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Preface 

The Power Systems Engineering Research Center sponsored the research project titled 
“Market Interactions and Market Power (M-3).” This project had two parts: 
 

• Part I: Interval Analysis for Unknown Dependencies (in Chapters 1-5) 
• Part II: Adaptive Agent Market Emulation (in Chapters 6-8) 

 
This report includes both parts.  
 
 



 

Executive Summary 
 

The project’s objectives were to assess the interactions between the operational and 
commercial aspects of electricity markets; to identify key requirements in the reform of 
market structure and rules; and to propose market design modifications that will enable 
realization of the full the benefits of competition in electricity. Two parallel paths were 
pursued to achieve the objectives. The first path was to identify a technique suitable for using 
adaptive agents to value electricity bids. The second path was to emulate market interactions 
by adaptive agents in multiple markets. This emulation used a genetic-algorithm market 
simulator and a market simulator based on a genetic programming algorithm, including 
information from repeated bidding. The new techniques provide considerable insight into 
market behavior with repeated bidding. Based on simulation results, we identify 
recommendations for further use and development of the techniques; more definitive 
recommendations require additional work. 
 
The first part of the report extends the applications of decision analysis to problems where 
the random variables may be dependent but the correlation is unknown. This part describes a 
new interval-based method to handle decisions under uncertainty when the two variables are 
of unknown dependency. Correlation is often confused with dependency. Correlation is only 
a measure of a special type of dependency. The technique developed enables decision 
analysis even if the dependency or correlation is unknown. The technique uses Linear 
Programming optimization to solve for the intervals given the nonlinear relationship between 
the two variables of unknown dependency. This work can be extended to more complex 
commodity pricing problems. 
 
The second part of this report details the market simulations using adaptive agents. Initial 
market design recommendations are based on these results; however, more work needs to be 
done before final recommendations can be made. In particular, differences exist with the 
pricing rules and with the number of players. Additional testing is required, especially 
because the forward markets are a more critical element than previously understood. 
 
The adaptive agent software was tested with a number of test sets and variations. The results 
provide interesting conclusions, even though the markets implemented were limited in scope. 
The results demonstrate the usefulness of the genetic algorithm to emulate market behavior at 
a level of complexity equal to and sometimes exceeding the market designs of experimental 
economics. Adaptive agent modeling and experimental economics can complement each 
other in assessing market design alternatives. More research is needed to compare and 
contrast the two analysis approaches for developing recommendations on market designs. 
 
Another area for future research is enhancement of the adaptive agent with interval analysis 
methodology to provide a more robust decision model to play the market over many trials. 
Additional market rules, and complete emulation of the network physical capabilities and 
limitations should be included as they have been already. The next major step is to identify a 
means to model forward and ancillary markets without emulating all markets simultaneously. 
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1 Decision-Making Under Uncertainty with Dependent Variables 

A basic premise of competition is the ability of buyers and sellers to make rational decisions. 
The rational decision assumption requires each player to know the relative value of each 
resource needed, the relative value of each product produced, and the relative value of all 
services necessary to produce the product. The sellers have to get the product to the customer 
and maintain a competitive product portfolio. One major goal of deregulation is to identify 
the market design to provide the proper price signaling for valuation of assets and, thus, the 
proper value for bidding in the spot market, in the futures market, and in the expansion (or 
infrastructure planning) market of the electric energy system. The ideal is to project the 
incentives needed under market-based decision-making for market participants to invest in 
the careful design, operation and maintenance of the overall electric energy system. The 
premise is that asset valuation requires information of the principal components of future 
cash flows, ideally based on real option analysis by suppliers and buyers. 
 
As the US moves toward competitive markets in electric power generation, considerable 
attention is focused on issues of ancillary service markets, and potential system security 
consequences of differences between contracted energy services and the physical supply of 
services. Such service requirements introduce uncertainties that must be included to 
determine the delivery possibilities. These issues relate primarily to the transportation 
capability of the system, on an hourly time scale. The proper valuation of the resources to 
produce and transport the electric energy has to include the impact of all ancillary services as 
well as of the primary fuel markets. 
 
This project intended to achieve two goals. The first goal was the characterization of market 
interaction between primary energy exchange and ancillary service requirements, given 
market forecast uncertainty to provide improved estimates of bidding, and thus of asset 
valuation. The primary effort evaluated the effect of uncertainties in price bidding and 
matching in systems for settling contracts for energy delivery. Recent tools of probability and 
statistics theory (such as interval analysis, second order uncertainty modeling, and parametric 
programming) apply to such problems. 
 
The second goal was to advance proposals of specific market designs and of their related 
market power philosophies, based on adaptive agent simulations that offer quantitative 
schemes for ensuring system expansion to enhance the system performance under a wide 
range of operating condition uncertainties. Standardized market interaction and baseline 
strategy to facilitate secure addition of competitive resources from all agents’ units was 
assumed for all simulations. The benefits of properly assessing uncertainties, even when such 
uncertainties cannot be precisely determined, enable the proper pricing of the primary 
product, energy, and all supportive ancillary services. 
 
Prototype designs for market models for primary energy delivery and for contingent services 
(such as transmission capability, load balance, regulation, spinning reserves, and ready 
reserves) for competitive adaptive agents were developed. Test-bed systems indicating 

 



 

system benefits of these uncertainty evaluation tools when interacting with competitively 
driven bidding of energy dispatch and ancillary service provisions were developed. 
 
The objective of previous research was to guarantee that a single player, or the contract to 
use any given asset, did not dominate market play. Clearly, contract behavior and market 
control challenges arise as large numbers of independent, for-profit companies trade 
contracts based on the latest equipment and system capability information. The project was to 
consolidate and extend these preliminary results, considering their application to more 
widespread supportive markets including ancillary services. This project did tailor auction 
and bidding model designs to a competitive power system environment, as well as examine 
results in trajectory sensitive markets as contracts changed based on new information. 
 
This project was conducted in two distinct paths. The first path was the extension of 
techniques for decision-making under uncertainty for use by adaptive agents. The goal was to 
identify means to reduce the range of valuation for price signals for variables that are 
dependent on each other, but cannot be quantified precisely. As an example, the spark spread 
is the difference between the fuel price and the electric energy price. As the fuel price 
increases, the price of electric energy increases. This is often cited as a key indicator. The 
value of this indicator could then be found by estimating the correlation between the price of 
fuel and the price of electric energy. Previous studies have shown that this correlation varies 
between -0.4 and +0.9. This range of correlation shows that the spark spread is hard to 
forecast and is hard to include as a valuation factor for generation asset management. Such 
wide variations also demonstrate the lack of clear dependency, even when it is known to exist 
based on microeconomic analysis.  Chapters 1 through 5 detail this work. 
 
The second path, simulation of markets to demonstrate the price signaling for asset valuation, 
was the extension of simulation techniques from previous artificial life market simulators, 
market power assessment, and classical market simulation. The technique of handling 
uncertain intervals was to be included in these new agent models.  Chapters 6 through 8 
detail this work. 
 
The decision-making under uncertainty technique called Interval-Based Distribution Analysis 
(IBDA) [Berleant and Goodman-Strauss, 1998] discretizes input distributions by using a list 
of numerical intervals that span the range of the distribution and, associated with each 
interval, the probability that a sample drawn from the distribution would fall within it. A 
relatively straightforward convolution process does a sum, product, or other operation on two 
inputs that are independent. In the case of unknown dependency, an optimization process 
calculates strategic points on the envelopes describing the outputs. This extension to IBDA, 
named Distribution Envelope Determination (DEnv), is both simpler and more flexible than 
the Probabilistic Arithmetic technique addressing the problem described by Williamson and 
Downs [1990]. It is also capable of incorporating information about Pearson correlation 
which copula-based techniques like Probabilistic Arithmetic do not do. 
 
This report identifies the methods to implement this assessment and uses case studies used as 
examples. The concluding chapter identifies other applications. 
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1.1 Dependence and Time Series Analysis 

Time series analysis, computationally reduced by functional dependence, yields more 
efficiently simulated risk models. Time series analysis extends the possibility of multiple 
period assessments instead of single period assessment. Cash flows over time for production 
or for services are combined to forecast representative project values for business valuations. 
Traditional project valuation uses net present value to determine if a project is a positive 
investment. Dependence is a characteristic between economic drivers to reduce the number 
of data series to analyze and develop as part of the process to build future cash flows.  
 
Time series analysis enables the valuation of projects that provide a potential cash flow over 
long periods. The desired outcome of risk analysis is a stochastic assessment of the 
investment under analysis. Many business-setting analyses of the technical, political, or other 
economic drivers are typically based on probabilistic financial assessment of the investment 
opportunity. Financial analysis uses a net present value (NPV) technique, or alternatively 
internal rate of return or discounted return on investment. Such financial considerations 
require evaluation of the future cash flows over a long period, commonly a number of years 
up to over two decades. 
 
Econometric analysis is the general study of series analysis of economic drivers. Economic 
drivers are the price signals that identify future opportunities, if any. Some economic drivers 
indicate the resource needs or costs for projects, such as labor, fuel, or other raw materials. 
Other economic drivers are the price signals indicating the value for products or services that 
buyers are assigning based on the application of the product or service to produce a 
subsequent product or service. The desired relationship for a risk assessment is a distribution 
of each variable coefficient. 
 
The distribution for a variable, such as NPV, is found by combining input variables that are 
distributions. Several methods to generate distributions for single values exist. Typically, a 
separate distribution is established for each variable in each period. This method is more 
complex than representing time series as a stochastic function because distributions are 
generated for each period. The changing dependency of each variable between periods is 
another factor to model and to generate (that is, forecast). One method to reduce the number 
of parameters to forecast is to use a single basic distribution variable that changes in each 
future period. An example is to use the Normal distribution where the mean and the standard 
deviation change from one period to the next according to another functional calculation. A 
typical functional relationship would be for the mean to increase at 10% each period while 
the standard deviation increases by 5% each period. 
 
Risk analysis generally terminates in a calculated variable that is represented by a 
distribution for each period into the future. Such a distribution can then be used by Monte-
Carlo-based risk tools to generate scenarios for the calculation of the probable risk profile. 
 
Once dependence between two variables is established, one variable is designated the 
independent variable and the other the dependent variable. Then, a Monte Carlo process first 
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randomly samples the independent variable. Next, depending on the degree of correlation 
between the two variables, the process establishes a dependent-variable value that is 
reasonable for the independent variable coefficient. This process is applied each iteration. 
 
The distribution is sampled each iteration, across several periods within an iteration. If the 
distribution being sampled, period by period, has a dependent relationship with other 
variables, then those relationships need to be used across periods, not just across iterations.  

1.1.1 Dependence, Correlation, and Valuation 

Parameters that are co-contributors to a risk assessment may be independent. An example of 
two independent variables is the risk free interest rate and the product value for a given 
application. It is often valid to separate the international demand from the domestic demand 
due to societal or cultural differences. Such examples have no restrictions on the values of 
the variable based on the other variable. Specifically, there are valid variable pairs. However, 
many variables exhibit dependent relationships. The dependency of interest free rate on 
government budgetary deficits restricts the variable pairs that may be generated. A Monte 
Carlo analysis would have to generate values for each variable based on the dependency 
between the two variables. The concept of dependence is to model the relationship between 
two or more variables to generate valid future characteristics. 
 
The first task is to identify the dependent and the independent variable. Specifically, the 
independent variable may be defined as the variable that may be considered as a driver for 
the other (dependent) variables. Alternatively, the independent variable may be defined as the 
variable that controls the dependent variables. 
 
The economic interpretation of the variables may lead to a rational description of the 
dependence sequence for the given problem. When it cannot be easily discovered which is 
the independent (controlling) variable and which is the dependent variable, the independent 
variable is selected by the degree of confidence to generate a given variable or the ability of a 
variable to encapsulate the economic price signal.  
 
The strength of the relationship is the next item to be identified. There are several techniques 
to estimate the strength of the relationships. One method is to use the degree of correlation 
between variables. Correlation is a description of how closely one variable follows another 
variable. Correlation is often used as an abbreviated reference to Pearson correlation, which 
varies from a negative relationship with a value of negative one (-1) to a positive relationship 
with a value of one (+1). Independence is indicated when the correlation is “close” to zero 
(0). A pair of variables is perfectly correlated if the correlation is positive or negative one. 
Regression techniques are often used to estimate the relationship strength. Linear and 
nonlinear regression techniques are generally available. 
 
There are many pairs of variables in a risk assessment that may be considered dependent. It is 
often true that one variable can have a number of related dependent variables. It is important 
to define the dependent variable based on a truly independent variable to avoid circular 
dependency.  
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If there is a dependency between two variables, if we assign one variable as the independent 
variable and the other variable as the dependent variable, and if we find the correlation 
coefficient for this relationship, then the dependent variable will follow, in some partially 
characterized sense, the independent variable. A Monte Carlo analysis will first generate the 
independent variable by a random selection, and then generate a value for the dependent 
variable by random selection from the distribution determined in part by the value of the first 
variable. 
 
If the risk assessment model is to value a bid or a project properly (i.e., emulate the real 
world), then the relationships indicated by economic laws and physical processes must be 
consistent with the variable chosen to be dependent and the variables chosen to be 
independent. 

1.1.2 Decision Theory, Trees, and Analysis 

The basic decision process is often described by a tree structure as shown in Figure 1-1.  
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Figure 1-1  Decision Tree Format. 

 
Each decision node is represented by a square. Natural nodes are represented by a circle. 
Result node (leafs) are represented by rectangles. The cost of any action on a given path is 
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where Expected Monetary Value is EMV, probability of event is pi, value (benefit or cost) 
after event is Vi, and number of events is n. The decision rule is to take the option with the 
highest payoff (maximum profit) or lowest cost.  
 
There are six basic steps used to define the basic decision tree process: 
 

• Generate Decision Tree 
• Define Decision Criterion 
• Determine Value of Each Path 
• Assess Probabilities, Correlations 
• Complete Mathematical Evaluation 
• Assess Solution Sensitivity 

 
The key is to state the problem to draw the tree with each type of node identified (Decision, 
Natural, Result), to find all joint or independent probabilities, to calculate the total cost and 
benefit for the given conditions for each independent variable, and to include all 
uncertainties. 
 
As an example, we consider the case where there are two unknown economic drivers. Each 
economic driver is a random variable. The problem with this approach (as addressed by this 
research) arises from the complication when one random variable is dependent on another 
one random variable. In Figure 1-2, each random variable is the status of a generating unit. 
The node in the first column represents the availability of unit 1, the node in the second 
column represents unit 2, etc. Traditional probabilistic production costing assumes that the 
availability of units is independent. Thus, the sequence of nodes can be arbitrarily exchanged. 
However, when the units have common characteristics (such as coal supply, water supply, 
common labor crew, or common maintenance cycles), the availabilities are dependent. The 
output of one unit is dependent on a common variable not represented in the tree calculations. 
Indeed, such a common variable that the units are dependent upon may not be included in the 
calculations as stated in the tree or available for measurement. 
 
Classical decision analysis assumes that the correlation is known. This research was directed 
to the relaxation of this methodology constraint. 
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  1         2             3         4                     N 

 
Figure 1-2  Unit Availability Tree. 

 
Another example of unknown dependency is shown in the following game tree. The single 
agent decision process can be described in a game theory context [Aliprantis and 
Chakrabarti, 1998]. Generally, a decision graph is employed to describe the sequential 
decision process of a single person. A decision graph is directed graph having a unique root 
R, in the sense that R is the only node with no edge ending into it. There is at least one path 
from R to N for every node N other than R. There is at least one terminal node. There is at 
least one path from N to a terminal node from every non-terminal node N. This is illustrated 
in Figure 1-3. 
 
When X is a decision node, all other nodes are natural nodes (or consequence), Hi indicates 
High Investment, Lo indicates Low Investment, M indicates “Market” decision, DM 
indicates the decision to “Do not Market,” p is the probability of success under high 
investment, and q is the probability of success under low investment.  

 

750X
MNature p

DMHi -150
1-p -150 1000X 

X MqLo
DM -10Nature

1-q -10  
Figure 1-3  Game Response Tree. 

 
Thus, basic decision tree process and game theory process modeling share the assumption 
that the correlation between variables is known. Often, the correlation is assumed to be zero. 
Based on economic theory, this is known to be a false assumption when the complete 
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industrial or decision/consequence model is evaluated. Thus, the need for a less restrictive 
assessment is needed. 

1.2 Adaptive Agent Emulation of Energy Markets 

Adaptive agents use structures similar to the decision trees to emulate the analysis performed 
by the trading staff of generation companies (GENCOs) and energy management companies 
(EMCOs). The problem with present decision trees is insufficient representations of the trade 
analysis commonly performed. However, this simplicity demonstrates the behavior of trading 
agents that can be understood from basic economic principles. The tree complexity is 
enhanced when the dependencies do not have to be known, as provided by the interval 
analysis methodology. More discussion of this enhancement is in the section on developing 
the genetic algorithm machines. 

1.3 Intervals, Uncertainty, and Distributions 

Uncertainty is frequently present in our knowledge of the real world. Handling uncertainty is 
therefore an important problem. Probability is a common approach. Probability density 
functions (PDFs) or their integrals, and cumulative distribution functions (CDFs) are used in 
a probabilistic approach. These are used to describe random variables. Often such random 
variables are defined based on combinations of other random variables. These are called 
derived random variables, and their distributions are called derived distributions [Springer, 
1979]. For example, samples of a derived random variable could be defined as the sum, the 
max, or some other function of samples of two other random variables. Derived random 
variables are recognized in such fields as decision analysis and risk analysis.  
 
A variety of methods have been developed to address this topic. There are two classes of 
such methods: analytical and numerical. Analytical methods are restricted to specific classes 
of input distribution, and usually make simplifying assumptions, such as independence. For 
example, normal distributions are often used. If two random variables are normal and 
independent, the sum of these two random variables still is normal. It is also possible to 
obtain derived distributions for specified dependency relationships other than independence, 
such as perfect positive rank correlation. However, it is often not easy to obtain analytical 
results for arithmetic operations on random variables without assumptions and it is not 
always reasonable to make these assumptions though it may be convenient. Sometimes, we 
do not have information about the dependency. Nevertheless, an advantage of analytical 
methods is accuracy. Unlike analytical methods, numerical methods only give numerical 
results. However, this is suitable for a wide class of distributions. Numerical methods are 
widely used in real applications if approximate results within specific tolerances are 
acceptable. 
 
Monte Carlo simulation is one of the best-known numerical methods. However, the 
traditional approach of Monte Carlo has some limitations. It assumes that the distribution of 
the random variables is known, and that their dependency relationship is independent or 
known [Ferson, 1996]. If either the probability distributions or the dependency relationship 
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of the random variables is not available, some assumptions are usually necessary to process 
it. If the assumptions do not hold in reality, dependability of results can be degraded.  
 
A discrete convolution approach may be used to calculate the result given independence of 
the input random variables [Ingram et al., 1968; Colombo and Jaarsma, 1980; Kaplan, 1981]. 
Interval analysis may be used to solve this problem while providing error bounds. (Intervals 
become closer to point values, as the intervals get narrower.) Interval mathematics became an 
identifiable field in the 1960’s [Moore, 1966].  
 
Intervals have the potential for bounding the result of an operation. Discretization error 
coming from discretizing distributions may be bounded by interval-based discretization 
[Berleant, 1993]. If the dependency is not specified, result bounds will include the entire 
range of possible dependencies. These bounds will normally be wider than if a particular 
dependency is specified. The Distribution Envelope Determination (DEnv, also referred to as 
“IBDA”) technique for computing bounds on derived distributions without specifying 
dependency was described by Berleant and Goodman-Strauss [1998]. This approach has 
fundamental similarities with the copula-based approach [Frank et al., 1987] which was 
significantly extended by Williamson and Downs [1990]. These two methods have been 
implemented in software. The copula-based approach, termed probabilistic arithmetic, is 
implemented in the commercial software RiskCalc [Ferson et al., 1998]. DEnv is 
implemented as Statool [Berleant and Goodman-Strauss, 1998] which extends the previous 
tool [Berleant and Cheng, 1998] by eliminating the independence assumption. DEnv (and 
Statool) thus can handle the case where a dependency relationship is unknown or unspecified 
by not making assumptions about the dependency relationship between operands. Yet, partial 
dependence information might be available in some cases. If we can use this information in 
the calculation, we will get more accurate results than can be obtained without using this 
information. 
 
