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Executive Summary 
 

 Most utilities have state estimators in the package of energy management systems. 
The main functions of state estimators are to represent steady state system voltage, cur-
rents, and power flows – utilizing mathematics to enhance the accuracy of measurements. 
In this report, the author examines how the new technology of phasor measurement units 
(PMUs) can be used to enhance state estimation in electric power systems.  
 A study and review of condition analysis for state estimation is presented in this 
report. Condition analysis is a linear algebra analysis of the sensitivity of the estimations 
error due to measurement error. The basis of the analysis is the evaluation of the error 
ellipsoid in the linear least squares formulation of the state estimator problem. The study 
reveals that decreasing the condition number of the gain matrix increases the accuracy of 
state estimates. Some other innovative concepts presented in this report include: singular 
distance – calculating the distance between matrix G and the closest singular matrix; 
scaling factor – viewing the largest singular value of matrix G as a condition indicator; 
and measurement placement using eigenvectors – the use of eigenvector of smallest ei-
genvalue to find placement of measurements. Linearized equations are developed to es-
timate the change in the condition indicators for the addition of a state measurement.  
 The analysis of condition indicators for PMU placement led to significant im-
provement of condition number of the gain matrix. Two test bed systems are used in this 
report: the IEEE 57 test bed and a representation of a power system in the southwest U.S. 
The test bed system representing the southwest U.S. power system is 180 buses, 245 
transmission lines, and 748 measurements. An algorithm is developed to use condition 
indicators as an additive tool to other sensory placement strategies. 
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1 State Estimators and Phasor Measurement Units 

1.1 Background and Motivation 

 The electric power industry is undergoing multiple changes and restructuring to-
wards deregulation. Some electric power utilities are increasing the loads on the trans-
mission grid to implement power marketing. The increased power exchange has a con-
comitant requirement for situational awareness. This refers to the need for system opera-
tors to know the operating states of the system.  
 Most utilities have state estimators in the package of energy management systems 
(EMS). Figure 1.1 is a pictorial of the major functions of an EMS. The main functions of 
state estimators are to represent steady state system voltage, currents, and power flows – 
utilizing mathematics to enhance the accuracy of direct measurements. Also, until re-
cently it has been nearly impossible to measure voltage and current phase angles but state 
estimation algorithms allow one to calculate these phase angles from voltage magnitude, 
current magnitude, and power measurements. There are several topics in state estimation 
being studied to improve the accuracy of the state estimation in power systems. In this 
report, the author examines how the new technology of phasor measurement units, a 
global positioning system (GPS) technology, can be used to enhance state estimation in 
electric power systems.  
 Phasor measurement units calculate the phasors of voltage and current from sec-
ondary side of current transformers and potential transformers. A growing number of 
power system protective digital relays are being introduced to the market with the ability 
to be used as phasor measurement units in addition to their protective relaying function. 
As phasor measurement unit technology becomes widely available; the electric utilities 
may want to use this technology as direct measurements in state estimation. Present 
communication methods from the energy management system to the substations may not 
provide enough bandwidth for phasor measurement units to send all measurements to the 
control center. Utilities want to know the cost to benefit ratio of adding PMUs as part of 
an assessment of investment in upgrading substation communications.  
 This report addresses state estimation enhancements attributed to phasor meas-
urement units and how to use certain properties of the linear algebraic formulations to 
assess the performance of proposed locations and number of added measurements. 
 
1.2 State Estimation Literature Review 

 Schweppe was one of the first to formulate static state estimation for a power 
network based on the power flow model [1]. The idea is to estimate the electrical states of 
the power network, mainly voltage magnitudes and phase angles. These states might not 
be directly observable based on physical relationships between the measurements and the 
desired unknown states. References [2-5] are textbooks relating to state estimation in 
power engineering; references [6-9] are representative of solutions methods; and [10, 11] 
are case studies. 
 An important element in the field of state estimation accuracy is the use of a 
weight matrix to increase the accuracy of the results. Weighting is done to enhance the 
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“input” of accurate measurements, and de-emphasize the less accurate measurements. It 
can be shown that the maximum likelihood estimate utilizes weights that are based on the 
covariance of the measurement devices [12]. Weighting is the practice of accounting for 
the confidence in a measurement. Over time, the confidence in a measurement may 
change. A solution to this problem is to auto tune the weights of measurements. The sug-
gested method of auto tuning the weights is to examine the recent statistical variances of 
the measurements and use these to recalculate the weights of measurements from a short 
history [13]. For the case of multivariable normal statistical distribution of measurement 
errors, this selection of weights is known to result in a maximum likelihood state esti-
mate. References [2, 3, 5-8, 12, 14] further relate to weighting of measurements for 
power system state estimation. Table 1.1 presents weights used in power systems state 
estimation. 
 
 

 
Figure 1.1 Main features of a modern EMS 
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Table 1.1 Typical weights for measurements used in power system state estimation 

Type of Measurement Typical Weights 

Power flow and injections (P,Q) 10.00 

Voltage Magnitude (|V|) 10.00 

Current Magnitude (| I |) 0.001 

Transformer Tap Settings 0.010 

 
 Measurement errors are typically assumed to be statistically distributed with a 
zero mean [15]. Due to increase use of technologies such as A/D converters, the zero 
mean assumption is not always true [15]. A suggested method of overcoming this prob-
lem is to combine measurement calibration [16-19] with state estimation. Calibration of 
the measurements can be done in parallel with state estimation by noting the error of 
measurement over several scans of the measurement. The calibration error will be a con-
stant compared to measurement error which is normally distributed according to [19]. 
 The process of overcoming measurement noise is inherent in taking physical 
measurements, but there are situations in which the data is grossly erroneous. One 
method for the detection of bad data, grossly erroneous data, is the examination of the 
measurements and if the measurements deviate from expected values by some preset 
threshold [10]. Another problem that causes state estimators inaccuracy is the power sys-
tem model uncertainty. Generally the simple linear model Hx=z is used where the H is 
the measurement model (process matrix), x is the state vector, and x is the measurements. 
The detection of both erroneous data in measurements and the process matrix uncertainty 
may be done by examining the residual of the equation Hx=z [12]. Another ‘error’ in the 
process matrix is a result of linearization. Since the process matrix is truly a function of 
operating state, H=h(x). The linearization of the problem results in the assumption of that 
h(x) is simply a constant matrix H. As the iterative process of state estimation proceeds, 
h(x) is linearized to Hx with fixed H within iterations. Matrix H is updated, however, 
from iteration to iteration. 
 
