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Executive Summary 

This research is concerned with the problem of power system control under uncertainty. Power 
systems must typically perform over a wide range of operating conditions. For instance, the load 
demands at a certain bus can vary gradually, or even sharply, every hour throughout a day; 
disturbances of differing extents of severity could happen during the normal operation; and the 
topology of the system could change over time. The existence of uncertainties requires good 
robustness of the control systems. A control system is robust if it is insensitive to differences 
between the actual system and the model of the system that was used to design the controller. 
These differences are referred to as model/plant mismatch or simply as model uncertainty. As for 
power systems, the control system will have to regulate the system under diverse operating 
conditions; it must have the ability to tolerate model uncertainties, suppress potential instability, 
and damp the system oscillations that might threaten system stability when the system is 
operating under stressed conditions.  
 
One of the major tasks in the design of control systems in a power system is to evaluate the 
stability robustness. Conventional controllers are designed to make the system stable under a 
specific operating condition. Time domain simulations are then used to evaluate the controller at 
specific points in a range of operating conditions. The simulation obviously cannot cover the 
whole operating range; thus, the resulting evaluation procedure cannot guarantee robustness of 
the controller over the whole range.  
 
Modern robust control theories have been developed significantly in the past years. The key idea 
in a robust control paradigm is to check whether the design specifications are satisfied even for 
the “worst-case” uncertainty. Many efforts have been taken to investigate the application of 
robust control techniques to power systems. Among them, H∞ optimization techniques have 
many applications in power systems. But the additive and/or multiplicative uncertainty 
representation not only overbounds the parametric uncertainty but also has the restriction to treat 
situations where a nominal stable system becomes unstable after being perturbed. Moreover, a 
very important procedure in the H∞ design is to choose weighting functions. This is by no means 
easy and requires practice. In addition, the order of the resulting H∞ controller is as high as that 
of the plant.  
 
Structured Singular Value (or µ) based tools have been proven to be promising. They were 
introduced to take advantage of the fact that in many problems uncertainty can be represented in 
a structured form, e.g., a block-diagonal form. Algorithms were developed to compute upper and 
lower bounds for µ, and the computed bounds were usually tight enough for practical 
applications. This has lead to a significant reduction in conservatism over methods that simply 
lump all uncertainty into a single, norm-bounded block.  The µ approach, however, involves 
complex computation. It encounters difficulty in application to large-scale systems due to the 
heavy computational burden. It has been shown that the mixed µ problem is NP hard, which 
means that no algorithm can evaluate µ in polynomial time. This property of the problem 
suggests that instead of trying to evaluate the exact µ, a more practical approach would be to 
evaluate good bounds. In fact, even the calculation of bounds takes considerable time. Thus, it is 
desirable to propose feasible algorithms to perform the bounds calculation. The research 
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conducted in this project extends existing methods to more practical algorithms for achieving the 
µ bounds to deal with the robustness analysis problem in power systems.  
 
A major portion of the computational burden in evaluating the bounds on µ arises from having to 
conduct a gridded sweep over the frequency range of interest. Treating the frequency as an 
uncertainty and reformulating the problem with an augmented uncertainty block overcomes this 
drawback. We refer to this formulation as the skewed-µ approach. We have formulated the 
problem of designing controllers for power systems as a skewed-µ problem. Using the skewed-µ 
approach we have developed an efficient branch and bound to determine the supremum of µ. 
This is a key step in the analysis. This scheme is very effective and significantly reduces the 
computational burden. The formulation developed has worked efficiently in the test systems 
considered. It significantly reduced the computation time in evaluating the peak value of µ. As a 
result, the robustness analysis was performed efficiently. 
 
Two other important bound determination techniques are also developed based on the skewed-µ 
formulation. These include efficient evaluation of the skewed-µ lower and upper bounds. The 
analytical basis for the computation of the bounds has also been developed. In addition, efficient 
algorithms are developed to evaluate the skewed-µ lower and upper bounds. These algorithms 
have been implemented using the Matlab µ-tool box. These algorithms are then tested on 
realistic power systems. The results obtained demonstrate that the analytical basis for the 
development of the skewed-µ bounds is sound. The algorithms developed to determine the 
skewed-µ bounds utilize associated algorithms like the Matlab LMI tool box that are not as 
efficient for large power systems. Specific algorithms to perform these special purpose 
algorithms for large power systems need to be developed. This is a topic for future research. 
 
With the focus on control design techniques that are computationally efficient and the need to 
effectively design controls with the desired robustness and performance capabilities, we 
examined other possible design techniques. A newly developed technique called H∞ loop-
shaping was identified and carefully studied. The technique is first formulated for the power 
system problem and then applied to design controls for a wide range of operating conditions. The 
designed controls are then tested using nonlinear simulations.  
 
In this project we specifically applied the technique to design power system stabilizers (PSS) for 
multi-machine systems. The problem of designing the PSS was first formulated. Uncertainties 
arising from changing operating conditions were characterized. The PSS design at each machine 
was then cast as a sequential control design problem as follows: 
 

A particular location is first chosen to design the PSS. The different modal frequencies 
are examined and loop shaping is done around desired frequencies to obtain the desired 
gain. H∞ design is then done taking into account the uncertainties. The resulting 
controller is typically of higher order. Appropriate model reduction techniques are used 
to obtain controllers that can be practically implemented. The designed controller is 
then folded into the system and the PSS at the next location is designed.  

 
This procedure has significant advantages since the design of new controllers is done taking into 
account the controllers that were designed in the previous steps. As a result, we can account for 
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the interaction between controllers. The results of the testing again demonstrate the efficacy of 
the method and the simplicity in applying it to large power systems. 
 
The techniques developed in this project are tested on two standard test systems. These include a 
4-Generator test system specifically designed to test the efficacy of the controller in damping 
inter-area oscillations and a 50-Generator IEEE test system that exhibits complex dynamic 
behavior. The designed controllers are tested over a wide range of operating conditions and their 
performance is verified using nonlinear time domain simulations. 
 
The design of the power system stabilizer using the proposed approach has been tested on a 
realistic power system model. The approach developed is fairly general and, without loss of 
generality, can be applied to the design of a wide range of controllers including excitation 
control, governor control, and controllers for FACTS elements. Among these, the controllers for 
FACTS elements have tremendous application potential. These controllers could include HVDC 
controls and controllers for static var systems. Accounting for uncertainty and change in network 
conditions will greatly benefit the design of controllers for FACTS elements since these elements 
are strategically located in the network and have the capability to make significant changes in 
network power flow. This is in contrast with conventional controllers that are generally designed 
to control synchronous machine variables. In addition FACTS controllers installed in the 
network are likely to see a greater variation in operating conditions due to the changes in 
interface flows and increased transactions. In such situations, the proposed design procedure that 
accounts for the uncertainty can effectively provide a design that satisfies both robust stability 
and performance requirements. This will significantly enhance the utility of FACTS devices that, 
in addition to their primary control function, can also provide significant improvement in system 
dynamic performance. 
 
Supplementary controllers associated with FACTS elements could be effectively designed to 
damp large inter-area oscillations and allow higher transaction levels to take place. One approach 
to achieve this goal is to use a supplementary damping controller in association with a static var 
compensator (SVC). Using the robust control approaches presented in this report, a 
supplementary controller can be designed to take into consideration a wide range of operating 
conditions and damp out inter-area oscillations in addition to performing the primary function of 
voltage control. In doing the design, the robust design procedure can be effectively used to select 
the supplementary controller signals and also to select the ideal location for the SVC. The 
algorithms developed in this project for large systems can be effectively utilized to perform the 
design on realistic systems. The procedure will also account for all the existing controls in the 
system and take into consideration the interaction between the different types of controls. 
 
The techniques developed in this project can also be applied to the design of unified power flow 
controllers (UPFCs). This topic is of great interest to several utility companies. The ability to 
design under uncertain conditions and also apply it to a large scale system is the primary 
advantage of the developed technique. The project has shown that a systematic design procedure 
can be established to account for changing operating conditions and also account for interaction 
between different controls. The ability of the obtained designs to enhance operating limits has 
also been shown. Hence, the application of the developed procedure to design controls for new 
devices that are just finding acceptance in the industry will be an excellent proving ground. 
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Another important follow-up to this project would be to demonstrate the efficacy and advantages 
of the design tools developed on real specific design examples identified by engineers at PSERC 
member companies. The investigators would also consider providing a short course on the design 
techniques and developing hands-on demonstrations to show how the tools developed can be 
easily used to accomplish design tasks. 
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1 An Introduction to Structured Singular Value (SSV) 

In this section a brief overview of the structured singular value approach to robust analysis of 
controls is provided. The advantages of the technique will be highlighted. In addition, the 
computational burden imposed by the technique on large systems will be discussed and 
approaches to overcome the computational burden will be presented. 

1.1 Uncertainty characterization 

Over the years, precise and fixed linear control schemes have been used extensively in many 
engineering applications. These kinds of designs do not take into account the uncertainties that 
could be encountered in both the plant and controller models. The uncertainty may have several 
origins.  
 
1. There are many parameters in the linear model which are only known approximately or are 

simply in error. 
2. The parameters in the linear model may vary due to changes in the operating conditions. 
3. Measurement devices cause errors. 
4. There are neglected dynamics when simplifying the system model. 
5. Uncertainties can be caused by the controller model reduction or by implementation 

inaccuracies. 
 
The first step of the robust control methodology is to model and bound the above uncertainties in 
an appropriate way. The next step is to try to design a controller that is insensitive to the 
difference between the actual system and the model of the system; i.e., a controller that can 
handle the worst-case perturbations.  
 
In the current literature, modeling of uncertainty is considered from two viewpoints.  
 
• In the frequency domain, the perturbation is considered to be a transfer function, separate 

from the system model [1]. This kind of uncertainty could be multiplicative or additive. For 
example, the normalized coprime factor uncertainty in [2] is a kind of additive uncertainty.  

• In the state-space representation, the uncertainties in the matrices can be captured.  
 
Those viewpoints are typically used to deal with the parametric uncertainty.  
 
If the uncertainty description represents one or several sources combined together to form a 
single lumped perturbation of a chosen structure, such uncertainty is called unstructured 
uncertainty. Parametric uncertainty is usually modeled in a structured way. However, sometimes 
there can be several levels of structure. For example, when the uncertainties include both 
parametric uncertainties and unmodeled dynamics, the whole uncertainty block could be a 
structured one and arranged in a diagonal form while, in particular, each block for the unmodeled 
dynamics could be a lumped unstructured block. In our research, we focus on the parametric 
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uncertainties characterized in a structured way, and the uncertainties are captured in a state-space 
representation context.  
 
In [3], a framework for robust stability assessment of controls in multimachine power systems 
was used. Starting from the algebraic and differential equations, all the algebraic variables in the 
component differential equations were eliminated according to the relationship derived from the 
network algebraic equations. The resulting differential equations were linearized at the nominal 
operating point to create a simplified linear system. The parametric uncertainties on the elements 
of the coefficient matrix of the system equations were then characterized by polynomial 
approximation.  

