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Executive Summary 

Predictions of dynamic performance in power systems often require computationally 

intensive software simulations of vast numbers of scenarios, with dependence on large 

numbers of inputs and parameters that are uncertain.  In this context, each simulation 

study “run” represents one sample of behavior for a particular set of conditions and 

parameters values across the time steps of the simulation.  The overall goal is typically 

one of ensuring acceptable behavior over a wide range of parameter values and 

conditions, typically over some time period of interest.  Traditional methods of sampling 

over uncertain parameters, such as Monte Carlo simulations, become prohibitively costly.  

The work in this project explored methods of probabilistic collocation (PCM) as a means 

to greatly reduce the number of input parameter possibilities to be sampled, while still 

producing good approximations of the behavior of output of interest.  Examples of output 

quantities of interest would include load bus voltages, generator frequencies, power 

flows, or even the computed impedance ‘seen” from a set of relay measurements, to 

determine if the relay enters its zone of operation.  

For example, transmission planners may be interested in a dynamic voltage stability 

study in which voltage dip at several key buses under uncertainties in such quantities as 

in tap-changer delays and load parameter values. The Probabilistic Collocation Method 

would provide a rigorous algorithm for selecting a small number of specific parameter 

value combinations to study, and a means for combining these results to best estimate the 

behavior of the bus voltage magnitudes of interest. In a large scale power flow analysis 

problem where one wants to find the effect of a small number uncertain parameters on a 

bus voltage or line flow may require 100’s of simulations in a Monte Carlo approach. The 

same problem can be modeled with just a handful of simulations using the Probabilistic 

Collocation Method. The method reduces the complexity by assuming a structured 

polynomial mapping between the uncertain input parameter(s) and the output variable of 

interest, and by identifying a good set of data points (i.e., simulation results) for robustly 

approximating the mapping. The strength of PCM lies in its propensity for selecting 

simulation (or collocation) points in the high probability region of the input parameter(s) 

distribution, and it is this feature that makes PCM a computationally efficient modeling 
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technique. Besides illustrating the strength PCM for power systems applications, we 

discuss two new results that further tailor it to the power systems application.  In 

particular, the work here demonstrates the improvement of the PCM approximation using 

sensitivity information, and the computation of error bounds for PCM approximations. 

We also demonstrated that in many cases for which the original presentation of the 

problem contain a large number of uncertain parameters, variable reduction techniques 

can improve computational efficiency further without significantly sacrificing accuracy. 

We tested the Probabilistic Collocation Method on a 14 Bus IEEE test system. We first 

modeled the input-output relationships precisely. Then, using PCM, we developed an 

efficient approximation far fewer input variables.  Results obtained were very promising. 

Future Directions 

This report shows the versatility and potential for use probabilistic collocation methods. 

Refinement, extensions, testing on systems of realistic size, and applications development 

are the next steps. 

• Justification: We have corroborated most of our results with analytical proofs, 

and demonstrated their application in illustrative power systems examples. 

• Optimization: Our work includes first steps towards applying the Probabilistic 

Collocation Method in solving optimization problems relevant to power systems 

applications.  While rudimentary, this appears a promising application, in which 

the efficiency of the PCM method will allow optimization algorithms to more 

broadly “search” the set of feasible solutions. Future work is needed for using the 

method to handle optimization problems in more computationally efficient ways. 

• Software Package: Many of the computational examples presented in our work 

were generated in software developed as Mathematica™ modules, taking 

advantage of that package’s great flexibility and convenience in manipulating 

nonlinear functional descriptions and system models.  However, for greater 

efficiency, future work may benefit from a version of the method coded in a 

programming language such as C++. 
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1. Introduction 

1.1 Background and Problem Overview 

Even when provided with a specific system topology and known parameter values 

describing individual elements, the dynamics of a large-scale electric power network 

require computationally-intensive time step simulation to predict the evolution of its 

outputs of interest (power flows, generator frequency variations, load bus voltage 

variations, etc.). When the parameters of the system are uncertain (e.g., imprecisely 

known load composition, or gains and time constants for exciters, power system 

stabilizers, and governor controls), it is necessary to simulate the system over many 

different parameter sets to adequate characterize the output(s). This project was 

concerned with the problem of intelligently choosing simulation points (e.g., sets of 

parameter values selected for simulations) so as to characterize the outputs of complex 

processes with minimal effort.  

 

      Uncertain                                                                                                 Uncertain 

   Input Variables                                                                                        Output of interest 

      

Figure 1-1: A general reduced order “black box” model representation. 

We are specifically interested in characterizing the mapping between a set of uncertain 

parameters and an output of interest. We take the perspective that a low-order “black 

box” model can capture the mapping between the inputs and output. Such a “black box” 

model does not attempt to capture the operational intricacies of the system; rather, it tries 

to represent the relationship between the input variables and the output of interest based 

on observations of the system output at a finite set of input simulation points. Once the 

“black box” relationship between the input variables and the output of interest has been 

identified, such reduced order models could prove to be useful for analysis. However, to 

Complex 
Input/Output  

Mapping 
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come up with input/output mapping or to characterize the output, the system has to be 

simulated for a set of input values.  

“Economy” is the key word: techniques for coming up with such reduced order models 

with as few system simulations as possible could prove to be very useful. Traditionally, 

techniques such as brute force Monte Carlo simulation [16] were used for generating the 

mapping. The problem with such techniques is that they involve exhaustive simulations 

to characterize the outputs. If simulations are computationally intensive, characterization 

of outputs through exhaustive simulations may be infeasible.  

Artificial Neural Networks (ANN) are also popular in the modeling arena; they are used 

for mimicking dynamic behavior of the system. Artificial Neural Networks map a set of 

input variables/patterns with corresponding output variables/patterns. A general ANN 

model consists of three layers viz. an input layer that carries the input information to the 

system, a hidden computational layer and an output layer. The input layer has 

connections, which has connection weights corresponding to it. The input values are 

multiplied by the weights and the weighted sum is formed. Each neuron has a threshold 

value (called bias) associated with it which is subtracted from the weighted sum. The 

computational layer applies an activation function to this weighted sum to produce the 

output. To determine the weights and biases and optimization procedure (called training) 

is used. We request the readers to refer to [20] and [21] for more information on ANN 

based modeling.  

An alternative approach for intelligently choosing simulation points is to exploit 

probabilistic descriptions of the uncertain parameters. In other words, we would like to 

choose simulation points in such a way that the mapping between the parameter and 

output is accurately identified over the range of likely parameter values. The Probabilistic 

Collocation Method [1], [2], [3], [5] is a technique that can be used to model the 

deterministic relationship between uncertain parameters and an output of interest using 

polynomial functions. This is the approach that we shall take in this report.  

The Probabilistic Collocation Method (PCM), also known as Deterministic Equivalent 

Modeling Method (DEMM), is a modeling technique that employs Gaussian quadrature 

[8] to characterize the relationship between uncertain input parameters and an output of 
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interest. The output of interest is modeled as a polynomial of the uncertain input 

parameter(s). PCM was first used for global climate change studies [5]. In [1], [2] and [3] 

the authors apply PCM for modeling uncertainties in electric power systems. When 

probabilistic descriptions for the uncertain parameters are well known, it has been 

claimed that the Probabilistic Collocation Method (PCM) is more efficient compared to 

simulation techniques like Monte Carlo in terms of number of simulations required to 

capture the input-output relationship. For instance, a simple power systems load flow 

analysis problem where we are want to find the effect of a particular uncertain parameter 

on the bus voltage or line flow may require 100’s or sometimes even 1000’s of 

simulations in the Monte Carlo approach whereas the same problem can be modeled with 

just a handful of simulations using PCM. PCM reduces the complexity by assuming a 

structured polynomial mapping between the uncertain input parameter(s) and the output 

of interest and identifying a good set of simulations for correctly and robustly 

determining the mapping. The point selection is done based on Gaussian quadrature, 

which forms the crux of the theory behind PCM. Another interesting feature of PCM is 

that the same set of simulation points can be used for analyzing multiple output 

parameters.  

It is interesting to consider some other modeling techniques for efficiently choosing 

simulation points under parameter uncertainty. The Stochastic Response Surface Method 

(SRSM) [14], [15] is an uncertainty modeling technique used mainly in the field of 

chemical and bio-medical engineering. In SRSM the inputs of the system are represented 

as functions of certain standard random variables (srvs) and each output under 

examination is expressed as a series expansion in terms of the srvs as multidimensional 

Hermite polynomials. The reasoning behind this representation is that it offers 

consistency, as the srvs are well behaved and mathematically tractable. The mapping 

between the input and the output can be established by estimating the coefficients of the 

output series expansion and this is achieved by collocation methods, like PCM, or 

regression methods.  

The authors discuss PCM for this purpose and, notably, they discount its usefulness on 

the grounds that PCM becomes unwieldy when the number of input parameters is large. 

We have proposed a techniques to address this issue, which is one of our major 
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contributions in this project. The authors adopt a regression-based collocation method for 

estimating the coefficients which they address as regression based SRSM. It requires 

twice as many collocation points as there unknown coefficients for estimation. Moreover, 

in [15], the authors claim that SRSM maybe may be more useful in the case of complex 

nonlinear models.  

The Stochastic Collocation Method (SCM) [17] used mainly in the field of fluid 

dynamics, transforms the physical random variables to an artificial stochastic space with 

known properties, and then uses a collocation-based approach for modeling the 

relationship between the physical random variable and the output of interest.  

Unlike PCM, the techniques mentioned above are quite complex to implement. PCM is 

appealing because it is simple and yet allows the evaluation of complicated output 

functions.  

