
Interval Analysis for Unknown
Dependencies and Genetic

Algorithm Emulation of Markets

Market Interactions and Market Power
Final Project Report

Power Systems Engineering Research Center

A National Science Foundation
Industry/University Cooperative Research Center

since 1996

PSERC

Power Systems Engineering Research Center

Interval Analysis for Unknown Dependencies
and Genetic Algorithm Emulation of Markets

Market Interactions and Market Power
Final Project Report

Project Team

Gerald B. Sheblé, Project Leader
Daniel Berleant
Mei-Ping Chong
Jianzhong Zhang

Iowa State University

Robert J. Thomas
Cornell University

PSERC Publication 03-33

November 2003

Information about this Project

For information about this project contact:

Gerald B. Sheblé
Iowa State University
Department of Electrical and Computer Engineering
1115 Coover Hall
Ames, IA 50011
Phone: 515-294-3046
Fax: 515-294-4263
Email: gsheble@iastate.edu

Power Systems Engineering Research Center
This is a project report from the Power Systems Engineering Research Center (PSERC).
PSERC is a multi-university Center conducting research on challenges facing a restructuring
electric power industry and educating the next generation of power engineers. More
information about PSERC can be found at the Center’s website: http://pserc.org.

For additional information, contact:

Power Systems Engineering Research Center
Cornell University
428 Phillips Hall
Ithaca, New York 14853
Phone: 607-255-5601
Fax: 607-255-8871

Notice Concerning Copyright Material

PSERC members are given permission to copy without fee all or part of this publication for
internal use if appropriate attribution is given to this document as the source material. This
report is available for downloading from the PSERC website.

© 2003 Iowa State University. All rights reserved.

Acknowledgements

The Power Systems Engineering Research Center (PSERC) sponsored the work described in
this report. We express our appreciation for the support provided by PSERC’s industrial
members and by the National Science Foundation under grant NSF EEC-9908690 received
under the Industry/University Cooperative Research Center program. Our thanks are also
given to MidAmerican Energy for its support of this project.

Thanks are also given to our industry advisors:

• O. Dale Stevens, II, MidAmerican Energy Co.
• John Thomas Chatelain, MidAmerican Energy Co.

Preface

The Power Systems Engineering Research Center sponsored the research project titled
“Market Interactions and Market Power (M-3).” This project had two parts:

• Part I: Interval Analysis for Unknown Dependencies (in Chapters 1-5)
• Part II: Adaptive Agent Market Emulation (in Chapters 6-8)

This report includes both parts.

Executive Summary

The project’s objectives were to assess the interactions between the operational and
commercial aspects of electricity markets; to identify key requirements in the reform of
market structure and rules; and to propose market design modifications that will enable
realization of the full the benefits of competition in electricity. Two parallel paths were
pursued to achieve the objectives. The first path was to identify a technique suitable for using
adaptive agents to value electricity bids. The second path was to emulate market interactions
by adaptive agents in multiple markets. This emulation used a genetic-algorithm market
simulator and a market simulator based on a genetic programming algorithm, including
information from repeated bidding. The new techniques provide considerable insight into
market behavior with repeated bidding. Based on simulation results, we identify
recommendations for further use and development of the techniques; more definitive
recommendations require additional work.

The first part of the report extends the applications of decision analysis to problems where
the random variables may be dependent but the correlation is unknown. This part describes a
new interval-based method to handle decisions under uncertainty when the two variables are
of unknown dependency. Correlation is often confused with dependency. Correlation is only
a measure of a special type of dependency. The technique developed enables decision
analysis even if the dependency or correlation is unknown. The technique uses Linear
Programming optimization to solve for the intervals given the nonlinear relationship between
the two variables of unknown dependency. This work can be extended to more complex
commodity pricing problems.

The second part of this report details the market simulations using adaptive agents. Initial
market design recommendations are based on these results; however, more work needs to be
done before final recommendations can be made. In particular, differences exist with the
pricing rules and with the number of players. Additional testing is required, especially
because the forward markets are a more critical element than previously understood.

The adaptive agent software was tested with a number of test sets and variations. The results
provide interesting conclusions, even though the markets implemented were limited in scope.
The results demonstrate the usefulness of the genetic algorithm to emulate market behavior at
a level of complexity equal to and sometimes exceeding the market designs of experimental
economics. Adaptive agent modeling and experimental economics can complement each
other in assessing market design alternatives. More research is needed to compare and
contrast the two analysis approaches for developing recommendations on market designs.

Another area for future research is enhancement of the adaptive agent with interval analysis
methodology to provide a more robust decision model to play the market over many trials.
Additional market rules, and complete emulation of the network physical capabilities and
limitations should be included as they have been already. The next major step is to identify a
means to model forward and ancillary markets without emulating all markets simultaneously.

 Table of Contents

1 Decision-Making Under Uncertainty with Dependent Variables.............................. 1

1.1 Dependence and Time Series Analysis.. 3
1.2 Adaptive Agent Emulation of Energy Markets ... 8
1.3 Intervals, Uncertainty, and Distributions ... 8

2 Uncertainty Intervals.. 10
3 Narrowing the Envelopes Around Results Using Correlation................................. 16

3.1 Facts about Correlation .. 16
3.2 Joint Distributions.. 16
3.3 Nonlinear Optimization to Remove Excess Width.. 22
3.4 Improving Results by Adding Constraints to LP... 23
3.5 Simplex Method... 24
3.6 Nonlinear Optimization ... 32

4 Enhancement of Functions... 41
4.1 Transportation Method... 41
4.2 Cascading Operations .. 47
4.3 Relational Operations... 49
4.4 Complex Expressions... 51

5 Applications ... 54
5.1 Economic Dispatch: Applying the Interval-Based DEnv Algorithm 54
5.2 Bounding the Composite Value at Risk for Energy Management Company

Operation with DEnv ... 58
6 Genetic Algorithms for Bidding .. 66

6.1 Application... 66
6.2 Market Design.. 67
6.3 Market Simulation ... 67
6.4 Optimization .. 67
6.5 Genetic Algorithms and Learning.. 68

7 Methods and Procedures .. 71
7.1 Electric Power Markets.. 71
7.2 Evolutionary and Genetic Algorithms ... 72
7.3 Representation.. 73
7.4 Market Setup.. 75
7.5 Experiments ... 78

8 Genetic Algorithm and Market Experiments Results .. 85
8.1 Co-Evolution.. 85
8.2 Evolution by Periodic Immortalization.. 89

9 Summary and Discussion... 94
9.1 Conclusions.. 94
9.2 Improvements .. 95

Appendix: Review of Interval Mathematics... 97
Bibliography ... 100

Table of Figures

Figure 1-1 Decision Tree Format... 5
Figure 1-2 Unit Availability Tree. ... 7
Figure 1-3 Game Response Tree.. 7
Figure 2-1 Probability Bounds for Random Variable Z... 15
Figure 3-1 Probability Bounds for Random Variable Z... 18
Figure 3-2 Local Optimums... 33
Figure 4-1 Converting CDF Envelopes to a Set of Intervals and Associated Probabilities. . 47
Figure 4-2 Result for Operation... 48
Figure 4-3 Result for x+y... 48
Figure 4-4 Result for x+y+z. ... 49
Figure 5-1 Solution, Given the Histogram-Discretized PDFs for v and v Shown.1 2 57
Figure 5-2 Factors in Determining VaR of an EMCO... 60
Figure 5-3 Envelopes around the distribution of X+Y when X and Y are each discretized into

16 Intervals.. 62
Figure 5-4 X+Y when X and Y are 32 intervals.. 62
Figure 5-5 X+Y when X and Y have 64 intervals. .. 62
Figure 5-6 Envelopes around the Distribution of X*Y for an Unknown Dependency

Relationship Between X and Y. ... 63
Figure 5-7 X*Y for Correlation 0.98. ... 63
Figure 5-8 X*Y for Correlation 0. .. 64
Figure 5-9 X*Y for Correlation -0.98... 64
Figure 5-10 Times for Operations.. 65
Figure 5-11 Times for Multiplication and Division... 65
Figure 7-1 Basic Evolutionary Algorithm Loop.. 72
Figure 7-2 Example Parse Tree.. 74
Figure 7-3 Auction Process.. 76
Figure 7-4 Single Tournament Selection of Size Four. ... 81
Table 8-1 Variations on Experiment Set 1.. 86
Figure 8-2 Co-Evolutionary Fitness Function and Associated Data. 87
Figure 8-3 Co-Evolutionary Fitness Function, Uniform Price, GP-Automata. 88
Figure 8-4 Co-Evolutionary Fitness Function, Uniform Price, GP-Automata. 89
Figure 8-5 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

... 90
Figure 8-6 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

... 91
Figure 8-7 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

... 92
Figure 8-8 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

... 93

Table of Tables

Table 2.1 Discretized distributions for X and Y…………………………………….….…. 11
Table 2.2 Joint distribution tableau showing marginal distributions for X and Y …...…… 11
Table 2.3 Joint distribution for independence………………………………………..……. 12
Table 2.4 Graying indicates cells in which z might equal five ……………………….…... 12
Table 2.5 Probabilities for result variable z …………………………………….………… 15
Table 3.1 Joint distribution matrix …………………………………………………..……. 20
Table 3.2 Joint distribution for X and Y ………………………………………………….. 23
Table 4.1 Parameter table for transportation model ….……………………………..…….. 42
Table 4.2 Marginal distribution …………………………………………………………... 44
Table 4.3 Lower bound …………………………………………………………………… 46
Table 4.4 Upper bound …………………………………………………………………. 46
Table 4.5 Distribution for X and Y ……………………………………………………….. 50
Table 4.6 Interval value for a relational operation …………………………………..….… 50
Table 5.1 Operation evaluation time (seconds) for correlation 0 ………………………… 64
Table 7.1 GP-Automata Mutation Operators ……………………………………………... 83
Table 7.2 Neural-Automata Crossover Operators ………………………………………... 83
Table 7.3 Parse Tree Nodes ………………………………………………………………. 84
Table 8.1 Variations on Experiment Set 1 ………………………………………………... 86

1 Decision-Making Under Uncertainty with Dependent Variables

A basic premise of competition is the ability of buyers and sellers to make rational decisions.
The rational decision assumption requires each player to know the relative value of each
resource needed, the relative value of each product produced, and the relative value of all
services necessary to produce the product. The sellers have to get the product to the customer
and maintain a competitive product portfolio. One major goal of deregulation is to identify
the market design to provide the proper price signaling for valuation of assets and, thus, the
proper value for bidding in the spot market, in the futures market, and in the expansion (or
infrastructure planning) market of the electric energy system. The ideal is to project the
incentives needed under market-based decision-making for market participants to invest in
the careful design, operation and maintenance of the overall electric energy system. The
premise is that asset valuation requires information of the principal components of future
cash flows, ideally based on real option analysis by suppliers and buyers.

As the US moves toward competitive markets in electric power generation, considerable
attention is focused on issues of ancillary service markets, and potential system security
consequences of differences between contracted energy services and the physical supply of
services. Such service requirements introduce uncertainties that must be included to
determine the delivery possibilities. These issues relate primarily to the transportation
capability of the system, on an hourly time scale. The proper valuation of the resources to
produce and transport the electric energy has to include the impact of all ancillary services as
well as of the primary fuel markets.

This project intended to achieve two goals. The first goal was the characterization of market
interaction between primary energy exchange and ancillary service requirements, given
market forecast uncertainty to provide improved estimates of bidding, and thus of asset
valuation. The primary effort evaluated the effect of uncertainties in price bidding and
matching in systems for settling contracts for energy delivery. Recent tools of probability and
statistics theory (such as interval analysis, second order uncertainty modeling, and parametric
programming) apply to such problems.

The second goal was to advance proposals of specific market designs and of their related
market power philosophies, based on adaptive agent simulations that offer quantitative
schemes for ensuring system expansion to enhance the system performance under a wide
range of operating condition uncertainties. Standardized market interaction and baseline
strategy to facilitate secure addition of competitive resources from all agents’ units was
assumed for all simulations. The benefits of properly assessing uncertainties, even when such
uncertainties cannot be precisely determined, enable the proper pricing of the primary
product, energy, and all supportive ancillary services.

Prototype designs for market models for primary energy delivery and for contingent services
(such as transmission capability, load balance, regulation, spinning reserves, and ready
reserves) for competitive adaptive agents were developed. Test-bed systems indicating

system benefits of these uncertainty evaluation tools when interacting with competitively
driven bidding of energy dispatch and ancillary service provisions were developed.

The objective of previous research was to guarantee that a single player, or the contract to
use any given asset, did not dominate market play. Clearly, contract behavior and market
control challenges arise as large numbers of independent, for-profit companies trade
contracts based on the latest equipment and system capability information. The project was to
consolidate and extend these preliminary results, considering their application to more
widespread supportive markets including ancillary services. This project did tailor auction
and bidding model designs to a competitive power system environment, as well as examine
results in trajectory sensitive markets as contracts changed based on new information.

This project was conducted in two distinct paths. The first path was the extension of
techniques for decision-making under uncertainty for use by adaptive agents. The goal was to
identify means to reduce the range of valuation for price signals for variables that are
dependent on each other, but cannot be quantified precisely. As an example, the spark spread
is the difference between the fuel price and the electric energy price. As the fuel price
increases, the price of electric energy increases. This is often cited as a key indicator. The
value of this indicator could then be found by estimating the correlation between the price of
fuel and the price of electric energy. Previous studies have shown that this correlation varies
between -0.4 and +0.9. This range of correlation shows that the spark spread is hard to
forecast and is hard to include as a valuation factor for generation asset management. Such
wide variations also demonstrate the lack of clear dependency, even when it is known to exist
based on microeconomic analysis. Chapters 1 through 5 detail this work.

The second path, simulation of markets to demonstrate the price signaling for asset valuation,
was the extension of simulation techniques from previous artificial life market simulators,
market power assessment, and classical market simulation. The technique of handling
uncertain intervals was to be included in these new agent models. Chapters 6 through 8
detail this work.

The decision-making under uncertainty technique called Interval-Based Distribution Analysis
(IBDA) [Berleant and Goodman-Strauss, 1998] discretizes input distributions by using a list
of numerical intervals that span the range of the distribution and, associated with each
interval, the probability that a sample drawn from the distribution would fall within it. A
relatively straightforward convolution process does a sum, product, or other operation on two
inputs that are independent. In the case of unknown dependency, an optimization process
calculates strategic points on the envelopes describing the outputs. This extension to IBDA,
named Distribution Envelope Determination (DEnv), is both simpler and more flexible than
the Probabilistic Arithmetic technique addressing the problem described by Williamson and
Downs [1990]. It is also capable of incorporating information about Pearson correlation
which copula-based techniques like Probabilistic Arithmetic do not do.

This report identifies the methods to implement this assessment and uses case studies used as
examples. The concluding chapter identifies other applications.

 2

1.1 Dependence and Time Series Analysis

Time series analysis, computationally reduced by functional dependence, yields more
efficiently simulated risk models. Time series analysis extends the possibility of multiple
period assessments instead of single period assessment. Cash flows over time for production
or for services are combined to forecast representative project values for business valuations.
Traditional project valuation uses net present value to determine if a project is a positive
investment. Dependence is a characteristic between economic drivers to reduce the number
of data series to analyze and develop as part of the process to build future cash flows.

Time series analysis enables the valuation of projects that provide a potential cash flow over
long periods. The desired outcome of risk analysis is a stochastic assessment of the
investment under analysis. Many business-setting analyses of the technical, political, or other
economic drivers are typically based on probabilistic financial assessment of the investment
opportunity. Financial analysis uses a net present value (NPV) technique, or alternatively
internal rate of return or discounted return on investment. Such financial considerations
require evaluation of the future cash flows over a long period, commonly a number of years
up to over two decades.

Econometric analysis is the general study of series analysis of economic drivers. Economic
drivers are the price signals that identify future opportunities, if any. Some economic drivers
indicate the resource needs or costs for projects, such as labor, fuel, or other raw materials.
Other economic drivers are the price signals indicating the value for products or services that
buyers are assigning based on the application of the product or service to produce a
subsequent product or service. The desired relationship for a risk assessment is a distribution
of each variable coefficient.

The distribution for a variable, such as NPV, is found by combining input variables that are
distributions. Several methods to generate distributions for single values exist. Typically, a
separate distribution is established for each variable in each period. This method is more
complex than representing time series as a stochastic function because distributions are
generated for each period. The changing dependency of each variable between periods is
another factor to model and to generate (that is, forecast). One method to reduce the number
of parameters to forecast is to use a single basic distribution variable that changes in each
future period. An example is to use the Normal distribution where the mean and the standard
deviation change from one period to the next according to another functional calculation. A
typical functional relationship would be for the mean to increase at 10% each period while
the standard deviation increases by 5% each period.

Risk analysis generally terminates in a calculated variable that is represented by a
distribution for each period into the future. Such a distribution can then be used by Monte-
Carlo-based risk tools to generate scenarios for the calculation of the probable risk profile.

Once dependence between two variables is established, one variable is designated the
independent variable and the other the dependent variable. Then, a Monte Carlo process first

 3

randomly samples the independent variable. Next, depending on the degree of correlation
between the two variables, the process establishes a dependent-variable value that is
reasonable for the independent variable coefficient. This process is applied each iteration.

The distribution is sampled each iteration, across several periods within an iteration. If the
distribution being sampled, period by period, has a dependent relationship with other
variables, then those relationships need to be used across periods, not just across iterations.

1.1.1 Dependence, Correlation, and Valuation

Parameters that are co-contributors to a risk assessment may be independent. An example of
two independent variables is the risk free interest rate and the product value for a given
application. It is often valid to separate the international demand from the domestic demand
due to societal or cultural differences. Such examples have no restrictions on the values of
the variable based on the other variable. Specifically, there are valid variable pairs. However,
many variables exhibit dependent relationships. The dependency of interest free rate on
government budgetary deficits restricts the variable pairs that may be generated. A Monte
Carlo analysis would have to generate values for each variable based on the dependency
between the two variables. The concept of dependence is to model the relationship between
two or more variables to generate valid future characteristics.

The first task is to identify the dependent and the independent variable. Specifically, the
independent variable may be defined as the variable that may be considered as a driver for
the other (dependent) variables. Alternatively, the independent variable may be defined as the
variable that controls the dependent variables.

The economic interpretation of the variables may lead to a rational description of the
dependence sequence for the given problem. When it cannot be easily discovered which is
the independent (controlling) variable and which is the dependent variable, the independent
variable is selected by the degree of confidence to generate a given variable or the ability of a
variable to encapsulate the economic price signal.

The strength of the relationship is the next item to be identified. There are several techniques
to estimate the strength of the relationships. One method is to use the degree of correlation
between variables. Correlation is a description of how closely one variable follows another
variable. Correlation is often used as an abbreviated reference to Pearson correlation, which
varies from a negative relationship with a value of negative one (-1) to a positive relationship
with a value of one (+1). Independence is indicated when the correlation is “close” to zero
(0). A pair of variables is perfectly correlated if the correlation is positive or negative one.
Regression techniques are often used to estimate the relationship strength. Linear and
nonlinear regression techniques are generally available.

There are many pairs of variables in a risk assessment that may be considered dependent. It is
often true that one variable can have a number of related dependent variables. It is important
to define the dependent variable based on a truly independent variable to avoid circular
dependency.

 4

If there is a dependency between two variables, if we assign one variable as the independent
variable and the other variable as the dependent variable, and if we find the correlation
coefficient for this relationship, then the dependent variable will follow, in some partially
characterized sense, the independent variable. A Monte Carlo analysis will first generate the
independent variable by a random selection, and then generate a value for the dependent
variable by random selection from the distribution determined in part by the value of the first
variable.

If the risk assessment model is to value a bid or a project properly (i.e., emulate the real
world), then the relationships indicated by economic laws and physical processes must be
consistent with the variable chosen to be dependent and the variables chosen to be
independent.

1.1.2 Decision Theory, Trees, and Analysis

The basic decision process is often described by a tree structure as shown in Figure 1-1.

Value

p

1-p

Prj A

cost

d

n

n

r

Prj B
toll

Value

Value

Value

Value

r

r

r

r

r
Figure 1-1 Decision Tree Format.

Each decision node is represented by a square. Natural nodes are represented by a circle.
Result node (leafs) are represented by rectangles. The cost of any action on a given path is
represented by a line (tollgate) perpendicular to the path. The probability of any natural node
is adjacent to the branch connecting the natural node with another node in the tree. The tree is
often evaluated using:

1

1

(*)

1.0

n

i i
i

n

i
i

EMV p V

p

=

=

=

=

∑

∑

 5

where Expected Monetary Value is EMV, probability of event is pi, value (benefit or cost)
after event is Vi, and number of events is n. The decision rule is to take the option with the
highest payoff (maximum profit) or lowest cost.

There are six basic steps used to define the basic decision tree process:

• Generate Decision Tree
• Define Decision Criterion
• Determine Value of Each Path
• Assess Probabilities, Correlations
• Complete Mathematical Evaluation
• Assess Solution Sensitivity

The key is to state the problem to draw the tree with each type of node identified (Decision,
Natural, Result), to find all joint or independent probabilities, to calculate the total cost and
benefit for the given conditions for each independent variable, and to include all
uncertainties.

As an example, we consider the case where there are two unknown economic drivers. Each
economic driver is a random variable. The problem with this approach (as addressed by this
research) arises from the complication when one random variable is dependent on another
one random variable. In Figure 1-2, each random variable is the status of a generating unit.
The node in the first column represents the availability of unit 1, the node in the second
column represents unit 2, etc. Traditional probabilistic production costing assumes that the
availability of units is independent. Thus, the sequence of nodes can be arbitrarily exchanged.
However, when the units have common characteristics (such as coal supply, water supply,
common labor crew, or common maintenance cycles), the availabilities are dependent. The
output of one unit is dependent on a common variable not represented in the tree calculations.
Indeed, such a common variable that the units are dependent upon may not be included in the
calculations as stated in the tree or available for measurement.

Classical decision analysis assumes that the correlation is known. This research was directed
to the relaxation of this methodology constraint.

 6

 1 2 3 4 N

Figure 1-2 Unit Availability Tree.

Another example of unknown dependency is shown in the following game tree. The single
agent decision process can be described in a game theory context [Aliprantis and
Chakrabarti, 1998]. Generally, a decision graph is employed to describe the sequential
decision process of a single person. A decision graph is directed graph having a unique root
R, in the sense that R is the only node with no edge ending into it. There is at least one path
from R to N for every node N other than R. There is at least one terminal node. There is at
least one path from N to a terminal node from every non-terminal node N. This is illustrated
in Figure 1-3.

When X is a decision node, all other nodes are natural nodes (or consequence), Hi indicates
High Investment, Lo indicates Low Investment, M indicates “Market” decision, DM
indicates the decision to “Do not Market,” p is the probability of success under high
investment, and q is the probability of success under low investment.