DEnv and its implementation support a variety of dependency relationships, such as 
independence, unknown dependence, and correlation values. The algorithm extension to 
support correlation is a significant improvement. In the implementation, we have found that 
using the transportation simplex method speeds up computing significantly over the classical 
simplex method. Recent advances in the algorithm now allow cascaded operations and 
monotonic binary functions to be supported. These new functions, and use of correlation as a 
constraint, are the main recent advances in DEnv and its implementation. Among the other 
contributions reported here are addressing example application problems. Recently we have 
shown, using bounds on derived distributions in a GENCO competitive bidding scenario, 
that: 
 

• the unjustified assumption of independence between uncertain quantities has a 
partially quantifiable dollar cost, 

• the information that uncertain quantities are independent, if true, has a quantifiable 
dollar value, and 

• a decision tree approach can identify optimal bids even when the dependency 
relationship between uncertain quantities is unknown. 
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2 Uncertainty Intervals 

Uncertainty exists frequently in our knowledge of the real world. Probability is a common 
way to understand uncertainty and is intrinsic to the concept of the random variable. 
Intuitively, a random variable is a function that takes as input an experiment and returns a 
value that expresses the result of the experiment. Thus, if the experiment is to measure a 
voltage, the value returned is the number of volts. Typically, the result of the experiment 
cannot be determined in advance. A probability distribution function is often used to describe 
the way the experiment is more likely to return some values more often than others. 
Sometimes random variables are defined such that samples of their distributions are derived 
from arithmetic operations on samples of the distributions of other random variables. 
Determining the distribution of these derived random variables has been the goal of a 
considerable body of work.  
  
As noted in the previous section, numerical analysis using the Monte Carlo technique has 
some drawbacks. Major ones include undependable conclusions about unusual situations, 
however important those situations may be, because in a simulation run, random number 
generation may not generate such situations at the same rate that they would actually be 
expected to occur, or might even fail to generate any example of such a situation at all.  
 
To alleviate the problems with Monte Carlo analysis, one method that has been described is 
Distribution Envelope Determination (DEnv), developed by Berleant and Goodman-Strauss. 
Another approach is the copula-based approach called Probabilistic Arithmetic. These two 
methods have been implemented in software.  
 
Interval mathematics has become a well-developed, sophisticated area since it became 
identifiable as an area in the 1960’s. Influential reviews, fairly comprehensive at the time of 
writing, include for example [Alefeld and Herzberger, 1983]. Such works provide important 
basics and truths that retain their relevance today.  
 
An interval can be used to bound the range for a value. Arithmetic operations on intervals 
have been defined in the literature. For example, if interval X is the interval [1, 2], and 
interval Y is the interval [3, 4], then interval Z=X+Y is the interval [1+3, 2+4] = [4, 6]. Some 
additional explanations of interval properties are provided in the Appendix. One use for 
intervals in computations on random variable distributions is to partition the domain of the 
distribution into a set of intervals, with a probability associated with each. This partitioning is 
the basis for discretizing distributions and extending binary operations from intervals to 
(discretized) distributions.  
 
Given two random variables X and Y, to get the exact distribution for a function of samples of 
X and Y, we must know the joint distribution of X and Y. The joint distribution is constrained 
(though not determined) by the correlation for these two random variables. Consider an 
example. The following table gives the interval-based discretization for two distributions, 
one for random variable X and one for Y.  
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Table 2.1  Discretized distributions for X and Y. 

                X              Y 

Range [1,2] [2,3] [3,4] [2,3] [3,4] [4,5] 

Probability 0.25 0.5 0.25 0.5 0.3 0.2 

 

Sharing of interval endpoints between adjacent intervals in a discretization is of no practical 
consequence unless distributions have impulses at those shared endpoints. In that case, 
discretizations would need to contain partially open intervals, e.g., [1, 2]. Discretizations 
contain no information about distributions of probabilities over their corresponding intervals. 
However, each interval does limit its probability to within its endpoints. We also do not 
know the dependency relationship between X and Y. In other words, we do not know the joint 
distribution for X and Y. 
 
We consider the addition Z = X + Y. Because we do not have the joint distribution for X and 
Y, it is impossible to find the precise distribution for Z. However, we can put these two 
random variables into a “joint distribution tableau,” as shown in the following table. 
 

Table 2.2  Joint distribution tableau showing marginal distributions for X and Y. 

 
]5,3[∈z  

?11 =p  

]6,4[∈z  

?12 =p  

]7,5[∈z  

?13 =p  

]3,2[∈y  

5.01 =Yp  

]6,4[∈z  

?21 =p  

]7,5[∈z  

?22 =p  

]8,6[∈z  

?23 =p  

]4,3[∈y  

3.02 =Yp  

]7,5[∈z  

?31 =p  

]8,6[∈z  

?32 =p  

]9,7[∈z  

?33 =p  

]5,4[∈y  

2.03 =Yp  

]2,1[∈x  

 25.01 =Xp

]3,2[∈x  

5.02 =Xp  

]4,3[∈x  

25.03 =Xp X
↔

       
Y

 

The last row in the table is the distribution for X and last column is the distribution for Y. We 
do not know the values of probabilities p11 through p33 because we do not know the joint 
distribution. For the simple case of X and Y independent, we can fill in the missing values as 
in the following table.  
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Table 2.3  Joint distribution for independence. 

]5,3[∈z  

125.011 =p  

]6,4[∈z  

25.012 =p  

]7,5[∈z  

125.013 =p

]3,2[∈y  

5.01 =Yp  

]6,4[∈z  

075.021 =p  

]7,5[∈z  

15.022 =p

]8,6[∈z  

075.023 =p

]4,3[∈y  

3.02 =Yp  

]7,5[∈z  

05.031 =p  

]8,6[∈z  

1.032 =p  

]9,7[∈z  

05.033 =p  

]5,4[∈y  

2.03 =Yp  

]2,1[∈x  

25.01 =Xp  

]3,2[∈x  

5.02 =Xp  

]4,3[∈x  

25.03 =Xp  X
↔

       
Y

 

Because the joint distribution is affected by the dependency relationship between X and Y, if 
we do not know the dependency relationship between X and Y, we cannot determine the joint 
distribution in this tableau. Nevertheless, we can infer some things about the result or 
dependent variable Z=X+Y from this matrix. For example, consider z = 5. This is possible 
only in the grey cells in the next table. 
 

Table 2.4  Graying indicates cells in which z might equal five. 

]5,3[∈z  

?11 =p  

]6,4[∈z  

?12 =p  

]7,5[∈z  

?13 =p  

]3,2[∈y  

5.01 =Yp  

]6,4[∈z  

?21 =p  

]7,5[∈z  

?22 =p  

]8,6[∈z  

?23 =p  

]4,3[∈y  

3.02 =Yp  

]7,5[∈z  

?31 =p  

]8,6[∈z  

?32 =p  

]9,7[∈z  

?33 =p  

]5,4[∈y  

2.03 =Yp  

]2,1[∈x  

25.01 =Xp  

]3,2[∈x  

5.02 =Xp  

]4,3[∈x  

25.03 =Xp X
↔

       
Y

 

As previous stated, we do not know the exact probability for z <= 5. However, we can ask 
what the possible probabilities are for z<=5. As this matrix shows, only grey cells contribute 
to the probability of z<=5. We would like to determine the maximum probability and the 
minimum probability. To get the maximum value, all cells in which z can be <= 5 will have 
their probabilities summed. To obtain the minimum value, only cells in which Z must be <= 
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5 will have their probabilities summed. For example, we consider cell . When we 
calculate the maximum value for z<=5, this cell is counted because z can be <= 5 in this cell. 
Nevertheless, for the minimum value, we do not count this cell because z might not be <= 5 
in this cell. This way, we can find the possible range of cumulative probabilities for various 
values of z, a sample of random variable Z. We can find the maximum probability and 
minimum probability for every value of z, and connect all these points to get 2 curves: a left 
curve and a right curve. All the CDFs that are possible for Z must belong between these two 
curves. 

12p

 
In this example, suppose Z’s range is from 3 to 9. It is clear that the probability for z<3 is 0 
and for z>9 is 1. For example, consider the probability of 4≤z . 
 

• Maximum. First, find all the cells in which this situation may occur. From the 
previous table, these cells are , , and . So the maximum value is the 
maximum value for the sum of , , and .  

11p 12p 21p

11p 12p 21p
• Minimum. First, find all the cells in which z must be <= 4. In this table, there are 

none. Although , , and  may satisfy 11p 12p 21p 4≤z , they also might not. For 
example, the whole probability for the cell might be concentrated at the high bound of 
its range. So there is no cell in which z must be <= 4. 

 
Summarizing the above analysis, we can define a way to tell which cells contribute to the 
maximum and minimum probability values. The maximum probability is found from all the 
cells in which the low bound is not greater than the value of z contribute to the max value. 
The minimum probability is found from all the cells in which the high bound is not greater 
than the value of z contribute to the min value. 
 
After finding all the cells satisfying the max (or min) condition, we must calculate the sum of 
the probabilities of these cells. Based on the previous table, there exist constraints for the 
probabilities pij. It is clear that the sum of the pij’s in a row or column cannot go over the 
marginal probability of that row or column. These constraints can be described as follows. 
 

Row Constraints:  for i=1 to 3. Yi
j

ij pp =∑
=

3

1

 

Column Constraints:  for j=1 to 3. Xj
i

ij pp =∑
=

3

1

 
Therefore, the question becomes how to find the maximum and minimum value for the sum 
of cells under these constraints. For the case 4≤z , we can describe these questions as 
follows.  
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Maximum - make the sum of the specified cells’ value big enough, that is, find 
 
max ( + + ) such that: 11p 12p 21p
 

 for i=1 to 3  Yi
j

ij pp =∑
=

3

1

 

and  for j=1 to 3. Xj
i

ij pp =∑
=

3

1

 
Minimum - make the sum of specified cells’ values small enough, that is, find 
 

min ( ) such that: ∑∑
= =

3

1

3

1i j
ijp

 

 for i=1 to 3  Yi
j

ij pp =∑
=

3

1

 

and  for j=1 to 3 Xj
i

ij pp =∑
=

3

1

 
For these two optimization questions, linear programming is a suitable tool to. Thus, we can 
find the probability range for the specified value of z. Table 2-5 shows the probabilities for 
various values of z. 
 
From this table, we can draw two curves, a top curve and a bottom curve, using the 
maximum and minimum probabilities shown for various values of z. These two curves also 
can be called envelopes for the CDF of derived random variable Z because the CDF for Z 
must be between these two curves whatever the dependency relationship between X and Y is. 
Figure 2-1 shows the result. 
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Table 2.5  Probabilities for result variable z. 

z range Maximum probability Minimum probability 

z<3 0 0 

3<z<=4 0.25 0 

4<z<=5 0.75 0 

5<z<=6 1 0 

6<z<=7 1 0.25 

7<z<=8 1 0.55 

8<z<=9 1 0.8 

z>9 1 1 

  

 

 

Figure 2-1  Probability Bounds for Random Variable Z. 
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3 Narrowing the Envelopes Around Results Using Correlation 

The previous chapter discussed the core DEnv algorithm. This algorithm uses linear 
programming based on the row and column constraints on the pij’s. The previous chapter also 
mentioned an important factor: correlation. If one knows something about correlation, it 
would be good to be able to use it to narrow the separation of envelopes. We have recently 
identified how to convert information about the correlation into constraints that can 
supplement the row and column constraints of the core algorithm, resulting in many cases in 
narrowing of the space between the left and right envelopes [Berleant and Zhang (in press)]. 
We describe this new augmentation to the algorithm in this chapter. 

3.1 Facts about Correlation 

Correlation measures the degree of correspondence between random variables. To describe 
this kind of relationship, there are a number of methods. For example, we can consider many 
possible relationships, such as a linear relationship between two random variables, a linear 
relationship of the squares of the random variables, among other possibilities. By far the most 
popular correlation coefficient is called Pearson correlation, or Pearson product-moment 
correlation. It measures the strength of the linear relationship between two random variables. 
It is defined as 
 

( )([ ])
)()(

)()(
YDXD

YEYXEXE −−
=ρ  

 
were D(X) is the variance of X and D(Y) is the variance of Y. E is the expectation function. 
 
The Pearson correlation has the potential range 11 ≤≤− ρ . Correlation values can be 
classified into three types: (1) positive correlation, meaning there is a positive direct linear 
correlation between the random variables; (2) negative correlation, meaning there is an 
inverse linear correlation between the random variables; and (3) zero correlation, meaning 
there is no apparent linear relationship between the random variables.  

3.2 Joint Distributions 

A joint distribution describes the detailed dependency between two random variables. From 
the joint distribution, we can get the correlation. However, correlation does not imply a 
specific joint distribution, so in general we cannot get the joint distribution from a value of 
the correlation. 

3.2.1 Interval-Valued Correlations 

When the correlation is unknown, we use linear programming to find CDF envelopes, as 
described in the previous chapter. If we know the correlation between two operands, we 
would like to use that information to determine additional constraints for the linear 
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programming problem. In another words, we wish to decrease the feasible solution space and 
get a better solution. 
 
According to the definition of correlation, for samples x and y of two random variables X and 
Y, the correlation is  
 

])([])[(
)])([(

)()(
)])([(

22 yEyEExxE
EyyExxE

yDxD
EyyExxE

−−

−−
=

−−
=ρ  

 
where  and  are the means for x and y. Ex Ey
 
Using the following formulas, we can simplify terms: 
 

EyExExyEyExEyExExEyExy
EyExxEyyExxyEEyyExxE
****

]*[)])([(
−=+−−=

+−−=−−
 

 
where Exy is the expectation of x*y. Also, 
 

22

222

)(
**2]*2[])[(

ExEx
ExExExExExExExxExxEExxE

−=

+−=+−=−
 

 
so the previous equation becomes 
 

))()()((
*

])([])[(
)])([(

222222 EyEyExEx
EyExExy

yEyEExxE
EyyExxE

−−

−
=

−−

−−
=ρ  

 
Using the definition of mean, when variable x is discrete, 
 

∑=
i

ii pxEx *  where . )( ii xxpp ==

When x is continuously distributed, and has density function f, then 
 

∫= dxxxfEx )( . 
 
In the DEnv algorithm, we do not care if a random variable is discrete or continuous. We use 
bars to discretize the distribution. This method has the following characteristics: 
 

• Bars may overlap (this is a generalization from the previous chapter). 
• Histograms are a special case of collections of bars. 
• A bar describes the probability of an interval containing the value of a variable. 
• No assumption is made about the distribution of the probability associated with a bar 

over the interval of the bar. 
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We now extend the definition of mean to intervals. ∑=

i
ii PXXE *)(  where E(X) is the 

(interval-valued) mean of a collection of intervals X={X1,...Xm}, and iii PXxP =∈ )( .  
The mean Ex is in E(X). 
 
When x is continuous, we also can get the mean based on the following argument. 

 

a b
 

Figure 3-1  Probability Bounds for Random Variable Z. 

 
We consider some bar in the discretization of variable x whose distribution function is f(x). 
The probability that it is in [a,b] is the area of f(x) between a and b.  
 

∫=≤≤
b

a

dxxfbxaP )()(  

We can partition the domain of variable x into many intervals such as this one, denoting them 
Xi. The mean of variable x now becomes 
 

 

 

∑∫∫ ==
i

Xi
dxxxfdxxxfEx )()(

Consider one item in the previous formula, assuming Xi is [a,b] as in the previous figure. 
 

ibababaX
padxxfadxxafdxxxfdxxxf

i

*)(*)()()(
],[],[],[

==≥= ∫∫∫∫ . 

 
Similarly, we also get 
 

. ibababaX
pbdxxfbdxxbfdxxxfdxxxf

i

*)(*)()()(
],[],[],[

==≤= ∫∫∫∫
 
Therefore,  must belong to Xdxxxf

iX∫ )( i*pi. Thus, E(x) is in the mean of interval variable X. 
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If the intervals overlap, the width of the mean is wider than for the non-overlapped case. 
Thus, the mean of the non-overlapped intervals is a subset of that of the overlapped intervals. 
Hence, E(x) belongs to mean of interval variable X in this case, too. 

3.2.2 Legal and Illegal Correlation Values 

In the software tool developed in this project, the user can input any value of correlation from 
–1 to 1. However, for some marginal distributions, there are correlation values that will not 
be exhibited by any joint distribution. In fact, the constraints derived from setting the 
correlation to an impossible value should conflict with the constraints derived from the 
marginals of the joint distribution matrix (i.e., the row and column constraints).  
 
From the definition of correlation, and algebraic rearrangement, we obtain this equation for 
E(xy): ))()()((* 2222 EyEyExExEyExExy −−+= ρ . Let f(x,y)=E(xy), so f(x,y) is a real 
function of x and y. We can rewrite E(xy) with intervals X and Y. 
 

))((*))((

))()()((*),(
2222

2222

∑∑∑∑∑∑ −−+=

−−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii PYPYPXPXPYPX

EYEYEXEXEYEXYXf

ρ

ρ
. 

 
This is the interval extension of the corresponding real function  
 

))((*))((),( 2222 ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ  

 
where  and . If ii Xx ∈ jj Yy ∈ ρ  is an interval, it becomes another variable in function f.  

3.2.3 Solution 

The implemented software tool should provide a way to help the user to set a reasonable 
correlation. To do this, first, the software must figure out the range of possible correlations 
for the current random variables. Then, the software can display this information. It then only 
accepts values intersecting with this range. 
 
As mentioned before, there are two kinds of constraints, one coming from the marginals of 
the joint distributions matrix and another coming from the correlation setting. The joint 
distribution matrix marginals are assumed correct. Therefore, the constraints arising from 
them are a given. If constraints coming from a correlation setting conflict with them, they 
must be in error. Constraints coming from the matrix are primary and constraints coming 
from correlation should be considered secondary.  
 
Consider a joint distribution matrix for an operation ⊗ . 
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Table 3.1  Joint distribution matrix. 

 Y1 … Ym  

X1 11p  … mp1  1xp  

… … … … … 

Xn 1np   nmp  xnp  

 1yp  … ymp   

 
We can get E(xy) as follows:  
 

∑∑
= =

∈
n

i

m

j
ijji pYXExy

1 1

 where Xi and Yj are interval values. 

 
Probability  is the probability assigned to cell ij. We use underlining to indicate the low 
bound of an interval and overlining to indicate the high bound of an interval. We can get the 
bounds of E(xy) as follows: 

ijp

 
nmmn pyxpyxpyxpyxpyxpyxpyxxyE ++++++++= ......)( 233222222112133112211111  

nmmn pyxpyxpyxpyxpyxpyxpyxxyE ++++++++= ......)( 233222222112133112211111  
 
From this, we get two linear programming problems:  
 

nmmn pyxpyxpyxpyxpyxpyxpyxxyEMin ++++++++= ......)( 233222222112133112211111  
 
subject to: 
 

row constraints:  for i=1 to n; xi

m

j
ij pp =∑

=1

 

column constraints:  for j=1 to m. yj

n

i
ij pp =∑

=1

 

nmmn pyxpyxpyxpyxpyxpyxpyxxyEMax ++++++++= ......)( 233222222112133112211111  
 
subject to:  
 

row constraints:  for i=1 to n; xi

m

j
ij pp =∑

=1
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column constraints:  for j=1 to m. yj

n

i
ij pp =∑

=1

Solving these two linear programming problems, we can get the bounds of E(xy). Call these 
numbers k  and k . We also know that 
 

))()()(()( 2222 ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxxyE ρ  

 
where  and .  ii Xx ∈ jj Yy ∈
 
In this equation, only ρ  is an unknown range. Now the problem becomes solving for E(xy). 
The minimum should be the minimum value of ρ . The maximum should be the maximum 
value of ρ . Thus, the problem is transformed into finding the root range of a nonlinear 
function.  

3.2.4 Approximate Solution 

From f(x,y)= ))((
2222 yyxxyx −−+⋅ ρ , in most cases, yx ⋅  is greater than 

))((
2222 yyxx −− . Therefore, we just consider yx ⋅ . It is obvious that it is an increasing 

function of x and y. Assigning the minimum values to x and y, and the maximum value 
possible for f(x,y), we can obtain the maximum value of ρ . Assigning the maximum values 
to x and y, and the minimum value to f(x,y), we can get minimum value of ρ . 