1.2 Report Organization  

This report is organized into six chapters. Following the introduction of this Chapter 1, 

Chapter 2 presents the general theoretical background on the probabilistic collocation 

method, introducing the one-dimensional PCM, and discussing its underlying theory of 

Gaussian quadrature and orthogonal polynomials. It illustrates one-dimensional PCM 

with the help of general technical application examples. The succeeding Chapter 3 

provides a generalization of PCM to handle multiple-correlated uncertain parameters as 

well as proposing power system specific ways to employ PCM with what is known as 

“boundary” load flow. Chapter 4 introduces optimization problems of interest in power 

systems that may be approached via PCM methods.  

Information theoretic approaches for reducing the number of input uncertain variables is 

discussed in Chapter 5 and demonstrated through illustrative examples. In Chapter 6, we 

apply PCM to model the input-output relationship for a 14 Bus IEEE test system. Chapter 

7 provides conclusions and future research directions. 
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2. Theoretical Background for the Probabilistic Collocation Method 

2.1 General background 

The Probabilistic Collocation Method is a means for developing a parametric model for 

the deterministic mapping between a stochastic input and an output (Figure 2-1), using 

only a small number of simulations of the system. In particular, nth-order PCM seeks to 

represent the mapping using an nth-degree polynomial whose coefficients are found by 

matching the model predictions with simulation outputs for a particular set of n+1 input 

values. The n+1 input values---henceforth called the PCM points---are specially chosen, 

in a manner that makes the fit robust to some possible errors in the model’s 

parameterization. Specifically, the n+1 PCM points are chosen so that the mean output 

predicted by the model is identical to the actual mean output, if in fact the mapping is a 

polynomial of any degree less than or equal to 2n+1. Thus, PCM specifies a low-order 

mapping that approximates a much higher-order (in other words, more detailed) mapping, 

in the sense that the mean output predicted by both mappings is identical.  

 
Figure 2-1: Mappings with single and multiple stochastic inputs. 

PCM can be used to characterize the mapping g() and the probability distribution of the 

output with a small number of simulations.  

Stochastic 
input x with 
distribution 

f(x) 
Deterministi
c Simulation/ 
Mapping g() 

Stochastic 
Output g(x,y) Stochastic 

input y with 
distribution 

f(y) 

Stochastic 
input x with 
distribution 

f(x) 

Deterministi
c Simulation/ 
Mapping g() 

Stochastic 
Output g(x) 
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The specialty of PCM lies in its propensity for selecting simulation (or collocation) points 

in the high probability region of the input distribution, and it is this feature that makes 

PCM a cost effective modeling technique. The theory behind PCM is based on the 

concepts of Orthogonal polynomials and Gaussian quadrature. So, before elucidating the 

PCM mechanism, we find it necessary to throw some light on the above mentioned 

concepts.  

2.2 Orthogonal Polynomials and Gaussian Quadrature 

Gaussian quadrature is a particular numerical integration technique. For our application 

here, Gaussian quadrature provides advantages over traditional numerical integration in 

the fact that it offers the freedom to select points at which the given function can be 

evaluated. Suitably exploiting this flexibility in selection of evaluation points allows the 

number of points at which the function has to be evaluated to be significantly reduced. 

Apart from the economy aspect, it has been claimed that the results obtained using 

Gaussian quadrature are more accurate compared to traditional numerical integration 

techniques like the Simpson’s rule or the trapezoidal rule.  

Gaussian quadrature uses orthogonal polynomials for the purpose of selecting points. The 

typical form of integrals in Gaussian quadrature is  

                                                        !F dxxgxf )()(                                                        (2.1) 

where )(xg , is an orthogonal polynomial, )(xf  is a non-negative weighing function 

defined in the connected space F , and the above expression defines an inner product.  

Before going further into the theory behind Gaussian quadrature and the Probabilistic 

Collocation Method, it is useful to review some details concerning orthogonal 

polynomials.  

Orthogonal Polynomials: As the name suggests, orthogonal polynomials are 

polynomials that are orthogonal to each other, specifically with respect to an inner 

product operation. We find it worthwhile to reproduce the definition of inner product and 

orthogonal polynomials from [2] and [8].  
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Given a real linear space of functionsF , an inner product !" gf ,  (we represent inner 

product by angled brackets) defined on F  is a function of Fgf !,  satisfying the 

following conditions: 

                                             !"+!"=!+" hghfhgf ,,,                                           (2.2)   

                            !"=!"=!" gfgfgf ### ,,, , where ! is a scalar                        (2.3) 

                                                     !"=!" fggf ,,                                                    (2.4) 

                                                   0, >!" ff , if 0!f                                             (2.5) 

For example, consider two polynomials )(xg  and )(xh  if )(xf  is any non-negative 

weighting function defined on the space, then !
"

=#$
F

dxxhxgxfxhxg )()()()(),(  is an 

inner product. 

This expression is very important as it is the peculiar inner product that forms the basis 

for Gaussian quadrature integration and the Probabilistic Collocation Method. The 

polynomials )(xg  and )(xh  are said to be orthogonal if their inner product is zero.  

Orthonormal polynomials 

A set of polynomials in the space H  are said to be orthonormal if and only if the 

following relationship exists for all )(xhi  inH . 

                                                          
!
"
#

$

=
=%&

ji
ji

hh ji ,0
,1

,                                                 (2.6) 

The subscript of the polynomial indicates its degree; i.e., )(xhi  has degree i . An 

important property of these orthonormal polynomials is that they are unique and they 

form a basis for the space for all polynomials. Another important property of these 

orthonormal polynomials is that their roots depend only upon the weighting function 

)(xf . Further, all the roots are contained in the space F , and each orthonormal 

polynomial ih  has exactly i  roots. The roots of these polynomials form the collocation 

points for the Probabilistic Collocation Method. The set }{ ih  of orthonormal polynomials 

of increasing degree form the backbone of PCM.  
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Gaussian Quadrature 
As mentioned before, Gaussian quadrature is a special numerical integration technique 

for integrals of the form 

!F dxxgxf )()(  

In a nutshell, Gaussian quadrature seeks to obtain the best numerical estimate for the 

above integral and it does so by picking certain x  values, evaluating )(xg at these points, 

and the computing the integral. The x  values are the roots of the orthogonal polynomials 

discussed in the previous section.  

The result of Gaussian quadrature integration is the following formula: 

                                              )()()(
1

i

n

i
iF
xgfdxxgxf !"

=

#                                             (2.7) 

The coefficients if  depend on the weighting function and the function )(xg is evaluated 

at abscissa values that are the roots of the nth orthogonal/orthonormal polynomial 

calculated with respect to the weighting function )(xf . 

The above integral is exactly correct when )(xg  is a polynomial of degree (2n-1). 

Interestingly, the integral can be estimated using just n samples. This shows that the 

Gaussian quadrature has the ability to represent a higher order relationship using a lower 

order polynomial; PCM inherits this property from Gaussian quadrature.  

Proof for Gaussian Quadrature 

The polynomials in H  up to and including order i  form an orthonormal basis for the 

space of all polynomials of degree less than or equal to i . Then, a polynomial of order 

)12( !n  can be expressed as follows:  

             )()())()()(()( 00110011 xhbxhbxhaxhaxhxg nnnnn +++++= !!!! !!                 (2.8) 

Note that )(0 xh is a constant. Hence, by orthogonality, the Gaussian quadrature integral 

can be expressed as follows:  

                                           dxxhxfbdxxgxf
F

F
)()()()( 00 !! =                                        (2.9) 
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By evaluating the function )(xg  at the n roots of the orthogonal polynomial )(xhn  we 

get the following set of linear equations:  

                                         
!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

& '

'

'

0

1

0

10

1

111

)(

)(

)(

)(

)(

)(

b

b

xh

xh

xh

xh

xg

xg n

nnn

n

n

!!
"

!

"

!                                    (2.10) 

To solve for 0b , we need to invert the above expression. If )(0 xh  is chosen to be equal to 

1, as it generally is then our desired result is 0b . 
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                                        0b = )()()(
1

i

n

i
iF
xgfdxxgxf !"

=

#                                          (2.12) 

Where, the weights if  are given by the last row of the matrix in (2.11). 

2.3 One Dimensional PCM 

Given an input random variable x  with probability density function (PDF) )(xf and an 

output of interest, we seek to approximate the functional mapping g(x) that transforms the 

input to the output. Notice that the mean value of the output in this case is given by  

                                                 E(x) = !F dxxgxf )()(                                                   (2.13) 

Gaussian quadrature allows us to choose n+1 points such that, for any g*(x) that is a 

polynomial of order less than or equal to 2n+1, and for which the integral is the same. 

Thus, the mean value predicted by the degree-(n+1) polynomial passing through these 

points is the same as the mean predicted by any polynomial of degree less than or equal 

to 2n+1 that passes through the points. Equivalently, the degree (n+1) polynomial 

suffices to capture the mean output, if the mapping is indeed a polynomial of degree less 

than or equal to 2n+1. The Gaussian quadrature points (in this case the PCM points) are 

determined by computing the first n+1 orthogonal polynomials with respect to f(x).  
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Once the (n+1) PCM points are generated, the function under study is simulated at these 

points. The nth order PCM polynomial will be of the form  

                                             
n

n xaxaaxg +++=
!

!10)(                                              (2.14) 

By substituting the (n+1) PCM points in the above equation we get n equations, and by 

solving these equations using the value of the function under study at these (n+1) PCM 

points, we can obtain the coefficients of the nth order PCM polynomial.  