750X
MNature p

DMHi -150
1-p -150 1000X

X MqLo
DM -10Nature

1-q -10
Figure 1-3 Game Response Tree.

Thus, basic decision tree process and game theory process modeling share the assumption
that the correlation between variables is known. Often, the correlation is assumed to be zero.
Based on economic theory, this is known to be a false assumption when the complete

 7

industrial or decision/consequence model is evaluated. Thus, the need for a less restrictive
assessment is needed.

1.2 Adaptive Agent Emulation of Energy Markets

Adaptive agents use structures similar to the decision trees to emulate the analysis performed
by the trading staff of generation companies (GENCOs) and energy management companies
(EMCOs). The problem with present decision trees is insufficient representations of the trade
analysis commonly performed. However, this simplicity demonstrates the behavior of trading
agents that can be understood from basic economic principles. The tree complexity is
enhanced when the dependencies do not have to be known, as provided by the interval
analysis methodology. More discussion of this enhancement is in the section on developing
the genetic algorithm machines.

1.3 Intervals, Uncertainty, and Distributions

Uncertainty is frequently present in our knowledge of the real world. Handling uncertainty is
therefore an important problem. Probability is a common approach. Probability density
functions (PDFs) or their integrals, and cumulative distribution functions (CDFs) are used in
a probabilistic approach. These are used to describe random variables. Often such random
variables are defined based on combinations of other random variables. These are called
derived random variables, and their distributions are called derived distributions [Springer,
1979]. For example, samples of a derived random variable could be defined as the sum, the
max, or some other function of samples of two other random variables. Derived random
variables are recognized in such fields as decision analysis and risk analysis.

A variety of methods have been developed to address this topic. There are two classes of
such methods: analytical and numerical. Analytical methods are restricted to specific classes
of input distribution, and usually make simplifying assumptions, such as independence. For
example, normal distributions are often used. If two random variables are normal and
independent, the sum of these two random variables still is normal. It is also possible to
obtain derived distributions for specified dependency relationships other than independence,
such as perfect positive rank correlation. However, it is often not easy to obtain analytical
results for arithmetic operations on random variables without assumptions and it is not
always reasonable to make these assumptions though it may be convenient. Sometimes, we
do not have information about the dependency. Nevertheless, an advantage of analytical
methods is accuracy. Unlike analytical methods, numerical methods only give numerical
results. However, this is suitable for a wide class of distributions. Numerical methods are
widely used in real applications if approximate results within specific tolerances are
acceptable.

Monte Carlo simulation is one of the best-known numerical methods. However, the
traditional approach of Monte Carlo has some limitations. It assumes that the distribution of
the random variables is known, and that their dependency relationship is independent or
known [Ferson, 1996]. If either the probability distributions or the dependency relationship

 8

of the random variables is not available, some assumptions are usually necessary to process
it. If the assumptions do not hold in reality, dependability of results can be degraded.

A discrete convolution approach may be used to calculate the result given independence of
the input random variables [Ingram et al., 1968; Colombo and Jaarsma, 1980; Kaplan, 1981].
Interval analysis may be used to solve this problem while providing error bounds. (Intervals
become closer to point values, as the intervals get narrower.) Interval mathematics became an
identifiable field in the 1960’s [Moore, 1966].

Intervals have the potential for bounding the result of an operation. Discretization error
coming from discretizing distributions may be bounded by interval-based discretization
[Berleant, 1993]. If the dependency is not specified, result bounds will include the entire
range of possible dependencies. These bounds will normally be wider than if a particular
dependency is specified. The Distribution Envelope Determination (DEnv, also referred to as
“IBDA”) technique for computing bounds on derived distributions without specifying
dependency was described by Berleant and Goodman-Strauss [1998]. This approach has
fundamental similarities with the copula-based approach [Frank et al., 1987] which was
significantly extended by Williamson and Downs [1990]. These two methods have been
implemented in software. The copula-based approach, termed probabilistic arithmetic, is
implemented in the commercial software RiskCalc [Ferson et al., 1998]. DEnv is
implemented as Statool [Berleant and Goodman-Strauss, 1998] which extends the previous
tool [Berleant and Cheng, 1998] by eliminating the independence assumption. DEnv (and
Statool) thus can handle the case where a dependency relationship is unknown or unspecified
by not making assumptions about the dependency relationship between operands. Yet, partial
dependence information might be available in some cases. If we can use this information in
the calculation, we will get more accurate results than can be obtained without using this
information.

DEnv and its implementation support a variety of dependency relationships, such as
independence, unknown dependence, and correlation values. The algorithm extension to
support correlation is a significant improvement. In the implementation, we have found that
using the transportation simplex method speeds up computing significantly over the classical
simplex method. Recent advances in the algorithm now allow cascaded operations and
monotonic binary functions to be supported. These new functions, and use of correlation as a
constraint, are the main recent advances in DEnv and its implementation. Among the other
contributions reported here are addressing example application problems. Recently we have
shown, using bounds on derived distributions in a GENCO competitive bidding scenario,
that:

• the unjustified assumption of independence between uncertain quantities has a
partially quantifiable dollar cost,

• the information that uncertain quantities are independent, if true, has a quantifiable
dollar value, and

• a decision tree approach can identify optimal bids even when the dependency
relationship between uncertain quantities is unknown.

 9

2 Uncertainty Intervals

Uncertainty exists frequently in our knowledge of the real world. Probability is a common
way to understand uncertainty and is intrinsic to the concept of the random variable.
Intuitively, a random variable is a function that takes as input an experiment and returns a
value that expresses the result of the experiment. Thus, if the experiment is to measure a
voltage, the value returned is the number of volts. Typically, the result of the experiment
cannot be determined in advance. A probability distribution function is often used to describe
the way the experiment is more likely to return some values more often than others.
Sometimes random variables are defined such that samples of their distributions are derived
from arithmetic operations on samples of the distributions of other random variables.
Determining the distribution of these derived random variables has been the goal of a
considerable body of work.

As noted in the previous section, numerical analysis using the Monte Carlo technique has
some drawbacks. Major ones include undependable conclusions about unusual situations,
however important those situations may be, because in a simulation run, random number
generation may not generate such situations at the same rate that they would actually be
expected to occur, or might even fail to generate any example of such a situation at all.

To alleviate the problems with Monte Carlo analysis, one method that has been described is
Distribution Envelope Determination (DEnv), developed by Berleant and Goodman-Strauss.
Another approach is the copula-based approach called Probabilistic Arithmetic. These two
methods have been implemented in software.

Interval mathematics has become a well-developed, sophisticated area since it became
identifiable as an area in the 1960’s. Influential reviews, fairly comprehensive at the time of
writing, include for example [Alefeld and Herzberger, 1983]. Such works provide important
basics and truths that retain their relevance today.

An interval can be used to bound the range for a value. Arithmetic operations on intervals
have been defined in the literature. For example, if interval X is the interval [1, 2], and
interval Y is the interval [3, 4], then interval Z=X+Y is the interval [1+3, 2+4] = [4, 6]. Some
additional explanations of interval properties are provided in the Appendix. One use for
intervals in computations on random variable distributions is to partition the domain of the
distribution into a set of intervals, with a probability associated with each. This partitioning is
the basis for discretizing distributions and extending binary operations from intervals to
(discretized) distributions.

Given two random variables X and Y, to get the exact distribution for a function of samples of
X and Y, we must know the joint distribution of X and Y. The joint distribution is constrained
(though not determined) by the correlation for these two random variables. Consider an
example. The following table gives the interval-based discretization for two distributions,
one for random variable X and one for Y.

 10

Table 2.1 Discretized distributions for X and Y.

 X Y

Range [1,2] [2,3] [3,4] [2,3] [3,4] [4,5]

Probability 0.25 0.5 0.25 0.5 0.3 0.2

Sharing of interval endpoints between adjacent intervals in a discretization is of no practical
consequence unless distributions have impulses at those shared endpoints. In that case,
discretizations would need to contain partially open intervals, e.g., [1, 2]. Discretizations
contain no information about distributions of probabilities over their corresponding intervals.
However, each interval does limit its probability to within its endpoints. We also do not
know the dependency relationship between X and Y. In other words, we do not know the joint
distribution for X and Y.

We consider the addition Z = X + Y. Because we do not have the joint distribution for X and
Y, it is impossible to find the precise distribution for Z. However, we can put these two
random variables into a “joint distribution tableau,” as shown in the following table.

Table 2.2 Joint distribution tableau showing marginal distributions for X and Y.

]5,3[∈z

?11 =p

]6,4[∈z

?12 =p

]7,5[∈z

?13 =p

]3,2[∈y

5.01 =Yp

]6,4[∈z

?21 =p

]7,5[∈z

?22 =p

]8,6[∈z

?23 =p

]4,3[∈y

3.02 =Yp

]7,5[∈z

?31 =p

]8,6[∈z

?32 =p

]9,7[∈z

?33 =p

]5,4[∈y

2.03 =Yp

]2,1[∈x

 25.01 =Xp

]3,2[∈x

5.02 =Xp

]4,3[∈x

25.03 =Xp X
↔

Y

The last row in the table is the distribution for X and last column is the distribution for Y. We
do not know the values of probabilities p11 through p33 because we do not know the joint
distribution. For the simple case of X and Y independent, we can fill in the missing values as
in the following table.

 11

Table 2.3 Joint distribution for independence.

]5,3[∈z

125.011 =p

]6,4[∈z

25.012 =p

]7,5[∈z

125.013 =p

]3,2[∈y

5.01 =Yp

]6,4[∈z

075.021 =p

]7,5[∈z

15.022 =p

]8,6[∈z

075.023 =p

]4,3[∈y

3.02 =Yp

]7,5[∈z

05.031 =p

]8,6[∈z

1.032 =p

]9,7[∈z

05.033 =p

]5,4[∈y

2.03 =Yp

]2,1[∈x

25.01 =Xp

]3,2[∈x

5.02 =Xp

]4,3[∈x

25.03 =Xp X
↔

Y

Because the joint distribution is affected by the dependency relationship between X and Y, if
we do not know the dependency relationship between X and Y, we cannot determine the joint
distribution in this tableau. Nevertheless, we can infer some things about the result or
dependent variable Z=X+Y from this matrix. For example, consider z = 5. This is possible
only in the grey cells in the next table.

Table 2.4 Graying indicates cells in which z might equal five.

]5,3[∈z

?11 =p

]6,4[∈z

?12 =p

]7,5[∈z

?13 =p

]3,2[∈y

5.01 =Yp

]6,4[∈z

?21 =p

]7,5[∈z

?22 =p

]8,6[∈z

?23 =p

]4,3[∈y

3.02 =Yp

]7,5[∈z

?31 =p

]8,6[∈z

?32 =p

]9,7[∈z

?33 =p

]5,4[∈y

2.03 =Yp

]2,1[∈x

25.01 =Xp

]3,2[∈x

5.02 =Xp

]4,3[∈x

25.03 =Xp X
↔

Y

As previous stated, we do not know the exact probability for z <= 5. However, we can ask
what the possible probabilities are for z<=5. As this matrix shows, only grey cells contribute
to the probability of z<=5. We would like to determine the maximum probability and the
minimum probability. To get the maximum value, all cells in which z can be <= 5 will have
their probabilities summed. To obtain the minimum value, only cells in which Z must be <=

 12

5 will have their probabilities summed. For example, we consider cell . When we
calculate the maximum value for z<=5, this cell is counted because z can be <= 5 in this cell.
Nevertheless, for the minimum value, we do not count this cell because z might not be <= 5
in this cell. This way, we can find the possible range of cumulative probabilities for various
values of z, a sample of random variable Z. We can find the maximum probability and
minimum probability for every value of z, and connect all these points to get 2 curves: a left
curve and a right curve. All the CDFs that are possible for Z must belong between these two
curves.

12p

In this example, suppose Z’s range is from 3 to 9. It is clear that the probability for z<3 is 0
and for z>9 is 1. For example, consider the probability of 4≤z .

• Maximum. First, find all the cells in which this situation may occur. From the
previous table, these cells are , , and . So the maximum value is the
maximum value for the sum of , , and .

11p 12p 21p

11p 12p 21p
• Minimum. First, find all the cells in which z must be <= 4. In this table, there are

none. Although , , and may satisfy 11p 12p 21p 4≤z , they also might not. For
example, the whole probability for the cell might be concentrated at the high bound of
its range. So there is no cell in which z must be <= 4.

Summarizing the above analysis, we can define a way to tell which cells contribute to the
maximum and minimum probability values. The maximum probability is found from all the
cells in which the low bound is not greater than the value of z contribute to the max value.
The minimum probability is found from all the cells in which the high bound is not greater
than the value of z contribute to the min value.

After finding all the cells satisfying the max (or min) condition, we must calculate the sum of
the probabilities of these cells. Based on the previous table, there exist constraints for the
probabilities pij. It is clear that the sum of the pij’s in a row or column cannot go over the
marginal probability of that row or column. These constraints can be described as follows.

Row Constraints: for i=1 to 3. Yi
j

ij pp =∑
=

3

1

Column Constraints: for j=1 to 3. Xj
i

ij pp =∑
=

3

1

Therefore, the question becomes how to find the maximum and minimum value for the sum
of cells under these constraints. For the case 4≤z , we can describe these questions as
follows.

 13

Maximum - make the sum of the specified cells’ value big enough, that is, find

max (+ +) such that: 11p 12p 21p

 for i=1 to 3 Yi
j

ij pp =∑
=

3

1

and for j=1 to 3. Xj
i

ij pp =∑
=

3

1

Minimum - make the sum of specified cells’ values small enough, that is, find

min () such that: ∑∑
= =

3

1

3

1i j
ijp

 for i=1 to 3 Yi
j

ij pp =∑
=

3

1

and for j=1 to 3 Xj
i

ij pp =∑
=

3

1

For these two optimization questions, linear programming is a suitable tool to. Thus, we can
find the probability range for the specified value of z. Table 2-5 shows the probabilities for
various values of z.

From this table, we can draw two curves, a top curve and a bottom curve, using the
maximum and minimum probabilities shown for various values of z. These two curves also
can be called envelopes for the CDF of derived random variable Z because the CDF for Z
must be between these two curves whatever the dependency relationship between X and Y is.
Figure 2-1 shows the result.

 14

Table 2.5 Probabilities for result variable z.

z range Maximum probability Minimum probability

z<3 0 0

3<z<=4 0.25 0

4<z<=5 0.75 0

5<z<=6 1 0

6<z<=7 1 0.25

7<z<=8 1 0.55

8<z<=9 1 0.8

z>9 1 1

Figure 2-1 Probability Bounds for Random Variable Z.

 15

3 Narrowing the Envelopes Around Results Using Correlation

The previous chapter discussed the core DEnv algorithm. This algorithm uses linear
programming based on the row and column constraints on the pij’s. The previous chapter also
mentioned an important factor: correlation. If one knows something about correlation, it
would be good to be able to use it to narrow the separation of envelopes. We have recently
identified how to convert information about the correlation into constraints that can
supplement the row and column constraints of the core algorithm, resulting in many cases in
narrowing of the space between the left and right envelopes [Berleant and Zhang (in press)].
We describe this new augmentation to the algorithm in this chapter.

3.1 Facts about Correlation

Correlation measures the degree of correspondence between random variables. To describe
this kind of relationship, there are a number of methods. For example, we can consider many
possible relationships, such as a linear relationship between two random variables, a linear
relationship of the squares of the random variables, among other possibilities. By far the most
popular correlation coefficient is called Pearson correlation, or Pearson product-moment
correlation. It measures the strength of the linear relationship between two random variables.
It is defined as

()([])
)()(

)()(
YDXD

YEYXEXE −−
=ρ

were D(X) is the variance of X and D(Y) is the variance of Y. E is the expectation function.

The Pearson correlation has the potential range 11 ≤≤− ρ . Correlation values can be
classified into three types: (1) positive correlation, meaning there is a positive direct linear
correlation between the random variables; (2) negative correlation, meaning there is an
inverse linear correlation between the random variables; and (3) zero correlation, meaning
there is no apparent linear relationship between the random variables.

3.2 Joint Distributions

A joint distribution describes the detailed dependency between two random variables. From
the joint distribution, we can get the correlation. However, correlation does not imply a
specific joint distribution, so in general we cannot get the joint distribution from a value of
the correlation.

3.2.1 Interval-Valued Correlations

When the correlation is unknown, we use linear programming to find CDF envelopes, as
described in the previous chapter. If we know the correlation between two operands, we
would like to use that information to determine additional constraints for the linear

 16

programming problem. In another words, we wish to decrease the feasible solution space and
get a better solution.

According to the definition of correlation, for samples x and y of two random variables X and
Y, the correlation is

])([])[(
)])([(

)()(
)])([(

22 yEyEExxE
EyyExxE

yDxD
EyyExxE

−−

−−
=

−−
=ρ

where and are the means for x and y. Ex Ey

Using the following formulas, we can simplify terms:

EyExExyEyExEyExExEyExy
EyExxEyyExxyEEyyExxE

]*[)])([(
−=+−−=

+−−=−−

where Exy is the expectation of x*y. Also,

22

222

)(
**2]*2[])[(

ExEx
ExExExExExExExxExxEExxE

−=

+−=+−=−

so the previous equation becomes

))()()((
*

])([])[(
)])([(

222222 EyEyExEx
EyExExy

yEyEExxE
EyyExxE

−−

−
=

−−

−−
=ρ

Using the definition of mean, when variable x is discrete,

∑=
i

ii pxEx * where .)(ii xxpp ==

When x is continuously distributed, and has density function f, then

∫= dxxxfEx)(.

In the DEnv algorithm, we do not care if a random variable is discrete or continuous. We use
bars to discretize the distribution. This method has the following characteristics:

• Bars may overlap (this is a generalization from the previous chapter).
• Histograms are a special case of collections of bars.
• A bar describes the probability of an interval containing the value of a variable.
• No assumption is made about the distribution of the probability associated with a bar

over the interval of the bar.

 17

We now extend the definition of mean to intervals. ∑=

i
ii PXXE *)(where E(X) is the

(interval-valued) mean of a collection of intervals X={X1,...Xm}, and iii PXxP =∈)(.
The mean Ex is in E(X).

When x is continuous, we also can get the mean based on the following argument.

a b

Figure 3-1 Probability Bounds for Random Variable Z.

We consider some bar in the discretization of variable x whose distribution function is f(x).
The probability that it is in [a,b] is the area of f(x) between a and b.

∫=≤≤
b

a

dxxfbxaP)()(

We can partition the domain of variable x into many intervals such as this one, denoting them
Xi. The mean of variable x now becomes

∑∫∫ ==
i

Xi
dxxxfdxxxfEx)()(

Consider one item in the previous formula, assuming Xi is [a,b] as in the previous figure.

ibababaX
padxxfadxxafdxxxfdxxxf

i

)()()()(
],[],[],[

==≥= ∫∫∫∫ .

Similarly, we also get

. ibababaX
pbdxxfbdxxbfdxxxfdxxxf

i

)()()()(
],[],[],[

==≤= ∫∫∫∫

Therefore, must belong to Xdxxxf

iX∫)(i*pi. Thus, E(x) is in the mean of interval variable X.

 18

If the intervals overlap, the width of the mean is wider than for the non-overlapped case.
Thus, the mean of the non-overlapped intervals is a subset of that of the overlapped intervals.
Hence, E(x) belongs to mean of interval variable X in this case, too.

3.2.2 Legal and Illegal Correlation Values

In the software tool developed in this project, the user can input any value of correlation from
–1 to 1. However, for some marginal distributions, there are correlation values that will not
be exhibited by any joint distribution. In fact, the constraints derived from setting the
correlation to an impossible value should conflict with the constraints derived from the
marginals of the joint distribution matrix (i.e., the row and column constraints).

From the definition of correlation, and algebraic rearrangement, we obtain this equation for
E(xy):))()()((* 2222 EyEyExExEyExExy −−+= ρ . Let f(x,y)=E(xy), so f(x,y) is a real
function of x and y. We can rewrite E(xy) with intervals X and Y.

))((*))((

))()()((*),(
2222

2222

∑∑∑∑∑∑ −−+=

−−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii PYPYPXPXPYPX

EYEYEXEXEYEXYXf

ρ

ρ
.

This is the interval extension of the corresponding real function

))((*))((),(2222 ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ

where and . If ii Xx ∈ jj Yy ∈ ρ is an interval, it becomes another variable in function f.

3.2.3 Solution

The implemented software tool should provide a way to help the user to set a reasonable
correlation. To do this, first, the software must figure out the range of possible correlations
for the current random variables. Then, the software can display this information. It then only
accepts values intersecting with this range.

As mentioned before, there are two kinds of constraints, one coming from the marginals of
the joint distributions matrix and another coming from the correlation setting. The joint
distribution matrix marginals are assumed correct. Therefore, the constraints arising from
them are a given. If constraints coming from a correlation setting conflict with them, they
must be in error. Constraints coming from the matrix are primary and constraints coming
from correlation should be considered secondary.

Consider a joint distribution matrix for an operation ⊗ .

 19

Table 3.1 Joint distribution matrix.

 Y1 … Ym

X1 11p … mp1 1xp

… … … … …

Xn 1np nmp xnp

 1yp … ymp

We can get E(xy) as follows:

∑∑
= =

∈
n

i

m

j
ijji pYXExy

1 1

 where Xi and Yj are interval values.

Probability is the probability assigned to cell ij. We use underlining to indicate the low
bound of an interval and overlining to indicate the high bound of an interval. We can get the
bounds of E(xy) as follows:

ijp

nmmn pyxpyxpyxpyxpyxpyxpyxxyE ++++++++=)(233222222112133112211111

nmmn pyxpyxpyxpyxpyxpyxpyxxyE ++++++++=)(233222222112133112211111

From this, we get two linear programming problems:

nmmn pyxpyxpyxpyxpyxpyxpyxxyEMin ++++++++=)(233222222112133112211111

subject to:

row constraints: for i=1 to n; xi

m

j
ij pp =∑

=1

column constraints: for j=1 to m. yj

n

i
ij pp =∑

=1

nmmn pyxpyxpyxpyxpyxpyxpyxxyEMax ++++++++=)(233222222112133112211111

subject to:

row constraints: for i=1 to n; xi

m

j
ij pp =∑

=1

 20

column constraints: for j=1 to m. yj

n

i
ij pp =∑

=1

Solving these two linear programming problems, we can get the bounds of E(xy). Call these
numbers k and k . We also know that

))()()(()(2222 ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxxyE ρ

where and . ii Xx ∈ jj Yy ∈

In this equation, only ρ is an unknown range. Now the problem becomes solving for E(xy).
The minimum should be the minimum value of ρ . The maximum should be the maximum
value of ρ . Thus, the problem is transformed into finding the root range of a nonlinear
function.