1.3 The Pseudoinverse and Least-Squares Estimation 

 The commonly used model for a linear static system is 
  Hx+e=z (1.1) 
with H as the process matrix (m by s matrix), x is the state vector (dimension s),  z is the 
measurement vector (dimension m) is over determined when m is larger than s, and e is 
the error vector (dimension m) which is assumed to have a mean zero and normal distri-
bution for each measurement. References [2-5, 20] describe Equation (1.1). Equation 
(1.1) can be “solved” in the least-square sense by minimizing ||r||2, 
  r=Hx+e-z (1.2) 
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where || ● ||2 refers to the 2-norm [4]. Properties of norms appear in [4] and Appendix B. 
It can be shown that || r ||2 is minimized when 
  zHxx +== ˆ .  (1.3) 
The notation x̂  is the “estimate” of vector x, H+ pseudoinverse of H. References [2-5, 20] 
describe the properties of the pseudoinverse. Equation (1.3) is known as an unbiased least 
squares estimator.  
 Other methods of determining the state variables are under study. One such 
method is weighted least absolute value [21]. This method uses the infinite norm of the 
residual, || ● ||∞; the maximum absolute value in the residual vector is used. Unlike 
weighted least squares, there is no explicit formula for the solution to linear weighted 
least absolute value. The weighted least absolute value is found by linear programming 
[21]. Another method suggested is to find the maximum agreement with measurements 
[14]. This method uses the 1-norm of the residual, || ● ||1. In the 1 norm the average abso-
lute values in the residual vector is used [14].  
 The least squares method of state estimation requires the system to be observable. 
Observablity can be defined as: given a set of measurements and their locations (i.e., 
given z and H), then a unique estimate of the system state vector x, i.e. x̂ , can be found 
such that the 2-norm of the residual vector, ||r||2, is minimized. A basis of observability 
analysis is graph theory. To determine which states are unobservable, set the measure-
ment vector, z, to zero,  
  0ˆ =xH . 
In the context of electric power systems, this yields a non-zero branch flow, 
  0ˆ ≠= xAPb . 
The A matrix, i.e. the branch-bus incidence matrix, is used to determine Pb, the vector of 
branch flows. Because the measurement set z is set to zero, it is expected that no power 
flowing through the branches. A non zero branch flow indicates an unobservable state of 
x̂  and those branches carrying nonzero power flows, will be referred to as unobservable 
branches [5]. The common technique in correcting the issue of unobservable areas is to 
provide an estimate of what the readings are in the unobservable areas to create an entire 
system model [22]. Other references discussing observability are [23-26]. 
 Numerous other topics are discussed in the literature relating to state estimation in 
power systems including robustness [14, 27, 28], multiphase state estimation [29], and 
distributed computing [30].  
  
1.4 Phasor Measurement Units Literature Review 

 Phasor measurement units (PMUs) are instruments that take measurements of 
voltages and currents and time-stamp these measurements with high precision. PMUs are 
equipped with Global Positioning System receivers. The GPS receivers allow for the syn-
chronization of the several readings taken at distant points [31]. To accomplish synchro-
nization of measurements taken at distant points, several measurements are taken, and the 
measurements are time stamped. Interpolation is used to obtain estimates of measure-
ments at a given time within the time horizon of the measurements. PMUs were devel-
oped from the invention of the symmetrical component distance relay (SCDR). The 
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SCDR development outcome was a recursive algorithm for calculating symmetrical com-
ponents of voltage and current [32]. Synchronization is made possible with the advent of 
the GPS satellite system [33]. The GPS system is a system of 36 satellites (of which 24 
are used at one time) to produce time signals at the Earth’s surface. GPS receivers can 
resolve these signals into (x, y, z, t) coordinates. The t coordinate is time. This is accom-
plished by solving the distance= (rate) (time) in three dimensions using satellite signals. 
The PMU records the sequence currents and voltages and time stamps the reading with 
time obtained by the GPS receiver. It is possible to achieve accuracy of synchronization 
of 1 microsecond or 0.021° for 60 hertz signal. This is well in the suitable range of meas-
uring power frequency voltages and currents [32]. The basic distance-rate-time formula-
tion of this problem is “solved” using state estimation. That is, a least squares problem 
formulation is used to find {x, y, z, t} which makes the distance-rate-time equations agree 
in the least squares sense. A minimum of four satellite readings are needed to obtain an 
observable problem to calculate {x, y, z, t}. Most PMUs have the ability to receive signals 
from at least ten satellites (i.e., ten channel receivers). Based upon the research done at 
Virginia Tech, the Macrodyne Company was able to begin production of PMU devices 
which led to the IEEE Standard 1344 “Sychrophasor” which defines the output data for-
mat of a PMU [32]. Figure 1.1 is a pictorial of PMU measurement system from [34]. 
 

 

Figure 1.2 Conceptual diagram of a synchronized phasor measuring system 
redrawn from [34] 
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 The calculation of the phasor measurement can be done using discrete Fourier 
transforms. A sinusoidal quantity representing voltage     
  )cos()( δω += tVtv m    
has a phasor representation  

 δjemV
V

2
= . 

By sampling v(t) every τ seconds, the total duration of the ensemble of samples is T=kτ. 
The discrete Fourier transform of v(t) is 
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where ΔΩ=2π/Nτ, and N is the number of samples in one period of the nominal power 
system frequency [35]. 

PMUs measure voltage and current with high accuracy at a rate of 2.88 kHz. It 
can calculate watts, vars, frequency, and phase angle 12 times per 60 hertz cycle. The ac-
tual sampling rate used to achieve this output is 1.4 MHz [36]. Some examples of uses of 
PMUs are fault recording, disturbance recording, and transmission and generation model-
ing [36]. 

PMUs are able to measure what was once virtually immeasurable: phase differ-
ence at different substations. With PMUs, the utilities are able to measure voltage phase 
angle. 

The integration of PMUs could be into state estimation has been discussed in the 
literature [19, 37-45]. There is a school of thought that the measurements from the PMU 
are far superior of SCADA data used in traditional state estimation and should be col-
lected and used separate from this data [46]. Others admit there is difference in the in-
formation and it is viable to use PMU measurements in with SCADA data [47]. Hydro-
Quebec believes that the PMUs are accurate enough to not need correlation between 
PMU measurements. Their algorithm is to place the PMUs based on the buses which 
minimize the correlation between measurements between proposed PMU locations and 
present measurement locations [48]. An dramatic improvement in the state estimate has 
been seen by using a three-phase model and the use of GPS synchronized measurements 
[49]. 