A General Scientific Example 

To illustrate a classic application of Probabilistic Collocation Method, we first examine 

an example from the field of physical chemistry.  

The “Ideal Gas” law [22] is an equation that describes the physical behavior of an ideal 

gas. It combines three primitive gas laws viz. Boyle’s Law, Charles’s Law and 

Avogadro’s Law. The equation relates the pressure P, volume V, and the temperature T 

of an ideal gas. In the same vein, an ideal gas is one whose physical properties satisfy the 

ideal gas equation.  

The ideal gas law is stated as follows 

                                                             nRTPV =                                                        (2.15) 

P is the pressure of the gas. 

V is the volume of the gas. 
n is the number of moles of the gas. 

R is the universal gas constant, R = 0.0821. 
T is the temperature in Kelvin. 

For our purpose this brief introduction to the “Ideal Gas” law would suffice. Typical 

problems related to the “Ideal Gas” equation would be finding the value of one of the 

entities given the rest.  

Our first PCM example in this report is an attempt to model the “Ideal Gas” law. Having 

the actual relationship in hand helps as the PCM generated polynomial model can be 

compared with the actual analytical relationship. Another reason for the choice of this 
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example is just to illustrate the prospect of PCM as an algorithm that can be used in 

several fields of study.  

For a particular gas, we have made the following assumptions, with the temperature T at 

absolute zero (273 K) we want to find the volume occupied by one mole of the gas in 

liters (1 liter = 0.264172051 gallon) when the pressure is randomly distributed between 

0.6 and one atmosphere (atm).  

We would like to remind the readers that this example is only for the purpose of 

illustrating PCM. Otherwise, PCM, or any other uncertainty analysis technique for that 

matter, would be obviated for such an example because the relationship between the 

uncertain parameter and the output of interest can trivially be computed analytically.  

To make the analysis interesting and, more practically, to show that PCM can handle any 

kind of distribution, we have chosen an unconventional probability density function 

(PDF) for the pressure.  

                                     
!
"
#

<<$

<<$
=

18.0),14(
8.06.0),5/2(4

)(
PP
PP

Pf                                        (2.16) 

The PDF is depicted below in Figure 2-2. 

 
Figure 2-2: Plot of the distribution for the pressure, P. 
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Using the above PDF the first few orthogonal polynomials are generated; the roots are the 

pressure values for which the volume is calculated using the Ideal Gas equation. The 

table below lists the orthogonal polynomials up to order 4 with their roots.  

Table 2-1: Orthogonal polynomials and their roots.  

Orthogonal Polynomials 
1)(0 =Ph  

 

03.769.8)(1 != PPh  

8933.0=P  

                                                

61.5389.13534.84)( 2
2 +!!= PPPh  

}9207.0,6905.0{=P  

 

96.41237.158369.199775.829)( 23
3 !+!= PPPPh  

}9573.0,8022.0,6481.0{=P  

 

28.32354.16576315532645093.8240)( 234
4 +!+!!= PPPPPh  

}9734.0,8714.0,7354.0,6293.0{=P  

 
The volume is then calculated by substituting the roots of the orthogonal polynomials 

into the gas equation and the coefficients of the PCM polynomial are obtained by solving. 

For example, if we want the PCM quadratic polynomial, say g(P), for the relation under 

study, we have to use the roots of the 3rd order orthogonal polynomial. In general, the 

roots of the order n orthogonal polynomial are used to generate the order (n-1) PCM 

polynomial.  

The roots of the 3rd order orthogonal polynomial are 0.648104, 0.802175 and 0.957301. 

The corresponding volume values are  

     V1 = 34.5661 
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V2 = 27.9271 
V3= 23.4016 

We need a polynomial of the form aP2 + bP + c. Using the values of the roots and the 

corresponding g() values, we obtain three equations which can be solved to give us the 

values of the coefficients.  

Thus, the PCM quadratic for the relationship is as follows: 

                                      894.8537.10801.45)( 2 +!= PPPg                                      (2.12) 

We would also like to present the linear and cubic PCM approximations: 

                                                   78.5624.35)( +!= PPg                                            (2.13) 

                              77.11445.21811.183048.57)( 23 +!+!= PPPPg                       (2.14) 

Analysis 

We present plots comparing the polynomials generated by PCM with the actual function. 

The actual function plot is obtained by exhaustively simulating the equation 
P
nRTV = . 

The plots show the accuracy of PCM. Figure 2-4 reveals that the PCM quadratic is very 

close to the actual function. From Figure 2-5 it can be observed that the PCM cubic is so 

close to the actual function that it is hard to differentiate between them. The power of 

PCM is such that with just four simulations we are able to model the relationship between 

the volume and pressure. An important attribute of PCM, as mentioned before, is its 

characteristic of identifying the mean value of the output correctly. To illustrate this, 

Table 2-2 presents the expected value and variance of the PCM polynomials along with 

those of the actual function.  
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Table 2-2: Comparison of mean and variance values of different order PCM predictions  

Function Expected Value and Variance 

PCM 1st Order Polynomial E = 28.2569,   σ2  = 16.4515 

PCM 2nd Order Polynomial E = 28.2668,   σ2  = 17.3091 

PCM 3rd Order Polynomial E = 28.267,     σ2  = 17.333 

Actual Function E = 28.2807,   σ2  = 17.35 

 

PLOTS: 

 
Figure 2-3: PCM linear approximation and the actual function plotted through exhaustive 

simulation. The solid line represents the actual function and the dotted line is the PCM 
linear polynomial.  
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Figure 2-4: PCM 2nd Order and the actual mapping. The solid line represents the actual 
mapping and the dotted line is the quadratic PCM. The two plots are identical except at 

the upper endpoint where they disagree slightly.  
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Figure 2-5: 3rd Order PCM and the actual mapping. The solid line represents the actual 

mapping and the dotted line is the cubic PCM polynomial. 
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Figure 2-6: Comparison of output probability distributions. Solid line – actual function’s 
distribution. The dotted, dash, and dot-dash – distributions based on the PCM 1st, 2nd 

and 3rd order approximations.  

2.4 Improving PCM 

In the remainder of this chapter, we present two new results concerning PCM, namely the 

improvement of the PCM approximation using sensitivity information and the 

computation of error bounds for PCM approximations. Theses analyses follow naturally 

from well-known results in the Gaussian quadrature community, but have not heretofore 

been considered in the study of PCM. In presenting these results, we hope to briefly 

introduce the reader to relevant literature on quadrature, and to highlight some 

distinctions in analysis goals for quadrature and PCM, respectively.  

Some simulation programs not only can compute the output for a particular parameter 

value, but also can determine the sensitivity of the output to the parameter. For instance, 
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efficient means for characterizing sensitivities of power flow outputs to loading 

parameters have been developed, and when sensitivity information is available, we might 

expect to obtain a more detailed characterization of the input-output mapping. That is, 

since we have additional information of the input-output mapping (in particular, 

knowledge of the derivative of this mapping at the simulation points), we should be able 

to generate a more accurate approximation of the mapping.  

Let us assume that the output )(xg and the sensitivity of the output 
dx
xgd ))((  to the 

parameter x have been found at the )1( +n  PCM points *
1

*
1 ,, +nxx ! . Then we recommend 

fitting the mapping using a degree- )12( +n  polynomial (as opposed to a degree n  

polynomial for PCM), which matches both the output data and output sensitivities. That 

is, we recommend approximating the mapping using the degree-

)12( +n 2212
12

1)( ++
+

!

++= nn
n

d xxxg """ ! that satisfies the equality: 

11),()( ** +!!=
"

nixgxg iid  

11,
)()( **

+!!=

"

ni
dx
xdg

dx
xgd iid  

It is easy to check that these )22( +n  equalities give )22( +n  independent linear 

relations for the parameters ,, 221 +n!! ! and, hence, that )(xg d
!

is determined uniquely 

from the known outputs and sensitivities. Let us refer to the approximation )(xg d
!

 as the 

thn  order PCM-with-sensitivity approximation. 

It is worth making several observations about the PCM-with sensitivities approximation. 

First, we note that if the actual mapping )(xg is a degree )12( +n  polynomial, the thn  

PCM-with-sensitivity approximation is identical to the actual mapping. We should not be 

surprised that the mapping can be identified exactly, since we have available )22( +n  

independent data points ( 1+n  output values and 1+n  sensitivities). In fact, any set of 

)22( +n  independent measurements can be used to identify the mapping and the PCM-
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with-sensitivities approach is only special in that only ( 1+n ) simulations may be needed 

(if sensitivities are automatically generated).  

What is more surprising is that the PCM-with-sensitivities approximation )(xg d
!

 can be 

guaranteed to be close to the actual mapping even when the mapping is not a polynomial 

of degree 2n+1. It turns out that )(xg d
!

, known in the literature as a Hermite polynomial, 

is used in generating error bounds for Gaussian quadrature ([25], see also [26] for a 

succinct description of Markov analysis).  

2.5 Chapter Summary 

The results illustrate the following: 

• The accuracy of PCM in modeling a deterministic mapping between uncertain 

parameter and an output of interest 

• The economy of PCM. 

In the chapters to follow, we will delve deeper into these two results. 
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3. Multiple Correlated Inputs: Conditional PCM 

3.1 Background 

Our studies of one-dimensional PCM suggest that it is very economic computationally as 

compared to techniques like Monte Carlo simulation. In this chapter, we present an 

extension of PCM for handling systems with multiple, correlated uncertainties. 