3.2.4 Approximate Solution

From f(x,y)=))((
2222 yyxxyx −−+⋅ ρ , in most cases, yx ⋅ is greater than

))((
2222 yyxx −− . Therefore, we just consider yx ⋅ . It is obvious that it is an increasing

function of x and y. Assigning the minimum values to x and y, and the maximum value
possible for f(x,y), we can obtain the maximum value of ρ . Assigning the maximum values
to x and y, and the minimum value to f(x,y), we can get minimum value of ρ .

3.2.5 Additional Constraints from Correlation

When the user sets the correlation range, we know the range of every variable in equation
f(x,y). Under this situation, we can get the range of f(x,y). This range of f(x,y) is thus
controlled by the user. At the same time, we know another range for f(x,y) which is derived
from the joint distribution matrix. As previous noted, the range derived from the joint
distribution matrix is considered given. Therefore, it is always correct. The range coming
from the user must be intersected with this range. From this restriction, we can get additional
constraints for linear programming.

Since formula f(x,y) is non-linear, we use non-linear optimization to do minimization and
maximization on it. Using a penalty function transforms a constrained optimization problem
to a non-constrained problem. We also can get the first and second derivative for this
function. Call the values obtained fmin and fmax. Thus, we get f(x,y)=[fmin,fmax].

In the previous section we obtained another range for f(x,y), namely],[kk , from the joint
distribution matrix. These two ranges must intersect; otherwise, the user input is not possible.

 21

These two ranges both are intervals. If the following conditions are satisfied, these two
intervals will intersect as required:

fmax k≥ and fmin k≤ .

Since

nmmn pyxpyxpyxpyxpyxpyxpyxk ++++++++= 233222222112133112211111

nmmn pyxpyxpyxpyxpyxpyxpyxk ++++++++= 233222222112133112211111

we know fmin and fmax. Therefore, we get an additional two linear constraints for the linear
programming problems based on correlation:

≤++++++++ nmmn pyxpyxpyxpyxpyxpyxpyx 233222222112133112211111 fmax

≥++++++++ nmmn pyxpyxpyxpyxpyxpyxpyx 233222222112133112211111 fmin

3.3 Nonlinear Optimization to Remove Excess Width

From the term)()()(*)(* YEXEYDXD +ρ , we defined the corresponding function f(x,y):

))()()((*),(2222 EyEyExExEyExyxf −−+= ρ . Recall that if we replace x and y with
intervals X and Y in f(x,y), an interval function results.

Based on the rule “cancellation or reduction of the number of occurrences of a variable
before interval evaluation” for eliminating excess width, if each variable occurs only once
then evaluating an interval function cannot result in excess width. However, it is impossible
to use this rule for this function. Instead, we avoid the excess width problem by evaluating
this function in the real domain using real numbers x belonging to interval X and y belonging
to Y. We can use the minimum value and the maximum value of this real function as the way
to get bounds on the interval.

Rewrite the formula with intervals X and Y:

))()()((

))))()()())(()(()(*)(),(
2222

2222

∑∑∑∑∑∑ −−+=

−−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii PYPYPXPXPYPX

YEYEXEXEYEXEYXf

ρ

ρ

The corresponding real function is

))()()((),(2222 ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ

 22

Here and . If ii Xx ∈ jj Yy ∈ ρ is an interval number, it becomes another variable for
function f.

Obviously, f(x,y) is a non-linear function. We use non-linear optimization to figure out the
minimum and maximum. However, this optimization question is restricted to a special
region, the intervals for the xi’s and yj’s.

3.4 Improving Results by Adding Constraints to LP

Based on the above discussion, we get another two constraints for LP after calculating the
interval k. From the joint distribution matrix in the following table,

Table 3.2 Joint distribution for X and Y.

 […] … […] X
[…] 11p … np1 1px
… … … … …
[…] 1mp … mnp mpx
Y 1py …. npy 1

we get the LP model:

Minimize ∑

Ω∈

=
ji

ijpZ
,

subject to:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

==
≥≥≥

==

==

∑∑

∑
∑

1)(,1)(
,0)(,0)(,0

...1,)(

...1,)(

ji

jiij

i
jij

j
iij

ypxp
ypxpp

njypp

mixpp

To these we add the two constraints implied by the correlation. When the two constraints,

kpa ijij =∑ and kpa ijij =∑ , are added to the LP, the transportation simplex method

cannot handle this augmented model because we cannot put these two constraints into the
balanced transportation tableau.

Therefore, we use the traditional simplex method to solve the problem. The speed of
calculation is very important. This is discussed later.

 23

3.5 Simplex Method

Consider the standard LP question:

Min CXZ =

Subject to: , and for i=1 to n. bAX = 0≥ix 0≥ib

Here is a row vector, is a column vector.),...,(1 nccC =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nx

x
X ...

1

),...,(1 nPPA = and

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mi

i

i

a

a
P ...

1

. Therefore, A is an m*n matrix and is a column vector.
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mb

b
b ...

1

We can transform the maximization problem to a minimization problem through the
following approach.

Max Ù Min CXZ = CXZY −=−=

The constraints are unchanged.

Based on the simplex method, A is split into ()NB AA . has the coefficients for the basic
variables (assuming there are m basic variable from to), and has the coefficients

for the non-basic variables (from to). X is also separated into .

BA

1x mx NA

1+mx nx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

N

B

X
X

As a result, AX=b becomes . () b
X
X

AA
N

B
NB =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

bXAXA NNBB =+ **

)*(*1
NNBB XAbAX −= −

Here means the inverse matrix of . In other word, where 1−

BA BA IAA BB =−1* I is the unit

matrix. For example,
100
010
001

 is a 3*3-unit matrix.

 24

Thus, the objective function becomes

NNBBNBB

NNNNBB

NNBB

N

B
NB

XAACCbAC

XCXAbAC

XCXC
X
X

CCXCZ

)(

)(*

**

)(

11

1

−−

−

−+=

+−=

+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

Here is an example.

Minimize 54321 373 xxxxxz ++−−=

Subject to:
⎪
⎩

⎪
⎨

⎧

=≥
=+−+−

=+−+−

5...1,0
85

2021345

54321

54321

ix
xxxxx

xxxxx

i

Here ()13713 −−=C , ,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nx

x
X ...

1

11511
121345

−−
−−

=A and . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

8
20

b

If we assume and are the basic variables, we get , 1x 2x
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

5

4

3

2

1 ,
x
x
x

X
x
x

X NB

() ()
115
1213

,
11
45

,137,13
−
−

=
−
−

=−=−= NBNB AACC . We also get

6/56/1
3/23/11

−
−

=−
BA , .)(1

2

1
NNBB XAbA

x
x

X −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

The following discussion is based on the previous definition and equations, and in part on
Qian and Murty [1985].

3.5.1 How to Find the Initial Feasible Solution

For the standard LP question, if you can find a unit mm × matrix in A, you let this matrix
be by multiplying one row by a constant and adding it to another row, repeating as
needed. Set (non-basic variables) to zero (that is all equal 0). Then,

 because since A is a unit matrix, as is .
Then, is a feasible solution, although it is probably not the optimal
solution.

BA

NX nmm xxx ,...,, 21 ++

bbIbAXAbAX BNNBB ===−= −− **)(11 1−A
)...1(,0 mibx ii =≥=

 25

If you cannot find a unit matrix, you can choose a sub-matrix () of A which is
nonsingular (meaning that the determinant of the matrix does not equal zero and the rank of
the matrix is m), and every of is not less than 0. Under this condition, it is a
feasible solution.

mm ×

ix bAX BB *1−=

However, frequently, it is necessary to add artificial variables. To , we add the

artificial variables , and revise the equation to

bAX =

0...
1

≥
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

my

y
Y bIYAX =+ . In the objective

function, the coefficients of Y should be very large positive real numbers so that the
minimization objective function will be unaffected by artificial variables Y. Yet we can still
use Y as the initial feasible solution. Importing the artificial variables just provides a
convenient way to get an initial feasible solution.

3.5.2 How to Decide the Termination Condition and Entering Variable

Now consider optimization of Z. Let . Here is the
coefficient of and describes the coefficient of a non-basic variable in the objective
function.

),...,(1
1

mnNBBN wwAACCW −
− =−= iw

imx +

If we want to make smaller,
we must hope to find the negative elements of W because all elements of are positive.
From this discussion, we can derive the termination rule for an iterative optimization process.

NBBNNBBNBB WXbACXAACCbACXCZ +=−+== −−− 111)(*

NX

• If every element of W is not less than 0, then the current solution is optimal. iw
• If at least one element of W is negative, we continue to search for the optimal

solution.

Let . This means if every non-basic variable changes by the same
factor, value will have the maximum effect in minimizing the value of Z.
Therefore, let non-basic variable be the entering variable (entering the basic variable set
from non-basic variable set).

)0|min(<= iik www

kmk xw +*

kmx +

If , there is no solution (k is the entering variable index, and , belonging to

, is the coefficient for non-basic variable).
01 ≤+

−
kmB PA kmP +

),...,(1 nmN PPA += kmx +

Proof:

From , assuming the entering variable does not equal 0 and
other non-basic variables still equal 0, let equal

)*(*1
NNBB XAbAX −= −

kmx +

kmx + α and be greater than 0. Then

 26

kmBB

kmkmBB

n

m

nmBB

NNBBB

PAbA

xPAbA

x

x
PPAbA

XAAbAX

+
−−

++
−−

+

+
−−

−−

−=

−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

−=

11

11

1

1
11

11

*

*

...),...,(*

**

α

Because , still are greater than 0, and 01 ≤+

−
kmB PA BX 0=NX except for α=+kmx .

Therefore, it is a feasible solution. Consider the objective function:

α*

...),...,(

)(

1

1

1
1

11

kBb

n

m

mnBb

nNBbnBb

wbAC

x

x
wwbAC

XAACCbACZ

+=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=

−+=

−

+

−
−

−−

Because is less than 0, if kw +∞→α , −∞→Z .

Therefore, there is no minimum value for the objective function.

Here is an example:

Minimize 21 xxz −−=

Subject to:
⎪
⎩

⎪
⎨

⎧

=≥
=+−

=++−

4...1,0
2

42

421

321

ix
xxx

xxx

i

We choose and as basic variables. Then 2x 4x
11
01

−
=BA ,

01
12−

=NA , ()01−=BC

and . ()01−=NC
11
011 =−

BA , so ()131 −=−= −
NBBN AACCW . We can choose as

the entering variable. We get

1x

0
1
2

1
2

11
01

1
1 <⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=− PAB . Now let equal 1x 0>β . So

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−= −−

1

1
1

3

111

6
24

1
2

6
4

01
12

11
01

6
4

*
x
x

x
x
x

XAAbAX NNBBB

 27

Here is a feasible solution if . But BX 01 ≥x

() 111
2

1 34)24(11 xxx
x
x

Z −−=+−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= . If ∞→= β1x , then −∞→Z . Thus, there

is no minimum value for Z.

Based on the previous discussion, three conditions can occur during the iterative procedure.

• A solution is found.
• Continuing to search for a solution that minimizes Z.
• No minimization solution is found.

3.5.3 How to Determine the Leaving Variable

Let be a feasible solution. Thus, BX bXA BB =* . Here ()mB PPA ...1= . We know is
nonsingular, so to are the independent vectors. The other vectors to are
linearly dependent on to . Therefore, we can get

BA

1P mP 1+mP nP

1P mP

∑
=

++ =
m

i
ijmijm PP

1
, *α

=> 0...*),...,(

,

,1

1 =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

+

+

+

jmm

jm

mjm PPP
α

α

From , we get bXA BB =*

() bXPP Bm =*...1 .

Let β a positive real number. Then

0)),...,(*),...,((*),...,('
,,111 =−+ +++ jmmjmmjmBm PPPXPP ααβ

=> . 0)),...,((*),...,('
,,11 =+− +++ jmjmmjmBm PXPP βααβ

Let replace a variable in . We can get a new feasible solution if we set suitable values
for X and ensure . We can get a suitable solution from the previous formulation by
setting the new to . We will let one element that equals 0 to be
replaced by . To assure the other variables in stay positive, choose a suitable

jmx + BX
0≥ix

BX '
,,1),...,(jmmjmBX ++− ααβ

jmx + BX β . Let

jml

l
jmi

jmi

i xx

+
+

+

=>=
,

,
,

)0|min(
α

α
α

β .

This implies that is the leaving variable and entering variablelx
jml

l
jm

xx
+

+ =
,α

.

 28

Now we can apply this result. Based on

jmBjmB

NNBB

NNBB

PAxbA

XAAbA

XAbAX

+
−

+
−

−−

−

−=

−=

−=

11

11

1

*

*

)*(*

We know is the entering variable. Determine the leaving variable by choosing the
minimum

jmx +

β using the equation

ljmB

lB
ijmB

ijmB

iB

PA
bA

PA
PA

bA
)(

)(
)0)(|

)(
)(

min(1

1
1

1

1

+
−

−

+
−

+
−

−

=>=β .

This implies that the leaving variable is . lx

3.5.4 Decreasing the Computational Cost

The simplex method is a good way to solve linear programming, but can take considerable
computing resources.

From the previous discussion, we can see the main complexity problem focuses on the
inverse matrix . If we can find a better way to compute it, we can get better efficiency. A
relatively straightforward approach is to find the relationship between the two ’s in the
closing steps. If we can use the previous to speed computing the next , it will help. If
the original , the new is

BA

BA

BA BA
()mB PPA ...1= BA ()mlkmlB PPPPPA 111 ++−= .

There is only one different column so the coefficient of the leaving variable is replaced by
that of the entering variable. We can guess there is a relationship between these two .

From , , and basic variable is

replaced with , and . Then .

BA

bAX old
B

old
B

1−
= bAPAxbAX new

Bkm
old
Bkm

old
B

new
B

111 * −

+

−

+

−
=−= lx

kmx + CAA old
B

new
B =

1111 −−−−
== old

B
old
B

new
B DAACA

Therefore, if we can find D, the inverse of C, we will speed computing the inverse of .
From the relationship of the original and new , nd

. Here , i=1…m (i refers to the ith element of the vector
). We note that

BA

BX limiaxxx ik
new

km
old
i

new
i ≠=−= + ,...1, a

lk
old
l

new
km axx /=+ ikmik PBa)(1

+
−=

kmPB +
−1

 29

),..,,,,...,(111 mll eeEkeeD +−= and , and only element of i row is 1, while the others

are 0. .

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0
...
1
...
0

ie

'
)1()1(1)/,..,/,/1,/,...,/(lkmklkkllklkkllkk aaaaaaaaaEk −−−−= +−

This way, the previous inverse matrix is used to calculate the new inverse matrix. Sposito
(1989) gives a similar description of this method.

3.5.5 Applying the Method

For our case:

Min CXZ =

subject to: and X>=0. bAX =

Using artificial variables , the equation becomes
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

+

+

mn

n

av

x

x
X ...

1

bIXAX av =+ . Let Con be a

very large positive real number based on the Big-M method so that the objective function
becomes . () avXConCXZ 1...1*+=

Based on the previous discussion, X are non-basic variables. equals I. It is easy to
compute. It is not needed to calculate the inverse matrix. But artificial variables are in the
objective function and must be removed. If an artificial variable is removed from the basic
variables, it will be removed from the objective function. This means the coefficient of the
artificial variable becomes zero instead of one. After changing the coefficient of an artificial
variable to zero, the artificial variable is in effect not present. When the optimum is reached,
the coefficients of the artificial variables must be zero. Otherwise, there is no optimum.

BA

3.5.6 An Example

Minimize 321 23 xxxZ +−=

subject to:
⎪
⎩

⎪
⎨

⎧

=≥
=+−

=+−

3,2,1,0
1242

723

21

321

ix
xx

xxx

i

Solution is found since using artificial variables and for an initial feasible solution. 4x 5x

 30

The problem changes to:

minimize)(*23 54321 xxMxxxZ +++−=

subject to:
⎪
⎩

⎪
⎨

⎧

=≥
=++−

=++−

5,...,1,0
1242

723

521

4321

ix
xxx

xxxx

i

To remove the effects of the artificial variables, we set the coefficient M of the artificial
variables in the objection function to a very large real number, such as 100,000.

Iteration 1:

()10000100000231 −=C , . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12
7

b ()321042
213

PPPA =
−

−
= . . IAB =0

Variables and are the basic variables. 4x 5x AAN = .

() ()

() () (19999830000399999200000300000100000231
042
213

1000001000002311

−−−=−−=

−
−

−−=−= − IAACCW NBBN

)

As a result, is the entering variable. In the next step, the leaving variable is determined. 2x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

12
71bAB , . Thus the leaving variable is . ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
=−

4
1

2
1PAB 5x 4=lka .

Therefore, . We get)4/1,4/1(=kE
4/10
4/111011 ==

−−

BB EAA .

Iteration 2:

Now and are basic variables, and is discarded. 4x 2x 5x ()100000231 −=C .

02
23

−
=NA

() ()

() () ()1999985.2500002000005.25000121
02
23

4/10
4/11

3100000211

−−=−=

−
−−=−= −

NBBN AACCW

As a result, is the entering variable. 1x

 31

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

3
101bAB , . Thus, the leaving variable is . ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−

5.0
5.2

1
1PAB 4x 5.2=lka .

Therefore, . We get)5/1,5/2(=kE
10/35/1
10/15/21112 ==

−−

BB EAA .

Iteration 3:

Now and are basic variables, and is discarded. 1x 2x 4x ()231 −=C . . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
2

NA

() ()

.4.2)5/2(2
0
2

10/35/1
10/15/2

3121

=−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−= −

NBBN AACCW

The optimal solution becomes:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

5
41

2

1 bA
x
x

X BB , . () 11
5
4

31 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== BB XCZ

3.6 Nonlinear Optimization

In most cases, there is a function f(x), called the objective function, which belongs to ,
meaning that the function f(x) has a second derivative. We want to find the minimum or
maximum value of f(x). We can describe this question as follows:

2C

)(min xf

x

Subject to:
 nRx ∈
where nR is the n-dimension real domain.

For the maximization question, we convert it to the minimization problem according to the
following formulation:

))((min)(max xfxf
xx

−−=

Now only the minimization question needs to be addressed.

In this case, the variable x belongs to the n-dimension real domain. The number of
dimensions may vary from 1 to n. This kind of minimization problem is called unconstrained
optimization.

 32

If any constraints are applied to the variable x, we have the following situation:

)(min xf
x

The p equality constraints are: 0)(=xei for i=1,2…p
 and the q inequality constraints are: for j=1,2,…q. 0)(≥xw j

This is a constrained optimization.

All points x satisfying all the constraints are feasible and all others are non-feasible. All
feasible x’s form the feasible region. All non-feasible x’s form the non-feasible region. For
unconstrained optimization, the feasible region is the real domain.

3.6.1 Local and Global Optimums

A local maximum is a point in the feasible region that is higher than all other points within its
immediate vicinity, but not necessarily the whole feasible region. The global maximum is the
maximum for the whole feasible region. The following figure illustrates local optimums:

Local minimum

Local maximum

Figure 3-2 Local Optimums.

This figure illustrates the following points about the global and local optimums.

• There may be more than one local optimum for the function and their values perhaps
are not the same.

• The global optimum must be a local optimum.
• A local optimum may be the global optimum.
• It is possible that there is more than one global minimum or maximum, if the function

values are the same.
• The global optimum is the best of all the local optimums and is the solution for the

problem.

 33

3.6.2 Classical Theory of Unconstrained Optimization

Given a function f(x), for vector x, and assume all the first derivatives
ix

f
∂
∂ exist at all points

in the domain of f.

A necessary statement for a minimum of f(x) is:

0...
21

=
∂
∂

==
∂
∂

=
∂
∂

nx
f

x
f

x
f .

The condition “necessary” means that where the function is at a minimum, the equation
holds. A sufficient condition also must be stated. A sufficient condition for a point to be a
minimum of f(x) is that the second derivatives of function f(x) exist at the optimum point and
Di > 0.

2

2

1

2

1

2

2
1

2

.........

...

ii

i

i

x
f

xx
f

xx
f

x
f

D

∂
∂

∂∂
∂

∂∂
∂

∂
∂

=

When the derivatives of the function f(x) are discontinuous, the classical theory is not fully

applicable.

3.6.3 Finding a Solution Iteratively

Almost all numerical optimizations methods use iterative techniques. They start at an initial
point x0 and proceed by generating a sequence of points x1,…xm (each xi is an n-dimension
vector). Let . Then, the minimum of f(x) is approached more closely with each
iteration. Clearly, the choice of x

)()(1 ii xfxf ≤+

0 is very important.
Defined by , diiii sdxx +=+1 i is a direction vector for finding the next x and si is the step size
or distance to move. Here, a suitable choice of direction di is very important. How to search
for the next x is an important issue. Typically, methods are classified into two classes: direct
search and gradient methods.

3.6.4 Search Methods: Direct and Gradient

Direct search methods do not require the explicit evaluation of any derivatives of the
function, but rely solely on values of the objective function f(x) and information gained from
earlier iterations. Some use function values to obtain numerical approximations of the
derivatives.

 34

Gradient methods select the direction using the values of the derivatives of the function f(x).
Usually, these methods use first order derivatives.

3.6.5 Converting Constrained to Unconstrained Optimization

For constrained optimization problems, it can be useful to make use of unconstrained
optimization methods. Thus, converting to an unconstrained optimization problem is the first
task. Many methods have been developed for transforming the optimization problem. The
following methods are widely used:

1. Transfer functions

2. LaGrangian multipliers

3. Penalty functions.

3.6.5.1 Transfer Functions
Its basic idea is to extend the restricted feasible region to the whole real domain. For
example, to minimize f(x), subject to x>a, we can define a new variable y. Let

2yax +=
Using this equation, we can convert f(x) to f(y), and then minimize f(y). Here variable y does
not have any restriction. Thus, this is now an unconstrained optimization problem.

3.6.5.2 LaGrangian Multipliers
This is a very common method for transforming optimization problems. If a minimization
problem has many equality constraints

 for i=1,2…p 0)(=xei

A new objective function to minimize can be defined with a new variable λ

 .

∑
=

+=
p

j
jj xexfxh

1

)()(),(λλ

 35

For the first derivatives of this function,

∑
= ∂

∂
+

∂
∂

=
∂

∂ p

j i

j
j

ii x
xe

x
xf

x
xh

1

)()(),(λλ =0

0)(),(
==

∂
∂ xexh

j
iλ
λ

The solution will satisfy the constraints 0)(=xei .

For the inequality constraints

 for j=1,2,…q 0)(≥xw j

we can introduce new variables called slack variables, . Let qnn xx ++ ...1

0)(2 ≥= + jnj xxw .

Now we can transform the inequality into equality:

 0)(2 =− + jnj xxw

Using this method, we can handle the constrained optimization problem.

3.6.5.3 Penalty Functions
The basis for the penalty function method is to define a new objective function such as:

))(()()(xcpxfxh +=

where f(x) is the original objective function, and p(c(x)) is the penalty function based on the
equality and inequality constraints.