3.2.5 Additional Constraints from Correlation 

When the user sets the correlation range, we know the range of every variable in equation 
f(x,y). Under this situation, we can get the range of f(x,y). This range of f(x,y) is thus 
controlled by the user. At the same time, we know another range for f(x,y) which is derived 
from the joint distribution matrix. As previous noted, the range derived from the joint 
distribution matrix is considered given. Therefore, it is always correct. The range coming 
from the user must be intersected with this range. From this restriction, we can get additional 
constraints for linear programming. 
 
Since formula f(x,y) is non-linear, we use non-linear optimization to do minimization and 
maximization on it. Using a penalty function transforms a constrained optimization problem 
to a non-constrained problem. We also can get the first and second derivative for this 
function. Call the values obtained fmin and fmax. Thus, we get f(x,y)=[fmin,fmax].  
 
In the previous section we obtained another range for f(x,y), namely ],[ kk , from the joint 
distribution matrix. These two ranges must intersect; otherwise, the user input is not possible. 
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These two ranges both are intervals. If the following conditions are satisfied, these two 
intervals will intersect as required: 
 
fmax k≥  and fmin k≤ . 
 
Since  
 

nmmn pyxpyxpyxpyxpyxpyxpyxk ++++++++= ...... 233222222112133112211111  

nmmn pyxpyxpyxpyxpyxpyxpyxk ++++++++= ...... 233222222112133112211111  
 
we know fmin and fmax. Therefore, we get an additional two linear constraints for the linear 
programming problems based on correlation:  
 

≤++++++++ nmmn pyxpyxpyxpyxpyxpyxpyx ...... 233222222112133112211111 fmax 

≥++++++++ nmmn pyxpyxpyxpyxpyxpyxpyx ...... 233222222112133112211111 fmin 

3.3 Nonlinear Optimization to Remove Excess Width 

From the term )()()(*)(* YEXEYDXD +ρ , we defined the corresponding function f(x,y): 

))()()((*),( 2222 EyEyExExEyExyxf −−+= ρ . Recall that if we replace x and y with 
intervals X and Y in f(x,y), an interval function results.  
 
Based on the rule “cancellation or reduction of the number of occurrences of a variable 
before interval evaluation” for eliminating excess width, if each variable occurs only once 
then evaluating an interval function cannot result in excess width. However, it is impossible 
to use this rule for this function. Instead, we avoid the excess width problem by evaluating 
this function in the real domain using real numbers x belonging to interval X and y belonging 
to Y. We can use the minimum value and the maximum value of this real function as the way 
to get bounds on the interval.  
 
Rewrite the formula with intervals X and Y: 
 

 
))()()((
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The corresponding real function is  
 

))()()((),( 2222 ∑∑∑∑∑∑ −−+=
j

yjjyjj
i
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j
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Here  and . If ii Xx ∈ jj Yy ∈ ρ  is an interval number, it becomes another variable for 
function f.  
 
Obviously, f(x,y) is a non-linear function. We use non-linear optimization to figure out the 
minimum and maximum. However, this optimization question is restricted to a special 
region, the intervals for the xi’s and yj’s. 

3.4 Improving Results by Adding Constraints to LP 

Based on the above discussion, we get another two constraints for LP after calculating the 
interval k. From the joint distribution matrix in the following table,  

Table 3.2  Joint distribution for X and Y. 

 […] … […] X 
[…] 11p  … np1  1px  
… … … … … 
[…] 1mp  … mnp  mpx  
Y 1py  …. npy  1 

 
we get the LP model: 
 
Minimize  ∑

Ω∈

=
ji

ijpZ
,

subject to:  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

==
≥≥≥

==

==

∑∑

∑
∑

1)(,1)(
,0)(,0)(,0

...1,)(

...1,)(

ji

jiij

i
jij

j
iij

ypxp
ypxpp

njypp

mixpp

 
To these we add the two constraints implied by the correlation. When the two constraints, 

kpa ijij =∑  and kpa ijij =∑ , are added to the LP, the transportation simplex method 

cannot handle this augmented model because we cannot put these two constraints into the 
balanced transportation tableau. 
 
Therefore, we use the traditional simplex method to solve the problem. The speed of 
calculation is very important. This is discussed later. 
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3.5 Simplex Method 

Consider the standard LP question: 
 
Min  CXZ =
 
Subject to: ,  and  for i=1 to n. bAX = 0≥ix 0≥ib

Here  is a row vector,  is a column vector. ),...,( 1 nccC =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nx

x
X ...

1

),...,( 1 nPPA =  and  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mi

i

i

a

a
P ...

1

. Therefore, A is an m*n matrix and  is a column vector. 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mb

b
b ...

1

 
We can transform the maximization problem to a minimization problem through the 
following approach. 
 
Max  Ù Min CXZ = CXZY −=−=  
 
The constraints are unchanged.  
 
Based on the simplex method, A is split into ( )NB AA .  has the coefficients for the basic 
variables (assuming there are m  basic variable from to ), and  has the coefficients 

for the non-basic variables (from to ). X is also separated into .  

BA

1x mx NA

1+mx nx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

N

B

X
X

As a result, AX=b becomes . ( ) b
X
X

AA
N

B
NB =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

bXAXA NNBB =+ **  
 

)*(*1
NNBB XAbAX −= −  

 
Here  means the inverse matrix of . In other word,  where 1−

BA BA IAA BB =−1* I  is the unit 

matrix. For example, 
100
010
001

 is a 3*3-unit matrix. 
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Thus, the objective function becomes  

NNBBNBB

NNNNBB

NNBB

N

B
NB

XAACCbAC

XCXAbAC

XCXC
X
X

CCXCZ

)(

*)*(*

**

*)(*

11

1

−−

−

−+=

+−=

+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

 

 
Here is an example. 
 
Minimize 54321 373 xxxxxz ++−−=  
 

Subject to:  
⎪
⎩

⎪
⎨

⎧

=≥
=+−+−

=+−+−

5...1,0
85

2021345
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ix
xxxxx

xxxxx

i

Here ( )13713 −−=C , , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nx

x
X ...

1

11511
121345

−−
−−

=A  and . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

8
20

b

If we assume  and  are the basic variables, we get ,  1x 2x
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

5

4

3

2

1 ,
x
x
x

X
x
x

X NB

( ) ( )
115
1213

,
11
45

,137,13
−
−

=
−
−

=−=−= NBNB AACC . We also get  

 

6/56/1
3/23/11

−
−

=−
BA , . )(1

2

1
NNBB XAbA

x
x

X −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

 
The following discussion is based on the previous definition and equations, and in part on 
Qian and Murty [1985]. 

3.5.1 How to Find the Initial Feasible Solution 

For the standard LP question, if you can find a unit mm ×  matrix in A, you let this matrix 
be  by multiplying one row by a constant and adding it to another row, repeating as 
needed. Set  (non-basic variables) to zero (that is  all equal 0). Then, 

 because since A is a unit matrix, as is . 
Then,  is a feasible solution, although it is probably not the optimal 
solution. 

BA

NX nmm xxx ,...,, 21 ++

bbIbAXAbAX BNNBB ===−= −− **)( 11 1−A
)...1(,0 mibx ii =≥=
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If you cannot find a unit matrix, you can choose a sub-matrix ( ) of A which is 
nonsingular (meaning that the determinant of the matrix does not equal zero and the rank of 
the matrix is m), and every  of  is not less than 0. Under this condition, it is a 
feasible solution. 

mm ×

ix bAX BB *1−=

 
However, frequently, it is necessary to add artificial variables. To , we add the 

artificial variables , and revise the equation to 

bAX =

0...
1

≥
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

my

y
Y bIYAX =+ . In the objective 

function, the coefficients of Y should be very large positive real numbers so that the 
minimization objective function will be unaffected by artificial variables Y. Yet we can still 
use Y as the initial feasible solution. Importing the artificial variables just provides a 
convenient way to get an initial feasible solution.  

3.5.2 How to Decide the Termination Condition and Entering Variable 

Now consider optimization of Z. Let . Here  is the 
coefficient of  and describes the coefficient of a non-basic variable in the objective 
function.  

),...,( 1
1

mnNBBN wwAACCW −
− =−= iw

imx +

 
If we want to make  smaller, 
we must hope to find the negative elements of W because all elements of  are positive. 
From this discussion, we can derive the termination rule for an iterative optimization process. 

NBBNNBBNBB WXbACXAACCbACXCZ +=−+== −−− 111 )(*

NX

 
• If every element  of W is not less than 0, then the current solution is optimal. iw
• If at least one element of W is negative, we continue to search for the optimal 

solution.  
 
Let . This means if every non-basic variable changes by the same 
factor, value will have the maximum effect in minimizing the value of Z. 
Therefore, let non-basic variable  be the entering variable (entering the basic variable set 
from non-basic variable set). 

)0|min( <= iik www

kmk xw +*

kmx +

 
If , there is no solution (k is the entering variable index, and , belonging to 

, is the coefficient for non-basic variable ). 
01 ≤+

−
kmB PA kmP +

),...,( 1 nmN PPA += kmx +

 
Proof:  
 
From , assuming the entering variable  does not equal 0 and 
other non-basic variables still equal 0, let  equal 

)*(*1
NNBB XAbAX −= −

kmx +

kmx + α  and be greater than 0. Then 
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kmBB

kmkmBB

n

m
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x
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...),...,(*

**

α
 
Because ,  still are greater than 0, and 01 ≤+

−
kmB PA BX 0=NX  except for α=+kmx . 

Therefore, it is a feasible solution. Consider the objective function: 
 

α*

...),...,(

)(

1

1

1
1

11

kBb

n

m

mnBb

nNBbnBb

wbAC

x
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−
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Because  is less than 0, if kw +∞→α , −∞→Z .  
 
Therefore, there is no minimum value for the objective function.  
 
Here is an example: 
 
Minimize  21 xxz −−=

Subject to:  
⎪
⎩

⎪
⎨

⎧

=≥
=+−

=++−

4...1,0
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i

We choose  and  as basic variables. Then 2x 4x
11
01

−
=BA , 

01
12−

=NA , ( )01−=BC  

and . ( )01−=NC
11
011 =−

BA , so ( )131 −=−= −
NBBN AACCW . We can choose  as 

the entering variable. We get 
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Here  is a feasible solution if . But  BX 01 ≥x

( ) 111
2

1 34)24(11 xxx
x
x

Z −−=+−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= . If ∞→= β1x , then −∞→Z . Thus, there 

is no minimum value for Z. 
 
Based on the previous discussion, three conditions can occur during the iterative procedure. 

• A solution is found. 
• Continuing to search for a solution that minimizes Z. 
• No minimization solution is found. 

3.5.3 How to Determine the Leaving Variable 

Let  be a feasible solution. Thus, BX bXA BB =* . Here ( )mB PPA ...1= . We know is 
nonsingular, so  to  are the independent vectors. The other vectors  to  are 
linearly dependent on  to . Therefore, we can get 

BA

1P mP 1+mP nP

1P mP

∑
=

++ =
m

i
ijmijm PP

1
, *α  

=>  0...*),...,(

,

,1

1 =
⎟
⎟
⎟
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⎞

⎜
⎜
⎜

⎝

⎛
−

+

+

+

jmm

jm

mjm PPP
α

α

From , we get bXA BB =*
 
( ) bXPP Bm =*...1 . 
 
Let β  a positive real number. Then 
 

0)),...,(*),...,((*),...,( '
,,111 =−+ +++ jmmjmmjmBm PPPXPP ααβ  

=> . 0)),...,((*),...,( '
,,11 =+− +++ jmjmmjmBm PXPP βααβ

 
Let replace a variable in . We can get a new feasible solution if we set suitable values 
for X and ensure . We can get a suitable solution from the previous formulation by 
setting the new  to . We will let one element that equals 0 to be 
replaced by . To assure the other variables in  stay positive, choose a suitable

jmx + BX
0≥ix

BX '
,,1 ),...,( jmmjmBX ++− ααβ

jmx + BX β . Let  
 

jml

l
jmi

jmi

i xx

+
+

+

=>=
,

,
,

)0|min(
α

α
α

β . 

This implies that  is the leaving variable and entering variablelx
jml

l
jm

xx
+

+ =
,α
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Now we can apply this result. Based on 
 

jmBjmB

NNBB

NNBB

PAxbA

XAAbA

XAbAX

+
−

+
−

−−

−

−=

−=

−=

11

11

1

*

*

)*(*

 

 
We know is the entering variable. Determine the leaving variable by choosing the 
minimum 

jmx +

β  using the equation 
 

ljmB

lB
ijmB

ijmB

iB

PA
bA

PA
PA

bA
)(

)(
)0)(|

)(
)(

min( 1

1
1

1

1

+
−

−

+
−

+
−

−

=>=β . 

 
This implies that the leaving variable is . lx

3.5.4 Decreasing the Computational Cost 

The simplex method is a good way to solve linear programming, but can take considerable 
computing resources. 
 
From the previous discussion, we can see the main complexity problem focuses on the 
inverse matrix . If we can find a better way to compute it, we can get better efficiency. A 
relatively straightforward approach is to find the relationship between the two ’s in the 
closing steps. If we can use the previous  to speed computing the next , it will help. If 
the original , the new  is 

BA

BA

BA BA
( )mB PPA ...1= BA ( )mlkmlB PPPPPA ...... 111 ++−= .  

 
There is only one different column so the coefficient of the leaving variable is replaced by 
that of the entering variable. We can guess there is a relationship between these two . 

From , , and basic variable  is 

replaced with , and . Then . 

BA

bAX old
B

old
B

1−
= bAPAxbAX new

Bkm
old
Bkm

old
B

new
B

111 * −

+

−

+

−
=−= lx

kmx + CAA old
B

new
B =

1111 −−−−
== old

B
old
B

new
B DAACA

 
Therefore, if we can find D, the inverse of C, we will speed computing the inverse of . 
From the relationship of the original and new , nd 

. Here , i=1…m (i refers to the ith element of the vector 
). We note that 

BA

BX limiaxxx ik
new

km
old
i

new
i ≠=−= + ,...1,  a

lk
old
l

new
km axx /=+ ikmik PBa )( 1

+
−=

kmPB +
−1
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),..,,,,...,( 111 mll eeEkeeD +−=  and , and only element of i row is 1, while the others 

are 0. . 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞
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⎜
⎜
⎜
⎜

⎝
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...
1
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'
)1()1(1 )/,..,/,/1,/,...,/( lkmklkkllklkkllkk aaaaaaaaaEk −−−−= +−

 
This way, the previous inverse matrix is used to calculate the new inverse matrix. Sposito 
(1989) gives a similar description of this method. 

3.5.5 Applying the Method 

For our case: 
 
Min  CXZ =
 
subject to:  and X>=0. bAX =

Using artificial variables , the equation becomes
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

+

+

mn

n

av

x

x
X ...

1

bIXAX av =+ . Let Con be a 

very large positive real number based on the Big-M method so that the objective function 
becomes . ( ) avXConCXZ 1...1*+=
 
Based on the previous discussion, X are non-basic variables. equals I. It is easy to 
compute. It is not needed to calculate the inverse matrix. But artificial variables are in the 
objective function and must be removed. If an artificial variable is removed from the basic 
variables, it will be removed from the objective function. This means the coefficient of the 
artificial variable becomes zero instead of one. After changing the coefficient of an artificial 
variable to zero, the artificial variable is in effect not present. When the optimum is reached, 
the coefficients of the artificial variables must be zero. Otherwise, there is no optimum. 

BA

3.5.6 An Example 

Minimize  321 23 xxxZ +−=

subject to:  
⎪
⎩

⎪
⎨

⎧

=≥
=+−

=+−

3,2,1,0
1242

723

21

321

ix
xx

xxx

i

Solution is found since using artificial variables  and  for an initial feasible solution.  4x 5x
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The problem changes to: 
 
minimize )(*23 54321 xxMxxxZ +++−=  

subject to:  
⎪
⎩

⎪
⎨

⎧

=≥
=++−

=++−

5,...,1,0
1242

723

521

4321

ix
xxx

xxxx

i

 
To remove the effects of the artificial variables, we set the coefficient M of the artificial 
variables in the objection function to a very large real number, such as 100,000.  
 
Iteration 1: 

( )10000100000231 −=C , . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12
7

b ( )321042
213

PPPA =
−

−
= . . IAB =0

 
Variables and  are the basic variables. 4x 5x AAN = . 
 

( ) ( )

( ) ( ) ( 19999830000399999200000300000100000231
042
213

1000001000002311

−−−=−−=

−
−

−−=−= − IAACCW NBBN

)
 

 
 
As a result, is the entering variable. In the next step, the leaving variable is determined. 2x
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

12
71bAB , . Thus the leaving variable is . ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
=−

4
1

2
1PAB 5x 4=lka . 

 

Therefore, . We get )4/1,4/1(=kE
4/10
4/111011 ==

−−

BB EAA . 

Iteration 2: 
 
Now and are basic variables, and  is discarded. 4x 2x 5x ( )100000231 −=C . 

02
23

−
=NA  

( ) ( )

( ) ( ) ( )1999985.2500002000005.25000121
02
23

4/10
4/11

3100000211

−−=−=

−
−−=−= −

NBBN AACCW
 

 
As a result,  is the entering variable.  1x
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1
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Therefore, . We get )5/1,5/2(=kE
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−−

BB EAA . 

Iteration 3: 

Now and are basic variables, and  is discarded. 1x 2x 4x ( )231 −=C . . ⎟⎟
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The optimal solution becomes:  
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3.6 Nonlinear Optimization 

In most cases, there is a function f(x), called the objective function, which belongs to , 
meaning that the function f(x) has a second derivative. We want to find the minimum or 
maximum value of f(x). We can describe this question as follows: 

2C

 
)(min xf

x
 

Subject to: 
   nRx ∈
where nR is the n-dimension real domain. 
 
For the maximization question, we convert it to the minimization problem according to the 
following formulation: 
 
             

 

))((min)(max xfxf
xx

−−=

Now only the minimization question needs to be addressed. 
 
In this case, the variable x belongs to the n-dimension real domain. The number of 
dimensions may vary from 1 to n. This kind of minimization problem is called unconstrained 
optimization.  
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If any constraints are applied to the variable x, we have the following situation: 
 

)(min xf
x

 

The p equality constraints are: 0)( =xei  for i=1,2…p  
            and the q inequality constraints are:   for j=1,2,…q. 0)( ≥xw j

 
This is a constrained optimization.  
 
All points x satisfying all the constraints are feasible and all others are non-feasible. All 
feasible x’s form the feasible region. All non-feasible x’s form the non-feasible region. For 
unconstrained optimization, the feasible region is the real domain.  

3.6.1 Local and Global Optimums 

A local maximum is a point in the feasible region that is higher than all other points within its 
immediate vicinity, but not necessarily the whole feasible region. The global maximum is the 
maximum for the whole feasible region. The following figure illustrates local optimums: 

 

Local minimum

Local maximum

 
Figure 3-2  Local Optimums. 

 
This figure illustrates the following points about the global and local optimums. 
 

• There may be more than one local optimum for the function and their values perhaps 
are not the same. 

• The global optimum must be a local optimum. 
• A local optimum may be the global optimum. 
• It is possible that there is more than one global minimum or maximum, if the function 

values are the same. 
• The global optimum is the best of all the local optimums and is the solution for the 

problem.  
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3.6.2 Classical Theory of Unconstrained Optimization 

Given a function f(x), for vector x, and assume all the first derivatives 
ix

f
∂
∂ exist at all points 

in the domain of f.  
 
A necessary statement for a minimum of f(x) is: 
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==
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nx
f

x
f

x
f . 

The condition “necessary” means that where the function is at a minimum, the equation 
holds. A sufficient condition also must be stated. A sufficient condition for a point to be a 
minimum of f(x) is that the second derivatives of function f(x) exist at the optimum point and 
Di > 0. 
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∂

∂
∂

=  

When the derivatives of the function f(x) are discontinuous, the classical theory is not fully 

applicable. 

3.6.3 Finding a Solution Iteratively 

Almost all numerical optimizations methods use iterative techniques. They start at an initial 
point x0 and proceed by generating a sequence of points x1,…xm (each xi is an n-dimension 
vector). Let . Then, the minimum of f(x) is approached more closely with each 
iteration. Clearly, the choice of x

)()( 1 ii xfxf ≤+

0 is very important.  
Defined by , diiii sdxx +=+1 i is a direction vector for finding the next x and si is the step size 
or distance to move. Here, a suitable choice of direction di is very important. How to search 
for the next x is an important issue. Typically, methods are classified into two classes: direct 
search and gradient methods. 