With increased need for area multi-area of state estimation, there has been noted 
the possibility of the increased error in the state estimate as the size of systems grows 
[15]. PMUs are being investigated as a solution to this problem. The electric utilities in 
the regional transmission organization (RTO) would still do their state estimation. The 
RTO receives the results from the various state estimates of the areas under its control 
and PMU measurements from boundaries between electric utilities. The individual state 
estimators do not interact or exchange data with other state estimators. This allows for 
each estimator to have its own unique algorithm and not effect performance of other area 
estimators [41].  
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 The Eastern Interconnect Phasor Project (EIPP) was created encourage the use of 
advanced metering technology in the eastern interconnect. The primary technology fo-
cused on is PMUs. The Eastern Interconnect Phasor Project (EIPP) is divided into two 
stages. The near term goal is to use the expertise and equipment developed with sponsor-
ship from the U.S. Department of Energy to deliver immediate value to project partici-
pants in the eastern interconnect. Most of the existing expertise involves off-line analysis 
and is supportive of planning activities. The long-term goal is to add value to the inter-
regional information system and measurement system using PMUs [50].  
 
1.5 The IEEE Standard for Synchrophasors for Power Systems 

 The IEEE has recognized the need for standards for PMUs, also known as syn-
chrophasors. The first standard for PMUs, IEEE 1344 [51], was written in 1995. The 
drafting of a standard for PMUs is, perhaps, documentation that PMUs are expected to 
occupy a significant role in power systems instrumentation. A working group was formed 
in January 2001 to create a new standard for PMUs, IEEE C37.118 [52]. The updated 
standard provides clarification for phasor and synchronized phasor definitions. The stan-
dard defines synchronized phasor measurements in substations so that the measurement 
equipment can be readily interfaced with associated systems. Table 1.2 lists the major 
contents of the updated standard. 
 To allow for integration of PMUs with other equipment, the standard provides 
common data format for exchanging information with PMUs. The data for time meas-
urement shall consist of second-of-century (SOC) counts, fraction of second count, and a 
time status value. The SOC count is the number of seconds since the calendar time from 
midnight January 1, 1970. The accuracy of the time stamp required is ±1μs. The maxi-
mum phase time error allowable is 26 microseconds. Table 1.3 shows all the limitations 
imposed on the PMU. 
 
1.6 The Migration from Wide Area Measurements to Wide Area Control 

 Wide area measurement systems (WAMS) are instrumentation infrastructures that 
span a wide geographic area (e.g. typically several control areas and potentially several 
operating companies). Under WAMS, the time required to transmit the sensory informa-
tion (latency) back to the central control center is significant compared to the dynamics of 
the measurement. The latency for a measurement sent via satellite can be as high as 250 
ms, and up to 100 ms for a signal sent using a 4800 bits/s modem [53].  
 Because of the latency issue under WAMS as well as in wider are control systems 
(WACS), PMUs offer time stamp measurements. PMUs allow several different state es-
timations to be integrated into a complete set of state estimates of an area [54]. In the de-
regulated market, the system operational conditions may change quickly and dynamic 
power flow patterns appear to the system operator [55]. Reference [56] discusses the abil-
ity to capture system dynamics using WAMS in the case of the North East blackout of 
August 14, 2003. A conclusion is that WAMS offer better characterization than digital 
fault recorders. The real need for capability to capture dynamic system data relates to sys-
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tem control (i.e. WACS). Control signals need to be sent within one cycle of the distur-
bance to effectuate system control [57]. 
 

Table 1.2 Main contents of IEEE C37.118 
(taken directly from [52]) 

Body of Standard Appendices 
• Synchrophasor measurement 

o Definition of phasor and synchrophasor  
o Measurement time tag  
o System time synchronization 

• Synchrophasor measurement requirements and 
compliance verification  
o Synchrophasor estimation 
o Accuracy limits 
o Compliance verification  

• Message format  
o Message application 
o Message framework 
o Data frame 
o Configuration frame 
o Header frame 
o Command frame 

• Cyclic redundancy 
check codes 

• Time tagging and tran-
sient response 

• Message examples 
• Sources of synchroniza-

tion 
• Time and synchroniza-

tion communication 
• Benchmark tests 
• TVE evaluation and 

PMU testing 
• Synchrophasor message 

mapping into communi-
cations 

 
 

Table 1.3 Influence quantities and allowable error limits for compliance levels 0-1 
(taken directly from [52]) 

Range of influence quantity change with respect to refer-
ence and maximum allowable TVE in percent (%) for 
each compliance level 

Level 0 Level 1 

Influence 
quantity 

Reference 
condition 

Range TVE (%) Range TVE (%) 
Signal frequency fnominal ± 0.5 Hz 1 ± 5 Hz 1 
Signal magnitude 100 % rated 80 – 120% 

rated 
1 10 – 120% 

rated 
1 

Phase angle 0 radian ± π radians 1 ± π radians 1 
Harmonic distor-
tion 

< 0.2 % 
THD 

1% any har-
monic up to 

50th 

1 10% any 
harmonic up 

to 50th 

1 

Our band of inter-
fering signal, at 
frequency fi, where 
|fi – f0|>fs/2,  
fs= phasor report-
ing rate, f0=fnominal 

< 0.2 of in-
put signal 
magnitude 

1% of input 
signal mag-

nitude 

1 10% of input 
signal magni-

tude 

1 
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 Figure 1.3 is intended to depict the roles of measurements versus control. With 
WAMS becoming increasingly used, researchers have begun examining the concept of 
(WACS). Some potential elements of WACS are depicted in Figure 1.3. Such studies in-
clude the use of WAMS to control power system stabilizers [58, 59]. Other system stabil-
ity controls are being researched also as seen in [35, 55, 60]. 
 