For a minimization problem, the main point is to choose the penalty function to make sure
that it is zero for all feasible points and is very high for all non-feasible points. Then, the
minimum of h(x) is equivalent to the minimum of f(x).

 36

3.6.6 Our Case

For our problems, the optimization question is defined as follows:

Find the minimum and maximum of function

2222)(()((),(∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ

subject to:
 uxl ≤≤
 pys ≤≤

where , ,)...(1 nlll =)...(1 nuuu =)...(1 msss = and)...(1 mppp = . , , and are real il iu is ip
numbers, not infinity. This kind of question is called box-constrained optimization or bound-
constrained optimization.

We only discuss the minimization problem. For maximum problems, we can use the previous
formulation to convert them to minimization problems.

Next, we need to convert the problem to an unconstrained optimization. We use the three
methods introduced previously.

3.6.6.1 Transfer Function
The constraints for variable x and y are uxl ≤≤ , and pys ≤≤ . This means that x lies
between l and u, and y lies between s and p. so we need to introduce a new variable to replace
x and make sure x satisfies the constraint.

Defining

 , and ululx 2sin)(−+= vspsy 2sin)(−+=

we will get the new objective function .),(vuf

For this function, y belongs to the whole real domain, so it is unconstrained. But this function
is very complicated. It is tricky use the first derivative to get the solution because y has many
solutions.

3.6.6.2 LaGrangian Multipliers
For , uxl ≤≤ pys ≤≤ , we can convert to:

, , , and 0≥− lx 0≥− xu 0≥− sy 0≥− yp .

 37

Using the previous methods, we can get a new objective function. But this method introduces
many slack variables and equalities. To solve these equalities is costly.

3.6.6.3 Penalty Function
We will design a suitable penalty function. Based on the constraints, we introduce this
penalty function:

),,...,...,,,,,...,...,,,0max(*)(11111111 mmmmnnnn pyyspyysxxlxxlxp −−−−−−−−= µµλ

Here, λ will be chosen as a very large positive real number. So the new objective function is
),(),(),(yxpyxfyxh += .

From this function, we see that if uxl ≤≤ , and pys ≤≤ , then x and y belong to the
feasible region and h(x,y) equals f(x,y), but if constraints are violated, h(x,y) will become very
large, clearly far from the minimum value.

3.6.6.4 Search Method
Our objective function has a good attribute; both the first derivatives and second derivatives
exist. As a result, gradient search (Luenberger, 1984, pp. 384) can be applied to our case.
Furthermore, gradient searching methods provide efficient direction information in searching
for the next x. In view of the previous discussion, gradient search is used in our case.

3.6.6.5 Solution
Find the minimum value of function f(x), stated by

Min))()()((),(2222 ∑∑∑∑∑∑ −−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii pypypxpxpypxyxf ρ

subject to:

uxl ≤≤
pys ≤≤

where , ,)...(1 nlll =)...(1 nuuu =)...(1 msss = and)...(1 mppp = . , , and are real
numbers, not infinity.

il iu is ip

We use a penalty function to convert this problem to an unconstrained problem. The new
objective function h(x,y) is constructed as:

),,...,...,,,,,...,...,,,0max(*),(),(11111111 mmmmnnnn pyyspyysxxlxxlyxfyxh −−−−−−−−+= µµλ

Thys, the problem is to find the minimum value for function h(x,y). For this unconstrained
optimization problem, the iterative technique is adopted. First, we define some terms:

 38

∑=
n

i
xii pxx

∑=
m

j
yjj pyy

.

22)(∑∑ −=
i

xiixiix pxpxD

22)(∑∑ −=
j

yjjyjjy pypyD

yxxy DDD *=

Now we get the first derivative of h(x,y) through f(x,y) and penalty function p(x,y).

)22(**** 2
12/1

xixiiyxyxi
i

pxpxDDyp
x
f

−+=
∂
∂ −ρ

)22(**** 2
12/1

yjyjjxxyyj
j

pypyDDxp
y
f

−+=
∂
∂ −ρ

2/1
xyDf

=
∂
∂
ρ

⎪
⎩

⎪
⎨

⎧

−−−−−−−−=−−
=

∂
∂

i

i
i l

x
x
p

λ
λ −−−−−−−−=−

),,...,...,,,,,...,...,,,0max(
),,...,...,,,,,...,...,,,0max(

0

11111111

11111111

mmmmnnnni

mmmmnnnni

pyyspyysxxlxxlx
pyyspyysxxlxxlu

others

µµ
µµ

⎪
⎩

⎪
⎨

⎧

−−−−−−−−=−−
−−−−−−−−=−=

∂
∂

),,...,...,,,,,...,...,,,0max(
),,...,...,,,,,...,...,,,0max(

0

11111111

11111111

mmmmnnnnjj

mmmmnnnnjji
j pyyspyysxxlxxlys

pyyspyysxxlxxlpy
others

y
p

µµλ
µµλ

Along the direction determined by the derivatives, the next x and y are defined. Through
iteration, the numerical solution can be found.

Next, finding the maximum value of function f(x),

Maximize),(yxf

subject to:

uxl ≤≤ ,
pys ≤≤ .

Based on the formulation)),((min),(max yxfyxf

xx
−−= , we can transform this problem to:

 39

Minimize),(yxf−

subject to:

uxl ≤≤
pys ≤≤

Using the previous method, we can get the minimum value fmin, and negate to get the
maximum value of f(x), –fmin.

 40

4 Enhancement of Functions

Advances in the technique were required in order to meet the needs of the problems in the
electric power domain that we have been addressing. The following extensions and
augmentations were developed for this purpose.

• Use of the transportation method to speed linear programming
• Cascading operations to support more than two variables
• Relational operations
• Evaluation of f(x,y) for monotonic functions f

4.1 Transportation Method

In the previous version, only the standard simplex method is provided to solve linear
programming. This method is much slower than that of the transportation simplex method.

4.1.1 Background on the Transportation Simplex Method

Many companies need to determine how to optimally transport goods from different
warehouses to different destinations. Isomorphic problems are found in other situations
unrelated to transportation, such as the assignment problem and production scheduling.
[Hillier and Lieberman, 2001] give background information.

4.1.1.1 Model
In general, this kind of problem involves two different types of location: sources and
destinations. Sources supply some resource and destinations accept it. Costs for transferring
resources between each source and destination may be different. The aim is to minimize the
total cost to transfer resource from these sources to those destinations. In most cases, the total
supply for all sources is equal to the total demand for all destinations. If we have M sources,
N destinations, the supply at source i is Si, and the demand at destination j is Dj, we have that

. Let C∑∑
==

=
N

j
j

M

i
i DS

11
ij be the unit cost of moving resources from source i to destination j.

Table 4.1 displays the relationship between sources and destinations.

We can describe this mode as a standard linear programming problem.

min
∑∑

= =

=
M

i

N

j
ijij xCZ

1 1

Subject to:

i

N

j
ij Sx =∑

=1 for i=1 … M

 41

j

M

i
ij Dx =∑

=1 for j=1 … N

and for all i and j. 0≥ijx

Table 4.1 Parameter table for transportation model.

Cost per unit distributed

Destination

Source

1 2 3 …… N

Supply

1 C11 C12 C13 NC1 S1

2 C21 C22 C23 NC2 S2

……

M 1MC 2MC 3MC MNC MS

Demand D1 D2 D3 ND

If total supply is not equal to total demand, it is called an unbalanced model. For these cases,
we can use dummy sources or destinations to make the model balance. If total supply is
greater than total demand, we can create dummy destinations to demand extra resources and
set the unit cost from each source to any dummy destinations to be very small. This way,
extra resources will be transferred to dummy destinations. If total supply is less than total
demand, we make up some dummy sources and set the unit cost from each dummy source to
any destinations to be very large. If these unit costs are large enough, no destination will
want to get resources from these dummy sources. As a result, the solution will be for
resources from actual sources rather than dummy sources.

4.1.1.2 Solution
The transportation problem is a special type of linear programming problem. We can use
general methods for linear programming such as the simplex method. If the simplex method
is used, the simplex tableau will be complex and consists of M+N+1 rows and (M+1)(N+1)
columns. To handle this will require much computation.

For this special type of linear programming problem, there is an efficient method called the
transportation simplex method. This method uses a tableau, but it only has M rows and N

 42

columns. It is not necessary to use artificial variables to get an initial solution. It has just
M+N-1 basic variables (not M+N), so a degree of freedom will be removed.

To solve transportation problems, generally two steps are necessary.

Step One: Initialization to get an initial basic feasible (BF) solution. There are 3 common
methods for this step.

• Northwest corner rule
• Russell’s approximation method
• Vogel’s approximation method
•

Russell and Vogel’s methods consider costs in generating an initial solution. The solutions
are better than for the Northwest corner method. Hillier and Lieberman (2001) compare these
three methods.

Step Two: Optimality testing. In this step, every solution is a feasible solution. Our aim is to
find the best solution. The DEnv algorithm incorporates a loop to do the following.

• Get the two variables ui and vj from each basic variable’s equation (Cij=ui+vj).
• Calculate the related cost CCij of each non-basic variable according to CCij=Cij-ui-vj.
• Get the entering non-basic variable, the one with the minimum CCij of all non-basic

variables with negative CCij.
• Determine whether the solution is optimal. If all CCij are not less than 0, the solution

is optimal.
• Get the leaving basic variable. This is done in a loop whose calculations use the

entering non-basic variable and other basic variables. This loop identifies the cell
whose assigned flow is the minimum and whose order to the entering cell is odd. This
cell will be the leaving variable.

• Adjust the flow of the loop. For all the cells adjacent to the entering cell or an odd
distance from it in the loop, subtract the minimum flow and for all cells an even
distance, add the minimum.

• Get the new basic variable set, marking the entering cell basic variable and the
leaving cell non-basic variable. Begin the loop again from step 1.

4.1.2 Exceptions in Finding the Initial Solution

Handling degeneracy when it occurs is important in finding the initial solution in a
transportation simplex problem. Degeneracy means there are not enough basic variables in
the initial feasible solution, such as when there are 5 basic variables for 2*3 tables. In fact,
maybe only 4 variables are found for some initialization methods for some problems. This
situation occurs when there are too many choices for which ones are basic. The northwest
corner method does not have this kind of problem. This method always can find enough basic
variables, although values of some of them may be zero. But Russell’s method will have this
kind of problem for some cases. Usually, the initial solution found by Russell’s method is

 43

closer to the optimal solution than that found by the northwest corner method. Thus,
computing time is less for Russell’s method. Therefore, there is a tradeoff.

4.1.3 Adaptation to the Unknown Dependency Case

For the unknown dependency case, the marginal distribution table for variables X and Y is
really a transportation tableau. Here you can consider X as the sources and Y as the
destinations. The total supply is one and total demand is one. Next, we use an example to
illustrate this situation.

Example:

X distribution: P([0,1]) = 0.2, P([1,2]) = 0.2, P([2,3]) = 0.2, P([3,4]) = 0.4.

Y distribution: P([1,2]= 0.25, P([2,3]) = 0.25, P([3,4]) = 0.2, P([4,5]) = 0.3.

Consider X+Y for the case of unknown dependency. We get the joint distribution tableau
shown in Table 4.2.

Table 4.2 Marginal distribution.

 X
Y

[0,1] [1,2] [2,3] [3,4] Prob.

[1,2] [1,3]
p11

[2,4]
p12

[3,5]
p13

[4,6]
p14

0.25

[2,3] [2,4]
p21

[3,5]
p22

[4,6]
p23

[5,7]
p24

0.25

[3,4] [3,5]
p31

[4,6]
p32

[5,7]
p33

[6,8]
p34

0.2

[4,5] [4,6]
p41

[5,7]
p42

[6,8]
p43

[7,9]
p44

0.3

Prob. 0.2 0.2 0.2 0.4 1

The next question is how to assign the distribution to p11 …p44 to give some subset a
maximized probability. For example, to find the upper bound for X+Y at 1 (the previous
chapter discussed finding the subset), we get the linear programming problem

Maximize f=p11

subject to:

p11+p12+p13+p14 = 0.25

p11+p21+p31+p41 =0.2

 44

To find the upper bound for the CDF at 2, we get the problem

Maximize f=p11+p12+p21

subject to:

p11+p12+p13+p14 = 0.25

p11+p21+p31+p41 =0.2

For every point in the support of the result distribution, we will get a linear programming
problem. Through solving these problems, the upper bound of the CDF will be obtained.

The low bound of the CDF is found similarly. To speed finding the solution, we use the
transportation method to solve these linear programming problems.

From the previous example, it can be seen that these linear programming problems use
transportation tables. However, it is necessary to maximize the value of the objective
function rather than minimize it, as in real transportation problems. To solve these problems,
we use negation to transform a goal of maximization to one of minimization. The Cij’s are
important in transforming the problems. For the objective function, Cij must be 1, 0, or -1. To
transform the problem from one of maximization to one of minimization, use Cij=-1 for all
items that will contribute to the objective function, with others zero. For the previous two
cases we will get:

Minimize -f=-p11

subject to:

p11+p12+p13+p14 = 0.25

p11+p21+p31+p41 =0.2

C11 = -1, other Cij=0

Minimize -f=-p11-p12-p21

subject to:

p11+p12+p13+p14 = 0.25

p11+p21+p31+p41 =0.2

C11=C12=C21=-1, other Cij=0

 45

This illustrates a way to transform an unknown dependency case to a transportation problem.

It includes two steps:

• get the transportation table from the marginal distribution table; and
• set the cost attribute for cells contributing to the objective function to –1, and set

other cells’ cost to zero.

Because the balance of supply and demand is a basic requirement for the transportation
problem, we must keep marginal sum of X and Y equal to 1, and the same for Y.

4.1.4 Test Result

Consider an example:

X, p([0,0.333])=0.2, p([0.333,0.667])=0.4, p([0.667,0.999])=0.4
Y, p([0,0.5])=0.5565437, p([0.5,1])=0.4434564.

Consider X+Y under the unknown dependency condition.

Table 4.3 Lower bound.

Result interval Simplex Transportation
[-0.25,0.833] -1.490116E-08 0
[0.833,1.167] -1.490116E-08 0
[1.167,1.333] 0.1565436 0.1565437
[1.333,1.5] 0.2 0.1999999
[1.5,1.667] 0.5565436 0.5565436
[1.667,2] 0.6 0.6
[2,2.25] 1 1

Table 4.4 Upper bound.

Result interval Simplex Transportation
[-0.25,0] 0 0
[0,0.333] 0.2 0.2
[0.333,0.5] 0.5565437 0.5565437
[0.5,0.667] 0.6 0.6
[0.667,0.833] 07565437 07565438
[0.833,1.167] 1 1
[1.167,2.25] 1 1

 46

For this example, we obtain almost the same answer with both methods.

4.2 Cascading Operations

Previously, the DEnv algorithm only supported binary operations (two operands). But in real
applications, there are often over 2 operands to be calculated, for example, x+y+z,
Max(x,y,z), etc.

Association may be used to solve many such problems. For example, for x+y+z, we can first
calculate x+y, and save the result to temporary variable w=x+y, then calculate w+z.
However, the operation must support association and commutation.

To extend DEnv to handle cascaded operations, the following capability was added: the CDF
envelopes for the result of two variables’ operation were converted into a marginal of a joint
distribution tableau, call it w, for use in the second step of the solution process. Thus, we
need to be able to convert CDF envelops to a set of intervals and associated probabilities.

4.2.1 Solution

This section describes how to transform upper and lower envelops into a set of intervals and
associated probabilities. The probability of each envelope is its top-to-bottom height. For
example, four intervals will be obtained from the following CDF envelopes.

Figure 4-1 Converting CDF Envelopes to a Set of Intervals and Associated Probabilities.

Figure 4-1 shows the CDF envelopes resulting from an operation on two variables. Figure 4-
2 shows the procedure to calculate using multiple operands (e.g., x + y + z). First, we get the
result of x + y. This is shown in Figure 4-3. Then that result is loaded as a new operand (top
panel above) and operates on it and z, which is shown in the middle panel. Figure 4-4 shows
x + y + z.

 47

Figure 4-2 Result for Operation.

Figure 4-3 Result for x+y.

 48

Figure 4-4 Result for x+y+z.

4.3 Relational Operations

Relational operations describe the relationship between two operands. DEnv handles these
operations if the operations are defined to return a numerical value. We have used the value 1
(or [1,1]) to indicate the statement is true, 0 (or [0,0]) to indicate it is false, and the interval
[0,1] to indicate uncertainty about whether it is true or false. The software implementation
supports these four relational operations: >, >=, <, and <=.

4.3.1 Relational Operations on Intervals

Consider two real numbers x and y. We define the interval value to describe the relationship
between x and y. The value [0,0] indicates that the relationship is false. The value [1,1]
indicates the relational operation is true. The value [0,1] means the value of the relational
operation is not determined or is uncertain.

For interval A, A-left means the left (or low) bound of A, and A-right means the right (or
high) bound. Now consider two intervals A and B.

⎪
⎩

⎪
⎨

⎧
−≤−

−>−
=>

otherwise
leftBrightA

rightBleftA
BA

]1,0[
]0,0[
]1,1[

⎪
⎩

⎪
⎨

⎧
−<−

−≥−
=≥

otherwise
leftBrightA

rightBleftA
BA

]1,0[
]0,0[
]1,1[

 49

⎪
⎩

⎪
⎨

⎧
−≥−

−<−
=<

otherwise
rightBleftA

leftBrightA
BA

]1,0[
]0,0[
]1,1[

⎪
⎩

⎪
⎨

⎧
−>−

−≤−
=≤

otherwise
rightBleftA

leftBrightA
BA

]1,0[
]0,0[
]1,1[

4.3.2 Relational Operations on Random Variables

Consider two random variables X and Y. We consider P(X>Y). In the DEnv algorithm,
random variables X and Y are split into intervals that are assigned probabilities. Therefore,
operation X>Y is transformed into a series of interval operations. Here is an example.

Table 4.5 Distribution for X and Y.

 X
Y

[0,1] [1,2] [2,3] Prob.

[1,2] p11 p12 p13 0.25
[2,3] p21 p22 p23 0.5
[3,4] p31 p32 p33 0.25
Prob. 0.5 0.25 0.25 1

Consider the relational operation X>Y. It is transformed into an interval relational operation
between intervals of X and intervals of Y. For example, the result of [0,1] > [1,2] is [0,0], so
[0,0] will be put into cell p11. Similarly, [0,1] will be put into cell p12. The following table
gives the result.

Table 4.6 Interval value for a relational operation.

 X
Y

[0,1] [1,2] [2,3] Prob.

[1,2] [0,0]
p11

[0,1]
p12

[0,1]
p13

0.25

[2,3] [0,0]
p21

[0,0]
p22

[0,1]
p23

0.5

[3,4] [0,0]
p31

[0,0]
p32

[0,0]
p33

0.25

Prob. 0.5 0.25 0.25 1

Based on the DEnv algorithm, the probability for X>Y may not be obtained. It is clear that all
cells whose interval bounds include 1 are consistent with X>Y. To get the maximum value of
P(x>y), the sum of all cells including 1 will be maximized. For this case, we maximize
(p12+p13+p23). To get the minimum value of P(x>y), the sum of all cells with the value [1,1]

 50

will be minimized. All cells whose value is [0,1] will be discarded since for them, perhaps
x<=y.

In summary, the value of each cell should be one of [0,0], [0,1], and [1,1]. Here [0,0] means
the relationship does not hold. The value [0,1] means the relationship is not certain. The
value [1,1] indicates the relationship must hold. To get the maximum value, maximize the
sum of all cells whose bound include 1. To get the minimum value, minimize the sum of all
cells whose values are [1,1].

4.4 Complex Expressions

It is useful to be able to calculate any arithmetic expression. The user of the implementation
software should be able to input the expression desired. To solve this problem, DEnv needs
arithmetic expression parsing to provide the functionality to interpret an arithmetic formula.
We decided to support expressions containing arithmetic operators +,-,*, /, and
exponentiation, and to support association through using ().

4.4.1 Expression Editing

To implement this expression editor, first a grammar definition of allowed expressions was
written. This grammar is context-free, and is as follows.

<expression>::=<term> | <term> + <expression> |<term> - <expression>
<term>::=<factor> | <factor> * <term>| <factor> / <term>
<factor>::=(<expression>) | <number> | <variable>
<number>::= <integer> | <integer>.<integer>
<integer>::=<integer>|v
<variable>::=x|y

Here v indicates the numbers from 0 to 9.

Based on this grammar, arithmetic expressions such as (a*X+b*Y)/(c*X+d*Y) are allowed.
Parsing generates a parse tree: a diagram of the complete grammatical structure of the string
being parsed. For this case, it is not very complex. Every operator needs two operands. ‘()’
will increase the priority of operation. Therefore, expression tables could be used. In such a
table, the operands and operators are recorded. Every row describes an operator. Software
must analyze the input string, and generate the expression table according to the order of
calculations. Then using this table, the result may be calculated.

4.4.2 Limitations on Evaluating Expressions

Division by zero cannot be handled without using extended interval arithmetic, and even then
there are interesting wrinkles that would need special handling. For example, in the case of
x/0>y/0, the proper answer per the previous discussion would be the interval [0,1] since the
expression evaluator does not know how to evaluate the value of such expressions.

 51

Therefore, operands X and Y cannot include zero in their support if the user wants to use the
expression parser as presently implemented.

4.4.3 Excess Width in Expressions

A typical expression is P(x,y) = f(x,y)/g(x,y) = (aX+bY)/(cX+dY). For this kind expression,
there may be excess width in interval calculations. This is a risk whenever a random variable
is used more than once in an expression. To solve the problem, it is necessary to remove
excess width in calculating this type of expression.

4.4.4 Removing Excess Width

The easiest way to handle excess width is to simplify the expression so that each random
variable is used only once. But this is a very restrictive constraint, and many expressions
cannot be simplified to meet this kind of condition.

For some expressions, we can employ another method to remove excess width. This method
is to use the low and high bounds of the interval operands to calculate the expression. Then,
from these calculated values, the result bound is determined. For two variables, there are four
combinations of bounds so four candidate result values are obtained. We select the minimum
of the four as the low bound of the result interval, and the maximum of the four as the high
bound of the result interval. Here is an example.

Suppose: x = [1,2], y =[2,3], and F(x,y)= (8.4x + 7.2y)/(0.04x + 0.02y).

First: let x=1, y=2, and calculate F(x,y), obtaining the value 285.

Second: let x=1, y=3, and calculate F(x,y), obtaining the value 300.

Third let x=2, y=2, and calculate F(x,y), obtaining the value 260.

Finally, let x=2, y=3, and calculate F(x,y), obtaining the value 274.3.

Thus, the interval for F(x,y) is [260,300].

If we calculate the expression by using interval addition to obtain intervals for the numerator
and denominator independently, then divide the two resulting intervals, the interval
[162.9,480] results. This has excess width. The endpoint method can remove excess width
for this expression.

