with its counterparts without applying the 
trained policies. The results corroborate that the training based on the risk-aware 
scheduling can reduce the overall cost, while not imposing the burden of stochastic 
programming in real-time operation.  

Numerical studies, via the IEEE-96 test case, demonstrate the benefits of the proposed 
structure.  
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5. Market Implications of Wind Reserve Margin 

This chapter examines the market implications of wind reserve margin policies used to 
mitigate uncertainty from wind resources. The market implications of optimized reserve 
margin policy factors is studied. 

5.1 Introduction 

In the previous chapter, we developed a training structure to use stochastic analysis to 
come up with deterministic rules for scheduling reserve margins. This chapter 
investigates the market implications of deploying the deterministic reserve policy based 
on offline stochastic analysis. Analyzing the impacts of implementing new policies on the 
outputs of the electricity markets is an established way of determining the benefits of 
such new market policies. In this report, we compare the proposed approach with a 
typical deterministic approach that uses no policy. The generators’ energy and ancillary 
service bids are modeled. In addition, a market settlement scheme is proposed that can be 
used for the policy proposed. In the proposed structure the generators are compensated 
for the energy and reserve that they provide. The reserve providers are compensated both 
for the reserve capacity and the reserve activation. The reserve activation payments are 
dependent upon the performance of the reserve resource for various realization scenarios. 
The following sections will discuss the formulation of these models and the results. 

5.2 Reserve Policy factor Determination  

The off-line training methodology is used for determining the policy factor for scheduling 
energy and reserve from wind generation. The policy factor is described as the fraction of 
the predicted available wind power to be scheduled for providing either energy or 
reserves. The offline analysis determines the policy factor for a verity of operating 
conditions, which are described in terms of the initial wind levels and the initial load 
levels.  

In real-time, the actual wind power realization is compared to the trained initial wind 
levels and the nearest initial level is determined. Similarly, the nearest trained load level 
is determined. The policy obtained for that nearest wind level and the nearest load level is 
then implemented in the real-time model. 
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5.3 Implementation of the SCED using reserve policy factors 

The model has been modified to enable calculating payments to different parties. In this 
model the energy schedule remains fixed and reserve schedule is discounted by α. To 
ensure consistency with the existing market structures, the SCED implementation has 
been kept simple by solving a deterministic problem. 

The offline stochastic structure has been exploited to select a policy factor that can be 
passed into a deterministic scheduling framework. Energy schedule is fixed and the 
production part which was spared for reserve, is discounted. 

 

The SCED implementation is formulated as given below: 

Min ∑ ∑ ,,  (5.1) 

s.t.: 

, ∀ ,  (5.2) 

, ∀ ,  (5.3) 

0 , ∀ ,  (5.4) 

∑ ∈ ∑ ∈ ∑ , ∀ ,  [ ] (5.5) 

, ∀ ,  (5.6) 

, , ∀ , , 1, , 1 (5.7) 

, , ∀ , , , 1, 1 (5.8) 

, ∀ ,  (5.9) 

0, ∀ ,  (5.10) 

	 , ∀ ,  (5.11) 

∑ ∈ ∑ ∈ ∑ ∈ ∑ ∈ , ∀ , [ ] (5.12) 
, 0, ∀ , . (5.13) 

 

In the above formulation,  is the scheduled reserve from wind. Equation (5.9) states 
that the scheduled energy plus an up-scaled version of the reserve should not exceed the 
forecast. The descriptions of the other constraints are similar to what we described in 
chapter 4. 
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5.4 Contingency Analysis 

To evaluate the efficiency of the proposed training-based policies in the market structure, 
a contingency analysis procedure has been performed. After the energy and reserve 
capacity are cleared in the SCED, the output schedule of the SCED structure is tested 
against a combination of different scenarios of wind and the single generator contingency 
events. The expected reserve activation payments for each resource is calculated based on 
the results of this contingency analysis stage.  

The following formulation describes the re-dispatch following a combined contingency 
event.  

Min∑ ∑ ∑ ∑  

	∑  (5.14) 

s.t.: 

0, ∀ , 	 (5.15)	

	 , ∀ , 	 (5.16) 

∑ ∈ ∑ ∈ ∑ ∈ ∑ ∈

, ∀ ,  [ ,  (5.17) 

, ∀ , ,  (5.18) 

, ∀ , ,  (5.19) 

, ∀ , ,  (5.20) 

, ∀ , ,  (5.21) 

0 	, ∀ , ,  (5.22) 

	, ∀ , ,  (5.23) 

, , , 0, ∀ , , . (5.24) 

Parameter  in Equation (5.23) represents the realized power output of the wind farm 
and parameter  in Equation (5.20) is 0 if generator g is experiencing a contingency and 
1 otherwise. 

5.5 Market Settlement 

In most electricity markets energy and ancillary services are cleared together using an 
optimization model that includes both energy and reserve bids in the objective function. 
The optimization procedure choses the lowest submitted bids to satisfy all physical and 
operational constraints. 

Prices are calculated based on dual variables from the market model and generators are 
compensated based on these dual variables. Specifically, locational marginal prices 
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(LMPs) are used to settle energy compensations and reserve marginal prices (RMPs) are 
used to settle reserves compensations. The LMP for each node is the shadow price of the 
power balance equation (5.12) at that node. Load payments are calculated based on 
LMPs: 

∑ ,  (5.25) 

The generators are entitled to payments for scheduled energy as well as the reserve 
capacity and reserve activation. Energy and reserve capacity payments are computed 
based on LMPs and RMPs. In the presented formulation, the RMP is the nonzero shadow 
price (shadow price for the binding constraint) for (5.5). 

The reserve activation payments are only made if the generator responds in a contingency 
event. The expected activation payment in such a payment scheme can be formulated as: 

, ∑ ∈ ,  (5.26) 

where, ,  is the dual variable for (5.17). Here, ,  is a shadow price that reflects 
the marginal value of reserve for contingency c. The probability of each contingency is 
defined as the product of the probability of the related wind scenario and the probability 
of the respected generator contingency event. The probabilities of generator 
contingencies are calculated based on the Forced Outage Rate (FOR) values of 
generators. The payments in (5.26) is the expected compensation of reserve providers 
based on their activated service, which is exercised for individual contingencies. 

5.6 Quality of Service 

When a resource is scheduled to provide reserve capacity for contingency, it is supposed 
to be able to dispatch that amount. If this amount of reserve cannot be activated during a 
re-dispatch, then the resource provides a lower quality of service than anticipated. Based 
on scheduled capacity reserve from renewables, Equation (5.21) describes how the 
renewable resource is performing in exercising reserve. Variable   measures how 
much reserve is dispatched from the resource w, where  represents the shortfall 
below the scheduled downward reserve. 

The objective function (5.14) motivates a small shortfall. The large penalty included in 
the objective function prevents renewable resource from going below the scheduled 
downward reserve. 

In this section the notion of quality of reserve (QOS) is defined to reflect the efficiency of 
the training algorithm in deriving reserve policies for renewables. QOS can be an 
indicator for efficiency of a model, too. The quality of service for reserve ( ) can be 
characterized by the proportion of reserve capacity which is deliverable for each 
contingency in real time. An efficient model is expected to have a quality of reserve 
closer to one, indicating that a large portion of reserve capacity procured based on reserve 
policy is deliverable in real time:  

Quality of service for energy (  provided by wind resource for each contingency 
scenario is measured by the behavior of the wind resource in the re-dispatch 
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corresponding to that scenario. Note that in this report, the re-dispatch is performed to 
minimize the total cost as described in (5.14). 

Since in the market model, a single variable has been used for both upward and 
downward reserve, we have classified the different probable situations to quantify the 
quality of service for each probable situation.  

If the implemented reserve ( ) is positive, the wind generator has satisfied the energy 
promised, so: 1. As for reserve, if the available wind power is more than the 
total scheduled energy and reserve, 1. Otherwise, 

max 1, . (5.27)

If the implemented reserve ( ) is negative, two situations are possible: 

1) The actual realized wind power is greater than the total energy and reserve
implemented from wind: In this case, the quality of energy service and the quality
of reserve service are both equal to 1.

2) The realized wind is equal to the total energy and reserve implemented: in this
case, the quality of service for energy product is calculated based on the
proportion of the scheduled energy that has been provided. This proportion can be
described as:

1 (5.28)

The quality of service for energy product in this situation is calculated based on 
the proportion of the scheduled reserve that has been provided: 

max 0, 1 (5.29)

The above notions are used to measure the efficiency of the proposed policy method. The 
following section provides the numerical results. 

5.7 Numerical Results and Analysis 

The analysis in this section evaluates the prediction based policy and its counterpart 
where no policy is applied. The prediction based policies are selected based on the 
procedure described in chapter 4.  

The policy (generated offline) is implemented in a deterministic real-time framework, 
i.e., a deterministic dispatch procedure described in Section 5.4. The hour-ahead SCED is
solved based on the policy derived for the closest trained operating solution.
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5.7.1 Data and Simulation Setup 

The proposed structure has been applied to the RTS96 test case [65]. The test system is 
modified by integrating a 1500 MW wind farm, at bus 40, which accounts for roughly 
30% of the total system-wide generation capacity. The wind generation data of a wind 
farm for the year 2010 [20] is used after proper scaling to suit the chosen wind farm 
capacity. 

The hour-ahead model includes 10-minute intervals across a 1-hour horizon. For the 
current simulation, the Markov forecast for the 9 AM-12 AM epoch is used [20]. The 
load classification used in this study is based on data from RTS96 system [65]. All 
simulation results presented are for month April, henceforth. 

The probabilities of generator contingencies are calculated based on the Forced Outage 
Rate (FOR) values provided in the IEEE RTS96 data [65]. 

5.7.2 Prediction-based Policy Method and No-policy Method Comparison  

The solution of this look ahead SCED is analyzed across probable instances including 
various possible wind outcomes and possible contingencies. Each solution is tested 
against the combination of 100 wind scenarios generated based on the initial wind level 
and all the N-1 generation contingencies. The model contains 99 generators and, 
therefore, 99 generation contingency instances. Adding the wind scenarios, a total of 
9900 instances are modeled for each solution. 

In order to analyze the performance of this method, a set of base-case studies with no 
policies have been run where the operator counts on the wind predicted mean ( 1). 

