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Executive Summary 

Power system operators need real-time information obtained from measurements and 
computationally efficient tools to maintain a system that can reliably deliver energy to 
consumers, even under the dynamically changing power flow and facility availability conditions 
that exist into contemporary power grids. Direct measurement of all system state variables is not 
done today, and even when direct measurements are available, they inevitably have errors of 
varying magnitude. As a result, a state estimator is an essential tool for system monitoring 
because it processes a redundant set of measurements to obtain the best complete estimate of the 
current system state. State estimators, integrated into control center energy management systems, 
provide estimates of unmeasured quantities by processing data collected at substations to 
determine the steady-state voltage phasor (that is, voltage magnitude and angle) at each bus in 
the system. These estimated phasors are then used to calculate other quantities needed by the 
system operator, such as branch currents, bus power injections, and branch power flows.  
 
Power system operators need to be confident in the results from state estimators before they will 
use the information for making critical decisions. Our research sought to understand challenges 
for achieving that confidence, and to propose and assess possible state estimator enhancements to 
address those challenges. The enhancements from this research address challenges of: 

1. efficient detection and identification of network parameter errors (that is, errors in 
representing the electrical characteristics of the underlying transmission system); 

2. efficient state estimation in multi-area, regional systems; 

3. effective placement of phasor measurement units to improve confidence in state estimator 
results; and 

4. modeling assumptions about the physical electric power system that introduce inaccuracies 
and computational problems in state estimation.  

These challenges are becoming more relevant as grid and market operation responsibilities 
expand to cover much greater geographic areas than experienced in the industry’s history. At the 
same time, grids are becoming more congested with rapidly changing power flow patterns 
responding to market conditions. The research project final report has four parts covering the 
proposed and tested state estimator enhancements. 
 
Part I: Detection and Identification of Network Parameter Errors 
 
All energy management system applications use a network model. Examples of network model 
parameters include (1) transmission line resistances, reactances, and charging capacitances; (2) 
transformer reactances and tap values; and (3) shunt capacitor and reactor values. Errors in 
parameter values occur because of the lack of perfect knowledge of the network’s electrical 
characteristics at every point in time.  
 
To attempt to compensate for network parameter errors, the state estimation problem can be 
extended by specifying a suspect set of parameters and estimating them at the same time as the 
other system variables. Thus, once the parameter in error is identified, its correct value is 
estimated using an augmented state estimation method. Unfortunately, it is difficult to 
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confidently identify the correct set of suspect parameters, particularly in very large systems with 
thousands of parameters. If any erroneous parameters are excluded from the set of suspect 
parameters, then the estimation results will be biased (that is, the expected value is no longer the 
true value), which is certainly not desired. 
 
In this research, a method is developed that allows detection and identification of network 
parameter errors without having to put parameters into a suspect set. This method also has the 
advantage of making it possible to identify errors in actual system measurements and in 
parameters even when both errors exist simultaneously. The method uses the state estimation 
solution based on the minimization of weighted least squares method, enhanced with error 
identification and correction procedures. Simulations illustrate the effectiveness of the method, 
along with the inherent limitations of error identification for certain special cases. The method 
can be readily implemented as a user-defined option by modifying existing state estimation code. 
 
Part II: Efficient Regional, Multi-Area State Estimation 
 
Solution of the state estimation problem for large multi-area systems presents several unique 
challenges. Individual areas may have their own state estimators that use different solution 
algorithms, and input data structures and formats. One way to determine a regional solution is to 
implement a central state estimator that collects measurements from all areas and solves a very 
large scale state estimation problem. An obvious computational drawback of this approach is the 
increase in the problem size as new areas are added to the existing system. In addition, bad 
measurements or topology errors in a given area will cause divergence of the regional system 
state estimator, even though states associated with the rest of the areas remain observable with 
the given measurements.  
 
This research offers an alternative solution, where individual state estimators are used in 
individual control areas and these solutions are then combined with measurements at area 
boundaries to reach an integrated solution for the entire region. Simulations demonstrate the 
viability of decentralized state estimation using the developed state estimation software. 
Different measurement configurations for the IEEE 14 and 118 bus test systems were used in 
these simulations. 
 
In the future, data from phasor measurement units could be incorporated into the multi-area state 
estimation approach for bad data processing and to facilitate coordination of individual area 
solutions. In the meantime, the proposed method does not require the use of phasor measurement 
unit data. 
 
Part III: Locating Phasor Measurement Units to Increase Confidence in State Estimates 
 
State estimation uses measured values (such as from sensors) of voltage magnitude, and active 
and reactive power, along with the network electrical characteristics, to determine the values of 
state variables that are not observed. However, measurement errors can occur that will reduce 
confidence in the state estimator’s results. When sensors are properly calibrated, the 
measurement error is not as serious a problem. On the other hand, the increasingly deployed 
sensorless technologies use analog to digital (A/D) converter technology to sample voltage and 
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current waveforms. Once the sampled waveforms are available, the required measurements can 
be retrieved with numerical computation. Data measurement technologies introduce 
measurement variability and bias. The major error sources are (a) the instrument transformers, 
(b) the cables connecting the instrument transformers to the sensors or A/D converters, and (c) 
the sensors or A/D converters. 
 
The advent of phasor measurement unit (PMU) technology provides an opportunity to further 
improve confidence in state estimation results. A PMU is an instrument that provides time-
synchronized phasor measurements, a feature also known as synchrophasors. A PMU provides 
time-stamped measurements of active power, reactive power, frequency, current, voltage 
magnitude, and phase angle. The time-stamped characteristic of a PMU is one of its most 
innovative features. The PMU ‘sensor’ is a Global Positioning System (GPS) technology that 
uses conventional active and reactive power transducers as well as conventional current and 
voltage transformers. The PMU technology samples the waveform from 2,000 to 10,000 times 
per second, and then computes phasors generally around 10 to 60 times per second. 
 
By strategically locating PMUs, the effects of measurement errors can be reduced. The question 
is how to most effectively locate new PMUs to enhance the state estimator. It is possible to 
specify quantitative “condition indicators” that can be used to develop an algorithm for state 
estimator design. In this research, the condition indicators are used to assess PMU placement 
alternatives. With two test beds (the IEEE 57 bus test bed and a representation of a southwest 
power system with 180 buses and 254 lines), it is shown that PMU placement can significantly 
improve the condition numbers, thereby producing more confidence in the state estimation 
results. Examples show that use of condition analysis for PMU placement appears to be 
consistent with robustness analysis and other techniques for sensor placement. 
 
The next steps in this research include examining the effects of PMU placement on condition 
indicators for a nonlinear state estimator, designing a full implementation procedure of the 
algorithm for state estimator design, and testing the procedure on a large test bed.  
 
Part IV: Using Better System Models to Enhance State Estimation 
 
Over the past thirty-five years, the basic structure of power system state estimation process has 
been based on (a) a single-phase model, (b) an active power, reactive power, and voltage 
magnitude measurement set, (c) non-simultaneous measurements, and (d) a single frequency 
model. This basic structure implies the following assumptions: (1) all current and voltage 
waveforms are pure sinusoids with constant frequency and magnitude; (2) the system operates 
under balanced, three-phase conditions; and (3) the power system is a symmetric three-phase 
system that is fully described by its positive sequence network. These assumptions introduce 
deviations between the physical system and the mathematical model, resulting in poor 
confidence in and bias of the state estimator. In practice, these assumptions can cause the state 
estimation algorithm not to reach a solution. The trend toward very large regional power systems 
raises important research questions about the effects of these assumptions on state estimation 
results.  
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The research explored the effects of the three assumptions and the use of sensorless technologies 
on state estimation results. Numerical examples showed that segregated phase measurements of 
voltage and power flow (instead of balanced three-phase flow) and a three-phase model with the 
traditional state estimation approach results in substantial improvement in state estimate quality. 
Numerical experiments also showed that adding GPS-synchronized measurements improves 
state estimator performance. The experiments indicate that system model inaccuracies tend to 
increase estimation errors as the system size grows. As a result, it is expected that there would be 
more confidence in state estimation based on three-phase measurement sets, synchronized 
measurements, and full three-phase models, even for highly stressed regional systems.  
 
The effects of system assumptions on state estimation accuracy suggests that design of new state 
estimation systems should be tested on models that can be either based on traditional 
assumptions described above or a relaxed set of assumptions. This research led to the design and 
specification of a prototype test bed with a high fidelity power system simulation tool that could 
be used to better understand state estimation challenges and test possible solutions. The test bed 
will help to identify and quantify various error sources. The simulation tool uses a detailed 
system representation that, for example, models all phase conductors, shield wires, and 
grounding of transmission lines. The simulation model solution gives an accurate operating 
system condition, including imbalances and asymmetries. With the tool, a range of measurement 
set characteristics can be generated by appropriately injecting measurement errors, including 
single-phase measurements, three-phase measurements, three-phase individual measurements, 
traditional set of measurements, and phasor measurements. The hybrid state estimation algorithm 
can switch between a three-phase model or a positive sequence model. The next step in this 
research is to move from the prototype to a full-scale test-bed implementation. 
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1. Introduction 

All the energy management system (EMS) applications make use of the network model in the 
mathematical formulation of their problem. Transmission line resistances, reactances and 
charging capacitances, transformer reactances and tap values, and shunt capacitor/reactor values 
are examples of network parameters that are required to build the network model. Among the 
EMS applications, state estimation plays an important role since it provides the network model 
for all other applications. 
 
Traditionally, state estimation is carried out assuming that the correct network model is known. 
Therefore, any inconsistencies detected during the estimation process will be blamed on the 
analog measurement errors. However, the error in the parameter value, which is assumed not 
existing normally, will cause nearly permanent errors in the state estimation results.  
 
Recently, a new topology error identification method [1] based on a reduced system model and 
the use of Lagrange multipliers is proposed. It addresses the main shortcoming of the previously 
proposed methods by eliminating the need to identify a suspect substation before topology error 
identification.  
 
In this report, a new parameter error identification method that complements the topology error 
identification method mentioned above is proposed. This method is based on the Lagrange 
multipliers of the parameter constraints. A set of additional variables that correspond to the 
errors in the network parameters is introduced into the state estimation problem. However, direct 
estimation of these variables is avoided by the proposed formulation. Following the traditional 
state estimation solution, measurement residuals are used to calculate the Lagrange multipliers 
associated with the parameter errors. If these are found to be significant, then the associated 
parameter will be suspected of being in error. The main advantage of this method is that the 
normalized measurement residuals and parameter error Lagrange multipliers can be computed, 
allowing their identification even when they appear simultaneously. The first part of the 
proposed procedure is based only on the conventional weighted least-squares (WLS) state 
estimation solution; however, the subsequent error identification and correction procedures will 
have to be implemented and integrated into the existing code. There is no need to specify a 
suspect set of parameters a priori, since the method will readily identify the erroneous parameters 
along with any existing bad measurements. 
 
The objective of this report is to testify the validity of the parameter identification and correction 
method stated above in real power system. The report is organized such that Section II presents 
the proposed formulation and solution of the parameter error identification problem. Section III 
gives the flow chart of the method. Implementation details and the results of simulations are 
given in Section IV. The input and output data structure is introduced in section V. Section VI 
concludes the report, followed by the Appendix. 
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2. Lagrange Multipliers Method 

In this section, a brief presentation of the Lagrange multipliers method will be given. It is 
composed of three parts: (1) formulation of state estimation, (2) computation of the normalized 
Lagrange multipliers to identify bad parameter, and (3) correction of the bad parameter. 

2.1 Problem Formulation 
Consider the following measurement model: 

     epxhz e += ),(           (2.1) 

where: 
 
z    measurement vector; 

),( epxh  nonlinear function relating the measurements to the system states and network 
parameter errors; 

x    system state vector, including voltage magnitudes and phase angles; 
ep    vector containing network parameter errors; 

e    vector of measurement errors. 
 
Buses with no generation or load, will provide free and exact measurements as zero power 
injections. These can be treated as equality constraints given by: 

      ( ) 0, =epxc        (2.2) 

Network parameter vector will be modeled as: 

      et ppp +=        (2.3) 

where p  and tp  are the assumed and true network parameter vectors. Network parameter errors 
are normally assumed to be zero by the state estimator.  Therefore, for error free operation, the 
following equality constraint on network parameter errors will be used: 

      0=ep         (2.4) 

The weighted least squares (WLS) state estimation problem in the presence of network 
parameter errors and equality constraints can then be formulated as the following optimization 
problem: 

     
0

0),(Subject to
Minimize 2

1

=
=

=

e

e

t

p
pxc

WrrJ(x)
                             (2.5) 
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where: 
 

),( epxhzr −= is the measurement residual vector, 
W is the diagonal matrix whose inverse is the measurement error covariance matrix, cov(e). 
 
Applying the method of Lagrange multipliers, the following Lagrangian can be defined for the 
optimization problem of (2.5): 

     ( ) ept
epxctWrtrL λμ −−= ,

2

1
       (2.6) 

Applying the first order optimality conditions: 

    0=+=
∂

∂
μt

xCWrt
xH

x

L
        (2.7) 

0=++=
∂

∂
λμt

pCWrt
pH

p

L
            (2.8) 

( ) 0, ==
∂

∂
epxc

L

μ
              (2.9) 

0==
∂

∂
ep

L

λ
            (2.10) 

where: 

     
( )

x
pxh

H e
x ∂

∂
=

,
       (2.11) 

     ( )
x
pxc

C e
x ∂

∂
=

,        (2.12) 

     ( )
e

e
p p

pxh
H

∂
∂

=
,          (2.13) 

     ( )
e

e
p p

pxc
C

∂
∂

=
,        (2.14) 

λμ  and  are the Lagrange multipliers for the equality constraints (2.2) and (2.4).  
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Equation (2.8) can be used to express λ  in terms of r and μ :       

     ⎥⎦
⎤

⎢⎣
⎡
⋅=
μ

λ
r

S         (2.15) 

where: 

     
t

pC
pWH

S ⎥
⎦

⎤
⎢
⎣

⎡
−=        (2.16) 

is the parameter sensitivity matrix.  
 
 Equality constraint (2.4) allows substitution of ep  in (2.7)-(2.9). Denoting ( )0,xh  and ( )0,xc  
by ( )xh0 , ( )xc0  respectively, the measurement equations will take the following form:  

     exhz += )(0                                    (2.17) 

     ( ) 00 =xc                                            (2.18) 

Note that (2.17) and (2.18) are the conventional measurements and zero injection equations used 
by the state estimators. They do not include parameter errors as explicit variables. Substituting 
the first order Taylor approximations for ( )xh0  and ( )xc0 , the following linear equations will be 
obtained: 

     zrxH x Δ=+Δ⋅        (2.19) 

     )( 00 xcxCx −=Δ⋅        (2.20) 

where: 

  00 , xxxx −=Δ  vectorstate system for the guess initial  thebeing )( 00 xhzz −=Δ  

Using (2.7), (2.19), and (2.20), the following equation will be obtained:  

    ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
Δ=

Δ
•

)0(0

0

00
0

0

xc
zr

x

xC
IxH

t
xCWt

xH

μ
     (2.21) 

 
This equation is the same equation used for iterative solution of the conventional WLS state 
estimation problem. Hence, the solution for the measurement residuals r and the Lagrange 
multipliers for the zero injectionsμ  can be obtained first by iteratively solving (2.21). Once the 
state estimation algorithm successfully converges, (2.15) can be used to recover the Lagrange 
multiplier vector λ  associated with the parameter errors. 
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2.2 Computation of Normalized Lagrange Multipliers 

Since the main aim of this work is to identify parameter errors, the validity of the constraint 
(2.10) will have to be tested. This can be done based on the Lagrange multiplier vector λ  
associated with the parameter error vector ep . In order to test the significance of a given iλ  
value, it will be normalized using its covariance matrix ( )λcov , which can be obtained as shown 
below. 
 
Letting Tru ][ μ= and using (2.15): 

     ( ) tSuS ⋅⋅==Λ )cov(cov λ                                (2.22) 

The covariance of u, ( )ucov  can be calculated by first expressing r and μ  in terms of the 
measurement mismatch. To do that, let the inverse of the coefficient matrix in (2.21) be given in 
partitioned form as follows: 

    ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

987
654
321

1

00
0

0

EEE
EEE
EEE

xC
IxH

t
xCWt

xH

       (2.23)  

Noting that ( ) 00 =xc at the solution, (2.21) will yield the following expressions for r and μ : 

     zEr Δ⋅= 5         (2.24) 

     zE Δ⋅= 8μ         (2.25) 

Let TEE ]85[=Ψ , then: 

     zu Δ⋅Ψ=         (2.26) 

     tWu Ψ⋅⋅Ψ= −1)cov(       (2.27) 

The Lagrange multipliers for the parameter errors can then be normalized using the diagonal 
elements of the covariance matrix Λ defined in (2.22): 

     
),( ii

iN
i

Λ
=

λ
λ                                 (2.28) 

for all i = 1…k, where k is the total number of network parameters whose errors are to be 
identified. 
 
Note that the denominator in (2.28) will be zero for cases where local measurement redundancy 
does not allow detection of errors in parameter. One such case is when all measurements that are 
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functions of a parameter are critical. The other obvious one is when there are no measurements 
that are functions of a parameter. 

2.3 Correction of the Parameter in Error 
After the parameter in error is identified, this specific parameter can be corrected by estimating 
its true value simultaneously with the other state variables [2]. In order to accomplish this, the 
state vector is augmented by the suspicious parameter p , yielding the following new state 
vector, v : 

     [ ]pxxxv n |,...,, 21=      (2.29) 

where v is the set of state variables.  
1x ,…, nx   conventional state variables 

p    parameter precisely identified as erroneous.  
 
The solution of the state estimation problem will yield not only the state estimates but also the 
estimated value of the suspect parameter. 
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3. Parameter Identification Algorithm 

3.1 Overall Process 
The above formulation can be used to develop an algorithm to detect and identify network 
parameter errors. Such an algorithm is presented below: 
 
Step 1.  Initial State Estimation.  
  This is the WLS state estimation problem as currently solved by existing software. In 

addition to the measurement residual vector r , the solution will provide the Lagrange 
multiplier vector μ  of zero injections if they are treated as equality constraints in the 
state estimation formulation. The solution involves repeated solution of (2.21) until 
convergence. Note that all parameter errors are assumed to be zero and therefore ignored 
at this step. 

 
Step 2. Bad Data and Parameter Error Identification. 
   Compute the normalized residuals for the measurements, and the normalized Lagrange 

multipliers for the parameter errors, as in (2.28). Section 2.2 illustrates the steps leading 
to (2.28). Choose the larger one between the largest normalized residual and the largest 
normalized Lagrange multiplier. 

 • If the chosen value is below the identification threshold, then no bad data or parameter 
error will be suspected. A statistically reasonable threshold to use is 3.0, which is the one 
used in all simulations presented in the next section. 

 • Else, the measurement or the parameter corresponding to the chosen largest value will be 
identified as the source of the error. 

 
Step 3. Correction of the Parameter Error 
  If a measurement is identified as bad, it is removed from the measurement set. 

Equivalently, its value can be corrected using a linear approximation for the estimated 
measurement error.  

  If a parameter is identified as erroneous, it is corrected by estimating its value by the 
method described in Section 2.3 using the augmented state vector defined as (2.29). 
Substitute the estimated parameter value for the old one and go to Step 1. 

 
Note that bad data and parameter errors are processed simultaneously. This is possible provided 
that there is sufficient measurement redundancy and the parameter errors are not strongly 
correlated with the bad data. Since parameter errors are persistent whereas bad data usually 
appear in a single scan, the likelihood of simultaneously having strongly interacting bad data and 
parameter errors is small. Furthermore, using this approach, there is no need to specify which 
parameter is to be tested for errors, a priori state estimation. Those three steps are separated from 
each other. Step 2 uses the results of the normal state estimation done in Step 1, and the set of 
suspicious parameters can be easily changed in Step 2 and without requiring re-estimation of the 
system states. 
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3.2 Flow Chart 
The flow chart of the algorithm is shown below.  
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4. Simulation Results 

The above-described parameter error identification procedure is implemented and tested on IEEE 
14-, 30- and 57-bus test systems. Different cases are simulated where errors are introduced in 
transmission line parameters, transformer taps, shunt capacitors, and analog measurements. Both 
single errors and simultaneously occurring errors in analog measurements and parameters are 
simulated. The performance of the method as well as its limitations is illustrated through these 
examples. 

4.1 Line Impedance or Measurement Error 
This case presents single errors in transmission line impedances or analog measurements. The 
method is shown to differentiate between these different types of errors and to correctly identify 
the error. The simulated errors for the three test systems are listed in Table I, where tests A and B 
are carried out as follows. 
 

Test A) An error is introduced in the line parameter listed in Table 4.1; all analog 
 measurements are error free. 

Test B) No parameter errors are introduced; all measurements are error free, 
 except for the listed flow in Table 4.1. 
 