 

Figure 1.3 Pictorial of the transition of WAMS to WACS 

 
1.7  Placement of Phasor Measurements 

 Power engineers have been looking at how to use PMUs to monitor and character-
ize the electrical transmission network. The PMUs have been implemented as a source of 
information to detect faults on transmission lines [33]. One method to examine locations 
to install PMUs is to make the system more observable. This starts with a spanning tree 
and looks for areas of the system which are unobservable [61]. In the approach presented 
in [61], the next step is to impose certain criteria on the search of the proper placement 
for the PMUs. In [62], three methods that have been examined are the modified simulated 
annealing method, direct combination, and the tabu search algorithm. All three were ex-
amined on the IEEE 14, 30, and 57 bus systems and the results show that the proposed 
methods can find the optimal solution in an efficient manner. Another method for deter-
mining the optimal placement of the PMU is to do a genetic algorithm search [63]. The 
authors of [64] suggest that a genetic search is the best because the two solution criteria 
may be in opposition to each other. In this case, criterion one is to maximize the redun-
dancy and observable area of system. Criterion two is to minimize cost of the installation 
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[64]. Figure 1.2 is a pictorial that conceptualized the use of PMUs in state estimation 
measurements for increased observability. Another method suggested by [65] for finding 
optimal placement of PMUs for making the system observable is integer programming. 
Another paper [46] argues there should be more criteria added to the optimal placement 
of PMUs. These criteria include the examination of the placement of the devices to best 
observe the system stability.  
 Another index and general philosophy being used to find the optimal location of 
PMUs relates to the use of the condition number of the measurement matrix [66 - 68]. An 
algorithm for finding a measurement matrix with a small condition number was sug-
gested by [66]. The algorithm creates a measurement matrix of all possible measure-
ments. Subsequently each measurement is removed individually and the condition num-
ber of the measurement matrix is computed. The measurement removed this iteration is 
the measurement associated with the smallest condition number. This process is contin-
ued until the system is critically determined [66]. A later suggestion was to use the mini-
mization of the condition number for harmonic state estimation [69]. 
 

 
Figure 1.2 Pictorial expanded observability using PMU measurements 

 Measurement placement problems are not unique to PMUs. Another technology 
for placement algorithms relates to remote terminal units. One search method used for 
placement of remote terminal units is the heuristic search. Step one of a heuristic search 
is to create a measurement configuration that minimizes the number of measurements 
needed for the system to be observable. Then the configuration is optimized by minimiz-
ing the constrained number of remote terminal units used [70]. Another placement algo-
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rithm for remote terminal units suggests that the system should be observable when one 
or two measurements are lost including remote terminal measurements [71]. 
 
1.8   Format of This Report 

 Chapter 1 is an introduction to state estimation and phasor measurement including 
literature review of recent advances in these fields of study. Chapter 2 contains the theo-
retical basis of sensory placement for state estimation. Chapter 3 contains case studies 
implementing theory presented in Chapter 2 about condition indicators. Chapter 4 con-
tains a description of a novel tool to evaluate loss of measurements, the measurement 
outage table. Chapter 5 discusses case studies using utility operated electric power sys-
tem. Chapter 6 contains conclusions and recommendations. 
 Appendices are used to supply supportive information: 
  Appendix A: Details of the examples used in this report  
  Appendix B: Examples of condition indicators on first iteration 
  Appendix C: Electrical connection data of System 2  

Appendix D: Examples of Matlab script used in the research of this report 
  Appendix E: Results from Examples 11, 13, 14, and 16 
  Appendix F: The impact of weighting measurements on System 2. 
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2 The Foundations of State Estimation Sensory Placement 

2.1 Phasor Measurement Units for Power System State Estimation 

 The increasing availability of PMU devices has caused increased interest in using 
PMUs as sensory input for state estimation. Not all PMUs installed can be used in state 
estimation because of system limitations (e.g., the bandwidth of the SCADA system 
measurements from remote substations and format and protocol inconsistencies). Further, 
company A may wish to place additional instrumentation in company B’s system, and 
this issue may be problematic. When a power company is examining how to upgrade the 
system to allow for PMUs to be used for state estimation, one question that is asked is 
how incorporating this measurement into the state estimation affects the accuracy of the 
estimates. The answer relies on where the new PMU measurements are in the system. 
This report examines methods for determining the placement of PMUs for increasing the 
accuracy of the estimates. 
 
2.2 The Method of Least Squares 

 A usual approach to the state estimation problem is to approximate h(x)+e=z by 
the linear term in the Taylor series expansion, 

( ) ( ) exx
dx

xdhxhz
x

++−+= K00
0

)( , 

to 
 z = H(x-x0) + zo+e (2.1) 
H is the process matrix dimensioned (m x s), x is the state vector dimensioned (s), z is the 
measurement vector dimensioned (m), and e is the noise vector dimensioned (m). Equa-
tion 2.1 is the linearized form. In state estimation it assumed that the system is over de-
termined, meaning there are more measurements than states. The problem becomes how 
to find the best fit between measurements z+e and states x. In the least squares approach 
idea is minimize the difference L2

 norm of the residual,  
 xHzr ˆ−=  (2.2) 
 ( ) ( )zHxzHxr t −−=2

2
. (2.3) 

To minimize Equation 2.3, take the derivative, which results in Equation 2.4. Then sim-
ple algebra is used to separate the best estimate of x, namely x̂ ,  

 zHxHH
x
r tt

xx

−==
∂

∂

=

ˆ0||

ˆ

2
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 zHxHH tt =ˆ  

 ( ) zHHHx tt 1ˆ −
= . (2.5) 

The formulation in (2.5) is valid only when HtH is nonsingular. There are two notable 
terms in Equation (2.5): the (HtH)-1Ht term also known as the pseudoinverse and the gain 
matrix G, 
 HHG t=  (2.6) 
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 ( ) ttt HGHHHH 11 −−+ == . (2.7) 
The notation H+ refers to the pseudoinverse [2-5]. 
 A drawback of the least squares approximation is that the all the measurements 
are treated with the same weight. This procedure is unbiased. This implies that all the 
measuring tools are measuring with the same accuracy and precision. In power engineer-
ing, this is rarely the case. A term is added to the least squares formulation to provide 
emphasis for accurate measurements. The matrix W is m by m is used to weight or em-
phasize the accurate measurements. The weighted residual is ( )ZHxW − . It can be 
shown that if, the measurement noise is Gaussian with zero mean and the W matrix is the 
inverse of the covariance matrix of the measurement noise, the maximum likelihood solu-
tion is obtained [3], 
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 ( )zHxWr −=  (2.9) 
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Equation (2.9) is the weighted residual equation. Moving the W  inside the parenthesis, 
a formulation similar to the unbiased case is found. To find x̂  that minimizes ||r||22, take 
the derivative,  

 ( ) ( )zWHxWzWHxW||r||
t2
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  ( ) zHHHx t ′′′′=
−1ˆ . (2.12) 

 There is a caution in the use of the symbolism W . Because there are several dif-
ferent matrices B that satisfy 
  WBBt =  
(i.e., there are several ‘square roots’ of the matrix W), the notation W  is ambiguous. 
Let the term “symmetric positive definite matrix” refer to a symmetric matrix with all 
positive real eigenvalues. Since W is a covariance matrix, it is the form ( )tzzE , and all 
covariance matrices are positive definite [72], there are exists a unique symmetric posi-
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tive definite B such that WBBt = [20]. Hence the notation W  will refer to that unique 
symmetric positive definite B such that WBBt = . 
  