1.2 Computation of the µ bounds  

When the uncertainty is characterized in a structured manner, more information about the 
uncertainty is captured since the unstructured uncertainty is assumed to be bounded but 
otherwise unknown. In practical problems, it is generally the case that the uncertainty consists of 
multiple norm-bounded perturbations. Consequently, using only a single norm-bounded 
perturbation for analysis is rarely adequate.  
 
The structured singular value is defined based on the structured uncertainty representation. It is a 
function that provides a generalization of the singular value (for a single full complex block) and 
the spectral radius (for a single repeated complex scalar block). It gives the smallest size of the 
uncertainty (measured by the maximum singular value of the uncertainty block) which makes the 
system lose stability. Since it is based on an uncertainty characterization that makes use of much 
more information than most other robust approaches, it gives much less conservative results.  
 
In practice, the major difficulty in the application of the µ approach lies in the computational 
burden, especially when the system dimension and the number of uncertain parameters are large. 
The major issues in computing µ, or its equivalent are the generality of the problem description, 
the exactness of analysis, and the ease of computation. Many works in the literature deal with the 
computation of µ bounds. They may be divided into two categories: (1) those methods that 
emphasize refining the bounds by reducing gaps between the upper and lower bounds as much as 
possible to achieve high accuracy; and (2) those methods that aim at reducing the computational 
complexity, which tends to obtain µ quickly at the expense of getting relatively cruder results. To 
explore the algorithms obtaining µ, we need to make proper trade-offs between accuracy and 
computation time.  
 
The upper and lower bounds are derived as two optimization problems. The lower bound of µ is 
derived as a real eigenvalue maximization problem, and an improved power iteration has been 
developed for the generalized mixed µ case. Although it can be proved that µ is exactly equal to 
the maximal of this optimization problem, this problem is not convex; in general, only local 
minima can be achieved instead of global maxima. Thus, usually we can find only the lower 
bound. The commercial MATLAB Toolbox “µ analysis and synthesis” [4] uses the power 
algorithm to compute the lower bound. An upper bound was presented by Fan, et. al [5] which 
involves minimizing the eigenvalues of a Hermitian matrix. We will use these bounds in our 
calculation.  
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The general µ analysis procedure is to compute the bounds of µ (ω) as a function of frequency ω. 
In practice, this function is usually computed at each point of a frequency grid. This frequency 
sweep technique may, however, be unreliable in the case when narrow and high peaks exist on 
the µ plot, since critical frequencies can be missed.  
 
Doyle in [6] gave a state space test for the fast calculation of µ. This test first performs a bilinear 
transformation where the frequency variable is treated as another ∆ block to give a larger 
problem that converts the continuous-time µ problem to a discrete time µ problem. Since the 
bilinear transformation is a one-to-one mapping between the frequency axis and the unit circle, 
no frequency will be missed. Moreover, this transforms the frequency domain calculation to a 
single constant µ calculation involving larger M and ∆ matrices. This gives a one-shot state-
space µ test. But this kind of test does not have the flexibility to evaluate µ over a specified 
frequency interval and to get the worst-case parameter. It needs a search procedure over a 
particular variable that is time consuming and usually relies heavily on the tightness of the 
bounds to give information on the value of the particular variable.  

1.3 Definition of µ  

Suppose we have a complex matrix nnCM ×∈  and three non-negative integers mr, mc, and mC 
(with nmmmm Ccr ≤++= ), which specify the number of uncertainty blocks of repeated real 
scalars, repeated complex scalars, and full complex blocks, respectively. Then the block structure 

( )Ccr mmm ,,κ is an m-tuple of positive integers:  

 ( )mmmmmmm kkkkkk
crcrrr

,,,,,,,, 11 1
……… ++++

=κ  (1.1) 

This m-tuple specifies the dimensions of the perturbation blocks and determines the set of 
allowable perturbations:  

{ ( )
}icMrmicMrm

Ccmrmcrmrmr

kkc
i

c
i

r
i

c
m

c
k

c
mk

c
k

r
mk

r

CRR

IIII
++++

++

×∈∆∈∈

∆∆=∆∆=

,,                                                            

:,,,,,,,, diagblock  | 111 11

δδ

δδδδχκ ………
 (1.2) 

This block structure is a general form for any combination of repeated real scalars, repeated 
complex scalars, and full complex blocks. The purely complex case corresponds to 0=rm , and 
the purely real case to 0== Cc mm .  
 
The SSV, ( )Mκµ of a matrix nnCM ×∈  with respect to a block structure ( )Cc mmrm ++κ , is 

defined as follows:  

 ( ) ( ) ( )
1

0det:min

−












=∆−∆

∈∆
= MIM σ

κ
µκ  (1.3) 
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with ( ) ( ) κκ χµ ∈∆≠∆−=  allfor  0det if 0 MIM . 
 
From the definition of µ in (1.3), it is not obvious how the value of µ may be computed. In fact, 
the exact calculation of µ is generally very difficult [7]. Equation (1.4) provides the lower and 
upper bounds for µ, however, both bounds are too crude since the gap between them can be 
arbitrarily large in some cases. In order to reduce the gap, we define the following sets of scaling 
matrices κQ and κD :  

 [ ]{ }
icmrmk

C
i

C
i

c
i

c
i

r
i IQ

++
=∆∆=−∈∈∆=

8*

,1,1,1:: δδδχκκ  (1.4) 

 

 
( ){

}RdCDD

IdIdDDD

i
kk

ii

kmkmm

ii

mccmrmcr

∈<∈=<

=
×

+ ++

0,0                                        

:,,,,,diagblock :
*

11 1
……κ

 (1.5) 

then the lower bound and upper bound can be refined as  

 ( ) ( ) ( )1infmax −

∈∈
≤≤ DMDMQMR DDQQ

σκµρ
κκ

 (1.6) 

It has been proven in [8] that the first inequality in (1.6) is actually an equality. However, the 
function ( )QMRρ is not convex in κQQ ∈ and therefore it is not guaranteed that a global 
maximum can be found. The practical computation uses a power iteration algorithm to find a 
local maximum and thus obtains a lower bound for µ. On the other hand, the calculation of an 
upper bound from (1.6) is a convex minimization problem for the maximal singular value, so all 
local minima are global. Hence, this bound is computationally attractive. In this research, we will 
initially use the commercially available MATLAB µ-toolbox to compute µ upper and lower 
bounds [4].  

1.4 Linear fractional transformation  

Linear fractional transformation (LFT) is an important concept when forming the standard µ 
analysis framework. It is defined as follows. Consider a matrix nnCM ×∈ partitioned as  

 







=

2221

1211

MM
MM

M  (1.7) 

with 11
11

nnCM ×∈ , 22
22

nnCM ×∈ and nnn =+ 21 . Suppose we have block structures 
1κχ and 

2κχ defined as follows:  

 { }11

1
: nnC ×∈∆∆=κχ  

 { }22

2
: nnC ×∈∆∆=κχ  

then the block structure of κχ is defined as 



 5

 ( ){ }
21 2121 ,:,diagblock : κκκ χχχ ∈∆∈∆∆∆=∆=  (1.8) 

and is compatible with M . Now given any 
11 κχ∈∆ , the LFT ( )1, ∆MFu is said to be well-posed 

if and only if there exists a unique solution to the loop equations shown in Figure 1.1, namely  

 
wz

dMzMe
dMzMw

1

2221

1211

∆=
+=
+=

 

 
  
 
 
 
 
 
 

Figure 1.1  Upper LFT 

It is easy to see that ( )1, ∆MFu  is well posed if and only if (
1

In

LFT is well-posed, it is defined to be an unique mapping from
satisfy ( )dMFe u 1,: ∆=  where  

 ( ) ( 11121221 1
, MIMMMF nu ∆−∆+=∆

Note that in the above derivation we always assume that the f
inputs and outputs, and hence we obtain an upper LFT (deno
define lower LFT (denoted by lF ) as  

 ( ) ( 221212112 2
, MIMMMF nl ∆−∆+=∆

A fundamental property of the LFT is that the interconnec
Therefore, the LFT is very flexible in representing both param
dynamics.  

1.5 Robust stability and the frequency sweep method  

The general definition of µ is now extended to the linear system
complex matrix, M is now a transfer function matrix. The 
robust stability of linear systems and gives rise to the most co
domain robustness test.  
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 uF ). We can analogously 

21   (1.10) 

of LFTs are again LFTs. 
uncertainty and unmodeled 

 Instead of being a constant 
ing theorem addresses the 
 usage of µ as a frequency 
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Let ( )κχΜ denote the set of all block diagonal and stable rational transfer functions that have a 

block diagonal structure such as κχ . And for ( )κχΜ∈∆ , define ( ){ }ωσ
ω

j∆=∆
∞ sup . 

Theorem (Robust Stability [7]): Suppose ( )sM  is a nominal stable system(otherwise the 

problem is trivial), then for all ( )κχΜ∈∆  with 
β
1<∆

∞
, the perturbed closed-loop 

system is well posed and internally stable if and only if  

 ( )( ) βωµκ
ω

<
∈

jM
R

sup  (1.11) 

This theorem means that we can evaluate the robustness properties of a closed-loop system by 
using a frequency evaluation of µ. For any given frequency point we have a constant matrix µ 
problem, and the peak value of the frequency µ-plot determines the maximal size of the 
uncertainty for which the closed-loop system can maintain stability.  
 
As mentioned above, the µ-toolbox software does not compute µ exactly, but bounds it from 
above and below by several optimization steps. Hence, the conclusion can be restated in terms of 
upper and lower bounds. If we let uβ and lβ  be upper and lower bounds of µ respectively, then 
we can expect the following rules:  
 

• For all uncertainty matrices ∆  in ( )κχΜ satisfying 
uβ

1<∆
∞

, the closed-loop system is 

stable;  

• There is a particular uncertainty matrix ∆  in ( )κχΜ  satisfying 
lβ

1=∆
∞

 that causes 

instability.  
 
The restatement of the theorem suggests the need to search for max ( )( )ini

jM ωµκ,,1
max
…=

 and 

( )( )ini
jM ωµκ,,1

max
…=

 instead of ( )( )ωµκ
ω

jM
R∈

sup . This search involves a fairly large amount of 

computation. In practice a decision has to be made on the appropriate frequency range and the 
fineness of the grid. Thus there is possibility of missing important points. Moreover, in general, 
µ may be discontinuous so that the use of frequency sweeps may be misleading.  
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2 Power System Modeling 

To perform robust analysis on a power system, we need to set up the required framework. First, 
the nominal system model must be obtained. Power system models are described in detail in the 
following sections. The synchronous generators are represented by a classical model (see chapter 
2 of [9]) or two-axis model (see chapter 4 of [9]), with an excitation system represented by a 
ETMSP Type-30 model [10], and the power system stabilizer in a ETMSP Type-11 model [10]. 
The network is represented by steady-state network parameters with a constant impedance load 
model. By assuming that the generator internal reactance is constant, the network representation 
can be reduced to generator internal buses. The equations representing the various power system 
components can be coupled with the reduced network equations through a reference frame 
transformation. As a result, we obtained a set of coupled differential algebraic equations in the 
following form:  

 
( )

( )ZXg
uZXfX

,0
,,

=
=�

 (2.1) 

where X is the vector of state variables governed by the differential equations, and Z is the vector 
of network variables.  
 