Table 5.1 through Table 5.4 present the average market results over all the modeled 
instances. Table 5.1 summarizes load payments and energy revenues and Table 5.2 
presents the quality of service for each tested wind level. The prediction based policy 
achieves a higher average quality of service. Table 5.3 and Table 5.4 presents the 
revenues from reserve markets for conventional and renewable producers. The capacity 
payments and the activation payments are reported in Table 5.3 and Table 5.4 
respectively. The proposed policy has a higher payment for reserves to renewable 
resources. Table 5.5 compares the utilization of wind in the two methods. Overall, the 
policy method schedules more reserve from wind and incurs less penalty for not being 
able to provide the scheduled power. The average wind curtailment shows a slight 
increase in the policy method. Fig. 5.1 and Fig. 5.2 represent the quality of energy and 
quality of service across contingency scenarios. These results demonstrate that prediction 
based policy can significantly improve the reliability of the service provided by wind 
generators. 

 

  



 

48 
 
 
 

Table 5.1. Market measures: average system results  

Wind level 
(%) 

Load payment ($) Energy revenue ($) 
Base case prediction based Base case prediction based 

3 543273.5 523411.2 493606.9 495792.4 
6 533273.5 513548.9 483308.9 487881.7 
9 521838.5 517317.1 470107.7 474790.4 
12 515750.4 515750.4 450450.5 450450.5 
15 621048.2 514863.4 417451.2 433600.8 
18 609915.7 514863.4 380112.5 430750.6 
21 525703.1 525888.1 296385.9 300700.4 
24 526082.2 528234.8 281678.7 274561.6 
27 526799.7 528234.8 266709.2 268368.4 

 

Table 5.2. Quality of service: average system results  

Wind level 
(%) 

Reserve QOS Energy QOS 
Base case prediction based Base case prediction based 

3 0.7693 0.9879 0.800 0.8815 
6 0.5435 0.9497 0.810 0.9111 
9 0.1404 0.9557 0.738 0.9068 
12 0.0359 0.0359 0.619 0.6197 
15 0.3991 0.6604 0.854 0.8759 
18 0.3907 0.9443 0.809 0.9291 
21 0.3507 0.8685 0.878 0.9491 
24 0.3567 0.9449 0.752 0.9124 
27 0.3572 1 0.872 0.9915 
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Table 5.3. Reserve capacity payments: average system results  

Wind 
level 
(%) 

Reserve capacity revenue 
(conventional generators) ($) 

Reserve capacity revenue 
(wind generator) ($) 

Base case prediction based Base case prediction based 
3 16434.76 6960.85 1062.90 716.49 
6 16434.76 5692.86 984.262 971.3499 
9 16306.72 3600.86 1388.25 1602.689 
12 15974.01 15974.0 1582.65 1582.653 
15 13022.48 5557.59 1979.55 1174.964 
18 12364.79 2379.1 1637.68 2239.988 
21 7669.869 3978.60 0 1345.384 
24 6746.796 174.49 0 1030.558 
27 6356.556 0 0 215.5465 

 

Table 5.4. Reserve activation payments: average system results  

Wind 
level 
(%) 

Reserve activation revenue 
(conventional generators) ($) 

Reserve activation revenue 
(wind generator) ($) 

Base case prediction based Base case prediction based 
3 15585.05 14125.87 66.69 166.25 
6 5444.044 5232.83 7.362 266.50 
9 5087.439 3657.905 1.2246 202.54 
12 5859.289 5859.289 0 0 
15 3528.479 3252.916 1566.281 1431.56 
18 8352.536 5262.85 0.0696 214.99 
21 5458.106 5162.909 0.8255 350.77 
24 13210.2 4258.596 0.1707 399.33 
27 6024.633 0 0.1512 2818.54 
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Table 5.5. Wind utilization measures: average system results  

Wind 
level 
(%) 

Scheduled reserve 
from wind (MW) 

Curtailed wind 
power (MW) 

Wind penalty ($) 

Base 
case 

prediction 
based 

Base 
case 

prediction 
based 

Base 
case 

prediction 
based 

3 25.22 36.81 3.322 4.300 133.4814 37.5581 
6 23.35 53.84 0.355 0.791 155.6067 42.2518 
9 33.18 97.65 0.084 0.544 255.4437 25.6938 
12 38.63 38.64 0 0 415.446 415.446 
15 50.94 68.99 0.024 0.109 84.7621 59.0765 
18 49.92 144.21 0.017 0.503 380.9586 25.5383 
21 0 92.57 0.102 1.051 512.1057 62.8103 
24 0 194.42 0.011 0.615 934.6266 40.1877 
27 0 179.62 0.047 4.577 767.2197 0.6998 

 

 

 

Fig. 5.1. Quality of energy service from wind farm for different wind scenarios 
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Fig. 5.2. Quality of reserve service from wind farm for different wind scenarios 

 

5.8 Conclusions 

Integration of renewable generation increases the uncertainty and variability that the 
operator must handle. Utilizing the concept of wind flexible reserve margin allows the 
operator to allocate a discounted amount of wind for energy, leaving a reserve margin to 
hedge against uncertainty. This study analyzes the utilization of such reserve margins in 
the ancillary service procurement.  

This report compares the impacts of two different scheduling models, a base case model 
and a prediction based model. The prediction-based model uses a flexible reserve margin 
based algorithm which has been applied to train offline policies for discounting wind 
generation and scheduling energy and reserve in the presence of wind.  

The market implications of transitioning to the prediction based approach are 
demonstrated. The results suggest that the prediction based model obtains higher quality 
of service from renewables. The prediction based approach was found to have lower load 
payments. 

Future work can extend the proposed method to account for other types of uncertainty 
and locational aspects of the reserves. The approach discussed in this report can improve 
the reliability of reserve products provided by renewables. 
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6. Conclusions 

This report discussed the ways employing emerging computational advances in system 
operation policies can improve the flexibility of the electricity industry in presence of 
high penetration of wind generation. 

An offline policy generation technique is proposed based on stochastic reserve margin 
scheduling to hedge against the real-time uncertainty of wind farm generation. A flexible 
reserve margin based algorithm has been applied to train offline policies for discounting 
wind generation and scheduling energy and reserves in presence of wind. A scenario-
based stochastic programming approach is leveraged to capture the effect of various 
possible wind scenarios based on short-term wind forecast and the loading conditions of 
the system. A testing method is derived to assess the performance of the policies obtained 
through the pro-posed training procedure for scheduling wind reserve margin.  

Utilizing the concept of flexible wind reserve margin allows the operator to allocate a 
discounted amount of wind for energy, leaving a reliability margin to hedge against 
uncertainty. The extra production of the wind farm can then be used for balancing 
purposes. A finite-state Markov chain 10-minute-ahead wind power forecast model, 
based on spatio-temporal analysis, was utilized to calculate the conditional probability 
distribution of the wind farm generation. The presented framework is used to find the 
appropriate level for allocating wind based on the predicted output. Numerical studies, 
demonstrated the significant benefits obtained by incorporating the flexible wind reserve 
margin using a Markov-chain-based forecast. The results communicate that scheduling 
the flexible wind reserve margin will allow the operator to increase the reliability margin 
of the system while reducing the total cost. Discounting the scheduled generation from 
wind would improve the reliability by handling the uncertainty at an early stage. It also 
addresses the existing cost trade-off between scheduling generation from wind and the 
risk associated with wind farm uncertainty and improves the overall cost of supplying the 
demand.  

The results show that the training based on the risk-aware scheduling can reduce the 
overall cost, while not imposing the burden of stochastic programming in real-time 
operation.  

The analysis performed for determining the market implications of transitioning to the 
prediction based approach also suggest that the prediction based model obtains higher 
quality of service from renewables.  

Future work can extend the proposed method to account for other types of uncertainty 
and locational aspects of the reserves. The approach discussed in this report can improve 
the reliability of reserve products from renewables. 
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Stochastic Unit Commitment Nomenclature

SETS

N Set of buses.
E Set of branches.
G Set of generators.
GF , GS, GW Sets of fast/slow/wind generators.
Gi Set of generators connected to node i ∈ N.
T Set of consecutive integer time instances {1, . . . ,TH}
S, St Set of all scenarios/set of scenarios at time t in the scenario reduction algorithm.

VARIABLES

ugts Binary variable indicating commitment of generator g ∈ G\GW at time t ∈ T

for scenario s ∈ S

vgts Binary variable indicating startup of generator g ∈ G \GW at time t ∈ T for
scenario s ∈ S

wgt Binary variable indicating commitment of slow generator g ∈GS at time t ∈ T

zgt Binary variable indicating startup of slow generator g ∈ GS at time t ∈ T

δits Phase angle at node i ∈ N, time t ∈ T and scenario s ∈ S

pgts Active power of generator g ∈ G at time t ∈ T for scenario s ∈ S

pSHits
Load shed at node i ∈ N, time t ∈ T and scenario s ∈ S

pW Sgts
Wind curtailment for wind site g ∈ GW at time t ∈ T and scenario s ∈ S

x, ys Vector of all first/ second stage variables for scenario s ∈ S.

PARAMETERS

πs Probability of scenario s ∈ S

Bs
F |E| by |N| matrix of susceptances (in the dc power flow equations) for scenario

s ∈ S

Bs |N| by |N| matrix of susceptances (in the dc power flow equations) for scenario
s ∈ S

Cg Marginal cost of generator g ∈ G\GW .
DTg Minimum down time of generator g ∈ G\GW

Fmax
l Capacity of branch l ∈ E

iallin Binary parameter; if its value is 1, wind is treated as a must-take resource
Kg Minimum load cost of generator g ∈ G\GW .
K

SH
Cost of load shed

Pmin
gs Minimum capacity of generator g ∈ G \GW for scenario s ∈ S (set to zero if

unavailable at this scenario).
Pmax

gs Maximum capacity of generator g ∈ G \GW for scenario s ∈ S (set to zero if
unavailable at this scenario).

Pit Load at node i ∈ N and time t ∈ T

PWgts Available output for wind site g ∈ GW at time t ∈ T in scenario s ∈ S

R+
g Minimum ramping of generator g ∈ G

iv



R−g Maximum ramping of generator g ∈ G

Sg Start up cost of generator g ∈ G\GW .
TH Time horizon length of the SUC problem
UTg Minimum up time of generator g ∈ G\GW

v



1. Introduction

1.1. Background

The worldwide drive towards a cleaner and sustainable electricity generation mix has lead to
increased renewable integration goals for the coming years. California, for example, is on track
for achieving its 2020 goal of 33% of energy needs satisfied by renewable resources and now aims
for 50% by 2030 [1]. Renewable resources have been traditionally treated - and are still treated
by many system operators - as must-take resources (negative load), i.e. they are fully integrated in
the electricity network regardless of their level or variability. Renewable curtailments only occur
in cases where operational feasibility is at risk. The increased renewable integration, however,
gradually brings about new operating conditions, such as steeper power ramps, overgeneration
and decreased frequency response capabilities. Conventional generation by itself is unable or
extremely costly to deal with these new conditions and a paradigm shift is necessary, in which
renewable generation is called upon to contribute to ancillary services and grid flexibility by
systematically dispatching at levels defined by operational and cost considerations. The need
for such policies is already becoming apparent in regions with increased renewable integration;
the California Independent System Operator (CAISO) curtailed about 1% of the total potential
renewable generation during the first quarter of 2017, with solar curtailment reaching up to
30% at specific times, while it has already adopted market based curtailment mechanisms [2]. In
Europe, on the other hand, directive 2009/28/EC is currently in force and stipulates that “Member
States shall ensure that when dispatching electricity generating installations, transmission system
operators shall give priority to generating installations using renewable energy sources in so far
as the secure operation of the national electricity system permits and based on transparent and
non-discriminatory criteria” [3]. As of November 2016, however, there is an initiative to review
the directive and an active debate of whether to include renewable curtailments; in fact, the latest
version of the proposal (February 2017) to revise the legislation does not include prioritizing
renewable generation.