Table 4.1 Simulated Parameter and Measurement Errors 

Bad Parameter/Meas. Test System Test A Test B 
14-bus 54−r  54−q  
30-bus 75−x  75−p  
57-bus 

64−r  46−q  
 

Tables 4.2-4.4 show the sorted normalized residuals and normalized Lagrange multipliers, 
obtained during the tests of Table 4.1. The correction of the parameter error is shown in Table 
4.5. As evident from the above, single line impedance errors as well as single analog 
measurement errors can be identified and corrected by this approach. 
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Table 4.2 Results of Error Identification – 14-bus System 

Test A Test B 
Measurement/ 

Parameter 
Normalized 
residual / Nλ  

Measurement/ 
Parameter 

Normalized 
residual / Nλ  

54−r  7.88 54−q  12.02 

42−r  5.98 5q  8.61 

52−r  4.84 4q  6.57 

54−q  4.81 54−x  5.35 

65−t  4.59 42−x  4.18 
 

Table 4.3 Results of Error Identification – 30-bus System 

Test A Test B 
Measurement/ 

Parameter 
Normalized 
residual / Nλ  

Measurement/ 
Parameter 

Normalized 
residual / Nλ  

75 −x  25.47 75−p  19.50 

67−x  22.01 75−r  12.34 

52−x  21.92 5p  10.56 

67−r  15.78 6q  9.97 

52−r  15.42 67−x  9.86 
 

Table 4.4 Results of Error Identification – 57-bus System 

Test A Test B 
Measurement/ 

Parameter 
Normalized 
residual / Nλ  

Measurement/ 
Parameter 

Normalized 
residual / Nλ  

64−r  14.82 64−q  8.78 

64−q  9.65 64−r  5.96 

43−r  7.37 65−x  4.22 

54−r  7.09 4s  4.01 

64−p  6.79 4q  4.01 
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Table 4.5 Estimated and True Parameters of Line Impedances 

Test 
system 

Bad 
Parameter 

Corrected 
Parameter 

Parameter 
without 

error 
14-bus 54−r  0.01355 0.01355 

30-bus 75−x  0.11593 0.11600 

57-bus 64−r  0.04295 0.04300 

 

4.2 Transformer Tap or Measurement Error 

This case presents single errors in transformer taps or analog measurements. Errors are simulated 
for the 57-bus test system, where tests A and B are carried out as follows: 
 

Test A) A 1% error is introduced in the transformer tap value; all analog 
 measurements are error free. 

Test B) No parameter errors are introduced; all measurements are error free,  
except for the flow . 
 

Table 4.6 shows the sorted normalized residuals and Lagrange multipliers that are obtained 
during Tests A and B. Again, for Test A, the estimated value of the wrong parameter is shown in 
Table 4.7. 
 

Table 4.6 Tap and Measurement Error Identification 

Test A Test B 

Measurement/ 
Parameter 

Normalized 
residual / 

Nλ  

Measurement/
Parameter 

Normalized 
residual / 

Nλ  

4913−t  63.19 4913−p  18.52 

4913−q  53.48 4913−x  6.71 

4913−x  48.69 4948−r  6.37 

4948−x  25.60 49p  6.17 

4746−r  20.03 4614−x  5.58 
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Table 4.7 Estimated and True Parameters of Taps 

Test system Bad 
Parameter 

Corrected 
Parameter 

Parameter 
without error 

57-bus 4913−t  0.89502 0.89500 
 
As in case 1, the method successfully identifies and corrects transformer tap errors while 
maintaining its ability to identify any errors appearing in analog measurements. 

4.3 Errors in Shunt Capacitor/Reactor  

Errors in the parameters of shunt devices such as capacitors or reactors can be detected but not 
identified. The reason is the lack of redundancy, i.e., there is only one measurement, namely, the 
reactive power injection at the corresponding bus, whose expression contains this parameter. 
Hence, when there is an error in this injection measurement or an error in the shunt device 
parameter, this error will be detected, but its source cannot be identified. The injection 
measurement and the parameter constraint constitute a critical pair. This case illustrates two 
examples of this limitation for 14- and 30-bus test systems. 
 
Errors are introduced in the shunt susceptances at bus 9( 9s ) and at bus 24( 24s ) of 14- and 30-bus 
systems, respectively. The normalized residuals and Lagrange multipliers are given in sorted 
form in Table 4.8. Note that the reactive injection measurements and shunt susceptances have 
identical normalized values, indicating that they constitute a critical pair whose errors cannot be 
identified. 
The estimated and true parameter values are shown in Table 4.9. 
 

Table 4.8 Shunt Susceptance Errors 

14-bus system 30-bus system 

Measurement/ 
Parameter 

Normalized 
residual / 

Nλ  

Measurement/
Parameter 

Normalized 
residual / 

Nλ  

9s
 

5.80 24s  12.72 

9q  5.80 24q  12.72 

109−q  3.05 2422−q  5.78 

94−t  2.51 22q  5.23 

14q  2.05 2423−q  4.65 
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Table 4.9 Estimated and True Parameters of Shunt Susceptances 

Test system Bad 
Parameter 

Corrected 
Parameter 

Parameter 
without error 

14-bus 9s  0.1900 0.1900 
30-bus 

24s  0.0432 0.0430 

4.4 Simultaneous Errors 
This case shows the identification of multiple errors occurring simultaneously in the 14-bus 
system. Errors are simulated in the reactance of the transmission line 2–4, tap of the transformer 
4–9, and the power flow measurement in line 4-2. The largest normalized value test is used to 
identify these errors one at a time. Results of normalized value tests for each error identification 
cycle are presented in Table 4.10. 
 

Table 4.10 Multiple Error Identification Results 

Error identification cycle 
1st  2nd 3rd 

z/ p Nr / Nλ  z/ p Nr / Nλ  z/ p Nr / Nλ  

42−x  60.56 94−t  23.87 24−p  5.07 

24−p  46.48 49−p  17.99 3p  3.75 

54−x  40.49 74−t  10.00 4p  3.02 

52−x  30.24 97−r  9.78 42−r  2.86 

94−t  25.00 4p  9.68 54−p  2.25 
Identified and Eliminated error 

42−x  94−t  24−p  
 
When corrected, the parameter values are found, as shown in Table 4.11. Notice that when there 
are multiple errors in the network parameters as well as analog measurements; repeated 
application of the largest normalized value test can identify errors one by one, as shown in Table 
4.10. However, due to the interaction between multiple parameter errors, sequential correction of 
parameter errors may yield approximate values, as in Table 4.11. This approximation error can 
be minimized by executing an extra estimation solution, where all identified parameters are 
included simultaneously in the augmented state vector. The results for this case are shown in 
Table 4.12. Note that the results in Table 4.12 are more accurate than those given in Table 4.11.  
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Table 4.11 Estimated and True Parameters of Multiple Errors 

Step Bad 
Parameter 

Corrected 
Parameter 

Parameter 
without 

error 
1st 42−x  0.17400 0.17632 

2nd 94−t  0.96015 0.96000 

 

Table 4.12 Simultaneous Estimation of All Identified Parameters 

Bad 
Parameter 

Estimated 
Parameter 

True 
Parameter 

42−x  0.17633 0.17632 

94−t  0.96000 0.96000 

 

Similar to the case of the multiple interacting and conforming bad data, there may be situations 
where strongly interacting parameter and analog measurement errors cannot be identified due to 
error masking. Such cases are, however, rare and cannot be handled by this method. 

4.5 Inherent Limitation: Multiple Solutions 
Identification of errors in network parameters is inherently limited by the available set of 
measurements as well as the system topology. The limitation is due to the possibility of multiple 
solutions corresponding to two or more parameter errors that affect the same subset of 
measurements. 
 
Consider two network parameters 1p , 2p  and their erroneous values ap1 , bp2 . If two different 
solutions ax , bx yielding the same objective function value can be found such that 

    ( ) ( )bbaa ppxJppxJ 2121 ,,,, =            (4.1) 

 then the WLS state estimator will equally likely converge to either one of these solutions. 
Hence, it will not be possible to identify which of these two parameters is actually in error. 
 
One such situation is illustrated by the following two tests that are carried out on the IEEE 14-
bus system whose diagram and measurements are shown in Fig. 4.1. 
 
 Test A) The reactance 126−x  for line 6–12 is incorrect; all measurements are exact. 
 Test B) The reactance 1312−x  for line 12–13 is incorrect; all measurements are exact. 
 
The incorrect parameters for the two neighboring lines are chosen as shown in Table 4.13. These 
two parameter errors will be detectable but not identifiable. Either one of the parameters can be 
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identified as incorrect, depending upon the initial conditions used in the iterative solution of the 
state estimation problem. 
 

Table 4.13 Objective Function Values for Tests A and B 

 Erroneous 
Parameter

Assumed
Value 

True 
Value ( )xJ  

Test A 126−x  0.23656 0.25581 14.7064 

Test B 1312−x  0.29988 0.19988 14.7068 

 

In Test A, the proposed method correctly identified 126−x  as the erroneous parameter, while in 
Test B, the same algorithm still identified the same parameter instead of the incorrect parameter 

1312−x  as bad data. The reason can be easily seen by looking at the almost identical objective 
function values corresponding to the two tests in Table 4.13. As shown in Table 4.14, in Test B, 

126−x  is identified instead of the real parameter in error, 1312−x . The estimated states for the two 
test cases are shown in Table 4.15. Note that the two estimates differ very little, only at the buses 
incident to the branches with parameter errors, namely, buses 6, 12, and 13. 
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Figure 4.1 IEEE 14-Bus System 

 

Table 4.14 Error Identification of Series Lines 

Test A Test B 
Measurement/ 

Parameter 
Normalized 
residual /λ  

Measurement/ 
Parameter 

Normalized 
residual /λ  

126−x  3.8291 126−x  3.8280 

1312−x  3.8250 1312−x  3.8148 

136−x  2.8902 136−x  2.7479 

126−p  2.4126 1312−p  2.5182 

1312−p  2.3390 126−p  2.4759 
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Table 4.15 Estimated States for Tests A and B 

Test A Test B Bus No: V  θ  V  θ  
1     1.0600          0     1.0600          0 
2     1.0450    -5.2379     1.0450    -5.2382 
3     1.0100   -13.1662     1.0100   -13.1669 
4     1.0159   -10.8853     1.0159   -10.8858 
5     1.0180    -9.2395     1.0180    -9.2403 
6     1.0700   -14.8812     1.0700   -14.8857 
7     1.0679   -14.6357     1.0678   -14.6355 
8     1.0900   -16.4757     1.0900   -16.4758 
9     1.0606   -16.0028     1.0605   -16.0023 
10     1.0547   -16.0920     1.0547   -16.0922 
11     1.0588   -15.6241     1.0587   -15.6260 
12     1.0558   -15.7289     1.0559   -15.7184 
13     1.0510   -15.8867     1.0510   -15.8656 
14     1.0384   -16.9473     1.0384   -16.9403 
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5. Program Data Structure 

The input data files for the parameter identification program include the system network 
information and the power measurements. The output data files give the normalized Lagrange 
multipliers of parameters and the normalized residuals of measurements. 

5.1 Input Data Files of Parameter Identification Program 
The input data of the parameter identification are composed of three files: (1) the detailed circuit 
breaker topology data, (2) power flow measurement data, and (3) voltage data. 

5.1.1 seinput.dat 
9    0.1900 
-99 
1   1   2   0  1.00000  0.01938  0.05917  0.00000  0.05280 
2   1   5   0  1.00000  0.05403  0.22304  0.00000  0.04920 
3   2   5   0  1.00000  0.05695  0.17388  0.00000  0.03400 
4   2   4   0  1.00000  0.05811  0.17632  0.00000  0.03740 
5   2   3   0  1.00000  0.04699  0.19797  0.00000  0.04380 
6   3   4   0  1.00000  0.06701  0.17103  0.00000  0.03460 
7   4   5   0  1.00000  0.01335  0.04211  0.00000  0.01280 
8   7   8   0  1.00000  0.10000  0.17615  0.00000  0.00000 
9   7   9   0  1.00000  0.00000  0.11001  0.00000  0.00000 
10   9  10   0  1.00000  0.03181  0.08450  0.00000  0.00000 
11   9  14   0  1.00000  0.12711  0.27038  0.00000  0.00000 
12  10  11   0  1.00000  0.08205  0.19207  0.00000  0.00000 
13   6  11   0  1.00000  0.09498  0.19890  0.00000  0.00000 
14   6  12   0  1.00000  0.12291  0.25581  0.00000  0.00000 
15   6  13   0  1.00000  0.06615  0.13027  0.00000  0.00000 
16  12  13   0  1.00000  0.22092  0.19988  0.00000  0.00000 
17  13  14   0  1.00000  0.17093  0.34802  0.00000  0.00000 
18   5   6   1  0.93000  0.00000  0.25202  0.00000  0.00000 
19   4   7   1  0.97000  0.00000  0.20912  0.00000  0.00000 
20   4   9   1  0.96000  0.00000  0.55618  0.00000  0.00000 
-99 
 
The file shown above is the state estimation input file for the 14 bus system. This input file 
includes the system network parameter data. –99 is used to flag of the end of data. It is composed 
of two parts, the bus parameter data and the line parameter data of the system.  
 
1. bus parameter data 
1st column: bus number. 
2nd column: shunt conductance of that bus.  
 
2. line parameter data 
1st column: the branch number. 
2nd to 3rd columns: the start and end bus number the line connected.  
4th column: the line type. For a transformer, the value is 1 and for a normal transmission line, the 
value is 0.  
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5th column: tap value. For a transformer, it gives the tap value of that transformer. For normal 
transmission line it is 1.  
6th to 9th columns: the resistance, reactance, conductance and susceptance of the non-zero 
impedance branch. For circuit breakers, the values will be all zeros. 

5.1.2 measureinput.dat 
1   16   12   13     0.01706    0.000001 
1   13   11    6    -0.08318    0.000001 
1    7    4    5    -0.65249    0.000001 
1    3    5    2    -0.42806    0.000001 
1    5    2    3     0.74916    0.000001 
1    9    7    9     0.24558    0.000001 
1   15    6   13     0.18251    0.000001 
1    4    4    2    -0.57571    0.000001 
1    1    1    2     1.64619    0.000001 
1    6    3    4    -0.21709    0.000001 
1    8    7    8     0.10427    0.000001 
1   10    9   10     0.04214    0.000001 
1   11    9   14     0.08841    0.000001 
1   12   10   11    -0.04799    0.000001 
1    2    1    5     0.79389    0.000001 
1    1    2    1    -1.59881    0.000001 
1    3    2    5     0.43813    0.000001 
1   14    6   12     0.07878    0.000001 
1   13    6   11     0.08380    0.000001 
1   17   13   14     0.06232    0.000001 
1   18    5    6     0.45700    0.000001 
1   19    4    7     0.34976    0.000001 
1   20    9    4    -0.17996    0.000001 
1   19    7    4    -0.34976    0.000001 
1    9    9    7    -0.24558    0.000001 
1   18    6    5    -0.45700    0.000001 
-99 
3   14    -0.14900    0.000001 
3   10    -0.09000    0.000001 
3    7     0.00000    0.000001 
3    8    -0.10000    0.000001 
3    3    -0.94200    0.000001 
3    2     0.18300    0.000001 
3    1     2.44007    0.000001 
3   11    -0.03500    0.000001 
3   12    -0.06100    0.000001 
3    6    -0.11200    0.000001 
3   13    -0.13500    0.000001 
3    9    -0.29500    0.000001 
3    4    -0.47800    0.000001 
3    5    -0.07600    0.000001 
-99 
2   16   12   13     0.00545    0.000001 
2   13   11    6    -0.01979    0.000001 
2    7    4    5     0.15986    0.000001 
2    3    5    2    -0.02089    0.000001 
2    5    2    3     0.03398    0.000001 
2    9    7    9     0.07384    0.000001 
2   15    6   13     0.06480    0.000001 
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2    4    4    2     0.03172    0.000001 
2    1    1    2    -0.22194    0.000001 
2    6    3    4     0.03761    0.000001 
2    8    7    8    -0.19024    0.000001 
2   10    9   10     0.05699    0.000001 
2   11    9   14     0.04570    0.000001 
2   12   10   11    -0.00139    0.000001 
2    2    1    5     0.04270    0.000001 
2    1    2    1     0.30810    0.000001 
2    3    2    5     0.01546    0.000001 
2   14    6   12     0.02296    0.000001 
2   13    6   11     0.02108    0.000001 
2   17   13   14     0.00792    0.000001 
2   18    5    6     0.12921    0.000001 
2   19    4    7    -0.09147    0.000001 
2   20    9    4     0.01250    0.000001 
2   19    7    4     0.11639    0.000001 
2    9    9    7    -0.06750    0.000001 
2   18    6    5    -0.08177    0.000001 
-99 
4   14    -0.05000    0.000001 
4   10    -0.05800    0.000001 
4    7     0.00000    0.000001 
4    8     0.19746    0.000001 
4    3     0.05980    0.000001 
4    2     0.34330    0.000001 
4    1    -0.17920    0.000001 
4   11    -0.01800    0.000001 
4   12    -0.01600    0.000001 
4    6     0.02693    0.000001 
4   13    -0.05800    0.000001 
4    9    -0.16600    0.000001 
4    4     0.03900    0.000001 
4    5    -0.01600    0.000001 
-99 
0    1     1.06000    0.000001 
-99 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
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-99 
 
The above shown file is the measurement file for the 14 bus system. It is composed of six parts. 
They are real and reactive power flow measurements, real and reactive power injection 
measurements, voltage magnitude measurements and suspicious line set.  
 
Real power flow measurements 
1st column: the flag of the measurement. 1 represents it is a real power flow measurement.  
2nd column: the branch number of that power flow. 
3rd to 4th columns: the start and end bus number of that power flow. 
5th column: the real power flow measurement.  
6th column: the weight of that measurement. 
 
Real power injection measurements 
1st column: the flag of the measurement. 3 represents it is a real power injection measurement. 
2nd column: the bus number of that power injection. 
3rd column: the real power injection measurement.  
4th column: the weight of that measurement. 
 
Reactive power flow measurements 
1st column: the flag of the measurement. 2 represents it is a reactive power flow measurement.  
2nd column: the branch number of that power flow. 
3rd to 4th columns: the start and end bus number of that power flow. 
5th column: the reactive power flow measurement.  
6th column: the weight of that measurement. 
 
Reactive power injection measurements 
1st column: the flag of the measurement. 4 represents it is a reactive power injection 
measurement. 
2nd column: the bus number of that power injection. 
3rd column: the reactive power injection measurement.  
4th column: the weight of that measurement. 
 
Voltage magnitude measurements 
1st column: the flag of the measurement. 0 represents it is a voltage magnitude measurement. 
2nd column: the bus number of that voltage measurement. 
3rd column: the voltage magnitude measurement. 
4th column: the weight of that measurement. 
 
Suspicious line set 
1st column: the line number of the lines whose parameters are suspected to be in error.  

5.2 Output Data Files Parameter Identification Program 
There is only one output file of the parameter identification program. 



 

22 

5.2.1 BADDATAOTP.dat 
Normalized lagrange multiplier  
 
8       R           7         8       0.0793 
8       X           7         8       0.0601 
1       X           1         2       0.0219 
17       R          13        14       0.0196 
4       X           2         4       0.0188 
11       R           9        14       0.0164 
5       X           2         3       0.0153 
14       R           6        12       0.0145 
16       R          12        13       0.0144 
19       X           4         7       0.0131 
9       S                             0.0130 
2       R           1         5       0.0120 
11       X           9        14       0.0117 
9       R           7         9       0.0108 
20       T           4         9       0.0106 
4       R           2         4       0.0104 
9       X           7         9       0.0102 
18       X           5         6       0.0101 
20       X           4         9       0.0098 
19       T           4         7       0.0090 
5       R           2         3       0.0083 
10       R           9        10       0.0079 
3       R           2         5       0.0077 
6       R           3         4       0.0073 
12       X          10        11       0.0069 
3       X           2         5       0.0069 
13       X           6        11       0.0064 
7       X           4         5       0.0058 
13       R           6        11       0.0057 
17       X          13        14       0.0049 
12       R          10        11       0.0044 
18       T           5         6       0.0040 
2       X           1         5       0.0039 
15       X           6        13       0.0039 
6       X           3         4       0.0031 
7       R           4         5       0.0030 
16       X          12        13       0.0015 
15       R           6        13       0.0013 
10       X           9        10       0.0007 
14       X           6        12       0.0007 
1       R           1         2       0.0005 
 
Normalized residual  
 
  4    2              0.1112 
  4    3              0.0881 
  1    7    8         0.0875 
  3    8              0.0863 
  4    6              0.0832 
  4    1              0.0635 
  4    4              0.0495 
  2    5    6         0.0486 
  0    1              0.0450 
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  4    5              0.0448 
  3    4              0.0445 
  3    6              0.0421 
  2    6    5         0.0405 
  2    6   13         0.0338 
  3    5              0.0314 
  2    5    2         0.0313 
  1    3    4         0.0294 
  4    8              0.0288 
  2    4    2         0.0284 
  2    3    4         0.0283 
  2    7    8         0.0282 
  4   12              0.0277 
  4   13              0.0272 
  2    2    5         0.0243 
  1    6   13         0.0217 
  1    5    6         0.0214 
  1    6    5         0.0214 
  2   11    6         0.0212 
  1    4    7         0.0206 
  1    7    4         0.0206 
  1    2    3         0.0201 
  2    6   12         0.0200 
  2    1    2         0.0184 
  3   12              0.0181 
  1    6   11         0.0178 
  1   11    6         0.0168 
  4   11              0.0145 
  2    6   11         0.0139 
  4    9              0.0130 
  1    1    5         0.0125 
  1    6   12         0.0123 
  2    4    7         0.0120 
  1    9    4         0.0115 
  2    7    4         0.0113 
  1    5    2         0.0093 
  1    2    5         0.0092 
  2    9    7         0.0081 
  1    4    5         0.0079 
  2    1    5         0.0078 
  2   10   11         0.0078 
  3   13              0.0076 
  1    9   10         0.0075 
  1    2    1         0.0072 
  2    9    4         0.0072 
  2    2    1         0.0071 
  2   12   13         0.0070 
  2    9   10         0.0065 
  2    2    3         0.0064 
  1    9   14         0.0054 
  4   14              0.0053 
  3   10              0.0051 
  1   13   14         0.0047 
  1    4    2         0.0043 
  3    2              0.0035 
  2    7    9         0.0032 
  3   11              0.0032 
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  1   10   11         0.0030 
  1    1    2         0.0029 
  3    9              0.0021 
  3    3              0.0017 
  1   12   13         0.0016 
  1    9    7         0.0015 
  1    7    9         0.0015 
  4   10              0.0013 
  2    9   14         0.0011 
  3    7              0.0011 
  4    7              0.0010 
  3   14              0.0008 
  3    1              0.0006 
  2    4    5         0.0005 
  2   13   14         0.0001 
 
This file contains the normalized Lagrange multipliers of the parameters and normalized 
residuals of the measurements.  
 