4.4.4.1 Limitation of the Endpoint Method for Removing Excess Width
Although the method of selecting the min and max value to get the result bound works for
the example given, there are limitations to this method. When the expression is monotonic
over the 2-D box defined by the interval endpoints, the method works. When it is not
monotonic over that region, another method must be used. One approach, shown to be
practical by the implementation of DEnv, uses a sampling method. In this method, a grid is

 52

placed over the box and interior values of the intervals are sampled using points on the grid.
The min and max of all sampled points provides the low and high bounds of the answer. For
example the expression (x+y)x was analyzed this way (Berleant and Zhang, 2003).

 53

5 Applications

We are exploring applications of DEnv for analysis of economic dispatch, value at risk
(VaR), and reliability problems as summarized in this section.

5.1 Economic Dispatch: Applying the Interval-Based DEnv Algorithm

A common way to model uncertainty in the value of a quantity is to use a probability density
function (PDF) or its integral, a probability distribution function (CDF). When two such
values are combined to form a new value equal to their sum, product, max, etc., the new
value is termed a {\it derived distribution} [Springer, 1979]. It is well known that derived
distributions may be obtained by numerical convolution, Monte Carlo simulation, and
analytically for specific classes of input distributions, under the assumption that the input
distributions are independent. It is also possible to obtain derived distributions for specified
dependency relationships other than independence. However, it is not always the case that
the dependency relationship is known. Thus, there is a need for obtaining solutions that are
validated with respect to uncertainty about the dependency relationship.

Numerical approaches have the advantage of applicability to a very wide class of
distributions. Two numerical algorithms have been implemented in software for obtaining
solutions to combining distributions that are validated with respect to uncertainty about their
dependency. Both also validate their solutions with respect to discretization of the input
distributions by using intervals to account for the inexactness of the discretization, eventually
producing results that incorporate that inexactness into the separation of the envelopes. One
algorithm is Probabilistic Arithmetic [Williamson and Downs, 1990], which is implemented
in the commercially available software tool RiskCalc [Ferson et al., 1998]. The second
algorithm is Distribution Envelope analysis (DEnv) [Berleant and Goodman-Strauss, 1998].

The DEnv algorithm is implemented in a tool, Statool that extends our previous tool by
eliminating the need to assume independence. While the Statool and RiskCalc tools have
fundamental similarities [Regan et al., submitted] a difference that is relevant to the present
problem is that the DEnv algorithm supports, and Statool implements, excess width removal
in the underlying interval calculations for expressions in which the true bounds of the
expression occur at corners of the rectangle defined by the input intervals. This simple
approach frequently works, as for example in the present application. More sophisticated
approaches to excess width removal, if implemented, could be incorporated into the software
without difficulty since the details of the interval calculations are decoupled from other parts
of the software. The result of handling excess width is inferred envelopes that are closer
together than they would be if excess width was not handled [Berleant, 1993]. In this section
we apply the DEnv algorithm to generalize a solution to the well-known economic dispatch
problem in electric power generation to the case where the dependency relationship between
the fuel costs of two generators is unspecified.

 54

5.1.1 The Problem

Interval methods have continued to draw the attention of researchers in the power generation
community [e.g., Wang and Alvarado, 1992; Shaalan and Broadwater, 1993; Shaalan, 2000].
One electric power problem that, as traditionally formulated, is well understood is the
economic dispatch problem. In this problem, it is desired to determine how much power
should be generated by each of two generators, to meet a given level of demand such that
total generation cost is minimized. One of a number of approaches to solving this problem is
termed LaGrangian Relaxation [Wood and Wollenberg, 1996].

We added a new dimension to this problem by incorporating uncertainty into the LaGrangian
Relaxation technique for solving the problem, by modeling uncertainty in the cost of fuel to
run the generators with probability distributions, postulating in addition that the dependency
between the two fuel costs of the two generators is unknown (as might occur if one generator
burns oil and the other coal). The uncertainties are then propagated through the algebraic
expression derived by the LaGrangian Relaxation technique.

First, the cost equations are specified as

)12004.06(

)80024.08(
2

2222

2
1111

++=

++=

PPvF

PPvF

[Wood and Wollenberg, 1996] where P1 and P2 are the power outputs of generators 1 and 2
in megawatts; v1 and v2 are the fuel costs for generators 1 and 2 in $ per M Btu; and F1 and
F2 are the generation costs for given power output levels and fuel cost rates. Therefore,
generation costs change nonlinearly with power output according to the following equations.

)08.06(

)048.08(

22
2

2

11
1

1

Pv
dP
dF

Pv
dP
dF

+=

+=

 (5.1)

Solving the problem requires minimizing an objective function,

120)0.04P(6Pv80)0.024P(8PvFFF 2
222

2
11121 +++++=+=

subject to the constraint

2
11 PPP +=

P is the total customer demand for electric power that for this example we take as 400
megawatts. This gives a constraint function

 55

P=P1+P2=400.

by the method of LaGrangian multipliers from calculus, at an extreme value of this objective
function,

λ==
2

2

1

1

dP
dF

dP
dF (5.2)

for some λ . This is derived from the Lagrange function L that relates objective function F

and constraint (5.1) according to PFL λ+= , which implies 0)(

1

11

1

=−=
∂
∂ λ

dP
PdF

P
L for

generator 1 and similarly for generator 2. From (5.1) and (5.2),

v1(8+0.048P1)= λ =v2(6+0.08P2)
 P2=400-P1

and solving simultaneous equations for P1 gives

12

12

12
1

400
048.008.0

838

PP
vv

vvP

−=
+

−
=

 (5.3)

as the most economical amounts of power to generate from generators 1 and 2 to meet the
demand (assuming those amounts are within the capacity of both generators). P1 and P2 are
easily calculated for real values of v1 and v2, but given distribution functions for v1 and v2 the
problem requires evaluating an expression on random variables v1 and v2 involving a sum,
difference and quotient. Solving it by dividing a difference of random variables by a sum
results in excessively wide envelopes on the CDFs for P1 and P2 because the same operands
occur in both terms, leading to excess width in the underlying interval calculations. Instead,
the entire expression must be treated as a single binary operation on v1 and v2. Figure 5-1
shows the results given PDFs describing v1 and v2.

The CDF for optimum power generation from generator 1 will be within the interior
envelopes if the inputs v1 and v2 are independent, and within the exterior envelopes
regardless of the dependency relationship between inputs v1 and v2. When the dependency
relationship is not known, the exterior envelopes might be sufficient for a decision, or might
point out the need for additional information gathering to sharpen the input distributions
and/or identify their dependency relationship sufficiently to support a decision. [From
Berleant et al., 2002.]

 56

Figure 5-1 Solution, Given the Histogram-Discretized PDFs for v1 and v2 Shown.

5.1.2 Discussion

The present software implementation has certain limitations. One planned extension is to
handling of asymptotic PDF tails. The process of discretizing a PDF into a histogram does
not presently allow for the case where a PDF tail trails off to plus or minus infinity. Yet this
implies setting definite bounds, though any specific such bounds might be hard to justify.
Indeed unusual and extreme values can occur in the electric power domain, as happened for
example in the California power crisis. The solution is to allow the discretization to include
open intervals with an end point at +/- infinity. This in turn would require the arithmetic
operations to be defined on such intervals. Fortunately, this is straightforward.

The overhead in time complexity due to use of interval calculations is a relevant
consideration. For DEnv, time complexity overhead is attributable mainly to the increased
time complexity of computing interval operations in place of what would otherwise be
numerical ones. Thus, a complex excess width removal algorithm would have a
correspondingly great effect on run time. The simple method employed in Statool typically
adds approximately 25% to the run time, as tested by doing elementary arithmetic operations
with and without the excess width-handling algorithm, when the dependency relationship
between the operands is considered unknown. However, when the operands are assumed to
be independent, using the excess width algorithm leads to a slowdown by an approximate
factor of 10, because a higher proportion of the computations done by the program in this
case are interval operations, and therefore, slowing them has a correspondingly greater effect.

These results (25% and 10x) suggest comparing the speed of computation when the
dependency relationship as unknown (that is, when the DEnv algorithm is used) with the

 57

speed when the operands are assumed independent. When the operands are each discretized
into 16 intervals (a 16x16 problem), simple arithmetic operations on the operands take about
30 seconds, or 25% more with excess width handling, on an Intel-based PC running at
500MHz.
In comparison, assuming independence allows the same problems to run interactively
without noticeable delay when excess width handling is not used, and in about 2.5 seconds
when it is used.

5.2 Bounding the Composite Value at Risk for Energy Management Company
Operation with DEnv

Deregulation in the power industry drives competition. It also increases the risk of doing
business. Therefore, it is important to manage and assess the risk. Value at risk (VaR)
analysis has been used in financial institutions to evaluate portfolios of assets for some time,
but the application of the approach in the power industry has not been established. The VaR
of serving customer demand using the energy purchased on the auction market is our focus.
In this report, the risks of the energy management company (EMCO) are identified and the
contract specifications and the VaR reviewed. In describing the difference in the business
environments between the power and financial industries, the VaR analysis that has been
used in the financial industry has been remodeled to best describe the assumed deregulated
power environment. The pros and cons of the VaR levels are presented. Because of the
interval-based computational core of DEnv (Distribution Envelope Determination), results
are validated with respect to two sources of potential error.

Given the cumulative distributions of random variables, a derived random variable, which is
an arithmetic combination of the given random variables, will have a single defined
cumulative distribution only if the joint distribution of the given distributions is fully defined.
If the joint distribution is not defined, a verified characterization of the result will be
envelopes bounding the space of cumulative distribution curves that correspond to the
members of the set of all the possible joint distributions. Distribution Envelope
Determination (DEnv) [Berleant and Goodman-Strauss, 1998] provides those envelopes, so
that uncertainty in results due to uncertainty about dependencies among model variables is
bounded.

The distributions of input random variables can be discretized in DEnv in order to avoid the
problem of finding envelopes for arbitrary input distributions analytically. Discretization
typically involves approximation, but DEnv can avoid this by bounding each input
distribution with envelopes such that the discretized form of an input is a pair of envelopes
enclosing it. While the input distribution is likely to be a continuous curve, the envelopes are
staircase-shaped. This representation for the input curves propagates into wider envelopes
around the space of possible result curves because those envelopes bound the space of results
not only with respect to different dependency relationships between the inputs (as described
in the previous section), but also with respect to the space of curves consistent with the
envelopes around an input.

 58

Results are valuable because insufficient data are typically present to specify the relevant
dependencies accurately.

5.2.1 Background

Calls for competition in the power industry, from the wholesale level to the retail level, have
made deregulation an attractive option around the world. New market structures have been
studied to search for a good one that can ultimately satisfy regulatory bodies, customers, and
suppliers. One approach that has been tried is the brokerage system. To accomplish it, the
vertically integrated utilities are converted into a horizontal structure. The framework of the
energy market is shown in Sheblé [1999]. Since the emphasis of this report is on the value at
risk (VaR) of serving customer demand, the energy management company (EMCO), which
serves customers, is discussed while leaving the rest to Sheblé [1999].

The EMCO collects its revenue from the customers of the energy and ancillary services it
provides. It can also act as a wholesaler, reselling electric energy to other EMCOs,
generating companies, etc. To obtain the desired electric energy to serve its purposes, the
EMCO may purchase it through the auction market, or utilize the reserves that it has
accumulated through load management programs or ownership of generation units.

In the deregulated environment, customers are free to choose among EMCOs. In addition,
energy purchased by EMCOs from the auction market bears the risk of market price
fluctuation. These, from the demand factors to the supply factors, are risks that the EMCO
has to take in the new market structure. Since deregulation will render governmental
financial protection largely obsolete, risk management and assessment tools should be
considered and applied.

Ng and Sheblé [2000] introduce the different risk management and assessment tools
available to assist an EMCO. This account emphasizes Value at Risk (VaR) analysis.

5.2.2 VaR Analysis Basics

VaR is the maximum amount of money that may be lost on a portfolio over a given period,
with a given level of confidence [Best, 1998]. VaR calculations are important because
exceeding an appropriately defined maximum loss would be a major or even irrecoverable
blow to the company. Thus, business decisions need to be made with the objective of keeping
the probability of such a loss below a relatively low level of probability deemed acceptable.
Consequently determining the probability of such a catastrophic loss should be done
carefully and, for dependability, should be validated with respect to lack of knowledge about
the dependencies among the variables factoring into the calculation.

There are currently three techniques that can be used to evaluate VaR of an EMCO. The first
technique is historical simulation, which applies historical data to evaluate the VaR. The
second technique is the covariance technique. To apply the covariance technique, the
correlation matrix, C, of the uncertain factors is assumed available. The third technique is

 59

Monte Carlo simulation. Monte Carlo simulation involves artificially generating a very large
set of events from which VaR is derived [Best, 1998].

The covariance technique is the easiest and fastest technique among the three. However, the
technique assumes that the uncertain factors are normally distributed. Since normal
distributions do not necessarily apply to all situations, the technique is consequently limited.
Historical simulation and Monte Carlo simulation can supplement the covariance technique
in such cases. Since historical simulation uses historical data to evaluate the VaR, there is no
need to assume the form of the probabilistic distribution function of the uncertain factors.
However, when historical data is limited, solving the VaR using the historical simulation
method can be problematic. The Monte Carlo simulation method requires assuming the
probability distributions of the uncertain factors (often that they are normal, but uncertain
factors that are not normally distributed can be handled). For instance, in determining the
VaR of holding option contracts (whose prices are not normally distributed), the option
sensitivities (normally distributed) are used for the Monte Carlo simulation. Thus, the
resulting VaR is able to consider option contracts [Best, 1998].

Best describes the VaR resulting from asset price changes, the diversity of the portfolio (the
number of assets with correlated price changes), and the holding position of the portfolio (the
amount of money invested in a particular asset). This evaluation process is sufficient in a
financial institution where the risk is primarily a result of price changes. To an EMCO,
however, evaluating the VaR of the price changes is not sufficient. In addition to the risk of
price fluctuation, there are two additional risks not described by Best. First, the customer
demand and the deliverability of energy are uncertain, as there is a risk associated with the
EMCO not being able to serve the customer with sufficient energy. For example, energy
delivery can be prevented by transmission system failure, generation failure, etc. Thus, an
EMCO suffers the risk of contract violation by its supplier. The next figure shows the three
components of VaR affecting a particular decision (such as amount of load management
energy, number of contracts, purchased ancillary services, etc.) for an EMCO.

Figure 5-2 Factors in Determining VaR of an EMCO.

 60

5.2.3 Price Fluctuation

To evaluate the VaR of market price fluctuation, the covariance matrix of the market price
fluctuation is assumed available. Historical data may be used in determining the covariance
matrix. Then, the VaR of market price fluctuation is evaluated using the following equation.

tVaR PCPλ=

where P is the proportion or position of the assets in monetary value, λ represents the degree
of volatility and determines the confidence level. For instance, when 1=λ , the confidence
level is 95% [Best, 1998]. The covariance matrix, C, is determined as described by Sheblé
and Berleant [2002]. Ng [1999] gives the steps in evaluating VaR due to market price
fluctuation.

5.2.4 Sample Experiments of Computations

Our experiments focus on checking three issues: the accuracy of results, the effect of
correlation, and speed. Changing the accuracy of operands will affect the accuracy of results.
Different correlations will change the shapes of result envelopes. Increasing the number of
intervals will take more time to compute. All our experiments were conducted on the
compiled version of Statool and DLLs using Visual Basic 6.0 and Visual C++ 6.0. The
running platform was Windows 2000 professional. The machine had 256M memory and the
CPU ran at 1,000Mhz.

The operand X, a random variable, was given a uniform distribution from 1 to 9. The operand
Y, another random variable, was given a tail-trimmed normal distribution from 2 to 10,
whose mean was 6 and variance 1. This range almost covers all the probability for Y. A small
amount of the tail was omitted and its probability distributed evenly over the accounted-for
range. We discretized the supports of X and Y using three conditions, 16, 32, and 64 intervals,
then used the discretized X and Y as the inputs to operations. Results of operations showed
the accuracy changing for different discretizations. At the same time, correlation was set to
different values to check the effects. Four operations were executed in these experiments.
They were plus, minus, multiply, and divide.

The following figures show the results for different number of intervals in the operand
discretizations when adding X and Y and with a correlation of zero.

 61

Figure 5-3 Envelopes around the distribution of X+Y when X and Y are each discretized into
16 Intervals.

Figure 5-4 X+Y when X and Y are 32 intervals.

Figure 5-5 X+Y when X and Y have 64 intervals.

From these three figures, it is clear the results become much smoother when the
discretization of the operands is increased.

 62

Next, we show figures illustrating the effect of correlation. For this case, we let X and Y have
64 intervals, and set correlation information to four different settings: unknown, 0.98, 0, and
-0.98.

From these figures, it is clear that bounds of curves can be affected by the correlation. For
unknown correlation, the widest bound curves will be obtained. Compared with the
envelopes for correlation 0, the high bound curve for correlation 0.98 is changed and the low
bound curve for correlation -0.98 is changed.

Figure 5-6 Envelopes around the Distribution of X*Y for an Unknown Dependency
Relationship Between X and Y.

Figure 5-7 X*Y for Correlation 0.98.

 63

Figure 5-8 X*Y for Correlation 0.

Figure 5-9 X*Y for Correlation -0.98.

The computing speed is also a factor to be considered. The four different operations were
done for each of the different discretizations, and results were tabulated and compared.

Table 5.1 Operation evaluation time (seconds) for correlation 0.
Intervals in
discretization
(X x Y) addition Subtraction multiplication division max Min
16x16 1 1 3 5 1 1
32x32 22 26 154 328 13 11
64x64 3636 3297 52317 148173 1083 866

As this table suggests, for finer discretizations the times for plus, subtraction, max and min
form a cluster. Operations for multiplication and division form a more computationally costly
cluster. The following figure shows the times for operations: addition, subtraction, max and
min.

 64

The next figure shows the times for multiplication and division. The VaR analysis was not
complete at the end of this project period.

0

500

1000

1500

2000

2500

3000

3500

4000

16x16 32x32 64x64

Size

Ti
m

e(
S)

addition
subtraction
max
min

Figure 5-10 Times for Operations.

0

20000

40000

60000

80000

100000

120000

140000

160000

16x16 32x32 64x64

Size

Ti
m

e(
S) multiplication

division

Figure 5-11 Times for Multiplication and Division.

 65

6 Genetic Algorithms for Bidding

There are two generic approaches to the simulation of market dynamics: experimental
economics, simulation. The cost and the level of experimental economics is

6.1 Application

Part of the transition from regulation to competition involves setting up systems to treat
electricity as a commodity. This includes determination of distribution of electricity from
producers to consumers and determination of price paid for the electricity. Currently these
factors are partly determined through regional energy exchanges. In these exchanges,
auctions determine sellers and price. Such exchanges should be similar to exchanges that
trade other commodities such as wheat or gold. However, the physical constraints placed on
power plants by network operation give rise to unique considerations. For example,
minimum and maximum flow limits are fixed for each branch in the network based on the
operating condition of the complete system. Production, transportation, and consumption of
electricity all occur in non-trivially different ways than other commodities.

The work of developing electric power market bidding strategies by genetic algorithms is a
continuation of the previously described decision-analysis work [Kumar 1996, Richter 1998,
Richter 1999]. The bidding strategies were based on two different modifications of a classical
data processing structure known as a finite state automaton. The genetic algorithms were
varied as well, some incorporating a semi-fixed fitness function, and others using a co-
evolutionary (population-specific) fitness function.

Both types of fitness functions maximize profit in a competitive bidding situation. The only
feature changed for this project was the choice of competitive bidders against which to play.
The auctions that determine profits or losses were played in an iterative fashion. In other
words, the same bidder would play the same opponents multiple times in order to allow the
bidding agents to learn their opponents' behavior and adjust their own behavior accordingly
to maximize profit.

Both representations were tested on variations of experimental parameters. The co-
evolutionary setup was a third, very simple, representation run to establish a comparison
baseline for the other two representations. The co-evolution setup is the base solution, or the
“standard” solution.

Many possible auction scenarios could determine the selection of sellers. This work uses a
single-sided auction, but the work can be modified to accommodate a double-sided auction or
auctions that are even more complex. The auction research varies in the specific auction
design employed. This is due to the disparity in auction rules used in different regions
throughout the world as well as to different simplifying assumptions made on the part of this
work.

 66

6.2 Market Design

Contreras et al. [Contreras, 2001] compare different implementations of electric market
designs. Specifically, they explain the differences between single-round and multi-round
auctions in terms of maximization of social welfare, computational cost, resultant market
prices, etc. They reach the conclusion that iterative bidding (multi-round auctions) is not
advisable for use in day-ahead markets.

Sheblé [Sheblé, 1996] proposes details for the rules governing deregulated electric markets.
He defines and describes rules for the interaction of the electric commodity market and its
various derivatives markets, such as the futures market, options market, and swap market. He
also proposes breaking the trading into periods (e.g., hours, weeks, months) and bidding on
production of electricity during these periods. Allocation already determined for a larger
period (e.g., monthly) would constrain the possible allocation for smaller periods (e.g.,
weekly).

6.3 Market Simulation

Otero-Novas et al. [Otero, 2000] discuss the simulation of a wholesale electricity market,
called COMSEE, based on Wilson's rules proposed for the power exchange in the
Californian market [Wilson, 1997]. There are three basic rules.

• The price cannot be increased.
• The price can be decreased only if the new price is less than the clearing price in the

previous iteration by at least a specified price decrement (e.g., $1.00 or $0.10/MWh).
This new price is said to “improve” the previous price.

• The price cannot improve any previous clearing price not improved at the first
opportunity.

They use these rules to simulate a perfectly competitive market by considering each
generator to be an independent entity seeking to maximize personal profit. They also
simulate an oligopolistic market in which each firm coordinates the bids of its own units to
maximize total profit.

6.4 Optimization

Weber and Overbye [Weber, 1999] modeled the problem of bidding in an electric power
market as a two-level optimization problem. The two levels of optimization consist of the
problem of determining an optimal bid (first level) under the constraint that the price and
dispatch quantity are determined by an optimal power flow (OPF) optimization (second
level). This report assumes that the OPF problem is solved outside of the market simulation
and embeds the solutions to the OPF into the generators' cost curves.

Song et al. [Song, 1999] optimizes bidding strategies by use of a Markov decision process.
The Markov decision process used is similar to the finite state machine representation in use

 67

in this report, but with transitions between states determined stochastically instead of
deterministically.

6.5 Genetic Algorithms and Learning

Richter and Sheblé [Richter, 1998] used a genetic algorithm to develop bidding strategies for
an electric power double auction. This used a representation based on evolving bid
multipliers or a number multiplied by the producer's marginal cost (or the buyer's marginal
utility) to get the bid to make.