1.2. Overview of the Problem

In this work we focus on mobilizing the flexibility of wind dispatch. Current wind generators
and power plants have advanced controls that allow them to operate practically at any point
below their (maximum) available output [4], [5]. However, their available output itself depends
on the weather conditions, i.e. the availability of wind. Consequently, they are considered semi-
dispatchable (in contrast to conventional resources for which complete control over the output
point is possible). These technical capabilities also enable us to consider the optimization of
the wind generation setpoint, instead of integrating all of the available wind generation into
the system. The benefits from curtailing wind production have been examined from various
perspectives. In [6] and [7], NREL provides a series of cases of wind curtailment in systems
in the US or abroad. In [8] and [9] CAISO uses the software PLEXOS to simulate a rolling
unit commitment problem in the presence of wind curtailment for high wind penetration. In
[10] it is shown that allowing for renewable curtailment enables significant reduction of the
required system storage size, in [11] the benefits are motivated mainly through solving a Security
Constrained Optimal Power Flow (SCOPF) problem and in [12] a dynamic interaction of wind
curtailment with storage is examined when the ramping rates of power plants are considered.
An overview of the motivation behind wind curtailment is given in [13], whereas in [14] wind
curtailment is employed for active network management. A flexible wind dispatch margin for
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the joint energy and reserves market and offline policies to obtain it are examined in [15] and
[16].

The Unit Commitment (UC) problem is a widely studied mixed integer program [17]–[19]
that determines the set of generators, among all the available ones, that will be committed to
satisfy the load during the following day. The two stage Stochastic Unit Commitment problem
(SUC) formulates the same decision in the presence of uncertainty (renewable generation, faults,
load), captured by a finite set of possible realizations (scenarios) [20]–[22]. The size of the
optimization problem scales linearly with the number of scenarios and for that purpose a large
amount of research has been devoted to decomposition techniques to iteratively approximate the
solution of the problem. Among these, in [23], the Progressive Hedging (PH) algorithm is adapted
to successfully solve the SUC problem. In [24] a cutting plane algorithmic approach is used.
In [25] a parallel implementation of Lagrangian relaxation in a high performance computing
environment is employed. In [26] an asynchronous parallelized algorithm based on stochastic
subgradient is utilized to efficiently solve the problem.

1.3. Main Issues

We aim to provide a complete framework to understand and evaluate the expected benefit from
flexible wind dispatch in a SUC setting, while also introducing innovations in the implementation
of the various components of the model. To begin with, since wind generation is not associated
with any fuel costs in the objective, it is not self evident why we could be better off curtailing
it and using costly conventional generation in its place. For this reason, we present small
motivating examples to offer intuition regarding the most common setups where such benefit
may occur: operation during oversupply, ramping requirements, technical minima of generators
and congestion. We then proceed to describe the complete evaluation framework, by introducing
its basic components: the Uncertainty and Optimization Modules.

The Uncertainty Module is based on existing wind speed modeling techniques, which we
enhanced with a non parametric modeling methodology for the aggregate power curve, i.e.
the mapping of wind speed to wind generation. When only aggregate wind generation data is
available for every site, estimating the power curve based on individual wind generator curves
could be problematic since not all aggregated generators have similar characteristics. If we instead
use averages of historical power data for given wind speed intervals, we may incur losses in
the modeling of the variability of output power generation or sensitivity to outliers in the data.
In an effort to accommodate for that, we use a methodology based on robust local polynomial
regression [27] and Maximum Likelihood Estimation (MLE) [28].

The Optimization module, on the other hand, is responsible for solving the SUC problem
given a set of scenarios and it has two modes. In the first mode, it utilizes an algorithm provided
in [29] and [30] for general two stage stochastic programs with binary first stage variables. The
intuition behind the algorithm is that, if the different scenarios of a stochastic program impose
similar requirements to the system, then it is possible that a good solution to the full problem will
come from solving the significantly smaller subproblems that only look at a scenario in isolation.
If the solutions we get by looking at specific scenarios do not perform well in the full problem
(where all scenarios are considered), we can eliminate these solutions from consideration in the
next iterations and resolve the subproblems. Even though SUC satisfies the requirements of the
algorithm, direct application of the algorithm as used in the experimental results of [29], [30]
does not yield a satisfactory convergence rate, since the scenarios of the SUC problem impose
differnt requirements and therefore yield wildly different solutions when considered in isolation.
However, if we use Lagrangian penalties in the the objective of the scenario subproblem to
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convey information from other scenarios, we get scenario specific solutions that perform well
for the full problem. The penalties we use are derived from the PH Lower Bounds [31] and
updates.

Even though the first mode of the Optimization Module can provide high quality solutions,
we may be interested in a fast heuristic approximation of the SUC solution instead. The second
mode of the Module implements a combined scenario reduction and decomposition algorithm
to provide a quicker answer by eliminating similar scenarios throughout the iterations of the
decomposition algorithm. The main idea behind this elimination is evaluating the similarity of two
scenarios based on them having comparable impacts when applied to the specific problem. For
that purpose we use the suboptimal, scenario specific solutions that the decomposition algorithm
calculates during its execution, as “features” of that scenario to evaluate distances between
different scenarios and gradually reduce their number by keeping the most representative ones
for our system.

We test our framework on a reduced model of the Western Electricity Coordinating Council
(WECC) system [32], consisting of 130 thermal generators, 225 nodes and 371 lines for three
wind penetration scenarios (low, medium and high). After the SUC problem is solved, we utilize
its optimal solutions to compare the cost of policies that treat wind as a must-take resource
versus ones that allow flexible wind dispatch. We also test our heuristic algorithm from mode 2
of the Optimization Module against the high quality solutions of mode 1. Regarding the value
of wind flexibility, our results indicate negligible cost benefit in the low integration case, but
an even above 20% cost improvement in the high integration case, supporting the argument (at
least for our test case example) that flexible wind dispatch should be directly integrated in the
operation of the power market.

1.4. Report Organization

This work is structured as follows: In section II, the motivational small examples are provided.
In section III, the modeling and evaluation approach is described. In section IV, the decomposition
algorithm and the heuristic decomposition and reduction algorithm are presented. In section V,
simulation results for the WECC system are shown. Finally, in section VI we conclude and
provide future research directions.
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2. Motivating Examples

In order to motivate the discussion and provide some intuition on the cost benefits from
allowing wind generation to deviate from the available wind power output, three stilized examples
are examined. These examples try to illustrate that, even though wind generation is not associated
with any cost in the objective of the unit dispatch problems, it can still be beneficial to spill
wind resources for a cost efficient allocation of conventional generation. Fig. 2.1 outlines the
parameters for these examples.

2.1. Technical Minima

In example 1, if the 40MW of wind power are treated as a must-take resource, the total
residual load that needs to be satisfied by conventional generation would be 20MW. Due to the
technical minimum 40MW of generator G2, we need to use the more expensive G1, resulting in
a 1100 $/h cost of operation. If instead the output of the wind generator is adjusted at 20MW,
G1 can be used and the cost drops to 1000 $/h.

2.2. Startup Costs

In example 2, if wind power is a must-take resource, it can fully satisfy demand for time
period 2. A residual load of 20MW should be satisfied by conventional generation in periods
1 and 3. That, however, means that generator G1 must restart at period 3 and the startup costs
are incurred twice, leading to a total cost of 1100$ for the three periods. If, instead, 20MW
of wind are spilled during the second time period, G1 can stay on and the total cost is now
8500$. Note that this intuition could be extended for more time periods or for instances with
more conventional generators.

2.3. Ramping Constraints

In example 3, the goal is to satisfy N−1 security. More specifically, if any of the generators
fail, we should be able to recover the lost generation within the next time unit (an hour is used
here, but a smaller time resolution could be considered). Generators G1 and G2 are identical
and have a lower startup cost than generator G3, however their ramping rates are limited to
60MW/h, whereas G3 has a ramping rate of 100MW/h. In the case where no wind spill is
allowed, utilizing only the cheap generators does not yield a feasible solution, since assuming
they share the residual load of 130MW by generating 65MW each, the ramping capabilities of
G1 are not sufficient in case G2 fails (in case they share the load unevenly, the same problem
arises if the highest generating unit fails). So the costly generator G3 needs to be utilized, leading
to a total cost of $12900. Now, if instead we dispatch the wind unit at 40MW, by spilling 10MW
of wind power, we can satisfy the residual load of 140MW by evenly sharing between G1 and
G2, i.e. 70MW each. In case G2 suffers a fault, we can cover 60MW of its generation by G1 and
the remaining 10MW we can obtain by ramping up the wind generation to its available output.
For that, we exploit the fact that wind turbine controls allow for very fast ramping. The second
dispatch amounts to a lower cost of $11200.
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2.4. Congestion

Finally, in example 4, a DC optimal power flow problem is solved to illustrate how allowing
for flexible wind dispatch may lead to a more economical allocation by alleviating congestion. In
the case where the 10pu of wind power are treated as a must-take resource, it turns out that in the
optimum they all pass through branch 2−3 to satisfy the load of bus 3, binding the phase angle
difference between buses 2 and 3 as well. That means the flow of branch 2−3 is at its capacity,
so the flow on the line 1−2 must be zero. Because of that, the phase of bus 1 has to equal that
of bus 2 and that constrains the flow on line 1−3 to 25pu. We observe that both line 1−2 and
line 1−3 are not utilized close to their full capacity, whereas line 2−3 is congested. Also, 5pu
of the load is satisfied by the expensive generator G2, leading to a total cost of $130000/h. If
we instead dispatch wind at 8pu, we can satisfy the load without using the expensive generator,
by generating 32pu with G1 and the remaining 8pu through wind, leading to a lower total cost
of $128000/h. The flows are in this case P12 = 2pu, P23 = 10pu and P13 = 30pu, which also
corresponds to a better utilization of the line capacities.
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(a) Example 1. The generator specifications in this case

are minimum and maximum generation limits (Pmin,

Pmax) and marginal costs Cg. The available (maximum)

wind power generation is Pw and the load is PD.