2.3 State Estimation Accuracy 

 The weighted least squares method of state estimation is as accurate at the meas-
urements and the model used. The measurements are being projected onto the mathe-
matical model of the system. If there is no error in the measurements, then the measure-
ments lie on the surface described by the equations of the mathematical model of the sys-
tem. When there are errors in the measurement then the weighted least squares solution 
minimizes the distance from the point of measurement to the surface as seen in Figure 
2.1. 
 

 

 

 

 

 
 
 
 
  
 

 

 

 Figure 2.1 Projection of z onto H 

 
 The constraint given by [68] of the Lp norm of the residual is  
  ( )

ppp
eHKr ≤  (2.13) 

where are 
p

r is the Lp norm of the residual and e is the vector of error in the measure-

ments and Kp(H) is the Lp condition number of the process matrix, H. The condition 
number of a square nonsingular matrix A is (2.14) and Table 2.1 is a list of properties of 
matrix norms, from which,  
  ( )

ppp AAAK 1−= . (2.14) 

 

r = Residual Vector 
z = measurement vector 

H = process matrix 
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Table 2.1 Matrix norm properties  
(taken from [73]) 

Eigenvalues of Matrix A A
A

≤≤
−

λ
1

1  
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 The matrix HtH is also called the gain matrix G. The gain matrix is of dimension s 
by s and G is symmetric. The calculation shown in (2.5) is closely related to the condition 
number of matrix G (the condition number KG of G, using the 2-norm, is defined as the 
scalar ||G||2||G-1||2 where ||.||2 denotes the 2-norm [20]). As shown in [74], the sensitivity of 
the estimate of x to noise is improved (i.e., lessened) when KG is small, and the sensitivity 
is worsened (increased) when KG is large. Typical threshold values of KG in state estima-
tion applications, beyond which designers of the state estimator become concerned, are 
about 105. 
 The eigenvalues of G are equal to the singular values of G in this application 
when the G matrix is nonsingular; and the ratio of the largest to smallest eigenvalue of G 
is the condition number of G,  

 KG = 
11 σ

σ
λ
λ ss =  (2.15) 

where σλ,  denote the eigenvalues and singular values of G respectively, and subscript 
s refers to the largest eigenvalue and singular value, and subscript 1 refers to the smallest 
values. Because G is symmetric, nonsingular, and real, the λ and σ values are all positive 
and real. The ordering of λ and σ is of ascending order. Throughout this report, the condi-
tion number based on the 2-norm shall be used because of its convenience and connection 
with the power engineering state estimation problem solved by minimum least squares; 
however, it is possible to use other norms (e.g., 1-norm and infinite norm). 
 
2.4 The Singular Distance and Scaling Factor 

The foregoing remarks focus on conventional thoughts in contemporary state es-
timation technology. As an example, the state estimation performance connection with 
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the condition number KG has been discussed in the literature [20, 40, 74, 75]. At the junc-
ture, the use of indicators such as KG is expanded to several innovative measures. 

It is clear that the gain matrix G has a substantial impact on the state estimator re-
sponse to measurements and measurement noise and error. Inspection of (2.5) indicates 
that G = HtH should be as ‘far from’ singular as possible. With this as motivation, define 
the ‘distance’ from G to the nearest singular matrix S as d, 

 d = 
S

min ||HtH – S||2 

where the minimum is taken over all possible singular matrices S. Then d is the ‘distance’ 
from the gain matrix G to the nearest singular matrix, and this is termed here as the singu-
lar distance. It can be shown that the singular distance d is equal to the smallest singular 
value 1σ . Therefore  

 1σ
λσ

===
G

s

G

s

KK
d . (2.16) 

Again, recall that the eigenvalues and singular values are all positive and real, and or-
dered as sλλλ ≤≤≤ ...21  and ....21 sσσσ ≤≤≤  At the other end of the singular spectrum 
or eigenspectrum are the values ss λσ , . These quantities may be interpreted as scaling 
factors which need to be reduced in order to decrease the generalized concept of gain 
from z to .x̂  For this reason,  ss λσ ,  are termed the scaling factor F,  
 F = .ss λσ =  (2.17) 
Then, 

F = dKG . 
 

It is desired to make the singular distance as large as possible to improve the state estima-
tor response. Similarly, it is desired to make the scaling factor as small as possible. 
 The condition indicators F, KG, and d are proposed as tools to assess the number 
and placement of PMUs in a power system state estimation. 
 
2.5 Augmenting State Estimation Software with PMU Hardware 

 PMUs use A/D converters to create measurements of time, active power, vars, 
frequency, current, and voltage. PMUs take as many as 12 measurements per 60 Hz cy-
cle, and then approximating the best curve to fit the sample set. The PMU reads in data at 
the rate of 1.4 MHz [36]. Synchronous time signal received from GPS is accurate with in 
1 microsecond or 0.0012° per 60 Hz cycle [32]. The accuracy of the PMU data is also 
dependent on the errors of current transformers and potential transformers [76 – 77]. The 
accuracy obtained of the measurements of PMU devices is at least five times greater than 
the accuracy of measurements obtained from SCADA devices measuring active and reac-
tive power. 
 The process of finding the phase angle using a PMU is a set of state estimations. 
The determination of time using GPS is computed from the synchronized time signals 
being sent from the satellites. To determine time there must be at least four satellite sig-
nals being received because three other states (x,y,z) are also being determined. The GPS 
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unit receives time signals from the satellites and using distance equations shown in Fig-
ure 2.2. The receiver performs an iterative estimation process to determine the most 
likely (x,y,z,t). 
 

 

Figure 2.2 A representation of GPS system of a PMU 

 
 After an accurate time is calculated, a phase angle is determined by sampling the 
voltage or current signal. The PMU is able to record 2,880 measurements per second, 48 
measurements a cycle, meaning measurements are estimated using only data samples 
from only part of the cycle as seen in Figure 2.3. The distance between samples is exag-
gerated for purpose of clarity. 
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Figure 2.3 Illustrative noisy voltage signal and PMU samples 

  
 The measurements of voltage phase angles by PMUs are considered much more 
accurate than those made by other measurements in the system. Presently there are no 
other methods of directly measuring phase angle. Another advantage of PMU measure-
ments over SCADA measurements is that PMU measurements have an accurate time 
stamp of when measurements were taken. This allows for synchronizing of PMU meas-
urements that may be reported to EMS at different times and at diverse locations.  
 