Normalized Lagrange multiplier 
1st columns: If the parameter is shunt capacitance, it is the connected bus number; if it is not, it 
is the branch number of that parameter.  
2nd column: identifier for the parameter. R represents line resistance; X represents line reactance 
or transformer reactance; T represents transformer tap and S represents shunt capacitance.  
 
For shunt capacitance:  
3rd column: normalized Lagrange multiplier of that CB constraint. 
For other parameters:  
3rd to 4th columns: the start and end bus number of the branch that parameter belongs to.  
5th column: normalized Lagrange multiplier of that CB constraint.  
 
Normalized residual 
1st column: identifier for the measurement. 1 represents real power flow measurement. 2 
represents reactive power flow measurement. 3 represents real power injection measurement. 4 
represents reactive power injection measurement. 0 represents voltage magnitude measurement.  
 
For power flow measurement:  
2nd to 3rd columns: the start and end bus number of that power flow measurement.  
4th column: normalized residual of that measurement.  
 
For power injection measurement or voltage magnitude measurement: 
2nd column: connected bus number of that measurement.  
3rd column: normalized residual of that measurement. 

5.3 Input Data Files of Parameter Correction Program 

Dataotp.dat  
4   2 
20   3 
-99 
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This file contains the identified parameter errors by the parameter identification program.  
 
1st column: If the parameter is shunt capacitance, it is the connected bus number; if it is not, it is 
the branch number of that parameter.  
2nd column: identifier for the parameter. 1 represents line resistance; 2 represents line reactance 
or transformer reactance; 3 represents transformer tap and 4 represents shunt capacitance. 
 
The other input data files are seinput.dat and measureinput.dat. They are the same as described 
earlier above.  

5.4 Output Data Files of Parameter Correction Program 

correctp.dat 
The reactance of branch 4 is 0.17633 
The tap of transformer 20 is 0.96000 
 
There is only one output file.  
 
The file provides the list of corrected parameter values for the identified parameter errors.  
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6. Conclusions and Future Work 

This part of the report presents a method for identifying network parameter errors, even in the 
presence of bad analog measurements. The parameter error identification is accomplished by 
formulating the parameter errors as zero equality constraints and then testing the significance of 
the associated Lagrange multipliers. These are computed from the normalized measurement 
residuals obtained by the WLS state estimation. The method can deal with mixed-type multiple 
errors in measurements and network parameters. There is also no need to specify a set of suspect 
parameters before state estimation. Once the parameter error is identified, its correct value is 
estimated using the augmented state estimation method. Several examples are simulated to 
illustrate the effectiveness of the method. This report also shows the inherent limitations of error 
identification for certain special cases. The method can be readily implemented as a user-defined 
option by modifying an existing WLS state estimation code. 
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1. Introduction 

As power transmission systems merge to form large scale power systems containing 
several interconnected areas, operators are faced with the need to monitor these systems 
in real time in a computationally efficient manner. They use real time measurements 
which are processed by the state estimator, to accomplish this. Each control center has its 
own state estimator which processes the measurements received from its local 
substations. On the other hand, solution of the state estimation for the entire system will 
have to be obtained by a central state estimator. This requires access to wide area 
measurements and solution of a very large-scale state estimation problem. This is not 
only computationally difficult but may not always be practical. For instance, individual 
independent system operators (ISO) may not be willing to modify their existing hardware 
and software in order to meet the new specifications imposed by the central state 
estimator for the large-scale solution.  
 
In this project, a new approach is used. This approach assumes that each individual ISO 
will keep its existing monitoring software and a central coordinator will consolidate their 
results to determine the state of the overall system. The project investigates the design 
and implementation of this scheme in detail. 
 
It is noted that multi-area solution methods applied to power system state estimation 
problem have been proposed in the past by several researchers [1]-[6]. These proposals 
differ in the decomposition strategies for the network. It can be by nodes as done in [1], 
by tie-lines as in [2], [3], [6] or simply based on the structure of the gain matrix, as in [4]. 
Optimality of the solution when these methods are applied to the state estimation problem 
is always guaranteed. The main idea of these methods is that each area will estimate its 
own state using the available local area measurements. The boundary measurements may 
either be completely ignored or may be incorporated through some iterative scheme 
between the local and central computer. It should be noted that, bad boundary 
measurements will bias the overall system state if they are not identified and eliminated.  
 
This project also takes into account the fact that, today it is possible to have synchronized 
phasor measurements in addition to the power flows, injections and voltage magnitude 
measurements at the substations. These measurements not only benefit substation control 
and protection functions but also facilitate state estimation, as shown in [7]-[10].  
 
This report will first review the multi-area state estimation formulation, solution 
procedure and data requirements. Then, the method will be applied to the solution of 
some test systems containing several areas. Simulation results for different measurement 
configurations some of which contain bad data will be presented.  
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2. Formulation of the Problem 

Multi-area estimation requires decomposition of network data and measurements into 
individual areas. In this project this decomposition is done in the following manner for an 
N-bus, n-area power system: 
 
Area buses are classified into two types, internal buses (those having no connection to 
buses belonging to other areas) and boundary buses. Areas are separated by tie-lines 
whose terminal buses are assigned to both areas. Each area state estimator will cover and 
solve for bus voltages at all of its internal buses, boundary buses and boundary buses of 
all its neighboring areas. This is illustrated graphically in Figure 2.1 for a 3-area case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Overlapping Bus Assignments for Areas 

 

Note that this particular decomposition scheme is proposed earlier in [2] and [3]. 
According to this decomposition, buses in each area “i” will be classified as follows: 
 
• Internal bus, all of whose neighbors belong to the area i. 
• Boundary bus, whose neighbors are area i internal buses and at least one boundary 

bus from another area.  
• External bus, which is a boundary bus of another area with a connection to at least 

one boundary bus in area i.  
 
Associated state variables will then be defined as:  
• The vector b

ix  consisting of the voltage magnitudes and phase angles at the boundary 
buses of area i. 
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• The vector int
ix  consisting of the voltage magnitudes and phase angles at the internal 

buses of area i. 
• The vector ext

ix  consisting of the voltage magnitudes and phase angles at the external 
buses of area i. 

 
Individual Area State Estimation: 
The phase angle of the chosen slack bus for the area will be excluded from the 
appropriate vector b

ix , int
ix  or ext

ix . Thus, the state vector for area i will be given by: 

    
TText

i
T

i
Tb

ii xxxx ⎥⎦
⎤

⎢⎣
⎡=

Δ
,, int        (2.1) 

whose dimension is in . As evident from the above definitions, each area state vector 
includes not only the states of that area but also part of the states belonging to its 
immediate neighbors. Hence, some of the states will be estimated simultaneously by two 
neighboring area estimators in the first stage where individual areas independently 
execute their state estimators based on their measurements.  
 
Coordination of Area Estimates: 
Once each area completes its own state estimation solution, a central coordinator will 
receive these solutions. These solutions as well as all boundary measurements will then 
be used by the central estimator in order to coordinate all area solutions and reach an 
integrated system solution. Note that, this estimator will also ensure that all bad data 
associated with the boundary measurements will be identified and corrected. The states, 
which are to be estimated in this stage are: 

T
TTb

S uxx ⎥⎦
⎤

⎢⎣
⎡=

Δ
,        (2.2) 

where: 

TTb
n

TbTbb xxxx ⎥⎦
⎤

⎢⎣
⎡=

Δ
,,, 21 L   

],,[ 32 nuuuu L
Δ
=  

iu  is the phase angle of the slack bus of the ith area with respect to the slack bus of 
area 1. Area 1 is arbitrarily chosen to be the reference area with 01 =u . 
 

So, a two level estimation scheme where in the first level each area estimator remains 
completely independent and their results are coordinated by a central processor in the 
second level, can now be implemented. 
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3. Implementation 

3.1 Input Data and Measurements 
Each area state estimator will receive and process locally acquired measurements that 
include: 
 

• Voltage magnitude at internal and boundary buses. 
• Power flows along internal lines and at the sending-end of tie-lines. 
• Power injections at internal and boundary buses. 
• If available, PMU measurements at internal or boundary buses. 

 
Note that individual area state estimators can not use measurements that are functions of 
states belonging to other areas. Hence, injections, voltage magnitude and line flows 
measured at the remote end of tie-lines will be disregarded by individual area state 
estimators. State estimation solutions will be obtained for each area using the local 
measurements. Estimated states from each area and its own boundary measurements will 
then be sent to the coordination center where the second stage estimation will be 
executed. The second level state estimator will be responsible for the estimation of the 

coordination vector 
T

TTb
S uxx ⎥⎦

⎤
⎢⎣
⎡= ,  and also identifying and eliminating any bad data 

in the boundary measurements. It will also receive a limited set of synchronized phasor 
measurements, which are expected to significantly enhance the reliability and accuracy of 
the estimated states. 

3.2 Individual Area State Estimation 
In this project, the commonly used Weighted Least Squares (WLS) estimation method is 
adopted for all estimators. Hence, the individual area state estimation problem for each 
area is formulated as follows: 

    ii
T

ii rRrJMinimize 1−=           (3.1) 

    iiii rxhztoSubject += )(          (3.2) 

where: 

iz is the vector of available measurements in area i having mi elements. They 
include not only all the internal measurements but also the injection and flow 
measurements incident at the boundary buses and the area tie-lines.  

ir is the residual of measurement iz . 

iR is the measurement error covariance matrix for area i.  
)( ii xh is the measurement function for area i measurements. 
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It is assumed that it is the responsibility of individual areas to make sure that there is 
enough redundancy in the area measurement set to allow bad data identification and 
elimination for all internal area measurements. This means that at the completion of the 
individual area state estimations, the internal state estimate for area each area intx̂  can be 
assumed to be unbiased. If this is not the case, a proper meter placement program can be 
employed to upgrade the measurement system for the deficient area [11]. 
 
The individual area SE makes use of any available boundary injections and tie-line flows. 
Hence, the estimated state vector is augmented by the external states associated with the 
neighboring boundary buses. On the other hand, if there are not sufficient or no such 
measurements incident at the boundary buses, then the associated states will simply be 
unobservable and therefore will be ignored. 

3.3 Calculation of System-wide State Estimation Solution 
The central coordinator will process the SE solutions from all areas along with the GPS 
based phasor measurements and raw measurements from area boundary buses in order to 
reach an unbiased estimate for the entire system state. This requires the solution of the 
following optimization problem: 

 
)]([)]([ 1

1

SSSS
T

SSS

SS
T

SS

xhzRxhz

rRrJMinimize

−−=

=
−

−

         (3.3) 

 SSSS rxhztoSubject += )(            (3.4) 

where: 
TTextTbT

ps
T

uS xxzzz ⎥⎦
⎤

⎢⎣
⎡= ˆ,ˆ,, , which represents all the available data and 

measurements to the coordinator.  
uz : Boundary measurement vector, which includes the tie-line flows and injections 

incident at all boundary buses.  
psz : GPS synchronized phasor measurements vector. 

Sr : the residual vector of measurement Sz . 
TTb

n
TbTbb xxxx ⎥⎦

⎤
⎢⎣
⎡= ˆ,,ˆ,ˆˆ 21 L : Boundary state variables estimated by individual 

area SEs.  
 
These are treated as pseudo-measurements by the coordinator SE. The covariance of 
these pseudo-measurements is obtained from the covariance matrix of the states ixR ,  for 
individual areas. This matrix is equal to the inverse of the gain matrix associated with that 
area’s WLS state estimator. 
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TText
n

TextTextext xxxx ⎥⎦
⎤

⎢⎣
⎡= ˆ,,ˆ,ˆˆ 21 L , similar to bx̂ , except defined for the external buses of 

each area.  
 
The measurement model will then be given as: 

SSSS exhz += )(  

⎥⎦
⎤

⎢⎣
⎡= TTbT

S uxx ,  is the coordination state vector whose dimension is Sn . 

Se  is the error vector of measurements, having a Normal distribution with zero 

mean and )( T
SSS eeER =  covariance. 

Sh  is the non-linear function of ix .  
 
It is noted that, each area will communicate its SE results for its boundary states extb xx ˆ,ˆ  
and its state covariance matrix ixR ,  to the coordinator. Furthermore, in general a 
boundary bus may have two pseudo measurements associated with its state, one provided 
by the solution of its own SE and another provided by the neighbor’s SE. These will have 
different variances provided by different area SEs. In addition, since processing of the 
boundary injections will require the topology information around those boundary nodes 
that should also be provided to the central coordinator. This is the only “raw” information 
that needs to be provided to the coordinator, in addition to the results of the individual 
area state estimation. This scheme is quite suitable since it meets the security 
requirements for each area without having them release details of their internal system 
topology.  
 
As expected, the effectiveness of the coordinator estimation strongly depends on the 
measurement redundancy and quality for this estimator. Synchronized phasor 
measurements can provide this redundancy very effectively. In both the individual area 
and the coordinator state estimation, the Largest Normalized Residual Test [12] will be 
carried out to identify the bad data. Finally, it should be noted that due to the absence of 
iterations between the individual area and coordinator estimators, this two-part algorithm 
would in general not yield the same results as a single system-wide integrated estimator. 
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4. Simulation Results 

4.1 Simulation Example of IEEE14 Bus System 
This system is arbitrarily divided by two areas. Area 1 has 5 buses (1,2,3,4,5) and area 2 
has 9 buses (6,7,8,9,10,11,12,13,14). Figure 4.1 shows the diagram and measurement 
placement of the integrated system. Figures 4.2 and 4.3 depict the segmented area 1 and 
area 2. Lastly, Figure 4.4 illustrates the buses that have to be estimated at the second 
level, and measurement placement for that. 
 

 
Figure 4.1 Diagram and Measurement Placement of Integrated System 

 

 
Figure 4.2 Diagram and Measurement Placement of Area 1 



 

8 

 
Figure 4.3 Diagram and Measurement Placement of Area 2 

 

 
Figure 4.4 Second Level Estimation with Boundary Buses 

 
Table 4.1 indicates the types and number of measurements and the error standard 
deviations for them. Gaussian errors are imposed to every measurement for the test from 
the exact values. Measurement data for the second level state estimation has boundary 
and external bus measurement variables, which are estimated from the first level 
estimator. The Gaussian standard deviations for the voltages and currents are small 
compared to the power injection and power flow measurement cases. 
 
The results of the estimation for the different levels are summarized in Table 4.2. The 
objective functions of each cases are quite below the chi-squares limits, and the largest 
normalized residuals are also far below the criteria ‘3.0’. The result of this example 
indicates that the estimation is carried out successfully by two level estimation method 
with PMUs while including current measurements data. 
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Table 4.1 Type, Number, and Error S.D. for Different Estimation Levels 

 Power 
inj. 

Power 
flow |V| Voltage 

Angle 
Real 

Current 
Reactive 
Current 

Boundary 
(|V|, d) 

External 
(|V|, d) 

Integrated 12 18 2 2 8 8   
First level 
(Area1) 4 8 1 1 4 4   

First level 
(Area2) 8 10 1 1 4 4   

Second 
level 6 2 2 2 8 8 10 10 

Gaussian 
error S.D. 0.01 0.008 0.004 0.0001 0.001 0.001 

Diag- 
( )),(1 iiGi

−  
Diag- 

( )),(1 iiGi
−

 

Table 4.2 Estimation Results of IEEE14 Bus System 
 Degree of 

Freedom  
Chi-squares 

Limit  
Objective 

Function J(x) Largest Nr  

Integrated  21  38.93  23.38  1.7791  
Area1  6  16.81  2.52  1.3218  
Area2  6  16.81  9.09  1.8095  

Second-level  24  42.98  33.25  2.1457  
 
Again, this method is tested for the bad data case, where there is a gross error in real 
power injection measurement at bus 6. The value of the Pinj(6), which was originally ‘-
0.016’, is replaced by ‘2’ to simulate this gross error. Then, the WLS estimation solution 
is obtained using the proposed multi-area state estimation method. Figure 4.5 shows the 
measurement configuration and the location of simulated bad measurement. 
 
Tables 4.3 to 4.4 are the chi-squares and the largest normalized residual test results of 
state estimation in area 2 at the first level estimation. 
 

Table 4.3 State Estimation Results of Area 2 with Bad Data 

Degree of Freedom  Chi-squares Limit  Objective Function J(x)  
6  16.81  4.03  

 

Table 4.4 Sorted Normalized Residuals of Area 2 Estimation 

Measurement Type Largest Normalized Residual ( Nr ) 
Real part of current (9,10) 1.8095 

Imaginary part of current (9,7) 1.8073 

Real part of current (9,14) 1.6774 
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Figure 4.5 Diagram of IEEE14 Bus System with Bad Data 

 
The objective function value ‘4.03’ is far below the chi-squares limit ’16.81’, and the 
largest normalized residual is ‘1.8095’ for the real current measurement (9,10). 
Therefore, the estimator does not suspect any bad measurement at the first (local) level 
estimation. The reason for this failure to detect bad data is that bad measurement belongs 
to a critical measurement in this example. However, at the coordination level, second 
level state estimator successfully detects and identifies the bad data as shown in Tables 
4.5~4.6. The objective function value ‘27965’ is larger than the chi-squares limit, and the 
largest normalized residual value is 146.43 (larger than the 3.0 cut-off) corresponding to 
the bad measurement Pinj(6). 
 

Table 4.5 State Estimation Results for the Second Level SE with Bad Data 

Degree of Freedom  Chi-squares Limit  Objective Function J(x)  
24  42.98  27965  

 

Table 4.6 Sorted Normalized Residuals for the Second Level SE 

Measurement Type  Largest Normalized Residual ( Nr )  
Real power injection (6)  146.43  
Real part of current (5,6)  117.54  

Reactive power injection (6)  94.3880  
 
The above simple example that uses IEEE14 bus test system illustrates that two-level 
state estimation can detect and identify bad data as long as the measurement is not 
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critical. The measurement may temporarily become critical during the individual state 
estimation phase in the first level estimation; however, it will be detected and identified 
during the second level estimation if it happens to carry bad data. 

4.2 Simulation Example of IEEE118 Bus System 

A much larger size power system is tested this time using the same method as applied to 
the IEEE14 bus case. This system is arbitrarily divided into nine areas with one PMU per 
area. Figure 4.6 shows the area designations and PMU locations. 
 
Tables 4.7 and 4.8 illustrate the number of different bus types, number of measurements, 
and error standard deviations for the IEEE118 bus system. 
 

Table 4.7 Number of Bus Types and PMUs for Different Estimation Levels 

 Area1 Area2 Area3 Area4 Area5 Area6 Area7 Area8 Area9

Total Buses 13 13 12 14 13 13 13 14 13 

Internal Buses 10 4 7 9 6 4 11 5 7 

Boundary Buses 3 9 5 5 7 9 2 9 6 

External Buses 4 10 6 7 6 13 4 8 6 

Slack Bus Number 3 18 35 27 76 47 103 93 55 
Voltage Meas. 

(PMU) 1 1 1 1 1 1 1 1 1 

Current Meas. 
(PMU) 3 2 2 4 2 3 4 2 3 
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Figure 4.6 Diagram and PMU Placement of IEEE118 Bus System 
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Table 4.8 Type, Number, and Error Standard Deviation for Different Levels 
 Power 

Inj.  
Power 
Flow  |V|  

Voltage 
Angle  

Real 
Current 

Reactive 
Current 

Boundary 
(|V|,Angle)  

External 
(|V|,Angle) 

Integ-
rated  110  274  9  .  .  .  .  .  

Area1  6  8  1  .  .  .  .  .  
Area2  18  30  1  .  .  .  .  .  
Area3  10  26  1  .  .  .  .  .  
Area4  10  32  1  .  .  .  .  .  
Area5  14  28  1  .  .  .  .  .  
Area6  18  42  1  .  .  .  .  .  
Area7  4  30  1  .  .  .  .  .  
Area8  18  30  1  .  .  .  .  .  
Area9  12  28  1  .  .  .  .  .  

Second-
level  110  48  9  9  25  25  110  128  

Gaussian 
(S.D)  0.01  0.008  0.004 0.00001 0.001  0.001  

Diag-  
( )),(1 mmGi

−  
Diag- 

( )),(1 mmGi
−  

 
The results of the WLS state estimation for the integrated and two level multi-area state 
estimation solutions are summarized in Table 4.9. The table includes both the chi-squares 
and largest normalized residual test results. All the values of the objective function are 
below the chi-squares limit and the largest normalized residual values are also below the 
chosen threshold of ‘3.0’. 
 

Table 4.9 State Estimation Results of IEEE118 Bus System 

 Integ-
rated Area1 Area2 Area3 Area4 Area5 Area6 Area7 Area8 Area9 Second-

level 

Degree of 
Freedom 368 14 24 16 18 24 8 16 32 26 348 

Chi-
Squares 
Limit 

404.04 29.14 42.98 32.00 34.81 42.98 20.09 32.00 53.49 45.64 412.30 

Objective 
Function 

J(x) 
113.69 6.62 6.66 4.94 9.77 6.18 12.59 3.73 11.09 10.98 324.68 

Largest 
Nr  

2.64 2.10 2.13 1.79 1.97 1.72 2.34 1.57 2.09 2.18 2.87 

 
Then, one of the measurements is intentionally corrupted by bad data. The value of the 
real power injection Pinj(44) is changed from ‘-0.154’ to ‘1’ for this purpose as shown in 
Fig.4.7. 
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Figure 4.7 Diagram of Area 3 and Area 6 with Bad Data 

 
Note that Pinj(44) will become a critical measurement for area 3 local estimator once the 
remote end measurements are ignored. Therefore, the first level estimation can not detect 
this bad data. Tables 4.10 and 4.11 show the results of this area 3 estimation. The two bad 
data tests find no evidence of bad data and declare the measurement set error free. 
 