(b) Example 2. The generator specifications are the min-

imum generation limit (Pmin), the startup cost Sg and the

operating cost C(P) as a function of the generation level
P . The available (maximum) wind power generation

Pwt and load PDt are given for three consecutive time

periods, t = 1,2,3. G1 is assumed turned off at the
beginning.

(c) Example 3. The generator specifications are mini-

mum and maximum generation limits (Pmin, Pmax), the

startup cost Sg, the operating cost C(P) as a function

of the generation level P and the ramping rate RR. The

available (maximum) wind power generation is Pw and

the load is PD. The generators are initially assumed

turned off and we are only interested in the first time

period.

C1
g = 4 [k$/h]

Fmax
12 = 10 [pu]

B12 = 20 [pu]

G1 G2

Fmax
23 = 10 [pu]

B23 = 20 [pu]

B13 = 50 [pu]
Fmax

13 = 30 [pu]

Pw = 10 [pu]

PD = 40 [pu]

C2
g = 6 [k$/h]

1 2 3

(d) Example 4. The system consists of three buses and

three branches with susceptances B and capacities Fmax

as provided in the figure. The generator specifications

are the marginal costs Cg, the maximum available wind

production is Pw and the load is PD.

Figure 2.1: Small examples to illustrate potential benefits of wind power spilling.

3. Model Outline

The examples of the previous section constitute favorable scenarios in which introducing
flexible wind dispatch allows for a lower cost of operation, due to technical minima of conven-
tional generation, efficient scheduling, ramping requirements or congestion. In order to make
an argument for the general case, however, we need to consider a large set of scenarios,
generated based on a model of the underlying uncertainty of an actual system. For that purpose,
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the procedure depicted in Fig. 3.1 is adopted. The developed model comprises of two basic
components, the Uncertainty Module and the the Optimization Module. The Uncertainty Module
tries to capture the underlying uncertainty of the system, which in our case is assumed to come
from wind generation and line or generator faults. The module is trained based on a data set and
then used to generate scenarios whenever these are necessary. The Optimization Module, on the
other hand, takes as input a set of scenarios and solves or heuristically approximates the solution
of a stochastic unit commitment problem, providing in its output a commitment schedule of the
slow generators for the next day. The Optimization Module can be treated as a black box that
a system operator uses to make the day ahead scheduling based on a set of available scenarios.
Furthermore, it has two settings; in the first setting the optimization treats wind generation as
a must-take resource, whereas in the second setting wind generation is allowed to dispatch at
lower levels.

Based on these modules, the testing process is the following: Initially, the Uncertainty Module
generates a set of scenarios. These scenarios are treated as the uncertainty information the system
operator utilizes to make the scheduling decision. Based on this information, the Optimization
Module makes one scheduling decision for each of two cases: the one in which wind is a must-
take resource, and the one that it is not. In the final step, we wish to evaluate the difference
between the costs associated with each case. To that end, we generate a new set of scenarios
from the Uncertainty Module, representing possible actual realizations of the uncertainty the
next day, and compare the expected costs of each of the two cases (Test Optimal Commitment
Block).

3.1. Uncertainty Module

The underlying uncertainty of the problem considered consists of three main components: the
wind model, the power curve model and the reliability model. The purpose of the wind model is
to generate synthetic wind speed time series with hourly resolution, representative of the wind
sites under consideration. Subsequently, the power curve model takes as input the wind speed
time series and outputs a wind power generation series for every wind site. Finally, the reliability
model is a discrete distribution from where faults of lines and generators are drawn. Note the

Figure 3.1: General model outline. The Uncertainty Module generates scenarios to be used as
input for the Optimization Module, which defines an optimal commitment. It also generates a
new set of scenarios to test this optimal commitment.
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uncertainty model could be extended in a straightforward way to include load uncertainty as
well, but in this work we do not consider it. This simplification is not unreasonable since the
variability of load around its forecasted value is not as high as the variability of wind generation.

3.1.1 Wind Speed Model

This section describes the creation of a model that captures the characteristics of wind speed
from multiple wind sites. The approach follows the basic steps from [33], [34] and [35]. The
input data used to train the model are wind speed measurements ξ train

gk , where g ∈ GW indicates

the different wind sites and k ∈ {1,2, ... Ttrain} indicates the Ttrain hourly measurements that are
available at every wind location. The goal is to train a model based on these measurements and
then use it to generate artificial wind series. The steps employed are divided in two phases; in
the first one (Learning Phase) the model is trained using the time series data, whereas in the
second one (Time Series Generation Phase) randomly generated wind time series to be used in
a Monte Carlo simulation are created based on the model.

a) Learning Phase

The learning phase aims to (approximately) transform the measurement data from the various
locations to a set of independent Gaussian time series, whose characteristics will be captured
using basic Auto-Regressive Moving Average (ARMA) models [36]. The following steps are
employed.

Step 1: Since the data wind time series is not necessarily stationary, we initially remove
diurnal and seasonal effects to get a new (approximately) stationary time series ξ̃ train

gk .

ξ̃ train
gk =

ξ train
gk −µgmd

σgmd

, (1)

where µgmd and σgmd are the mean and standard deviation respectively of the time series

created by the samples ξ train
gk that correspond to epoch m and hour of day d ∈ {1,2, ... 24} for

wind site g ∈ GW .
Step 2: The stationary time series samples of the previous step do not necessarily follow a

Gaussian distribution. Through a bijective mapping that employs the estimated non parametric
Cumulative Distribution Function (CDF) F̂g of the time series from Step 1 in site g ∈ GW and

the inverse standard normal CDF Φ, the random samples ξ̃ train
gk are mapped to samples ξ̂ train

gk
drawn from the standard normal distribution, according to:

ξ̂ train
gk = Φ−1(F̂g(ξ̃

train
gk )) (2)

Step 3: The data ξ̂ train
gk are now assumed Gaussian stationary time series, but the time series

between the different locations can still be correlated. For that reason, based on the ideas
discussed in [33], the diagonalization of the symmetric |GW |× |GW | matrix Σ, where Σi j = σ 2

i j

are the sample covariances between the time series in two different locations i and j

σ 2
i j =

1

Ttrain

Ttrain

∑
k=1

ξ̂ train
ik ξ̂ train

jk , (3)

is employed Σ = UDUT , where D diagonal and U orthogonal. The linear transformation
induced by the matrix UT will map the |GW | correlated Gaussian time series for every location
to Γ uncorrelated ones (in our case |GW | = Γ, however in the case of a large number of wind
sites we may choose to only keep the Γ < |GW | most important eigenvalues and corresponding
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eigenvectors). Let {Ξ̂}gk = ξ̂ train
gk be the matrix whose rows correspond to the correlated time

series, then the rows of {Ω}γk = ω train
γk , for γ ∈ {1, . . . ,Γ} and k ∈ {1, . . . ,Ttrain}.

Ω =UT Ξ̂ (4)

will comprise of Γ time series that will be assumed independent.
Step 4: For any fixed γ , the time series ω train

γk is modeled using a univariate ARMA(p,q)
model, utilizing the Box–Jenkins method [36].

b) Time Series Generation Phase

At this point the model for wind speed time series has been trained. The goal of the Time

Series Generation Phase is to generate scenarios of synthetic wind time series ξ
sample
gts based on

this model. Each scenario s ∈ S consists of TH time samples t ∈ T for every wind site g ∈ GW .
The following procedure is employed:

Step 1: The first step of the process is to generate Γ time series ω
sample
γts for every scenario

s ∈ S, based on the ARMA model of Step 4 of the Learning Phase.

Step 2: The inverse transformation of (4), for every scenario s∈ S, yields a time series ξ̂
sample
gts

with t ∈ T , corresponding to each wind location g ∈ GW .

Step 3: The inverse transformation of (2) then yields a time series ξ̃
sample
gts for every scenario

and every wind site.
Step 4: Finally based on the epoch and the time of day we want to simulate, the diurnal and

seasonal effects are added back in, using the inverse of (1), to yield the final wind speed time

series ξ
sample
gts with t ∈ T , s ∈ S and g ∈ GW .

3.1.2 Power Curve Model

For every site of wind generation an aggregate power curve that will provide an estimate of
the wind power generation given the wind speed needs to be constructed. For that purpose, wind
data and the corresponding wind power generations are used to train a power curve model. The
power generation data points come from an aggregation of multiple wind turbines in each site,
with potentially different individual power curves and characteristics. Therefore, the use of the
standard parametric power curve model of a single wind turbine to describe the wind speed
and power relationship [37] would not be a satisfactory approximation and a data driven non-
parametric fit is more suitable. The model should also be able to capture the nonlinear behavior
of the power curves, that is dependent on the wind speed operating point. For the aforementioned
reasons, the local polynomial regression scheme described below was employed.

A further observation on modeling aggregate wind power generation by fitting a curve to the
aggregate generation data is the fact that the fitting tends to smoothen out the power generation,
i.e. high and low wind power generation measurements for the same wind speed will be mapped
to a fixed intermediate value through the fitted curve. These high and low values of aggregate
generation do not necessarily correspond to measurement errors, but they may instead represent
the fact that wind speed is not the same as the measured one for all individual wind turbines
that are aggregated, or that aggregate wind power depends on more than one factors than wind
speed alone. Neglecting these values due to the aggregation may be acceptable if the focus is
mean power generation, but since we plan to use the model for time series sampling in an
environment with increased wind penetration, we would be smoothing out δP/δ t effects that
are becoming increasingly important in power systems (and therefore imposing looser ramping
requirements). For that reason, and due to lack of more detailed generation data, the aggregate
generation at every wind speed is instead modeled as a random variable whose mean is given
by the aforementioned local polynomial regression method.
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More specifically, for every fixed g∈GW the measurement data
(

ξ train
gk ,Ptrain

gk

)

, k∈{1, . . . ,Ttrain}

are sorted (based on the lexicographical ordering) in L wind speed intervals (ai,bi), where
i ∈ {1,2, ...L}, with approximately equal number of measurements, represented by a central
wind speed point ci. Denote the length of each interval by hi = bi−ai.

For every wind site g ∈ GW , we want to train a distribution for the wind power PW g(vg),
given the wind speed vg. For simplicity in the notation, the subscript g indicating the wind site
is dropped, but we imply that the fitting process is repeated for every site g. We assume the
distribution for PW (v) is normal with mean mi(v) and the variance for every interval i∈ {1, . . . ,L}
is assumed constant σi. We approximate the mean around every center ci locally by a p degree
polynomial mi(x)≈ βi0 +βi1(x− ci)+βi2(x− ci)

2 + ...+βip(x− ci)
p.