2.6 Location of PMUs 

 PMU placement can be done using several different criteria including security 
concerns, observability, and improvement in state estimation. In this report the criterion 
used to determine the location of PMUs will be improvements in the state estimator per-
formance. The improvement in state estimation can be further broken down into two 
parts: increase in accuracy; and robustness of the state estimator.  
 The residual vector is typically used to determine the fit of the measurements to 
the model in power system state estimation. The residual is used because when state es-
timation is being conducted for an actual system, the ‘true’ values of the states are not 
known. The residual vector as discussed earlier is xHzr ˆ−= . It is convenient to use the 
2-norm of the r as an index of the agreement of the measurement equations, 
  2

2
rrr t= . 

At the solution, 
  xHzr ˆ−= . 
 In this study, it is possible to examine the deviation of x̂  from the “exact” value 
of x. Normally this comparison is not possible but because of the use of test beds with a 
known solution, it is possible to use normalized error, NE, to assess the accuracy of x̂ , 
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2

2
ˆ

exact

exact

x
xx

NE
−

= .  

The normalized error has benefits for comparing direct substitution to weighted least 
squares. The normalization permits comparison of residual norms for residual vectors of 
different dimensions. Table 2.2 shows the various measurements of error. 

 
Table 2.2 List of various measurements of error in the state vector 

Normalized Error 
2

2
ˆ

exact

exact

x
xx

NE
−

=  

Norm of the Residual 22
x̂Hzr −=  

Weighted Residual Norm 
22

x̂HWzWrw −=  

RMS of Residual 2
ˆ1 xHz

m
Rrms −=  

 
 As discussed in Section 2.3 the minimization of the condition number of the G 
matrix can provide a location for PMU placement. Having a G with a smaller condition 
number will result in state estimator that will provide more accurate results when noise is 
present in the measurement vector. The work done in [78] resulted in a determination of 
the condition number for a radial system with only power flow measurements and lines of 
unit reactance. The condition number can then be computed as 
  ( ) ( )121 += nnHK  (2.18) 
where n is the number of buses in the system and K1(H) is the condition number of the H 
matrix using the 1-norm. Thus, as the number of buses in the system increases, so does 
the condition number. Reference [78] also presents a method for finding the condition 
number of radial system with only power injection measurements.  
 Another paper, [74], examines what would happen to condition number as power 
measurements are replaced by PMU measurements in the radial case. The results of [74] 
were that with proper weighting of the measurements, the condition number could be de-
termined as function of number of PMUs and number of buses. The weight given to 
power measurements is the inverse of power error variance, Rp. The weight given to volt-
age measurements including PMU measurements is the inverse of voltage error variance, 
Rv. Let μ be the number of PMU buses, n be the number system of buses. If 

  
vp RR

14
<  

and  

  
( )( )

2
1+−−

<
μμ nnR

R p
v , 

then the condition number is 
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+−−
=

μμ
. (2.19) 

Note that the foregoing focused on the radial system configuration. Figure 2.4 is a 
graphic that depicts the “spectrum” or the degree of networking of a system. The fully 
networked case (i.e., all the buses connected to all other buses) is shown to the right of 
Figure 2.4 and fully radial systems are to the far left of Figure 2.4. “Real” networks lie in 
between these extremes. 
 It can be shown that a similar equation to (2.18) is valid for the fully networked 
system. Equation 2.20 give the condition number of the fully networked system as it re-
lates to the number of buses in the system,  
  ( ) 321 −= nHK . (2.20) 
Note that (2.20) is linear compared to the quadratic form in (2.18) and that the fully net-
worked system condition number is always smaller than the radial system of the same 
size (for systems of unit line reactance). The condition number of a “real” system will be 
in between values found using (2.18) and (2.20). 

 
Actual power system

Spectrum of Networking

Fully Radial Fully Networked

 
Figure 2.4 “Spectrum” of the networking extremes of electric power systems 

 

2.7 Small World Theory 

A small world network is a network of graph for which most nodes are not 
neighbors to one and another, but destination nodes can be reached by following a small 
number of branches. To be classified as a small world network the network must be 
sparse, 

 ( )
2

1+
<<

NodesNodesEdges . 
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The system must not be considered fully networked [79]. The system nodes must all be 
connected by at least one path. Structural properties of small world networks are path 
length, L(p), and clustering coefficient, C(p) [79]. The global average path length is  

 ( ) ∑
≠∈−

=
jiGji
ijd

NodesNodes
GlobalL

,,)1(
1 , 

where dij is the shortest path between 2 nodes. The average clustering coefficient for the 
entire network is  

 ( ) ∑
∈

=
Gi

iC
Nodes

GlobalC 1 , 

where Ci is the ratio of the number edges connecting bus i to neighbors to the number of 
possible edges connecting to neighbors of bus i. The western area power system is stud-
ied to see if it was a small world network [80]. Table 2.3 displays the small world meas-
ures of the Western Electricity Coordinating Council (WECC). The random case used for 
comparisons is using the same amount of nodes, i.e. buses, and same amount of branches 
connected to each bus, but randomly choosing the nodes that the branches connect [80]. 
The power grid shows small world characteristics of average length, L, of path being lar-
ger than the random length of path and clustering coefficient, C, being much larger than 
the random clustering coefficient. 
 

Table 2.3 Small world properties of the WECC system 

 Actual grid Randomly connected nodes 

L(G) 18.7 12.4 

C(G) 0.080 0.005 

 
 Other famous small world networks include neural network of a worm, spread 
disease, and telecommunication networks [79, 80]. In all of the examples of small world 
networks studied, including the western area power system, the system was found to be 
robust to the failure of a vertex. The probability of catastrophic events in the system be-
ing caused by the loss of a single vertex is minimal [80].  
 The power system is monitored by a network of sensors traditionally measuring 
voltage magnitude and power. The communication between the sensors on the system 
and the control center can be either by wireless communications or dedicated wired 
communication channels, e.g., dedicated phones lines or fiber optic cables. Assuming, the 
wired communications paths follow the transmission paths. Then communications net-
work of sensors using wired communication channels can be considered a small world 
network. It is stated in [80] that small networks are: 

• less subjected to signal congestions 
• more robust in cases of path failures. 