The procedure for obtaining a linearized model of the system given in (2.1) is summarized as 
follows. A power flow solution is obtained for a given operating condition, specified in terms of 
real and reactive power load, real power generation schedules at generator buses, and voltage 
magnitudes at certain buses. This solution provides the voltage magnitudes and angles at all the 
buses. With the voltage solution and the power injection at each generator bus, initial conditions 
for the state variables are calculated. The state equations and the network equations are then 
linearized, and a set of state-space equations representing the power system are obtained in the 
following form:  

 
∆∆

∆∆∆

=
+=

HXGX
FZAXX�

 (2.2) 

where ∆X is the vector of incremental state variables; ∆Z is the vector of incremental network 
variables; and A, F, G and H are coefficient matrices with proper dimensions. Chapter 3 in [11] 
schematically describes the structure of the coupled equations.  

2.1 Generator model  

In this project, we use two kinds of generator models: the two-axis model and the classical model 
[9]. We assume that in a power system with n-generators, the first m generators are represented 
by the two-axis model and are equipped with exciters, and the remaining (n-m) generators are 
represented by the classical model.  
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2.1.1 Classical model 

The classical model is the simplest model to represent generators without excitation control in a 
multi-machine system (see Chapter 2 of [9]). It is based on the following assumptions:  
 

1. Mechanical power input is constant;  
2. Damping or asynchronous power is negligible;  
3. Constant-voltage-behind-transient-reactance model for the synchronous machines is 

valid; and 
4. The mechanical rotor angle of a machine coincides with the angle of the voltage behind 

the transient reactance.  
 
With the loads represented by constant impedance, the load nodes and the terminal voltage nodes 
of the generators are eliminated. The resulting network contains only the internal generator nodes 
(numbered from 1 to n). The generator reactance and the constant impedance loads are included 
in the bus admittance matrix busY of the reduced network.  
 
The dynamic equations for the classical model are given by  

 eiiii PPM −=ω�   (2.3) 
 
 nmmisii ,,2,1            …� =+=−= ωωδ  (2.4) 

where  

 iiimii GEPP 2−=   

 ( ) ( )[ ]∑
≠=

−+−=
n

ijj
jiijjijiijjiei GEEBEEP

,1
cossin δδδδ  

and  
 
Ei: internal bus voltage of generator i  

Mi: inertia constant of generator i  

Pmi: mechanical power input of generator i  

Gii: driving point conductance of node i  

Gij + Bij: the transfer admittance between node i and node j in the reduced network  

iω : rotor speed of generator i(with respect to the synchronous frame)  

sω : synchronous speed  

iδ : rotor angle of generator i  
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2.1.2 Two-axis model  

Generators with excitation control are described by the two-axis model (see chapter 4 of [9]) in 
this report. The two-axis model accounts for the transient effects and requires the following 
assumptions.  
 
1. In the stator voltage equations, the variation of flux linkages of d-q axes are negligible 

compared to the speed voltage terms.  
2. p.u. 1=≅ sωω  
 
The resultant dynamic equations are given by  

 ( ) dididiqiFDiqidoi IxxEEE '''' −+−=�τ  (2.5) 
 
 ( ) qiqiqididiqoi IxxEE '''' −−−=�τ  (2.6) 
 

 ( ) ( ) ( )si
s

i
diqidiqiqiqididimiii

DIIxxEIEIPM ωω
ω

ω −−−++−= ''''�  (2.7) 

 
 misii ,2,1                      …� =−= ωωδ  (2.8) 

where 
 

'' , qd EE : direct and quadrature axes stator EMFs corresponding to rotor transient flux  
components, respectively  

qd II , : the d and q axes stator currents  

'' , qodo ττ : open-circuit direct and quadrature axes transient time constants  

', dd xx : direct axis synchronous and transient reactances  

', qq xx : quadrature axis synchronous and transient reactances  

FDE : stator EMF corresponding to the field voltage  

iD : damping coefficient of generator i.  

2.1.3 Angle reference  

In (2.4) and (2.8), we used the absolute rotor angles ( iδ , i = 1; 2; : : : ; n) as state variables. Since 
these n state variables are not independent, we can introduce the relative rotor angles as new 
state variables which are independent. Without loss of generality, 1δ  is chosen as a reference; 
then, the relative rotor angles are defined as:  
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 n,,3,2           ,11 …=−= iii δδδ  

The dynamic equations (2.3) --- (2.8) remain unchanged with each iδ  replaced by 1iδ  and sω  
replaced by 1ω . Therefore, (2.4) and (2.8) become  

 niii ,,3,2              11 …� =−= ωωδ  (2.9) 

2.2 Excitation system model  

The type of excitation system used is the ETMSP Type-30 [10] (same as IEEE AC-4, see [12]) 
as shown in Figure 2.1. The state variables are FDE , 1EX , and 2EX , and the dynamic equations 
are given by  
 

 ( )iEPSSiREFi
Ai

Ai
FDi

Ai
iE

Ai

Ai
FDi XVV

T
aKE

T
X

T
KE 12

1 −++−=�  (2.10) 

 

 Ti
Ri

iE
Ri

iE V
T

X
T

X 11
11 +−=�  (2.11) 

 

 ( )iEPSSiREFi
Bi

iE
Bi

iE XVV
T

aX
T

X 122
11 −+−+−=�  (2.12) 

 

 ( ) ( ) niIxEjIxE

jVVV

qiqidididiqi

TdiTqiTi

,,2,1                '''' …=−++=

+=
 (2.13) 

where 

TV : generator terminal voltage  

REFV : exciter reference voltage  

PSSV : power system stabilizer voltage  

BiCi TTa = , BiT  and CiT  are time constants  
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Figure 2.1  Excitation system model: ETMSP Type-30 

2.3 Power system stabilizer model  

A power system stabilizer (PSS) is used to add a modulation signal to a generator's voltage 
reference input. The idea is to produce an electric torque at the generator proportional to speed. 
Since there is a phase lag between the voltage signal and the electric torque, the PSS usually uses 
a simple phase lead compensator to adjust the input signal to give it the correct phase. Figure 2.2 
shows the action of the PSS.  

Figure 2.2  Block diagram showing stabilizer action 

For performing the robustness analysis, a conventionally designed PSS is chosen. Its block 
diagram is shown in Figure 2.3. The state variables are, 1SX , 2SX , and 3SX . The equations for 
these variables are as follows:  

exciter
generator 
electrical 
dynamics 2Hs

1
s
ω0

power 
system 
stabilizer

Vref 

Et ∆ω

∆Te

∆Tm

-
+

+

+

system 
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 iSi
i

iS
i

iS K
T

X
T

X ∆+−= ω
5

1
5

1
11�  (2.14) 

 

 [ ]iSiSi
i

i

i
iS

i
iS XK

T
T

T
X

T
X 1

2

1

2
2

2
2 111 −








−+−= ∆ω�  (2.15) 

 

 [ ]iSiSi
i

i

i
iS

i
iS XK

T
T

T
X

T
X 1

4

3

4
3

4
3 111 −








−+−= ∆ω�  (2.16) 

 

 iSi
ii

ii
iSiS

i

i
iS

ii

ii
PSSi K

TT
TTXX

T
TX

TT
TTV ∆+++−= ω

42

31
32

4

3
1

42

31  (2.17) 

where 1−=∆
S

i
i ω

ωω . When performing the linearization of the above equations, 

 i
S

i
i

i
i ω

ω
ω

ω
ωω ∆=∆

∂
∂=∆ ∆

∆
1

 

Figure 2.3  Power system stabilizer model 

2.4 Network modeling  

Constant impedance loads are used. By eliminating all the load nodes, the network is reduced to 
contain only the generator internal buses. The bus admittance matrix busY consists of diagonal 
elements iiiiiiii jBGY +=∠θ , and off-diagonal elements ijijijij jBGY +=∠θ . Based on a 
procedure given in Chapter 9 of [9] the generator currents are given in the following form:  

 ( ) ( )[ ] ( )∑∑
+=

+
=

−+ +−=
n

mk
kikBG

m

j
djijGBqjijBGqi EFEFEFI

11

'' δδδ  (2.18) 

 

 ( ) ( )[ ] ( )∑∑
+=

−
=

+− +−=
n

mk
kikGB

m

j
djijBGqjijGBdi EFEFEFI

11

'' δδδ  (2.19) 
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 ( ) ( )[ ] ( )∑∑
+=

+
=

−+ +−=
n

ml
lklBG

m

j
djijGBqjijBGk EFEFEFI

11

'' δδδ  (2.20) 

 nmlkmi ,,1,                                 ,2,1 …… +==  

where  

 ( ) ( ) ( )ijijijijijBG BGF δδδ sincos +=+  (2.21) 
 
 ( ) ( ) ( )ijijijijijGB GBF δδδ sincos −=−  (2.22) 
 
 jiij δδδ −=  (2.23) 

2.5 Overall system equation  

The dynamic equations governing the generators, exciters, and the PSS have the following 
general form:  

 ( )uZXfX ,,=�   (2.24)  

where 
 

[ ]T
PSS

T
ES

T
SM

T XXXX ,,= , the vector of state variables  

( ) ( ) ( ) ( )[ ]TnnmdmqSM EEX 121
'

1
'

1 ,,, −−−−= δω  

( ) ( ) ( )[ ]TmEmEmFDES XXEX −−−= 12111 ,,  

( ) ( ) ( )[ ]TmSmSmSPSS XXXX −−−= 131211 ,,  

( ) ( ) ( )[ ] ( )[ ]TnTnmmdmq VIIIZ −−+−−= 1111 ,,, , the vector of network variables  

( )[ ]TmREFVu −= 1 , the vector of control inputs  

and f is the vector of nonlinear functions summarized below:  

 ( )[ ]dididiqiFDi
doi

qii

IxxEE

miEf

''
'

'
1

1     

,,1              

−+−=

==

τ

…�

  (2.25) 
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 ( )[ ]qiqiqidi
qoi

dii

IxxE

miEf

''
'

'
2

1     

,,1              

−−−=

==

τ

…�

 (2.26) 

 

 ( ) ( ) ( )







−−−++−=

==

si
s

i
diqidiqiqiqididimi

i

ii

DIIxxEIEIP
M

nif

ωω
ω

ω

''''

3

1     

,,1              …�
 (2.27) 

 

 
1

14

      
,,1             

ωω
δ

−=
==

i

ii nif …�
 (2.28) 

 

 ( )iEPSSiREFi
Ai

Ai
FD

Ai
iE

Ai

Ai

FDii

XVV
T

aKE
T

X
T
K

miEf

i 12

5

1     

,,1          

−++−=

== …�
 (2.29) 

 

 
Ti

Ri
iE

Ri

iEi

V
T

X
T

miXf
11     

,,1          

1

16

+−=

== …�
 (2.30) 

 

 ( )iEPSSiREFi
Bi

iE
Bi

iEi

XVV
T

aX
T

miXf

12

27

11     

,,1          

−+−+−=

== …�
 (2.31) 
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Si
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X
T

miXf

ω
ω

∆+−=

==

5
1

5

18

11     

,,1          …�
 (2.32) 

 

 








−∆








−+−=

==

iSi
S

Si

i

i

i
iS

i

iSi

XK
T
T

T
X

T

miXf

1
2

1

2
2

2
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111     

,,1          

ω
ω

…�

 (2.33) 

 

 
















−∆+








−+−=
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iSi
S

Si
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iS
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i
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T
T

T
X
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1
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1
2
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3
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3

4
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111     

,,1          

ω
ω

…�

 (2.34) 



 15

Note that we use (2.27) to model generators in the two-axis model as well as in the classical 
model. This is true because the classical model can be viewed as a special case of the two-axis 
model with .0 and ,,0, '' ==== dqdq IIIEEE  
 
Linearization of (2.24) leads to  

 u
u
fZ

Z
fX

X
fX ∆

∂
∂+∆

∂
∂+∆

∂
∂=∆ �   (2.35)  

We also have the network algebraic equation  

 ( )ZXg ,0 =   (2.36)  

This equation is linearized and organized so that all the terms related to the algebraic variables 
are put on one side of the equation and those related to the state variables are on the other side of 
the equation.  
 