3.6.4 Search Methods: Direct and Gradient 

Direct search methods do not require the explicit evaluation of any derivatives of the 
function, but rely solely on values of the objective function f(x) and information gained from 
earlier iterations. Some use function values to obtain numerical approximations of the 
derivatives.  
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Gradient methods select the direction using the values of the derivatives of the function f(x). 
Usually, these methods use first order derivatives. 

3.6.5 Converting Constrained to Unconstrained Optimization 

For constrained optimization problems, it can be useful to make use of unconstrained 
optimization methods. Thus, converting to an unconstrained optimization problem is the first 
task. Many methods have been developed for transforming the optimization problem. The 
following methods are widely used: 
 

1. Transfer functions 

2. LaGrangian multipliers 

3. Penalty functions. 

3.6.5.1 Transfer Functions 
Its basic idea is to extend the restricted feasible region to the whole real domain. For 
example, to minimize f(x), subject to x>a, we can define a new variable y. Let  

2yax +=  
Using this equation, we can convert f(x) to f(y), and then minimize f(y). Here variable y does 
not have any restriction. Thus, this is now an unconstrained optimization problem.  

3.6.5.2 LaGrangian Multipliers 
This is a very common method for transforming optimization problems. If a minimization 
problem has many equality constraints  
 
              for i=1,2…p  0)( =xei

 
A new objective function to minimize can be defined with a new variable λ  

             .  

 

∑
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For the first derivatives of this function, 
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==
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The solution will satisfy the constraints 0)( =xei . 
 
For the inequality constraints  
 
             for j=1,2,…q 0)( ≥xw j

 
we can introduce new variables called slack variables, . Let qnn xx ++ ...1

 
0)( 2 ≥= + jnj xxw . 

 
Now we can transform the inequality into equality: 
 
             0)( 2 =− + jnj xxw
 
Using this method, we can handle the constrained optimization problem. 

3.6.5.3 Penalty Functions 
The basis for the penalty function method is to define a new objective function such as: 
 
                ))(()()( xcpxfxh +=
 
where f(x) is the original objective function, and p(c(x)) is the penalty function based on the 
equality and inequality constraints. 
 
For a minimization problem, the main point is to choose the penalty function to make sure 
that it is zero for all feasible points and is very high for all non-feasible points. Then, the 
minimum of h(x) is equivalent to the minimum of f(x).  
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3.6.6 Our Case 

For our problems, the optimization question is defined as follows: 
 
Find the minimum and maximum of function  
 

2222 )(()((),( ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ  

subject to: 
  uxl ≤≤
 pys ≤≤  
 
where , , )...( 1 nlll = )...( 1 nuuu = )...( 1 msss =  and )...( 1 mppp = . , ,  and are real il iu is ip
numbers, not infinity. This kind of question is called box-constrained optimization or bound-
constrained optimization. 
 
We only discuss the minimization problem. For maximum problems, we can use the previous 
formulation to convert them to minimization problems.  
 
Next, we need to convert the problem to an unconstrained optimization. We use the three 
methods introduced previously. 

3.6.6.1 Transfer Function 
The constraints for variable x and y are uxl ≤≤ , and pys ≤≤ . This means that x lies 
between l and u, and y lies between s and p. so we need to introduce a new variable to replace 
x and make sure x satisfies the constraint.  
 
Defining 
 
              , and  ululx 2sin)( −+= vspsy 2sin)( −+=
 
we will get the new objective function . ),( vuf
 
For this function, y belongs to the whole real domain, so it is unconstrained. But this function 
is very complicated. It is tricky use the first derivative to get the solution because y has many 
solutions. 

3.6.6.2 LaGrangian Multipliers 
For , uxl ≤≤ pys ≤≤ ,  we can convert to: 
 

, , , and 0≥− lx 0≥− xu 0≥− sy 0≥− yp .  
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Using the previous methods, we can get a new objective function. But this method introduces 
many slack variables and equalities. To solve these equalities is costly.  

3.6.6.3 Penalty Function 
We will design a suitable penalty function. Based on the constraints, we introduce this 
penalty function:  
 

),,...,...,,,,,...,...,,,0max(*)( 11111111 mmmmnnnn pyyspyysxxlxxlxp −−−−−−−−= µµλ  
 
Here, λ will be chosen as a very large positive real number. So the new objective function is  
                            ),(),(),( yxpyxfyxh += . 
 
From this function, we see that if uxl ≤≤ , and pys ≤≤ , then x and y belong to the 
feasible region and h(x,y) equals f(x,y), but if constraints are violated, h(x,y) will become very 
large, clearly far from the minimum value. 

3.6.6.4 Search Method 
Our objective function has a good attribute; both the first derivatives and second derivatives 
exist. As a result, gradient search (Luenberger, 1984, pp. 384) can be applied to our case. 
Furthermore, gradient searching methods provide efficient direction information in searching 
for the next x. In view of the previous discussion, gradient search is used in our case. 

3.6.6.5 Solution 
Find the minimum value of function f(x), stated by  
 
Min ))()()((),( 2222 ∑∑∑∑∑∑ −−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii pypypxpxpypxyxf ρ  

subject to: 
 

uxl ≤≤  
pys ≤≤  

 
where  , , )...( 1 nlll = )...( 1 nuuu = )...( 1 msss =  and )...( 1 mppp = . , ,  and are real 
numbers, not infinity. 

il iu is ip

 
We use a penalty function to convert this problem to an unconstrained problem. The new 
objective function h(x,y) is constructed as: 
 

),,...,...,,,,,...,...,,,0max(*),(),( 11111111 mmmmnnnn pyyspyysxxlxxlyxfyxh −−−−−−−−+= µµλ  
 
Thys, the problem is to find the minimum value for function h(x,y). For this unconstrained 
optimization problem, the iterative technique is adopted. First, we define some terms:  
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Now we get the first derivative of h(x,y) through f(x,y) and penalty function p(x,y). 
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Along the direction determined by the derivatives, the next x and y are defined. Through 
iteration, the numerical solution can be found. 
 
Next, finding the maximum value of function f(x), 
 
Maximize  ),( yxf
 
subject to: 
 

uxl ≤≤ , 
pys ≤≤ . 

 
Based on the formulation )),((min),(max yxfyxf

xx
−−= , we can transform this problem to: 
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Minimize   ),( yxf−
 
subject to: 
 

uxl ≤≤  
pys ≤≤  

 
Using the previous method, we can get the minimum value fmin, and negate to get the 
maximum value of f(x), –fmin. 
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4 Enhancement of Functions 

Advances in the technique were required in order to meet the needs of the problems in the 
electric power domain that we have been addressing. The following extensions and 
augmentations were developed for this purpose. 
 

• Use of the transportation method to speed linear programming 
• Cascading operations to support more than two variables 
• Relational operations 
• Evaluation of f(x,y) for monotonic functions f 

4.1 Transportation Method 

In the previous version, only the standard simplex method is provided to solve linear 
programming. This method is much slower than that of the transportation simplex method.  

4.1.1 Background on the Transportation Simplex Method 

Many companies need to determine how to optimally transport goods from different 
warehouses to different destinations. Isomorphic problems are found in other situations 
unrelated to transportation, such as the assignment problem and production scheduling. 
[Hillier and Lieberman, 2001] give background information. 

4.1.1.1 Model 
In general, this kind of problem involves two different types of location: sources and 
destinations. Sources supply some resource and destinations accept it. Costs for transferring 
resources between each source and destination may be different. The aim is to minimize the 
total cost to transfer resource from these sources to those destinations. In most cases, the total 
supply for all sources is equal to the total demand for all destinations. If we have M sources, 
N destinations, the supply at source i is Si, and the demand at destination j is Dj, we have that 

. Let C∑∑
==

=
N

j
j

M

i
i DS

11
ij be the unit cost of moving resources from source i to destination j. 

Table 4.1 displays the relationship between sources and destinations. 
 
We can describe this mode as a standard linear programming problem.  
 

min  
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Subject to:  
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j
ij Sx =∑

=1  for i=1 … M 
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j

M

i
ij Dx =∑

=1  for j=1 … N 
 
and  for all i and j. 0≥ijx
 

Table 4.1  Parameter table for transportation model. 

 
Cost per unit distributed 

Destination 

 
 
 
 
 
Source 

1 2 3 …… N 

 
 
 
 
 
Supply 

1 C11 C12 C13  NC1  S1

2 C21 C22 C23  NC2  S2

……       

M 1MC  2MC  3MC   MNC  MS  

Demand D1 D2 D3  ND   

 

If total supply is not equal to total demand, it is called an unbalanced model. For these cases, 
we can use dummy sources or destinations to make the model balance. If total supply is 
greater than total demand, we can create dummy destinations to demand extra resources and 
set the unit cost from each source to any dummy destinations to be very small. This way, 
extra resources will be transferred to dummy destinations. If total supply is less than total 
demand, we make up some dummy sources and set the unit cost from each dummy source to 
any destinations to be very large. If these unit costs are large enough, no destination will 
want to get resources from these dummy sources. As a result, the solution will be for 
resources from actual sources rather than dummy sources.  

4.1.1.2 Solution 
The transportation problem is a special type of linear programming problem. We can use 
general methods for linear programming such as the simplex method. If the simplex method 
is used, the simplex tableau will be complex and consists of M+N+1 rows and (M+1)(N+1) 
columns. To handle this will require much computation.  
 
For this special type of linear programming problem, there is an efficient method called the 
transportation simplex method. This method uses a tableau, but it only has M rows and N 
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columns. It is not necessary to use artificial variables to get an initial solution. It has just 
M+N-1 basic variables (not M+N), so a degree of freedom will be removed. 
 
To solve transportation problems, generally two steps are necessary.  
 
Step One: Initialization to get an initial basic feasible (BF) solution. There are 3 common 
methods for this step.  
 

• Northwest corner rule 
• Russell’s approximation method 
• Vogel’s approximation method 
•  

Russell and Vogel’s methods consider costs in generating an initial solution. The solutions 
are better than for the Northwest corner method. Hillier and Lieberman (2001) compare these 
three methods. 
 
Step Two: Optimality testing. In this step, every solution is a feasible solution. Our aim is to 
find the best solution. The DEnv algorithm incorporates a loop to do the following.  
 

• Get the two variables ui and vj from each basic variable’s equation (Cij=ui+vj). 
• Calculate the related cost CCij of each non-basic variable according to CCij=Cij-ui-vj. 
• Get the entering non-basic variable, the one with the minimum CCij of all non-basic 

variables with negative CCij. 
• Determine whether the solution is optimal. If all CCij are not less than 0, the solution 

is optimal. 
• Get the leaving basic variable. This is done in a loop whose calculations use the 

entering non-basic variable and other basic variables. This loop identifies the cell 
whose assigned flow is the minimum and whose order to the entering cell is odd. This 
cell will be the leaving variable. 

• Adjust the flow of the loop. For all the cells adjacent to the entering cell or an odd 
distance from it in the loop, subtract the minimum flow and for all cells an even 
distance, add the minimum. 

• Get the new basic variable set, marking the entering cell basic variable and the 
leaving cell non-basic variable. Begin the loop again from step 1. 

4.1.2 Exceptions in Finding the Initial Solution 

Handling degeneracy when it occurs is important in finding the initial solution in a 
transportation simplex problem. Degeneracy means there are not enough basic variables in 
the initial feasible solution, such as when there are 5 basic variables for 2*3 tables. In fact, 
maybe only 4 variables are found for some initialization methods for some problems. This 
situation occurs when there are too many choices for which ones are basic. The northwest 
corner method does not have this kind of problem. This method always can find enough basic 
variables, although values of some of them may be zero. But Russell’s method will have this 
kind of problem for some cases. Usually, the initial solution found by Russell’s method is 
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closer to the optimal solution than that found by the northwest corner method. Thus, 
computing time is less for Russell’s method. Therefore, there is a tradeoff. 

4.1.3 Adaptation to the Unknown Dependency Case 

For the unknown dependency case, the marginal distribution table for variables X and Y is 
really a transportation tableau. Here you can consider X as the sources and Y as the 
destinations. The total supply is one and total demand is one. Next, we use an example to 
illustrate this situation.  
 
Example: 
 
X distribution: P([0,1]) = 0.2, P([1,2]) = 0.2, P([2,3]) = 0.2, P([3,4]) = 0.4. 
 
Y distribution: P([1,2]= 0.25, P([2,3]) = 0.25, P([3,4]) = 0.2, P([4,5]) = 0.3. 
 
Consider X+Y for the case of unknown dependency. We get the joint distribution tableau 
shown in Table 4.2. 

Table 4.2  Marginal distribution. 

     X 
Y 

[0,1] [1,2] [2,3] [3,4] Prob. 

[1,2] [1,3] 
p11

[2,4] 
p12

[3,5] 
p13

[4,6] 
p14

0.25 

[2,3] [2,4] 
p21

[3,5] 
p22

[4,6] 
p23

[5,7] 
p24

0.25 

[3,4] [3,5] 
p31

[4,6] 
p32

[5,7] 
p33

[6,8] 
p34

0.2 

[4,5] [4,6] 
p41

[5,7] 
p42

[6,8] 
p43

[7,9] 
p44

0.3 

Prob. 0.2 0.2 0.2 0.4 1 

 
The next question is how to assign the distribution to p11 …p44 to give some subset a 
maximized probability. For example, to find the upper bound for X+Y at 1 (the previous 
chapter discussed finding the subset), we get the linear programming problem 
 
Maximize f=p11 
 
subject to:  
 
p11+p12+p13+p14 = 0.25 
 
p11+p21+p31+p41 =0.2 
 

 44



 

To find the upper bound for the CDF at 2, we get the problem 
 
Maximize f=p11+p12+p21 
 
subject to:  
 
p11+p12+p13+p14 = 0.25 
 
p11+p21+p31+p41 =0.2 
 
For every point in the support of the result distribution, we will get a linear programming 
problem. Through solving these problems, the upper bound of the CDF will be obtained. 
 
The low bound of the CDF is found similarly. To speed finding the solution, we use the 
transportation method to solve these linear programming problems.  
 
From the previous example, it can be seen that these linear programming problems use 
transportation tables. However, it is necessary to maximize the value of the objective 
function rather than minimize it, as in real transportation problems. To solve these problems, 
we use negation to transform a goal of maximization to one of minimization. The Cij’s are 
important in transforming the problems. For the objective function, Cij must be 1, 0, or -1. To 
transform the problem from one of maximization to one of minimization, use Cij=-1 for all 
items that will contribute to the objective function, with others zero. For the previous two 
cases we will get: 
 
Minimize -f=-p11 
 
subject to:  
 
p11+p12+p13+p14 = 0.25 
 
p11+p21+p31+p41 =0.2 
 
C11 = -1, other Cij=0 
 
 
Minimize -f=-p11-p12-p21 
 
subject to:  
 
p11+p12+p13+p14 = 0.25 
 
p11+p21+p31+p41 =0.2 
 
C11=C12=C21=-1, other Cij=0  
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This illustrates a way to transform an unknown dependency case to a transportation problem.  
 
It includes two steps: 
 

• get the transportation table from the marginal distribution table; and 
• set the cost attribute for cells contributing to the objective function to –1, and set 

other cells’ cost to zero. 
 
Because the balance of supply and demand is a basic requirement for the transportation 
problem, we must keep marginal sum of X and Y equal to 1, and the same for Y. 

4.1.4 Test Result 

Consider an example: 
 
X, p([0,0.333])=0.2, p([0.333,0.667])=0.4, p([0.667,0.999])=0.4 
Y, p([0,0.5])=0.5565437, p([0.5,1])=0.4434564. 
 
Consider X+Y under the unknown dependency condition. 

Table 4.3  Lower bound. 

Result interval Simplex Transportation 
[-0.25,0.833] -1.490116E-08 0 
[0.833,1.167] -1.490116E-08 0 
[1.167,1.333] 0.1565436 0.1565437 
[1.333,1.5] 0.2 0.1999999 
[1.5,1.667] 0.5565436 0.5565436 
[1.667,2] 0.6 0.6 
[2,2.25] 1 1 

Table 4.4  Upper bound. 

Result interval Simplex Transportation 
[-0.25,0] 0 0 
[0,0.333] 0.2 0.2 
[0.333,0.5] 0.5565437 0.5565437 
[0.5,0.667] 0.6 0.6 
[0.667,0.833] 07565437 07565438 
[0.833,1.167] 1 1 
[1.167,2.25] 1 1 
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For this example, we obtain almost the same answer with both methods. 

4.2 Cascading Operations 

Previously, the DEnv algorithm only supported binary operations (two operands). But in real 
applications, there are often over 2 operands to be calculated, for example, x+y+z, 
Max(x,y,z), etc. 
 
Association may be used to solve many such problems. For example, for x+y+z, we can first 
calculate x+y, and save the result to temporary variable w=x+y, then calculate w+z. 
However, the operation must support association and commutation.  
 
To extend DEnv to handle cascaded operations, the following capability was added: the CDF 
envelopes for the result of two variables’ operation were converted into a marginal of a joint 
distribution tableau, call it w, for use in the second step of the solution process. Thus, we 
need to be able to convert CDF envelops to a set of intervals and associated probabilities.  

4.2.1 Solution 

This section describes how to transform upper and lower envelops into a set of intervals and 
associated probabilities. The probability of each envelope is its top-to-bottom height. For 
example, four intervals will be obtained from the following CDF envelopes.  
 

 

Figure 4-1  Converting CDF Envelopes to a Set of Intervals and Associated Probabilities. 

 
Figure 4-1 shows the CDF envelopes resulting from an operation on two variables. Figure 4-
2 shows the procedure to calculate using multiple operands (e.g., x + y + z). First, we get the 
result of x + y. This is shown in Figure 4-3. Then that result is loaded as a new operand (top 
panel above) and operates on it and z, which is shown in the middle panel. Figure 4-4 shows 
x + y + z. 
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Figure 4-2  Result for Operation. 

 

 
Figure 4-3  Result for x+y. 
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Figure 4-4  Result for x+y+z. 

4.3 Relational Operations 

Relational operations describe the relationship between two operands. DEnv handles these 
operations if the operations are defined to return a numerical value. We have used the value 1 
(or [1,1]) to indicate the statement is true, 0 (or [0,0]) to indicate it is false, and the interval 
[0,1] to indicate uncertainty about whether it is true or false. The software implementation 
supports these four relational operations: >, >=, <, and <=. 

4.3.1 Relational Operations on Intervals 

Consider two real numbers x and y. We define the interval value to describe the relationship 
between x and y. The value [0,0] indicates that the relationship is false. The value [1,1] 
indicates the relational operation is true. The value [0,1] means the value of the relational 
operation is not determined or is uncertain. 
 
For interval A, A-left means the left (or low) bound of A, and A-right means the right (or 
high) bound. Now consider two intervals A and B.  
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4.3.2 Relational Operations on Random Variables 

Consider two random variables X and Y. We consider P(X>Y). In the DEnv algorithm, 
random variables X and Y are split into intervals that are assigned probabilities. Therefore, 
operation X>Y is transformed into a series of interval operations. Here is an example.  

Table 4.5  Distribution for X and Y. 

     X 
Y 

[0,1] [1,2] [2,3] Prob. 

[1,2] p11 p12 p13 0.25 
[2,3] p21 p22 p23 0.5 
[3,4] p31 p32 p33 0.25 
Prob. 0.5 0.25 0.25 1 

 
Consider the relational operation X>Y. It is transformed into an interval relational operation 
between intervals of X and intervals of Y. For example, the result of [0,1] > [1,2] is [0,0], so 
[0,0] will be put into cell p11. Similarly, [0,1] will be put into cell p12. The following table 
gives the result. 

Table 4.6  Interval value for a relational operation. 

     X 
Y 

[0,1] [1,2] [2,3] Prob. 

[1,2] [0,0] 
p11

[0,1] 
p12

[0,1] 
p13

0.25 

[2,3] [0,0] 
p21

[0,0] 
p22

[0,1] 
p23

0.5 

[3,4] [0,0] 
p31

[0,0] 
p32

[0,0] 
p33

0.25 

Prob. 0.5 0.25 0.25 1 

 

Based on the DEnv algorithm, the probability for X>Y may not be obtained. It is clear that all 
cells whose interval bounds include 1 are consistent with X>Y. To get the maximum value of 
P(x>y), the sum of all cells including 1 will be maximized. For this case, we maximize 
(p12+p13+p23). To get the minimum value of P(x>y), the sum of all cells with the value [1,1] 
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will be minimized. All cells whose value is [0,1] will be discarded since for them, perhaps 
x<=y.  
 