The following process is adopted to fit a local polynomial for a fixed interval i ∈ {1,2, ...L}.
The data measurements are not considered equally trustworthy, but instead every measurement
(

ξ train
k ,Ptrain

k

)

, k ∈ {1, . . . ,Ttrain} is weighted according to a reliability constant rk, which has two
multiplicative components: rki = ηkiqki:

ηki represents a reduction of our trust in the local approximation due to the horizontal distance
(distance in the axis of wind speeds) from the interval center. According to a standard local
polynomial regression assumption, the Epanechnikov Kernel function is used to define a

weight ηki =
3

4hi
(1−

(ξ train
k
−ci)

2

h2
i

)1{|ξ train
k
−ci|≤hi}

.

qki represents a reduction of our trust in the measurement due to the vertical distance (distance
in the axis of wind power) of the measurement point from the mean of the fit at that
point. Of course, the fit is not known from the beginning, so an iterative procedure is used,

following [27], where an initial fit m
(0)
i of the local polynomials is calculated with all q

(0)
k

initialized at 1, then at step τ the errors e
(τ)
k = Ptrain

k −m
(τ−1)
ik

(ξ train
k ) are calculated (where

ik is the interval that measurement k belongs). Following that, the weights of the new fit are

defined as q
(τ)
k

= B(e
(τ)
k

/(6s)), where s is the median of |e
(τ)
k
| and B(·) a kernel function

on [−1,1]. This penalty guaranties a robust fit to outliers, since measurements that are far
from the fitted curve will receive low weights and therefore their impact on the objective
of the optimization problem formulated below will be small.

The fit is achieved by solving the following maximum likelihood problem with respect to
σ 2

i ,βi j, j ∈ {1, . . . , p}, for every i:

maximize
Ttrain

∏
k=1





1
√

2πσ 2
i

exp

(

−
(Ptrain

k −mi(ξ
train
k ))2

2σ 2
i

)





rki

, (5)

which yields:

σ 2
i =

∑
Ttrain
k=1 rki(P

train
k −mi(ξ

train
k ))2

∑
Ttrain
k=1 rki

(6)

and the βi j are given by a standard weighted least squares fitting.

3.2. Stochastic Unit Commitment

The generating units available to the system operator are divided into slow and fast, based
on how long prior to operation a commitment decision for that unit has to be made. The output
of the SUC problem is the commitment of slow generating units into the grid. The challenge
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is that the commitment decision for slow units has to be made a day before operation, when
the underlying uncertainty is still unknown, i.e. the commitment decisions (binary variables) for
these units have to be the same across all scenarios (first stage variables). On the other hand,
the other variables of the problem, such as the commitment of fast generating units and the
generation levels, are allowed to vary depending on which scenario of nature was realized (the
decision for them is made with knowledge of the uncertainty), hence the value that they are
assigned can be different for every scenario (second stage variables).

Our formulation closely follows that of [20], adapted to explicitly model the flexibility of
wind resources. The same methodology could be applied to determine the value of other types
of renewable resources, like solar, but the focus here is wind generation, so the model is built
around that. Note that the UC modeling standard in industry has slightly evolved from the model
used in this work, so as to be able to cope with large scale systems. More specifically, tighter
formulations of some constraints (such as ramping constraints) are utilized, a modified set of
varibles has been offering improved computational performance by handling efficiently generator
technical minima, whereas the shift factor formulation enhanced with lazy constraint evaluation
has been noted to offer greater computational benefits (since the operators know which constraints
are usually tight and need to be introduced) [38]. However, the qualitative and computational
ideas conveyed in this work do not depend on the exact formulation, so we prefered using the
model from [20] to allow comparison.

The objective of the SUC problem (7) is minimizing the expected, over the different scenarios,
operational costs (startup, minimum load and fuel costs), as well as the highly penalized load shed
variables. Note that wind generation is not penalized in the objective. Constraint (7b) imposes the
load flow balance at every node. The matrix Bsis adjusted depending on the network configuration
for every scenario (unavailability of lines). Constraint (7c) imposes limits for the load shed
variables on every node and (7d) imposes the minimum and maximum operational limits of the
generating units. Note that in case the unit is unavailable in scenario s, then both Pmax

gs and Pmin
gs

are set to zero in the data, forcing the generation of the unit to zero. Possible unavailability of
the wind resources is neglected in the current study. Furthermore, if the unit is not committed at
this time point, then the variable ugts is zero with the same effect. Constraint (7e) restrains wind
generation below the maximum available capacity for that scenario. Constraint (7f) imposes that
wind is a must-take resource (i.e. the wind spill is zero) in case the parameter iallin is set to
one. Note, however, that the policy adopted here is that wind is not spilled unless the operation
of the system becomes technically infeasible. In that second case, the constraint is instead put
in the objective with a big-M penalty, and then the impact of the penalty is subtracted from all
the relevant quantities. This is actually close to what operators do in the must-take case, since
they will only force curtailments of wind if the system feasibility is compromised. Constraint
(7g) imposes that line flow limits (the matrix Bs

F is adjusted based on the line availability).
Constraint (7h) imposes the ramping limitations. Constraints (7i) - (7k) impose the minimum
up and down time requirements. Finally, (7l) and (7m) are the non-anticipativaty constraints for
the commitment of the slow generators, i.e. it has to be the same for all the scenarios.
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minimize ∑
s∈S

πs ∑
t∈T

∑
g∈G\GW

(Sgvgts +Kgugts

+Cg pgts +K
SH

pSHits
) (7a)

subject to

∑
g∈Gi

pgts− ∑
j∈N

Bs
i jδ jts = Pit− pSHits

,

∀i ∈ N,∀t ∈ T,∀s ∈ S (7b)

0≤ pSHits
≤ Pit ,

∀i ∈ N,∀t ∈ T,∀s ∈ S (7c)

Pmin
gs ugts ≤ pgts ≤ Pmax

gs ugts,

∀g ∈ G\Gw,∀t ∈ T,∀s ∈ S (7d)

pgts + pW Sgts
= PWgts,

∀g ∈ Gw,∀t ∈ T,∀s ∈ S (7e)

0≤ pW Sgts
≤ (1− iallin)PWgts,

∀g ∈ Gw,∀t ∈ T,∀s ∈ S (7f)

−Fmax
l ≤ ∑

i∈N

Bs
Fli

δ jts ≤ Fmax
l ,

∀l ∈ E,∀t ∈ T,∀s ∈ S (7g)

−R−g ≤ pgts− pg(t−1)s ≤ R+
g ,

∀l ∈ E,∀t ∈ T,∀s ∈ S (7h)

t

∑
τ=t−UTg+1

vgτs ≤ ugts ,

∀g ∈ G\Gw,∀t ∈ {UTg, . . . ,TH},∀s ∈ S (7i)

t+DTg

∑
τ=t+1

vgτs ≤ 1−ugts

∀g ∈ G\Gw,∀t ∈ {1, . . . ,TH −DTg},∀s ∈ S (7j)

vgts ≥ ugts−ug(t−1)s ,∀g ∈ G\Gw,

∀t ∈ T,∀s ∈ S (7k)

ugts = wgt ,∀g ∈ GS,

∀t ∈ T,∀s ∈ S (7l)

vgts = zgt ,∀g ∈ GS,

∀t ∈ T,∀s ∈ S (7m)

pgts ≥ 0,

∀g ∈ G,∀t ∈ T,∀s ∈ S (7n)
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4. Solution Algorithm

4.1. A Scenario Decomposition Approach

The optimization problem formulated in the previous section has the form of a two-stage
stochastic program. For concreteness, let x be the vector of first stage variables, i.e. the slow
generator (binary) commitment, and ys be the vector of the second stage variables for scenario
s ∈ S. Let X be the feasibility set for x imposed by the constraints involving only first stage
variables, i.e. constraint (7b), and Y (x,s) be the set of ys imposed by the rest of the constraints,
for scenario s ∈ S, if the first stage variables are fixed at a value of x. Then, for a suitably
defined function φ that captures the unweighted contribution of every scenario in the objective,
the optimization problem takes the form:

minimize
x,{ys}s∈S

∑
s∈S

πsφs(x,ys)

subject to x ∈ X

ys ∈ Y (x,s) ,∀s ∈ S

(8)

Let fs, for s ∈ S, be the set of (well defined) functions:

fs(x) = minimize
ys∈Y (x,s)

φs(x,ys) , (9)

i.e. each evaluation of the function fs(x) accounts in solving an optimization problem over the
second stage variables, for fixed scenario s∈ S and first stage variable x. Now (8) is reformulated:

minimize
x∈X

∑
s∈S

πs fs(x) (10)

The binary nature of the first stage decisions in (10) allows the decomposition scheme proposed
in [29] and elaborated in [30] to be employed in order to decompose the problem and reduce the
computational burden. The intuition behind the success of this algorithm so far is that, in case
the different scenarios of stochasticity impose similar requirements to the optimization problem,
it is possible that the global optimal solution will be among the scenario specific solutions. In
our problem, however, the scenarios could impose different requirements to the system, but that
can be accommodated for by the algorithm through the use of Lagrangian penalties that will
eventually drive the scenario specific solutions together towards the same point. The form of
decomposition utilized in this work is given in Fig. 4.1.

The main body of the algorithm is divided into two phases, the Lower Bounding and La-
grangian Update Phase and the Upper Bounding Phase and Cut Phase. In the Lower Bounding
Phase, we fix every scenario s∈ S and solve for the optimal first stage decision given that scenario,
over a space X \W . This yields |S| scenario specific solutions for the first stage variables xt

s at
iteration t. In the first iteration, the set W is empty and the penalty coefficients wt

s are zero, so we
are essentially solving |S| scenario subproblems without any interaction, i.e. we are solving the
initial problem after relaxing the non anticipativaty constraints. Since we are solving a relaxation,
at least for the first iteration, we are guaranteed to get a lower bound on the optimal solution
to (10). For the next iterations, it is still straightforward [31] to show we get lower bounds for
(10) solved in the restrained space of first stage variables X \W .

Following that, the objective value penalties ws for every scenario s ∈ S are updated. These
penalties aim to drive the scenario solutions together. Intuitively this is achieved in the following
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way: say that x is just an one dimensional x and for some iteration t we have that the mean of
the scenario specific solutions is x̂t . If for some scenario s ∈ S, the scenario specific solution xt

s

is away from the mean of the scenarios (say xt
s = 0 and x̂t = 0.9), we would like to penalize

this deviation in the objective of the scenario subproblem the next time we iterate, at time t +1.
So, at iteration t +1 a term (xt

s− x̂t)x will appear in the objective of scenario s, so that the new
solution x of the scenario will be driven towards the scenario mean (in the arithmetic example,
the penalty in the objective would be (0− 0.9)x = −0.9x which will drive x to be 1 in the
minimization, i.e. closer to the previous iteration mean.)