We obtain the representation of the whole system in the state space form as  

 uBZFXAX ∆+∆+∆=∆ �   (2.37) 
 
 XHZG ∆=∆  (2.38) 

where  

 
u
fB

Z
fF

X
fA

∂
∂=

∂
∂=

∂
∂= ,,  (2.39)  

The procedure to obtain G, H and the detailed expressions for the elements of all the coefficient 
matrices are given in [30].  

2.6 Uncertainty characterization  

As mentioned in the introduction to Section 2, the state-space representation will be used to 
capture the parameter uncertainties in the system matrices. In [3], the parameter uncertainties in 
the system equations were characterized in the differential equations that were obtained after 
representing all the network variables by the state variables. A more natural way of 
characterizing the uncertainties was investigated in this project, where the uncertainties in the 
algebraic equations and differential equations were considered separately.  
 
In this project, the uncertainties were different operating conditions in the power system, which 
are represented by parameter variation such as in tie-line power flow, total generation of certain 
areas, etc. When the operating condition changes, some elements of the coefficient matrices of 
the dynamic equation (2.2) also change. Our analysis shows that the dependence of such a 
change on the parameter variation can be approximated by a low order polynomial. Results show 
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that linear approximation achieves very good accuracy as compared to quadratic approximations 
in [3].  
 
Next, we cast our problem as a robust stability problem in the canonical ∆−M  framework to 
apply the SSV method. The range of the operating parameters within which the system can 
remain stable is determined. For simplicity, we only took one operating parameter p varying 
within the known interval [ maxmin , pp ]. Two or more varying parameters can be treated in a 
similar way. Those coefficients of the matrices in the dynamic equation (2.2) that depend on p 
will change with the change of operating conditions. Consider the entries of the A-matrix as an 
example. Each element of the A-matrix in (2.2) that depends on the parameter can be expressed 
as follows: 

 paaa ijijij
'
1

'
0 +=  (2.40)  

It is desirable to normalize the range of uncertain parameter to the interval [-1,1]. Let  

 δ
22

minmaxminmax ppppp −++=   (2.41)  

where 11 ≤≤− δ . Note that as δ  varies within the interval-1; 1], p will vary within the interval 
[ ]maxmin , pp . Thus, the variation in p is captured by the variation in δ . When (2.41) is substituted 
into (2.40), we get ija as a polynomial of δ . Then (2.40) can be rewritten as:  

 δ10 ijijij aaa +=  (2.42)  

where δ takes the values in the interval [-1,1], and ijka depends on '
ijka , minp , and maxp . 

 
Based on the above representation, it is possible to write the system equations with one perturbed 
real parameter as follows:  

 
( ) ( )

( ) ( )XHHZGG
ZFFXAAX

1010

1010

δδ
δδ

+=+
+++=�

 (2.43)  

where [ ]1,1 +−∈δ ; [ ]00 ijaA =  is the matrix of the constant part in equation (2.40), and [ ]11 ijaA =  
is the matrix of the coefficients of the first order part in equation (2.40); 000 ,, HGF are matrices 
of the constant parts after linear curve-fitting for F, G, H respectively while 11,GF and 1H  are the 
respective first order part. Note that we omitted the subscript ∆, and that all the variables are 
actually incremental. Since 0G is invertible (see expression for 0G  in [30]), we can rewrite the 
above equations as follows:  
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where the matrices P and R are defined by  

 







= − 00

1
0

00

HG
FA

P  (2.45) 

 

 







= −−

1
1

01
1

0

11

GGHG
FA

R  (2.46) 

Singular Value Decomposition (SVD) is then used to reduce the order of the system. By using 
SVD factorization for R, we have  

 ∑= HVUR  

The matrix Σ is diagonal with the singular values in decreasing order on the diagonal. The 
matrices U and V are unitary matrices and the superscript H denotes the Hermitian conjugate, 
which equals the normal transpose in the case of real matrices. The matrix R has precisely  
r = rank(R) number of singular values that are separated from zero. If we partition the matrix U 
and V according to the non-zero singular values, we get  

 [ ] [ ] H
r

Hr VUVVUUR 112121 00
0

Σ=






Σ
=  (2.47) 

Now we let 11 UR = and H
rVR 12 Σ= . This allows us the possibility of reducing the order of the 

system.  
 
To extract the uncertainty δ , we define the vectors v and w as  

 







=

Z
X

Rv 2  (2.48) 

 
 vw δ=  (2.49)  

Due to the factorization, the size of the vectors v and w will be exactly  
r = rank(R). If R is of low rank, then the order of the uncertainty block will be reduced 
significantly. Now,  
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Adding v to the outputs and w to the inputs we get 
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Partition ,,, 21 PRR as follows:  

 [ ]ZX RRR ,2,22 =  (2.52)  
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Then,  

 






































=

























Z
X
w

PPR
PPR
RR

Z
X
v

ZZXZZ

ZXXXX

ZX

,,,1

,,,1

,2,20

���
�  (2.55)  

Rearranging the input and output, we get  
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Taking Z as the internal signal,  

 
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 (2.57)  

where  
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This process of “pulling out'” and isolating the uncertainty to get the resulting interconnection of 
known system components and uncertain parameters is redrawn in Figure 2.4, where M is a 
known dynamic system and ∆ is a diagonal (structured) perturbation which accounts for the 
uncertainty.  
 

 
Figure 2.4  Robust stability analysis framework 

The uncertainty characterization adopted in this project captures the uncertainty in the network 
components in a more direct fashion than has been done before when the network algebraic 
equations were reduced to obtain a system of differential equations to represent the system. 

2.7 Numerical results to verify uncertainty characterization 

The robustness analysis approach was first applied to a four-machine, two-area sample system, 
as shown in Figure 2.5. This system was specially designed by Ontario Hydro to study the 
fundamental nature of inter-area oscillations [13].  
 

 
Figure 2.5  Four-machine two-area test system 

For the 4-machine, 2-area test system, the exporting power from Area 1 was chosen as the 
uncertainty, which was allowed to vary in the range [0 - 400] MW. Load 1 was varied in the 
range [1140 - 1540] MW while Load 2 was varied in the range [1400 -1800] MW. 
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Using the given value of the control parameters, robustness analysis was done using the 
proposed uncertainty formulation. The µ results were evaluated for the given range of varying 
parameters. The results for the proposed formulation are shown in Table 2.1 under the symbol 
“DAE”. The estimated exporting power was obtained by repeatedly performing the eigenvalue 
test, while increasing the varying parameter (power export) to find the “critical” system 
eigenvalues. As a comparison, the robustness analysis results using the lumped differential 
equation (under symbol “DE”) to capture uncertainties [3] are also listed.  

Table 2.1 Robust Analysis Results for 4-Machine System 

 DAE DE 
µ upper bound 1.4913 1.4550 
Estimated Pexp (MW) 334.1 337.5 
Exact exporting power (MW) 344.5 344.5 
Error (%) 3.02 2.04 
Size of ∆ 14 22 

  
From Table 2.1 we see that using linear approximation in the proposed approach for uncertainty 
characterization can achieve accuracy comparable with that achieved by using quadratic 
approximation in the “DE” method. The uncertainty characterization does not overbound the 
uncertainty and provides stability results that compare well with the repeated calculation using 
eigenvalue analysis. 
 
Another test was performed on a fifty-machine system [14]. This is a moderate-sized system 
which includes all the modeling features and the complexity of large-scale power systems. A 
one-line diagram of the area of interest is shown in Figure 2.6.  
 
This test system contains 44 generators represented by the classical model with uniform damping 
and 6 generators represented by a two-axis model. All classical modeled machines have uniform 
damping ii MD = 0:1 except machines at buses #137 and #140 which have ii MD = 0:5. The 
base case power flow was characterized by setting the generation at Bus #93 and #110 to be 
1250MW. This generation was treated as uncertain and was allowed to vary in the range 
[2*1150-2*1350] MW.  
 
By performing an eigenvalue test, the exact critical generation was obtained as 1320.5MW. The 
robust analysis results using the differential algebraic model with the changing elements in the A 
matrix represented by linear approximation are shown in Table 2.2. Note that the peak of µ-plot 
in both cases was larger than 1.0 so the robust stability was not achieved within the given 
operating range. In both cases, the estimated stability limits agreed with the exact stability limits. 
Therefore, we can conclude that the proposed method provides a precise tool for the evaluation 
of power system robust stability.  
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Figure 2.6  IEEE 50-generator system: a one-line diagram 
of the study area 

 

 

 

Table 2.2 Robust Analysis Results for 50-Machine System 

 DAE DE 
µ upper bound 1.4217 1.4436 
Estimated critical generation (MW) 1320.3 1319.3 
Exact critical generation (MW) 1320.5 1320.5 
Error (%) 1.5 x 10-4 9.1 x 10-4 
Size of ∆ 112 122 
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3 Reducing Computation Burden in the Evaluation of µ 

In the preceding sections we have provided an introduction to the SSV or µ-based approach to 
analyze robust stability of power systems. The power system model has been formulated in the 
µ-framework, and a novel uncertainty characterization has been proposed. In this section we 
detail the approaches that have been taken to reduce the computational burden in evaluating µ. 
Three specific areas in µ- computation will be addressed. These relate to  

• Frequency sweep, 
• Calculation of lower bound of µ, and 
• Calculation of upper bound of µ. 

 
In each of these areas the steps taken to improve the efficiency of the µ-calculation will be 
clearly outlined. Tests conducted on a test power system model to determine the efficacy of the 
developed approaches will also be presented. 