In summary, the value of each cell should be one of [0,0], [0,1], and [1,1]. Here [0,0] means 
the relationship does not hold. The value [0,1] means the relationship is not certain. The 
value [1,1] indicates the relationship must hold. To get the maximum value, maximize the 
sum of all cells whose bound include 1. To get the minimum value, minimize the sum of all 
cells whose values are [1,1].  

4.4 Complex Expressions 

It is useful to be able to calculate any arithmetic expression. The user of the implementation 
software should be able to input the expression desired. To solve this problem, DEnv needs 
arithmetic expression parsing to provide the functionality to interpret an arithmetic formula. 
We decided to support expressions containing arithmetic operators +,-,*, /, and 
exponentiation, and to support association through using ( ).  

4.4.1 Expression Editing 

To implement this expression editor, first a grammar definition of allowed expressions was 
written. This grammar is context-free, and is as follows. 
 
<expression>::=<term> | <term> + <expression> |<term> - <expression> 
<term>::=<factor> | <factor> * <term>| <factor> / <term> 
<factor>::=(<expression>) | <number> | <variable> 
<number>::= <integer> | <integer>.<integer> 
<integer>::=<integer>|v 
<variable>::=x|y 
 

Here v indicates the numbers from 0 to 9. 
 
Based on this grammar, arithmetic expressions such as (a*X+b*Y)/(c*X+d*Y) are allowed. 
Parsing generates a parse tree: a diagram of the complete grammatical structure of the string 
being parsed. For this case, it is not very complex. Every operator needs two operands. ‘( )’ 
will increase the priority of operation. Therefore, expression tables could be used. In such a 
table, the operands and operators are recorded. Every row describes an operator. Software 
must analyze the input string, and generate the expression table according to the order of 
calculations. Then using this table, the result may be calculated.  

4.4.2 Limitations on Evaluating Expressions 

Division by zero cannot be handled without using extended interval arithmetic, and even then 
there are interesting wrinkles that would need special handling. For example, in the case of 
x/0>y/0, the proper answer per the previous discussion would be the interval [0,1] since the 
expression evaluator does not know how to evaluate the value of such expressions. 
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Therefore, operands X and Y cannot include zero in their support if the user wants to use the 
expression parser as presently implemented. 

4.4.3 Excess Width in Expressions 

A typical expression is P(x,y) = f(x,y)/g(x,y) = (aX+bY)/(cX+dY). For this kind expression, 
there may be excess width in interval calculations. This is a risk whenever a random variable 
is used more than once in an expression. To solve the problem, it is necessary to remove 
excess width in calculating this type of expression. 

4.4.4 Removing Excess Width 

The easiest way to handle excess width is to simplify the expression so that each random 
variable is used only once. But this is a very restrictive constraint, and many expressions 
cannot be simplified to meet this kind of condition.  
 
For some expressions, we can employ another method to remove excess width. This method 
is to use the low and high bounds of the interval operands to calculate the expression. Then, 
from these calculated values, the result bound is determined. For two variables, there are four 
combinations of bounds so four candidate result values are obtained. We select the minimum 
of the four as the low bound of the result interval, and the maximum of the four as the high 
bound of the result interval. Here is an example. 
 
Suppose: x = [1,2], y =[2,3], and F(x,y)= (8.4x + 7.2y)/(0.04x + 0.02y). 
 
First: let x=1, y=2, and calculate F(x,y), obtaining the value 285. 
 
Second: let x=1, y=3, and calculate F(x,y), obtaining the value 300. 
 
Third let x=2, y=2, and calculate F(x,y), obtaining the value 260. 
 
Finally, let x=2, y=3, and calculate F(x,y), obtaining the value 274.3.  
 
Thus, the interval for F(x,y) is [260,300]. 
 
If we calculate the expression by using interval addition to obtain intervals for the numerator 
and denominator independently, then divide the two resulting intervals, the interval 
[162.9,480] results. This has excess width. The endpoint method can remove excess width 
for this expression. 

4.4.4.1 Limitation of the Endpoint Method for Removing Excess Width 
Although the method of selecting the min and max value to get the result bound works for 
the example given, there are limitations to this method. When the expression is monotonic 
over the 2-D box defined by the interval endpoints, the method works. When it is not 
monotonic over that region, another method must be used. One approach, shown to be 
practical by the implementation of DEnv, uses a sampling method. In this method, a grid is 
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placed over the box and interior values of the intervals are sampled using points on the grid. 
The min and max of all sampled points provides the low and high bounds of the answer. For 
example the expression (x+y)x was analyzed this way (Berleant and Zhang, 2003). 
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5 Applications 

We are exploring applications of DEnv for analysis of economic dispatch, value at risk 
(VaR), and reliability problems as summarized in this section. 

5.1 Economic Dispatch: Applying the Interval-Based DEnv Algorithm   

A common way to model uncertainty in the value of a quantity is to use a probability density 
function (PDF) or its integral, a probability distribution function (CDF). When two such 
values are combined to form a new value equal to their sum, product, max, etc., the new 
value is termed a {\it derived distribution} [Springer, 1979]. It is well known that derived 
distributions may be obtained by numerical convolution, Monte Carlo simulation, and 
analytically for specific classes of input distributions, under the assumption that the input 
distributions are independent. It is also possible to obtain derived distributions for specified 
dependency relationships other than independence. However, it is not always the case that 
the dependency relationship is known. Thus, there is a need for obtaining solutions that are 
validated with respect to uncertainty about the dependency relationship.  
 
Numerical approaches have the advantage of applicability to a very wide class of 
distributions. Two numerical algorithms have been implemented in software for obtaining 
solutions to combining distributions that are validated with respect to uncertainty about their 
dependency. Both also validate their solutions with respect to discretization of the input 
distributions by using intervals to account for the inexactness of the discretization, eventually 
producing results that incorporate that inexactness into the separation of the envelopes. One 
algorithm is Probabilistic Arithmetic [Williamson and Downs, 1990], which is implemented 
in the commercially available software tool RiskCalc [Ferson et al., 1998]. The second 
algorithm is Distribution Envelope analysis (DEnv) [Berleant and Goodman-Strauss, 1998].  
 
The DEnv algorithm is implemented in a tool, Statool that extends our previous tool by 
eliminating the need to assume independence. While the Statool and RiskCalc tools have 
fundamental similarities [Regan et al., submitted] a difference that is relevant to the present 
problem is that the DEnv algorithm supports, and Statool implements, excess width removal 
in the underlying interval calculations for expressions in which the true bounds of the 
expression occur at corners of the rectangle defined by the input intervals. This simple 
approach frequently works, as for example in the present application. More sophisticated 
approaches to excess width removal, if implemented, could be incorporated into the software 
without difficulty since the details of the interval calculations are decoupled from other parts 
of the software. The result of handling excess width is inferred envelopes that are closer 
together than they would be if excess width was not handled [Berleant, 1993]. In this section 
we apply the DEnv algorithm to generalize a solution to the well-known economic dispatch 
problem in electric power generation to the case where the dependency relationship between 
the fuel costs of two generators is unspecified. 
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5.1.1 The Problem 

Interval methods have continued to draw the attention of researchers in the power generation 
community [e.g., Wang and Alvarado, 1992; Shaalan and Broadwater, 1993; Shaalan, 2000]. 
One electric power problem that, as traditionally formulated, is well understood is the 
economic dispatch problem. In this problem, it is desired to determine how much power 
should be generated by each of two generators, to meet a given level of demand such that 
total generation cost is minimized. One of a number of approaches to solving this problem is 
termed LaGrangian Relaxation [Wood and Wollenberg, 1996].  
 
We added a new dimension to this problem by incorporating uncertainty into the LaGrangian 
Relaxation technique for solving the problem, by modeling uncertainty in the cost of fuel to 
run the generators with probability distributions, postulating in addition that the dependency 
between the two fuel costs of the two generators is unknown (as might occur if one generator 
burns oil and the other coal). The uncertainties are then propagated through the algebraic 
expression derived by the LaGrangian Relaxation technique.  
 
First, the cost equations are specified as 
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[Wood and Wollenberg, 1996] where P1 and P2  are the power outputs of generators 1 and 2 
in megawatts; v1 and v2 are the fuel costs for generators 1 and 2 in $ per M Btu; and F1 and 
F2 are the generation costs for given power output levels and fuel cost rates. Therefore, 
generation costs change nonlinearly with power output according to the following equations. 
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Solving the problem requires minimizing an objective function,   
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P is the total customer demand for electric power that for this example we take as 400 
megawatts. This gives a constraint function 
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P=P1+P2=400. 
 
by the method of LaGrangian multipliers from calculus, at an extreme value of this objective 
function,  
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generator 1 and similarly for generator 2. From (5.1) and (5.2), 
 
v1(8+0.048P1)= λ =v2(6+0.08P2) 
 P2=400-P1
 
and solving simultaneous equations for P1 gives 
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as the most economical amounts of power to generate from generators 1 and 2 to meet the 
demand (assuming those amounts are within the capacity of both generators). P1  and P2 are 
easily calculated for real values of v1 and v2, but given distribution functions for v1 and v2 the 
problem requires evaluating an expression on random variables v1 and v2 involving a sum, 
difference and quotient. Solving it by dividing a difference of random variables by a sum 
results in excessively wide envelopes on the CDFs for P1 and P2 because the same operands 
occur in both terms, leading to excess width in the underlying interval calculations. Instead, 
the entire expression must be treated as a single binary operation on v1 and v2. Figure 5-1 
shows the results given PDFs describing v1 and v2. 
 
The CDF for optimum power generation from generator 1 will be within the interior 
envelopes if the inputs v1 and v2 are independent, and within the exterior envelopes 
regardless of the dependency relationship between inputs v1 and v2. When the dependency 
relationship is not known, the exterior envelopes might be sufficient for a decision, or might 
point out the need for additional information gathering to sharpen the input distributions 
and/or identify their dependency relationship sufficiently to support a decision. [From 
Berleant et al., 2002.] 
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Figure 5-1  Solution, Given the Histogram-Discretized PDFs for v1 and v2 Shown. 

 

5.1.2 Discussion 

The present software implementation has certain limitations. One planned extension is to 
handling of asymptotic PDF tails. The process of discretizing a PDF into a histogram does 
not presently allow for the case where a PDF tail trails off to plus or minus infinity. Yet this 
implies setting definite bounds, though any specific such bounds might be hard to justify. 
Indeed unusual and extreme values can occur in the electric power domain, as happened for 
example in the California power crisis. The solution is to allow the discretization to include 
open intervals with an end point at +/- infinity. This in turn would require the arithmetic 
operations to be defined on such intervals. Fortunately, this is straightforward. 
 
The overhead in time complexity due to use of interval calculations is a relevant 
consideration. For DEnv, time complexity overhead is attributable mainly to the increased 
time complexity of computing interval operations in place of what would otherwise be 
numerical ones. Thus, a complex excess width removal algorithm would have a 
correspondingly great effect on run time. The simple method employed in Statool typically 
adds approximately 25% to the run time, as tested by doing elementary arithmetic operations 
with and without the excess width-handling algorithm, when the dependency relationship 
between the operands is considered unknown. However, when the operands are assumed to 
be independent, using the excess width algorithm leads to a slowdown by an approximate 
factor of 10, because a higher proportion of the computations done by the program in this 
case are interval operations, and therefore, slowing them has a correspondingly greater effect.  
 
These results (25% and 10x) suggest comparing the speed of computation when the 
dependency relationship as unknown (that is, when the DEnv algorithm is used) with the 
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speed when the operands are assumed independent. When the operands are each discretized 
into 16 intervals (a 16x16 problem), simple arithmetic operations on the operands take about 
30 seconds, or 25% more with excess width handling, on an Intel-based PC running at 
500MHz.  
In comparison, assuming independence allows the same problems to run interactively 
without noticeable delay when excess width handling is not used, and in about 2.5 seconds 
when it is used. 

5.2 Bounding the Composite Value at Risk for Energy Management Company 
Operation with DEnv 

Deregulation in the power industry drives competition. It also increases the risk of doing 
business. Therefore, it is important to manage and assess the risk. Value at risk (VaR) 
analysis has been used in financial institutions to evaluate portfolios of assets for some time, 
but the application of the approach in the power industry has not been established. The VaR 
of serving customer demand using the energy purchased on the auction market is our focus. 
In this report, the risks of the energy management company (EMCO) are identified and the 
contract specifications and the VaR reviewed. In describing the difference in the business 
environments between the power and financial industries, the VaR analysis that has been 
used in the financial industry has been remodeled to best describe the assumed deregulated 
power environment. The pros and cons of the VaR levels are presented. Because of the 
interval-based computational core of DEnv (Distribution Envelope Determination), results 
are validated with respect to two sources of potential error. 
 
Given the cumulative distributions of random variables, a derived random variable, which is 
an arithmetic combination of the given random variables, will have a single defined 
cumulative distribution only if the joint distribution of the given distributions is fully defined. 
If the joint distribution is not defined, a verified characterization of the result will be 
envelopes bounding the space of cumulative distribution curves that correspond to the 
members of the set of all the possible joint distributions. Distribution Envelope 
Determination (DEnv) [Berleant and Goodman-Strauss, 1998] provides those envelopes, so 
that uncertainty in results due to uncertainty about dependencies among model variables is 
bounded.  
 
The distributions of input random variables can be discretized in DEnv in order to avoid the 
problem of finding envelopes for arbitrary input distributions analytically. Discretization 
typically involves approximation, but DEnv can avoid this by bounding each input 
distribution with envelopes such that the discretized form of an input is a pair of envelopes 
enclosing it. While the input distribution is likely to be a continuous curve, the envelopes are 
staircase-shaped. This representation for the input curves propagates into wider envelopes 
around the space of possible result curves because those envelopes bound the space of results 
not only with respect to different dependency relationships between the inputs (as described 
in the previous section), but also with respect to the space of curves consistent with the 
envelopes around an input.  
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Results are valuable because insufficient data are typically present to specify the relevant 
dependencies accurately.  

5.2.1 Background 

Calls for competition in the power industry, from the wholesale level to the retail level, have 
made deregulation an attractive option around the world. New market structures have been 
studied to search for a good one that can ultimately satisfy regulatory bodies, customers, and 
suppliers. One approach that has been tried is the brokerage system. To accomplish it, the 
vertically integrated utilities are converted into a horizontal structure. The framework of the 
energy market is shown in Sheblé [1999]. Since the emphasis of this report is on the value at 
risk (VaR) of serving customer demand, the energy management company (EMCO), which 
serves customers, is discussed while leaving the rest to Sheblé [1999]. 
 
The EMCO collects its revenue from the customers of the energy and ancillary services it 
provides. It can also act as a wholesaler, reselling electric energy to other EMCOs, 
generating companies, etc. To obtain the desired electric energy to serve its purposes, the 
EMCO may purchase it through the auction market, or utilize the reserves that it has 
accumulated through load management programs or ownership of generation units.  
 
In the deregulated environment, customers are free to choose among EMCOs. In addition, 
energy purchased by EMCOs from the auction market bears the risk of market price 
fluctuation. These, from the demand factors to the supply factors, are risks that the EMCO 
has to take in the new market structure. Since deregulation will render governmental 
financial protection largely obsolete, risk management and assessment tools should be 
considered and applied.  
 
Ng and Sheblé [2000] introduce the different risk management and assessment tools 
available to assist an EMCO. This account emphasizes Value at Risk (VaR) analysis. 

5.2.2 VaR Analysis Basics 

VaR is the maximum amount of money that may be lost on a portfolio over a given period, 
with a given level of confidence [Best, 1998]. VaR calculations are important because 
exceeding an appropriately defined maximum loss would be a major or even irrecoverable 
blow to the company. Thus, business decisions need to be made with the objective of keeping 
the probability of such a loss below a relatively low level of probability deemed acceptable. 
Consequently determining the probability of such a catastrophic loss should be done 
carefully and, for dependability, should be validated with respect to lack of knowledge about 
the dependencies among the variables factoring into the calculation.  
 
There are currently three techniques that can be used to evaluate VaR of an EMCO. The first 
technique is historical simulation, which applies historical data to evaluate the VaR. The 
second technique is the covariance technique. To apply the covariance technique, the 
correlation matrix, C, of the uncertain factors is assumed available. The third technique is 
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Monte Carlo simulation. Monte Carlo simulation involves artificially generating a very large 
set of events from which VaR is derived [Best, 1998]. 
 
The covariance technique is the easiest and fastest technique among the three. However, the 
technique assumes that the uncertain factors are normally distributed. Since normal 
distributions do not necessarily apply to all situations, the technique is consequently limited. 
Historical simulation and Monte Carlo simulation can supplement the covariance technique 
in such cases. Since historical simulation uses historical data to evaluate the VaR, there is no 
need to assume the form of the probabilistic distribution function of the uncertain factors. 
However, when historical data is limited, solving the VaR using the historical simulation 
method can be problematic. The Monte Carlo simulation method requires assuming the 
probability distributions of the uncertain factors (often that they are normal, but uncertain 
factors that are not normally distributed can be handled). For instance, in determining the 
VaR of holding option contracts (whose prices are not normally distributed), the option 
sensitivities (normally distributed) are used for the Monte Carlo simulation. Thus, the 
resulting VaR is able to consider option contracts [Best, 1998]. 
 
Best describes the VaR resulting from asset price changes, the diversity of the portfolio (the 
number of assets with correlated price changes), and the holding position of the portfolio (the 
amount of money invested in a particular asset). This evaluation process is sufficient in a 
financial institution where the risk is primarily a result of price changes. To an EMCO, 
however, evaluating the VaR of the price changes is not sufficient. In addition to the risk of 
price fluctuation, there are two additional risks not described by Best. First, the customer 
demand and the deliverability of energy are uncertain, as there is a risk associated with the 
EMCO not being able to serve the customer with sufficient energy. For example, energy 
delivery can be prevented by transmission system failure, generation failure, etc. Thus, an 
EMCO suffers the risk of contract violation by its supplier. The next figure shows the three 
components of VaR affecting a particular decision (such as amount of load management 
energy, number of contracts, purchased ancillary services, etc.) for an EMCO.  
 

 
 

Figure 5-2  Factors in Determining VaR of an EMCO. 
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5.2.3 Price Fluctuation 

To evaluate the VaR of market price fluctuation, the covariance matrix of the market price 
fluctuation is assumed available. Historical data may be used in determining the covariance 
matrix. Then, the VaR of market price fluctuation is evaluated using the following equation. 

tVaR PCPλ=   

where P is the proportion or position of the assets in monetary value, λ  represents the degree 
of volatility and determines the confidence level. For instance, when 1=λ , the confidence 
level is 95% [Best, 1998]. The covariance matrix, C, is determined as described by Sheblé 
and Berleant [2002]. Ng [1999] gives the steps in evaluating VaR due to market price 
fluctuation.  

5.2.4 Sample Experiments of Computations 

Our experiments focus on checking three issues: the accuracy of results, the effect of 
correlation, and speed. Changing the accuracy of operands will affect the accuracy of results. 
Different correlations will change the shapes of result envelopes. Increasing the number of 
intervals will take more time to compute. All our experiments were conducted on the 
compiled version of Statool and DLLs using Visual Basic 6.0 and Visual C++ 6.0. The 
running platform was Windows 2000 professional. The machine had 256M memory and the 
CPU ran at 1,000Mhz.  
 
The operand X, a random variable, was given a uniform distribution from 1 to 9. The operand 
Y, another random variable, was given a tail-trimmed normal distribution from 2 to 10, 
whose mean was 6 and variance 1. This range almost covers all the probability for Y. A small 
amount of the tail was omitted and its probability distributed evenly over the accounted-for 
range. We discretized the supports of X and Y using three conditions, 16, 32, and 64 intervals, 
then used the discretized X and Y as the inputs to operations. Results of operations showed 
the accuracy changing for different discretizations. At the same time, correlation was set to 
different values to check the effects. Four operations were executed in these experiments. 
They were plus, minus, multiply, and divide.  
 
The following figures show the results for different number of intervals in the operand 
discretizations when adding X and Y and with a correlation of zero. 
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Figure 5-3  Envelopes around the distribution of X+Y when X and Y are each discretized into 
16 Intervals. 

 

 

Figure 5-4  X+Y when X and Y are 32 intervals. 

 

 
Figure 5-5  X+Y when X and Y have 64 intervals. 

 
From these three figures, it is clear the results become much smoother when the 
discretization of the operands is increased. 
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Next, we show figures illustrating the effect of correlation. For this case, we let X and Y have 
64 intervals, and set correlation information to four different settings: unknown, 0.98, 0, and 
-0.98. 
 