If these characteristics are true, a sensory signal communications network that generally 
follows the WECC electric power network would be less subjected to signal congestion 
and more robust in the case of communication path failure.  
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2.8 The Sensitivity of Condition Indicators to Added State Measurements 

Added measurements to an existing system which already contains m measure-
ments causes the process matrix H to augment with added rows. State estimator design is 
often considered for an existing system with a previously designed set of measurements. 
Consider the case of μ added measurements to a system with m measurements already in 
place. Further, let the added measurements be direct measurements of states (i.e., entries 
of the state vector x). The addition of added state measurements is pertinent due to the 
interest in the utilization of phasor measurement units (PMUs) or synchrophasor meas-
urements [35, 81] because PMUs can measure phase angles of bus voltages. Then H be-
comes a μ+m  by s matrix,  

} h
H augmented

Δ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010 KK

 

 
but the dimension of G remains s by s. Consider further the case that the added measure-
ments are direct measurements of μ states. Then the added rows of H consist of all zero 
entries except in μ  columns which may be collectively called columns k where the non-
zero entries are μkkk hhh ΔΔΔ ,...,, 21 . The gain matrix G experiences the addition of 

22
2

2
1 )(,...,)(,)( μkkk hhh ΔΔ+Δ+ in the {k1,k1}, {k2,k2}, … , {kμ,kμ} diagonal positions. Thus 

the condition indicators of G will change due to the added measurements. The change in 
eigenstructure of a matrix due to the change of elements of that matrix is well known. For 
example, the sensitivity of the eigenvalue jλ  of G to a single diagonal entry Gi, i is given 
by [75], 

 2
,

,

)( ji
ii

j V
G

=
∂

∂λ  (2.21) 

where V is the s by s matrix of eigenvectors of G arranged column-by-column, and the 
eigenvectors are of unit length. The matrix V is called the modal matrix of G. The sensi-
tivity of jλ to several changes of entries on the diagonal of G, namely 

22
2

2
1 )(,...,)(,)( μkkk hhh Δ+Δ+Δ+  in the positions {k1,k1}, {k2,k2}, … , {kμ,kμ} is found us-

ing (2.17) and superimposing (adding) the several sensitivities corresponding to i = k1, k2, 
…. , kμ. Addition is presumed possible if the Δh entries are small and the formulation is 
assumed nearly linear locally. Because the condition indicators are intimately related to 
the eigenvalues of G, it is possible to ‘design’ (i.e., locate, and assign measurement 
weights) the added state measurement entries with a view of improving the several condi-
tion indicators. 

For purposes of discussion, the condition analysis of added state measurements is 
now confined to the addition of one measurement at state k, i.e., μ =1. The generalization 
to the case of many added state measurements is discussed below. If the added measure-

H 
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ment of state k results in 1khΔ  in the H matrix, and 2
1)( khΔ is sufficiently small, (2.21) 

may be used to estimate the condition indicators using 
 

ii
ii

j
j G

G ,
,

Δ
∂

∂
≈Δ

λ
λ . 

The results are 
 2

1
2
1 )( kk hVd Δ=Δ  (2.22) 
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K Δ
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−
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 (2.23) 

 .)( 2
1

2
kks hVf Δ=Δ  (2.24) 

 Note that in (2.22 – 2.24), the difference condition indicator terms are given by, 
for example, .oldnew ddd −=Δ  For the case that 2

1)( khΔ  is small, the following approxi-
mation may be used in place of (2.23), 
  2

1
1

2
1

2

)( k
kGks

G h
VKV

K Δ
−

=Δ
λ

. (2.25) 

 
2.9 Summary of Proposed Innovative Concepts 

The in and review of condition analysis for state estimation revealed a correlation 
between decreasing the condition number of the gain matrix and increasing the accuracy 
of state estimates. Some other innovative concepts presented in Chapter 2 include: 

• Singular distance – calculating the distance between matrix A and the 
closest singular matrix. 

• Scaling factor – viewing the largest singular value of matrix A as a condi-
tion indicator. 

• Measurement placement using eigenvectors – the use of eigenvector of 
smallest eigenvalue to find placement of measurements.  

Also, the observation that the WECC electrical network in the United States is “small 
world” and it is conjectured that sensory communications paths are in parallel with elec-
tric power paths result in a communications infrastructure that is less subject to conges-
tion and more robust in cases of path failure. 
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3 Illustrative Applications of Condtion Indices Based Approaches to 
State Estimatior Design 

3.1 The Spectrum of Condition Indicators in State Estimator Applications 

As a quick illustration of the usual order of magnitude of some singular distances, 
scaling factors and condition numbers in this power engineering application, see Table 
3.1. For convenience, the collective reference to KG, d, and f shall be condition indica-
tors. The study of the condition indicators will be termed condition analysis. 

 

Table 3.1 Condition indicators of some illustrative power systems*  

 Radial system of Nb buses Fully networked system of Nb 
buses (all buses connected to all 
other buses) 

Impedances of lines All unity All unity 
Number of buses Nb Nb 
Number of lines Nb -1 )1(

2
−b

b NN  

Number of line P 
measurements 

Nb -1 )1(
2

−b
b NN  

Number of line Q 
measurements 

Nb -1 )1(
2

−b
b NN  

Number of bus |V| 
measurements 

Nb Nb 

Number of injection 
measurements 

0 0 

Number of measure-
ments, m 

3Nb -2 Nb 2 

Number of states, s 2Nb -1 2Nb -1 
KG 2Nb 2 Nb +1 
d 2.5/Nb 2 1 Condition in-

dicators F 5 Nb +1 
∗ 2-norms are used for the condition indicators. Representative results are shown for the 

cases indicated. All bus voltages measured, all line P, Q measured; unbiased estimates, at 
the first iteration. Values shown are for large N. 

 
3.2 Two Test Beds for Condition Analysis 

 The two previous examples are of the extremes of the “spectrum” of networking, 
engineering intuition indicates that the IEEE 57 test bed [82] lies somewhere in between. 
Figure 3.1 is a one line diagram of the IEEE 57 test bed system. The IEEE 57 bus test bed 
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(System 1) has 30 buses in which there are 2 lines connected to the bus (i.e. similar to a 
radial system) and 1 bus that has one line connected to the bus. System 1 has 26 buses in 
which there are 3 or more lines connected and there are 80 lines total in the system. Table 
3.2 shows these bus connection data comprising the two systems being studied. Note that 
in Table 3.2 the notation δ(a) is the discrete dirac delta function which is zero everywhere 
except when a=1 where δ(a)=1.  
 