3.1 The state space test  

The state space test method [6] for the analysis of robust stability can avoid the frequency sweep. 
The main idea is that a transfer function can be expressed as a linear fractional transformation 
(LFT) of a constant matrix with respect to the frequency variable, and the frequency variable can 
then be treated as an uncertainty so that the SSV technique can be applied directly.  
 
Given a transfer function M(s) in the M - ∆ framework, we write it as an upper LFT:  

 ( ) ( ) 















=+−= −

pup I
sDC

BA
FDBAsICsM 1,1  (3.1) 

where p is the dimension of the state space and (A;B;C;D) is a state space realization of M(s).  
 
If we denote  

 







=

DC
BA

M f    

then the state equation for the robust stability problem of M - ∆can be written as  

 ( )xMFx fl ∆= ,�  (3.2) 

where ( ) ( ) CDIBAMF fl
1, −∆−∆+=∆ . This is illustrated in Figure 3.1.  
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Figure 3.1  Transfer function in state space equation form 
with LFT 

Next we want to remove the frequency search and include pI
s
1 as one of the uncertainties. Since 

µ usually considers uncertainty inside the unit disk, while pI
s
1  covers the right half of the s-

plane, we may apply a bilinear transformation to map the right half of the s-plane into the unit 

disk on the complex plane (see Figure 3.2).  

 

 
Figure 3.2  Bilinear Transformation: the right half of the s-

plane to the unit disk in the z-plane 

where 

 1,,
1
1 ≤∈

+
−= zCz

z
zs  

and therefore,  

 pp I
z
zI

s −
+=

1
11  

This can be written in an LFT from again as: 
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 ( ) 

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  where,1  

Now we can replace pI
s
1  with the LFT of this constant matrix Q with respect to the new 

frequency variable z, as shown in Figure 3.3. The interconnection of Q and fM  in lower and 

upper LFT can be simplified using Redhaffer's star product [15]. This results in a new 

connection shown in Figure 3.3.c with matrix T in the following form:  

 
( ) ( )

( ) ( ) 











−+−
−−+

= −−

−−

BAICDAIC
BAIAIAI

T
pp

ppp
11

11 22
 

 

 
Figure 3.3  Frequency sweep transformed to state space 

test: A constant µ problem 

From Figure 3.3, we eliminate the frequency sweep by including the frequency variable as one of 
the uncertainty parameters (a repeated complex scalar block). In this way, we obtain a one-shot µ 
test involving a constant matrix µ problem. This is formally stated in the following theorem:  
 

Theorem (Robust stability with state space test) [7]  

 ( )( ) ( ) 1         1sup ~ ≤≤ ∆∆
∈

TifonlyandifjM
R

µωµ
ω

 

where ( ){ }1,,,~ ≤∈∆=∆ zCzzIdiag p .  
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Note that this theorem only tells us whether ( )( )
ω

ωµ jM∆sup is less than or equal to 1, which is a 

direct test for robust stability/instability. In order to compute the value of ( )( )
ω

ωµ jM∆sup , we 

need to define:  

 
















=
2221

1211

1

1

TT

TT
T

α

α
α  (3.3)  

 ( ) ( ){ }1:0inf~
~ ≤≥= ∆ αα

µαµ TT  (3.4) 

Then the above theorem can be restated as:  

 ( )( ) ( )TjM
R

µωµ
ω

~sup =∆
∈

 (3.5)  

Note that the right hand side of (3.4) involves a search over α; thus, we have not totally 
eliminated the need to search. Since ( )αµ T∆~  is monotonically decreasing as α increases, the 
binary search can be used for (3.4) which involves only several constant µ calculations.  
 
As mentioned before, the µ-toolbox software computes the lower and upper bounds instead of 
the exact value of µ. Therefore, we also obtain lower and upper bounds for ( )Tµ~ . Since the 
upper and lower bounds of ( )αµ T∆~  may not be always monotonic, a linear search over α is still 
needed.  

3.2 Bounded frequency test 

In light of the state space test, an alternative solution is proposed [16] to transform a classical 
frequency dependent µ analysis problem into a bounded frequency test problem in which the 
frequency ω  is introduced as an additional uncertainty. Unlike the state space test, which treats 
the frequency variables over the whole frequency space (complex variables over the whole right 
half plane) as uncertainties, this test could obtain µ over a specified frequency range while the 
frequency is treated as a real scalar parameter.  
 
Consider the interconnection structure M(s)-∆, where ∆ is the structured perturbation. We would 
like to compute without frequency gridding 

[ ]
( )( )ωµµ κωωω

jM
maxmin ,max max

∈
=   

In order to do this, we need to derive an LFT model for the dynamic system ( )ωjM  in which the 
frequency is viewed as a real scalar parameter. Let (A;B;C;D) be the state-space model of the 
transfer function matrix M(s). For a given positive ω , the matrix H satisfying 

( ) ( )IHFjM u ωω ,=  is given as follows:  
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 

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 (3.6)  

To normalize the frequency uncertainty, let  

 δωωωω ×+= 10 , 

where  

 ( ) ( ) 2/,2/ minmax1minmax0 ωωωωωω −=+=   

we have 

 

( ) ( )
( )[ ]
( ) ( )[ ] BIjAIjCD
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Let  

 ( ) 








+−−
=−= −−

−−

DBCAjCA
BAjA

HIjAA 1'1'
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then  

 ( ) ( ) ( )( )IHFjM u δωωωω 10 ,=  

Absorb 1ω  into H and let  

 ( ) 








+−−
= −−

−−

DBCAjCA
BAjA

H 1'
1

1'
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01 ω
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We get the normalized perturbation blocks ∆  as: 







∆

=∆
0

0Iδω . This process is shown in 

Figure 3.4.  
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Figure 3.4  Formulation of the bounded frequency test 

 
 
Theorem ([16]) With the notation introduced before,  

 
[ ]

( )( ) ( ) 1 iff 1max 1,max
maxmin

≤≤= ∆∆∈
HjM µωµµ

ωωω
  (3.7)  

This theorem provides a reliable approach to check robust stability in the sense that the potential 
problems with frequency discontinuities are avoided. Now we can solve the robustness analysis 
problem on the ( ) ∆−01 ωH  framework. In doing so, this bounded frequency test reduces our 
problem to a single constant µ problem with purely real uncertainties, thereby arriving at a very 
fast solution of the original problem.  
 
Next, we need to perform a similar α searching process as in a state space test to find the 
maximum uncertainty size before instability occurs. The introduction of α factor is related to the 
concept of “skewed-µ” [15]. Skewed-µ is used when we need to check how large a particular 
source of uncertainty can be before the system loses stability while keeping other blocks fixed. If 
we have two uncertainties, say { }21, ∆∆=∆ diag , and assume we have fixed 11 ≤∆ , and we 
want to find how large 2∆  can be before we get instability, then the solution is to shrink 2∆ by a 
factor of α and find the smallest value of α which makes ( ) 11 ≤∆ Hµ , where 







 ∆∆=∆ 21

1,
α

diag . The above idea can be restated as follows:  

 
Theorem  

 ( )( ) ( ){ }
















=≤= ∆∆

2221

1211

11

11
'
1

'
1 1

1

 with 1infmax
HH

HH
HHjM

α

αµαωµ
α

ω
  (3.8)  

Note that in this theorem, the shrinking factor α for the uncertainty block ∆ has been absorbed 
into the system matrix ( )01 ωH to form '

1H . It can be proved that ( )'
1H∆µ  is a monotonically 

decreasing function of α, thus allowing a systematic way of finding α, such as by a bisection 
procedure.  
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A problem with this approach is that we have to use upper or lower bounds as substitutes for 
( )'

1H∆µ  in the α searching procedure. Although the exact ( )'
1H∆µ is a monotonically decreasing 

function with respect to α, its bounds are not necessarily monotonic. This is especially true of the 
lower bounds. Sometimes we only get poor lower bounds due to the non-convex nature of the 
problem. This leads to difficulty in applying the bisection algorithm. To compensate for this 
disadvantage, we propose to combine this test with branch and bound schemes. By doing this, we 
do not need to perform the α searching, and we can take advantage of the frequency sweep 
without worrying about missing important frequency points.  

3.3 Branch and bound scheme 

In this branch and bound scheme, the objective is to find the frequency where the 
( )( )ωµκ

ω
jM

R∈
sup  occurs. We first screen the frequency intervals using a bounded frequency test 

which is only a one-shot µ test at a certain frequency interval. After eliminating all the intervals 
with ( )1H∆µ  less than 1, we perform a frequency sweep test on the remaining intervals. This 
provides an intelligent way to do a frequency sweep instead of blindly choosing the frequency 
interval to perform the sweep. The screening results of the branch and bound procedure give 
frequency ranges small enough to indicate where the instability might happen.  
 
We use the upper bound information to determine whether a certain frequency interval should be 

thrown away. If the upper bound of ( )1H∆µ  is less than 1, ( )1H∆µ  it will definitely be less than 

1. Such an interval can be eliminated. To perform faster screening, we try to use rough upper 

bounds whenever possible. For any ( ) ( )1inf, −

∈∆
× ≤∈ DMDMCM

DD

nn σµ
κ

 where κD is a set of 

matrices commutable with all the matrices in κχ , see equation (1.5) for details.  

 
The branch and bound scheme for our problem will be as follows:  
 

[ ]maxmin ,ωωbranch  
while    tolerance>− minmax ωω  
   [ ]maxmin , ωωtest overfrequency e bounded perform th . 
 

( )1    Hbound ofuppertheULet ∆= µ ; 

   breakUif  1 < ; 
   ( )[ ]2/,            minmaxmin ωωω +branchelse ; 
          ( )[ ]maxminmax ,2/ ωωω +branch  
   endif 
endwhile 
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3.4 Numerical results to verify efficacy of bounded frequency and branch and bound 
schemes 

These tests were conducted for the 4-machine test system. The same operating conditions 
specified in Section 2.7 were used. 

3.4.1 Bounded frequency test 

• One Shot µ test 
 

A frequency range of [2:65; 2:85] r/s, which includes the critical frequency, was selected.  
The one shot µ test gave the upper bound of ( )1H∆µ  as 1.9527 and the lower bound as 
1.5346, which indicates that the exact ( )1H∆µ  must be greater than 1. So we can 
conclude that the system is unstable within the given uncertainty range.  

 
• Estimate the parameter range for a stable operation  
 

Figure 3.5 gives the upper and lower bounds of ( )'
1H∆µ  corresponding to the change in 

α. Since the upper bound remains above one, it provides no information on when the 
exact ( )'

1H∆µ  goes down through one. But if we look at the lower bound, when α = 1.35, 
the lower bound of ( )'

1H∆µ  is still above one. Thus, we can say that the exact ( )'
1H∆µ  

goes down through one at least after α = 1.35. Since there is no point beyond  
α = 1.35 that gives the value of the lower bound of ( )'

1H∆µ  greater than one, we can use 
1.35 as an approximation of µ~ . Accordingly, we found the estimate value of the critical 
exporting power as 348 MW. Compared to the results from the eigenvalue test where the 
value of the critical exporting power was 344.5 MW, the error is only 0:2%. 