For convenience, let us first discuss our generalization of PCM to systems with two 

correlated, uncertain inputs (see Figure 2-1). We call this generalization two-

dimensional PCM. We assume that the two uncertain inputs x and y are jointly 

distributed according to a density function f(x,y) that is non-zero over a finite, convex 

two-dimensional domain A. Our aim is to identify the mapping g(x,y) that specifies the 

output in terms of these inputs. We assume that this mapping can be approximated by a 

two-dimensional multinomial of the form: 

                                                  ji
n

i

n

j
ij yxayxg !!

= =

=
0 0

* ),(                                                (3.1) 

Henceforth, we refer to g*(x,y) as a generalized polynomial of degree n. We feel that a 

generalized polynomial representation for a two-dimensional mapping is appropriate 

because (as in the one-dimensional case) higher-degree generalized polynomials provide 

more and more detailed representations of the mapping. More specifically, an order n 

generalized polynomial representation allows us to specify a set of polynomial mappings 

between each single input and the output, given the other input. To determine the 

coefficients in (3.1), we simulate the output for a particular set of (n+1)2 input pairs, 

which we again call PCM points. From the corresponding (n+1)2 outputs at the PCM 

points, we determine the coefficients at low computational cost by simply solving a 

system of linear equations. As in the one-dimensional case, the success of two-

dimensional PCM depends strongly on appropriate choice of the PCM points.  
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3.2 The Two-Dimensional PCM Algorithm 

We propose the following algorithm for choosing the PCM points:   

1. We compute the marginal distribution for the input x as !=
A

dyyxfxf ),()( . We 

then find the degree-(n+1) orthogonal polynomial with respect to f(x), and find 

the roots of this polynomial. Notice that these are the x values that we would 

choose as PCM points if we were applying one-dimensional PCM of order n to 

find a mapping between x and an output. Let us label these points 11, +nxx … . 

2. We compute the conditional distributions )(
),()|(

i

i
i xf

yxf
xyf = . We then find the 

degree (n+1) orthogonal polynomials with respect to each distribution, and find 

the roots of these polynomials. Let us call the roots of the orthogonal polynomial 

with respect to )|( ixyf  as )(),...( 11 ini xyxy + . 

3. We use the 2)1( +n  pairs of inputs )](,[ iji xyx , ,11,11 +!!+!! njni  as the 

PCM points.  

The following analytical results (presented without proof) can be deduced for two-

dimensional PCM; these results motivate use of the method: 

1. Given that the input x is any one of the values 11, +nxx … , the mean output is 

correctly predicted by two-dimensional PCM whenever the actual mapping is a 

generalized polynomial of degree less than or equal to 2n+1. Also, from 

continuity arguments, we can argue that the mean output predicted by PCM is 

nearly correct for inputs x that are close to one of the points 11, +nxx … . Since the 

points 11, +nxx …  are chosen to reflect the high-probability domain for the input x 

(this is one of the benefits of one-dimensional PCM), two-dimensional PCM 

predicts the mean output correctly given likely values for x. 
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2. In the special case that x and y are in fact independent, the (unconditioned) mean 

value for the output is correctly predicted by PCM whenever the mapping is a 

generalized polynomial of degree less than or equal to 2n+1. Further, in the more 

general case that x and y are not independent but the rth-conditional moment for y 

given x is an rth-order polynomial, PCM predicts the output mean whenever the 

actual mapping is a true two-dimensional polynomial of degree less than or equal 

to 2n+1 (i.e., a sum of monomial terms, each of which has total degree less than 

or equal to 2n+1). 

3. The PCM points always fall within the region A, so that we should be able to 

simulate a meaningful output for each PCM point. 

We note that PCM can easily be generalized to identify mappings between three or more 

uncertain inputs and an output. As in two-dimensional PCM, we can select PCM points 

for higher-dimensional PCM recursively from a sequence of marginal and conditional 

distributions. These higher-dimensional PCM algorithms are amenable to the same 

analyses as two-dimensional PCM.  

In the remainder of this chapter, we apply two-dimensional PCM to characterize the 

mapping between the two uncertain loads and the load flow voltage at a bus in a power 

system. Our study is in the context of a toy example obtained from [10], and is not meant 

to provide a comprehensive depiction of load flow uncertainties by any means. Our 

primary purpose is to illustrate two-dimensional PCM, and to explore some potential 

benefits and caveats of using PCM to characterize load flow solutions.  

PCM-based characterization of load flow voltages falls within the broad class of 

Probabilistic Load Flow (PLF) algorithms (see [10] for a summary of some work on PLF) 

These are methods for computing uncertainties on load flow solution parameters (e.g., 

bus voltages or line loadings), given uncertainty distributions on load powers and other 

system parameters. A full study of the literature on PLF is beyond the scope of this 

report, but we present a few general concepts. As discussed in the literature (e.g., [7] and 

[11]), PLF algorithms are either based on Monte Carlo simulation techniques, on exact 

analysis, or on some combination of these. Very often, analytical methods assume a load 
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flow model that is linearized around one or multiple equilibria, and require some 

structure (e.g., Gaussian) in the parameter distributions. Monte Carlo techniques account 

for the nonlinearities in the load flow solution and allow for general input parameter 

distributions, but are computationally intensive. As an alternative to PLF, load flows for 

systems with uncertain inputs have also been characterized by identifying limits on the 

output variables given limits or distributions on the inputs (e.g., [7], [12]). These 

methods, called boundary load flow algorithms, have recently been combined with 

techniques that provide fuzzy-set descriptions of output variables, given fuzzy 

descriptions of input variables [7].  

3.3 Power System Examples 

We believe that PCM can contribute to PLF analysis by providing an intelligent 

simulation strategy and also by providing a method for meshing probabilistic and 

boundary methods. 

 

1 2 3

)5983.07137.1(1 j+! )5496.07355.1(2 j+!

4 5
 

Figure 3-1: Load flow example. PCM applied to characterize the voltage at bus 4, given 
that the loads at buses 4 and 5 are uncertain.  

We apply PCM to find the PLF solution in the small power system example shown in 

Figure 3-1. In this example, we assume that the scaling parameters (inputs) x and y (see 

equation 3.1) which specify the load power magnitudes at buses 4 and 5, are jointly 

distributed as shown in Figure 3-2. The positive correlation is meant to reflect that load 

requirements tend to be correlated with external parameters (e.g., temperature) which are 
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roughly constant over a set of loads. Our output variable is the magnitude of the voltage 

at bus 4. Application of PCM to this example first requires computation of the PCM 

points; the nine points for second-order PCM are shown on Figure 3-2. Using the PCM 

collocation points, we characterize the mapping between the inputs and output. The 

second-order generalized representation for the mapping found using PCM is the 

following: 

48.045.01.072.061.012.024.02.0041.0),( 222222 ++!+!+!+!= yyxxyxyxyxyxyxg x

 
This predicted mapping is compared to the actual mapping (generated through exhaustive 

simulation) in Figure 3-3. Finally, we numerically determine the distribution for the 

output variable and compare it to the actual output distribution in Figure 3-4.  

 

1 2 3

1

2

3

 

Figure 3-2: Input distribution and PCM points. The parameters (inputs) x and y are 
distributed uniformly over the polygonal region shown. PCM points are also illustrated.  
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Figure 3-3(a) 

 

 



 

 26 

 

 

 

 

Figure 3-3 (b) 
 

Figure 3-3: Output plots. The mapping between the two input parameters and the voltage 
output predicted by PCM, compared with the actual mapping. Each three-dimensional 

mapping is shown from two viewpoints to better illustrate it. 
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Figure 3-4: The output distribution (i.e., the distribution of the voltage at bus 4) computed 
from the PCM-based mapping is compared with the actual output distribution.  

For this simple example, PCM characterizes both the input-output mapping and the 

output distribution well. Our solution highlights that the mapping between input and 

output over the domain of the uncertain loads is non-linear, especially because the 

correlation between the two loads makes heavy loading conditions frequent. PCM is able 

to capture this non-linearity, while (in this example) requiring only nine carefully-chosen 

simulation points to develop a good quadratic mapping. This ability to capture non-linear 

mappings using only a small number of simulations suggests that PCM holds promise as 

a PLF algorithm.  

We note that the PCM prediction, which requires only nine simulation points, is 

essentially indistinguishable from the mapping generated through brute-force simulation 
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which we construct using 400 simulations. Thus, our example highlights the significant 

computational savings that can be obtained through use of PCM.  

Finally, we numerically determine the distribution for the output variable and compare it 

to the actual output distribution in Figure 3-4. We note that PCM is also advantageous in 

this example, in that we could allow uncertainties with arbitrary joint distributions on the 

input parameters. 

3.4 Relating PCM to the Boundary Load Flow 

One difficulty in applying PCM is that the number of required PCM points typically 

grows exponentially in the number of uncertain parameters. When the number of 

uncertain parameters becomes large, we note that meshing PCM with a boundary load 

flow algorithm can provide a tractable solution. In particular, we can select PCM points 

for a few significant or important uncertain parameters; for each PCM point, we can 

apply a boundary load flow algorithm with respect to the other uncertain parameters, to 

find the largest and smallest possible output. Using these extrema outputs, we can 

develop a pair of mappings from the significant inputs to the output using PCM, which 

serve as bounds on the actual mapping. Such a meshed algorithm is best illustrated with 

an example. A plausible alternate description for the load scaling parameters in Figure 3-

2 is that these parameters have a strong dependence on a single uncertain input parameter 

(e.g., temperature) with small, independent deviations from this predicted dependence. 