In the Upper Bounding Phase of the algorithm, the |S| scenario specific solutions for the first
stage variables found during the previous phase are tested into the full problem. If feasible, each
one of them yields an upper bound to (10). That way, we can possibly update the upper bound
and the first stage solution that yields it.

We then add the points {xt
s}s∈S in the set W . Our objective function value has already been

calculated for all of these points, so we can exclude them from further consideration, except
for the one that has yielded the best upper bound so far. That is, the execution of the Lower
Bounding Phase for the next iteration should only consider points not in W . In practice, this
is achieved by adding a global cut in the optimization problems solved in the first phase, for
every point in W so as to cut off this particular point. More specifically, a “No-Good-Cut” is
employed, i.e. a constraint of the form

xT (1− xt
s)+(1− x)T xt

s ≥ 1 , (11)

in order to cut off the point xt
s.

The parameter ρt is initialized before the optimization and defines how aggressively the
penalties are imposed in the objective. Very large values of ρt however could lead to oscillatory
behavior, by driving the mean to be very high or very low during successive iterations. Very low
values of ρt lead to slow convergence of the scenarios to the same point. If we want to ensure
convergence for the dual problem of the Lower Bounding Phase, the sequence of ρt should
satisfy some properties (i.e. its limit being zero, and the series diverging to infinity would be
sufficient). For our purposes and the precision of the final solution we aim to achieve, even a
costant ρ can work satisfactorily. Also, the objective penalties are more useful at the beginning
of the algorithm, since they lead the possibly very different scenario specific solutions towards
the same point x, while the global cuts are more useful after the first iterations, to reduce the
optimality gap by cutting out points when the scenario solutions are similar to each other and the
Lagrangian penalties do not offer significant improvements any more. The global cuts are not
useful during the initial steps of the algorithm since the scenario objectives change significantly
due to the penalties, so it is unlikely that we would end up to the same point x anyway (so there
is no need to cut it off). The complementary behavior of these two characteristics can lead to a
very good performance if exploited. The global convergence of the algorithm is guaranteed [29],
but we can also terminate earlier, when we have sufficiently small duality gap for the application.

4.2. A Progressive Hedging Scenario Reduction and Decomposition Heuristic

The algorithm presented in the previous section will, by construction, lead to high quality
solutions. Its convergence to the optimal solution is guaranteed [29], but we can also stop its
execution once a guarantee of a small gap is available. However, at every iteration we still need to
solve |S| subproblems for a fixed scenario (in the Lower Bounding Phase) and |S|2 subproblems
for fixed scenario and fixed first stage variables (in the Upper Bounding Phase). Even though in
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Initialization Phase

t← 0, UB← ∞, LB←−∞ , wt
s← 0, ∀s ∈ S, W ← /0

Main Body

repeat

t← t +1,
Lower Bounding and Lagrangian Update Phase

Solve scenario subproblems:
for s ∈ S do

xt
s ∈ argmin

x∈X\W
{ fs(x)+ xT wt−1

s }

end for

Update Lower Bound:
LB ← ∑s∈S πs fs(x

t
s)

Update objective weights:
for s ∈ S do

x̂t ← ∑s∈S πsx
t
s

wt
s← wt−1

s +ρt (x
t
s− x̂t)

end for

Upper Bounding and Cut Phase

Evaluate scenario solutions for Upper Bounds:
for s ∈ S do

UBs← ∑i∈S π j fi(x
t
s)

end for

Update Upper Bound:
UB ←min{UB,{UBs}s∈S}
Exclude points tested:
for s ∈ S do

W ←W ∪{xt
s}

end for

until UB≤ LB

Figure 4.1: Decomposition scheme proposed in [29], adapted to solve the SUC problem. The
Lower Bounding Phase involves solving smaller optimization problems than the original, since
the scenario is fixed, whereas the Upper Bounding Phase involves smaller problems since the
first stage and the scenario are fixed. As discussed in section VI, not both phases are necessarily
executed at every iteration.

practice, for the simulations we conducted, the algorithm terminated after a few iterations and
we only actually apply the upper bounding phase 4−5 times, the computational burden of the
algorithm can still be high for an increased number of scenarios. For that reason, we motivate
and propose a scheme that yields a fast heuristic approximation of the solution.

In our case, the scenarios involve continuous (wind power generation) and non continuous
variables (discrete faults, represented by binary parameters). Defining distances between these
scenario vectors could be problematic (susceptible to scaling issues between the continuous and
the discrete part for example). Our goal is to define the scenario distances in a way that takes
into advantage not the scenario vector itself, but the impact that that scenario inflicts upon the
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1: Initialization Phase

2: t← 0, St ← S, wt
s← 0, ∀s ∈ S and Dt

i j ← 0, ∀i, j ∈ S

3: (xt+1
St

,yt+1
St

,wt+1
St

)← PH(St ,0,0,w
t
St
,0)

4: t← t +1
5: Main Body

6: repeat

7: if t ≤M then

8: Reduction Phase

9: (xt0
St
,yt0

St
,wt0

St
)← (xt

St
,yt

St
,wt

St
)

10: Run PH for Mt steps:
11: for i ∈ 0..(Mt −1) do

12: (xti+1

St
,yti+1

St
,wti+1

St
)← PH(St ,x

ti
St
,yti

St
,wti

St
,ρt)

13: end for

14: Calculate state of system for every scenario:

15: zt
s← z(x

tMt
s ,y

tMt
s ), ∀s ∈ St

16: Update scenario distances:
17: Dt

sk← Dt−1
sk

+ ||zt
s− zt

k||, ∀s,k ∈ St

18: Initialize new scenario set:
19: St+1← St

20: repeat

21: Pick k∗: (k∗, l∗) ∈ argmin
k,l∈St ,k 6=l

{Dt
kl}

22: Perform scenario reduction:
23: St+1← St+1 \{k

∗}, πl∗ ← πk∗ +πl∗

24: until reduction termination criterion
25: Update reduced set of variables for the next iteration:

26: (xt+1
St+1

,yt+1
St+1

,wt+1
St+1

)← (x
tMt

St+1
,y

tMt

St+1
,w

tMt

St+1
)

27: else

28: Execution Phase

29: St+1← St

30: (xt+1
St+1

,yt+1
St+1

,wt+1
St+1

)← PH(St ,x
t
St
,yt

St
,wt

St
,ρt)

31: end if

32: t← t +1
33: Termination Criterion

34: End iterations when the scenario solutions get close to each other:
35: ε t ← ∑s∈St

πs||x
t
s−∑s′∈St

πs′x
t
s′ ||

36: until ε t < eps

37:
38: function PH(S,xt

S,y
t
S,w

t
S,ρt )

39: x̂t ← ∑s∈S πsx
t
s

40: wt+1
s ← wt

s +ρt(x
t
s− x̂t), ∀s ∈ S

41: (xt+1
s ,yt+1

s ) ∈ argmin
(x,y)∈X(s)

{ fs(x,y)+xT wt+1
s + ρt

2 ||x− x̂t ||22}, ∀s ∈ S

42: return (xt+1
S ,yt+1

S ,wt+1
S )

43: end function

Figure 4.2: Scenario Reduction Progressive Hedging.

power system state. More specifically, if the optimal solution of the SUC problem was available
and the state of the power system for two scenarios in that solution was the same or similar,
then perhaps only one of these scenarios is necessary to capture the requirements that this
uncertainty realization entails for the power system. Of course, the solution to the SUC problem
is not available in advance, but at every step of a scenario decomposition algorithm we get
an approximation of it. So at every step we can use these suboptimal, scenario specific, system
states (i.e. power flows in our case) as features to define distances, based on continuous variables,
that represent the impact of a scenario on the power system. The proposed integration of the
decomposition and scenario reduction steps can be combined with existing scenario reduction
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and machine learning techniques to obtain more sophisticated clustering schemes, but in this
study a simple reduction approach is adopted to illustrate the effectiveness of our approach.
We also use PH as the decomposition algorithm, since its use is well established for the SUC
problem [23].

The basic steps of the algorithm, as implemented in this work, are depicted in Fig. 4.2. The
algorithm keeps a record of the remaining scenarios St at every iteration step t. For simplicity,
the algorithm is described in two distinct phases; in the first M steps of the algorithm execution a
reduction in the number of scenarios is allowed (Reduction Phase), while afterwards (Execution
Phase) the set of scenarios is assumed fixed and PH is executed until it converges (or until the
weighted distance between the scenario solutions is below some threshold eps). During each
iteration t of the Reduction Phase, we perform Mt steps of PH. Following that, based on the
scenario solutions available at that iteration, the state zt

s of the system is calculated for every
scenario. In our implementation, the state consists of the power flows of the network at every
time instant, and a satisfactory performance is observed in this case, but of course we could
instead include a richer set of variables. The scenario distances are then calculated and from a
pair of scenarios with small distance to each other one is eliminated and its probability is added
to the other. Note that if the scenarios were exactly the same, the new problem with the reduced
number of scenarios would have the same solution set and objective evaluation as the old one.

Both the iterations of the Reduction Phase M and the steps per iteration Mt could be set as
constants, or depend on convergence properties of the algorithm instead; for example we could
interrupt the scenario reduction if the distances of the remaining scenarios are above a threshold
instead of a fixed M or only calculate system states after the scenario solutions are sufficiently
close to each other instead of after a fixed number of Mt PH iterations. However, setting a hard
upper limit for M and Mt allows us to control the maximum number of MIPs solved by the
algorithm and hence the computational burden.

Since the initial iterations of the algorithm are performed on a more detailed set of scenarios,
we expect that when the reduction set is finalized, a good initialization point will be available
for the remaining execution of the algorithm. In fact, the algorithm could consist entirely of the
Reduction Phase or the requirement of convergence of all the scenarios to the same solution in
the end could be relaxed. In that case, in practice, we test all the solutions we got up to that
point for every scenario in the reduced set over the full set of scenarios and pick the one that
yields the best upper bound to our problem.
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Figure 5.1: Map of the reduced 225 bus WECC system [32].

5. Simulation Results

For the SUC formulation, we consider a reduced model of the Western Electricity Coordinating
Council (WECC) system [32] with 225 buses, 371 lines and 130 conventional generators, shown
in Fig. 5.1. The same model is used in [34] and [25]. A typical winter weekday is simulated
for three different integration cases: high, medium and low. High integration corresponds to
33% wind energy penetration, the medium integration corresponds to 19% penetration and the
low integration to 13%. The average load is 28056MW, with a minimum of 21438MW and a
maximum of 32300MW. The capacity of thermal generation is 31281MW and the total generating
capacity, not including wind resources, is 51402MW. The cost of load shedding is assumed
$5000/MW-h. As mentioned, wind in the “must-take” case study, all the wind is integrated
unless this leads to system infeasibility. For these cases, an underestimation of the cost is used
that comes from imposing a big-M penalty on wind spill instead, where the M is chosen twice
the cost of load shed (and this penalty is then subtracted from the objective for the results). The
generation mix in terms of type, number of generators and total capacity is shown in Table 5.1.