From these figures, it is clear that bounds of curves can be affected by the correlation. For 
unknown correlation, the widest bound curves will be obtained. Compared with the 
envelopes for correlation 0, the high bound curve for correlation 0.98 is changed and the low 
bound curve for correlation -0.98 is changed.  
 
 

 

Figure 5-6  Envelopes around the Distribution of X*Y for an Unknown Dependency 
Relationship Between X and Y. 

 

 

Figure 5-7  X*Y for Correlation 0.98. 
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Figure 5-8  X*Y for Correlation 0. 

 

 
Figure 5-9  X*Y for Correlation -0.98. 

 
The computing speed is also a factor to be considered. The four different operations were 
done for each of the different discretizations, and results were tabulated and compared.  
 

Table 5.1  Operation evaluation time (seconds) for correlation 0. 
Intervals in 
discretization 
(X x Y)  addition Subtraction multiplication division max Min 
16x16 1 1 3 5 1 1 
32x32 22 26 154 328 13 11 
64x64 3636 3297 52317 148173 1083 866 
 

As this table suggests, for finer discretizations the times for plus, subtraction, max and min 
form a cluster. Operations for multiplication and division form a more computationally costly 
cluster. The following figure shows the times for operations: addition, subtraction, max and 
min.  
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The next figure shows the times for multiplication and division. The VaR analysis was not 
complete at the end of this project period.  
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Figure 5-10  Times for Operations. 
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Figure 5-11  Times for Multiplication and Division. 
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6 Genetic Algorithms for Bidding 

There are two generic approaches to the simulation of market dynamics: experimental 
economics, simulation.  The cost and the level of experimental economics is  

6.1 Application 

Part of the transition from regulation to competition involves setting up systems to treat 
electricity as a commodity. This includes determination of distribution of electricity from 
producers to consumers and determination of price paid for the electricity. Currently these 
factors are partly determined through regional energy exchanges. In these exchanges, 
auctions determine sellers and price. Such exchanges should be similar to exchanges that 
trade other commodities such as wheat or gold. However, the physical constraints placed on 
power plants by network operation give rise to unique considerations. For example, 
minimum and maximum flow limits are fixed for each branch in the network based on the 
operating condition of the complete system. Production, transportation, and consumption of 
electricity all occur in non-trivially different ways than other commodities. 
 
The work of developing electric power market bidding strategies by genetic algorithms is a 
continuation of the previously described decision-analysis work [Kumar 1996, Richter 1998, 
Richter 1999]. The bidding strategies were based on two different modifications of a classical 
data processing structure known as a finite state automaton. The genetic algorithms were 
varied as well, some incorporating a semi-fixed fitness function, and others using a co-
evolutionary (population-specific) fitness function. 
 
Both types of fitness functions maximize profit in a competitive bidding situation. The only 
feature changed for this project was the choice of competitive bidders against which to play. 
The auctions that determine profits or losses were played in an iterative fashion. In other 
words, the same bidder would play the same opponents multiple times in order to allow the 
bidding agents to learn their opponents' behavior and adjust their own behavior accordingly 
to maximize profit. 
 
Both representations were tested on variations of experimental parameters. The co-
evolutionary setup was a third, very simple, representation run to establish a comparison 
baseline for the other two representations. The co-evolution setup is the base solution, or the 
“standard” solution. 
 
Many possible auction scenarios could determine the selection of sellers. This work uses a 
single-sided auction, but the work can be modified to accommodate a double-sided auction or 
auctions that are even more complex. The auction research varies in the specific auction 
design employed. This is due to the disparity in auction rules used in different regions 
throughout the world as well as to different simplifying assumptions made on the part of this 
work. 
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6.2 Market Design 

Contreras et al. [Contreras, 2001] compare different implementations of electric market 
designs. Specifically, they explain the differences between single-round and multi-round 
auctions in terms of maximization of social welfare, computational cost, resultant market 
prices, etc. They reach the conclusion that iterative bidding (multi-round auctions) is not 
advisable for use in day-ahead markets. 
 
Sheblé [Sheblé, 1996] proposes details for the rules governing deregulated electric markets. 
He defines and describes rules for the interaction of the electric commodity market and its 
various derivatives markets, such as the futures market, options market, and swap market. He 
also proposes breaking the trading into periods (e.g., hours, weeks, months) and bidding on 
production of electricity during these periods. Allocation already determined for a larger 
period (e.g., monthly) would constrain the possible allocation for smaller periods (e.g., 
weekly). 

6.3 Market Simulation 

Otero-Novas et al. [Otero, 2000] discuss the simulation of a wholesale electricity market, 
called COMSEE, based on Wilson's rules proposed for the power exchange in the 
Californian market [Wilson, 1997]. There are three basic rules. 
 

• The price cannot be increased. 
• The price can be decreased only if the new price is less than the clearing price in the 

previous iteration by at least a specified price decrement (e.g., $1.00 or $0.10/MWh). 
This new price is said to “improve” the previous price. 

• The price cannot improve any previous clearing price not improved at the first 
opportunity. 

 
They use these rules to simulate a perfectly competitive market by considering each 
generator to be an independent entity seeking to maximize personal profit. They also 
simulate an oligopolistic market in which each firm coordinates the bids of its own units to 
maximize total profit. 

6.4 Optimization 

Weber and Overbye [Weber, 1999] modeled the problem of bidding in an electric power 
market as a two-level optimization problem. The two levels of optimization consist of the 
problem of determining an optimal bid (first level) under the constraint that the price and 
dispatch quantity are determined by an optimal power flow (OPF) optimization (second 
level). This report assumes that the OPF problem is solved outside of the market simulation 
and embeds the solutions to the OPF into the generators' cost curves.  
 
Song et al. [Song, 1999] optimizes bidding strategies by use of a Markov decision process. 
The Markov decision process used is similar to the finite state machine representation in use 
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in this report, but with transitions between states determined stochastically instead of 
deterministically. 

6.5 Genetic Algorithms and Learning 

Richter and Sheblé [Richter, 1998] used a genetic algorithm to develop bidding strategies for 
an electric power double auction. This used a representation based on evolving bid 
multipliers or a number multiplied by the producer's marginal cost (or the buyer's marginal 
utility) to get the bid to make.  
 
Richter et al. [Richter, 1999] used genetic algorithms to evolve bidding strategies in a double 
auction for electric power. They conducted two experiments. One used genetic programming, 
or the evolution of parse trees, to evolve the bidding strategies. The other approach was to 
use GP-Automata to represent the bidding strategies. 
 
Wu et al. [Wu, 2002] introduced a machine-learning algorithm to learn to bid in electric 
power markets. It is general enough to apply to any market, but they tested it specifically on 
a single-sided auction with discriminatory pricing. 
 
Petrov and Sheblé [Petrov, 2001] used the generic Roth-Erev learning algorithm [Roth, 1995] 
and [Erev, 1995] to learn effective bidding strategies for a double auction for electric power. 
They pointed out that the algorithm in its original form was unsuited to learning when profits 
were at or near zero. They modified the algorithm to account for this deficiency and thereby 
allowed it to learn much more quickly and efficiently. 
 
Much of economic game theory is concerned with finding Nash Equilibria [Nash, 1950]. A 
Nash Equilibrium is a set of strategies, one strategy played by each player, with the property 
that no player can increase its payoff by unilaterally changing its strategy. Given certain 
assumptions, all players’ decisions should converge to that equilibrium. Some of these 
assumptions, however, are not met in practice: (1) the game must have a unique Nash 
Equilibrium; (2) all players must have perfect information; and (3) all players behave 
rationally (i.e., choose the best strategy once they know what it is). 
 
The standard prisoner's dilemma game is a two-player non-zero-sum game. Each player 
makes a choice to “cooperate” or “defect.” If both cooperate, both receive a payoff of three. 
If both defect, both receive a payoff of one. If one cooperates and the other defects, the 
cooperator receives a payoff of zero, and the defector receives a payoff of five. 
 
Standard economic theory shows that the standard prisoner's dilemma game has a Nash 
equilibrium in which both players defect. In other words, if both players have chosen to 
defect, neither can increase its payoff by changing its strategy. However, in any other state, 
in which one or both of the players cooperate, a higher payoff can be achieved by changing 
one's strategy to defect instead. In this respect, the choice “defect” is said to “dominate” the 
choice “cooperate.” Therefore, one would expect any agent playing the prisoner's dilemma to 
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learn quickly that defecting is the optimal action despite the higher payoff possible if both 
cooperate. 
 
A variant of the prisoner's dilemma is called the iterated prisoner's dilemma. In this game, 
two players play multiple rounds of the prisoner's dilemma against each other. Axelrod 
evolved finite state machines to play the iterated prisoner's dilemma [Axelrod, 1987]. He 
found that when given the opportunity to play multiple rounds, agents would often learn to 
cooperate with one another in order to get the higher payoff that results when both players 
cooperate. However, they require a more complex strategy than simply “always cooperate” 
lest they be taken advantage of by more malicious players. Thus, the choice to encode 
strategies as finite state automata rather than simply as a single action to take was made. 
 
This experiment has relevance to the current work in two respects. First, the market being 
simulated is a complex, multi-round economic game. Second, finite state automata are being 
used to encode the strategies for playing this game. It is important that subsequent rounds of 
play be against the same opponents in order for the strategies to have any meaning. 
Otherwise, there is no such concept as reaction to an opponent's actions because the opponent 
will not be the same the next time one meets him. 
 
It is of interest to determine which prisoner's dilemma strategies are evolutionarily stable. An 
evolutionarily stable strategy is one that, given that it is in use across the entire population, 
cannot be “invaded” by another strategy. To be invaded is to be beaten consistently to be 
driven out of the population by virtue having a lower fitness than the invading strategy. It has 
been shown that no pure (deterministic) strategy is completely evolutionarily stable [Boyd, 
1987]. However, many strategies, such as Tit-For-Tat (TFT), are stable against almost all 
invading strategies, and the strategies that successfully invade TFT are themselves very 
unstable. 
 
Wagner et al. [Wagner, 2000] has also studied the iterated prisoner’s dilemma. They 
analyzed the effect of strategy representation on the evolution of cooperation in playing 
iterated prisoner's dilemma, investigating finite state machines, plain logical formulas, logical 
formulas with a time delay operation, If-Skip-Action (ISAc) lists, Markov chains, and neural 
networks. 
 
Mayfield and Ashlock [Mayfield 0998] discovered a non-trivial effect of evolution. FSM's 
were evolved for 1,000 generations, more than long enough for fitness to converge, and the 
population was saved. The FSM's were then evolved for an additional 9,000 generations, 
with no apparent change in fitness. However, when the FSMs from generation 10,000 were 
played against the FSM's from generation 1,000, the former achieved much higher fitness 
than the latter. This effect, in which a population evolves for a very long time with no 
apparent change in fitness but is able to build up general skills in achieving high fitness, has 
casually been called the Mayfield Effect. 
 
Ashlock [Ashlock, 1997] evolved GP-Automata to play a simple game known as “Divide the 
Dollar.” In this game, two players bid a monetary amount. If the sum is less than or equal to a 
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dollar, they each receive their bid amount; otherwise, they each receive zero. This is an 
interesting game to study theoretically because it has a continuum of Nash Equilibria 
corresponding to real number solutions to the equation a + b = 1, where a is the first player's 
bid and b is the second player's bid. This means there are an infinite number of Nash 
Equilibria, so predicting how the game will end up being played is difficult theoretically. It 
turns out that GP-Automata converges to a population in which every player bid just under 
$0.50. 
 
Leahy and Ashlock [Leahy, 2000] conducted a study similar to Wagner [Wagner, 2000]. In 
this work, they investigated the effects of representation choice on evolving agents to play 
the Divide the Dollar game. They used artificial neural nets, lookup tables, real valued 
mathematical formulae, integer valued formulae modulo 101, and GP-Automata to represent 
strategies. 
 
Ashlock [Ashlock, 2001] studied a simple evolutionary algorithm that played a population 
against itself in the “Public Investment Game.” In this game, multiple bidders submit a sealed 
bid between $0 and $100. The sum total that they invested is then doubled and distributed 
evenly among the bidders. This game attempts to model publicly-funded utilities, such as 
roads requiring maintenance, in which everyone gets nothing if no one contributes, but the 
total effect on the group is negligible if only a single bidder lowers its contribution. This 
game's Nash Equilibrium consists of every player making a bid of zero, and that is exactly 
the result that Ashlock observed after a few generations of evolution. He was able to achieve 
higher payoffs by introducing “laws” (minimum required investment levels) and “fines” 
(penalties subtracted from payoffs) for evading the laws. 
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7 Methods and Procedures 

7.1 Electric Power Markets 

Electric power prices in the marketplace are determined for the most part by single-sided 
auctions. We make the following assumptions about the structure of the market. Generation 
companies (GENCOs) produce power and consumers buy power for consumption. Typically, 
energy service companies (EMCOs) consolidate demand from a group of consumers so that 
GENCOs do not deal with individual electricity consumers. Transmission companies 
(TRANSCOs) own the power lines and are paid to transport electricity from one physical 
location to another. Ancillary companies (ANCILCOs) provide ancillary services. An Energy 
Mercantile Association (EMA) serves as a buffer between producers and consumers, or a 
market maker.  
 
The value chain is different from the physical chain. The physical chain refers the actual 
transportation of power from the producer to the final consumer. The value chain refers to the 
flow of money that is paid for this power, which involves extra entities that do not 
themselves necessarily consume, transport or produce power. 
 
The EMA holds a single-sided auction on either side. It will estimate demand from 
consumers and hold an auction taking bids from generators to sell their electricity. It will 
then take the electricity it bought, turn around, and hold an auction taking bids from 
consumers who buy the electricity. This report models the former auction in which sellers, 
assumed to consist of competing GENCOs, make bids to sell power and must then produce 
the amount they agreed to sell. The simulations could just as easily be applied to a buyer's 
auction. 
 
The purpose of an auction is to expose information about buyers' and sellers' willingness to 
pay or sell. Commodities like electricity often have no explicit fixed worth; their worth is a 
function of the current market conditions. An auction attempts to find this worth [McAfee, 
1987]. Essentially, an auction allows discovery of the equilibrium price defined as the 
intersection of the demand and supply curves of the buyers and sellers, respectively. In this 
case, the demand curve will be a vertical line as the EMA will estimate demand as a single 
fixed quantity. 
 
According to economic theory for competitive markets, in the long-run all profits should go 
to zero as sellers underbid each other in the marketplace. Any number of factors that appear 
in a real marketplace disrupts this prediction, however, such as cost curves that do not pass 
through the origin, capacity limits on generation quantity due to physical limitations of 
generators, and irrational behavior on the part of market participants. The most disruptive 
factor that leads to violation of theoretical predictions is information uncertainty on the part 
of market participants. 
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7.2 Evolutionary and Genetic Algorithms 

A genetic algorithm is a type of evolutionary algorithm. An evolutionary algorithm is an 
algorithm that uses the biological paradigm of evolution to solve mathematical problems. 
Many researchers in the field will disagree on definitions and terms. Part of this is due to 
confusion in the use of borrowed biological terms whose original definitions are somewhat 
obscured by their use in evolutionary algorithm descriptions. 
 
An evolutionary algorithm is any algorithm that implements the following pseudo-code. 
 

Basic Evolutionary Algorithm 
1  Create an initial population of potential solutions 
2  Evaluate the fitness of the population 
3  Repeat … until done 
 A Select pairs from the population to be parents, with a fitness bias 
 B Copy the parents to make children 
 C Perform crossover on the children (optional) 
 D Mutate the resulting children 
 E Place the new structures in the population 
 F Evaluate the fitness of the new structures 

Figure 7-1  Basic Evolutionary Algorithm Loop. 

 

Each iteration of this loop is called a generation. A solution (also called a creature or agent) 
in Figure 7-1 refers to some reasonable (“reasonable” being defined by the problem at hand) 
encoding of potential solutions to a problem. A subset of evolutionary algorithms, known as 
genetic algorithms, is the most prevalent and is the type used in the simulations described in 
this report.  
 
These algorithms always execute the basic evolutionary algorithm loop, which performs 
crossover. Crossover is the process of exchanging subsets of representations between two 
solutions. This mimics the process of sexual reproduction, as two parent solutions are copied 
and their children are crossed over. Often genetic algorithms are defined to operate on fixed 
data structures. This is primarily to distinguish them from another type of independently 
developed evolutionary algorithm known as genetic programming [Koza, 1992]. Genetic 
programming uses the loop shown in the above figure to evolve parse trees (a variable-sized 
representation) to solve problems. However, it is not possible to evolve data structures which 
are parse trees nor have a fixed size. Such an algorithm will also be termed a genetic 
algorithm in this report. 
 
In addition to crossover, the solution space is explored using mutation, the process of 
randomly perturbing solutions. This mimics the biological process of random genetic 
mutation in creatures of a living population, which occasionally give the creature an 
advantage over others. 
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A fitness function that numerically evaluates the optimality of a solution must also be 
defined. Whatever scheme is used to select the parents, it always biases selection toward 
those creatures with higher fitness. It may also bias replacement of creatures toward those 
that are less fit. This mimics the biological process of natural selection in which more fit 
creatures are more likely to survive and pass on their genes to offspring, while less fit 
creatures die off. 

7.3 Representation 

To develop solutions to a problem using a genetic algorithm, the potential solutions must be 
encodable in such a way that allows mutation, crossover, and fitness evaluation. Two 
different, but related, encodings were used to represent bidders in an auction. Each one is a 
generalization of an information processing structure known as a finite state machine (FSM) 
or finite state automaton (FSA). The first extension is known as a GP-Automaton and the 
second is known as a Neural-Automaton. GP-Automata were first introduced by Ashlock 
[Ashlock, 1997]. Neural-Automata are introduced here for reasons explained in the 
description of Neural-Automata. 
 
A finite state machine is a theoretical data processing structure. It takes input from some 
external source, changes its internal state in response to the input, and may or may not 
produce an output, known as a response. Mathematically, it is a directed graph, with each 
node called a state. Each state has associated with it a transition table. The transition table 
enumerates all possible inputs and states, for each input, what response to give and to what 
state to transition. Each directed edge in the graph, therefore, represents a transition from one 
state to another, and each edge's satellite data consists of an input that triggered the transition 
and a response to output. The FSM receives inputs sequentially, each time transitioning to a 
new state and outputting a response. Each transition has only one response in the model used 
in this report, though in theory there could be more than one transition between two states, 
each with a different input and response. An FSM also has an initial state and an initial 
response, since it must start somewhere before it receives its first input. All computer 
programs may be thought of as finite state machines with memory. 
 
Finite state machines are good structures to evolve because the division of functionality into 
discrete states and transitions allow for natural choices of crossover operators. Finite state 
machines have been evolved to play simple economic games such as the Iterated Prisoner's 
Dilemma [Axelrod, 1987] and as control structures for virtual robots [Ashlock, 2000].  
 
Because all possible inputs must be enumerated, FSM's are impractical to use on problems 
that have a large number of inputs. Even a single unbounded input renders the number of 
possible inputs infinite. Since the actual amount of information carried in the input tends 
actually to be much smaller, bandwidth compression is performed on the data. Bandwidth 
compression is a term borrowed from communications. It refers to reducing the resources 
needed to represent some data. In this case, the bandwidth of the input data needs to be 
compressed to the set of integers in the range [0, number of states - 1], since this is the 
maximum number of possible transitions possible from any state. 
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Some method must be used to map all possible inputs into an integer in the range [0, number 
of states - 1]. GP-Automata and Neural-Automata provide two different methods of 
accomplishing this bandwidth compression. 

7.3.1 GP-Automata 

GP-Automata (GPA) have been described as a combination of genetic algorithms and genetic 
programming (hence the “GP” for genetic programming). Each state in a GPA replaces the 
transition table with a parse tree whose input nodes are the external inputs to the FSM. When 
a GPA iterates (i.e., takes an input and decides what to do), it runs the input through the parse 
tree at the current state. The parse tree outputs an integer and the parity of this integer is used 
to determine the next state transition. Therefore, only two distinct transitions may be made 
from any state.  
 
During evolution, the parse trees are modified according to the standard mutation and 
crossover operators used on parse trees in genetic programming. The exact details are given 
in Doty [Doty, 2003].  
 

 

Figure 7-2  Example Parse Tree. 