Table 4.10 State Estimation Results of Area 3 with Bad Data 

Degree of Freedom Chi-square limit Objective function J(x) 

16 32.00 4.94 
 

Table 4.11 Sorted Normalized Residuals of Area 3 Estimation 

Measurement Type Largest normalized residual ( Nr ) 

Reactive Power Flow (39,40) 1.79 

Reactive Power Flow (37,40) 1.73 

Reactive Power Flow (37,49) 1.67 
 
However, the second level (coordinator) estimator detects and identifies the bad data as 
expected by this method. As shown in Table 4.12, the objective function value is larger 
than the chi-squares limit, and as evident from Table 4.13, largest normalized residual 
value correspond to the actual bad measurement Pinj(44) allowing its successful 
identification. 
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Table 4.12 State Estimation Results of the Second Level with Bad Data 

Degree of Freedom  Chi-squares Limit  Objective Function J(x)  
348  412.30  10586  

 

Table 4.13 Sorted Normalized Residuals of the Second Level Estimation 
Measurement Type  Largest normalized residual ( Nr )  

Pinj (44)  77.9204  

External angle (45)  69.364  

Boundary angle (45)  47.978  

 
The above examples are two of many that have been tested in this project. The proposed 
method is observed to work reliably in detecting and identifying bad data even when they 
appear at the area boundaries. 
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1. State Estimators and Phasor Measurement Units 

1.1 Background and Motivation 
 The electric power industry is undergoing multiple changes and restructuring towards 
deregulation. Some electric power utilities are increasing the loads on the transmission grid to 
generate more revenue. The increased power exchange has a concomitant requirement for situ-
ational awareness. This refers to the need for system operators to know the operating states of 
the system. 
 Most utilities have state estimators in the package of energy management systems. The 
main functions of state estimators are to represent steady state system voltage, currents, and 
power flows – utilizing mathematics to enhance the accuracy of measurements. State estimators 
may not accurately represent the system when incorrect measurements are used. There are sev-
eral topics in state estimation being studied to improve the accuracy of the state estimation in 
power systems. In this report, the author examines how the new technology of phasor measure-
ment units, a global positioning system (GPS) technology, can be used to enhance state estima-
tion in electric power systems. 
 A growing number of power system protective digital relays are being introduced to the 
market with the ability to be used as phasor measurement units in addition to their protective re-
laying function. As phasor measurement unit technology becomes widely available; the electric 
utilities want to use this technology to the best of their ability. Present communication methods 
from the energy management system to the substations may not provide enough bandwidth for 
phasor measurement units to perform fully. Utilities want to know the cost benefit prior to in-
vestment in upgrading substation communications. 
 This report discusses state estimation enhancements attributed to phasor measurement 
units and how to determine the best location and number for these units. 

1.2 State Estimation Literature Review 
 Schweppe was one of the first to formulate static state estimation for a power network 
based on the power flow model [1]. The idea is to estimate the electrical states of the power net-
work, mainly voltage magnitudes and phase angles. These states might not be directly observable 
based on physical relationships between the measurements and the desired unknown states.   
 Another advancement in the field of state estimation was the introduction of a weight ma-
trix to increase the accuracy of the results. Weighting is done to enhance the “input” of accurate 
measurements, and de-emphasize the less accurate measurements.  It can be shown that the 
maximum likelihood estimate utilizes weights that are based on the covariance of the measure-
ment devices [2]. The more accurate a measurement, the greater is the selected weight in the 
state estimator. Weighting is the practice of accounting for the confidence in a measurement. 
Over time, the confidence in a measurement may change. A solution to this problem is to auto 
tune of the weights of measurements. The suggested method of auto tuning the weights is to look 
at recent error variances of the measurements and use these to recalculate the weights of meas-
urements from a short history [3]. References [2, 4-10] further relate to ideal weighting of meas-
urements for power system state estimation. 
 Measurement errors are typically assumed to be statistically distributed with a zero mean 
[11]. Due to increase use in “sensorless” technologies such as A/D converters the zero mean as-
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sumption is not always true [11]. A suggested method of overcoming this problem is to combine 
measurement calibration [12-15] with state estimation. Calibration of the measurements can be 
done in parallel with state estimation by noting the error of measurement over several scans of 
the measurement. The calibration error will be a constant compared to measurement error which 
is typically normally distributed [15]. 
 The process of overcoming measurement noise is inherent in taking physical measure-
ments, but there are situations in which the data is grossly erroneous. The data that are erroneous 
must be identified and eliminated. One method for the detection of bad data is the examination of 
the measurements and if the measurements deviate from expected values by some preset thresh-
old the measurement can be assumed to be bad [16]. Another problem that causes state estima-
tors inaccuracies is the power system model itself. Generally the simple linear model Hx=z is 
used where the H is the measurement model (processing matrix), x is the state vector, and z is the 
measurements. If the process matrix is incorrect, the model does not represent what is physically 
happening in the system. The detection of both erroneous data or improper formation of the 
process matrix may be done by examining the residual of the equation Hx=z [2]. A further mod-
eling ‘error’ is a result of linearization.  Since the process matrix is truly a function of operating 
state, H=h(x). The linearization of the problem results in constant H. 
 References [4, 6, 10, 17] are textbooks relating to state estimation in power engineering; 
references [5, 8, 9, 18] are representative of solutions methods; and [16, 19] are case studies. 

1.3 The Pseudoinverse and Least-Squares Estimation 
 The commonly used model for a linear static system is 

  Hx=z (1.1) 

with H as the process matrix (m by s matrix), x is the state vector (dimension s), and z is the 
measurement vector (dimension m) is overdetermined when m is larger than s. References [4, 6, 
10, 17, 20] describe Equation (1.1). Equation (1.1) can be “solved” in the least-square sense by 
minimizing ||r||2, 

  r=Hx-z (1.2) 

where || ● ||2 refers to the 2-norm [17].  Properties of norms appear in [17] and Appendix A. It 
can be shown that || r ||2 is minimized when 

  zHxx +== ˆ .  (1.3) 

The notation x̂  is the “estimate” of vector x, H+ pseudoinverse of H. References [4, 6, 10, 17, 
20] describe the properties of the pseudoinverse. Equation (1.3) is known as an unbiased least 
squares estimator.  
 Other methods of determining the state variables are under study. One such method is 
weighted least absolute value. Unlike weighted least squares there is no explicit formula for the 
solution to linear weighted least absolute value.  The weighted least absolute value is found by 
linear programming [21]. Another method suggested is to find the maximum agreement with 
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measurements. The state estimate agrees with the majority of the measurements taken in the sys-
tem [7].  
 The least squares method of state estimation requires the system to be observable. Ob-
servability can be defined as: given a set of measurements and their locations (i.e., given z and 
H), then a unique estimate of the system state vector x, i.e. x̂ , can be found.  A basis of ob-
servability analysis is graph theory. To determine which states are unobservable, set the meas-
urement vector, z, to zero,  

  0ˆ =xH . 

In the context of electric power systems, this yields a non-zero branch flow, 

  0ˆ ≠= xAPb . 

The A matrix, i.e. the branch-bus incidence matrix, is used to determine Pb, the vector of branch 
flows. Because the measurement set z is set to zero, there should be no power flowing through 
the branches. A non-zero branch flow indicates an unobservable state of x̂  and those branches 
carrying nonzero power flows, will be referred to as unobservable branches [10]. The common 
technique in correcting the issue of unobservable areas is to provide an estimate of what the read-
ings are in the unobservable areas to create an entire system model [22]. Other references dis-
cussing observability are [23-26]. 
 Numerous other topics are discussed in the literature relating to state estimation in power 
systems including robustness [7, 27, 28], multiphase state estimation [29], and distributed com-
puting [30].  

1.4 Phasor Measurement Units Literature Review 
 Phasor measurement units (PMUs) are instruments that take measurements of voltages 
and currents and time-stamp these measurements with high precision. PMUs are equipped with 
Global Positioning Systems (GPS) receivers. The GPS receivers allow for the synchronization of 
the several readings taken at distant points [31]. To accomplish synchronization of measurements 
taken at distant points, several measurements are taken, and time stamped; then interpolation is 
used to obtain estimates of measurements at a given time within the time horizon of the meas-
urements. PMUs were developed from the invention of the symmetrical component distance re-
lay (SCDR). The SCDR development outcome was a recursive algorithm for calculating sym-
metrical components of voltage and current [32]. Synchronization is made possible with the ad-
vent of the GPS satellite system [33]. The GPS system is a system of 36 satellites (of which 24 
are used at one time) to produce time signals at the earth’s surface. GPS receivers can resolve 
these signals into (x, y, z, t) coordinates. The t coordinate is time. This is accomplished by solv-
ing the distance=(rate)(time) in three dimensions using satellite signals. The PMU records the 
sequence currents and voltages and time stamps the reading with time obtained by the GPS re-
ceiver. It is possible to achieve accuracy of synchronization of 1 microsecond or 0.021° for 60 
hertz signal. This is well in the suitable range of measuring power frequency voltages and cur-
rents [32]. Based upon the research done at Virginia Tech, the Macrodyne Company was able to 
begin production of PMU devices, which lead to the IEEE Standard 1344 “Snychrophasor” 
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which defines the output data format of a PMU [32].  Figure 1.1 is a pictorial of PMU measure-
ment system. 
 

PMU PMU

PMU PMU

Control 
Center

 

Figure 1.1 Conceptual diagram of a synchronized phasor measuring system 
redrawn from [34] 
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 The calculation of the phasor measurement can be done using discrete Fourier trans-
forms. A sinusoidal quantity representing voltage 

  )cos()( δω += tVtv m    

has a phasor representation  
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N is the number of samples in one period of the nominal power system frequency. The sampling 
angle θ corresponds to the sampling interval τ  [35]. 
 PMUs measure voltage and current with high accuracy at a rate of 2.88 kHz. It can calcu-
late watts, vars, frequency, and phase angle 12 times a per 60 hertz cycle. The actually sampling 
rate used to achieve this output is 1.4 MHz [36]. Some examples of uses of PMUs are fault re-
cording, disturbance recording, and transmission and generation modeling. Transmission and 
generation modeling includes state estimation [36]. 
 PMUs are able to measure what was once immeasurable: phase difference at different 
substations. When completing a state estimation of a power system, one of the states to be esti-
mated is the voltage phase angle at each bus. With PMUs the utilities are able to directly measure 
voltage angle as compared to the swing bus. 
 How PMUs could be integrated into state estimation has been discussed in the literature 
[15, 37-42]. There is a school of thought that the measurements from the PMU are far superior of 
SCADA data used in traditional state estimation and should be collected and used separate from 
this data [43]. Others admit there is difference in the information and it is viable to use PMU 
measurements in with SCADA data [44]. Hydro-Quebec believes that the PMUs are accurate 
enough to not need correlation between PMU measurements. Their algorithm is to place the 
PMUs based on the busses which minimize the correlation between measurements [45]. An dra-
matic improvement in the state estimate has been seen by using a 3-phase model and the use of 
GPS synchronized measurements [46]. 
 With increased need for area multi-area of state estimation, there has been noted the pos-
sibility of the increased error in the state estimate as the size of the systems grows enormous 
[11]. PMUs are being investigated as a solution to this problem. The electric utilities in the re-
gional transmission organization (RTO) would still do their state estimation. The RTO receives 
the results from the various state estimates of the areas under its control and PMU measurements 
from boundaries between electric utilities. The individual state estimators do not interact or ex-
change data with other state estimators allowing for each estimator to have its own unique algo-
rithm with out affecting the performance of other area estimators [41].  
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 The Eastern Interconnect Phasor Project (EIPP) the project is divided into two stages. 
The near term state goal is to use the expertise and equipment developed with sponsorship from 
the U.S. Department of Energy to deliver immediate value to project participants in the eastern 
interconnection. Most of the existing expertise involves off-line analysis and is supportive of 
planning activities. The long-term goal is to add value to the inter-regional information system 
and measurement system using PMUs [47].  
 Figure 1.2 is a pictorial that conceptualized the use of PMUs in state estimation meas-
urements for increased observability. 
 

 

Figure 1.2 Pictorial expanded observability using PMU measurements 
 

1.5 The IEEE Standard for Synchrophasors for Power Systems 
 The IEEE has recognized the need for standards for PMUs.  The first standard for PMUs, 
IEEE 1344 [48], was written in 1995. The drafting of a standard for PMUs is, perhaps, documen-
tation that PMUs are expected to occupy a significant role in power systems instrumentation. A 
working group was created in January 2001 to create a new standard for PMUs, IEEE C37.118, 
that has become a standard [49]. The updated standard provides clarification for phasor and syn-
chronized phasor definitions. The standard defines synchronized phasor measurements in substa-
tions so that the measurement equipment can be readily interfaced with associated systems. Ta-
ble 1.1 lists the major contents of the updated standard. 
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Table 1.1 Main contents of [49] 

Body of Standard    Appendices 
• Synchrophasor measurement 

o Definition of phasor and syn-
chrophasor  

o Measurement timetag  
o System time synchronization 

• Synchrophasor measurement require-
ments and compliance verification  

o Synchrophasor estimation 
o Accuracy limits 
o Compliance verification  

• Message format  
o Message application 
o Message framework 
o Data frame 
o Configuration frame 
o Header frame 
o Command frame 

• Cyclic redundancy check 
codes 

• Time tagging and transient 
response 

• Message examples 
• Sources of synchronization 
• Time and synchronization 

communication 
• Benchmark tests 
• TVE evaluation and PMU 

testing 
• Synchrophasor message 

mapping into communica-
tions 

 

  
 To allow for integration of PMUs with other equipment, the standard provides common 
data format for exchanging information with PMUs.  The data for time measurement shall con-
sist of second-of-century (SOC) counts, fraction of second count, and a time status value.  The 
SOC count is the number of seconds since the calendar time from midnight January 1, 1970.  
The accuracy of the time stamp required by this standard is 1 microsecond.  The maximum phase 
time error allowable is 26 microseconds.  Table 1.2 shows all the limitations imposed on the 
PMU. 
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Table 1.2 Influence quantities and allowable error limits for compliance levels 0-1  
taken directly from [49] 

Influence  
quantity 

Reference 
condition 

Range of influence quantity change with respect to 
reference and maximum allowable TVE in percent 
(%) for each compliance level 

  Level 0 Level 1 
  Range TVE (%) Range TVE (%) 

Signal frequency fnominal ± 0.5 Hz 1 ± 5 Hz 1 
Signal magnitude 100 % 

rated 
80 – 120% 

rated 
1 10 – 120% 

rated 
1 

Phase angle 0 radian ± π radians 1 ± π radians 1 
Harmonic distor-
tion 

< 0.2 % 
THD 

1% any har-
monic up to 

50th 

1 10% any 
harmonic up 

to 50th 

1 

Our band of in-
terfering signal, 
at frequency fi, 
where |fi – 
f0|>fs/2,  
fs= phasor report-
ing rate, 
f0=fnominal 

< 0.2 of 
input sig-
nal magni-
tude 

1% of input 
signal mag-

nitude 

1 10% of in-
put signal 
magnitude 

1 

 

1.6 The Migration from Wide Area Measurements to Wide Area Control 
 Wide area measurement systems (WAMS) are instrumentation infrastructures that span a 
wide geographic area, typically several control areas, and potentially several operating compa-
nies. Under WAMS, the time required to transmit the sensory information (latency) back to the 
central control center is significant compared to the dynamics of the measurement. 
 Because of the latency issue under WAMS, PMUs offer a technology time stamp meas-
urements. PMUs allow several different state estimations to be integrated into a complete set of 
state estimates of the area [50]. In the deregulated market, the system operational conditions may 
change quickly and dynamic power flow patterns appear to the system operator [51]. Reference 
[52] discusses the ability to look at system dynamics using WAMS in the case of the North East 
blackout of August 14, 2003. A conclusion is that WAMS offer better characterization than digi-
tal fault recorders.   
 Figure 1.3 is intended to depict the roles of measurements versus control. With WAMS 
becoming increasingly used, researchers have begun examining the concept of wide area control 
systems (WACS). Some potential elements of WACS are depicted in Figure 1.3. Such studies 
include the use of WAMS to control power system stabilizers [53, 54]. Other system stability 
controls are being researched also as seen in [35, 51, 55]. 
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Figure 1.3 Pictorial of the transition of WAMS to WACS 
 

1.7  Placement of Phasor Measurements 
 Power engineers have been looking at how to use PMUs to monitor and characterize the 
system. The PMUs have been implemented as a source of information to detect faults on trans-
mission lines [33]. The implementation of PMUs to make the system more observable; starts 
with a spanning tree and looks for areas of the system which are unobservable. The next step is 
to impose certain criteria on the search of the proper placement for the PMUs. Three methods 
that have been examined are the modified simulated annealing method, direct combination, and 
the tabu search algorithm. All three were examined on tests on the IEEE 14, 30, and 57 bus sys-
tems and the results show that the proposed methods can find the optimal solution in an efficient 
manner [56]. Another method for determining the optimal placement of the PMU is to do a ge-
netic algorithm search [57]. The authors of [58] suggest that a genetic search is the best because 
the two solution criteria may be in opposition to each other. In this case, criterion one is to 
maximize the redundancy and observable area of system. Criterion two is to minimize cost of the 
installation [58]. Integer programming can be used to find the optimal placement of PMUs for 
making the system observable [59]. Another paper argues there should be more criteria added to 
the optimal placement of PMUs. These criteria include the examination of the placement of the 
devices to best observe the system stability [43]. 
 Another index and general philosophy being used to find the optimal location of PMUs 
relates to the use of the condition number of the measurement matrix [60]. An algorithm for find-
ing a measurement matrix with a small condition number was suggested by [60]. The algorithm 
creates a measurement matrix of all possible measurements. Subsequently each measurement is 
removed individually and the condition number of the measurement matrix is computed. The 
measurement removed this iteration is the measurement associated with the smallest condition 
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number. This process is continued until the system is critically determined [60]. A later sugges-
tion was to use the minimization of the condition number for harmonic state estimation [61]. 
 Measurement placement problems are not unique to PMUs. Another technology for 
placement algorithms relates to remote terminal units. One search method used for placement of 
remote terminal units is the heuristic search. Step one of a heuristic search is to create a meas-
urement configuration that minimizes the number of measurements needed for the system to be 
observable. Then the configuration is optimized by minimizing the number of remote terminal 
units used [62]. Another placement algorithm for remote terminal units suggests that the system 
should be observable when 1 or 2 measurements are lost including remote terminal measure-
ments [63]. 

1.8  Format of This Report 
 Chapter 1 is an introduction to state estimation and phasor measurement including litera-
ture review of recent advances in these fields of study. Chapter 2 is theoretical basis of sensory 
placement for state estimation. Chapter 3 is case studies implementing theory presented in Chap-
ter 2 about condition indicators, and Chapter 4 is contains a listing of four main areas of future 
work.   
 
 Appendices are used to supply supportive information: 
  Appendix A:  Details of the examples used in this report  
  Appendix B:  Properties of norms 
  Appendix C:  Code used in the research of this report. 
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2. The Foundations of State Estimation Sensory Placement 

2.1 Phasor Measurement Units for Power System State Estimation 
 The increasing availability of PMU devices has caused increased interest in using PMUs 
in state estimation. Not all PMUs installed can be used in state estimation because of system 
limitations, such as the bandwidth of the SCADA system measurements from remote substations 
and format and protocol inconsistencies. Further, company A may wish to place additional in-
strumentation in company B’s system, and this issue may be problematic. When a power com-
pany is examining how to upgrade the system to allow for PMUs to be used for state estimation, 
one question that is asked is how incorporating this measurement into the state estimation affects 
the accuracy of the estimates. The answer relies on where the new PMU measurements are in the 
system. This report examines methods for determining the placement of PMUs for increasing the 
accuracy of the estimates. 

2.2 The Method of Least Squares 
 Present state estimation techniques rely on the least squares approach to finding the best 
estimation of states. The method of least squares uses the linear equation, 

  Hxz =  (2.1) 

H is the process matrix dimensioned (m x s), x is the state vector dimensioned (s), and z is the 
measurement vector dimensioned (m). Equation 2.1 is the linearized form. In state estimation it 
assumed that the system is over determined, meaning there are more measurements than states. 
However, rarely are the measurements perfect, and therefore z is actually a perfect measurement 
plus ‘noise.’ The problem becomes how to find the best fit between measurements z and states x. 
In the least squares approach idea is minimize the difference L2

 norm of the residual,  

  xHzr ˆ−=  (2.2) 

  ( ) ( )zHxzHxr t −−=
2

2
. (2.3) 

To minimize Equation 2.3, take the derivative, which results in Equation 2.4.  Then simple alge-
bra is used to separate the best estimate of x, namely x̂ ,  

  zHxHH
x
r tt

xx

−==
∂

∂

=

ˆ0||

ˆ

2
2  (2.4) 

  zHxHH tt =ˆ   

  ( ) zHHHx tt 1ˆ −
= . (2.5) 

The formulation in (2.5) is valid only when HtH is nonsingular. The singular case is rarely en-
countered but can be handled by an alternative formatting. There are two notable terms in Equa-
tion (2.5): the (HtH)-1Ht term also known as the pseudoinverse and the gain matrix (G), 
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  HHG t=  (2.6) 

  ( ) tt HHHH 1−+ = . (2.7) 

The notation H+ refers to the pseudoinverse [4, 6, 10, 17]. 
 A drawback of the least squares approximation is that the all the measurements are 
treated with the same weight. This procedure is unbiased. This implies that all the measuring 
tools are measuring with the same accuracy and precision. In power engineering, this is rarely 
the case. A term is added to the least squares to provide emphasis for accurate measurements. 
This is accomplished by weighting the residual r using a weighting matrix W. The matrix W is m 
by m, and the weighted residual is ( )ZHxW − . It can be shown that if the measurement noise 
is gaussian with zero mean, the W matrix is the inverse of the covariance matrix of the measure-
ments in order to obtain the maximum likelihood solution [6], 
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  ( )zHxWr −=  (2.9) 

  ( )[ ] ( )[ ]zHxWzHxWr
t

−−=2
2|||| . (2.10) 

Equation (2.9) is the weighted residual equation. Moving the W  inside the parenthesis, a for-
mulation similar to the unbiased case is found. To find x̂  that minimizes ||r||22 take the deriva-
tive,  

  ( ) ( )zWHxWzWHxW||r||
t2

2 −−=  

  
zWz

HWH

=′

=′  

  ( ) ( )zxHzxHr t ′−′′−′=2
2||||  (2.11) 

  zHxHH
x
r tt

xx

′′−′′==
∂

∂

=

ˆ0||

ˆ

2
2  

  ( ) zHHHx t ′′′′=
−1ˆ . (2.12) 
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 There is a caution in the use of the symbolism W . Because there are several different 
matrices B that satisfy 

  WBBt =  

(i.e., there are several ‘square roots’ of the matrix W), the notation W  is ambiguous. Let the 
term “symmetric positive definite matrix” refer to a symmetric matrix with all positive real ei-
genvalues. For a symmetric positive definite W and since W is a covariance matrix, it is the form 
( )tzzE , and all covariance matrices are positive definite [64], there are exists a unique symmet-

ric positive definite B such that WBBt = [20]. Hence the notation W  will refer to that unique 
symmetric positive definite B such that WBBt = .  