Richter et al. [Richter, 1999] used genetic algorithms to evolve bidding strategies in a double
auction for electric power. They conducted two experiments. One used genetic programming,
or the evolution of parse trees, to evolve the bidding strategies. The other approach was to
use GP-Automata to represent the bidding strategies.

Wu et al. [Wu, 2002] introduced a machine-learning algorithm to learn to bid in electric
power markets. It is general enough to apply to any market, but they tested it specifically on
a single-sided auction with discriminatory pricing.

Petrov and Sheblé [Petrov, 2001] used the generic Roth-Erev learning algorithm [Roth, 1995]
and [Erev, 1995] to learn effective bidding strategies for a double auction for electric power.
They pointed out that the algorithm in its original form was unsuited to learning when profits
were at or near zero. They modified the algorithm to account for this deficiency and thereby
allowed it to learn much more quickly and efficiently.

Much of economic game theory is concerned with finding Nash Equilibria [Nash, 1950]. A
Nash Equilibrium is a set of strategies, one strategy played by each player, with the property
that no player can increase its payoff by unilaterally changing its strategy. Given certain
assumptions, all players’ decisions should converge to that equilibrium. Some of these
assumptions, however, are not met in practice: (1) the game must have a unique Nash
Equilibrium; (2) all players must have perfect information; and (3) all players behave
rationally (i.e., choose the best strategy once they know what it is).

The standard prisoner's dilemma game is a two-player non-zero-sum game. Each player
makes a choice to “cooperate” or “defect.” If both cooperate, both receive a payoff of three.
If both defect, both receive a payoff of one. If one cooperates and the other defects, the
cooperator receives a payoff of zero, and the defector receives a payoff of five.

Standard economic theory shows that the standard prisoner's dilemma game has a Nash
equilibrium in which both players defect. In other words, if both players have chosen to
defect, neither can increase its payoff by changing its strategy. However, in any other state,
in which one or both of the players cooperate, a higher payoff can be achieved by changing
one's strategy to defect instead. In this respect, the choice “defect” is said to “dominate” the
choice “cooperate.” Therefore, one would expect any agent playing the prisoner's dilemma to

 68

learn quickly that defecting is the optimal action despite the higher payoff possible if both
cooperate.

A variant of the prisoner's dilemma is called the iterated prisoner's dilemma. In this game,
two players play multiple rounds of the prisoner's dilemma against each other. Axelrod
evolved finite state machines to play the iterated prisoner's dilemma [Axelrod, 1987]. He
found that when given the opportunity to play multiple rounds, agents would often learn to
cooperate with one another in order to get the higher payoff that results when both players
cooperate. However, they require a more complex strategy than simply “always cooperate”
lest they be taken advantage of by more malicious players. Thus, the choice to encode
strategies as finite state automata rather than simply as a single action to take was made.

This experiment has relevance to the current work in two respects. First, the market being
simulated is a complex, multi-round economic game. Second, finite state automata are being
used to encode the strategies for playing this game. It is important that subsequent rounds of
play be against the same opponents in order for the strategies to have any meaning.
Otherwise, there is no such concept as reaction to an opponent's actions because the opponent
will not be the same the next time one meets him.

It is of interest to determine which prisoner's dilemma strategies are evolutionarily stable. An
evolutionarily stable strategy is one that, given that it is in use across the entire population,
cannot be “invaded” by another strategy. To be invaded is to be beaten consistently to be
driven out of the population by virtue having a lower fitness than the invading strategy. It has
been shown that no pure (deterministic) strategy is completely evolutionarily stable [Boyd,
1987]. However, many strategies, such as Tit-For-Tat (TFT), are stable against almost all
invading strategies, and the strategies that successfully invade TFT are themselves very
unstable.

Wagner et al. [Wagner, 2000] has also studied the iterated prisoner’s dilemma. They
analyzed the effect of strategy representation on the evolution of cooperation in playing
iterated prisoner's dilemma, investigating finite state machines, plain logical formulas, logical
formulas with a time delay operation, If-Skip-Action (ISAc) lists, Markov chains, and neural
networks.

Mayfield and Ashlock [Mayfield 0998] discovered a non-trivial effect of evolution. FSM's
were evolved for 1,000 generations, more than long enough for fitness to converge, and the
population was saved. The FSM's were then evolved for an additional 9,000 generations,
with no apparent change in fitness. However, when the FSMs from generation 10,000 were
played against the FSM's from generation 1,000, the former achieved much higher fitness
than the latter. This effect, in which a population evolves for a very long time with no
apparent change in fitness but is able to build up general skills in achieving high fitness, has
casually been called the Mayfield Effect.

Ashlock [Ashlock, 1997] evolved GP-Automata to play a simple game known as “Divide the
Dollar.” In this game, two players bid a monetary amount. If the sum is less than or equal to a

 69

dollar, they each receive their bid amount; otherwise, they each receive zero. This is an
interesting game to study theoretically because it has a continuum of Nash Equilibria
corresponding to real number solutions to the equation a + b = 1, where a is the first player's
bid and b is the second player's bid. This means there are an infinite number of Nash
Equilibria, so predicting how the game will end up being played is difficult theoretically. It
turns out that GP-Automata converges to a population in which every player bid just under
$0.50.

Leahy and Ashlock [Leahy, 2000] conducted a study similar to Wagner [Wagner, 2000]. In
this work, they investigated the effects of representation choice on evolving agents to play
the Divide the Dollar game. They used artificial neural nets, lookup tables, real valued
mathematical formulae, integer valued formulae modulo 101, and GP-Automata to represent
strategies.

Ashlock [Ashlock, 2001] studied a simple evolutionary algorithm that played a population
against itself in the “Public Investment Game.” In this game, multiple bidders submit a sealed
bid between $0 and $100. The sum total that they invested is then doubled and distributed
evenly among the bidders. This game attempts to model publicly-funded utilities, such as
roads requiring maintenance, in which everyone gets nothing if no one contributes, but the
total effect on the group is negligible if only a single bidder lowers its contribution. This
game's Nash Equilibrium consists of every player making a bid of zero, and that is exactly
the result that Ashlock observed after a few generations of evolution. He was able to achieve
higher payoffs by introducing “laws” (minimum required investment levels) and “fines”
(penalties subtracted from payoffs) for evading the laws.

 70

7 Methods and Procedures

7.1 Electric Power Markets

Electric power prices in the marketplace are determined for the most part by single-sided
auctions. We make the following assumptions about the structure of the market. Generation
companies (GENCOs) produce power and consumers buy power for consumption. Typically,
energy service companies (EMCOs) consolidate demand from a group of consumers so that
GENCOs do not deal with individual electricity consumers. Transmission companies
(TRANSCOs) own the power lines and are paid to transport electricity from one physical
location to another. Ancillary companies (ANCILCOs) provide ancillary services. An Energy
Mercantile Association (EMA) serves as a buffer between producers and consumers, or a
market maker.

The value chain is different from the physical chain. The physical chain refers the actual
transportation of power from the producer to the final consumer. The value chain refers to the
flow of money that is paid for this power, which involves extra entities that do not
themselves necessarily consume, transport or produce power.

The EMA holds a single-sided auction on either side. It will estimate demand from
consumers and hold an auction taking bids from generators to sell their electricity. It will
then take the electricity it bought, turn around, and hold an auction taking bids from
consumers who buy the electricity. This report models the former auction in which sellers,
assumed to consist of competing GENCOs, make bids to sell power and must then produce
the amount they agreed to sell. The simulations could just as easily be applied to a buyer's
auction.

The purpose of an auction is to expose information about buyers' and sellers' willingness to
pay or sell. Commodities like electricity often have no explicit fixed worth; their worth is a
function of the current market conditions. An auction attempts to find this worth [McAfee,
1987]. Essentially, an auction allows discovery of the equilibrium price defined as the
intersection of the demand and supply curves of the buyers and sellers, respectively. In this
case, the demand curve will be a vertical line as the EMA will estimate demand as a single
fixed quantity.

According to economic theory for competitive markets, in the long-run all profits should go
to zero as sellers underbid each other in the marketplace. Any number of factors that appear
in a real marketplace disrupts this prediction, however, such as cost curves that do not pass
through the origin, capacity limits on generation quantity due to physical limitations of
generators, and irrational behavior on the part of market participants. The most disruptive
factor that leads to violation of theoretical predictions is information uncertainty on the part
of market participants.

 71

7.2 Evolutionary and Genetic Algorithms

A genetic algorithm is a type of evolutionary algorithm. An evolutionary algorithm is an
algorithm that uses the biological paradigm of evolution to solve mathematical problems.
Many researchers in the field will disagree on definitions and terms. Part of this is due to
confusion in the use of borrowed biological terms whose original definitions are somewhat
obscured by their use in evolutionary algorithm descriptions.

An evolutionary algorithm is any algorithm that implements the following pseudo-code.

Basic Evolutionary Algorithm
1 Create an initial population of potential solutions
2 Evaluate the fitness of the population
3 Repeat … until done
 A Select pairs from the population to be parents, with a fitness bias
 B Copy the parents to make children
 C Perform crossover on the children (optional)
 D Mutate the resulting children
 E Place the new structures in the population
 F Evaluate the fitness of the new structures

Figure 7-1 Basic Evolutionary Algorithm Loop.

Each iteration of this loop is called a generation. A solution (also called a creature or agent)
in Figure 7-1 refers to some reasonable (“reasonable” being defined by the problem at hand)
encoding of potential solutions to a problem. A subset of evolutionary algorithms, known as
genetic algorithms, is the most prevalent and is the type used in the simulations described in
this report.

These algorithms always execute the basic evolutionary algorithm loop, which performs
crossover. Crossover is the process of exchanging subsets of representations between two
solutions. This mimics the process of sexual reproduction, as two parent solutions are copied
and their children are crossed over. Often genetic algorithms are defined to operate on fixed
data structures. This is primarily to distinguish them from another type of independently
developed evolutionary algorithm known as genetic programming [Koza, 1992]. Genetic
programming uses the loop shown in the above figure to evolve parse trees (a variable-sized
representation) to solve problems. However, it is not possible to evolve data structures which
are parse trees nor have a fixed size. Such an algorithm will also be termed a genetic
algorithm in this report.

In addition to crossover, the solution space is explored using mutation, the process of
randomly perturbing solutions. This mimics the biological process of random genetic
mutation in creatures of a living population, which occasionally give the creature an
advantage over others.

 72

A fitness function that numerically evaluates the optimality of a solution must also be
defined. Whatever scheme is used to select the parents, it always biases selection toward
those creatures with higher fitness. It may also bias replacement of creatures toward those
that are less fit. This mimics the biological process of natural selection in which more fit
creatures are more likely to survive and pass on their genes to offspring, while less fit
creatures die off.

7.3 Representation

To develop solutions to a problem using a genetic algorithm, the potential solutions must be
encodable in such a way that allows mutation, crossover, and fitness evaluation. Two
different, but related, encodings were used to represent bidders in an auction. Each one is a
generalization of an information processing structure known as a finite state machine (FSM)
or finite state automaton (FSA). The first extension is known as a GP-Automaton and the
second is known as a Neural-Automaton. GP-Automata were first introduced by Ashlock
[Ashlock, 1997]. Neural-Automata are introduced here for reasons explained in the
description of Neural-Automata.

A finite state machine is a theoretical data processing structure. It takes input from some
external source, changes its internal state in response to the input, and may or may not
produce an output, known as a response. Mathematically, it is a directed graph, with each
node called a state. Each state has associated with it a transition table. The transition table
enumerates all possible inputs and states, for each input, what response to give and to what
state to transition. Each directed edge in the graph, therefore, represents a transition from one
state to another, and each edge's satellite data consists of an input that triggered the transition
and a response to output. The FSM receives inputs sequentially, each time transitioning to a
new state and outputting a response. Each transition has only one response in the model used
in this report, though in theory there could be more than one transition between two states,
each with a different input and response. An FSM also has an initial state and an initial
response, since it must start somewhere before it receives its first input. All computer
programs may be thought of as finite state machines with memory.

Finite state machines are good structures to evolve because the division of functionality into
discrete states and transitions allow for natural choices of crossover operators. Finite state
machines have been evolved to play simple economic games such as the Iterated Prisoner's
Dilemma [Axelrod, 1987] and as control structures for virtual robots [Ashlock, 2000].

Because all possible inputs must be enumerated, FSM's are impractical to use on problems
that have a large number of inputs. Even a single unbounded input renders the number of
possible inputs infinite. Since the actual amount of information carried in the input tends
actually to be much smaller, bandwidth compression is performed on the data. Bandwidth
compression is a term borrowed from communications. It refers to reducing the resources
needed to represent some data. In this case, the bandwidth of the input data needs to be
compressed to the set of integers in the range [0, number of states - 1], since this is the
maximum number of possible transitions possible from any state.

 73

Some method must be used to map all possible inputs into an integer in the range [0, number
of states - 1]. GP-Automata and Neural-Automata provide two different methods of
accomplishing this bandwidth compression.

7.3.1 GP-Automata

GP-Automata (GPA) have been described as a combination of genetic algorithms and genetic
programming (hence the “GP” for genetic programming). Each state in a GPA replaces the
transition table with a parse tree whose input nodes are the external inputs to the FSM. When
a GPA iterates (i.e., takes an input and decides what to do), it runs the input through the parse
tree at the current state. The parse tree outputs an integer and the parity of this integer is used
to determine the next state transition. Therefore, only two distinct transitions may be made
from any state.

During evolution, the parse trees are modified according to the standard mutation and
crossover operators used on parse trees in genetic programming. The exact details are given
in Doty [Doty, 2003].

Figure 7-2 Example Parse Tree.

The parse trees are shown in a LISP-like notation. Figure 7-2 shows a parse tree in a
graphical notation. The tree in this figure would output the value 13. ITE is if-then-else and
would evaluate the subtree on the left to false because three is not greater than four. If it were
true, it would output the middle child node, 5. However, since it is false, ITE outputs the left
child node, 6 + 7 = 13.

7.3.2 Neural-Automata

While the GP-Automata scheme has the advantage of being adaptable to an arbitrary number
of states, it has the disadvantage that each state may contain at most two next-state
transitions. Such an FSM is strictly less expressive than an FSM that allows arbitrary
transitions from any state to any other state. A proof of this follows.

 74

Suppose we wish to design an FSM that takes nickels, dimes or quarters as input and outputs
a “1” if at least 15 cents have been entered cumulatively and outputs a “0” otherwise. The
initial state would correspond to 0 cents being entered so far. After the first coin, 5, 10, or 25
cents will be the total. Since 25>15, but 5<15 and 10<15, the next state transition
corresponding to a quarter being entered must be different from the transition resulting from
the other two coins, since a quarter should cause a response of “1,” and the other two should
cause a response of “0.” Since we allow only two transitions per state, if either a nickel or a
dime is entered, the FSM must end up in the same state regardless of which was entered. If a
dime was entered, then no matter what coin is input the next time, the cumulative total will
be equal to or exceed 15 cents, and the FSM must therefore output a “1.” However, if a
nickel was entered the first time, then the total may or may not exceed 15 cents, depending
on the second coin entered. Since the first coin sends the FSM to the same state whether the
input was a nickel or a dime, there is a contradiction. To handle the second coin, three
possible states must exist to go to from either the initial state or the second state. Limiting the
number of next state transitions to two renders the FSM incapable of executing this function.
However, an FSM with no limit on transitions could easily execute this function. Therefore,
an FSM with only two next state transitions per state is strictly less expressive than a general
FSM.

Neural-automata filter the input data while allowing an arbitrary number of next-state
transitions. Instead of a parse tree, a neural-automaton uses a feed-forward neural net at each
state to decide the next state transition. The output node of the neural net uses a sigmoid

transfer function 1
1 xe−+

where x is the weighted sum of the inputs. The output of this function

is bounded in the range [0, 1]. Therefore, any number in the range [0, number of states - 1]
can be acquired by multiplying the output of the neural net by the number of states and
truncating the result. Furthermore, since a feed-forward neural net with two hidden layers is
capable of approximating any mathematical function [Cybenko, 1988], it is capable of
approximating the expressive power of a parse tree.

7.4 Market Setup

Varieties of experiments were performed in the project. In each case, where applicable, three
different representations were evolved. GP-Automata and Neural-Automata were each
evolved with a genetic algorithm. The third representation was simply an ordered pair of real
numbers (p, q) which represented a constant bid to make. The reason for introducing this
representation is discussed shortly.

The market consisted of an auctioneer, representing the EMA, and any number of bidders,
representing the competing generation companies. The next section describes the auction
proceeds.

 75

7.4.1 Auction Process

The auction process is shown in the following figure. The auctioneer announces a demand to
be met. Bidders each submit a bid, which is an ordered pair (p, q) representing a price, p, and
a quantity, q. Market clearing then follows. These bids are sorted in ascending order by price.
They are then accepted sequentially, adding the quantity of each bid to a running total until
this total meets the demand. At this point, no more bids are accepted and the last one is
accepted for only the amount of demand that remained, not for the total quantity given in the
bid.

After market clearing, price discovery is tested. The condition used for price discovery in
these experiments was whether at least 50 % of the bids were accepted. If price discovery did
not occur, new bids are taken and the market is cleared again. The results of the previous bids
and market clearing are forgotten and do not affect profits. One round of bid submission and
market clearing is termed a cycle. If after ten cycles, price discovery still has not occurred,
typically the results of the last market clearing would be accepted. In these experiments,
however, the profits of all bidders were simply zeroed to introduce selective pressure to make
bids conducive to price discovery.

Figure 7-3 Auction Process.

Once price discovery occurs, the bids are committed and contracts are written. Now any
bidder whose bid was accepted is obligated to provide the quantity of electricity accepted. If
the total quantity accepted did not meet demand, then another auction is held with demand
revised to be the previous demand minus the quantity accepted in the last auction. After ten
auctions, if demand has not been met, then no more auctions are held.

 76

7.4.2 Price and Cost Determination

The actual revenue to each bidder is the price the bidder is paid times the bid quantity
accepted. There are two methods implemented in determining the price each bidder is paid.
The first is simply to pay the bidder the price it gave on its bid, known as discriminatory
pricing. The second is to give it the market-clearing price, defined as the price submitted by
the last bidder whose bid was accepted. This is known as uniform pricing. The reasoning
behind this is that the uniform market-clearing price is the equilibrium price or the price at
which the supply curve crosses the demand curve.

Cost determination is modeled by a quadratic function of quantity, a common scheme for
approximating the cost of producing electricity [Wood, 1996]. Each generation company
may own more than one generator. However, once a generation company has a quantity it
has committed to deliver, there are constrained optimization techniques, such as the use of
LaGrangian multipliers that can be used to find the optimal power production from each
generator. That optimization is not explicitly performed in this simulation, and the total cost
to a generation company to produce a given quantity is modeled as a single quadratic
function of quantity. This is a simplifying assumption. In a real situation, any number of
optimization techniques such as LaGrangian Relaxation, could be used to find the actual
optimal power production for each unit. These optimizations would take into account the fact
that a power plant may operate more than one unit, and that these units not only produce
electricity at different costs, but also are connected to transmission system that has losses
dependent on the location of the generating unit and that has flow limits.

In this work, each power producer was treated as if it had a single unit that had a single
quadratic cost curve. This differs from previous work done in this area in which the
optimization was performed explicitly.

The total profit made by a seller after an auction is {(price paid) * (quantity delivered) - (cost
to deliver quantity)}. If more than one auction is held, total profit is the sum of the profits
from each auction. All the auctions needed to meet demand are termed one round of auctions.
In the genetic algorithms, 24 rounds of auctions would be held against the same opponents
for fitness evaluation, summing the total profit from each auction round. The number 24 was
chosen to correspond with the 24 hourly auctions held in a single day. In the next generation
of agents determined by the algorithm, different opponents would be played, but the same
opponents would always be played over the course of the 24 rounds of auctions.

The auctions being simulated in this work are representing day-ahead (forward) markets for
electricity. This is why the auctioneer must estimate demand. The auction is held to
determine generation allocations for each hour of the following day. In reality, an hourly
auction would be held the next day in order to cover the difference between the estimated
demand (which this forward market is designed to cover) and the actual demand (which may
end up being different from the predicted value).

 77

7.5 Experiments

7.5.1 Variable Parameters

There were a number of choices to be made concerning the implementation of a genetic
algorithm simulating this market. Varying these choices led to the different experiments
reported here.

7.5.1.1 Representations
Two different representations were evolved using a genetic algorithm, GP-Automata and
Neural-Automata. In the previous discussion of FSMs, it was stated that they produce a
response, but exactly what this response consists of was not covered. In these experiments,
the response was an ordered pair (p, q), representing a bid price and bid quantity to submit.
At the beginning of the 24 rounds of bidding, the FSMs would be reset (i.e., internal state set
to initial state and initial response taken as first bid). After that, each bidder would update its
internal state and output the appropriate response in each subsequent auction. Note that
because more than one cycle per auction may occur to achieve price discovery, and more
than one auction may occur to meet demand for one round, there may be more than 24 bids
taken from each bidder in one fitness evaluation.

The inputs fed to each FSM, after the first bid, were:

• Previous high bid
• Previous low bid
• Previous average bid
• Bidder's own previous bid
• Previous number of bids accepted
• Demand remaining to be met
• Quantity that the bidder has agreed to deliver so far.

For each argument that is a bid, the FSM was actually fed two real numbers: the price and the
quantity of the bid. “High” bid and “low” bid refer to the bid with the highest and lowest
price, respectively, not the highest and lowest quantity. The “demand remaining to be met”
refers to residual demand left over if an auction is held, all bids were accepted, and demand
was not met. Since another auction will be held, agents need to know the new demand.

Additionally, a third representation was “evolved.” This was simply an ordered pair, (p, q),
which represented a constant bid. However, crossover was not performed, and so this was not
really a genetic algorithm. The bid was simply mutated every generation by adding Gaussian
noise to each of the numbers in the bid.

The algorithm to develop these constant bids was therefore more of a population-based
stochastic search algorithm. This is an algorithm that starts with a population of initial
random solutions and perturbs each slightly with random noise, keeping and copying more

 78

optimal solutions over those who were less successful. The population was initialized with
random bids, and at each “generation” the most-fit half of the population replaced the least fit
half of the population. Each newly copied bid was then perturbed by Gaussian noise.

The reason for using this representation was two-fold: to test the dynamics of the market and
to reject the null hypothesis that evolution of more complex FSM-based strategies is no better
than random guessing. Initially, when debugging the simulated marketplace, we needed to
see if it would match the predictions of economic theory under perfect conditions and how
exactly the market would be affected by imperfect conditions. This representation should
conform to theoretical predictions that say which single bid is optimal given bidders who
attempt to maximize profit. Deviance from theoretical predictions would then point to a flaw
in the implementation of the simulated marketplace or a theoretical assumption not being
upheld. This aids in understanding the behavior of the more complex strategies in the same
simulated environment.