For instance, the two parameters could have the form 1!+= Tx  and 2!+= Ty  where T 

is a significant random parameter, and 1!  and 2!  are small, independent random 

parameters. While we could apply three-dimensional PCM to such a system, a less 

computationally intensive approach is the following. We can choose PCM points as if we 

are applying one-dimensional PCM in which the uncertain parameter is T; for each of 

these PCM points, we can compute the extrema output values over the domain of 1!  and 

2!  (see [7] for an efficient means for doing so). We can then develop one-dimensional 

polynomial representations for both sets of extrema. An example of such “boundary 

mappings” is shown in Figure 3-5. 
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As far as we know, PCM is the only non-Monte Carlo PLF method that is applicable 

when inputs are correlated according to arbitrary joint distributions. There is some 

literature on PLF when the inputs are jointly Gaussian, but we have not seen PLF 

algorithms for more general correlations among inputs.  

 

Figure 3-5: Boundary mappings. PCM used with a boundary load flow algorithm to find 
bounds on the mapping between a significant uncertain parameter and the output voltage. 

The solid line – upper bound; dashed line – lower bound.  

Example: Dynamic time-domain simulation of a disturbance 

As reflected in the title of this project, PCM was originally advanced primarily as a tool 

for evaluating uncertainties in time-step simulations of transient dynamics ([1] and [2]). 

PCM is indeed valuable for evaluation of uncertainties in transients because it can reduce 

the number of simulations (which are very often computationally intensive) required for 

uncertainty analysis; though, as indicated by the examples above, it also has potential for 

a range of power systems calculations outside of dynamic time-step simulation. When it 
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is applied in the context of dynamic studies, PCM has the advantage that it can be 

implemented without significant modification of the time-step simulation programs for 

transients since it only requires measurement of output values for various inputs.  

Here we apply two-dimensional PCM to characterize a small power system’s transient 

response to a disturbance. The example that we use is drawn from [6] where it is also 

used to illustrate the characterization of transient-simulation uncertainties using 

trajectory-sensitivity methods. Our explorations of this example illustrate how PCM 

compares with, and complements, the trajectory-sensitivity based methods.  

Supply
Point

Bus 1 Bus 3Bus 2

jX_1

jX_2

jX_31:n

Real
Load

 

Figure 3-6: Example system for dynamic simulation of disturbance.  

We consider the response of this power system to a disturbance, in particular, the tripping 

of the line with admittance X1. The uncertain parameters in this example are the load 

recovery time constant and the tap-changing interval of the transformer. 

The small system shown in Figure 3-6 is disturbed through tripping of one of the lines 

between the supply point and bus 1. We consider the transient response of the voltage 

magnitude at bus 3. This transient response is modulated by the recovery dynamics of the 

load, as well as the logic of the tap-changing transformer. It is in the parameters of these 

recovery dynamics that we assume some uncertainty (in accordance with [6]). In 

particular, we assume that the load time constant pT  and the interval between tap changes 

tapT  are uniformly and independently distributed over the intervals [3, 7] and [15, 25], 

respectively.  

We apply PCM to characterize the mapping between the inputs pT  and tapT , and an output 

of interest, which we choose to be the minimum voltage on bus 3 during the duration of 
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the simulation. We find that a second-order generalized polynomial model is sufficient to 

specify the mapping (Figure 3-7). Thus, with only nine simulations, we are able to extract 

the mapping between the inputs and the output, and further to expose that this mapping is 

not linear. A compelling feature of PCM is that, using these nine simulations, we can in 

fact characterize many different output features (e.g., the output voltage at specific times, 

or various flows in the power network). We note that our analysis compares favorably 

with the trajectory sensitivity analysis in that we simulate the actual power system rather 

than a linear approximation thereof. We caution, however, that each simulation of the 

actual power system may be very expensive computationally as compared to a trajectory 

sensitivity-based simulation; it is only because so few points are required for PCM that 

our analysis is feasible. Finally, we mention that one further possible application of PCM 

to power system dynamic simulations is to identify whether linear relationships between 

input and output variables hold, and hence to evaluate whether trajectory sensitivity 

analyses can be used.  

3.5 Order Selection Algorithm 

In [2], the authors mention the necessity for a good order-selection algorithm for practical 

applications of PCM. A good order selection algorithm can prove to be cost effective as a 

new set of simulations is required for each order of PCM polynomial selected.  

We observed from our studies on PCM that the order-selection can be done with mere 

visual inspection in certain cases. Such cases usually involve curves with multiple 

extrema. But in the case of curves with none or a single extreme, we find the need for a 

proper order-selection algorithm.  
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Figure 3-7: PCM generated mapping. The PCM-generated mapping between two 
uncertain parameters and the minimum voltage reached by bus 3 during a transient 

simulation. 

Before getting into the order selection algorithm we find it worthwhile to define the term 

Kullback-Leibler distance.  

The Kullback-Leibler (KL) distance gives the distance between two PDFs. In our case the 

KL distance can be used to compare the distance between successive PDFs (output 

distributions), and then we can go ahead and select the PDF when the KL distance 

becomes sufficiently small.  

The Kullback-Leibler [13] distance is a measure of the difference between two 

probability density functions P and Q is given by:  

                                           ! ""
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LogxPQPD                                            (3.2) 

The above integral is finite if and only if P is contained by Q. 
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THE ALGORITHM: 

Our studies suggest the following heuristic order-selection algorithm for one dimensional 

PCM (applicable to either case mentioned above) followed by the justification of its 

relevance to higher dimensional PCM.  

1. We apply PCM of successive orders (beginning with first-order PCM) until visual 

inspection suggests that the predicted mapping has not changed between two 

successive applications. 

2. If the mapping predicted by the second-highest-order PCM applied in step 1 has 

at least two extrema, the visually-determined PCM fit is, in our experience, the 

proper one. When the mapping has several extrema, we find that the PCM fit 

converges dramatically to the correct mapping beyond a certain order, so that 

visual inspection is sufficient to identify the proper fit. Order selection is 

illustrated for a mapping with three extrema in Figure 3-9. 

3. If the second-to-last PCM prediction from the first step has fewer than two 

extrema, we require an analytical comparison measure to determine whether or 

not a sufficient order has been chosen. In particular, we numerically compute the 

output distribution using the mapping of each order. We then compute the 

Kullback-Leibler (KL) distance between successive pairs of distribution (see 

Table 3-1); if the KL distance between the highest two-order PCM output 

distributions is sufficiently small (i.e., drastically smaller than the KL distances 

between lower-order fits), then sufficiently high-order PCM has been used. 

Otherwise, a higher-order PCM algorithm should be applied until a sufficiently 

small KL distance is obtained. We note that, if we desire a completely automatic 

algorithm for order-selection, we can use comparisons of KL distances regardless 

of the number of extrema. 

We applied the order selection to a series RC circuit example from [2], and the results are 

presented below. The results indicate that the appropriate order is five.  
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Table 3-1: KL distance comparison 

PDF comparison KL distance 

PCM 2nd Vs. PCM 3rd 

PCM 3rd Vs. PCM 4th 

PCM 4th Vs. PCM 5th 

PCM 5th Vs. PCM 6th  

0.1332 

0.1134 

0.0977 

0.0033 

 
 
 
 

 

Figure 3-8(a): Comparison of the output distribution plots of PCM generated polynomials 
of successive order. 
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Figure 3-8(b): Comparison of the output distribution plots of PCM generated polynomials 
of successive order.  
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Figure 3-8: Comparison of the output distribution plots of PCM generated polynomials of 
successive order.  
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Figure 3-9: Comparison of plots of PCM generated polynomials – two extrema case. 
Appropriate order can be identified by qualitative features – i.e., the 5th and higher order 

polynomials correctly have two extrema; lower order polynomials do not.  

Our studies show that this algorithm is very effective for single-dimensional PCM. In our 

two-dimensional PCM algorithm, we generate the PCM collocation points for any one of 

the uncertain parameters and, on the basis of these points, generate the collocation points 

for the other uncertain parameter in the system under examination. The order-selection 

algorithm can be applied when the PCM collocation points for the first parameter are 

generated. Once the appropriate order is selected, it can be labeled as “the order of the 

system” and for the second uncertain parameter, we can generate collocation points based 

on “the order of the system”.  
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4. Optimization 

An optimization problem is concerned with finding the minimum or maximum of a 

function with respect to its arguments which are, in many cases, constrained to a bounded 

set. There is, of course, a very wide literature on optimization. We refer readers to 

standard texts, such as [18], for basic notions in optimization. 

 
              Uncertain 

                Input   

              Variables                                                                                 Output       

            Subject to 

              Certain 

            Constraints 

Figure 4-1: Pictorial depiction of the optimization problem 

In this section, we consider the problem of optimizing a function over the domain of an 

uncertain parameter in the case where function evaluations are computationally 

expensive. In particular, we discuss, in an exploratory manner, the possibility of applying 

PCM to solving optimization problems. 

In general, if the function under study is a black box and if the uncertain input 

(parameter) variables are continuous and bounded, PCM can be used to approximate the 

maximum or minimum of the function over the interval. In particular, PCM generates a 

polynomial approximation for the black box function which can then be optimized.  

Broadly, there are two viewpoints on using PCM to find a maximum/minimum. 

1. We can address the standard optimization problem of minimizing/maximizing a 

function over a bounded domain. In this case, it is reasonable for us to assume a 

uniform distribution for the uncertain parameter in generating the PCM fit. 

 
Complicated 

Mapping 
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2. We can view the parameters over which the optimization is done as being 

uncertain and find the maximum/minimum in a manner that reflects the 

distribution of theses parameters. That is, by using the distribution in PCM, we 

can search more carefully for the optimum over high-probability parameter 

values. 