2.3 State Estimation Accuracy 
 The weighted least squares method of state estimation is only as accurate as the meas-
urements and models used. The model in this case is the set of equations that describe the sys-
tem.. If there is no error in the measurements, then the measurements lie within a surface created 
by the equations of the model. When there is error in the measurement then the weighted least 
squares solution minimizes the distance from the point of measurement to the surface as seen in 
Figure 2.1.  In essence, the depiction in Figure 2.1 illustrates that the method of least squares es-
timation minimizes the impact of error in measurements. 
 
 

 

 

 

 
 
 
 

Figure 2.1 Projection of z onto H 
 
 The constraint given by [65] of the Lp norm of the residual is  

  ( )
ppp

eHKr ≤  (2.13) 

where are 
p

r is the Lp norm of the residual and e is the vector of error in the measurements and 

Kp(H) is the Lp condition number of the process matrix, H. The condition number of a square 
nonsingular matrix A is (2.14) and Table 2.1 is list of properties of matrix norms, 

r = Residual Vector z = measurement vector 

H = process matrix 
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  ( )
ppp AAAK 1−= . (2.14) 

 

Table 2.1 Matrix norm properties [65] 

Eigenvalues of Matrix A A
A

≤≤
−

λ
1

1  

Lp Norm of Matrix A 
p

p

x

Ax
MaxA =  

The task of computing a 
matrix norm is difficult if 
p>1.  Since, it is a nonlinear 
optimization problem with 
constraints. 

Maximum Absolute Column Sum ∑
=

=
N

i
jij aA

1
,1

max  

Spectral Norm ( )( )AAA Hλmax
2
=  

Maximum Absolute Row Sum ∑
=

∞
=

N

j
jii aA

1
,max  

Note 
∞

≤ AAA
1

2

2
 

 
The matrix HtH is also called the gain matrix G and it is of dimension s by s and G is 

symmetric. The calculation shown in (2.5) is closely related to the condition number of matrix G 
(the condition number KG of G, using the 2-norm, is defined as the scalar ||G||2||G-1||2 where ||.||2 
denotes the 2-norm [20]). As shown in [66], the sensitivity of the estimate of x to noise is im-
proved (i.e., lessened) when KG is small, and the sensitivity is worsened (increased) when KG is 
large. Typical threshold values of KG in state estimation applications, beyond which designers of 
the state estimator become concerned, are about 105. 

The eigenvalues of G are also equal to the singular values of G in this application when 
the G matrix is nonsingular; and the ratio of the largest to smallest eigenvalue of G is the condi-
tion number of G, 

 KG = 
11 σ

σ
λ
λ ss =  (2.15) 

where σλ,  denote the eigenvalues and singular values of G respectively, and subscript s refers 
to the largest eigenvalue and singular value, and subscript 1 refers to the smallest values. 
Throughout this paper, the condition number based on the 2-norm shall be used because of its 
convenience and connection with the power engineering state estimation problem solved by 
minimum least squares; however, it is possible to use other norms (e.g., 1-norm and infinite 
norm). 
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2.4 The Singular Distance and Scaling Factor 
The foregoing remarks focus on conventional thoughts in contemporary state estimation 

technology. As an example, the state estimation performance connection with the condition 
number KG has been discussed in the literature [20, 40, 66, 67]. At this juncture, the use of indi-
cators such as KG is expanded in the form of several innovative measures of the ‘condition’ of 
the matrix G.   The objective is to utilize all the information from the eigenspectrum of G to ob-
tain an assessment of the sensitivity of the solution of the state estimation to errors in measure-
ments.   

It is clear that the gain matrix G has a substantial impact on the state estimator response 
to measurements and measurement noise and error. Inspection of (2.5) indicates that G = HtH 
should be as ‘far from’ singular as possible. With this as motivation, define the ‘distance’ from G 
to the nearest singular matrix S as d, 

 d = 
S

min ||HtH – S||2 

where the minimum is taken over all possible singular matrices S. Then d is the ‘distance’ from 
the gain matrix G to the nearest singular matrix, and this is termed here as the singular distance. 
It can be shown that the singular distance d is equal to the smallest singular value 1σ . Therefore  

 1σ
λσ

===
G

s

G

s

KK
d  (2.16) 

Again, recall that the eigenvalues and singular values are all positive and real, and ordered as 
sλλλ ≤≤≤ ...21 , ....21 sσσσ ≤≤≤  At the other end of the singular spectrum or eigenspectrum 

are the values ss λσ , . These quantities may be interpreted as scaling factors which need to be 

reduced in order to decrease the generalized concept of gain from z to 
^
x . For this reason, ss λσ ,  

are termed the scaling factor F,  

 F = .ss λσ =  

Then, 

F = dKG . 

It is desired to make the singular distance as large as possible to improve the state estimator re-
sponse. Similarly, it is desired to make the scaling factor as small as possible. 

 The condition indicators F, KG, and d are proposed as tools to assess the number and 
placement of PMUs in a power system state estimation. 
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2.5 Augmenting State Estimation Software with PMU Hardware 
 In this section, a review is given relating to the synchrophasor device or PMU as it relates 
to use in state estimation.  A PMU is a “sensorless” device meaning it uses an A/D converter to 
create the measurement of time, active power, vars, frequency, current, and voltage. The PMU 
works by taking several samples and then approximating the best curve to fit the sample set. 
PMU take as many as 12 measurements per 60 Hz cycle. The PMU reads in data at the rate of 
1.4 MHz [36]. Synchronous time signal received from GPS is accurate with in 1 microsecond or 
0.0012° per 60 Hz cycle [32]. The accuracy obtained of the measurements of PMU devices is at 
least 2 orders of magnitude greater than the accuracy of measurements obtained from SCADA 
devices. 
 The process of finding the phase angle using a PMU is a set of state estimations. The de-
termination of time using GPS is computed from the synchronized time signals being sent from 
the satellites. To determine time. there must be at least four satellite signals being received be-
cause three other states (x,y,z) are also being identified simultaneously. The GPS unit receives 
time signals from the satellites and using distance equations shown in Figure 2.2 it does an itera-
tive process to determine (x,y,z,t). 
 For PMUs, measurements of voltages and currents that are time stamped result in 2,880 
measurements per second, 48 measurements per cycle, meaning measurements are estimated us-
ing only data samples from only part of the cycle as seen in Figure 2.3. The distance between 
samples is exaggerated for purpose of clarity. 
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Figure 2.2 A representation of GPS system of a PMU 
 
 The measurements of voltage phase angles by PMUs are considered to be much more ac-
curate than those made by other measurements in the system. Presently there are no other meth-
ods of directly measuring phase angle. Another advantage of PMU measurements over SCADA 
measurements is that PMU measurements have a time stamp of when the measurement was 
taken. This allows for synchronizing of PMU measurements that may be reported to EMS at dif-
ferent times. 
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Figure 2.3 Illustrative noisy voltage signal and PMU samples 

 

2.6 Location of PMUs 
 PMU placement can be done using several different criteria including security concerns, 
observabiity, and improvement in state estimation. In this report the criterion used to determine 
the location of PMUs will be improvements in the state estimation. The improvement in state 
estimation can be further broken down into two parts: increase in accuracy; and robustness of the 
state estimator.  
 The residual vector is typically used to determine the fit of the measurements to the 
model in power system state estimation. The residual is used because when state estimation is 
being conducted for an actual system, the ‘true’ values of the states are not known. The residual 
vector as discussed earlier is xHzr ˆ−= . It is convenient to use the 2-norm of the r as an index 
of the agreement of the measurement equations, 

  2
2

rrr t= . 

At the solution, 

  xHzr ˆ−= . 

 In this study, it is possible to examine the deviation of x̂  from the “exact” value of x. 
Normally this comparison is not possible but because of the use of a test bed with a known solu-
tion, it is possible to use normalized error, NE, to assess the accuracy of x̂ , 

  
2

2
ˆ

exact

exact

x
xx

NE
−

= . (2.17) 
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The normalized error has benefits for comparing direct substitution to weighted least squares. 
The normalization permits comparison of residual norms for residual vectors of different dimen-
sions.  Table 2.2 shows the various measurements of error. 
 

Table 2.2 List of various measurements of error in the state vector 

Normalized Error 
2

2
ˆ

exact

exact

x
xx

NE
−

=  

Norm of the Residual 22
x̂Hzr −=  

Weighted Residual Norm 
22

x̂HWzWrw −=  

RMS of Residual 2
ˆ1 xHz

m
Rrms −=  

 
 As discussed in Section 2.3 the minimization of the condition number of the G matrix can 
provide a location for PMU placement. Having an G with a smaller condition number will result 
in state estimator that will provide more accurate results when noise is present in the measure-
ment vector. Examination of a radial system indicates simple expressions for the gain matrix G 
and also for various condition indicators of G.   The work done in [68] resulted a determination 
of the condition number for a radial system with only power flow measurements and between all 
the busses are the same. The condition number can then be computed as 

  ( ) ( )121 += nnHK . (2.18) 

where n is the number of buses in the system, thus as the number of buses in the system increases 
so does the condition number. The reference [68] also presents a method for finding the condi-
tion number of radial system with only power injection measurements. 
 Another paper examined what would happen to condition number as power measure-
ments are replaced by PMU measurements in the radial case. The results of [66] were that with 
proper weighting of the measurements the condition number could be determined as function of 
number of PMUs and number of buses. Let μ be the number of PMU buses and n be the number 
system of buses. If 

  
vp RR

14
<  

and  

  
( )( )

2
1+−−

<
μμ nnR

R p
v , 

then the condition number is 
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( )

v

p

R
nnR

HK
2

1)(
)(1

+−−
=

μμ
. (2.19) 

Note that the foregoing focused on the radial configuration. Figure 2.4 is a graphic that 
depicts the “spectrum” of the degree of networking of a system. The fully networked case (i.e., 
all the buses connected to all other buses) is shown to the right of Figure 2.4 and fully radial sys-
tems are to the far left of Figure 2.4. “Real” networks lie in between these extremes. 

 
Actual power system

Spectrum of Networking

Fully Radial Fully Networked

 
Figure 2.4 “Spectrum” of the networking extremes of electric power systems 

 
 It can be shown that a similar equation to (2.18) is valid for the fully networked system. 
Equation 2.20 is the condition number of the fully networked system as it relates to the number 
of buses in the system, 

  ( ) 321 −= nHK . (2.20) 

Note that (2.20) is linear compared to the quadratic form in (2.18) and that the fully networked 
system condition number is always smaller than the radial system of the same size. The condition 
number of a “real” system will be in between values found using (2.18) and (2.20). 
 

2.7 The Sensitivity of Condition Indicators to Added State Measurements 

Added measurements to an existing system which already contains m measurements 
causes the process matrix H to augment with added rows. State estimator design is often consid-
ered for an existing system with a previously designed set of measurements. Consider the case of 
μ added measurements to a system with m measurements already in place. Further, let the added 
measurements be of states (i.e., entries of the state vector x). The addition of added state meas-
urements is pertinent due to the interest in the utilization of phasor measurement units (PMUs) or 
synchrophasor measurements [35, 69]. Then H becomes a μ+m  by s matrix, but the dimension 
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of G remains s by s. Consider further the case that the added measurements are direct measure-
ments of μ states. Then the added rows of H consist of all zero entries except in μ  columns 
which may be collectively called columns k where the nonzero entries are μkkk hhh ΔΔΔ ,...,, 21 . 
The gain matrix G experiences the addition of 22

2
2

1 )(,...,)(,)( μkkk hhh ΔΔ+Δ+ in the {k1,k1}, 
{k2,k2}, … , {kμ,kμ} diagonal positions. Thus the condition indicators of G will change due to the 
added measurements. The change in eigenstructure of a matrix due to the change of elements of 
that matrix is well known. For example, the sensitivity of the eigenvalue jλ  of G to a single di-
agonal entry Gi, i is given by [67], 

 2
,

,

)( ji
ii

j V
G

=
∂

∂λ  (2.21) 

where V is the s by s matrix of eigenvectors of G arranged column-by-column, and the eigenvec-
tors are selected as unit length. The matrix V is called the modal matrix of G. The sensitivity of 

jλ to several changes of entries on the diagonal of G, namely ,...)(,)( 2
2

2
1 kk hh Δ+Δ+  in the posi-

tions {k1,k1}, {k2,k2}, … is found using (2.17) and superimposing (adding) the several sensitivi-
ties corresponding to i = k1, k2, …. Because the condition indicators are intimately related to the 
eigenvalues of G, it is possible to ‘design’ (i.e., locate, and assign measurement weights) the 
added state measurement entries with a view of improving the several condition indicators. 

For purposes of discussion, the condition analysis of added state measurements is now 
confined to the addition of one measurement at state k, i.e., μ =1. The generalization to the case 
of many added state measurements is discussed below. If the added measurement of state k re-
sults in khΔ  in the H matrix, and 2)( khΔ is sufficiently small, (2.21) may be used to estimate the 
condition indicators using 

 
ii

ii

j
j G

G ,
,

Δ
∂
∂

≈Δ
λ

λ . 

The results are 

 22
1 )( kk hVd Δ=Δ  (2.22) 
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2
1

2

)(
)( k

kk

kGks
G h

hV
VkVK Δ
Δ+

−
=Δ
λ

 (2.23) 

 .)( 22
kks hVf Δ=Δ  (2.24) 

Note that in (2.22 – 2.24), the difference condition indicator terms are given by, for ex-
ample, .oldnew ddd −=Δ  For the case that 2)( khΔ  is small, the following approximation may be 
used in place of (2.23), 
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  2

1

2
1

2

)( k
kGks

G hVKVK Δ
−

=Δ
λ

. (2.25) 

2.8 Summary of Proposed Innovative Concepts 
The in depth study and review of condition analysis for state estimation revealed a corre-

lation between decreasing the condition number of the gain matrix and increasing the accuracy of 
state estimates. Some other innovative concepts presented in Chapter 2 include: 

 
• Singular distance – calculating the distance between matrix A and the closest singular matrix. 
• Scaling factor – viewing the largest singular value of matrix A as a condition indicator. 
• Measurement placement using eigenvectors – the use of eigenvector of smallest eigenvalue 

to find placement of measurements.  
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3. Illustrative Applications of Condtion Indices Based Approaches to State 
Estimatior Design 

3.1 The Spectrum of Condition Indicators in State Estimator Applications 
As a quick illustration of the usual order of magnitude of some singular distances, scaling 

factors and condition numbers in this power engineering application, see Table 3.1. For conven-
ience, the collective reference to KG, d, and f shall be as to condition indicators. The study of the 
condition indicators will be termed condition analysis. 

 
Table 3.1 Condition indicators of some illustrative power systems∗ 

 Radial system of N buses Fully networked system of N bus-
ses (all buses connected to all 
other buses) 

Impedances of lines All unity All unity 
Number of buses N N 
Number of lines N-1 )1(

2
−NN  

Number of line P 
measurements 

N-1 )1(
2

−NN  

Number of line Q 
measurements 

N-1 )1(
2

−NN  

Number of bus |V| 
measurements 

N N 

Number of injection 
measurements 

0 0 

Number of measure-
ments, m 

3N-2 N 2 

Number of states, s 2N-1 2N-1 
KG 2N 2 N+1 
d 2.5/N 2 1 Condition in-

dicators F 5 N+1 
 

3.2 Two Test Beds for Condition Analysis 
 The two previous examples are of the extremes of the “spectrum” of networking, engi-
neering intuition indicates that the IEEE 57 test bed [56] lies somewhere in between. Figure 3.1 

                                                 
∗ 2-norms are used for the condition indicators. Representative results are shown for the cases 
indicated. All bus voltages measured, all line P,Q measured; unbiased estimates, at the first itera-
tion. Values shown are for large N. 
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is an oneline diagram of the IEEE 57 test bed system. The IEEE 57 bus test bed (System 1) has 
30 buses in which there are 2 lines connected to the bus (i.e. similar to a radial system) and 1 bus 
that has one line connected to the bus. System 1 has 26 buses in which there are 3 or more lines 
connected and there are 80 lines total in the system. Table 3.2 shows these bus connection data 
comprising the two systems being studied. Note that in Table 3.2 the notation δ(a) is the discrete 
dirac delta function which is zero everywhere except when a=1 where δ(a)=1.  
 

Table 3.2 Topology characteristics of Systems 1 and 2 

System Nb Nl 

Number of 
Buses at 

which only 
1 line inci-

dent 

Number of 
Buses at 

which 2 lines 
incident 

Number of buses 
at which ≥3 
lines incident 

Radial N N-1 2 N-2 0 
IEEE 57 
(System 1) 57 80 1 30 26 

Representative 
power system in 
the southwest US 
(System 2) 

180 254 12 103 65 

Fully  
Networked N N(N-1)/2 2δ(N-2) 3δ(N-3) N 

 
 The H matrix for the IEEE 57 bus test bed has varying admittance values this will influ-
ence the condition number of the H matrix. The measurement set for the H matrix is all the real 
and reactive power flows and real and reactive power injections at busses 1, 2, 3, 6, 7,  9, 12, 25, 
53, 18 for Example 1. The reactance of the lines in the system range from 0.0152 p.u. to 1.355 
p.u. or two orders magnitude between the smallest line parameters to the largest line parameters. 
 The other system to be studied in this report is representative of the power system in the 
southwest US (System 2). System 2 contains 180 busses, and 254 lines. The system has imped-
ances from 1x10-5 to 0.4787. The measurement set is 239 power flow measurements, 236 reac-
tive power flow measurements, 99 power injection measurements, 99 reactive power injection 
measurements, and 75 bus voltage measurements. Table 3.3 is list of condition indicators for 
both System 1 and 2. 
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Table 3.3 Condition indicators of System 1 and System 2 

 IEEE 57 bus system [40] Representative power sys-
tem in the southwest US 

Impedances of lines Actual line impedances 
used 

Actual line impedances 
used 

Number of buses 57 180 
Number of lines 80 254 
Number of line P measurements 80 239 
Number of line Q measure-
ments 

80 236 

Number of bus |V| measure-
ments 

0 75 

Number of injection measure-
ments 

24 198 

Number of measurements, m 184 748 
Number of states, s 113 359 

KG 24,593 6.9x1010 

D 0.4633 1.1648 Condition  
indicators F 11,368 8.0019x1010 
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Figure 3.1 Oneline diagram of the IEEE 57 test bed case study (System 1)  

taken directly from [56] 
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3.3 Linearized Approximations of Condition Indicators Using the Power-Phase Quadrant 
of the H matrix 

 At this point, several examples are presented to illustrate the use of condition indicators 
for state estimation design. All examples appear in detail in Appendix A. 
 Example 1 is performed on System 1 but is only power-phase quadrant of the H matrix. 
Example 1 is constructed to verify (2.22), the approximation of d, distance to the nearest singular 
matrix. Distance to the nearest singular matrix is also the smallest eigenvalue. In Example 1, an 
extra row is augmented to the H matrix in which a single +1 is inserted in the column corre-
sponding to the bus location at which a phasor angle measurement is added. 
 Figure 3.2 shows that the linear approximation, noted as “Predicted,” is a good indicator 
for which +1 change in the H will have the greatest impact on d. Both the linearized and actual 
change in d show the greatest improvement for a phasor measurement placed at bus 32. Figure 
3.2 also shows that the predicted change in d can be significantly larger than what is actually ob-
served. 
 Example 2 is performed on System 1 using only the power-phase quadrant of H. Example 
2 will examine how the size of Δh affects the accuracy of the prediction of d from (2.22). In Ex-
ample 1 it was seen the best improvement in d could be found by placing a phasor measurement 
at bus 32. For Example 2, the phasor measurement will be placed at bus 32. The size of Δh will 
be varied from 0 to 2.   
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Figure 3.2 Impact on d of placement of a phasor measurement at one bus (Example 1) 



 

 28 

 Figure 3.3 depicts the predicted change in d using (2.22) and the actual change in d. It can 
be noted that in (2.22) there is a quadratic relationship between Δh and change in d. In Figure 
3.3, the actual change in d “levels off” as Δh continues to increase. This can be contributed to the 
smallest eigenvalue of G is no longer the same eigenvalue. That is, as elements of H change, the 
eigenvalues of G migrate. The eigenvalues of G “move” smoothly as hi,j changes and it is possi-
ble that the locus of the smallest eigenvalues will cross the locus of another eigenvalue. In this 
sense, the previously identified smallest eigenvalues may not longer be the smallest. 
 To confirm that the leveling off in Example 2 is attributed to smallest eigenvalue being 
different after the addition of phasor measurement, Example 3 was constructed. In Example 3 the 
power-phase quadrant of H of System 1 was used. A phasor measurement at bus 32 was aug-
mented to the H matrix with a +1 in the 32nd column. Figure 3.4 shows the spectrum of the ei-
genvalues of G. Note there is very little change in the eigenvalues of G by the addition of phasor 
measurement at bus 32. Also note that the eigenvalues predicted using (2.22) agree with the ac-
tual values found after the augmentation of H. 
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Figure 3.3 Magnitude variations in Δh versus change in d (Example 2) 
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Figure 3.4 Spectrum of eigenvalues of Example 3 

 

3.4 Linearized Approximations of Condition Indicators Using the Full H Matrix 
 
 The next series of examples examines the impact of linearizations when two measure-
ments are added, one being the phasor measurement, and two being the voltage measurement. 
Equation 2.22 can be used with changes in multiple columns of H provided the columns of H are 
linearly independent. The change in d will be addition of the changes in the columns of H 
mapped onto the changes in the smallest eigenvalue by (2.22). 
 Example 4 is performed on System 1 using entire H matrix.  Example 4 is to verify 
(2.22), the approximation of d, distance to the nearest singular matrix. In Example 4, two rows 
are augmented to the H in which +1 is inserted in the columns corresponding to the phase angle 
locations at which phasor angle measurements were added. 
 Figure 3.5 shows linear approximation, noted as “Predicted,” is a good indicator for 
which change in the H will have the greatest impact on d. Both the linearized and actual change 
in d show the greatest improvement for a phasor measurement placed at bus 32. Figure 3.5 also 
shows that predicted change in d can be significantly larger than what is actually change in d. 
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Figure 3.5 Impact on d of placement of a phasor measurement and voltage magnitude at one bus 

(Example 4) 
 
 Equation 2.25 is a linearized model for the change in condition number of G based on the 
change in Δh. Figure 3.6 is displays the change in condition number of H as a voltage magnitude 
and phase angle measurement are added to the H matrix. Note that Bus 32 is the bus with great-
est change in both the using (2.25) and actual change in condition number. Also note that the 
predicted change is much greater than the actual change. 