 
The parse trees are shown in a LISP-like notation. Figure 7-2 shows a parse tree in a 
graphical notation. The tree in this figure would output the value 13. ITE is if-then-else and 
would evaluate the subtree on the left to false because three is not greater than four. If it were 
true, it would output the middle child node, 5. However, since it is false, ITE outputs the left 
child node, 6 + 7 = 13. 

7.3.2 Neural-Automata 

While the GP-Automata scheme has the advantage of being adaptable to an arbitrary number 
of states, it has the disadvantage that each state may contain at most two next-state 
transitions. Such an FSM is strictly less expressive than an FSM that allows arbitrary 
transitions from any state to any other state. A proof of this follows. 
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Suppose we wish to design an FSM that takes nickels, dimes or quarters as input and outputs 
a “1” if at least 15 cents have been entered cumulatively and outputs a “0” otherwise. The 
initial state would correspond to 0 cents being entered so far. After the first coin, 5, 10, or 25 
cents will be the total. Since 25>15, but 5<15 and 10<15, the next state transition 
corresponding to a quarter being entered must be different from the transition resulting from 
the other two coins, since a quarter should cause a response of “1,” and the other two should 
cause a response of “0.” Since we allow only two transitions per state, if either a nickel or a 
dime is entered, the FSM must end up in the same state regardless of which was entered. If a 
dime was entered, then no matter what coin is input the next time, the cumulative total will 
be equal to or exceed 15 cents, and the FSM must therefore output a “1.” However, if a 
nickel was entered the first time, then the total may or may not exceed 15 cents, depending 
on the second coin entered. Since the first coin sends the FSM to the same state whether the 
input was a nickel or a dime, there is a contradiction. To handle the second coin, three 
possible states must exist to go to from either the initial state or the second state. Limiting the 
number of next state transitions to two renders the FSM incapable of executing this function. 
However, an FSM with no limit on transitions could easily execute this function. Therefore, 
an FSM with only two next state transitions per state is strictly less expressive than a general 
FSM. 
 
Neural-automata filter the input data while allowing an arbitrary number of next-state 
transitions. Instead of a parse tree, a neural-automaton uses a feed-forward neural net at each 
state to decide the next state transition. The output node of the neural net uses a sigmoid 

transfer function 1
1 xe−+

where x is the weighted sum of the inputs. The output of this function 

is bounded in the range [0, 1]. Therefore, any number in the range [0, number of states - 1] 
can be acquired by multiplying the output of the neural net by the number of states and 
truncating the result. Furthermore, since a feed-forward neural net with two hidden layers is 
capable of approximating any mathematical function [Cybenko, 1988], it is capable of 
approximating the expressive power of a parse tree. 

7.4 Market Setup 

Varieties of experiments were performed in the project. In each case, where applicable, three 
different representations were evolved. GP-Automata and Neural-Automata were each 
evolved with a genetic algorithm. The third representation was simply an ordered pair of real 
numbers (p, q) which represented a constant bid to make. The reason for introducing this 
representation is discussed shortly. 
 
The market consisted of an auctioneer, representing the EMA, and any number of bidders, 
representing the competing generation companies. The next section describes the auction 
proceeds. 
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7.4.1 Auction Process 

The auction process is shown in the following figure. The auctioneer announces a demand to 
be met. Bidders each submit a bid, which is an ordered pair (p, q) representing a price, p, and 
a quantity, q. Market clearing then follows. These bids are sorted in ascending order by price. 
They are then accepted sequentially, adding the quantity of each bid to a running total until 
this total meets the demand. At this point, no more bids are accepted and the last one is 
accepted for only the amount of demand that remained, not for the total quantity given in the 
bid. 
 
After market clearing, price discovery is tested. The condition used for price discovery in 
these experiments was whether at least 50 % of the bids were accepted. If price discovery did 
not occur, new bids are taken and the market is cleared again. The results of the previous bids 
and market clearing are forgotten and do not affect profits. One round of bid submission and 
market clearing is termed a cycle. If after ten cycles, price discovery still has not occurred, 
typically the results of the last market clearing would be accepted. In these experiments, 
however, the profits of all bidders were simply zeroed to introduce selective pressure to make 
bids conducive to price discovery. 

 

 

Figure 7-3  Auction Process. 

 
Once price discovery occurs, the bids are committed and contracts are written. Now any 
bidder whose bid was accepted is obligated to provide the quantity of electricity accepted. If 
the total quantity accepted did not meet demand, then another auction is held with demand 
revised to be the previous demand minus the quantity accepted in the last auction. After ten 
auctions, if demand has not been met, then no more auctions are held. 
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7.4.2 Price and Cost Determination 

The actual revenue to each bidder is the price the bidder is paid times the bid quantity 
accepted. There are two methods implemented in determining the price each bidder is paid. 
The first is simply to pay the bidder the price it gave on its bid, known as discriminatory 
pricing. The second is to give it the market-clearing price, defined as the price submitted by 
the last bidder whose bid was accepted. This is known as uniform pricing. The reasoning 
behind this is that the uniform market-clearing price is the equilibrium price or the price at 
which the supply curve crosses the demand curve. 
 
Cost determination is modeled by a quadratic function of quantity, a common scheme for 
approximating the cost of producing electricity [Wood, 1996]. Each generation company 
may own more than one generator. However, once a generation company has a quantity it 
has committed to deliver, there are constrained optimization techniques, such as the use of 
LaGrangian multipliers that can be used to find the optimal power production from each 
generator. That optimization is not explicitly performed in this simulation, and the total cost 
to a generation company to produce a given quantity is modeled as a single quadratic 
function of quantity. This is a simplifying assumption. In a real situation, any number of 
optimization techniques such as LaGrangian Relaxation, could be used to find the actual 
optimal power production for each unit. These optimizations would take into account the fact 
that a power plant may operate more than one unit, and that these units not only produce 
electricity at different costs, but also are connected to transmission system that has losses 
dependent on the location of the generating unit and that has flow limits. 
 
In this work, each power producer was treated as if it had a single unit that had a single 
quadratic cost curve. This differs from previous work done in this area in which the 
optimization was performed explicitly. 
 
The total profit made by a seller after an auction is {(price paid) * (quantity delivered) - (cost 
to deliver quantity)}. If more than one auction is held, total profit is the sum of the profits 
from each auction. All the auctions needed to meet demand are termed one round of auctions. 
In the genetic algorithms, 24 rounds of auctions would be held against the same opponents 
for fitness evaluation, summing the total profit from each auction round. The number 24 was 
chosen to correspond with the 24 hourly auctions held in a single day. In the next generation 
of agents determined by the algorithm, different opponents would be played, but the same 
opponents would always be played over the course of the 24 rounds of auctions. 
 
The auctions being simulated in this work are representing day-ahead (forward) markets for 
electricity. This is why the auctioneer must estimate demand. The auction is held to 
determine generation allocations for each hour of the following day. In reality, an hourly 
auction would be held the next day in order to cover the difference between the estimated 
demand (which this forward market is designed to cover) and the actual demand (which may 
end up being different from the predicted value). 
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7.5 Experiments 

7.5.1 Variable Parameters 

There were a number of choices to be made concerning the implementation of a genetic 
algorithm simulating this market. Varying these choices led to the different experiments 
reported here. 

7.5.1.1 Representations 
Two different representations were evolved using a genetic algorithm, GP-Automata and 
Neural-Automata. In the previous discussion of FSMs, it was stated that they produce a 
response, but exactly what this response consists of was not covered. In these experiments, 
the response was an ordered pair (p, q), representing a bid price and bid quantity to submit. 
At the beginning of the 24 rounds of bidding, the FSMs would be reset (i.e., internal state set 
to initial state and initial response taken as first bid). After that, each bidder would update its 
internal state and output the appropriate response in each subsequent auction. Note that 
because more than one cycle per auction may occur to achieve price discovery, and more 
than one auction may occur to meet demand for one round, there may be more than 24 bids 
taken from each bidder in one fitness evaluation. 
 
The inputs fed to each FSM, after the first bid, were: 
 

• Previous high bid 
• Previous low bid 
• Previous average bid 
• Bidder's own previous bid 
• Previous number of bids accepted 
• Demand remaining to be met 
• Quantity that the bidder has agreed to deliver so far. 

 
For each argument that is a bid, the FSM was actually fed two real numbers: the price and the 
quantity of the bid. “High” bid and “low” bid refer to the bid with the highest and lowest 
price, respectively, not the highest and lowest quantity. The “demand remaining to be met” 
refers to residual demand left over if an auction is held, all bids were accepted, and demand 
was not met. Since another auction will be held, agents need to know the new demand. 
 
Additionally, a third representation was “evolved.” This was simply an ordered pair, (p, q), 
which represented a constant bid. However, crossover was not performed, and so this was not 
really a genetic algorithm. The bid was simply mutated every generation by adding Gaussian 
noise to each of the numbers in the bid. 
 
The algorithm to develop these constant bids was therefore more of a population-based 
stochastic search algorithm. This is an algorithm that starts with a population of initial 
random solutions and perturbs each slightly with random noise, keeping and copying more 
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optimal solutions over those who were less successful. The population was initialized with 
random bids, and at each “generation” the most-fit half of the population replaced the least fit 
half of the population. Each newly copied bid was then perturbed by Gaussian noise. 
 
The reason for using this representation was two-fold: to test the dynamics of the market and 
to reject the null hypothesis that evolution of more complex FSM-based strategies is no better 
than random guessing. Initially, when debugging the simulated marketplace, we needed to 
see if it would match the predictions of economic theory under perfect conditions and how 
exactly the market would be affected by imperfect conditions. This representation should 
conform to theoretical predictions that say which single bid is optimal given bidders who 
attempt to maximize profit. Deviance from theoretical predictions would then point to a flaw 
in the implementation of the simulated marketplace or a theoretical assumption not being 
upheld. This aids in understanding the behavior of the more complex strategies in the same 
simulated environment. 

7.5.1.2 Co-Evolution vs. Fixed Fitness vs. Immortality  
In general, fitness functions in evolutionary algorithms can be divided into two classes: co-
evolutionary and fixed. A fixed fitness function evaluating one member of a population is 
independent of the other members of the population. A co-evolutionary fitness function 
evaluating the same member will give different results depending on the other members of 
the population. For example, a genetic algorithm evolving strategies to play chess might 
evaluate fitness by having the agents play an expert alpha-beta strategy such as the one 
programmed into Deep Blue, IBM's grand champion chess-playing computer. This would be 
a fixed fitness function. The algorithm might alternately evaluate fitness by simply playing 
the strategies against each other in a round-robin tournament and averaging the scores. This 
would be a co-evolutionary fitness function. 
 
The marketplace simulated has agents that are not identical to one another, the difference 
being that they have different production cost curves. Therefore, one is not as concerned with 
how an agent might perform against another agent like it, but how it would perform in a 
marketplace with agents different from it. The co-evolutionary strategy used therefore 
requires a bit of a re-definition (which actually brings it closer to the original definition in 
biology). Instead of evolving one population of agents, one population for each of the 
number of bidders in the market is evolved. When breeding is done each generation, 
members from a population are bred only with members from the same population. When 
fitness evaluation happens, however, the fitness of a member of a population depends only on 
members from the other populations because the agent bids only against one member from 
each of the other populations. This is actually closer to the biological notion of co-evolution 
in which two species are said to co-evolve with one another if “a change in one species acts 
as a new selective force on another species, and counter adaptation by the second species, in 
turn, affects selection on individuals in the first” [Campbell, 1987]. 
 
A method of introducing a fixed fitness function when no external one exists is possible in 
cases where the agents being evolved play against each other.  
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• First, evolve using co-evolution for a certain number of generations.  
• Then pick the best members of the population and “immortalize” (save) them.  

 
The fitness function now becomes the profits attained by playing against the immortal 
strategies, instead of playing against each other. A ratcheted immortalizing fitness function 
can be used as well. This involves immortalizing the best members of the population every n 
generations. Fitness is determined by playing all the sets of agents that have been 
immortalized so far. To account for space considerations, a shortcut may be used, such as 
“play the last 5 immortalized sets of agents.” For example, if n=1,000, and we are on 
generation 8,500, the fitness would be determined by playing the best agents from 
generations 4000, 5000, 6000, 7000, and 8000. 
 
This sounds similar to elitism, but this is a distinct concept. An elite genetic algorithm is one 
in which at least one member of the current population is guaranteed to be a part of the 
population in the next generation. In other words, there is no way for the children of breeding 
to replace all the members of the population. However, this elite group differs from the 
immortal group introduced here in a number of ways. First, the immortal group is not 
considered when breeding. Only non-immortal members of the population can breed to 
create children. Secondly, the immortal group is the fitness function. An elite group in a 
normal genetic algorithm has no special role in the fitness function. Finally, the immortal 
group is the same from one generation to the next, unless explicitly replaced. The elite 
“group” in the normal genetic algorithm, however, is defined by the current population. 
Usually an elite member is one with the highest fitness. However, it may not have the highest 
fitness during subsequent generations. 

7.5.1.3 Uniform vs. Discriminatory Pricing 
Under uniform pricing, all “winners” (i.e., bidders whose bids were accepted) receive the 
same price. In the simplest case, this amount is the market-clearing price, the highest price 
bid that was accepted. The theoretical justification for this is that the highest accepted price 
in an auction is the price at which the supply curve would intersect the demand curve. This is 
the equilibrium price, which is the price that all trades should be made in a perfectly 
competitive market. 
 
Under discriminatory pricing, winners receive different prices. In the simplest case, this 
amount is the price they bid. In any auction where there is more than one winner, this would 
allow the auctioneer to retain more money at the expense of the sellers.  The sellers who are 
aware that their bids are lower than the highest accepted bid (market-clearing price) would 
raise their bids close to that expected value.  Thus, it would tend to inflate the bids above the 
bidders' marginal costs, which may actually lead to less profit for the auctioneer in the long 
run. 

7.5.1.4 Number of Bidders  
In a market with few bidders, each bidder has more market power. Bidders with market 
power have enough influence to affect the outcome of the auction. In a uniform pricing 

 80



 

scheme, one would say they have the power to change the price. In the context of an auction, 
the immediate effect of having few bidders is that it becomes easy for bidders to cooperate 
with each other and raise prices by raising their bids. Alternately, a bidder could withhold 
capacity to drive the price up and undercut it later. 

7.5.1.5 Cost Curves and Capacity Limits 
Different producers will have different generation cost curves. This models the real world 
fact that some electricity producers are coal-driven, some are oil-driven, some are nuclear, 
some have many generators, and some may only have one. They also have different capacity 
limits, or minimum and maximum quantities that they are able to produce. This models the 
physical limitations of power plants. The fact that different bidders have different cost curves 
and capacity limits is the motivation behind separating the genetic algorithm into separate 
populations. Each population represents a different type of producer and is evolving to get 
better at bidding under the constraint of its own cost curve and capacity limits. Previous 
studies in this area assumed that all power producers had similar cost curves and capacity 
limits. 

7.5.2 Genetic Algorithm Parameters 

There are many generic parameters of genetic algorithms. Some, such as mutation and 
crossover operators, significantly affect the outcome of the algorithm. Some, such as 
population size and number of generations, are modified according to the problem at hand, 
usually by making them as big as possible while allowing for the program to finish running 
in a reasonable amount of time. 
 
Unless noted otherwise, these experiments used a population size of 32 and ran for 1,000 
generations. The model of evolution (i.e., method of breeding agents with high fitness), used 
for the GP-Automata and Neural-Automata, is known as single tournament selection.  Figure 
7-5 shows how a single tournament selection works. 
 

 

Figure 7-4  Single Tournament Selection of Size Four. 
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In this model of evolution, the population is divided into sets of four agents. Within each set 
of four, the two most fit are picked as parents. They are then bred (i.e., copied, crossed over, 
and then mutated) and their children replace the two least fit. Since the fixed-bid 
representation did not use a genetic algorithm, in each “generation,” the most fit half of the 
population would replace the least fit half, and then the newly copied agents would be 
“mutated.” 
 
The mutation and crossover operators depended on the representation. For both of the FSM-
based representations, there were a number of possible mutation and crossover operators that 
could be chosen. Each was assigned a probability and picked to be the mutation or crossover 
operator with that probability. The mutation rate was a number between 0 and 1 that 
correlated with the severity of mutation. If the number of possible mutation operators was 
given by m, and the mutation rate given by r, then m * r mutations would be performed on 
each child in each generation. Each mutation, the probability of picking any of the individual 
mutation operators remained the same. 

7.5.2.1 Fixed Bid Mutation 
Since the fixed bid representation did not use a genetic algorithm, there is no significant 
amount of crossover. However, it randomly perturbed the bid between each fitness 
evaluation, like a mutation. Both the price and quantity were perturbed by Gaussian noise 
with standard deviation equal to {maximum – minimum) / 10}. As described previously, the 
minimum and maximum prices were 0 and 120, respectively, and the minimum and 
maximum quantity depended on the capacity limits of the producer. 

7.5.2.2 GP-Automata Mutation 
The GP-Automata mutation operator selected one of the mutation operators listed in Table 
7.1. A state (i.e., initial state or state transition) was changed by randomly selecting a new 
state uniformly from the set of states. A response was perturbed by adding Gaussian noise 
with standard deviation {maximum – minimum) / 10}. Since a response consisted of both a 
price and a quantity, both of these were perturbed. In the case that a state transition or 
response was changed, the particular transition edge to mutate was selected uniformly from 
all the state transitions. A new parse tree was created by randomly generating nodes until the 
tree was of size six (had six nodes). Crossover between parse trees involved randomly 
selecting a node in each tree and exchanging the subtrees rooted at those nodes. The trees on 
which to perform crossover were randomly selected uniformly from all the decider trees. 
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Table 7.1  GP-Automata Mutation Operators 

Probability Mutation 
0.1 Change initial state 
0.1 Perturb initial response 
0.2 Change a state transition 
0.2 Change a response 
0.1 New decider parse tree 
0.1 Crossover two decider parse trees 
0.1 Exchange two decider parse trees 
0.1 Copy one decider parse tree over another 

 

7.5.2.3 Neural-Automata Mutation 
The Neural-Automata mutation operator selected one of the mutation operators listed in the 
following table. These mutation operators follow the same rules as those of GP-Automata. 
Crossover between neural nets involved randomly selecting the indices of two edges within 
the neural nets and exchanging the values of the edges in between them. 

7.5.2.4 GP-Automata Crossover 
The GP-Automata mutation operator selected one of the crossover operators listed in the 
following table. If the "exchange states" operator was selected, two random indices were 
selected, and all states in between these indices were exchanged. 

7.5.2.5 Neural-Automata Crossover 
The Neural-Automata mutation operator selected one of the crossover operators listed in 
Table 7.2. 

Table 7.2  Neural-Automata Crossover Operators 

Probability Mutation 
0.2 Exchange initial states 
0.2 Exchange initial responses 
0.6 Exchange states 

 
If the "exchange states" operator was selected, two random indices were selected, and all 
states in between these indices were exchanged. 

7.5.2.6 Fixed-Bid Initialization 
The two numbers constituting the fixed bids were initialized to a random number distributed 
uniformly over the possible range of each number. Price varied from 0 to 120, and quantity 
depended on the capacity limits of the generator. 
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7.5.2.7 GP-Automata Initialization 
The FSM was initialized with six states. The initial response was initialized in the same 
manner as the fixed-bid representation. Each transition next state and response was initialized 
in the same manner as the initial state and transition. The decider parse tree was initialized to 
a random parse tree with six nodes. A sample parse tree is shown in Doty [Doty, 2003]. The 
nodes could be any of those shown in Table 7.3. These nodes were inserted at random until a 
tree of size six was obtained. 

7.5.2.8 Neural-Automata Initialization 
The FSM was initialized in the same manner as the GP-Automata. The decider neural net 
was initialized to a random feed-forward neural net with two hidden layers. Each hidden 
layer had 3 nodes. The weights were initialized to random values distributed uniformly in the 
range [-1, 1].  

 

Table 7.3  Parse Tree Nodes 

Node Name Return 
Type 

Args Returns 

ITE if-then-else args 2 and 3 3 arg 2 if arg 1 is true; 
arg3 3 otherwise 

Odd Odd Boolean 1 true if arg1 is odd, false 
otherwise 

Max Maximum Real 2 maximum of args 1 and 
2 

Min Minimum Real 2 minimum of args 1 and 2 
~ Negation Real 2 negation of arg 1 
Com Complement Real 2 1 - arg 1 
> Greater than Boolean 2 true if arg 1 > arg2; false 

otherwise 
>= Greater than or 

equal to 
Boolean 2 true if arg 1 >= arg2; 

false otherwise 
< Less than Boolean 2 true if arg 1 < arg2; false 

otherwise 
<= Less than or 

equal to 
Boolean 2 true if arg 1 <= arg2; 

false otherwise 
+ Add Real 2 arg 1 + arg 2 
- Subtract Real 2 arg 1 - arg 2 
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8 Genetic Algorithm and Market Experiments Results  

The experiments performed were based on changing the variable parameters discussed in the 
previous chapter. All three of the representations were run and compared in the cases of co-
evolution. Only the finite state automata were compared in the cases of evolution by periodic 
immortalization. 
 