We can come up with a different PCM mapping between the input variables and the 

output of interest in either case. PCM generates a polynomial mapping from which the 

minimum or maximum value of the function can be found directly.  

An optimization problem in the power systems domain could be maximizing an output 

voltage at a particular bus over the domain of the input parameters (say, loads).  

Illustrative Example 

Let us explore this possible application of PCM through an illustrative example. The 

example used is the five bus load flow example from [10]. Two loads, 1! and 2! , are 

uncertain, and the output of interest is the voltage at bus 4. The constraint here is that the 

sum of the two loads ( 1! , 2! ) should be equal to 1.75 and 1!  is distributed in the range 

(0, 1). The optimization problem in this case would be to find the distribution for the 

loads that maximizes the voltage at bus 4.  

Distribution 1: 

The PCM mapping was generated by first assuming uniform distribution for 1!  in the 

range (0, 1) and 12 75.1 !! "= .  

Distribution 2: 

A different distribution was assumed for 1! , viz.
2

)2/13()( 1
1

+
=

!
!f , 12 75.1 !! "= , 

and the corresponding PCM polynomial was generated. The plots of the two polynomials 

are depicted in Figure 4-2. 
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Figure 4-2: Comparison of PCM polynomials generated using the two different input 
distributions. 

The maximum value of voltage for Distribution 1 is 1.0139 at 1!  = 0. 

The maximum value of voltage for the Distribution 2 is 1.0140 at 1!  = 0. 

From this we can infer that a higher maximum voltage can be achieved if the loads are 

distributed as in Distribution 2. The constraint in this problem is that the sum of the loads 

must equal 1.75. We could also alter the constraints and generate the PCM polynomial 

for the problem. In either case, we claim that PCM can be a handy tool as it is 

computationally economic in terms of simulations. Also, once the PCM polynomial is 

generated, the optimization problem reduces to the task of finding out the 

maximum/minimum of the PCM polynomial generated. 

Accuracy of PCM 

In power systems applications one is often interested in determining whether the 

excursion of key electrical quantities is large enough to trigger breaker action. A key 
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question in applying PCM is simply: how accurate is PCM in capturing the 

maximum/minimum value of the function?  

The following example illustrates the accuracy of PCM in this regard. For Distribution 1 

of the previous example, the PCM second order fit is compared with the actual output fit 

generated via exhaustive simulation.  

Figure 4-3: Comparison of the actual function generated by exhaustive simulation with 
the PCM generated polynomial using Distribution 1.  

To the accuracy discernible in the figure, the two plots cannot be differentiated; this 

shows that PCM is quite accurate in modeling the function and eventually the 

minimum/maximum of the function. The maximum value is captured accurately up to 4 

decimal places. It is the same for both the fits at a value of 1.0139.  
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4.1 Advantages in using PCM 

The main advantage again is computational economy. PCM requires a small number of 

simulations for generating the polynomial mapping. PCM also specifies a low-order 

mapping that approximates a much higher-order relationship. For instance, if the original 

relationship is a quartic, a quadratic PCM polynomial provides a good approximation in 

many cases. The example depicted by the figure below illustrates this fact. 

Example: 

The parameters are 1x  and 2x . The distribution and constraints are as follows:  

,21 1 <<! x  Uniform distribution. 

12 2 xx != .  

The output function is 42),( 12
2
21

4
121 !++!= xxxxxxxg . 

 

Figure 4-4:  The minimum value of a quartic function captured by a PCM quadratic 
polynomial.  
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The PCM mapping shown in Figure 4-4 for this relationship is a quadratic whereas the 

actual relationship is a quartic, yet it captures the minimum accurately. In case there is 

more than one minimum/maximum, the lower order PCM mapping could possibly 

capture one of them.  

The capability of PCM to solve optimization problems adds a new dimension to the 

algorithm. We have shown that PCM could be effectively used for maximizing voltage in 

power systems. This is just a rudimentary attempt at using PCM to solve optimization 

problems. To tout PCM as an optimization algorithm in general is not appropriate. 

However, the results obtained so far are promising and we hope that future work in PCM 

will be concentrated in this area.  

4.2 Comparing PCM with a Traditional Minimization Technique 

It is interesting to see how PCM fares when pitted against traditional function 

minimization techniques, such as the steepest descent, gradient descent, or the Newton-

Raphson method.  

Among the above mentioned techniques, Newton-Raphson typically offers the fastest 

convergence rate. Newton-Raphson is an iterative process for minimizing a function with 

respect to one or more variables. The Newton-Raphson formula for minimizing a single 

variable (one dimensional) function )(xf is 

)(
)(

"

'

1
n

n
nn xf

xf
xx !=+  

The iteration is started by guessing an initial value 0x . 

The method iteratively tries to locate the minimum of the function. The accuracy of the 

technique increases with the number of iterations. Of course, the initial guess must be 

intelligent otherwise this technique may not converge.  

When comparing an iterative minimization technique like Newton-Raphson with PCM, 

we must first identify a yardstick for comparison. Comparing the number of iterations 

that Newton-Raphson takes to converge to the minimum value of the function with the 

order of the PCM that produces the polynomial with the correct minimum value appears 
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sensible. For each Newton-Raphson iteration, we need to calculate the value of the first 

and second derivative of the function under study at the current estimate for 1+nx . Thus, 

we need to simulate the function iteratively; as a matter of fact, we would be performing 

more than one simulation per iteration as we need to calculate both the first and second 

derivative of the function each time.  

Example 

Minimize 21),1()( 22 <<!!= xxxxg  

The above function can be minimized analytically. The purpose of choosing such an 

example is that it makes the task of comparison easier. We can compare the actual 

minima calculated analytically with those computed using Newton-Raphson and PCM. 

The function has a local minimum at 0=x   and global minima at
!
"
#

$
%
& '

=
2
1,

2
1

x . The 

minimum value of the function is -0.25. 

We applied Newton-Raphson and PCM to minimize this function. Uniform distribution 

was assumed for the variable x . The results are presented in Table 4-1.  
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Table 4-1: Comparison of PCM with Newton-Raphson minimization 

Newton-Raphson Iterations PCM order 
 
1st Iteration 

1875.0)(,5.0 minmin !== xgx  
 
2nd Iteration 

0)(,1 minmin == xgx  
 
 
3rd Iteration 

2304.0)(,8.0 minmin !== xgx  
 
4th Iteration 

249599.0)(,721127.0 minmin !== xgx  
 
5h Iteration 

0.24999968-)(,0707505 minmin !== xgx  
 
6h Iteration 

25.0)(,707107.0 minmin !== xgx  
 

 
1st Order  

0.750011-,1 min
*

min !=!= gx  
 
2nd Order 

-0.578827,-1.07427 min
*

min == gx  
 
3rd Order 

{ }25.0,25.0,0,
2
1,

2
1,0 *

minmin !!=
"
#
$

%
&
'

!= gx
 

 
4th Order 

{ }25.0,25.0,0,
2
1,

2
1,0 *

minmin !!=
"
#
$

%
&
'

!= gx
 

 

Observations 

Newton-Raphson took six iterations to converge to the minimum. This is partly due to the 

initial guess being slightly off the hook. If we had taken 10 =x , we would have gotten a 

convergence in five iterations.  

Although the function under study is a quartic, the PCM cubic polynomial captures the 

minimum accurately. We could have stopped with five iterations for Newton-Raphson 

and at the 3rd order for PCM. The extra iteration (and order) were just to check for 

convergence.  

Assuming we had taken 10 =x  and did not consider the extra iteration to check for 

convergence, then Newton-Raphson estimates the minimum in four iterations. In the 

same vein, not considering the extra PCM order, the 3rd order PCM polynomial captures 
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the minimum of the function and it took four simulations for generating the 3rd order 

polynomial.  

Hence, in this example, PCM performs as well as Newton-Raphson, but this may not 

always be the case. Our purpose was to illustrate that PCM could be used as a tool for 

minimization and not to claim or try to prove that it works better than existing 

minimization techniques. PCM has a long way to go in this aspect and this chapter is just 

prefatory to the study of using PCM to solve optimization problems.  
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5. Information-Theoretic Approach to Parameter Reduction in PCM 

The advantage of PCM over traditional Monte Carlo simulation techniques is that PCM 

requires very few simulations to identify the mapping between the uncertain input(s) and 

the output of interest. Although PCM is computationally economic, PCM too requires an 

exponential amount of simulations as the number of inputs increases. For instance, if k is 

the number of system uncertainties, it would take (n+1)k simulations to generate a 

polynomial of order n. Though this number of simulations is typically small compared to 

the number needed for traditional Monte Carlo techniques, it is necessary to come up 

with variable reduction techniques to make the process of modeling the system 

uncertainties less cumbersome.  

When the multiple PCM inputs are strongly correlated, the input variables potentially 

carry a lot of redundant information. In such cases it may be possible to model the 

mapping using only a subset of the input variables or a lower order basis for them. In 

order to do so, some mechanism for measuring dependencies between the input variables 

is required. Some interesting information-theoretic concepts, including Entropy and 

Mutual Information, can be used to measure dependencies between the variables. In 

particular, we use Mutual Information as a good measure of dependency between jointly 

distributed random variables for which variable reduction in PCM can be achieved. The 

remainder of this chapter discusses this information-theoretic approach for reducing the 

number of input variables in PCM.  

5.1 Dependency Measurement 

Before describing its application to PCM, we review certain information-theoretic 

concepts useful for the study.  