 

 31 

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

0 10 20 30 40 50 60

G matrix changed by +1 at k,k and 57+k,57+k

C
ha

ng
e 

in
 K

(G
)

Predicted Computed  
Figure 3.6 Impact on condition number of G of placement of a phasor measurement and voltage 

magnitude at one bus (Example 4) 
 
 Figure 3.7 shows Example 1 and Example 4 on the same chart. Note that the improve-
ment seen d is greater for the full H (Example 4) than just the power-phase quadrant of H (Ex-
ample 1). 
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Figure 3.7 Example 1 and Example 4 changes in d 

 
 Example 5 is performed on System 1 using the entire H matrix.  Example 5 will examine 
how the size of Δh affects the accuracy of the prediction of d from (2.22). In Example 4, it was 
seen that the best improvement in d could be found by placing a phasor and voltage magnitude 
measurement at bus 32. For Example 5, the phasor measurement and voltage magnitude meas-
urement will be placed at bus 32. The size of Δh will be varied from 0 to 2. 
 Figure 3.8 show the predicted change in d using (2.22). This is compared to the actual 
change in d. It can be noted that in (2.22) there is a quadratic relationship between Δh and change 
in d. In Figure 3.8 the actual change in d levels off as ΔH continues to increase. This flattening 
can be attributed to the fact that the smallest eigenvalue of H is no longer the “same” eigenvalue. 
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Figure 3.8 Magnitude variations in Δh versus change in d (Example 5) 

 
 Example 6 was constructed to confirm that the leveling off in Example 5 is attributed to 
smallest eigenvalue being different after the addition measurements. In Example 6, the entire H 
of System 1 was used. A phasor measurement at bus 32 was augmented to the H matrix with +1 
in 32nd column. A voltage magnitude measurement at bus 32 was augmented to the H matrix 
with +1 in 89th column. Figure 3.9 shows the spectrum of the eigenvalues of G for the three 
cases discussed. Note there is very little change in the eigenvalues of G by the addition of a 
phasor measurement at bus 32. Also note that the eigenvalues predicted using (2.22) agree with 
the actual values found. 
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Figure 3.9 Spectrum of eigenvalues of Example 6 

 

3.5 Summary of Examples  
 Table 3.4 summarizes Examples 1-6. The main observations are: 
 

• Small change is seen between the prediction of the change in the smallest eigenvalue us-
ing the power-phase quadrant of H (Example 1) and using the entire H (Example 4). 

• Equation 2.22 predicted the correct location of the largest improvement of the smallest 
eigenvalue, d, but yielded a significantly larger estimate of improvement than the actual 
computed value. 

• Equation 2.22 can predict all eigenvalues using limited information from the eigenvector 
matrix. 

• Decreasing the weight applied to the added measurement will improve the accuracy of 
(2.22). 

•   The augmentation of one PMU to System 1 in Example 4 decreased the condition num-
ber by 30.91%. 
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Table 3.4 Summary of Examples 1 - 6 

Example Intent of Example Conditions Outcome 

1 

To find greatest im-
provement in smallest 
eigenvalue of the power-
phase quadrant of H us-
ing (2.22) 

Augment power-
phase quadrant of H 
with a +1 at (m+1, k)  

Equation 2.22 predicted 
the correct location of 
the largest change 

2 

To see the effects of 
weighting the augmented 
measurement 

Augment power-
phase quadrant of H 
with 0<w<2 at (m+1, 
32) 

Decrease weight on the 
augmented measure-
ment produced more 
accurate  prediction d 
using (2.22)  

3 

Verify (2.22) Augment power-
phase quadrant of H 
with a +1 at (m+1, 
32) 

Equation 2.22 can pre-
dict the change in all 
eigenvalues accurately 
using a single row in 
the eigenvector matrix 

4 

To find greatest im-
provement in smallest 
eigenvalue of H using 
(2.22) 

Augment of H with a 
+1 at (m+1, k) and 
(m+2, k+57) 

Equation 2.22 predicted 
the correct location of 
the largest change 

5 

To see the effects of 
weighting the augmented 
measurement 

Augment H with a +1 
at (m+1,32) and 
(m+2, 89) 

Decrease weight on the 
augmented measure-
ment produced more 
accurate  prediction d 
using (2.22)  

6 

Verify (2.22) Augment power-
phase quadrant of H 
with 0<w<2 at (m+1, 
32) and (m+2, 89) 

Equation 2.22 can pre-
dict the change in all 
eigenvalues accurately 
using two rows in the 
eigenvector matrix 
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4. Algorithm For the Placement of Phasor Measurements 

4.1 Introduction 
 In this chapter, future work is presented for the application of condition indicators for 
state estimator design.  The designs utilize PMU measurements. Also, an innovative analogy to 
capacity outage tables [70] is proposed to study “measurement outages” (i.e., measurement fail-
ure). The concept is to tabulate all possible sensory failure scenarios and evaluate the expected 
state estimation error over all scenarios. 
 The main topics discussed in this chapter are: 
 

• The focus of discussion in this report has been on the G and H matrices of the linearized 
state estimator problem.  That is, the first iteration G and H were studied. It is proposed 
as future work to examine the effect of the progress of the iterations on a full nonlinear 
state estimator on the G and H, and the concomitant response of the condition indicators. 

• A procedure for state estimation design using PMU measurements. The concept of condi-
tion indicators is to be used. 

• The measurement outage table approach to calculation of expected state estimation error 
• The utilization of a large test bed to demonstrate the design procedure 
• A comparison of the proposed method with other methods. 

4.2 State Estimation Design via Condition Indicators 
The process of designing the state estimator with phasor measurement units is represented 

in Figure 4.1. In Figure 4.1, it is suggested to utilize the condition indicators to assess the effec-
tiveness of added sensory measurements. The steps shown in Figure 4.1 are preliminary and fu-
ture research will be to refine these steps. The focus is to locate measurements and to calculate 
the corresponding gain matrix. 
 As an example of the research approach, it is proposed to compute the condition indica-
tors for all possible sensor locations. In this procedure it is determined if the state estimator is 
observable using the condition indicators, (i.e., if d=0 then the gain matrix is singular, and the 
system is not observable). If the system is not observable, place PMUs at locations such that the 
system becomes observable. If the system is observable, place PMUs at proper locations to im-
prove the condition number indicators (i.e., place a PMU in locations such that the singular dis-
tance, d, would increase). Subsequently the best performance is identified from the condition in-
dicators. 
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Figure 4.1 Coarse flow chart for state estimator design via condition indicators. 
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4.3 The Measurement Outage Table 
 The concept of a “measurement outage table” is proposed. This table is a tabulation of 
possible failure status scenarios versus their probability of occurrence. The measurement outage 
table will be based on the capacity outage tables described in [70]. The measurement outage ta-
ble will use the probability of a measurement failure analogous to the probability of loss of gen-
eration in a generation capacity outage table [70]. Table 4.1 is a sample capacity outage table 
from [70]. Table 4.1 also does not the outcome of the loss of generation (i.e., if the system is 
power system is still capable of operating). Table 4.2 is a proposed measurement outage table. 
Note in Table 4.2 along with the amount of loss of measurement the table includes which meas-
urement has failed, and the outcome of the measurement failure.  
 

Table 4.1 Sample capacity outage table taken directly from [70] 

Unit 1 
(5 MW) 

Unit 2 
(3 MW) 

Unit 3 
(3 MW) 

Capacity out of 
service (MW) 

Individual 
probability 

Cumulative 
probability 

1 1 1 0 0.941192 1.000000 
1 1 0 3 0.019208 0.058808 
1 0 1 3 0.019208 0.039600 
0 1 1 5 0.019208 0.020392 
1 0 0 6 0.000392 0.001184 
0 1 0 8 0.000392 0.000792 
0 0 1 8 0.000392 0.000400 
0 0 0 11 0.000008 0.000008 

Status 1 = in service 
Status 0 = out of service 

 
 The measurement outage table is offered as a potential tool to analyze state estimation 
sensory impacts. For example, using the right most columns of Table 4.2, it is possible to statisti-
cally evaluate the condition indicators. It is conjectured that it is possible to identify where a 
phasor measurement can be placed to increase the robustness of the state estimator design, (i.e., 
the entire system is still observable after a measurement failure). The performance indicators 
used in the table should not only detect if a measurement outage produces a unobservable island, 
but should also detect how “well conditioned” the process matrix, H, is, and the impact of meas-
urement failure on state estimator expected error. 
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Table 4.2 Representation of a possible measurement outage table 

 Sensor Outage State 
Individual 

Prob. 
Cumulative 

Prob. 
State Estimator  

Performance 
1 2 3 4 … m-1 m   KG λ1 E(error) f 
1 1 1 1 1 0   
1 1 1 1 … 0 1   

…                   …   
1 0 1 1 1 1   

For 
one 

sensor 
failure 

0 1 1 1 
… 

1 1   
1 1 1 1 … 0 0   

…                  …   
For 
two 

sensors 
failure 0 0 1 1 … 1 1   

for "N-3," "N-4," … cases   

The state estimation per-
formance indicators might 
include: expected error 
value, condition number, 
smallest eigenvalue, larg-
est eigenvalue, singular 
distance, and scaling fac-
tor. 

 

4.4 Test Bed of Demonstration 
 The experiments performed in this report have been performed on the IEEE 57 bus test 
bed (System 1). System 1 has 57 buses, 80 transmission lines, 184 measurements, and 113 states. 
This system is moderate in size.  A larger test bed developed to be used in future research. It is 
proposed to use System 2, a system representative of the US southwest in summer 2005. Table 
4.3 contains pertinent data of System 2. This system is approximately 3 times the size of System 
2.   
 

Table 4.3 Summary of System 2 parameters 

Number of Buses 180
Number of Transmission Lines 254
Number of States 359
Number of Measurements 748
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4.5 Comparison of Alternative Phasor Measurement Placement Methods 
 The design of state estimator described in 4.3 will be compared to several methods of 
finding the “best” placement of PMUs: 
 

• Genetic Search / Random Search – the search method using a small sample set to deter-
mine the global optimum of search criteria, 

• Graph Theory – the PMUs are placed until the entire power system is observable, 
• Residual Sensitivity Matrix Analysis – placement of PMUs is done based on identification 

of critical measurements. 
 

The comparison between the above mentioned state estimator design criteria will be both 
quantitative and qualitative. Most of the results from the comparisons will be qualitative due to 
the diverse optimal placement algorithms having alternative definitions of optimal placement. 
Quantitative comparisons can be made if the state estimator designs are performed on the same 
system with similar design objectives.   
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Appendix A: Summary of Examples 

Table A.1 Summary of Examples 1 - 6 

Example Intent of Example System Conditions Outcome 

1 

To find greatest im-
provement in small-
est eigenvalue of the 
power-phase quad-
rant of H using 
(2.22) 

System 1 
(IEEE 57 
bus test 
bed) 

Augment power-
phase quadrant 
of H with a +1 at 
(m+1, k)  

Equation 2.22 pre-
dicted the correct 
location of the larg-
est change 

2 

To see the effects of 
weighting the aug-
mented measure-
ment 

System 1 
(IEEE 57 
bus test 
bed) 

Augment power-
phase quadrant 
of H with 0<w<2 
at (m+1, 32) 

Decrease weight on 
the augmented 
measurement pro-
duced more accu-
rate  prediction d 
using (2.22)  

3 

Verify (2.22) System 1 
(IEEE 57 
bus test 
bed) 

Augment power-
phase quadrant 
of H with a +1 at 
(m+1, 32) 

Equation 2.22 can 
predict the change 
in all eigenvalues 
accurately using a 
single row in the 
eigenvector matrix 

4 

To find greatest im-
provement in small-
est eigenvalue of H 
using (2.22) 

System 1 
(IEEE 57 
bus test 
bed) 

Augment of H 
with a +1 at 
(m+1, k) and 
(m+2, k+57) 

Equation 2.22 pre-
dicted the correct 
location of the larg-
est change 

5 

To see the effects of 
weighting the aug-
mented measure-
ment 

System 1 
(IEEE 57 
bus test 
bed) 

Augment H with 
a +1 at (m+1,32) 
and (m+2, 89) 

Decrease weight on 
the augmented 
measurement pro-
duced more accu-
rate  prediction d 
using (2.22)  

6 

Verify (2.22) System 1 
(IEEE 57 
bus test 
bed) 

Augment power-
phase quadrant 
of H with 0<w<2 
at (m+1, 32) and 
(m+2, 89) 

Equation 2.22 can 
predict the change 
in all eigenvalues 
accurately using 
two rows in the ei-
genvector matrix 
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Appendix B: Norms 

 The state estimation technique presented relies on the L2 being a satisfactory in repre-
senting the error between the measurements and the states. The Lp norm is, 

  ( )p
m

i

p
ip xr ∑

=

=
0

|||||| .  (B.1) 

There are several L norms however three most commonly discussed are the L1, L2, and the L∞ 
norm. The L1 norm is the sum of the absolute of the number as seen in Equation B.1. The L2 
norm is the square root of the sum of the squares, and the L∞ norm is the largest single value 
in the vector, 

L1-Norm ∑
=

=
m

i
ixr

1
1 ||||||  (B.2) 

L2-Norm ( )∑
=

=
m

i
ixr

1

2
2||||  (B.3) 

L∞-Norm ( ) ||max||||||
1

i

m

i
i xxr == ∞

=

∞
∞ ∑ . (B.4) 

A plot can be created of the different norms of a vector of dimension two, 

  x=(x1, x2)t (B.5) 

  pp
p kx =|||| . (B.6) 

Figure B.1 shows loci of ||x||p=k.  L norms are a way of collapsing data stored in a vector 
into a single value. 
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Figure B.1 Graphical representations of L-norms 
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Appendix C: Example of Matlab Scripts 

clear 
system='ieee57cdf.dat' 
[Y]=IEEEtoYbus(system); 
G=real(Y); 
B=imag(Y); 
  
%intial guess Flat start 
[Vo,Phaseo]=IEEEintialguess(system); 
V=Vo; 
Phase=Phaseo; 
  
%Mesurement Set Uses PSAT power flow solution 
MeasureSet='57BaseCaseMeasure.txt'; 
[BusP, Pinj, BusQ, Qinj, sendQ, reciveQ, Qflow, Pflow, sendP, re-
civeP,LineIDp,LineIDq]=Measurementreader(MeasureSet); 
  
%Branch Information for Power Flow Measurements 
[send,recive,Circuit,g,b,Charging] = IEEEBranchInfo(system); 
Z=[Pinj;Qinj;Pflow;Qflow]; 
[r,c]=find(Y~=0); 
HpV=zeros(size(BusP,1),size(Y,1)); 
HpPhase=zeros(size(BusP,1),size(Y,1)); 
hPinj=zeros(size(BusP,1),1); 
hQinj=zeros(size(BusQ,1),1); 
for k=1:size(BusP,1) 
    m=BusP(k); 
    Hcolumn=0; 
    Hcolumn=find(r==m); 
    for l=1:size(Hcolumn) 
        n=c(Hcolumn(l)); 
        if n~=m 
            HpPhase(k,n)=V(n)*V(m)*(G(m,n)*sin(Phase(m)-Phase(n))-B(m,n)*cos(Phase(m)-Phase(n))); 
            HpPhase(k,m)=-HpPhase(k,n)+HpPhase(k,m); 
            HpV(k,n)=V(m)*(G(m,n)*cos(Phase(m)-Phase(n))+B(m,n)*sin(Phase(m)-Phase(n))); 
            HpV(k,m)=V(n)*(G(m,n)*cos(Phase(m)-Phase(n))+B(m,n)*sin(Phase(m)-Phase(n)))+HpV(k,m); 
            hPinj(k,1)=V(m)*V(n)*(G(m,n)*cos(Phase(m)-Phase(n))+B(m,n)*sin(Phase(m)-Phase(n)))+hPinj(k,1); 
        else 
            HpV(k,m)=V(m)*(G(m,m)*cos(Phase(m)-Phase(m))+B(m,m)*sin(Phase(m)-
Phase(m)))+HpV(k,m)+V(m)*G(m,m); 
            HpPhase(k,m)=-V(n)*V(m)*(G(m,n)*sin(Phase(m)-Phase(n))-B(m,n)*cos(Phase(m)-
Phase(n)))+HpPhase(k,m)-V(m)*V(m)*B(m,m); 
        end 
    end 
end 
HqV=zeros(size(BusQ,1),size(Y,1)); 
HqPhase=zeros(size(BusQ,1),size(Y,1)); 
for k=1:size(BusQ,1) 
    m=BusQ(k); 
    Hcolumn=0; 
    Hcolumn=find(r==m); 
    for l=1:size(Hcolumn) 
        n=c(Hcolumn(l)); 
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        if n~=m 
            HqPhase(k,n)=V(n)*V(m)*(-G(m,n)*cos(Phase(m)-Phase(n))-B(m,n)*sin(Phase(m)-Phase(n))); 
            HqPhase(k,m)=-HqPhase(k,n)+HqPhase(k,m); 
            HqV(k,n)=V(m)*(G(m,n)*sin(Phase(m)-Phase(n))-B(m,n)*cos(Phase(m)-Phase(n))); 
            HqV(k,m)=V(n)*(G(m,n)*sin(Phase(m)-Phase(n))-B(m,n)*cos(Phase(m)-Phase(n)))+HqV(k,m); 
            hQinj(k,1)=V(m)*V(n)*(G(m,n)*cos(Phase(m)-Phase(n))-B(m,n)*sin(Phase(m)-Phase(n)))+hQinj(k,1); 
        else 
            HqV(k,m)=V(n)*(G(m,n)*sin(Phase(m)-Phase(n))-B(m,n)*cos(Phase(m)-Phase(n)))+HqV(k,m)-
V(m)*B(m,m); 
            HqPhase(k,m)=-V(n)*V(m)*(-G(m,n)*cos(Phase(m)-Phase(n))-B(m,n)*sin(Phase(m)-
Phase(n)))+HqPhase(k,m)-V(m)*V(m)*G(m,m); 
        end 
    end 
end 
  
for k=1:size(sendQ,1) 
    BusS=sendQ(k); 
    BusR=reciveQ(k); 
    branch=0; 
    S=[]; 
    S=find(send==BusS); 
    for m=1:size(S,2) 
        if recive(S(m))==BusR 
            if Circuit(S(m))==LineIDq(k) 
                branch=S(m); 
            end 
        end 
    end 
    if branch==0 
        S=find(recive==BusS); 
        for m=1:size(S,2) 
          if send(S(m))==BusR 
              if Circuit(S(m))==LineIDq(k) 
                  branch=S(m); 
              end 
          end 
        end 
    end 
    HqfPhase(k,BusS)=-V(BusS)*V(BusR)*(g(branch)*cos(Phase(BusS)-Phase(BusR))-
b(branch)*sin(Phase(BusS)-Phase(BusR))); 
    HqfPhase(k,BusR)=-HqfPhase(k,BusS); 
    HqfV(k,BusS)=-V(BusR)*(g(branch)*sin(Phase(BusS)-Phase(BusR))-b(branch)*cos(Phase(BusS)-
Phase(BusR)))-2*(b(branch)+imag(Charging(branch)))*V(BusS); 
    HqfV(k,BusR)=-V(BusS)*(g(branch)*sin(Phase(BusS)-Phase(BusR))-b(branch)*cos(Phase(BusS)-
Phase(BusR))); 
    hQflow(k,1)=-V(BusS)*V(BusS)*(b(branch)+imag(Charging(branch)))-
V(BusR)*V(BusS)*(g(branch)*cos(Phase(BusS)-Phase(BusR))+b(branch)*sin(Phase(BusS)-Phase(BusR))); 
end 
  
for k=1:size(sendP,1) 
    BusS=sendP(k); 
    BusR=reciveP(k); 
    branch=0; 
    S=[]; 
    S=find(send==BusS); 
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    for m=1:size(S,2) 
        if recive(S(m))==BusR 
            if Circuit(S(m))==LineIDp(k) 
                branch=S(m); 
            end 
        end 
    end 
    if branch==0 
        S=find(recive==BusS); 
        for m=1:size(S,2) 
          if send(S(m))==BusR 
              if Circuit(S(m))==LineIDp(k) 
                  branch=S(m); 
              end 
          end 
        end 
    end 
    HpfPhase(k,BusS)=V(BusS)*V(BusR)*(g(branch)*sin(Phase(BusS)-Phase(BusR))-
b(branch)*cos(Phase(BusS)-Phase(BusR))); 
    HpfPhase(k,BusR)=-HpfPhase(k,BusS); 
    HpfV(k,BusS)=-V(BusR)*(g(branch)*cos(Phase(BusS)-Phase(BusR))-b(branch)*sin(Phase(BusS)-
Phase(BusR)))+2*(g(branch)+real(Charging(branch)))*V(BusS); 
    HpfV(k,BusR)=-V(BusS)*(g(branch)*cos(Phase(BusS)-Phase(BusR))-b(branch)*sin(Phase(BusS)-
Phase(BusR))); 
    hPflow(k,1)=V(BusS)*V(BusS)*(g(branch)+real(Charging(branch)))-
V(BusR)*V(BusS)*(g(branch)*cos(Phase(BusS)-Phase(BusR))+b(branch)*sin(Phase(BusS)-Phase(BusR))); 
end  
  