The uncertainty model is trained based on data taken from [20]. These correspond to yearly
time series of wind speeds and wind power generations with hourly resolution for five aggregate
wind sites. The initial source was 2006 wind production data from the National Renewable
Energy Laboratory database. A discrete distribution is assumed for the reliability model, as in
[34]. More specifically, a probability of generator failure of 1% and a probability of transmission
line failure of 0.1% is assumed, independently.

All the simulations are performed on the Cab cluster of the Lawrence Livermore National
Laboratory. The Cab cluster consists of 1296 nodes with 20736 cores, equipped with an Intel
Xeon E5-2670 processor at 2.6 GHz and 32 GB per node. For the simulations, Mosel 4.0.4 was
used with Xpress [39]. More specifically, the simulations were parallelized in 10 nodes of the
Cab cluster by utilizing the dedicated features of Mosel [40].
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Type Units Capacity [MW]

Nuclear 2 4499

Gas 101 21781

Coal 3 199

Oil 1 121

Dual Fuel 23 4679

Import 5 9931

Hydro 6 8613

Biomass 3 502

Geothermal 2 1073

Hydro 6 8613

Wind Low 5 1414

Wind Medium 5 2121

Wind High 5 2828

Table 5.1: Generator mix for the test system.

5.1. The Value of Wind Reserve

A total of 160 scenarios was generated and used as an input to the SUC problem. We explore
two alternative policies; one that allows for wind reserves and one that assumes wind is a must-
take resource, for the three integration cases. A 2% optimality guarantee is set as a termination
criterion to the algorithm of Fig. 4.1. The objective costs were chosen according to [34],
normalized in $M, and a small value for ρt was chosen (ρ = 0.005). Note that the value of
ρ actually depends on the normalization used in the objective, so the actual value is not very
informative and in our case it was found through trial and error. In order to objectively compare
the two policies, a new set of 160 scenarios is generated, representing the actual realization of
the uncertainty the day ahead, and the out-of-sample testing results are shown in Table 5.2. We
observe that in most cases the solution of the optimization problem (training set) is close to the
evaluations of that solution to a new set of scenarios (test set). The evaluations of the first stage
solution against the test set correspond to possible realizations of the uncertainty of the next day,
so they will provide the basis to illustrate the benefit of wind spilling to the actual operation.

Indeed, Tables 5.3 and 5.4 show the policy testing results. The fuel cost without load shedding
is also provided in an effort to remove the actual value of the load shedding cost from the results.
We observe that in the case of low and medium wind integration, wind spilling does not result
in a significant benefit. However, for high wind integration, the cost of operation is significantly
lower when wind spill is allowed and load shed does not happen, whereas demanding the wind
energy to be fully integrated leads to both an inefficient dispatch (high fuel costs) and an increased
load shedding.

5.2. The Scenario Reduction Scheme

The heuristic scenario reduction is evaluated and some of the results are presented in Tables
5.6, 5.6 and 5.7. The scenarios are reduced in a linear fashion from their initial number (160)
to the number indicated in the tables, in M steps. The results of the optimization over the full
set are repeated for comparison. We notice that the heuristic approximation is able to provide a
good estimate of the final solution value; in fact the estimate is more accurate than the difference
of the evaluations between the test set and the training set. The computational effort is largely
controllable, since both the rate of reduction and the final number of scenarios are controllable
parameters. To get a rough estimate, the algorithm was stopped after 11 iterations. If convergence
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Wind Training Set Test Set
Integration Total Cost Total Cost

Level [$M] [$M]

Must Take Wind Spill Must Take Wind Spill

Low 8.28 8.25 8.23 8.23
Medium 7.02 6.97 6.98 6.95

High 12.82 6.10 16.09 6.11

Table 5.2: Comparison of total cost evaluated on the training set (representing the samples the
operator uses to make the dispatching decision) and on the test set (representing the expected
cost of operation over a set of probable realizations). Note that in this case the cost of loadshed
is an important part of the objective, and since this parameter was arbitrarily set we are also
presenting the results without it.

Wind Cost without Wind
Integration load shed Penetration

Level [$M] [%]

Must Take Wind Spill Must Take Wind Spill

Low 8.23 8.23 13.2 13.0
Medium 6.98 6.95 19.8 18.9

High 7.27 6.11 26.3 23.4

Table 5.3: SUC solution evaluated on the test set: Mean cost of operation (without accounting
for load shed) and wind penetration (percentage of mean, over the scenarios, wind energy over
mean total generated energy)

was not achieved yet, the scenario specific solutions (for each of the scenarios in the final, reduced
set) were tested against the training set and the best one was chosen.

In Fig. 5.2 an interesting observation is made. The final set of reduced scenarios consists of a
few scenarios with very high probabilities (these correspond to the base cases of the normal or
close to normal operation for the system, which is the most common occurrence) and a few low
probability events (these correspond to rare events which impose very different requirements on
the system and seem like abnormal operation). In that way, the reduction heuristic allows rare
events to influence the optimization problem with small probabilities, whereas the scenarios that
mostly correspond to similar operating conditions are treated in a unified way instead of being
treated in isolation.

Wind Wind Load
Integration Spill Shed

Level [%] [%]

Must Take Wind Spill Must Take Wind Spill

Low 0 1.06 0 0
Medium 0 4.48 0 0

High 0.3 11.1 0.26 0

Table 5.4: SUC solution evaluated on the test set: Percentage of mean (over scenarios) wind
spill over mean available generation and percentage of mean loadshed over the total load.
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Objective Cost Training Set Test Set

Full Set (160 scenarios) 8.253 8.229

10 scenarios, 5 steps 8.266 8.235

30 scenarios, 5 steps 8.252 8.219

10 scenarios, 10 steps 8.259 8.235

30 scenarios, 10 steps 8.254 8.223

Table 5.5: Expected total cost for full problem versus various execution of the reduction
algorithm, in the case of low integration where wind spill is allowed. The scenarios are linearly
reduced from initial to final number in the number of steps (M) indicated. One iteration per
reduction step is performed (Mt = 1). The total number of iterations was restricted to 11.

Time [s] Reduction Phase Total Time

10 scenarios, 5 steps 327 516

30 scenarios, 5 steps 394 582

10 scenarios, 10 steps 500 518

30 scenarios, 10 steps 569 597

Table 5.6: Comparison of the execution times of the heuristic for the low integration case with
wind spill. The total number of iterations for the reduction was restricted to 11. The total time
does not include the evaluations for the different possible scenario solutions of the reduced set
in the case of non convergence (approx. 300s for all the cases, due to the parallel execution)

The reduction algorithm seems to perform very well in providing an approximation of the
optimal cost. For that purpose, its use in studies regarding the cost impact of renewables in the
power system, whereas also identifying a grouping of scenarios, is highly motivating. However,
at this point there is no guarantee on how the objective will change by completely eliminating
one of the scenarios. For that reason, the algorithm at this point cannot provide a guaranteed
evaluation of the actual optimization problem solved. Pursuing such a guarantee will be a future
goal of research.

Objective Cost Training Set Test Set

Full Set (160 scenarios) 6.965 6.947

10 scenarios, 5 steps 6.988 6.965

30 scenarios, 5 steps 6.970 6.955

10 scenarios, 10 steps 6.995 6.968

30 scenarios, 10 steps 6.964 6.950

Table 5.7: Expected total cost for full problem versus various execution of the reduction
algorithm, in the case of medium integration where wind spill is allowed. The scenarios are
linearly reduced from initial to final number in the number of steps (M) indicated. One iteration
per reduction step is performed (Mt = 1). The total number of iterations was restricted to 11.
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(a) Reduction to 30 scenarios in 10 steps.
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(b) Reduction to 10 scenarios in 10 steps.

Figure 5.2: These plots indicate how many scenarios were assigned a probability within a certain
interval after the reduction. We note that one or two scenarios have a relatively high probability,
whereas the other ones have much smaller probabilities. The explanation of that graph is that
the scenario with the high probability corresponds to a base case behavior, which incorporates
most of the requirements for the system in normal or close to normal operation, whereas the
remaining scenarios correspond to rare events that have very different impact on the system and
are not similar to each other to be grouped together, so each one of them retains its initial, small
probability.

6. Conclusions and Discussion
The main objective of this report is to convey that wind resources, and renewables in general,

should be treated, to the extent possible, as any other resource for the unit commitment problem,
if the goal is for their integration levels to increase in the future. Renewable integration is vital to
achieve environmental goals, but it often competes with ensuring the secure and reliable operation
of the grid due to the variability and stochasticity of the available wind power. However, current
wind turbines are capable to control their output power setpoint within the limits allowed by
wind availability. By exploiting this capability a safer and more economic grid operation can be
ensured.

In order to explicitly exploit the extent of controllability of wind generation, a stochastic unit
commitment approach is employed to determine the dispatch of wind generation for a number
of possible scenarios. Two cases, one in which wind is treated as a must-take resource and one
that the wind output setpoint is also optimized, are considered for three integration scenarios in
a reduced California test case. A clear benefit for the second strategy is obtained only in the
high integration case.

At this point it is important to repeat with a critical view some of the assumptions of the
current study, to initiate discussion and motivate a set of questions for future research. Firstly, the
unit commitment problem as we formulated it did not include an objective term for the reduction
of emissions. Including such a term would of course reduce the wind spilling benefits. However,
the weight of such a term is at this point not as objective and universal as the operational costs of
conventional generators and its value is still a source of debate, so for that reason it was omitted.
Various study cases could of course extend our current results for the existence of such a term.
Secondly, the results are based on a reduced system developed based on an earlier version of the
WECC system. For that reason, we cannot claim that the results could generalize in a similar
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fashion for the full system as is, however the system used still provides a useful test case and
most of the logic that was described could carry on. Thirdly, a major contributing factor in wind
shedding is congestion. One could argue that if renewable generation integration increases, then
the transmission system will also be enhanced to accommodate for it. However, changing the
existing transmission system is accompanied by extra costs and the benefit from that could only
be to accommodate some rare instances for which spilling some wind generation could also
relieve the stress for the system. Since the focus at this point is not planning and investment on
the transmission system, enhancements to it are not considered.