7.5.1.2 Co-Evolution vs. Fixed Fitness vs. Immortality
In general, fitness functions in evolutionary algorithms can be divided into two classes: co-
evolutionary and fixed. A fixed fitness function evaluating one member of a population is
independent of the other members of the population. A co-evolutionary fitness function
evaluating the same member will give different results depending on the other members of
the population. For example, a genetic algorithm evolving strategies to play chess might
evaluate fitness by having the agents play an expert alpha-beta strategy such as the one
programmed into Deep Blue, IBM's grand champion chess-playing computer. This would be
a fixed fitness function. The algorithm might alternately evaluate fitness by simply playing
the strategies against each other in a round-robin tournament and averaging the scores. This
would be a co-evolutionary fitness function.

The marketplace simulated has agents that are not identical to one another, the difference
being that they have different production cost curves. Therefore, one is not as concerned with
how an agent might perform against another agent like it, but how it would perform in a
marketplace with agents different from it. The co-evolutionary strategy used therefore
requires a bit of a re-definition (which actually brings it closer to the original definition in
biology). Instead of evolving one population of agents, one population for each of the
number of bidders in the market is evolved. When breeding is done each generation,
members from a population are bred only with members from the same population. When
fitness evaluation happens, however, the fitness of a member of a population depends only on
members from the other populations because the agent bids only against one member from
each of the other populations. This is actually closer to the biological notion of co-evolution
in which two species are said to co-evolve with one another if “a change in one species acts
as a new selective force on another species, and counter adaptation by the second species, in
turn, affects selection on individuals in the first” [Campbell, 1987].

A method of introducing a fixed fitness function when no external one exists is possible in
cases where the agents being evolved play against each other.

 79

• First, evolve using co-evolution for a certain number of generations.
• Then pick the best members of the population and “immortalize” (save) them.

The fitness function now becomes the profits attained by playing against the immortal
strategies, instead of playing against each other. A ratcheted immortalizing fitness function
can be used as well. This involves immortalizing the best members of the population every n
generations. Fitness is determined by playing all the sets of agents that have been
immortalized so far. To account for space considerations, a shortcut may be used, such as
“play the last 5 immortalized sets of agents.” For example, if n=1,000, and we are on
generation 8,500, the fitness would be determined by playing the best agents from
generations 4000, 5000, 6000, 7000, and 8000.

This sounds similar to elitism, but this is a distinct concept. An elite genetic algorithm is one
in which at least one member of the current population is guaranteed to be a part of the
population in the next generation. In other words, there is no way for the children of breeding
to replace all the members of the population. However, this elite group differs from the
immortal group introduced here in a number of ways. First, the immortal group is not
considered when breeding. Only non-immortal members of the population can breed to
create children. Secondly, the immortal group is the fitness function. An elite group in a
normal genetic algorithm has no special role in the fitness function. Finally, the immortal
group is the same from one generation to the next, unless explicitly replaced. The elite
“group” in the normal genetic algorithm, however, is defined by the current population.
Usually an elite member is one with the highest fitness. However, it may not have the highest
fitness during subsequent generations.

7.5.1.3 Uniform vs. Discriminatory Pricing
Under uniform pricing, all “winners” (i.e., bidders whose bids were accepted) receive the
same price. In the simplest case, this amount is the market-clearing price, the highest price
bid that was accepted. The theoretical justification for this is that the highest accepted price
in an auction is the price at which the supply curve would intersect the demand curve. This is
the equilibrium price, which is the price that all trades should be made in a perfectly
competitive market.

Under discriminatory pricing, winners receive different prices. In the simplest case, this
amount is the price they bid. In any auction where there is more than one winner, this would
allow the auctioneer to retain more money at the expense of the sellers. The sellers who are
aware that their bids are lower than the highest accepted bid (market-clearing price) would
raise their bids close to that expected value. Thus, it would tend to inflate the bids above the
bidders' marginal costs, which may actually lead to less profit for the auctioneer in the long
run.

7.5.1.4 Number of Bidders
In a market with few bidders, each bidder has more market power. Bidders with market
power have enough influence to affect the outcome of the auction. In a uniform pricing

 80

scheme, one would say they have the power to change the price. In the context of an auction,
the immediate effect of having few bidders is that it becomes easy for bidders to cooperate
with each other and raise prices by raising their bids. Alternately, a bidder could withhold
capacity to drive the price up and undercut it later.

7.5.1.5 Cost Curves and Capacity Limits
Different producers will have different generation cost curves. This models the real world
fact that some electricity producers are coal-driven, some are oil-driven, some are nuclear,
some have many generators, and some may only have one. They also have different capacity
limits, or minimum and maximum quantities that they are able to produce. This models the
physical limitations of power plants. The fact that different bidders have different cost curves
and capacity limits is the motivation behind separating the genetic algorithm into separate
populations. Each population represents a different type of producer and is evolving to get
better at bidding under the constraint of its own cost curve and capacity limits. Previous
studies in this area assumed that all power producers had similar cost curves and capacity
limits.

7.5.2 Genetic Algorithm Parameters

There are many generic parameters of genetic algorithms. Some, such as mutation and
crossover operators, significantly affect the outcome of the algorithm. Some, such as
population size and number of generations, are modified according to the problem at hand,
usually by making them as big as possible while allowing for the program to finish running
in a reasonable amount of time.

Unless noted otherwise, these experiments used a population size of 32 and ran for 1,000
generations. The model of evolution (i.e., method of breeding agents with high fitness), used
for the GP-Automata and Neural-Automata, is known as single tournament selection. Figure
7-5 shows how a single tournament selection works.

Figure 7-4 Single Tournament Selection of Size Four.

 81

In this model of evolution, the population is divided into sets of four agents. Within each set
of four, the two most fit are picked as parents. They are then bred (i.e., copied, crossed over,
and then mutated) and their children replace the two least fit. Since the fixed-bid
representation did not use a genetic algorithm, in each “generation,” the most fit half of the
population would replace the least fit half, and then the newly copied agents would be
“mutated.”

The mutation and crossover operators depended on the representation. For both of the FSM-
based representations, there were a number of possible mutation and crossover operators that
could be chosen. Each was assigned a probability and picked to be the mutation or crossover
operator with that probability. The mutation rate was a number between 0 and 1 that
correlated with the severity of mutation. If the number of possible mutation operators was
given by m, and the mutation rate given by r, then m * r mutations would be performed on
each child in each generation. Each mutation, the probability of picking any of the individual
mutation operators remained the same.

7.5.2.1 Fixed Bid Mutation
Since the fixed bid representation did not use a genetic algorithm, there is no significant
amount of crossover. However, it randomly perturbed the bid between each fitness
evaluation, like a mutation. Both the price and quantity were perturbed by Gaussian noise
with standard deviation equal to {maximum – minimum) / 10}. As described previously, the
minimum and maximum prices were 0 and 120, respectively, and the minimum and
maximum quantity depended on the capacity limits of the producer.

7.5.2.2 GP-Automata Mutation
The GP-Automata mutation operator selected one of the mutation operators listed in Table
7.1. A state (i.e., initial state or state transition) was changed by randomly selecting a new
state uniformly from the set of states. A response was perturbed by adding Gaussian noise
with standard deviation {maximum – minimum) / 10}. Since a response consisted of both a
price and a quantity, both of these were perturbed. In the case that a state transition or
response was changed, the particular transition edge to mutate was selected uniformly from
all the state transitions. A new parse tree was created by randomly generating nodes until the
tree was of size six (had six nodes). Crossover between parse trees involved randomly
selecting a node in each tree and exchanging the subtrees rooted at those nodes. The trees on
which to perform crossover were randomly selected uniformly from all the decider trees.

 82

Table 7.1 GP-Automata Mutation Operators

Probability Mutation
0.1 Change initial state
0.1 Perturb initial response
0.2 Change a state transition
0.2 Change a response
0.1 New decider parse tree
0.1 Crossover two decider parse trees
0.1 Exchange two decider parse trees
0.1 Copy one decider parse tree over another

7.5.2.3 Neural-Automata Mutation
The Neural-Automata mutation operator selected one of the mutation operators listed in the
following table. These mutation operators follow the same rules as those of GP-Automata.
Crossover between neural nets involved randomly selecting the indices of two edges within
the neural nets and exchanging the values of the edges in between them.

7.5.2.4 GP-Automata Crossover
The GP-Automata mutation operator selected one of the crossover operators listed in the
following table. If the "exchange states" operator was selected, two random indices were
selected, and all states in between these indices were exchanged.

7.5.2.5 Neural-Automata Crossover
The Neural-Automata mutation operator selected one of the crossover operators listed in
Table 7.2.

Table 7.2 Neural-Automata Crossover Operators

Probability Mutation
0.2 Exchange initial states
0.2 Exchange initial responses
0.6 Exchange states

If the "exchange states" operator was selected, two random indices were selected, and all
states in between these indices were exchanged.

7.5.2.6 Fixed-Bid Initialization
The two numbers constituting the fixed bids were initialized to a random number distributed
uniformly over the possible range of each number. Price varied from 0 to 120, and quantity
depended on the capacity limits of the generator.

 83

7.5.2.7 GP-Automata Initialization
The FSM was initialized with six states. The initial response was initialized in the same
manner as the fixed-bid representation. Each transition next state and response was initialized
in the same manner as the initial state and transition. The decider parse tree was initialized to
a random parse tree with six nodes. A sample parse tree is shown in Doty [Doty, 2003]. The
nodes could be any of those shown in Table 7.3. These nodes were inserted at random until a
tree of size six was obtained.

7.5.2.8 Neural-Automata Initialization
The FSM was initialized in the same manner as the GP-Automata. The decider neural net
was initialized to a random feed-forward neural net with two hidden layers. Each hidden
layer had 3 nodes. The weights were initialized to random values distributed uniformly in the
range [-1, 1].

Table 7.3 Parse Tree Nodes

Node Name Return
Type

Args Returns

ITE if-then-else args 2 and 3 3 arg 2 if arg 1 is true;
arg3 3 otherwise

Odd Odd Boolean 1 true if arg1 is odd, false
otherwise

Max Maximum Real 2 maximum of args 1 and
2

Min Minimum Real 2 minimum of args 1 and 2
~ Negation Real 2 negation of arg 1
Com Complement Real 2 1 - arg 1
> Greater than Boolean 2 true if arg 1 > arg2; false

otherwise
>= Greater than or

equal to
Boolean 2 true if arg 1 >= arg2;

false otherwise
< Less than Boolean 2 true if arg 1 < arg2; false

otherwise
<= Less than or

equal to
Boolean 2 true if arg 1 <= arg2;

false otherwise
+ Add Real 2 arg 1 + arg 2
- Subtract Real 2 arg 1 - arg 2

 84

8 Genetic Algorithm and Market Experiments Results

The experiments performed were based on changing the variable parameters discussed in the
previous chapter. All three of the representations were run and compared in the cases of co-
evolution. Only the finite state automata were compared in the cases of evolution by periodic
immortalization.

Each experiment also shows the average bid and average fitness of the whole population
versus generation of evolution. In most cases, a single run the algorithm is shown in addition
to an average of many runs of the algorithm to demonstrate general behavior.

The experiments were divided into two general cases: evolution by co-evolution and
evolution by periodic immortalization. Co-evolution has the potential to develop good
strategies, but since fitness will not necessarily prove to be an effective measure of
improvement of the strategies. Evolution by periodic immortalization, however, evolves the
bidders against a set of fixed strategies after the first 1,000 generations. Therefore, if the
bidders are learning better bidding strategies, we should see the average fitness of a
population increase with this evolutionary scheme.

Unless stated otherwise, all experiments used a mutation rate of 0.5. Each figure shows the
average fitness (“Fitness”), average bid price (“Bid”), average committed bid price
(“Committed Bid”), and equilibrium price (“Equilibrium Price”), each graphed against
generation of evolution. “Committed Bid” does not count bids that were in cycles that failed
to meet the condition of price discovery. “Equilibrium Price” is the price or the last bid that
was accepted. Only a sampling of the figures is in this report. All of the figures are in Doty
[Doty, 2003].

8.1 Co-Evolution

The experiments described in this section developed the bidders through co-evolution. These
experiments tested all three representations: GP-Automata, Neural-Automata and Fixed-Bid.
The Fixed-Bid equilibrium behavior in each case should give a reasonable approximation to
expected theoretical behavior. In many cases, it gives an equilibrium price higher than
expected until one takes into account the effect of market power on price.

8.1.1 Experiment Set 1: Co-Evolutionary Fitness Function, Discriminatory
Price

This experiment used discriminatory pricing. As noted previously, with discriminatory
pricing, each bidder, if it has a bid accepted, is paid the price it listed in the bid. Variations on
the cost curves, capacity limits and number of bidders were explored. The different trials are
shown in Table 8.1. In Figure 8.1, there are the three figures for each of the graphed results
of a particular representation (GP-Automata, Neural-Automata, Fixed-Bid). Additional data
and all figures are in Doty [Doty, 2000]. Such data includes “Cost Curve/Min/Max” that
refers to the cost curves, and upper and lower capacity limits, respectively. In all cases, either
a single cost curve and capacity limits were used for all bidders, or the population was split

 85

into two groups, each of which had its own set of cost curves and capacity limits. In these
cases, if there were ten bidders, seven of them would have Cost Curve 1 and Min/Max 1
capacity limits, and the other three would have Cost Curve 2 and Min/Max 2 capacity limits.
If there were four bidders, two of them would have Cost Curve 1 and Min/Max 1 capacity
limits, and the other two would have Cost Curve 2 and Min/Max 2 capacity limits. In the
cases that every bidder had the same cost curve, these quantities are equal.

Table 8-1 Variations on Experiment Set 1

Variation Bidders Demand
A 10 2000
B 10 2000
C 10 2000
D 10 2000
E 4 800
F 4 800
G 4 800
H 4 800

Demand was set to be proportional to the number of bidders and to the average capacity
limits of the bidders. The demand listed is the average demand, d, generated for each auction.
The actual demand for each auction was drawn from a uniform probability distribution in the
range [d – d/10, d + d/10].

Figure 8-1 show four different cost curve and capacity limit choices for all three
representations using the co-evolutionary fitness function and discriminatory pricing, with an
auction size of ten bidders. Examining the fixed-bid representation as a guide to the expected
behavior of a market, a few general trends are evident. These trends are in place in the other
two representations as well, although they appear amid the more complex behavior that the
FSM's display.

Not surprisingly, when the bidders have different cost curves, those with a higher cost curve
get a lower fitness. Higher capacity limits lead to a lower equilibrium price. This is due to the
demand (which is independent of the capacity limits of the bidders) being more easily met
when the capacity limits are higher. Therefore, more competition is present, driving the price
down.

The GP-Automata and Neural-Automata consistently achieved a higher equilibrium price
than the fixed-bid representation. All experiments achieved equilibrium just as quickly as the
first experiment.

 86

Figure 8-2 Co-Evolutionary Fitness Function and Associated Data.

The effects noted above are present when there are four bidders as well. The average
equilibrium prices achieved are higher than those achieved with ten bidders. This illustrates
the effect of the number of market participants on the market power of each individual
market participant; less participants gives each participant more market power.

8.1.2 Experiment Set 2: Co-Evolutionary Fitness Function, Uniform Price

This experiment used uniform pricing. As noted previously, with uniform pricing, each
bidder, if it has a bid accepted, is paid the equilibrium price, or the price of the highest
accepted bid. The rest of the details are identical to those described in the previous section.

Figure 8-2 shows one of the four different cost curve and capacity limit choices for all three
representations using the co-evolutionary fitness function and uniform pricing, with an
auction size of ten bidders.

Comparing these results to those obtained with the same conditions except for using
discriminatory pricing, we see that on average, the equilibrium price and bids are lower under
a uniform pricing scheme. This makes intuitive sense economically. When one's own bid
price determines whether the bidder wins or not, and the bidder's payoff varies with the size
of the bid, then there is a tradeoff. A lower bid, for instance, has a better chance of winning,
but results in a lower payoff. However, under uniform pricing, one's own bid determines

 87

whether one wins or not, but has no effect on the bidder's payoff (unless it was the last
accepted bid). Therefore, the pressure to bid higher for a higher payoff is removed, and only
the pressure to bid lower for a better chance of winning remains.

Figure 8-3 Co-Evolutionary Fitness Function, Uniform Price, GP-Automata.

Figure 8-3 shows one of the four different cost curve and capacity limit choices for all three
representations using the co-evolutionary fitness function and uniform pricing, with an
auction size of four bidders.

The same effects that occurred moving from ten to four bidders under the discriminatory
pricing model (i.e., higher equilibrium price and bids) occur in the uniform pricing model. In
some cases, these effects are more pronounced.

Curiously, comparing these results with those obtained under the same conditions under the
discriminatory pricing scheme, we see that the uniform pricing scheme led to the same or
higher equilibrium prices and bids than the discriminatory pricing. It seems that uniform
pricing with ten bidders lowered the price, but with only four bidders, the price-raising effect
of market power is much more pronounced in uniform pricing than in discriminatory pricing.
The price-lowering effect of uniform pricing is overcome by this compound effect.

 88

Figure 8-4 Co-Evolutionary Fitness Function, Uniform Price, GP-Automata.

8.2 Evolution by Periodic Immortalization

The experiments described in this section developed the bidders through co-evolution for
1,000 generations. At that point, the best half of the population was immortalized, and the
fitness function was thereafter measured by performance against the immortals. A set of the
last five immortalized populations was maintained, and the fitness was determined by
playing against all of these populations. Before five populations had been immortalized, the
bidders simply played all the populations that had thus far been immortalized. Each of the
following experiments continued evolution for 10,000 generations, immortalizing the best
half of the population every 1,000 generations.

These experiments used only the complex representations, GP-Automata and Neural-
Automata. The fixed-bid representation was not evolved.

8.2.1 Experiment Set 3: Immortalized Population Fitness Function,
Discriminatory Price

This experiment used discriminatory pricing. Recall that with discriminatory pricing, each
bidder, if it has a bid accepted, gets paid the price it listed in the bid. The rest of the details
are identical to those described in the first section. Figure 8-4 shows one of the different cost
curve and capacity limit choices for the two finite-state automata representations using the
immortalizing fitness function and discriminatory pricing, with an auction size of ten bidders.

 89

The difference between these graphs, as in the co-evolutionary case, stems from the
difference between the cost curves and capacity limits of the bidders. In each case, the
population gradually improved in fitness (and the equilibrium price increased along with it)
until about the 5,000th generation, after which it leveled off. At this point, the equilibrium
price actually began decreasing slightly.

Figure 8-5 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

Figure 8-5 shows one of three variations of two different cost curve and capacity limit
choices for the two finite-state automata representations using the immortalizing fitness
function and discriminatory pricing, with an auction size of four bidders.

It is interesting to note that the effect of number of bidders on average equilibrium price (i.e.,
fewer bidders results in higher price) is not nearly as pronounced in the immortalizing fitness
function case as in the co-evolutionary case.

 90

8.2.2 Experiment Set 4: Immortalized Population Fitness Function, Uniform
Price

This experiment used uniform pricing. Recall that with uniform pricing, each bidder, if it has
a bid accepted, is paid the equilibrium price, or the price of the highest accepted bid. The rest
of the details are identical to those described in the first section.

Figure 8-6 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

Figure 8-6 shows one of four variations of two different cost curve and capacity limit choices
for the two finite-state automata representations using the immortalizing fitness function and
uniform pricing, with an auction size of ten bidders.

These results differ remarkably from those of the discriminatory case. Whereas the
discriminatory pricing model led to gradual fitness and price increase, uniform pricing led to
decrease in both fitness and price. The fitness increases for the first 1,000 generations, when
the fitness function is co-evolutionary, and afterwards it decreases sharply at each
replacement of the immortal bidders.

Of course, the effect of differences in cost curves and capacity limits also occurred in this
experiment; those with higher costs bid higher and got lower fitness.

 91

Figure 8-7 shows one of four variations of two different cost curve and capacity limit choices
for the two finite-state automata representations using the immortalizing fitness function and
uniform pricing, with an auction size of four bidders.

Comparing these results to those in the case with ten bidders, we see the usual effect that
fewer bidders mean higher average equilibrium price and higher fitness.

Figure 8-7 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

 92

Figure 8-8 Immortalized Population Fitness Function, Discriminatory Price, GP-Automata.

 93

9 Summary and Discussion

The first part of this research has been developed and tested, but events blocked the
completion of this work. The first part was to direct the decision tree structures of the genetic
algorithm to provide agents with information not previously provided. The conversion of the
decision trees including uncertain dependencies is presently under development.

The research to explore the adaptability of finite state automata to a simulated electric power
market was thoroughly tested. The finite state automata were developed using a genetic
algorithm. Two different types of finite state automata, GP-Automata and Neural-Automata,
were tried. Their performance was compared to each other and to a third simplified
representation that served as a baseline of comparison. Extensive test sets evaluated the
program and established some differences between market rules.

9.1 Conclusions

9.1.1 Interval Analysis

The interval analysis is proving to be a dramatic tool for estimating the spread of the
distribution function. This spread is useful when the economic driving factors are of known
but uncertain dependency. The ability to estimate the upper and the lower cost of production
should prove most useful in a competitive environment. As the tool is extended to the
application of Value at Risk or Profit at Risk, the results should be as equally dramatic.

9.1.2 Genetic Algorithms

The difference between GP-Automata and Neural-Automata lies in the data processing
structure used to compress the bandwidth of the input to the finite state machine. GP-
Automata used parse trees, and Neural-Automata used neural nets. The first conclusion to
draw from the data in the previous chapter is that GP-Automata and Neural-Automata
performed nearly the same under all conditions. From this, one can conclude that both a
parse tree and a neural net are equally capable of processing the data received during rounds
of bidding in an auction.

The second conclusion to draw is that the finite state automata behaved, within reasonable
limits, in ways similar to the baseline representation. In those cases in which the market
outcome was dissimilar, the finite state automata achieved higher fitness than the baseline.
Since the average fitness was higher for all populations, each of which represented one
bidder in the auction, this indicates cooperation taking place between bidders in the auctions.

Finally, though the fitness often changed during the course of evolution, this does not
indicate exactly what is happening. With co-evolution especially, the average fitness going
down does not necessarily mean the population is getting worse, and the average fitness
going up does not necessarily mean the population is getting better. It only indicates

 94

performance of the agents relative to each other for the co-evolutionary case and relative to
the immortal agents in the immortality fitness function case.

9.2 Improvements

9.2.1 Interval Analysis Improvements

Two improvements will be evaluated in the future: obtaining narrower bounds from
information about correlation and decreasing the computation time for finer discretizations.
Linear programming problems have more than 4,000 variables for a 64x64 discretization, so
computation time becomes significant. It may be possible to decrease computation time by
using another linear programming method with improved speed or by using a parallel
algorithm.