% Formation of the intial H matrix 
H=[HpfPhase, HpfV; HpPhase,HpV;HqfPhase,HqfV;HqPhase,HqV]; 
H(:,1)=[]; 
Hphase=[HpfPhase;HpPhase]; 
Hphase(:,1)=[]; 
[Hprows,Hpcolomns]=size(Hphase) 
Gphase=Hphase'*Hphase; 
RankHphase=rank(Hphase) 
[Vphase,Eigphase]=eig(Gphase); 
  
% Testing the Equations 
  
% Insertion of the First PMU  Effects on Just Power Phase matrix 
deltG=1 
for k=1:size(Vphase,1) 
    PredictedEig(k,1)=Vphase(k,1)^2*deltG; 
end 
for k=1:Hpcolomns 
    Hphasep=[Hphase;zeros(1,Hpcolomns)]; 
    Hphasep(Hprows+1,k)=1; 
    EV=eig(Hphasep'*Hphasep); 
    ExpEig(k,1)=EV(1); 
    DeltaEigExp=ExpEig-Eigphase(1,1); 
end 
S=1:56; 
plot(S,PredictedEig,'r+', S,DeltaEigExp,'go') 
xlabel('G matrix changed by +1 at k,k') 
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ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('H of Power and Phase') 
w=[0:0.01:.1,.2:.1:2]; 
for k=1:size(w,2) 
    WPredictedEig(k,1)=Vphase(32,1)^2*w(k)^2; 
    Hphasep=[Hphase;zeros(1,Hpcolomns)]; 
    Hphasep(Hprows+1,32)=w(k); 
    EV=eig(Hphasep'*Hphasep); 
    WExpEig(k,1)=EV(1); 
    WDeltaEigExp(k,1)=WExpEig(k,1)-Eigphase(1,1); 
end 
figure 
plot(w,WPredictedEig,'g--',w,WDeltaEigExp,'r:') 
xlabel('Size in Change of H matrix col 32') 
ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('H of Power and Phase') 
for k=1:Hpcolomns 
    PredictedEigDelta(k,1)=Vphase(32,k)^2*deltG; 
    PreEig(k,1)=Eigphase(k,k)+PredictedEigDelta(k); 
     
end 
Hphasep=[Hphase;zeros(1,Hpcolomns)]; 
Hphasep(Hprows+1,32)=1; 
EV=eig(Hphasep'*Hphasep); 
Orginal=ones(56,1); 
Predicted=2*Orginal; 
Exp=3*Orginal; 
K0=cond(Gphase); 
KPredicted=max(PreEig)/min(PreEig); 
Kactual=cond(Hphasep'*Hphasep); 
figure 
plot(diag(Eigphase),Orginal,'r+',PreEig,Predicted,'go',EV,Exp,'b^') 
axis([0,6500,0,4]) 
xlabel('EigenValues') 
legend('Original','Predicted','Actual') 
title('H of Power and Phase') 
  
%  PMU measures both phase and angle What would the including volt measure 
%  do 
[Hrows,Hcolomns]=size(H); 
G=H'*H; 
RankH=rank(H); 
[VG,EigG]=eig(G); 
  
deltG=1; 
kG=cond(G) 
for k=1:size(Vphase,1) 
    PredEigPV(k,1)=VG(k,1)^2*deltG+VG(k+57,1)^2*deltG; 
    LargestEig(k,1)=VG(k,113)^2*deltG+VG(k+57,113)^2*deltG; 
    deltaK(k,1)=(VG(k,113)^2-kG*VG(k,1)^2)/(EigG(1,1)); 
end 
for k=1:56 
    Hp=[H;zeros(2,Hcolomns)]; 
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    Hp(Hrows+1,k)=1; 
    Hp(Hrows+2,k+57)=1; 
    EV=eig(Hp'*Hp); 
    ExpEigPV(k,1)=EV(1); 
    K2(k,1)=cond(Hp'*Hp); 
end 
DEigExpPV=ExpEigPV-EigG(1,1); 
dK2=K2-kG; 
figure 
plot(S,PredEigPV,'r+', S,DEigExpPV,'go') 
xlabel('G matrix changed by +1 at k,k and 57+k,57+k') 
ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('Entire H') 
figure 
plot(S,deltaK,'r+', S,dK2,'go') 
xlabel('G matrix changed by +1 at k,k and 57+k,57+k') 
ylabel('Change in Condition Number') 
legend('Predicted','Actual') 
title('Entire H') 
w=[0:0.01:.1,.2:.1:2]; 
for k=1:size(w,2) 
    WPredEigG(k,1)=VG(32,1)^2*w(k)^2+VG(32+57,1)^2*w(k); 
    Hp=[H;zeros(2,Hcolomns)]; 
    Hp(Hrows+1,32)=w(k); 
    Hp(Hrows+2,32+57)=w(k); 
    EV=eig(Hp'*Hp); 
    WExpEigG(k,1)=EV(1); 
    WDeltaEigExpG(k,1)=WExpEigG(k,1)-EigG(1,1); 
end 
figure 
plot(w,WPredEigG,'g--',w,WDeltaEigExpG,'r:') 
xlabel('Magnitude of Change of H matrix col 32') 
ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('Entire H') 
for k=1:Hcolomns 
    PredEigDeltaG(k,1)=VG(32,k)^2*deltG+VG(32+57,k)^2*deltG; 
    PreEigG(k,1)=EigG(k,k)+PredEigDeltaG(k); 
end 
Hp=[H;zeros(2,Hcolomns)]; 
Hp(Hrows+1,32)=1; 
Hp(Hrows+2,32+57)=1; 
EVG=eig(Hp'*Hp); 
Orginal=ones(113,1); 
Predicted=2*Orginal; 
Exp=3*Orginal; 
figure 
plot(diag(EigG),Orginal,'r+',PreEigG,Predicted,'go',EVG,Exp,'b^') 
%plot(diag(EigG),Orginal,'r+',PreEigG,Orginal,'go',EVG,Orginal,'b^') 
axis([0,6500,0,4]) 
xlabel('EigenValues') 
legend('Original','Predicted','Actual') 
title('Entire H') 
K0g=cond(G) 
KPredictedg=max(PreEigG)/min(PreEigG); 
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Kactualg=cond(Hp'*Hp); 
  
figure 
plot(S,PredEigPV,'r+', S,DEigExpPV,'go',S,PredictedEig,'rx', S,DeltaEigExp,'g+'); 
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1. Introduction 

State estimation was introduced by Gauss and Legendre around 1800. The basic idea was to 
"fine-tune" state variables by minimizing the sum of the residual squares. This is the well-known 
least squares (LS) method, which has become the cornerstone of classical statistics. The reasons 
for its popularity are easy to understand: At the time of its invention there were no computers, 
and the fact that the LS estimator could be computed explicitly from the data (by means of some 
matrix algebra) made it the only feasible approach. Even now, most statistical packages still use 
the same technique because of tradition and computational speed. Also, for one-dimensional 
problems, the LS criterion yields the arithmetic mean of the observations, which at that time 
seemed to be the most reasonable estimator. Afterwards, Gauss introduced the normal (or 
Gaussian) distribution as the error distribution for which LS is optimal. Since then, the 
combination of Gaussian assumptions and LS has become a standard mechanism for the 
generation of statistical techniques. 
 
Control and operation of electric power systems is based on the ability to determine the system 
state in real time. In a real time environment, state estimation was applied to power systems by 
Schweppe and Wildes in the late 1960's [1]. Over the past thirty five years, the basic structure of 
power system state estimation has remained practically the same: (a) Single phase model, (b) P, 
Q, V measurement set, (c) Non-simultaneousness of measurements, and (d) Single frequency 
model. This basic structure of the power system state estimation implies the following 
assumptions (which in turn result in a biased state estimator): (1) all current and voltage 
waveforms are pure sinusoids with constant frequency and magnitude, (2) the system operates 
under balanced three phase conditions, and (3) the power system is a symmetric three phase 
system which is fully described by its positive sequence network. These assumptions introduce 
deviations between the physical system and the mathematical model (bias) and have resulted in 
practical difficulties manifested by poor numerical reliability of the iterative state estimation 
algorithm. Substantial efforts to fine tune the mathematical models in actual field 
implementations are required. In practice, even for a well tuned SE, these reasons manifest 
themselves by the fact that the state estimation algorithm occasionally diverges. This 
“unreliability” of the state estimator has been reported in the order of 1% to 5%. 
 
The trends in the electric power industry towards larger systems and especially the recent 
government announcement for mega RTOs, raises the question: what will be the performance of 
the state estimation in these systems. In this work these problems are discussed and some 
thoughts are offered for methods to investigate this problem. We discuss the biases of the 
traditional state estimation problem and project the effect of these biases as the system size 
increases. Specifically, the following issues are discussed: (1) Sources of Bias in Traditional SE, 
(2) Effects of System Size on Bias Error, (3) Effects of Bias Error on Bad Data Detection, (4) 
Effects of Time Skewness on SE Accuracy, and (5) Effects of System Size on Computational 
Effort. Subsequently, we propose an approach that may mitigate these problems. Yet, extensive 
numerical experiments are required to determine whether the proposed SE will meet the 
challenge of providing a practical SE for mega systems. 
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2. Sources of Bias in Traditional State Estimation 

The LS state estimation procedure is an unbiased estimator if and only if the model is accurate 
(exact) and the measurement errors are statistically distributed. Both of these conditions may not 
exist in a practical system. In this section we concentrate on the bias resulting from model 
inaccuracies and we discuss the effect of measurement errors. In particular model inaccuracies 
result from: (a) unbalanced operating conditions and (b) asymmetries of power system models. 

2.1 Balanced operation 

An actual power transmission system operates near balanced conditions. The imbalance may be 
small or large depending on the design of the system. As an example, Fig. 1 illustrates the three 
phase voltages and currents on an actual system. Note for example a 10% difference in the 
currents of Phases A and B of transmission line to GILBOA. The voltage in this case has only a 
0.2% difference between two phases. 
 

 
Figure 1 Actual three phase voltages and currents in MARCY substation 

 
Because of imbalance, the measurements may have an error. We represent this as follows: 
 

zzz t Δ+= ,      (1) 
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where  tz  is the true measurement (assuming a balance system), zΔ  is the measurement error 
due to imbalance, and z  is the actual measurement Application of the LS state estimation 
procedure, assuming no other error sources, yields: 

zWHWHHxx TT
t Δ+= −1)( ,     (2) 

where tx  is the true state of the system or the unbiased state estimate, and the second term is the 
bias resulting from the imbalance measurement error. Note that the bias from unbalanced 
operation depends on the level of imbalance as well as the system parameters (matrix H). 

2.2 System symmetry 

An actual power transmission system is never symmetric. While some power system elements 
are designed to be near symmetric, transmission lines are never symmetric [2-5]. The impedance 
of any phase is different than the impedance of any other phase. In many cases, this imbalance 
can be corrected with transposition. Because of cost many lines are not transposed. 
 
The asymmetry may be small or large depending on the design of the system. One power system 
component that contributes to the asymmetry is the three phase untransposed line. As an 
example, Fig. 2 illustrates an actual three phase line. 
 

 

Figure 2 Typical transmission line construction. 
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For the purpose of quantifying the asymmetry of this line, two asymmetry metrics are defined: 
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where z1 is the positive sequence series impedance of the line, zmax and zmin are the max and min 
series impedances of the individual phases, y1 is the positive sequence shunt admittance of the 
line, ymax and ymin are the max and min shunt admittances of the individual phases. 
 
The above indices provide, in a quantitative manner, the level of asymmetry among phases of a 
transmission line. As a numerical example, these metrics have been computed for the line of Fig. 
2 and are presented in Fig. 3. Note that the asymmetry is in the order of 5 to 6%. 
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Figure 3 Line Asymmetry Indices (Line of Fig. 2). 

 
Because of the presence of non-symmetric components, the state estimate using single phase 
measurement set is biased. An estimate of the bias can be computed as follows. First observe that 
because of power system component asymmetry, the relationship of a measurement to the system 
model will have an error. Specifically: 

)()( xhxhz Δ+= ,     (5) 

where h(x) is the function relating the measurement to the state vector assuming symmetric 
power system components, Δh(x) is the difference between the symmetric model and the 
asymmetric model. Now the Jacobian matrix of the measurements becomes: 

HHH s Δ+= ,     (6) 

where sH is the Jacobian matrix assuming symmetric power system elements. Application of the 
LS state estimation procedure, assuming no other error sources, yields: 
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)()))((2())()(( 1111 WHHWHHWHHIWHHzWHWHHxx TTTTTT
t ΔΔ+ΔΔ+= −−−− ,        (7) 

where tx  is the state of the system assuming a symmetric model, and the other terms represent 
the bias resulting from the system asymmetry. 

2.3 Measurement errors 

State estimators are based on the assumption that measurement errors are statistically distributed 
with zero mean. The traditional implementation of state estimation uses sensors of V 
(magnitude), P and Q. When the sensors are properly calibrated, the measurement error is very 
close to meeting the requirements of state estimation. However, recent trends resulted in the use 
of sensorless technology for power system measurements. Sensorless technology refers to the 
use of A/D converter technology to sample the voltage and current waveforms. Once the 
sampled waveforms are available, the required measurements can be retrieved with numerical 
computations. 
 
Independently of the technology used for measurements, it is important to examine whether there 
is bias in the measurements. This can be best achieved by examining the entire measurement 
channel of a typical power system instrumentation [6]. The major sources of error (see Fig. 4) are 
(a) the instrument transformers, (b) the cables connecting the instrument transformers to the 
sensors or A/D converters and (c) the sensors or A/D converters. Fig. 5 illustrates the transfer 
functions of a typical instrument transformer. It can be observed that the characteristics of 
instrument transformers near the power frequency are flat. One can conclude that for power 
frequency measurements, there is no appreciable measurement bias from instrument 
transformers. However for measurements at harmonic frequencies, a substantial measurement 
bias can occur. Another source of measurement bias may result from A/D converters. Fig. 6 
illustrates the transfer function of a specific A/D converter (Crystal Semiconductor, 16 bit). Note 
the magnitude and phase bias even at power frequency. It is important to note that the 
measurement bias is dependent upon the design of the A/D converter. The measurement bias 
resulting from control cables is variable depending on the total length of the cables. Figure 7 
illustrates biases introduced by instrumentation cables. 
 



 

 6

 
Figure 4 Components of typical voltage and current instrumentation channel. 
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Figure 5 Magnitude and phase of frequency response of a 200 kV/115 potential transformer 
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Figure 6 Magnitude and phase of frequency response of the PMY-1620 unit. 

 

 
Figure 7 Phase error in instrumentation cables. 

 
The measurement bias can be corrected with software. Such methods have been developed [7,8], 
but their use in state estimation is very limited. It is important to note that the above sources of 
error cannot be corrected with better (more accurate) instrumentation. To avoid these sources of 
error, three phase measurements and a three phase system model is required. Such a system has 
been developed and it is described next. 
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3. Effects of System Size on Bias Error 

The effect of bias error in SE has been studied only in a limited basis. The size of this error as the 
size of the system increases is an unknown. There are scientists that they believe that this error 
will remain constant as the system size grows. Others believe that this may not be true. It is 
important to design numerical experiments that will allow the study of the bias error size as a 
function of system size. The purpose of this preliminary work is to suggest some numerical 
experiments that can be used to study this issue and to provide some initial numerical results for 
the behavior of the state estimation errors in relation with the power system size. 

3.1 Design of numerical experiments 

The procedure is based on data provided by simulated system conditions. These data are used 
instead of actual measurements and are the input of the state estimation algorithm. However, the 
system model used for the simulations differs from the equivalent circuit based model that is 
used in the state estimation algorithm. The elements of the power system are represented by 
physically based models, that take into account the actual structure of each element and the 
possible asymmetries and imbalances that may appear. That is, for example, a transmission line, 
which is one of the most asymmetric power system elements is not represented by it sequence 
equivalent circuits, but by a physical model that take into account the geometry of the line. The 
same holds for all the other elements. In addition the system is simulated using full three-phase 
analysis. So, the asymmetries of the components and the imbalances are in fact taken into 
consideration and appear in the simulation results. We may, therefore, assume that the models 
represent in great detail the actual power system. Furthermore, the simulation results represent in 
great accuracy the actual quantities that would be measured in an actual power system. Finally 
the use of such data ensures that no other sources of error, like measurement noise or bad data, 
except for the model inaccuracies are present. Therefore, a basic assumption of the experiments 
is that the data that are used as measurements are assumed to be free of errors, so the only source 
of bias is the inaccuracies of the mathematical model used by the state estimation algorithm.  
Using the bus voltage magnitudes and the line flows obtained by the simulation as 
measurements, the classical state estimator algorithm is executed. Measurements of voltage 
magnitude and active and reactive power flow are considered. Power injection measurements are 
not used. The state estimator uses the typical single phase equivalent circuit representation of the 
system. The state vector, x , consists of the phase angles of the voltage at each bus, except for the 
slack bus, and the voltage magnitude at every bus. The measurement equations that relate the 
measured data to the state vector are of the form  

vxhZ += )( ,      (8) 

where Z  is the measurement vector consisting of voltage, active and reactive power flow 
measurements, )(xh is the vector function that relates the measurements and to the state vector 
and v  is the noise vector. The mathematical form of these equations depends on the system 
model. 
 
The transmission lines are modeled using the positive sequence pi-equivalent circuit, as 
presented in Fig. 7. The active power flow through the line can be computed, as a function of the 
state vector x  by 
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( ) ijjisijijiij aVVggVxP −+= 2)( ,     (9) 

and the reactive flow as 

( ) ijjisijijiij VVbbVxQ β−+−= 2)( ,     (10) 

where: 

)sin()cos( jiijjiijij bga δδδδ −+−=      (11) 

and 

)sin()cos( jiijjiijij bg δδδδβ −−−=     (12) 

 
yij = gij + bij

ysij = gsij + bsij ysji = gsji + bsji

Bus i Bus j

 
Figure 8 Pi-equivalent transmission line model. 

 
The transformers are modeled similarly, but using only a series admittance, as presented in Fig. 
9. 
 

yij = gij + bij

Bus i Bus j
 

 

Figure 9 Transformer model. 

 
The active power flow through the transformer can be computed, as a function of the state vector 
x  by 

ijjiijiij aVVgVxP −= 2)( ,    (13) 

and the reactive flow as  

ijjiijiij VVbVxQ β−−= 2)( ,    (14) 
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where ija  and ijβ  are defined as in (11) and (12). These are the equations that connect the flow 
measurements with the unknown state vector. The equations for the voltage magnitude 
measurements are simply:  

ii VxV =)( ,      (15) 

where iV  is the corresponding voltage magnitude measurement at bus i . 
Assuming that voltage magnitude is measured at every one of the n  system buses, and power 
flows are measured at every one of the m  circuit branches, at both ends of each branch, the 
measurement set consists of: 
 

• n  voltage measurements, 
• m2  active power flow measurements, 
• m2  reactive power flow measurements. 
 

The total number of measurements is mnM 4+= , while the size of the state vector is 12 −= nN  .  
After the estimation algorithm has converged and an estimation of the system voltages and 
angles is available and estimation of the measurements can also be obtained through the 
measurement equations. Comparison of the measurement estimation and the actual 
measurements provides the estimation error for each measurements, jjj zze ˆˆ −= . The weighted 
sum of the squares of these errors, where the weights are considered to be the inverse of the 

variance of each measurement, is ∑
=

=
M

j j

je
xJ

1
2

2ˆ
)ˆ(

σ
. If the noise of each measurement is normally 

distributed, then )ˆ(xJ  follows the 2x -distribution with NM −  degrees of freedom. Through the 
value of )ˆ(xJ  the confidence level of the estimation can be evaluated. By considering various 
test cases with increasing system sizes, it is possible to study the behavior of the state estimation 
bias due to model inaccuracies as the size of the system increases. 
 