Mutual Information [13] is an information-theoretic concept which can be used as an 

indicator for the degree of dependency between jointly distributed random variables. 

Another useful measure is the correlation coefficient which gives the degree of 

correlation between two random variables; correlation is the degree to which two or more 

quantities are linearly associated [24].  
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The Differential Entropy H(X) [13] of a continuous random variable X with a density f 

(x) is defined as: 

                                           dxxfxfXH
S

)(log)()( 2!"=                                             (5.1) 

where S is the support set of the random variable. The set of x for which f(x) > 0 is called 

the support set of x.  

Entropy [13] is a measure of randomness of a random variable, and, in the discrete 

domain, it represents the shortest description length (in bits) of the variable.  

Differential Entropy [13] is also related to the shortest description length. One caveat 

here is that we can get negative values for differential Entropy. Hence, an appropriate 

measure for description length is the volume of the support set of the random variable 

given by 2h(X), which is obviously non-negative.  

The Joint Entropy H(X; Y) [13] of jointly distributed continuous random variables x 

and y with joint density f (x, y) is defined as: 

                                    dxdyyxfyxfYXH ),(log),();( 2!"=                                     (5.2) 

The Joint Entropy again is a measure of randomness or description length. The difference 

here is that we are considering a vector of random variables instead of a single random 

variable.  

Mutual Information 

The Mutual Information I (X;Y) [13] between two jointly distributed continuous 

random variables x and y with joint density f (x,y) is defined as: 

                                   dxdy
yfxf
yxf

yxfYXI !!
"

#
$$
%

&
= ' )()(

),(
log),();( 2                                  (5.3) 

The Mutual Information between two jointly distributed random variables is the amount 

of information one random variable contains about another. In a sense, it is the reduction 

in uncertainty of the random variable X due to the knowledge of Y, and vice versa. It is 

an estimate of the strength of association between jointly distributed random variables. 
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Correlation Coefficient 

The Correlation Coefficient [13] is a numeric measure of the strength of a linear 

relationship between two random variables. It is given by the equation 

                                                   
)()(

),cov(
),(

22 yx

yx
yx

!!
" =                                              (5.4) 

where cov (x, y) is the covariance defined as: 

if x and y are independent 

E = Expected value 

σ2 = Variance. 

The correlation coefficient lies between -1 and 1. It is -1 if x and y are perfectly 

negatively correlated. It is +1 if x and y are perfectly positively correlated.  

5.2 Reducing the Number of Input Variables 

Reducing or filtering input random variables is the process of eliminating certain 

variables considered containing redundant information, and using the remnant variables 

for generating the PCM mapping between the inputs and the output of interest. 

For instance, if x and y are the input random variables, the 2-D PCM fit for the system 

will be of the form: 

                                                !!
= =

=
n

i

n

j

ji
ij yxayxg

0 0
),(                                                  (5.5) 

Assuming that y has redundant information and can be eliminated, the process of 

developing the PCM mapping for the system degenerates to an 1-D PCM problem with 

only one input random variable, viz., x. The PCM fit after variable reduction will be of 

the form: 

                                                         !
=

=
n

i

i
ji xaxg

0

* )(                                                 (5.6) 

( )( )[ ] ,0)()(),cov( =!!= yEyxExEyx
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Though we discard the random variable y, it must be noted that we need both random 

variables for running simulations of the black box system under analysis. We suggest the 

usage of the conditional mean for the redundant random variable instead of its PCM 

values.  

The caveat to be kept in mind is that the reduction should not result in information loss; 

that is, g*(x) should approximate g(x,y) well. The moments of both the polynomials and 

their output distribution plots are good comparative measures that can be used to check 

the accuracy of the reduction process.  

The combination of Mutual Information and Correlation Coefficient values can be used 

as a tool for deciding when to reduce input random variables.  

We distinguish between two cases in which we can eliminate input random variables. We 

will call them Case I and Case II. In the following section the two cases are described via 

examples. 

Case I General Characteristics 

In Case I, variables have high Mutual Information between them. Experimental results 

suggest that a reasonable cutoff value for the Mutual Information measure is 3.5 and 

greater. The variables are also strongly positively or negatively correlated; i.e., their 

correlation coefficient value is close to +1 or –1. Experimental evidence suggests that a 

good cutoff value is +0.9 and greater (or – 0.9 and lower).  

Case II General Characteristics 

In Case II, variables do not have a very high Mutual Information value, but the Entropy 

of one of the input variables is very small compared to the Entropy of the other random 

variable and also to the Mutual Information value. The Correlation Coefficient is not 

significant in this case but the variance of the individual random variables can be used for 

comparison.  

In either of the two cases, it is not necessary for the reduced fit to be of the same order as 

the original. We recommend using a higher order for the reduced fit for the sake of 

accuracy. 
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Numerical Results for Examples 

Case I Numerical Details 

One of the random variables is uniformly distributed and the distribution for the second 

random variable exhibits a very strong dependence on the first. The motivation for 

selecting an example where the variables exhibit strong correlation is to show that the 

Correlation Coefficient is related to the notion of Mutual Information.  

21 << x  

03.003.0 +<<! xyx  

)06.0/1(),( =yxf  

 

2.03 

    Y 

     

0.97 

 

 

 

X           0                                  1                                                 2            

Figure 5-1: Input distribution region.  

The Mutual Information, Joint Entropy, and Correlation Coefficient values are: 

24261.4);( =YXI  

246373.0);( !=YXH  

998205.0),( =yx!  
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We assume that the two random variables are two load-scaling parameters chosen for the 

5-Bus load flow example from [10]. For details, please refer to earlier chapters in the 

report. As before, loads 4 and 5 are considered uncertain and the output of interest is the 

voltage at Bus 4.  

The 2-D PCM quadratic polynomial mapping was generated for this example. The 1-D 

PCM Quadratic polynomial was then developed by using PCM points for only one of the 

input random variables (viz., x) while for the second variable, y, the conditional mean at 

each x value was used. The 2-D and 1-D polynomials and their distributions are 

respectively: 

2-D 

09.1082.0026.0029.0
1007.6015.00014.01022.91086.2),(

2

21322132213

+!+!

"++!"!"= !!!

xxy

yxyyxxyyxyxg
 

960256.0)),(( =yxgE  

000634529.0=Variance  

1-D 

04.1017.00233.0)( 2 +!!= xxxg  

960256.0))(( =xgE  

000633957.0=Variance  

Thus, we see that the Expected Values and Variances agree strongly. Next, the output 

distribution of the 1-D and the 2-D PCM polynomials are compared in Figure 5-2. 
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Figure 5-2: Comparison of output distributions, Case I. The solid line represents the 
output distribution based on the 2-D PCM approximation and the dotted line represents 

the output distribution based on the 1-D PCM approximation.  

Figure 5-2 depicts the plots for the output distribution corresponding to the 2-D and 1-D 

PCM. The output distribution plots are quite similar, corroborating the statistical results 

presented before. The results show that when the two random variables have a high 

Mutual Information value and are strongly correlated, it is sufficient to use just one of the 

random variables for characterizing the input-output mapping. Table 5-1 shows how the 

Mutual Information increases as the size of the distribution is reduced in the y-direction.  
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Table 5-1: Mutual Information values 

Distribution I(X; Y) 
 

1.01.0 +<<! xyx  
 

09.009.0 +<<! xyx  
 

08.008.0 +<<! xyx  
 

07.007.0 +<<! xyx  
 

06.006.0 +<<! xyx  
 

05.005.0 +<<! xyx  
 

04.004.0 +<<! xyx  
 

03.003.0 +<<! xyx  
 

02.002.0 +<<! xyx  
 

01.001.0 +<<! xyx  

 
2.31276  

 
2.40428  

 
2.52115  

 
2.67316  

 
 

2.87623  
 

3.15829  
 

3.57336  
 

4.24261  
 

5.51107  
 

8.97349  
 

 
 
The results indicate that the correlation gets stronger, as one would expect, because the 

dependence of y on x becomes stronger. Mutual Information captures this phenomenon 

effectively. 

Case II Numerical Details 

21,31,
93

),( <<<<!
"

#
$
%

&'!
"

#
$
%

&= yx
yx

yxf  

90.00043190);( =YXI      

0.615262)( =XH  

0.00206016)( !=YH  

0.283951)( =xVariance  
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0.0829904)( =yVariance  

Again the same 5-Bus load flow example was used with the voltage at bus 4 as the output 

of interest. Both 2-D and 1-D PCM fits were generated in the same fashion as in Case I. 

The results are: 

2-D 

04.1016.0007.0
0001.0011.0011.00022.0004.00017.0),(

2

22222

+!!

!!!++!=

xx

yyxyyxxyyxyxg  

0.922204=Mean  

0.0011=Variance  

1-D 

017.10024.000776.0)( 2 +!!= xxxg  

0.923196=Mean  

0.00092=Variance  
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Distribution Plots: 

 

Figure 5-3: Comparison of output distributions, Case II. The solid line represents the 
output distribution based on the 2-D PCM approximation and the dotted line represents 

the output distribution based on the 1-D PCM approximation.  

The expected values and variances agree well, and the distribution plots are similar. Thus, 

the results support the claim that we can use just one of the random variables instead of 

two to model the input-to-output mapping of the system when the Mutual Information 

and Entropy values of the input variables are as described under the conditions for Case 

II.  
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5.3 Justification 

In our development, we have suggested using Mutual Information as the primary 

criterion for eliminating redundant random variables, and have mentioned that the 

Correlation Coefficient can provide a second criterion. A brief comparison of the two 

criteria is valuable for identifying the advantages and limitations of each. In this section, 

we provide a conceptual comparison of the two. 