9.2.2 Genetic Algorithm Improvements

The markets rules were not chosen arbitrarily, but neither were they unique. A double-sided
auction should be implemented next.

This research assumed that the cost of producing electricity by a multi-unit GENCO could be
simplified as a single quadratic cost curve. This should be extended to perform a more
complex economic dispatch optimization.

This research considered only the day-ahead market used to determine allocation for the next
day. It ignored the existence of forward markets on larger time-scales (e.g., weekly, monthly,
etc.) and the hourly spot market held the hour before delivery. Future research should explore
these types of markets or develop strategies that make decisions for all of these timescales.

The effectiveness of evolving finite state automata as learning agents was measured only
relative to other evolved finite state automata. Future research could compare strategies
developed through other learning mechanisms to these agents. One could also evolve the
finite state automata in parallel with another learning algorithm to determine which is more
adaptable.

The Neural-Automata representation has not been tried for any other genetic algorithm
problems. Future research into this representation could test this representation on other
problems that accommodate the use of finite state machines. Obvious test problems are those
that have already been tried with GP-Automata, such as simple economic games as Divide
the Dollar [Ashlock, 2000] or as control structures in simulated robots [Ashlock,, 2001].

The parse trees used in the GP-Automata took real numbers as input and hence, used real
numbers as intermediate values during evaluation of the tree. Since limits were not placed on
the possible connections between parse tree nodes, this means that a real number could
potentially be fed into a boolean input. Since booleans are defined in terms of integers by the
convention (e.g., 0 = false, everything else = true), this could lead to every real being fed as a

 95

boolean argument being evaluated as true, since the odds of getting a real exactly equal to
zero are infinitesimal. However, this does not preclude other data types, such as booleans and
integers, still being fed as boolean inputs, and so it will not prevent the boolean functions
from operating normally. Randomly generated trees will simply have a bias toward true
values being fed to boolean inputs. One potential way to correct this would be to implement a
grammar to build the parse trees in which feeding real numbers as boolean inputs would be
disallowed. This work assumed that evolution would simply weed out those parse trees that
use reals as booleans if they cause problems.

 96

Appendix: Review of Interval Mathematics

The interval computations field is often taken as beginning with the work of Moore [1966],
although earlier relevant works exist. An interval value is describable using two real
numbers, which are called the low bound and high bound. For example, given interval X= [a,
b], a and b are real numbers, a is the low bound and b is the high bound. If a=b, this interval
value is the real number a. Set theory can also be used to describe the interval X=[a,b]. We
can define it as a set X={x: a<=x<=b}.

If we say [a,b]=[c,d], then a=c and b=d. If [a,b]<[c,d], then b<c. Other relationships may also
be defined. Interval arithmetic includes addition, subtraction, multiplication and division. Let
X=[a,b] and Y=[c,d] be two intervals. The following gives the definition for arithmetic
operations based on the set definition for intervals.

},:{ YyXxyxYX ∈∈⊗=⊗

where ⊗ is in +,-,*,/.

Therefore, X+Y = [a+c,b+d] and X-Y = [a-d,b-c]. Multiplication is a little more complex.

XY=[min(ac,ad,bc,bd), max(ac,ad,bc,bd)].

Division is a bit more complex still. Note that Y must not include zero.

1/Y = [1/d,1/c] if 0∉ Y

X/Y = X(1/Y) if 0∉ Y

If Y includes zero, X/Y should be [-∞, ∞] if the interval system includes infinites as allowable
endpoints.

Interval arithmetic also includes the following characteristics:

• Set Rule

– (V∪W) ±Z = (V±Z) ∪(W ±Z)

• Rule for the addition and subtraction of infinite or semi-infinite intervals

– [a,b]+[-∞,d] = [-∞,b+d]

– [a,b]+[c, ∞] = [a+c, ∞]

– [a,b] ±[-∞,∞] = [-∞,∞]

– [a,b]-[-∞,d] = [a-d,∞]

– [a,b]-[c,∞] = [-∞,b-c]

 97

• Associativity and Commutativity

– X+(Y+Z) = (X+Y)+Z

– X*(Y*Z) = (X*Y)*Z

– X+Y = Y+X

– X*Y = Y*X

Unlike in real arithmetic, operations are not invertible, which means there is no inverse
operation for a given operation. Although for the real domain, + and – are inverse operations,
in interval mathematics this is not true.

In interval analysis, interval-valued functions form a major topic. An interval function F is
interval-valued and has one or more interval arguments. For a real-valued function f of real
variables x1,…,xn, if we have an interval function F of interval variables X1,…Xn, and if
F(x1,…,xn) = f(x1,…,xn) for all xi(i=1,…,n) then F is an interval extension of f.

Interval functions have the following characteristics:

• Inclusion monotonicity

If Xi⊆ Yi (i=1,…,n) then F(X1,…,Xn) ⊆ F(Y1,…,Yn).

• Arithmetic inclusion monotonicity

If op denotes +,-,*, or /, then Xi⊂ Yi (i=1,2) implies (X1 op X2) ⊂(Y1 op Y2).

Excess width is an issue in interval mathematics. Let us use a simple example to explain this
problem. For interval value X=[a,c], what is the result for X-X? A naïve calculation gives a
result that is not zero, but [a-c,c-a]. Zero is just one real number included in this result.
Obviously, it is not the desired result, which is simply zero. For functions, an interval
function extension need not be unique, but can depend on the form of the real function. For
example, here are two expressions corresponding to the same real function:

f1(x) = x*x – x +1 and f2(x) = x*(x-1) + 1.

The corresponding interval extensions are:

F1(X) = X*X – X +1, F2(X) = X*(X-1) + 1.

These do not represent the same interval function, as:

F1([0,2]) = [-1,5], and F2([0,2]) = [-1,3].

 98

The true range of F([0,2]) is actually [3/4,3]. It can be determined by setting the derivative of
x*x – x +1 to 0 to get the value of x giving the low bound and substituting that real value into
f1 or f2.

This is referred to as the dependency problem or excess width. It enlarges intervals in the
result collection. The reason why excess width occurs is that a variable occurs more than one
time in an expression. Various methods have been developed to address this issue. Some of
these methods follow.

• Various centered forms:
� Computing the range of values [Asaithambi, Zuhe, and Moore, 1982]
� Enclosure methods [Alefeld, 1990]
� Artificial intelligence work [Hyvonen, 1992]

Computation time tends to be a problem with these excess width removal techniques. To
apply interval analysis, the following guiding principles should be considered. [Walster,
1998]:

• “Interval algorithms should bound error.”
• “Interval input/output conventions should be consistent with people’s normal

interpretation of numerical accuracy.”
• “The application of interval algorithms should be universal.”
• “Where interval algorithms currently do not exist, we should get to work developing

them rather than abandoning the principle of universal applicability.”

 99

Bibliography

[1] Alefeld, G., and J. Herzberger, Introduction to Interval Computations, Academic Press,
1983.

[2] Alefeld, G., Enclosure Methods, in C. Ullrich, ed., Computer Arithmetic and Self-
Validating Numerical Methods, Academic Press, 1990.

[3] Aliprantis, Charalambos D., Subir K. Chakrabarti, Games and Decision Making,
Oxford University Press, 2000.

[4] Arons, Henk de Swaan, and Philip Waalewinjn, A Knowledge Base Representing
Porter’s Five Forces Model, Proceedings CIMCA’99, Vienna 1999.

[5] Asaithambi, N. S., S. Zuhe and R. E. Moore, On Computing the Range of Values,
Computing, Vol.28, 1982.

[6] Bather, John, Decision Theory, An Introduction To Dynamic Programming And
Sequential Decisions, John Wiley & Sons, West Sussex, England, 2000.

[7] Bayes, Reverend Thomas, An Essay Toward Solving a Problem in the Doctrine of
Chance, Philosophical Transactions of the Royal Society, 1763.

[8] Beightler, C. S., D.T. Phillips, and D.J. Wilde, Foundations of Optimization, Prentice-
Hall Inc., 1979.

[9] Berleant, D. and J. Zhang, Representation and Problem Solving with the Distribution
Envelope Determination (DEnv) Method, Reliability Engineering and System Safety, in
press.

[10] Berleant, D., and C. Goodman-Strauss, Bounding the results of arithmetic operations on
random variables of unknown dependency using intervals, Reliable Computing 4 (2)
(1998), pp. 147-165.

[11] Berleant, D., and J. Zhang, Using correlation to improve envelopes around derived
distributions, Reliable Computing, in press.

[12] Berleant, D., Automatically Verified Arithmetic on Probability Distributions and
Intervals, in B. Kearfott and V. Kreinovich, eds., Applications of Interval
Computations, Kluwer Academic Publishers, 1996, pp. 227-244.

[13] Berleant, D., J. Zhang, R. Hu, and G. Sheblé, Economic Dispatch: Applying the
Interval-based Distribution Envelope Algorithm to an Electric Power Problem, SIAM
Workshop on Validated Computing 2002 Extended Abstracts, Toronto, 2002, pp. 32-
35.

[14] Berleant, D., L. Xie, and J. Zhang, Statool: A Tool for Distribution Envelope
Determination (DEnv), an interval-based algorithm for arithmetic on random variables,
Reliable Computing 9 (2) (2003), pp. 91-108.

[15] Bernoulli, Daniel, Exposition of a New Theory of the Measurement of Risk,
Econometrica (1954), pp. 23-36, Translation of a report Specimen Theoriae Novae de
Mensura Sortis, Reports of the Imperial Academy of Sciences in Petersburg, V, 1738.

[16] Best, P., Implementing Value at Risk, Chichester, New York, 1998.
[17] Binger, Brian R. and Elizabeth Hoffman, Microeconomics with Calculus, Harper

Collins Publishers, 1998.
[18] Box, M. J., D. Davies and W. H. Swann, Non-linear Optimization Techniques, Oliver

and Boyd, 1969.

 100

http://class.ee.iastate.edu/berleant/home/me/cv/papers/pdfs978.ps
http://class.ee.iastate.edu/berleant/home/me/cv/papers/pdfs978.ps

[19] Bussey, Lynn E., The Economic Analysis of Industrial Projects, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

[20] Byrd, R. H., and P. Lu, A Limited Memory Algorithm for Bound Constrained
Optimization, Technical report NAM-08, Northwestern University.

[21] Berleant, D., Automatically Verified Reasoning with Both Intervals and Probability
Density Functions, Interval Computations (1993 No. 2), pp. 48-70.

[22] Doftman, Robert, Paul A. Samuelson and Robert M. Solow, Linear Programming and
Economic Analysis.

[23] Fabrycky, W. J., G. J. Thuesen, D. Verma, Economic Decision Analysis, Prentice Hall,
Upper Saddle River, New Jersey, 1998.

[24] Fang, K.-T., & Y. Wang, Number-theoretic Methods in Statistics, Chapman & Hall,
1994.

[25] Ferson, S., W. T. Root, and R. Kuhn, RAMAS Risk Calc: Risk Assessment with
Uncertain Numbers. Applied Biomathematics, Setauket, New York, 1998.

[26] Ferson, S., What Monte Carlo Methods Cannot Do, Human and Ecological Risk
Assessment 2 (1996), pp. 990-1007.

[27] Hillier, F. S., and G.J. Lieberman. Introduction to Operations Research, McGraw-Hill,
2001.

[28] Hyvonen, E., Constraint Reasoning Based on Interval Arithmetic: The Tolerance
Propagation Approach, Artificial Intelligence, Vol.58, 1992.

[29] Kaplan, Barish, Economic Analysis: for Engineering and Managerial Decision Making,
McGraw-Hill, New York, 1978.

[30] Kaufmann, Arnold, The Science of Decision-making, McGraw-Hill Book Co., New
York, New York, 1968.

[31] Kotler, Philip, Marketing Management, 10th Edition, Prentice Hall, 1999.
[32] Kurz, Heinz D., and Neri Salvadori, The Dynamic Leontief Model and the Theory of

Endogenous Growth, Twelfth International Conference on Input-Output Techniques,
New York, 18-22 May 1998.

[33] Luenberger, David G., Investment Science, Oxford University Press, New York, New
York, 1998.

[34] Lindgren, Bernard W., Statistical Theory, MacMillan Publishing Co. Inc., New York,
New York, 1976.

[35] MATLAB Handbook, Online help version 6.0, 1984-2000.
[36] Mckelvy, M., R. Martinsen and J. Webb, Using Visual Basic 5, Que, 1997.
[37] Microsoft Developer Network, MSDN Library Visual Studio 6.0.
[38] Moore, R. E., Interval Analysis, Prentice-Hall, Inc., 1966.
[39] Moore, R. E., Methods and Applications of Interval Analysis, SIAM, 1979.
[40] More, J. J., and G. Toraldo, On the Solution of Large Quadratic Programming Problems

with Bound Constraints, SIAM J. Optimization, Feb. 1991.
[41] Neumaier, A., Interval Methods for System of Equations, Cambridge University Press,

1990.
[42] Ng, K .H., Operational Planning for Energy Service Company, Ph.D. Preliminary

Report, Iowa State University, Ames, July, 1999.
[43] Pindyck, Robert S., The Dynamics of Commodity Spot and Futures Markets: A Primer,

Massachusetts Institute of Technology, Cambridge, May 16, 2001.

 101

[44] Qian, Y. Y., Operations Research, Tsinghua University Press, Beijing.
[45] Quatrani, T., Visual Modeling with Rational Rose 2000 and UML, Addison Wesley,

2000.
[46] Raiffa, Howard, Decision Analysis, Addison Wesley Publishing Co., Reading

Massachusetts, 1968.
[47] Regan, H., S. Ferson and D. Berleant, Equivalence of Five Methods for Bounding

Uncertainty, accepted pending revision.
[48] Rose, Rational, Rational Unified Process 5.1 Online Help, www.rational.com.
[49] Schach, S. R., Software Engineering with Java, McGraw-Hill, 1997.
[50] Shaalan, H. and R. Broadwater, Using Interval Mathematics in Cost-Benefit Analysis

of Distribution Automation, Electric Power Systems Research Journal, Vol. 27, No. 2,
pp. 145-152, 1993.

[51] Sheblé, G. B., and D. Berleant, Bounding the Composite Value at Risk for Energy
Service Company Operation with DEnv, and Interval-based Algorithm, SIAM
Workshop on Validated Computing 2002 Extended Abstracts, Toronto, 2002, pp. 166-
171.

[52] Sheblé, G. B., Computational Auction Mechanisms for Restructured Power Industry
Operation, Kluwer Academic Publishers, 1999.

[53] Sheblé, Gerald B., Decision Analysis Tools for GENCO Dispatchers, Transaction on
Power Systems, Vol. 14, No 2, May 1999. pp. 745-749.

[54] Shoup, T. E., and F. Mistree, Optimization Methods with Applications for Personal
Computers, Prentice-Hall Inc., 1987.

[55] Shrestha, G. B., Song Kai and L. Goel, Strategic Bidding for Minimum Power Output
in the Competitive Power Market, Tans. On Power Systems, Vol. 16, No. 4, November
2001. pp. 813-818.

[56] Silberberg, Eugene, and Wing Suen, The Structure of Economics: A Mathematical
Analysis, Irwin McGraw Hill.

[57] Smith, Gerald W., Engineering Economy, ISU Press, Ames (IA), 1987.
[58] Sposito, Vincent A., Linear Programming with Statistical Applications, Iowa State

University Press, 1989.
[59] Springer, M. D., The Algebra of Random Variables, Wiley, 1979.
[60] Thompson, Gerald L., and Sten Thore, Computational Economics: Economic Modeling

with Optimization Software, the Scientific Press Series, 1992.
[61] Vazquez, C., M. Rivier, and I.J. Perez-Arriaga, Production Cost Minimization versus

Consumer Payment Minimization in Electricity Pools, IEEE Trans on Power Systems,
Vol. 17, No. 1, Feb. 2002, pp. 119 –127.

[62] Walsh, G, R., Methods of Optimization, John Wiley & Sons, 1975.
[63] Wang, Z. and F. L. Alvarado, Interval Arithmetic in Power Flow Analysis, IEEE Trans

and Power Systems, Vol. 7, No. 3, Aug. 1992, pp. 1341-1349.
[64] White, Agee, Case, Principles of Engineering Economic Analysis, Wiley, New York,

1989.
[65] Whittington, H. W., G. M. Bellhouse, Coal-Fired Generation in a Privatized Electricity

Supply Industry, Electric Power & Energy Systems 22 (2000), pp. 205-212.
[66] Williams, Jeffrey C., and Brian D. Wright, Storage and Commodity Markets,

Cambridge University Press, 1991.

 102

[67] Williamson, R., and T. Downs, Probabilities Arithmetic I: Numerical Methods for
Calculating Convolutions and Dependency Bounds, International Journal of
Approximate Reasoning 4 (1990).

[68] Wood, A. J. and B. F. Wollenberg, Power Generation, Operation and Control, 2nd ed.,
Wiley, 1996.

[69] Ashlock, D, GP-Automata for Dividing the Dollar, Genetic Programming 1997:
Proceedings of the Second Annual Conference, July 13-16, 1997, pg. 18-26.

[70] Ashlock, D, J Freeman, A Pure Finite State Baseline for Tartarus, Proceedings of the
2000 Congress on Evolutionary Computation, 2000.

[71] Ashlock, D, Math 378: Artificial Life, Class Notes, Department of Mathematics, Iowa
State University, 2001.

[72] Axelrod, R, The Evolution of Strategies in the Iterated Prisoner's Dilemma, Genetic
Algorithms and Simulated Annealing, chapter 3, pages 32 41. Morgan Kaufmann, Los
Altos, Calif., 1987.

[73] Boyd, R, J Lorberbaum, No Pure Strategy is Evolutionarily Stable in the repeated
Prisoner's Dilemma Game, Nature, 327 (7 May 1987): 58-59.

[74] Campbell, N A, Biology, Third Edition. pg. 1108. The Benjamin/Cummings Publishing
Company, Inc., 1987.

[75] Contreras, J, O Candiles, J de la Fuente, T Gomez, Auction Design in Day-Ahead
Electricity Markets, IEEE Transactions on Power Systems, Vol 16, No 1, February
2001.

[76] Copeland, T V, Antikarov, Real Options: A Practitioner's Guide, New York: Texere,
LLC.

[77] Cybenko, G, Continuous valued neural networks with two hidden layers are sufficient
(Technical Report), Department of Computer Science, Tufts University, Medford, MA.

[78] Roth, A E, I Erev, Learning in Extensive-Form Games: Experimental Data and Simple
Dynamic Models in the Intermediate Term, Games and Economic Behavior, Special
Issue: Nobel Symposium, vol. 8, January 1995, 164-212

[79] Koza, J, Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: The MIT Press.

[80] Kumar, J, G Sheblé, Auction Market Simulation for Price-Based Operation,
Department of Electrical and Computer Engineering, Iowa State University, 1996.

[81] Leahy, N, D Ashlock, Representational Sensitivity in A Simple Agent-Based
Computational Economics Experiment, IEEE Transactions on Evolutionary
Computation.

[82] Mayfield, J, D Ashlock, Acquisition of General Adaptive Features by Evolution,
Lecture Notes in Computer Science, v1447, 1998, p 75.

[83] McAfee, R, J McMillan, Auctions and bidding. Journal of Economic Literature,
25(2):699–738.

[84] Nash, J, Equilibrium points in N-Person Games, 1950, Proceedings of the National
Academy of Science.

[85] Otero-Novas, I, C Meseguer, C Batlle, J Alba, A Simulation Model for a Competitive
Generation Market, IEEE Transactions on Power Systems, Vol 15, No 1, February
2000.

 103

[86] Petrov, V, G Sheblé, Building Electric Power Auctions with Improved Roth-Erev
Reinforced Learning, Department of Electrical and Computer Engineering, Iowa State
University, 2001.

[87] Richter, C, G Sheblé, Genetic Algorithm Evolution of Utility Bidding Strategies for the
Competitive Marketplace, IEEE Transactions on Power Systems, Vol. 13, No. 1,
February 1998.

[88] Richter, C, G Sheblé, Ashlock, D. (1999). Comprehensive Bidding Strategies with
Genetic Programming/Finite State Automata, IEEE Transactions on Power Systems,
Vol. 14, No. 4, November 1999.

[89] Erev, I and A E Roth, On the Need for Low Rationality, Cognitive Game Theory:
Reinforcement Learning in Experimental Games with Unique, Mixed-Strategy
Equilibria, mimeo, July 1995, University of Pittsburgh.

[90] Sheblé, G B, Price Based Operation in an Auction Market Structure, IEEE Transactions
on Power Systems, Vol 11, No 4, November 1996.

[91] Song, H, C Liu, J Lawarrée, R Dahlgren, Optimal Electricity Supply Bidding by
Markov Decision Process, IEEE Transactions on Power Systems, Vol 15, No 2, May
2000.

[92] Wagner, B, N Leahy, D Ashlock, A Representational Sensitivity Study of Game
Theoretic Simulations, submitted to 2000 Congress on Evolutionary Computation,
2000.

[93] Weber, J D, T J Overbye, A Two-Level Optimization Problem for Analysis of Market
Bidding Strategies, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign

[94] Wilson, R, Activity Rules for the Power Exchange, Report to the California Trust for
Power Industry Restructuring, March 14, 1997.

[95] Wu, Q H, J Guo, D R Turner, Z X Wu, X X Zhou, Optimal Bidding Strategies in
Electricity Markets Using Reinforcement Learning, Department of Electrical
Engineering and Electronics, The University of Liverpool, Liverpool, L69 3Gj, U.K.
and Electric Power Research Institute Qinghe, Beijing 100085, P.R. China

[96] Doty, David, Genetic Algorithm-Based Simulation of Electric Power Markets, Master’s
Thesis, Iowa State University, 2002.

 104

	Decision-Making Under Uncertainty with Dependent Variables
	Dependence and Time Series Analysis
	Adaptive Agent Emulation of Energy Markets
	Intervals, Uncertainty, and Distributions

	Uncertainty Intervals
	Narrowing the Envelopes Around Results Using Correlation
	Facts about Correlation
	Joint Distributions
	Nonlinear Optimization to Remove Excess Width
	Improving Results by Adding Constraints to LP
	Simplex Method
	Nonlinear Optimization

	Enhancement of Functions
	Transportation Method
	Cascading Operations
	Relational Operations
	Complex Expressions

	Applications
	Economic Dispatch: Applying the Interval-Based DEnv Algorith
	Bounding the Composite Value at Risk for Energy Management C

	Genetic Algorithms for Bidding
	Application
	Market Design
	Market Simulation
	Optimization
	Genetic Algorithms and Learning

	Methods and Procedures
	Electric Power Markets
	Evolutionary and Genetic Algorithms
	Representation
	Market Setup
	Experiments

	Genetic Algorithm and Market Experiments Results
	Co-Evolution
	Evolution by Periodic Immortalization

	Summary and Discussion
	Conclusions
	Improvements

	Review of Interval Mathematics
	Bibliography