 
These results indicate that the bounded frequency test shows promise and provides a stability 
limit that is quite close to the actual limit predicted by the repeated eigenvalue test. However, it 
still requires an α search to estimate the stable limit of operation 
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Figure 3.5  α searching to get the skewed-µ 

3.4.2 Branch and bound scheme 

The test was performed on the four machine system with the same scenario as in the Section 2. 
The initial frequency range was chosen as [0; 100] r/s. When the tolerance was set to 0.1s, it only 
took 32.05s to arrive at the results. Large frequency intervals with 1~ <µ  were eliminated. The 
conclusion was that the frequency sweep test should be performed on the intervals [0; 0.19531] 
r/s and [2.53906; 3.51562] r/s to find the peak value of µ, see Figure 3.6.  

 

 

Figure 3.6  µ upper bound from the branch  
and bound scheme 
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The frequency sweep followed in this procedure immediately ruled out the former interval and 
determined the peak of ( )( )ωµ jM∆ . Figure 3.7 is the µ plot for the frequency sweep in the 
interval [0; 0.19531] r/s, and Figure 3.8 is the µ plot for the frequency sweep in the interval 
[2.53906; 3.51562] r/s. The peak of µ is 1.4605 at ω  = 2.7384. This compares very closely to the 
value of µ obtained by the exhaustive frequency sweep for the same case in Table 2.1. 
 

 
Figure 3.7  Frequency sweep for [0; 0.19531] r/s 

 

 
Figure 3.8  Frequency sweep for [2.53906,3.51562] r/s 

 
The proposed branch and bound scheme can efficiently rule out frequency intervals where 

( ) 11 <∆ Hµ  and can narrow the frequency sweep process down to a reasonable frequency 
interval. This can help us to intelligently select intervals for a frequency sweep and avoid 
missing important points.  
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From Figure 3.8, we see that a narrow spike appears in the µ plot. If the frequency sweep test is 
performed without knowing which frequency interval to pay attention to, it is very easy to miss 
the peak and, as a result, reach the wrong conclusions. Although the branch and bound scheme 
takes additional time before performing the frequency sweep, it not only saves time in 
determining the frequency interval to sweep, but also avoids missing important frequency ranges.  
 
These results demonstrate the advantages of the new branch and bound scheme, and its ability to 
correctly identify the frequency range in which to perform the frequency sweep to determine the 
peak value of µ. This will significantly reduce the computational burden for robust analysis of 
large power systems. 
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4 Efficient Evaluation of Skewed-µ Bounds 

In Section 3.2 the “Skewed-µ” formulation was introduced. In this section, we will build on this 
formulation and develop efficient techniques to determine the upper and lower bounds for the 
skewed-µ. Formulation of frequency as an uncertainty parameter is a skewed-µ problem. 
Previously work with robust analysis of power systems formulated the skewed- µ problem, but 
calculated µ over a region of frequencies. The resulting answer could only indicate if there was a 
potential problem in the frequency interval (yes/no) due to the interdependency of frequency in 
the calculation of µ. 
 
If frequency is skewed (fixed in range) in the problem, the resulting answer is a stability 
characterization according to the variation of all the other perturbed variables. In short, a stability 
characterization is obtained for the power system that is guaranteed across precisely the 
frequency range of operation specified in the perturbation variable. 
 
To explain the concept of skewed- µ more succinctly, consider a value of µ = 1.1 in relation to a 
robust stability problem. This means that all the perturbations in the system must be decreased in 
magnitude by a factor of 1.1 to guarantee stability. But what if the desire is to have the 
uncertainty range of some perturbations fixed, then how large can the other sources of 
uncertainty be before instability is encountered. This value that quantifies how large the other 
sources can be is defined as skewed-µ. 
 
In power systems analysis, the skewed variable will be frequency. This implies the question “If 
frequency is fixed to a certain range, then how large can the other system perturbations be before 
instability is encountered?” This is precisely the result that is desired. In relation to the system 
uncertainties, we can quantify the system stability over a specific frequency range and guarantee 
that there are no missed points. Frequency gridding cannot guarantee unmissed points. Skewed-µ 
performs a worst-case search over frequency, guaranteeing the answer. 

4.1 Skewed-µ mathematical description 

The mathematical description of skewed-µ is similar to that of µ and is developed in relation to 
the standard Linear Fractional Transform (LFT) like Figure 4.1. As an added convenience, the 
fixed and varying perturbations, and their corresponding sections of M, are grouped such that 
Figure 4.2 holds. In other words, the fixed perturbations are now in the upper left partition and 
the varying perturbations are in the lower right partition. This can be done via elementary 
transformations and does not affect the numerical or theoretical results. 
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Figure 4.1  Standard LFT form used in robust analysis 
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Figure 4.2  LFT form with perturbations arranged into 

fixed and varying blocks 

The block structure of the perturbations can be defined as follows. Given a matrix  

  

which interacts with perturbations of a fixed and varying nature, then, define three non-negative 
integers relating to the number of fixed perturbations 

ff cr mm , , and 
fCm  with 

fCcrf nmmmm
fff

≤++=: , where fn  is the total number of fixed perturbations. The block 

structure ( )
fff Ccrf mmm ,,κ  is an m-tuple of positive integers 

  

Similarly, define for varying perturbations three non-negative integers relating to the number of 
varying perturbations 

vv cr mm , , and 
vCm  with vCcrv nmmmm

vvv
≤++=: , where vn  is the total 

number of varying perturbations. The block structure ( )
vvv Ccrv mmm ,,κ  is an m-tuple of positive 

integers 

 
It is also required that 
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in order that these dimensions are compatible with M. 
 
This determines the set of allowable perturbations, namely define for the fixed perturbations 
(note that the subscript f is dropped to avoid more clutter): 

  

The varying perturbations requires a similar definition (with subscript v dropped): 

  

Note that for a matrix M, and a given a set of perturbations, the definition of skewed-µ is the 
smallest SSV (Structured Singular Value) of a subset of perturbations that destabilizes the 
system M with the remainder of the perturbations being of fixed size. Formally stating the 
restriction on perturbations of a fixed size, 

  

with the composite ∆ perturbations as 

  

Here B represents then fn  dimensional ball of  f∆ , which is restricted to a perturbation of size 
1. The unit ball is indicated as a formality. In practice, the fixed perturbation has some fixed 
range, -1 to 10, 0 to 100, -50 to 50, etc., to which it is restricted. These ranges are normalized to 
unity and the associated scalings absorbed into M. 
 
The difficulty in this definition of skewed-µ is that skewed-µ is believed to be NP hard; i.e., it 
cannot be calculated in polynomial time. The means of approaching a calculation for skewed-µ is 
through the implementation of bounds. This is similar to the case of the standard µ problem. 
Hence, there is a natural point to begin from when progressing towards skewed-µ bounds. 
 
The development of these bounds is one of the primary steps in assessing the stability of the 
power systems. Upper and lower bounds for skewed-µ are developed, both theoretically and 
computationally. 
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4.2 Skewed-µ lower bound 

The skewed-µ lower bound was developed first and has been published in the American Controls 
Conference Proceedings 2002 [17]. The premise for the lower bound is to find a unitary matrix Q 
that maximizes the real spectral radius (ρR) of a matrix M. This skewed-µ lower bound can be 
expressed as 

  

where the spectral radius has been found using the eigenvalue equation: 

  

This is the eigenvalue equation with a requirement that S be arranged as a partitioned matrix 

  

instead of the standard configuration of 

  

In the matrix S, ν  represents the eigenvalue to be solved for. The reason for constructing the 
partitioned, scaled matrix S is to keep the solution to part of the system of equations fixed 
(skewed) while varying the solution to the remainder of the system of equations via ν so that the 
largest spectral radius may be found. This explanation also assumes the matrix M has been 
rearranged via elementary transformations to allow the rows of M interacting with fixed 
perturbations to occupy the first fn  positions, with the remaining vn  rows being occupied by the 
rows that interact with the varying perturbations, as described earlier. This is a convenience only, 
and aids the theoretical development as well as the computational algorithmic development.  
 
To maximize ρR, a gradient search using the derivative of an eigenvalue and a power iteration is 
used to align the right and left eigenvectors while finding Q. When the eigenvectors are aligned, 
then a Q has been found that achieves a maximum ρR. Unfortunately, the lower bound is not 
convex, hence it is not know if the maximum is local or global; however, the algorithm works 
well in practice. 

4.3 Skewed-µ upper bound 

The skewed-µ upper bound was developed second, and has been computationally implemented 
in two ways. The first way is direct calculation that seeks to find the upper bound on skewed-µ 
using the concept that skewed-µ is less than the maximum singular value of the portion of M  
that interacts with the varying range perturbations. Using S to scale the portion of M that 
interacts with the varying range perturbations, the upper bound of skewed-µ can be found from 
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where S is as previously defined. This gives an upper bound on skewed-µ as 

  

In the two previous equations, σ represents the maximum singular value, D represents a matrix 
norm balance via Osborne methods [18], and S represents a scaling matrix used for scaling the 
sections of M which interact with the varying perturbations. These matrices can be expanded as 

 

To make coding the computational algorithm more convenient, the system has been normalized, 
and arranged via elementary transformations such that the fixed range perturbations occupy the 
upper left quadrant of the perturbation matrix, and the varying range components occupy the 
lower right quadrant of the perturbation matrix as previously discussed. Since the singular values 
of a matrix P are the eigenvalues of the matrix PHP, the resulting matrix of  

  

was manipulated into the generalized eigenvalue problem form, 

  

where the value of  ν  could be calculated directly using standard Matlab® tools. The resulting 
value ν is an upper bound on skewed-µ. 
 
The second procedure for finding an upper bound on skewed-µ was developed by deriving an 
expression for the skewed-µ upper bound as an LMI (Linear Matrix Inequality), 

  

where M is the matrix describing the nominal system, D is the norm balancing matrix, and the 
partitioned identity matrix with scaling factor ν represents the setup for solving for the smallest 
singular value to the system M where the partition has been implemented to force the solution of 
this equation over the portion of the system that with varying perturbations ( vI ). This is a 
variation to the standard form of the Generalized Eigenvalue Problem (GEVP) [19], and was 
developed for finding the skewed- µ upper bound. 
 
Some of the computational aspects for the LMI upper bound led to the use of the Matlab® LMI 
toolbox for implementation of the LMI upper bound calculation. This provides excellent results 
for smaller problems, but becomes overburdened on the large power system problems. This area 
is seen as a place for improvement, since the general purpose LMI toolbox appears significantly 
slower than the special purpose LMI solver used for calculating an upper bound on µ in the µ 
tools toolbox.  
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The results obtained from the skewed-µ upper bound research have resulted in two theoretical 
bounds, and two computational algorithms programmed in Matlab®.  