Finally, one could question the usefulness of solving the SUC problem at high precision.
After all, the number of necessary scenarios to solve is not specified, and the error in capturing
uncertainty could very well be higher than the precision level of the solution. However, at this
point the plain UC problem is solved with very high precision every day since there are economic
implications of these solutions. For example, NYISO eventually solves the UC problem at $200
precision, and even though the solution they get is not necessarily the optimal for the problem
they are solving, the heuristics and refinements they use (such as gradually fixing binary variables)
are standardized to provide a high precision approximation. This kind of precision is necessary
since commitment of small gas units, for example, depends on it and perturbations could lead
to very different commitments. So, if the way to generate scenarios is precisely modeled and
standardized, these levels of precision are indeed necessary in solving the SUC problem as well.

Regarding policy implications of adopting the proposed strategy, active wind spilling based
on market operations can allow for a more efficient allocation (increased total welfare for the
society), which could translate to benefits for the customers (in the form of reduced bills). The
conventional generators will also be benefited, since they will not be the ones to fully carry
the burden from renewable integration. In the current form of the SUC objective, clean energy
generation will be diminished. However, introducing a price for carbon in the objective that
reflects economic welfare would resolve the problem; until such a price is set any economic
comparison of the tradeoffs between clean energy and economic dispatch is by default hard
anyway. Furthermore, since wind generation will be decreased, investments on wind resources
may be discouraged. If this is found to be the case, an initial lump transfer investment incentive
could be a preferred way to deal with it than actively introducing frequent economic inefficiencies
in the day ahead markets or than compensating the wind generators for their spilled energy (unless
this is committed as a reserve).
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1. Introduction

The urgent need for a more sustainable world is hastening the pace of renewable integration into 

the electric grid. Due to the inherent intermittency of renewable power output, the reliability a 

highly renewable-penetrated electric grid is at risk. To balance out hardly predictable supply-

demand mismatches, large reserve capacities with flexible operating modes (on/off status, 

minimum/maximum operation time, ramping capability, etc.) are desired. As a result, grid O&M 

costs are likely to increase. In the attempt of making renewable farms responsible for any mismatch 

between their day-ahead unit commitment process (DACP) bid and their actual power output, some 

market policies impose supply shortfall penalties [1]. 

To help renewable farms be marketable while keeping the grid reliable, the focus of a significant 

amount of research in the literature is on devising better methods of integrating renewable energy 

converters (RECs) to the existing power grid. A first category of work seeks solution in more 

accurate short-term (24-36 hours) forecasting techniques [2, 3, 4]. Given that forecasting errors 

cannot be completely eliminated, others have investigated renewable integration strategies such as 

promoting fair market processes for renewables [2], implementing intra-day markets to leverage 

the relative accuracy of short-term forecasts [5], developing hybrid systems [6], etc. 

In the specific scope of this work, Dukpa et al. proposed an optimal participation strategy for a 

renewable energy converter (REC) coupled with an energy storage device (ESD) that maximizes 

profit and mitigate the risk of supply shortfalls. The authors confirm that it is imperative to 

combine an ESD with a REC to achieve an increased reliability and profitability. Bathurst et al. 

[2], Matevosyan and Soder [7], and Morales et al. [8] studied the wind farm profit maximization 

problem in a stochastic programing approach. Botterud et al. [9] and Morales et al. [8] further added 

a risk sensitivity term, the conditional value at risk (CVaR) to the objective in order to control the 

variability of the expected profit. Pinson et al. [10] proved that the optimal day-ahead bid can be 

expressed as a probabilistic quantile on prices as in the newsvendor problem, a classic problem in 

inventory theory [11]. Moreover, Bitar et al. [12] derived an explicit formula for optimal contract 

offering and the corresponding optimal expected wind farm profit in a competitive two-settlement 

market settings. 

We exploit the analytical results of [12] to derive a criterion for renewable farms’ participation in 

the grid reliability efforts. The renewable energy farms’ bidding strategy is formulated as a 

portfolio optimization problem assuming a storage system. The portfolio is made of the day-ahead, 

real-time and reserve offers. First, we formulate the renewable farm’s day-ahead bidding problem 

as a newsvendor one. Next we evaluate renewable farm’s reliability performance assuming the 

derived news’ vendor based optimal policy. We provide further market opportunity to the 

renewable farm by assuming it can participate in the reserve market as well. We assume the farm 

dispose of energy storage. The approach developed in this work has two original defining concepts.  

First, its principal aim is not to arbitrage the day-ahead versus the real-time markets. Rather, it 

purposes to provide a reliable and yet economically sound day-ahead energy offer. Second, it 

provides risk-sensitive real-time and reserve offers that account for all possible imbalance penalties 

and real-time prices along with reasonable storage size and cost function. In what follows, Section 

2 describes the market model under consideration in this work, introduces the analysis of the day-

ahead energy bidding as a newsvendor problem. Section 3 describes the resulting risk-aware real-
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time and reserve bidding problem in the presence of an ESD. In Section 5, we present some 

preliminary insights and future directions. 
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2. Day-ahead bidding as a Newsvendor Problem

Inspired by the work in [12], we pose the day-ahead optimal bidding problem as a Newsvendor 

Problem. 

The market considered is of the traditional two-settlement structure. Under this model, the farm 

places its bid made of the amount of energy Bt he plans to output and the price pt he will sell it for 

any time slot t the next day. The system operator (SO) clears the market at a price pt and any 

suppliers i with offer price pi,t less than or equal to pt are selected and get pt for each unit of energy 

output the next day at time t. At the time of realization, depending on the grid balancing needs 

(with the use of emergency generators) in any time slot t, the SO charges for any unit of negative 

deviation the penalty charge qt. For any extra unit of energy above Bi,t, the supplier i is charged 

λt. According to the formulae established by Bitar et al. (in Bringing wind to market), the optimal 

day-ahead bid at time t Bt∗ 
is the inverse of the CDF (cumulative density function) of the price

quantile γt given by: 

where µqt and µλt are the expected negative and positive imbalance prices at time t. The true qt and 

λt are known ex-post. 

Knowing the farm’s energy output distribution for every time slot and the expected imbalance 

penalties and day-ahead market clearing prices, one can derive the optimal day-ahead bid. Given 

that the distribution is involved in the determination of the DA bidding solution, the bid Bt∗

obtained is the best across the entire spectrum of all possible realizations. 

However, in each instance only one element in the spectrum can be realized at the time. This leaves 

room for improvement. To enable the renewable farm to actively participate in the real-time 

market, assume that the REC is coupled with an energy storage device and the farm can participate 

in the reserve market as well.  The next section presents the strategy for an active spot and reserve 

market participation. 

Since the optimal DA bid is expressed as the inverse of the CDF, it can be rightly said that for the 

same price quantile γt the wave farm will always bid higher than the wind farm in the DA market. 

This implies that the DA bidding strategy is risk-sensitive. In fact, with a broader PDF, the wind 

farm’s risk error in selecting a single realization is higher than that of the wave farm. 
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3. Risk-aware real-time and reserve strategy 

We assume that the farm submits optimal day-ahead bid Bt∗ 
obtained in the first stage de- scribed 

in Section 2. Due to intermittent output, one should expect a discrepancy between Bt∗ 
and the actual 

realization gt. Instead of “polluting the grid” with or spilling the difference (gt --  Bt∗), it can be 

traded in the real-time market, in the reserve market or stored in the ESD. At this stage, the 

objective is to determine the real-time and reserve offers while managing the charge/discharge of 

the ESD and keeping an eye on the risk of profit loss. We use the conditional value at risk (CVaR) 

as a risk measure.  

 

The farm’s profit can be expressed as the difference between its total revenue (from the actual 

realizations of day-ahead, real-time and reserve markets) and all charges incurred (storage 

operation/depreciation cost and realization mismatches in day-ahead and real-time markets). This 

profit uses expected real-time price and imbalance penalties. However, these prices are random 

processes. To evaluate and account for the uncertainties associated to these chosen parameters, we 

define the CVaR using the achievable profit for each possible combination of real-time price ρt and 

imbalance penalties qt and λt. The second stage objective function is to maximize the weighted 

sum of the expected profit and the CVaR while satisfying equilibrium constraints. 

 

Preliminary results suggest that, narrow profit distributions are less risky and thus tolerate expected 

profit functions. Widespread profit distributions may be, in turn, more risk-sensitive. 
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4. Sensitivity Analysis

In normal market operation, the real-time market clearing price can be very volatile. To evaluate 

the sensitivity of the profit and the major decision variables RT (real-time optimal realization), DA 

(day-ahead optimal realization), RegA (optimal reserve energy output) and RV (optimal reserve 

capacity) with regards to the real-time price,ρ, we perform a simulation study on a range of prices. 

We assume a real-time price value ρ from 0 to 4.95.  

Fig.1 and Fig.2 plot input prices and energy offer and realization. 

Figure 1: Input price signals 

Figure 2: Day-ahead offer vs realization 

The time horizon considered lasts 1 hour and comprises 12 equal time slots. Both the day-ahead 

Bt∗ 
and real-time RT t realizations are allowed to deviate from their respective bids B∗ and RTo in

any time slot. Fig.3 shows the sensitivity of different optimal realizations to the real-time price 
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variations. Realization values shown here are averages over the twelve time slots. The 

corresponding objective values are represented in Fig. 4. 
 

 

Figure 3: Sensitivity of decision variables to real-time price 

 
The sensitivity analysis reveals three major regimes characterized by equations (2) through (4). 

 

 

 

The upper bound of the domain (R1) is 0.3 in this case and the lower bound of (R3) is 1.7. In (R1), 

the low real-time price makes it profitable to buy energy from the real-time market in order to output 

more than the day-ahead bid B∗. In the regime (R3), the high real-time price discourages 

participation in any other market. The available output is traded in the real-time market. It is only 

in regime (R2) that it is profitable to stick to the bids. 
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Figure 4: Sensitivity of the objective value to real-time price 
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5. Conclusions and future work 

A major drive of the day-ahead bid is the type of renewable resource. The real-time and reserve 

decisions are mainly driven by the market signals through the profit distribution. In fact, it is 

generally conceived that wave farm output is more predictable than the output of a wind farm. This 

is due to the higher variability of wind speed. This volatility is translated by a broader probability 

density (PDF) function for the wind power output, while the PDF of the wave output is narrower. 

The day-ahead offer of a wave farm is susceptible to be higher than that of a comparable wind 

farm. The solution for a time slot with a wider profit distribution is likely more risk-sensitive than 

that of a time slot with narrower profit distribution. The sensitivity analysis with respect to real-

time price reveals a threshold behavior. Three bidding strategy regions were found. Outside the 

thresholds, the decision is straightforward. Inside the thresholds, an optimization model is required 

in order to achieve the best profit. 

 

Future work will consist of designing and conducting simulation case studies to validate the key 

insights across different renewable technologies (solar, wind and wave) and different profit 

distributions. 
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