Broadly, our motivation for invoking information-theoretic concepts rather than only 

using the Correlation Coefficient is that less restrictive criteria for parameter reduction 

can be developed. Specifically, by eliminating parameters with high mutual information, 

we permit elimination of parameters that are nearly deterministically but non-linearly 

related. For instance, consider the following, which is a limiting case, in that one 

parameter is a deterministic function of the other: 

Example Comparing Mutual Information versus Correlation Criteria: 

Consider a system with a pair of uncertain inputs 1X  and 2X , 2
12 XX = , and 1X  is 

uniformly distributed between -1 and +1. Since 2X  is a deterministic function of 1X , the 

mapping between 1X  and the system output is a deterministic one. Hence, we can 

identify the mapping between 1X  and the output using PCM, albeit perhaps with a 

higher-degree polynomial than if the output is expressed in terms of both 1X  and 2X . 

Hence, our criterion should eliminate 2X  (or alternatively 1X ) in this case. Since the 

conditional entropies of each variable given the other are arbitrarily negative for this pair 

of random variables, the information-theoretic condition indeed indicates that one of the 

parameters can be eliminated. However the Correlation Coefficient for 1X  and 2X  is 

zero, and, hence, a correlation-based test would not indicate that a parameter could be 

eliminated. 

To summarize, information-theoretic concepts allow us to eliminate parameters that are 

strongly-interdependent in non-linear ways, while Correlation Coefficients only allow us 

to identify linear dependencies. Since the applicability of PCM is based on whether or not 

the mapping from the parameters to the output is deterministic rather than on its linearity, 

the less restrictive information-theoretic condition should be the primary one. It is worth 
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noting that a high correlation coefficient yields a stronger result in that it indicates not 

just the possibility for parameter reduction but the possibility for using a lower-order 

PCM fit of the same degree. 

Criterion Considered: I(X;Y), var(X) or I(X;Y)-H(X,Y) 

In the above development, we have distinguished between two cases – one in which high 

mutual information permits elimination of variables, and another in which the low spread 

(variance) of one of the variables permits its elimination. The reader may wonder why 

these measures cannot be combined into a single one (e.g., why Mutual Information by 

itself cannot be used to eliminate variables), and hence some further discussion of the 

criteria is needed. In fact, the underlying difference between these two cases brings up a 

more general concern about what the proper criterion is and suggests yet another measure 

for variable reduction. 

Perhaps the best way to explain the distinction between the two cases is to note that the 

Mutual Information and Correlation Coefficient are unitless quantities, while Entropies 

and variances have units. That is, simple scaling of the random input variables does not 

change their mutual information, but does change the variance and Entropy of each 

variable. Thus, the Mutual Information (or Correlation Coefficient) identifies the 

reduction in uncertainty in one variable through knowledge of the other, but does not 

identify the actual randomness in these variables. Thus, when we use the mutual 

information-based criterion, we are considering the reduction in one variable’s 

uncertainty due to knowledge of the other in a scale-free way. In contrast, when we 

choose to eliminate random variables with small variances, we make the assumption that 

the two variables are defined on the same scale, and that variation in the output of interest 

over equally-sized domains of each variable are on the same order. Such an assumption is 

reasonable, for instance, in the power flow example in which the random parameters are 

scaling factors for loads of nearly the same magnitude and hence also have comparable 

impact on the output voltage.  

More generally, when the absolute scaling of the system is well understood, we note that 

the mutual information-based criterion can be modified to take into account the absolute 

statistics of the inputs. One way of doing so is to use a measure such as  
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I(X;Y)-H(X,Y)=-H(X|Y)-H(Y|X). When this quantity is sufficiently positive, the relative 

Entropy of X given Y and/or the relative Entropy of Y given X are small, and reduction of 

one of the variables is possible. We note that this measure accounts for the absolute 

uncertainty in each variable conditioned on the other rather than using only the change in 

uncertainty.  
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6. Method Illustration in IEEE 14-Bus Power System Example 

In this chapter, we will give the results of applying several of the concepts discussed thus 

far to a larger electric power systems example. Although stylized examples have been 

provided in each chapter, a larger realistic example is necessary to demonstrate the 

applicability of the technique.  

Power systems loads are generally classified as industrial, commercial or residential 

based on the usage sector. Traditionally loads classified under the same category have 

interdependencies and if these interdependencies are strong enough, we can use the 

techniques discussed in this report for generating a reduced-order PCM polynomial for 

the system. 

Figure 6-1 represents an IEEE 14 Bus Test System. The numbers inside the squares 

represent the transmission line numbers. and the bus numbers are encircled.  

 

Figure 6-1: IEEE 14 bus test system  
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For our purpose, we have assumed that the loads at six of the buses are uncertain, and we 

divide the uncertain loads into two categories, viz. industrial and commercial. To be 

specific, Loads at buses 4, 5 and 9 are categorized as industrial whereas the loads at buses 

12, 13 and 14 are considered commercial. We have two sets of three uncertain parameters 

and our output of interest is the magnitude of the voltage at bus 4.  

We will approach the example as follows. First, we will generate a PCM linear fit for the 

mapping between the uncertain loads and the voltage at bus 4. Since there are six 

uncertain parameters, to come up with a PCM linear polynomial we would require 64 

system simulations. Then, by applying the information-theoretic techniques discussed 

earlier, we attempt reduce the number of uncertain loads from six uncertain loads to just 

two uncertain loads. The rationale here is that under each load type we have assumed two 

of the loads to be strongly dependent on one predominant load; i.e., load at bus 4 in the 

case of industrial and the load at bus 12 for commercial. As a result, they would have 

sufficiently high Mutual Information and Correlation Coefficient values for us to reduce 

the number of input uncertain parameters. After uncertain parameters reduction, we 

attempt to model the input-output mapping using only the above mentioned two 

predominant loads. The details of the load distributions are given below in Table 6-1. For 

ease of mathematical representation, we label the loads at buses 4, 5, 9, 12, 13, 14 as a, b, 

c and x, y, z respectively. 
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Table 6-1: Load details, and Mutual Information and Correlation Coefficient values. 

Distribution details 

Industrial Loads 

6.01.0 << a  Uniformly distributed 

03.003.0 +<<! aba Uniformly distributed 

02.002.0 +<<! aca Uniformly distributed 

0.999418c)Cov(a,0.998847,),(0.103064,),,(,7564.17);;( !!"!! baCovCBAHCBAI  

Commercial Loads 

7.025.0 << x Uniformly distributed 

04.004.0 +<<! xyx Uniformly distributed 

03.003.0 +<<! xzx Uniformly distributed 

99.0),(,99.0),(0.112934,),,(,44264.9);;( !!"!! zxCovyxCovZYXHZYXI  

 

Results 

Table 6-2: Load Flow Mean and Variance Comparisons in 14 Bus Example 

With 6 uncertain loads With 2 uncertain loads 
Mean = 0.9984 

Variance = 0.00016829 
Mean = 0.997118 

Variance = 0.000166101 
 

The mean and variance values agree very well with one another. This numerical result 

confirms that the reduction is successful.  
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7. Summary and Future Work 

In this report we have explored the Probabilistic Collocation Method (PCM) and its 

potential applications in the power systems context, seeking to demonstrate that it is an 

computationally effective technique for simulating and modeling outputs of complex 

mappings that underlie many power systems phenomena.  

In the first chapter we motivated the need for PCM and talked briefly about some 

prevalent uncertainty analysis techniques. In Chapter 2 we introduced the one-

dimensional PCM, and discussed its underlying theory of Gaussian quadrature and 

orthogonal polynomials. We illustrated one-dimensional PCM with the help of an 

example from physical chemistry and wrapped up the chapter by discussing some 

refinements to the algorithm with sensitivity information and error bounds on PCM. In 

Chapter 3 we provided our generalization of PCM to handle multiple, correlated 

uncertain parameters. We also proposed a way to mesh PCM with boundary load flow 

algorithms for filtering out some of the uncertain variables and an order-selection 

algorithm for selecting the appropriate PCM order. We provided examples to illustrate 

each idea. In Chapter 4 we talked about optimization problems and discussed the 

possibility of using PCM for solving them. This aspect of PCM is in the incipient stage, 

but the results look promising.  

Information-theoretic approaches for reducing the number of input uncertain variables 

were discussed in Chapter 5. Two cases were identified and the approach for each was 

discussed with illustrative examples. In Chapter 6, we applied PCM to model the input-

output relationship for a 14 Bus IEEE test system. Then with the aid of the input variable 

reduction techniques discussed earlier, we developed another mapping for the same 

system with far fewer input variables. The results obtained were promising.  

7.1 Future Directions 

• Optimization: As mentioned earlier, our attempt at applying PCM for solving 

optimization problems is rudimentary. In the future, we would like to attune PCM 

for handling problems in this domain. 
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• Justification: We have corroborated most of our results with analytical proofs. In 

the future we would like to make refinements, if necessary, and attempt to publish 

our results in an applied math context. 

•  Software Package: Develop a package for PCM. We do have Mathematica 

modules for PCM and most of the results presented in this report were generated 

using them. However, we would want a version of PCM coded in a programming 

language like C/C++. 

7.2 Areas of Application 

This report shows a glimpse of PCM’s versatility. In the future, we would like to expand 

PCM applications to areas that have not been discussed in this report.  In the power 

systems context, these might include prediction of relay operation (or mis-operation), in 

studies for which the measured impedance from a relay location is the key output 

quantity of interest. 
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