Each experiment also shows the average bid and average fitness of the whole population 
versus generation of evolution. In most cases, a single run the algorithm is shown in addition 
to an average of many runs of the algorithm to demonstrate general behavior. 
 
The experiments were divided into two general cases: evolution by co-evolution and 
evolution by periodic immortalization. Co-evolution has the potential to develop good 
strategies, but since fitness will not necessarily prove to be an effective measure of 
improvement of the strategies. Evolution by periodic immortalization, however, evolves the 
bidders against a set of fixed strategies after the first 1,000 generations. Therefore, if the 
bidders are learning better bidding strategies, we should see the average fitness of a 
population increase with this evolutionary scheme. 
 
Unless stated otherwise, all experiments used a mutation rate of 0.5. Each figure shows the 
average fitness (“Fitness”), average bid price (“Bid”), average committed bid price 
(“Committed Bid”), and equilibrium price (“Equilibrium Price”), each graphed against 
generation of evolution. “Committed Bid” does not count bids that were in cycles that failed 
to meet the condition of price discovery. “Equilibrium Price” is the price or the last bid that 
was accepted. Only a sampling of the figures is in this report. All of the figures are in Doty 
[Doty, 2003]. 

8.1 Co-Evolution 

The experiments described in this section developed the bidders through co-evolution. These 
experiments tested all three representations: GP-Automata, Neural-Automata and Fixed-Bid. 
The Fixed-Bid equilibrium behavior in each case should give a reasonable approximation to 
expected theoretical behavior. In many cases, it gives an equilibrium price higher than 
expected until one takes into account the effect of market power on price.  

8.1.1 Experiment Set 1: Co-Evolutionary Fitness Function, Discriminatory 
Price 

This experiment used discriminatory pricing. As noted previously, with discriminatory 
pricing, each bidder, if it has a bid accepted, is paid the price it listed in the bid. Variations on 
the cost curves, capacity limits and number of bidders were explored. The different trials are 
shown in Table 8.1. In Figure 8.1, there are the three figures for each of the graphed results 
of a particular representation (GP-Automata, Neural-Automata, Fixed-Bid). Additional data 
and all figures are in Doty [Doty, 2000]. Such data includes “Cost Curve/Min/Max” that 
refers to the cost curves, and upper and lower capacity limits, respectively. In all cases, either 
a single cost curve and capacity limits were used for all bidders, or the population was split 
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into two groups, each of which had its own set of cost curves and capacity limits. In these 
cases, if there were ten bidders, seven of them would have Cost Curve 1 and Min/Max 1 
capacity limits, and the other three would have Cost Curve 2 and Min/Max 2 capacity limits. 
If there were four bidders, two of them would have Cost Curve 1 and Min/Max 1 capacity 
limits, and the other two would have Cost Curve 2 and Min/Max 2 capacity limits. In the 
cases that every bidder had the same cost curve, these quantities are equal. 
 

Table 8-1 Variations on Experiment Set 1  
 

Variation Bidders Demand 
A 10 2000 
B 10 2000 
C 10 2000 
D 10 2000 
E 4 800 
F 4 800 
G 4 800 
H 4 800 

 
 
Demand was set to be proportional to the number of bidders and to the average capacity 
limits of the bidders. The demand listed is the average demand, d, generated for each auction. 
The actual demand for each auction was drawn from a uniform probability distribution in the 
range [d – d/10, d + d/10]. 
 
Figure 8-1 show four different cost curve and capacity limit choices for all three 
representations using the co-evolutionary fitness function and discriminatory pricing, with an 
auction size of ten bidders. Examining the fixed-bid representation as a guide to the expected 
behavior of a market, a few general trends are evident. These trends are in place in the other 
two representations as well, although they appear amid the more complex behavior that the 
FSM's display. 
 
Not surprisingly, when the bidders have different cost curves, those with a higher cost curve 
get a lower fitness. Higher capacity limits lead to a lower equilibrium price. This is due to the 
demand (which is independent of the capacity limits of the bidders) being more easily met 
when the capacity limits are higher. Therefore, more competition is present, driving the price 
down. 
 
The GP-Automata and Neural-Automata consistently achieved a higher equilibrium price 
than the fixed-bid representation. All experiments achieved equilibrium just as quickly as the 
first experiment. 
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Figure 8-2  Co-Evolutionary Fitness Function and Associated Data. 

 
The effects noted above are present when there are four bidders as well. The average 
equilibrium prices achieved are higher than those achieved with ten bidders. This illustrates 
the effect of the number of market participants on the market power of each individual 
market participant; less participants gives each participant more market power. 

8.1.2 Experiment Set 2: Co-Evolutionary Fitness Function, Uniform Price 

This experiment used uniform pricing. As noted previously, with uniform pricing, each 
bidder, if it has a bid accepted, is paid the equilibrium price, or the price of the highest 
accepted bid. The rest of the details are identical to those described in the previous section. 
 
Figure 8-2 shows one of the four different cost curve and capacity limit choices for all three 
representations using the co-evolutionary fitness function and uniform pricing, with an 
auction size of ten bidders. 
 
Comparing these results to those obtained with the same conditions except for using 
discriminatory pricing, we see that on average, the equilibrium price and bids are lower under 
a uniform pricing scheme. This makes intuitive sense economically. When one's own bid 
price determines whether the bidder wins or not, and the bidder's payoff varies with the size 
of the bid, then there is a tradeoff. A lower bid, for instance, has a better chance of winning, 
but results in a lower payoff. However, under uniform pricing, one's own bid determines 

 87



 

whether one wins or not, but has no effect on the bidder's payoff (unless it was the last 
accepted bid). Therefore, the pressure to bid higher for a higher payoff is removed, and only 
the pressure to bid lower for a better chance of winning remains. 
 

 
Figure 8-3  Co-Evolutionary Fitness Function, Uniform Price, GP-Automata. 

 
Figure 8-3 shows one of the four different cost curve and capacity limit choices for all three 
representations using the co-evolutionary fitness function and uniform pricing, with an 
auction size of four bidders. 
 
The same effects that occurred moving from ten to four bidders under the discriminatory 
pricing model (i.e., higher equilibrium price and bids) occur in the uniform pricing model. In 
some cases, these effects are more pronounced. 
 
Curiously, comparing these results with those obtained under the same conditions under the 
discriminatory pricing scheme, we see that the uniform pricing scheme led to the same or 
higher equilibrium prices and bids than the discriminatory pricing. It seems that uniform 
pricing with ten bidders lowered the price, but with only four bidders, the price-raising effect 
of market power is much more pronounced in uniform pricing than in discriminatory pricing. 
The price-lowering effect of uniform pricing is overcome by this compound effect. 
 

 88



 

 

Figure 8-4  Co-Evolutionary Fitness Function, Uniform Price, GP-Automata. 

8.2 Evolution by Periodic Immortalization 

The experiments described in this section developed the bidders through co-evolution for 
1,000 generations. At that point, the best half of the population was immortalized, and the 
fitness function was thereafter measured by performance against the immortals. A set of the 
last five immortalized populations was maintained, and the fitness was determined by 
playing against all of these populations. Before five populations had been immortalized, the 
bidders simply played all the populations that had thus far been immortalized. Each of the 
following experiments continued evolution for 10,000 generations, immortalizing the best 
half of the population every 1,000 generations. 
 
These experiments used only the complex representations, GP-Automata and Neural-
Automata. The fixed-bid representation was not evolved. 

8.2.1 Experiment Set 3: Immortalized Population Fitness Function, 
Discriminatory Price 

This experiment used discriminatory pricing. Recall that with discriminatory pricing, each 
bidder, if it has a bid accepted, gets paid the price it listed in the bid. The rest of the details 
are identical to those described in the first section.  Figure 8-4 shows one of the different cost 
curve and capacity limit choices for the two finite-state automata representations using the 
immortalizing fitness function and discriminatory pricing, with an auction size of ten bidders. 
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The difference between these graphs, as in the co-evolutionary case, stems from the 
difference between the cost curves and capacity limits of the bidders. In each case, the 
population gradually improved in fitness (and the equilibrium price increased along with it) 
until about the 5,000th generation, after which it leveled off. At this point, the equilibrium 
price actually began decreasing slightly. 
 

 

Figure 8-5  Immortalized Population Fitness Function, Discriminatory Price, GP-Automata. 

 
Figure 8-5 shows one of three variations of two different cost curve and capacity limit 
choices for the two finite-state automata representations using the immortalizing fitness 
function and discriminatory pricing, with an auction size of four bidders. 
 
It is interesting to note that the effect of number of bidders on average equilibrium price (i.e., 
fewer bidders results in higher price) is not nearly as pronounced in the immortalizing fitness 
function case as in the co-evolutionary case. 
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8.2.2 Experiment Set 4: Immortalized Population Fitness Function, Uniform 
Price 

This experiment used uniform pricing.  Recall that with uniform pricing, each bidder, if it has 
a bid accepted, is paid the equilibrium price, or the price of the highest accepted bid. The rest 
of the details are identical to those described in the first section. 
 

 

Figure 8-6  Immortalized Population Fitness Function, Discriminatory Price, GP-Automata. 

 
Figure 8-6 shows one of four variations of two different cost curve and capacity limit choices 
for the two finite-state automata representations using the immortalizing fitness function and 
uniform pricing, with an auction size of ten bidders. 
 
These results differ remarkably from those of the discriminatory case. Whereas the 
discriminatory pricing model led to gradual fitness and price increase, uniform pricing led to 
decrease in both fitness and price. The fitness increases for the first 1,000 generations, when 
the fitness function is co-evolutionary, and afterwards it decreases sharply at each 
replacement of the immortal bidders. 
 
Of course, the effect of differences in cost curves and capacity limits also occurred in this 
experiment; those with higher costs bid higher and got lower fitness. 
 

 91



 

Figure 8-7 shows one of four variations of two different cost curve and capacity limit choices 
for the two finite-state automata representations using the immortalizing fitness function and 
uniform pricing, with an auction size of four bidders. 
 
Comparing these results to those in the case with ten bidders, we see the usual effect that 
fewer bidders mean higher average equilibrium price and higher fitness. 
 

 

Figure 8-7  Immortalized Population Fitness Function, Discriminatory Price, GP-Automata. 
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Figure 8-8  Immortalized Population Fitness Function, Discriminatory Price, GP-Automata. 
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9 Summary and Discussion 

The first part of this research has been developed and tested, but events blocked the 
completion of this work. The first part was to direct the decision tree structures of the genetic 
algorithm to provide agents with information not previously provided. The conversion of the 
decision trees including uncertain dependencies is presently under development. 
 
The research to explore the adaptability of finite state automata to a simulated electric power 
market was thoroughly tested. The finite state automata were developed using a genetic 
algorithm. Two different types of finite state automata, GP-Automata and Neural-Automata, 
were tried. Their performance was compared to each other and to a third simplified 
representation that served as a baseline of comparison. Extensive test sets evaluated the 
program and established some differences between market rules. 

9.1 Conclusions 

9.1.1 Interval Analysis 

The interval analysis is proving to be a dramatic tool for estimating the spread of the 
distribution function. This spread is useful when the economic driving factors are of known 
but uncertain dependency. The ability to estimate the upper and the lower cost of production 
should prove most useful in a competitive environment. As the tool is extended to the 
application of Value at Risk or Profit at Risk, the results should be as equally dramatic. 

9.1.2 Genetic Algorithms 

The difference between GP-Automata and Neural-Automata lies in the data processing 
structure used to compress the bandwidth of the input to the finite state machine. GP-
Automata used parse trees, and Neural-Automata used neural nets. The first conclusion to 
draw from the data in the previous chapter is that GP-Automata and Neural-Automata 
performed nearly the same under all conditions. From this, one can conclude that both a 
parse tree and a neural net are equally capable of processing the data received during rounds 
of bidding in an auction. 
 
The second conclusion to draw is that the finite state automata behaved, within reasonable 
limits, in ways similar to the baseline representation. In those cases in which the market 
outcome was dissimilar, the finite state automata achieved higher fitness than the baseline. 
Since the average fitness was higher for all populations, each of which represented one 
bidder in the auction, this indicates cooperation taking place between bidders in the auctions. 
 
Finally, though the fitness often changed during the course of evolution, this does not 
indicate exactly what is happening. With co-evolution especially, the average fitness going 
down does not necessarily mean the population is getting worse, and the average fitness 
going up does not necessarily mean the population is getting better. It only indicates 
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performance of the agents relative to each other for the co-evolutionary case and relative to 
the immortal agents in the immortality fitness function case. 

9.2 Improvements 

9.2.1 Interval Analysis Improvements 

Two improvements will be evaluated in the future: obtaining narrower bounds from 
information about correlation and decreasing the computation time for finer discretizations. 
Linear programming problems have more than 4,000 variables for a 64x64 discretization, so 
computation time becomes significant. It may be possible to decrease computation time by 
using another linear programming method with improved speed or by using a parallel 
algorithm.  

9.2.2 Genetic Algorithm Improvements 

The markets rules were not chosen arbitrarily, but neither were they unique. A double-sided 
auction should be implemented next. 
 
This research assumed that the cost of producing electricity by a multi-unit GENCO could be 
simplified as a single quadratic cost curve. This should be extended to perform a more 
complex economic dispatch optimization. 
 
This research considered only the day-ahead market used to determine allocation for the next 
day. It ignored the existence of forward markets on larger time-scales (e.g., weekly, monthly, 
etc.) and the hourly spot market held the hour before delivery. Future research should explore 
these types of markets or develop strategies that make decisions for all of these timescales. 
 
The effectiveness of evolving finite state automata as learning agents was measured only 
relative to other evolved finite state automata. Future research could compare strategies 
developed through other learning mechanisms to these agents. One could also evolve the 
finite state automata in parallel with another learning algorithm to determine which is more 
adaptable. 
 
The Neural-Automata representation has not been tried for any other genetic algorithm 
problems. Future research into this representation could test this representation on other 
problems that accommodate the use of finite state machines. Obvious test problems are those 
that have already been tried with GP-Automata, such as simple economic games as Divide 
the Dollar [Ashlock, 2000] or as control structures in simulated robots [Ashlock,, 2001]. 
 
The parse trees used in the GP-Automata took real numbers as input and hence, used real 
numbers as intermediate values during evaluation of the tree. Since limits were not placed on 
the possible connections between parse tree nodes, this means that a real number could 
potentially be fed into a boolean input. Since booleans are defined in terms of integers by the 
convention (e.g., 0 = false, everything else = true), this could lead to every real being fed as a 
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boolean argument being evaluated as true, since the odds of getting a real exactly equal to 
zero are infinitesimal. However, this does not preclude other data types, such as booleans and 
integers, still being fed as boolean inputs, and so it will not prevent the boolean functions 
from operating normally. Randomly generated trees will simply have a bias toward true 
values being fed to boolean inputs. One potential way to correct this would be to implement a 
grammar to build the parse trees in which feeding real numbers as boolean inputs would be 
disallowed. This work assumed that evolution would simply weed out those parse trees that 
use reals as booleans if they cause problems. 
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Appendix: Review of Interval Mathematics 

The interval computations field is often taken as beginning with the work of Moore [1966], 
although earlier relevant works exist. An interval value is describable using two real 
numbers, which are called the low bound and high bound. For example, given interval X= [a, 
b], a and b are real numbers, a is the low bound and b is the high bound. If a=b, this interval 
value is the real number a. Set theory can also be used to describe the interval X=[a,b]. We 
can define it as a set X={x: a<=x<=b}.  
 
If we say [a,b]=[c,d], then a=c and b=d. If [a,b]<[c,d], then b<c. Other relationships may also 
be defined. Interval arithmetic includes addition, subtraction, multiplication and division. Let 
X=[a,b] and Y=[c,d] be two intervals. The following gives the definition for arithmetic 
operations based on the set definition for intervals.  
 

},:{ YyXxyxYX ∈∈⊗=⊗  
 
where ⊗  is in +,-,*,/. 
 
Therefore, X+Y = [a+c,b+d] and X-Y = [a-d,b-c]. Multiplication is a little more complex. 
 
XY=[min(ac,ad,bc,bd), max(ac,ad,bc,bd)].  
 
Division is a bit more complex still. Note that Y must not include zero.  
 
1/Y = [1/d,1/c] if 0∉ Y 
 
X/Y = X(1/Y) if 0∉ Y 
 
If Y includes zero, X/Y should be [-∞, ∞] if the interval system includes infinites as allowable 
endpoints.  
 
Interval arithmetic also includes the following characteristics: 
 

• Set Rule 

– (V∪W) ±Z = (V±Z) ∪(W ±Z) 

• Rule for the addition and subtraction of infinite or semi-infinite intervals 

– [a,b]+[-∞,d] = [-∞,b+d] 

– [a,b]+[c, ∞] = [a+c, ∞] 

– [a,b] ±[-∞,∞] = [-∞,∞] 

– [a,b]-[-∞,d] = [a-d,∞] 

– [a,b]-[c,∞] = [-∞,b-c] 
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• Associativity and Commutativity 

– X+(Y+Z) = (X+Y)+Z 

– X*(Y*Z) = (X*Y)*Z 

– X+Y = Y+X 

– X*Y = Y*X 

Unlike in real arithmetic, operations are not invertible, which means there is no inverse 
operation for a given operation. Although for the real domain, + and – are inverse operations, 
in interval mathematics this is not true.  
 
In interval analysis, interval-valued functions form a major topic. An interval function F is 
interval-valued and has one or more interval arguments. For a real-valued function f of real 
variables x1,…,xn, if we have an interval function F of interval variables X1,…Xn, and if  
F(x1,…,xn) = f(x1,…,xn) for all xi(i=1,…,n) then F is an interval extension of f.  
 
Interval functions have the following characteristics: 
 

• Inclusion monotonicity  
 
If Xi⊆ Yi ( i=1,…,n) then F(X1,…,Xn) ⊆ F(Y1,…,Yn). 
 

• Arithmetic inclusion monotonicity 
 
If op denotes +,-,*, or /, then Xi⊂ Yi (i=1,2) implies (X1 op X2) ⊂(Y1 op Y2). 
 
Excess width is an issue in interval mathematics. Let us use a simple example to explain this 
problem. For interval value X=[a,c], what is the result for X-X? A naïve calculation gives a 
result that is not zero, but [a-c,c-a]. Zero is just one real number included in this result. 
Obviously, it is not the desired result, which is simply zero. For functions, an interval 
function extension need not be unique, but can depend on the form of the real function. For 
example, here are two expressions corresponding to the same real function: 
 
f1(x) = x*x – x +1 and f2(x) = x*(x-1) + 1. 
 
The corresponding interval extensions are: 
 
F1(X) = X*X – X +1, F2(X) = X*(X-1) + 1. 
 
These do not represent the same interval function, as: 
 
F1([0,2]) = [-1,5], and F2([0,2]) = [-1,3]. 
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The true range of F([0,2]) is actually [3/4,3]. It can be determined by setting the derivative of 
x*x – x +1 to 0 to get the value of x giving the low bound and substituting that real value into 
f1 or f2. 
 
This is referred to as the dependency problem or excess width. It enlarges intervals in the 
result collection. The reason why excess width occurs is that a variable occurs more than one 
time in an expression. Various methods have been developed to address this issue. Some of 
these methods follow. 
 

• Various centered forms: 
� Computing the range of values [Asaithambi, Zuhe, and Moore, 1982] 
� Enclosure methods [Alefeld, 1990] 
� Artificial intelligence work [Hyvonen, 1992] 

 
Computation time tends to be a problem with these excess width removal techniques. To 
apply interval analysis, the following guiding principles should be considered. [Walster, 
1998]: 
 

• “Interval algorithms should bound error.” 
• “Interval input/output conventions should be consistent with people’s normal 

interpretation of numerical accuracy.” 
• “The application of interval algorithms should be universal.” 
• “Where interval algorithms currently do not exist, we should get to work developing 

them rather than abandoning the principle of universal applicability.” 
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