4.4 Results of skewed-µ software tools testing 

When the skewed-µ computational tools were applied to the 4-machine test system, the results 
provided a bound that was not as close to the projected results as other tools listed in this 
document. The primary reason for this involves the Matlab® LMI toolbox. The number of 
parameters in the 4-machine problem overwhelms the capabilities of the LMI toolbox; hence the 
second, more accurate upper bound method could not be applied. Only the first upper bound 
method could be used. Calculations involving the original µ code do not have this problem 
because they use a specifically designed system for finding the µ upper bound, including a 
gradient descent algorithm coupled with a modified LMI solver. Inspecting the underlying µ 
code shows that the values calculated by the µ tool and skewed-µ tool have similar values with 
respect to the 4-machine test system. It is only in the later stages of the µ tool upper bound 
software that significant improvements are made in the computation of the µ upper bound. This 
result indicates that an extension of the gradient descent algorithm coupled with a modified LMI 
solver from the original µ software to a similar method for the skewed-µ software tools is 
needed. This extension would include some theoretical development as well as creation of 
software tools.  
 
Figure 4.3 shows the results for the skewed-µ upper bound of the 4-machine test system over the 
most significant frequency range. This figure was obtained by applying the first method for 
finding the skewed-µ  upper bound. The second skewed-µ upper bound method using an LMI 
could not be implemented due to problem size restrictions. 
 

 
Figure 4.3  Skewed- µ upper bound for 4-machine  

system-frequency detail 
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It should be noted that on smaller test problems with systems placed in a skewed-µ format, the 
skewed-µ tool performed well. In these cases the skewed-µ tool used its LMI capabilities as well 
as the first method for finding the skewed-µ upper bound. 
 
Figure 4.4 shows the results for the skewed-µ upper bound of the 4-machine test system over the 
full frequency test range and is similar to the results obtained from the branch and bound scheme 
for the same frequency range shown in Figure 3.6. 
 

 
Figure 4.4  Skewed-µ upper bound for 4 machine  

system-full frequency span 

The results of the skewed-µ upper and lower bound testing indicate that the developed methods 
hold considerable promise. However, other associated algorithms used in the determination of 
these bounds need to be improved. This should be considered as a future research issue that will 
be addressed. 
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5 Control Design Using H∞ Loop Shaping 

In the previous sections we have dealt with techniques to improve the computational aspects of 
the SSV or µ-tools for robust stability analysis. We have made some important strides in 
improving the computational aspects of the µ-bounds. Our work also showed that further work is 
needed in improving some computational tools that are necessary to determine the µ-bounds. 
With this development in mind, we now look at an alternate approach that can result in 
significant savings in computational time for the design of controls in large power systems. H∞ 
with loop shaping is an alternative approach to design controls for large power systems. This 
approach introduced by McFarlane and Glover [20] is an elegant design process that has several 
advantages [15]. 
 

• It is easy to apply and works very well in practice.  
• The solution procedure is non-iterative, and explicit formulas for the corresponding 

controllers are available.  
• For a selected nominal plant, there is a closed formula for the maximum stability margin.  
• Except for special systems (that is, systems with all-pass factors), there are no pole-zero 

cancellations between the plant and controller. Pole-zeros cancellations are common in 
many H∞ control problems and are a problem when the plant has lightly damped modes.  

 

Ever since this design procedure was proposed, there have been many applications in industry. 
For power systems, Ambos [22], Pannett [23] et al used the procedure to design a controller for 
generator control. Graham [24] has designed robust controllers for FACTS devices to damp low 
frequency oscillations. In light of these successful applications, we introduce this design 
procedure to PSS design, and provide some basic guidelines for loop shaping weighting selection 
and controller design paradigm formulation. 

5.1 H∞ loop shaping design 

The Glover-McFarlane H∞ loop shaping design procedure consists of three steps.  
 

1. Loop Shaping. In loop shaping design, the closed-loop performance is specified in terms 
of requirements on the open-loop singular values. The open loop singular values are then 
shaped to give desired high or low gain at frequencies of interest. This step takes 
advantage of the conventional loop shaping technique, but no phase requirements need to 
be considered. That is, the closed-loop stability requirements are disregarded since the H∞ 
synthesis step taken thereafter will robustly stabilize the shaped plant. Using a 
precompensator W1 and/or a postcompensator W2, the singular values of the nominal 
plant are shaped to give the desired open-loop shape. The nominal plant G, the shaping 
functions W1 and W2 are combined to form the shaped plant, Gs where 12GWWGs = . We 
assume that W1 and W2 are such that Gs contains no hidden modes.  
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2. Robust Stabilization. It has been shown that the largest achievable stability margin maxε  
can be obtained by a non-iterative method [20]. maxε  is the stability margin for the 
normalized coprime factor robust stability problem(see section III-A in [20]). It provides 
a robust stability guarantee for the closed loop system. Suppose sM~ , sN~ are normalized 

left coprime factors of Gs such that sss NMG ~~ 1−= , then  

 [ ] 2
1

2

max
~,~1 





 −=

Hss NMε  (5.1) 

where 
H

denotes the Hankel norm. The controller is now defined by selecting maxεε ≤ , 
and then synthesizing a stabilizing controller ∞K , which satisfies  

 ( ) 111 ~ −

∞

−−
∞

∞

≤−






 εss MKGI
K
I

  

3. The final feedback controller is given by 21 WKWK ∞= . It has been proven [20] that the 
degradation of the open-loop shape due to the inclusion of ∞K  is limited. 

 
Figure 5.1 provides a schematic overview of the procedure. 
 

 
Figure 5.1  The loop shaping design procedure 
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5.2 Power system models 

To study the control of power system oscillations, the two-area, four-machine system described 
in Section 2.7 was used. In this system, the synchronous machines are modeled with the two-axis 
model [24]. The generators are equipped with the IEEE AC-4 excitation system [24] (see Figure 
2.1). It has been shown by Kundur [25] that the case when only one conventional PSS is installed 
at the machine close to the tie line in the sending area has the worst performance and stability 
behavior. It even destabilizes the most stressed plant. We choose this case to design our 
controller. The 50-Generator IEEE Test system described in Section 2.7 is also used for testing 
the design approach. 
 
The linearized system models, including the generators, exciters, and the networks, have the 
following state space representation: 