The test cases used for the study of the state estimation errors are based on a rather simple 
system configuration. The basic system module used consists of two main load buses. A constant 
power and constant impedance load are connected on each bus, and each bus is also connected to 
a generator through a step up transformer. The two load-buses are connected through an 
overhead transmission line. The system contains all the basic elements that are typical to a power 
system. The diagram of the basic two-bus module is presented in Fig. 10. 
 
Based on this configuration the size of the system is increased by repeating this module in a 
radial way, and therefore increasing the number of buses that exist on the system. As an example 
the four-bus system is show in Fig. 11. Using the simulation results as measurement the state 
estimation results are obtained for each system and the errors are calculated. This way the state 
estimation performance relatively to the system size can be evaluated. The behavior of the errors 
as the system size increases is also an indication of the performance of the state estimation 
algorithm as the system size increases. 



 

 11

1
2

1
2

SOURCE01

BUS01 BUS02

SOURCE02

 

Figure 10 Two-bus test-system. 
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Figure 11 Four-bus test-system. 

 
The quantities that are considered system measurement are the voltage magnitudes at each bus 
and the active and reactive power flows at each network branch. The flows are measured at both 
ends of each branch. Three measurement scenarios are considered: 
 
Scenario 1: The typical single phase measurement approach, that is commonly used and assumes 
symmetry and balanced loading, is assumed. The voltage magnitude of phase A is considered 
and only the power flows of phase A are measured and the total line flow is calculated by 
multiplying this measurement by three.  
 
Scenario 2: The second measurement scenario is the same as the first one with the exception that 
the data from phase B are used as measurements instead of phase A. 
 
Scenario 3: The third scenario assumes again voltage measurements of a single phase, phase A, 
but three-phase measurements of active and reactive power flow. So the power measurements 
provided to the state estimation algorithms are the sum of the measurements for all three phases. 
The purpose of these three cases is to capture the effects of the asymmetries in the system to the 
performance of the state estimation algorithm. In fact the system operates under balanced loading 
conditions, but the main source of asymmetry is the transmission line structure. The type and of 
transmission line pole used is presented in Fig. 12. There is significant asymmetry at the 
structure and phase A is expected to be differently loaded than phases B or C. 
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The simplest system consists of two buses and the rest of them consist of 4, 8 and 16 buses. It 
should be mentioned that the numbers refer to high voltage load buses, which are connected 
through transmission lines, and the generation buses are not taken into account. However, this 
implies that the actual number of buses is double, in each one of the cases, that is each case 
contains 4, 8, 16 and 32 buses respectively. Based on the radial structure of the test networks, if 
n  is the number of buses, then the number of braches is 1−n , and therefore the total number of 
measurements is 45 −n . Since the number of states is 12 −n , the measurement redundancy is 

33 −n , and this is also the number of degrees of freedom in each case, and the redundancy index 
is 

12
45

−
−

=
n
nr . As the system size increases, that is, as ∞→n , 5.2

2
5
=→r . 

 

Figure 12 Transmission line pole structure. 

 

3.2 Numerical test results 

The results of the state estimation algorithm reveal the fact that the estimation errors due to the 
model inaccuracies tend to increase as the system size increases. Fig. 13 through 15 present the 
maximum absolute errors for voltage magnitude, active power flow and reactive power flow 
respectively. 
 
It should be again stated that since simulation data are used there are no other sources of error 
except for model inaccuracies in each case. So, the increase in the estimation errors is solely due 
to the increasing model inaccuracies because of the system asymmetries as the system size 
increases. It is therefore projected that if the system size becomes extremely large the results of 
the classical state estimator will eventually become unreliable and the errors very large. 
Numerical experiments for much larger systems are to be carried out to verify these conclusions. 
The increase in the error is much greater in the voltage magnitude, rather than in the power 
measurements, where it seems that the error tends to stabilize. In an actual situation, where other 
sources of bias are also present this will make the state estimation results impractical. 
 
Although the errors seem to grow in the case of using single phase power measurements, this 
does not seem to be the case in scenario 3, where the sum of the flows of all three phases is used 
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as measurement. In this case the estimation error is much lower and in addition it remains almost 
constant as the system size grows. 
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Figure 13 Maximum absolute voltage error vs. system size. 
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Figure 14 Maximum absolute active power flow error vs. system size. 
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Maximum Absolute Reactive Flow Errors in p.u. for Various 
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Figure 15 Maximum absolute reactive power flow error vs. system size. 

 
To further investigate the issue the confidence level of the estimation is calculated for every case. 
The results are produced parametrically for various values of standard deviation σ  of the 
measurements. Every measurement is assumed to follow Gaussian distribution with the same 
variance 2σ . All the measurements are assumed to have the same weight. 
 
The confidence level of the estimation for various system sizes is presented in Fig. 16, for the 
measurement data of scenario 1. The plot is parametric, for various values of standard deviation. 
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Figure 16 Confidence level of estimation vs. system size for different values of standard 
deviation, for scenario 1. 
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It can be concluded base on the plot that for values of σ lower than 0.02 the confidence level of 
the estimation is low and decreases very rapidly as the system size increases, and the estimation 
becomes unreliable. However, for values of σ  greater than 0.02 the confidence of the estimation 
is very high and increases with the system size, approaching 1.00. This can be explained based 
on the chi-square distribution used to calculate the values of the confidence level. More 

specifically the value of the objective function ∑
=

=
M

j j

je
xJ

1
2

2ˆ
)ˆ(

σ
, is increasing with the system size, 

but as explained previously the measurement redundancy which is equal to the degrees of 
freedom also increases linearly with the system size. So, as the system grows the redundancy of 
measurements also increases and this provides a better confidence level of the estimation. 
However, since the redundancy index tends to stabilize quickly as n  increases, this behavior may 
not continue to be the same for extremely large systems and the confidence level may start to 
deteriorate for very large numbers of buses. 
The confidence levels for scenario 3, for the same values of measurement variance, are presented 
in Fig. 17. 
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Figure 17 Confidence level of estimation vs. system size for different values of standard 

deviation, for scenario 3. 

 
The behavior in this case is similar; however the confidence level is much higher for the same 
values of σ than in the previous case. This indicates that using measurement from all the three 
phases for the power flows a high confidence level of estimation can be achieved for lower 
values of measurement variance, which may be approximately as low as 0.006, while in the 
single phase measurements case the best that could be achieved was a standard deviation of 
approximately 0.02. 
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4. Effects of Bias Error on Bad Data Detection 

The value of the SE is its promise to detect and identify bad data. This ability is best when the 
system model is not biased. In the presence of model bias, the ability to detect and identify bad 
data is compromised. Again we know very little on a theoretical or practical basis on the subject, 
i.e. how the performance of the bad data detection and identification will be affected in mega 
systems. 

5. Effects of Time Skewness on SE Accuracy 

The traditional SE is based on measurements that do not need to be fully synchronized. 
Specifically, it relies on measurement of quantities that are constant under the assumption of 
steady state operation, i.e. V (magnitude), P and Q. In practice, each measurement is taken by 
non-synchronized data acquisition systems, i.e. at different times within a short time interval, and 
transmitted to a central location. Thus the measurements (data) are not all taken at the same time. 
Since the system is always in transition, there will be a discrepancy between the system model 
and the collected data resulting from the time skewness of the data [9]. It is very difficult to 
quantify this discrepancy which is dependent upon the system and on how fast the system 
transits from one operating condition to another. This issue can be resolved with present 
technology (GPS) that provides practically absolute time (precision better than one 
microsecond). 

6. Effects of System Size on Computational Effort 

The traditional SE problem is based on a quasi-Newton algorithm. The direction of the Newton 
method is computed by inverting a matrix with size equal to the number of states. Sparsity 
techniques provide efficient algorithms for the solution and update for the state variables at each 
iteration. Numerical experiments for medium size power systems indicate that the computational 
effort depends on the system topology and is proportional to a factor of n.exp(a), where n is the 
number of states and a is an exponent that is system dependent (that is, it depends on the level of 
sparsity of the system model). If we assume that the exponent is approximately 1.7 then one can 
project the computational effort for mega systems, assuming that the observations for medium 
systems are valid for mega systems as well. The fear is that for mega systems, the sparsity 
properties of the equations may deteriorate (number of fill-ins may increase disproportionately 
with system size). The last issue not withstanding, a ten-fold increase in system size will result in 
a fifty-fold increase in computational effort. Another issue that we do not have data for is the 
number of iterations that the SE will need for convergence, in case of mega systems. All of this, 
point to the need for proper numerical experiments that will provide information for this topic. 
 
The above discussion assumes that we simply apply the traditional SE to the mega systems. 
There are alternative approaches while we maintain the traditional SE formulation. For example, 
the system may be partitioned and diakoptical techniques could be applied for the solution. 
Computational issues and convergence issues will remain the same but this approach will allow 
scheduling the computations on a distributed computer system. 
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7. Proposed Direction to Meet the Challenges 

To alleviate the sources of error, new measurement systems and estimation methods are needed. 
For example the first assumption can be met by utilizing synchronized phasor measurements 
[10,11]. Synchronization is achieved via a GPS (Global Positioning System) which provides the 
synchronizing signal with accuracy of 1 μsec. Assumption 2 can be met by utilizing three phase 
measurements. Finally assumption 3 can be met by employing full three phase models [6]. 
 
As shown from the numerical examples even by simple using three phase measurements of the 
power flows the improvement in the estimation quality is substantial, even though the model 
remained the same, and only the measurement set was improved, using data from all three 
phases. It is therefore expected that if, in addition to three phase measurement sets, synchronized 
measurements and three phase models are used, the performance of the state estimation 
algorithm will be very sufficient and reliable even for extremely large systems. 
 
The state estimation based on the previous assumptions is not subject to the usual biases of the 
traditional state estimation. The state estimation can be formulated as a linear state estimation 
problem that has a direct solution. This take care of the uncertainty of how many iterations will 
be needed for convergence in case of mega systems. It is expected that this system, because of 
lack of biases will have better bad data detection and identification. It is important, however, to 
add that the proposed system will need a new infrastructure that presently is not there. It is 
recognized that the industry is moving towards the sensorless technology at least in new 
substations. The step to go from sensorless technology to synchronized measurements is 
economically very short. Thus we believe that it may happen in the near future. 
 
It is important to recognize that quantification of the errors from the various sources of error in a 
control center environment with actual systems is very difficult due to the simultaneous presence 
of all errors. In addition other systematic errors may be present such as modeling errors, 
instrument calibration, etc. We propose a test-bed that is based on a high fidelity power system 
simulation tool. This tool is based on detailed representation of the system, for example all phase 
conductors, shield wires and grounding of transmission lines are explicitly modeled. The solution 
of this model represents a realistic operating condition of the system, including imbalances, 
asymmetries, etc. From this operating condition any measurement set can be generated with 
appropriately injecting measurement error. Single phase measurements, three phase (total) 
measurements, three-phase individual measurements, traditional set of measurements, phasor 
measurements, etc. can be generated or any combination of above list. The state estimation 
algorithm can be based on the three phase model or the positive sequence model, etc. In this way 
any possible approach to state estimation can be simulated and studied. By varying only one 
parameter in the scenario we can quantify the error from this parameter. The next sections 
present this approach. For flexibility the test-bed is based on a hybrid state estimation algorithm 
that permits the simulation of several approaches. The hybrid state estimator is described next. 
Typical numerical experiments with this test-bed are discussed later in the report. 
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8. Hybrid State Estimation 

The proposed test-bed is based on a flexible hybrid SE formulation. This is a combination of the 
traditional state estimation formulation and the GPS-synchronized measurement formulation, 
which uses an augmented set of available data. This set comprises of (a) traditional, non-
synchronized measurements (voltage magnitude, active and reactive line flows and bus 
injections, and other standard SCADA data) and (b) GPS-synchronized measurements of voltage 
and current phasors for each phase. Additionally, the hybrid state estimator can use a full three-
phase system model or a positive sequence model of the system. The measurement set may 
include any combination of three phase measurements and single phase measurements. Typical 
measurements are illustrated in Fig. 18 and Table 1. 
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Figure 18 Measurement definition for hybrid QPF-SE approach – three phase model. 

 
The state of the system is defined as the phasors of the phase voltages at each phase of a bus, 
including the neutral node. A bus k may have three to five nodes, phases A, B and C, possibly a 
neutral (N) and possibly a ground node (G). The state of the system at this bus is the node 
voltage phasors. The system model is a three phase model with explicit representation of the 
neutral nodes and ground nodes if present. A typical representation of a transmission line is 
shown in Fig. 19. For a four node bus, we use the symbols A, B, and C for the phase nodes and 
N for the neutral node. The states are defined as: 
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In compact form, the state for a four node bus k will be: 
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The voltages of all buses of the system form the system state. We will refer to this as the system 
state x. 
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Figure 19 Physically-based, three-phase transmission line model. 
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Table 1 List of available data for hybrid QPF-SE approach. 

TGPS-Synchronized Measurements 
Description Type Code 

Voltage Phasor, V~  
1 

Current Phasor, I~  
2 

Current Injection Phasor, injI~  
3 

Non-Synchronized Measurements 
Description Type Code 

Voltage Magnitude, V  4 

Real Power Flow, fP  5 

Reactive Power Flow, fQ  6 

Real Power Injection, injP  7 

Reactive Power Injection, injQ  8 

 
The measurements are related to the state of the system via the “model” equations and they are 
assumed to have an error that is statistically described by the meter accuracy. It is also important 
to note that normally measurements of neutral or ground voltages are not available. On the other 
hand, these voltages are very small under normal operating conditions. For this reason, we 
introduce one pseudo-measurement of voltage phasor for each neutral and ground node in the 
system. The value of this measurement is exactly zero. The “meter accuracy” for this 
measurement is assumed to be low. Typically a value of 10% is used. The measurement model 
equations for phase A are given below. Similar equations are given for phases B and C. 
 
Phasor measurements: 
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Pseudo-measurements for neutrals and grounds: 
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Non-synchronized measurements: 
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The hybrid estimation process minimizes the following objective function which includes all the 
available measurement data: 
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It is noted that if all measurements are synchronized, the state estimation problem becomes linear 
and the solution is obtained directly. In the presence of non-synchronized measurements and in 
terms of the above formulation, the problem is quadratic, consistent with the quadratized power 
flow. Specifically, using the quadratic formulation, the measurements can be separated into 
phasor and non-synchronized measurements with the following form: 

sss xHz η+=        (25) 

{ } ni
T

nn xQxxHz η++=      (26) 

In the above equations, the subscript s  indicates phasor measurements while the subscript n  
indicates non-synchronized measurements. The best state estimate is given by: 
 
Case 1: Phasor measurements only. 
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Case 2: Phasor and non-synchronized measurements. 

( ) { }⎥⎦
⎤

⎢
⎣

⎡

−−
−

+=
−+

ννν

ν
νν

xQxxHz
xHz

WHWHHxx
inn

ssTT
T

ˆˆˆ
ˆ

ˆˆ 11    (28) 

where: 

⎥
⎦

⎤
⎢
⎣

⎡
=

n

s

W
W

W
0

0
 and ⎥

⎦

⎤
⎢
⎣

⎡
+

=
qnn

s

HH
H

H .     

9. Visualization and Animation 

The data available from SCADA, GPS-synchronized measurements and state estimation results 
are overwhelming to system operators in the usual tabular reports of numerical values on a single 
line diagram. Recent efforts resulted in displaying power flow data in 2-D or 3-D visualizations 
of the data [12], [13]. Visualization methods are powerful in enhancing the comprehension of 
system operating conditions for users and system operators. It is important to use the same 
technology for the results of state estimators for the purpose of enhancing the information 
transfer. An effective visualization method will help users and system operators to identify 
problems with one glance at the displays. The types of information that is important are (but not 
limited to this list): 
 
1. Are all measurements good? Are there any bad data? 
2. Can I trust the computed real time model of the system? 
3. What is the true operating condition of the system? 
 
The answer to these questions can be quickly assessed with a number of displays. At the research 
level, we have generated a matrix of useful information. The selection matrix is shown in Figure 
2. Note that the user may select from a variety of quantities included the measurements, 
estimated values, residuals or normalized residuals. The quantities may be voltage magnitudes at 
any phase (or neutral), real or reactive power flow at any phase as well as electric current 
magnitude or phase at any phase of the system. The user may select a single quantity or multiple 
quantities and generate a visualization of this information in a 3-D or 2-D display. 
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Figure 20 Illustration of the selection matrix for visualizations. 

 

 
Figure 21 Example of visualization – Voltage magnitude (tubes) and phase (pies) errors. 

 

10. Hybrid State Estimation Approach – Numerical Experiments 

The proposed SE test-bed had been implemented and tested on the 500 kV TVA system shown 
in Fig. 22. The model includes the entire TVA 500 kV system and the transformers and 
autotransformers to the lower kV levels (mainly 161 kV and some 230 kV). The remaining 
system (beyond the secondary of the included transformers) is represented by equivalents. The 
system has 53 high voltage buses. The total number of nodes for this system is 1167 nodes. 
Visualization techniques are used in the implementation to facilitate the presentation and 
understanding of the results. 
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Figure 22 500 kV transmission system, TVA. 

 
Several scenarios have been studied via numerical experiments. Here we present three simple 
scenarios: 
 
Scenario 1: In this scenario it is assumed that the following measurements are available: (a) real 
and reactive power flow at the terminals of all circuits, all phases, and (b) voltage phasors of 
each phase at all buses. 
 
Scenario 2: In this scenario it is assumed that the following measurements are available: (a) real 
and reactive power flow at the terminals of all circuits, phase A only, and (b) voltage phasors of 
phase A at all buses. 
 
Scenario 3: In this scenario it is assumed that the measurement data are identical to those of 
scenario 1 except that a large error has been added to one datum (100 MW in one flow 
measurement). 
 
The measurement data for the above scenarios were generated numerically using a load flow 
program and stored in data files. Random errors were added to the generated data to simulate 
typical measurement errors. The added errors were uniformly distributed with a specified range 
(for this data a standard deviation of 0.5% was used for flow measurements and 0.02 degrees for 
phase of synchronized measurements). Subsequently the estimator was executed with the 
numerically generated measurement data in order to evaluate its performance. In all tested 
scenarios the estimator converged within two to four iterations with excellent results. 
 
Results of scenario 1 are illustrated in Figures 23, 24, and 25 in a visualization form. The 
visualization shows the phase residuals as pie-charts (magnified 100 times) and the voltage 
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magnitude residuals as tubes (magnified 10 times). Note that the errors are uniformly distributed 
and of very low magnitude for all phases A, B and C. The range of the errors is reported at the 
upper left corner of the display. 
 

 
Figure 23 Residuals of bus voltage magnitude and phase – Scenario 1, Phase A. 

 

 
Figure 24 Residuals of bus voltage magnitude and phase – Scenario 1, Phase B. 
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Figure 25 Residuals of bus voltage magnitude and phase – Scenario 1, Phase C. 

 
The results of scenario 2 are illustrated in Figures 26 to 28. Note that the errors for phase A are 
uniformly distributed and of relatively low magnitude. The errors for phases B and C (Figures 27 
and 28) are substantially greater. The source of these errors is the asymmetry of the system. It is 
important to point out that if the system was symmetric and balanced, there should not be any 
statistical difference in the residuals of phases A, B and C. Because of the imbalance and system 
asymmetries there is substantially greater (several times) residuals for the phases for which 
measurements are not available. 
 
Figure 29 illustrates the estimation results for the same measurement data set, but with an 
arbitrary error of 100 MW introduced in the MW flow measurement of one circuit. The 
visualization display shows both magnitude and phase errors. Note that at one location of the 
network both magnitude and phase errors are much higher than anywhere else. These increased 
errors clearly identify the two ends of the circuit with the “bad data”. It is important to note that 
100 MW for a 500 kV circuit is not a very large error. Yet the three phase state estimator with 
the visualization of Figure 29 clearly identifies the location of the bad datum. 
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Figure 26 Residuals of bus voltage magnitude and phase – Scenario 2, Phase A. 

 

 
Figure 27 Residuals of bus voltage magnitude and phase – Scenario 2, Phase B. 
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Figure 28 Residuals of bus voltage magnitude and phase – Scenario 2, Phase C. 

 

 
Figure 29 Residuals of bus voltage magnitude and phase – Scenario 3, Phase B. 
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11. Conclusions 

The conventional State Estimation (SE) has inherent biases resulting from biases in the 
measurements and biases in the power system model (imbalance and asymmetry of component 
models). We presented a discussion of the various sources of errors. We have not included the 
errors resulting from human errors in calibrating instruments or human errors in setting up the 
system model. We propose a test-bed based on a flexible hybrid state estimator and a high 
fidelity three phase power system simulator. The test-bed allows numerical experiments that 
identify and quantify the errors from the various inherent sources of error. 
 
Numerical examples have shown that just the use of segregated phase measurements of voltage 
and power flow (instead of total 3-phase flows) and a three phase model with the traditional state 
estimation approach results in substantial improvement in the estimate quality. Numerical 
experiments have also shown that additional GPS-synchronized measurements improve the 
performance of the state estimator. It is therefore expected that if, in addition to three phase 
measurement sets, synchronized measurements and full three-phase models are used, the 
performance of the state estimation algorithm will be sufficient and reliable even for extremely 
stressed large systems. 
 
The state estimation based on these enhancements is not subject to the biases of the traditional 
state estimation. If all measurements are GPS-synchronized, the SE problem can be formulated 
as a linear state estimation problem that has a direct solution. This will be a great advantage 
especially for very large systems. It is expected that this system, because of lack of biases, will 
have better bad data detection and identification. It is important, however, to add that the 
proposed system will need a new infrastructure that is not presently available. However, the 
industry is moving towards this direction. Today, many meters and monitoring equipment are 
GPS-synchronized and it is a matter of time that all power system equipment will have this 
capability. 
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