 
uDxCy

dBuBxAx
~~

~~~

+=

++=�
 (5.2) 

where x is a vector of the state variables, u is the control input, d is the disturbance, and y is the 
output variable. They are defined as follows: 
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where ∆ω  is the relative rotor speed, and 1−=∆
s

i

ω
ωω .  ~ and ,~,~,~ DCBA  are coefficient matrices 

which depend on the operating conditions. 

5.3 Controller design for the four-machine system 

The specific feedback structure for our problem is formed and the H∞ loop shaping design 
procedure is applied as shown in Figure 5.2. The first step is to choose the weighting function Wa 
to shape the open-loop system so as to make the closed-loop system achieve good disturbance 
attenuation. The shaping objective is to make the output y = ∆ω  (the generator speed variation) 
as small as possible with disturbance signal d = REFV∆ . Since the frequency of the inter-area 
mode is around 3 rad/sec, the performance objective has been translated to increase the 
open-loop gain around that frequency.  
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5 2.  The H∞ loop shaping design 

After that, an H∞ controller, ∞K , was synthesized to ensure the robust stability of the closed-loop 
system. Finally, ∞K  was cascaded with the shaping function Wa to form the final controller 

aWKK ∞= . Figure 2.5 shows the four-machine, two-area test system. The exporting power Pexp 
from Area 1 to Area 2 through the tie line was chosen as the uncertainty and was allowed to vary 
in the range [0 - 400] MW by varying the loads and generations in each area. All the four 
generators are equipped with IEEE AC-4 excitation system. We chose a plant set consisting of 
five plants that have different exporting power, as shown in Table 5.1. The five plants are all 
stable but have poorly damped inter-area modes. As stated before, we choose a configuration 
with the PSS located at the generator at bus 2 to stabilize the system. 
 

Table 5.1  The Perturbed Plant Sets 

 P1 P2 P3 P4 P5 
Pexp (MW) 0 100 200 300 400 

 
 
The five plants are all stable but have poorly damped inter-area modes. 

5.3.1 Controller design 

1) Loop shaping 
 
P4 is chosen as the nominal plant. The eigenvalues, damping ratios and the frequencies of the 
modes for the nominal plant are listed as in Table 5.2. 
 
The eigenvalues -0.0663± j 2.6938 correspond to the inter-area mode. The damping ratio for this 
mode is only 0.0246. The objective of loop shaping is to increase the open-loop gain around this 
frequency. To choose the weighting function Wa, we add pole and zero pairs to achieve gain 
increase in the desired frequency range while keeping the gain change as small as possible 
around other frequency values. The following transfer function for the weighting was used.  

 ( )
( )( )ss

ssWa 1852.01101
33.01105.186

++
+×=  
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The addition of the zero at the origin forces the controller to have a zero dc gain, thus, ensuring it 
only works in the transient state. A washout filter block in Wa, with time constant 10s is used to 

ensure the controller only works in the transient state. The selection of the pole at 
0.1852

1  and 

the zero at 
0.33

1  increased the gain around the frequency of interest so that the plant input 

disturbance can be attenuated effectively.  
 
The resulting open-loop gain from the reference voltage variation to the generator speed 
variation is shown in Fig 5.3. 
 

Table 5.2  The Modes of the Nominal Plant 

Eigenvalues Damping Ratio Frequency (Hz) 
-0.3846   

-0.3405 ± j 0.5160 0.5507 0.0821 
-0.3483 ± j 0.5401 0.5419 0.0860 

-1.4034   
-1.3996± j 1.0147 0.8096 0.1615 
-0.0663± j 2.6938 0.8219 0.2592 

-3.6072   
-1.1499±j 7.8488 0.1450 1.2492 
-1.0524±j 7.9022 0.1320 1.2577 

-9.6413   
-9.7180   
-85.2897   
-86.1091   
-92.5616   
-106.8436   
-106.9204   
-112.2049   
-112.8359   
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Fig. 5.3.  Comparison of the open-loop gains between the 

original plant and the shaped plant. 

2) H∞ synthesis 
 
Next, we synthesized a K∞ controller to achieve robust stability for the nominal plant. According 
to Equation (5.1), the maximum stability margin maxε is 0.4975, which is large enough and 
indicates the feasibility of our loop shaping design. The objective for the H∞ robust stabilization  
is:  

 ( ) 111 4975.0~ −

∞

−−
∞

∞

≤−







ss MKPI

K
I

 

According to McFarlane and Glover [25], given the normalized left coprime factorization of the 
nominal plant as NMPs

~~ 1
0

−= , the controller K∞ can stabilize all ( ) ( )NsMss NMP ∆+∆+=
− ~~ 1

 
satisfying [ ] 4975.0, <∆∆ NM . Furthermore, according to Georgiou [27], a controller stabilizes a 
gap ball of uncertainty with a given radius if and only if it stabilizes a normalized coprime factor 
perturbation ball of the same radius. Thus, in terms of the gap metric, all Ps with 

( ) 4975.0, 0 <ssg PPδ  can be stabilized by this controller.  
 
We list the gap between the weighted plants (Psi = PiWa, i = 1,…,5) in Table 5.3. Thus all the 
plants can be stabilized by this controller, or the controller achieves robust stability.  
 

Table 5.3  The Gap Between the Weighted Plants 

( )14 , ssg PPδ  ( )24 , ssg PPδ  ( )34 , ssg PPδ  ( )54 , ssg PPδ  
0.3463 0.2615 0.1698 0.2215 
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Here the uncertainties are of the nomalized coprime factorization type. These characterization 
are more conservative than the parametric uncertainties in the µ approach. The final controller is 
the combination of Wa with ∞K , that is ∞KWa . To check the performance of this controller, the 
frequency response of the closed-loop singular values are given in Fig 5.4. The frequency 
response of the singular value for all five closed-loop transfer functions (from the voltage 
disturbance to the generator speed variation) are shown. In Fig 5.4, the gains around the 
frequency of the inter-area mode (about 3 rad/sec) are small which shows good disturbance 
attenuation for oscillations with such frequency.  
 

 
Fig. 5.4.  Singular values of closed-loop transfer functions: 

( )( )PPKI 1−−σ for five plants. 

Table 5.4 shows the damping ratios of the controlled closed-loop systems. The minimum 
damping ratio for the nominal plant is only 0.0246. After adding the designed controller, the 
nominal closed-loop systems have a minimum damping ratio of 0.1449. The inter-area mode is 
well damped. For other perturbed plants, the minimum damping ratio is 0.1245.  
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Table 5.4  The Modes of the Controlled Nominal Plant 

Eigenvalues Damping Ratio Frequency (Hz) 
-0.0009   
-0.0031   

-0.3271±j 0.4931 0.5528 0.0785 
-0.3273 ± j 0.4931 0.5530 0.0785 
-0.4186±j 0.6707 0.5295 0.0843 
-0.4245±j 0.6687 0.5359 0.0853 

-0.9989   
-1.0044   

-0.7646±j 0.9457 0.6287 0.1505 
-0.7566±j 0.9652 0.6169 0.1536 
-0.5274±j 2.9422 0.1764 0.4683 
-0.4686±j 3.0242 0.1531 0.4813 
-4.1888±j 0.5136 0.9926 0.0817 

-4.2507   
-1.9460±j 4.8502 0.3724 0.7719 
-1.2415±j 5.9065 0.2057 0.9400 

-6.0387   
-1.1498±j 7.8503 0.1449 1.2494 
-1.1498±j 7.8504 0.1449 1.2494 
-8.0094±j 0.7452 0.9957 0.1186 
-3.6487±j 7.7779 0.4247 1.2379 

-9.6396   
-9.8272   

-83.8960±j 1.4739 0.9998 0.2346 
-87.5881±j3.8722 0.9990 0.6163 
-94.1128±j 5.2698 0.9984 0.8387 
-103.7650±j 5.8112 0.9984 0.9249 
-110.7216±j 5.1594 0.9989 0.8211 
-114.8270±j 2.0315 0.9998 0.3233 

 

We would also like to see how much the open-loop shape has been changed because of the 
inclusion of ∞K . Comparing the curves in Fig 5.5, it can be seen that the robust stabilization 
stage has not significantly altered the desired loop shape.  
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Figure 5.5  Comparison of open loop singular values 

3) Controller order reduction 
 
We want to conduct a nonlinear simulation using ETMSP [24] to examine the performance of 
the designed controller. The resulting controller has a high order (27th) while ETMSP can only 
handle a user defined model up to the 8th order. The controller is reduced to a 7th order  
controller using the Hankel Norm reduction.  
 
The transfer function of the reduced order controller is  

given as ( ) ( )
( )SD
sNsGk = , with  

( ) 365001003.11097.41049.258816082531108283.583 726364567 −×+×+×++++= ssssssssN
 

( ) 6.9516101.134149185068.28956.5493.41 5234567 +×++++++= ssssssssD  
 
The bode plots of the full-order controller and the reduced-order controller are shown in Fig 5.6.  
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Figure 5.6  Bode plots comparison of full-order controller 

and the reduced-order controller 

5.3.2 Simulation results on the four-machine system 

1) Nonlinear Simulations 
 
Nonlinear simulations are performed using ETMSP to test the efficacy of the designed controller. 
Three-phase short circuits are applied and cleared for a certain duration; the tie line real power 
flow is monitored. The performance of the designed controller is compared with that of a 
conventional PSS, which has been tuned using the procedure described in [27]. Its block diagram 
is shown as in Figure 2.2. The comparison is also made between the H∞ loop shaping controller 
and a µ controller obtained from the DK-iteration [11] procedure. Its transfer function  

is given as ( ) ( )
( )sD
sN

sG
µ

µ
µ = , with  

( )
7728

37475665758

10247.310868.910749.1              

10919.910367.410382.910655.810139.100013.0

×+×+×+

×+×+×+×+×+−=

ss

sssssssNµ

( )
56

26354554678

10589.6101.357            

10367.110546.410739.110604.13850148

×+×+

×+×+×+×+++=

s

ssssssssDµ  

 
Figure 5.7 shows it’s bode plot.  
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Figure 5.7  Bode plot for the µ controller 

2) Fault at bus 6 cleared after 10ms.  
 

The conventional PSS is designed for the case where the tie line exporting power is 0MW. It 
works well and has a good damping effect under this specific operating condition (see Figure 
5.8). But when the operating point changes and the system becomes more stressed, the 
improperly tuned PSS even destabilizes the system (see Figure 5.9). It is observed that the PSS 
designed using the loop shaping procedure and the H∞ approach provides good damping in the 
entire range of operating conditions.  
 

 

Fig. 5.8.  Comparison among the H∞ loop shaping controller, µ controller and the 
conventional controller (3 phase fault at bus 6 and 0MW exporting power case). 
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Fig. 5.9.  Comparison among the H∞ loop shaping controller, µ controller and the 
conventional controller (3 phase fault at bus 6 and 400MW exporting power case). 

 
From the simulation results shown in Figure 5.8 and Figure 5.9, we see that both the µ controller 
and H∞ loop shaping controller achieve robust performance and damp the oscillations very well 
for the whole operating range. The µ controller provides slightly better damping. However, the 
design procedure for the µ controller is more complex than the H∞ loop shaping. Besides the 
selection of the weighting function, it involves DK-iterations and will generate a controller with 
a much larger order than the H∞ loop shaping controller.  
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3) Fault at bus 5 cleared after 10ms.  
 
Similar comparisons are made for this fault. This is a fault in the area exporting energy. The 
conventional PSS does not work well for this case, see Figure 5.10 and Figure 5.12.  
 

 

5.10  Comparison among the H∞ loop shaping controller, µ controller and the 
conventional controller (3 phase fault at bus 5 and 0MW exporting power case) 

 
 

 

Fig. 5.11.  Comparison among the H∞ loop shaping controller, µ controller and the 
conventional controller (3 phase fault at bus 5 and 400MW exporting power case). 

 
Comparisons are also made between the performance of µ controller and that of the H∞ loop 
shaping controller, as shown in Figure 5.10 for 0MW exporting power case and in Figure 5.11 
for the 400MW exporting power case. These conditions represent the limiting cases for the range 
of operation considered. Both controllers have good damping ability. The µ controller provides 
slightly better damping than the loop shaping controller. 
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5.3.3 Robustness validation  

The structured singular value (SSV) based robust analysis is performed to validate the robustness 
of the resulting controller [28]. The process of characterizing the uncertainties and the definition 
of SSV are summarized in Section 2.  
 
The value of peak µ over the frequency reflects the robustness of the controller. Its inverse is the 
maximum parameter which can still let the system maintain stability. For the normalized 
uncertainty, a value of peak µ which is greater than 1 indicates that the controller cannot achieve 
robust stability. The µ analysis results for the three controllers are listed as in Table 5.5. From 
the table we see that both the H∞ loop shaping controller and the µ controller can achieve robust 
stability while the conventional PSS is not robust. The µ controller is more robust than the H∞ 
loop shaping controller. 

Table 5.5  The peak µ values for the three types of controllers 

Controller Peak µ value 
H∞ loop shaping controller 0.62 
µ controller 0.42 
conventional PSS 3.0 

5.4 Controller design for a fifty-machine system  

The loop shaping design was also applied to a fifty-machine system. This is a moderate-sized 
system which includes all the modeling features and the complexity of large scale power 
systems. A one-line diagram of the area of interest is shown in Figure 2.6. This test system 
contains 44 generators represented by the classical model with uniform damping and 6 
generators represented by a two-axis model. The base case power flow was characterized by 
setting the generation at Bus #93 and #110 to be 1250MW. This generation varies in the range  
[2 × 1150 - 2 × 1350] MW. Four sequentially designed PSSs using Glover-McFarlane loop 
shaping approach are located on generators #93, #104, #110 and #111. The weighting function 
for each loop was chosen as  

 
s
sWa 101

1865
+

=  

The high gain of 1865 is applied to improve the open loop gain for all frequencies. The 
additional zero at the origin which forces the system to have a zero dc gain and the washout filter 
with time constant 10s ensure the controller only works in the transient state. Comparisons of the 
open-loop gains between the original plant and the shaped plant after installing the four PSSs 
sequentially are shown as in Figure 5.12.  
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Fig. 5.12.  Comparison of the open-loop gains between the original plant and the shaped 

plant (Original plant has 3 loop shaped PSSs) for the PSS at generator #111). 

 
Nonlinear simulations are performed using ETMSP. A three-phase short circuit is applied at Bus 
#33 and cleared after 10ms. The active power of generation #110 is monitored. The performance 
of the designed controllers is compared with that of a conventional controller, see Figures 5.13 
and Figure 5.14.  
 

 

Fig. 5.13  Comparison of the performance between the H∞ loop 
shaping controller and the conventional PSS at 1150MW 
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Fig. 5.14  Comparison of the performance between the H∞ loop 
shaping controller and the conventional PSS at 1350MW. 

It can be seen from the figures that the H∞ loop shaping controller demonstrates better robustness 
than the conventional PSS.  
 
Another case was prepared to show the better performance of the H∞ loop shaping controller 
over the conventionally designed PSS in the range of operation considered. Both generator #93 
and generator #110 output real power were set at 1580MW. A three phase fault is applied to bus 
#7 for 10 ms, the fault is cleared by opening the line between bus #7 and bus #6, see Figure 5.15. 
This is a severe fault that leads to inter-area oscillations.  
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Fig. 5.15  Comparison of the performance between the H∞ 
loop shaping controller and the conventional PSS. 

These results clearly demonstrate the efficacy of the loop-shaping approach in designing controls 
with a high degree of robustness and desired performance characteristics. The design procedure 
is computationally efficient and provides a systematic approach to design controllers in a non-
iterative fashion. We have also effectively demonstrated the ability of the technique to perform a 
sequential design of PSS at different locations for a moderately large system. 
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