Table 3.2 Topology characteristics of Systems 1 and 2 

System Nb Nl 

Number of 
Buses at 

which only 1 
line incident 

Number of 
Buses at 

which 2 lines 
incident 

Number of 
buses at which 
≥3 lines inci-

dent 
Radial Nb Nb-1 2 Nb -2 0 
System 1* 57 80 1 30 26 
System 2** 180 254 12 103 65 
Fully  
Networked Nb Nb(Nb-1)/2 2δ(Nb-2) 3δ(Nb-3) Nb 

*  IEEE 57 bus test bed 
** Representative power system in the southwest US 
 
  The H matrix for the IEEE 57 bus test bed has varying admittance values this will 
influence the condition number of the H matrix. The measurement set for the H matrix is 
all the real and reactive power flows and real and reactive power injections at buses 1, 2, 
3, 6, 7,  9, 12, 25, 53, 18 for Example 1. The reactance of the lines in System 2 ranges 
from 0.0152 p.u. to 1.355 p.u. or two orders magnitude. 
 The other system to be studied in this report is representative of the power system 
in the southwest US (System 2). System 2 contains 180 buses, and 254 lines. The system 
has impedances from 1x10-5 to 0.4787 per unit on a 100 MVA base. The measurement set 
is 239 power flow measurements, 236 reactive power flow measurements, 99 power in-
jection measurements, 99 reactive power injection measurements, and 75 bus voltage 
measurements. Table 3.3 is list of condition indicators for both System 1 and 2. 
 
3.3 Description of the Iterative State Estimator Used 

The state estimator used for this report was written by Xiaolin Mao, a postdoctoral 
researcher at Arizona State University [83]. The properties of the state estimator are: 

• Uses conventional measurements: real and reactive power flow and injec-
tion measurement, and voltage magnitude measurements 

• Accepts in IEEE common data format information for topology 
• Accepts excel files as inputs for measurements 
• The limit of iterations is 50 
• The tolerance for convergence is 0.0001. 
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Table 3.3 Condition indicators of System 1 and System 2 
 System 1 System 2 

Impedances of lines Actual line impedances 
used 

Actual line impedances 
used 

Number of buses 57 180 
Number of lines 80 254 
Number of line P measure-
ments 

80 239 

Number of line Q measure-
ments 

80 236 

Number of bus |V| measure-
ments 

0 75 

Number of injection meas-
urements 

24 198 

Number of measurements, m 184 748 
Number of states, s 113 359 

KG 24,593 6.9x1010 

D 0.4633 1.1648 Condition  
indicators F 11,368 8.0019x1010 

*  IEEE 57 bus test bed 
** Representative power system in the southwest US 
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3.4 Linearized Approximations of Singular Distance Using the Iterative State Estima-
tor 

 Example 1 is constructed to explore if the linearized approximations of the condi-
tion indicators presented in (2.22-2.25) are valid when using an iterative state estimator to 
solve the nonlinear power equations. The details of all examples appear in Appendix A. 
In example 1, System 1 is used. The procedure for Example 1 was to solve the state esti-
mation from a flat start based on a set of measurements with no PMUs added, and find 
the predicted change to d for each of the iterations. Then to solve the state estimation 
from flat start with previous measurements augmented with a single PMU measurement. 
The state estimator converged in 4 iterations for both. Figure 3.2 is a plot of the smallest 
eigenvalue, d, as state estimator converges on a solution. The predicted value for d is 
close to the actual value of d with the placement of PMUs.  
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Figure 3.2 Impact on singular distance of placement of a PMU at bus 32 (Example 1) 

 
3.5 An Algorithm for Condition Analysis 

The condition analysis concepts above are proposed for the following applica-
tions: 

• Application to an existing system in which the SE has a valid G matrix. 
The system is under study for added measurements. 
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• The condition analysis is a tool used in connection with other placement 
techniques. It is assumed that the system is observable. 

• A “sanity check” for proposed measurement placement. 
In these applications, it was found that the impact of measurement noise on state estima-
tion is attenuated. This point is illustrated in the subsequent example. Also, it is found 
that the condition analysis of the placement of the proposed measurements agrees with 
redundancy analysis – also illustrated below. 
 Figure 3.3 is a conceptual depiction of how conditional analysis might be inte-
grated into a design search algorithm for measurement placement. 

 
Figure 3.3 An algorithm for the use of condition analysis in conjunction with other meas-

urement placement methods 
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3.6 Illustration of State Estimation Design Based on Condition Indicators 

The foregoing implies that the condition indicators d, KG, and f may be used to as-
sist in the selection of the locations of additional power system SE measurements. Using 
the difference formulations (2.22-2.25), one might select k to correspond to the largest 
value of (Vk1)2 (i.e., increase d); select k to correspond to the smallest (Vks)2 (i.e., decrease 
f); or select k to result in the smallest value of (Vks)2 –KG(Vk1)2  (to decrease KG).  

For purposes of illustration the IEEE 57 bus test bed will be used; Figure 3.1 is a 
one line diagram of the system. The example illustrates the effects of adding direct meas-
urement of bus voltage phase angle using PMUs. Three cases are studied: 

• Example 2: addition of no phasor measurements 
• Example 3: addition of 1 phasor measurement 
• Example 4: addition of 5 phasor measurements.  

The criterion used in placement of the phasor measurements is to maximize the reduction 
of the condition value using the linearized approximation in (2.23). 

The values for ΔKG and Δd given in Table 3.4 (unlike Table 3.3) are calculated 
using the solved solution gain matrix (i.e. the final gain matrix calculated by state estima-
tor). Note, the accuracy of the prediction of the change in condition number (2.23) and 
the change in singular distance (2.22) are greater in Example 3 than in Example 4 meas-
urements.  

The state estimation was performed with weight of unity given to all measure-
ments including bus voltage phase angle. The traditional measurements (real and reactive 
power flows, real and reactive power injections, and bus voltage magnitudes) were pol-
luted with noise. The signal to noise ratio was 10. The noise was created using Matlab 
function randn, which creates pseudorandom numbers with mean of zero and standard 
deviation of 1, Gaussian distributed pseudorandom numbers. The bus voltage phase angle 
measurements were not contaminated with noise. The tolerance of the state estimator was 
set to 10-4 with a maximum iteration count of 50. Note that the error in the state vector, 
x̂ , is shown as error in voltage magnitude, |V|, and as error in phase angle, δ.  

The error in x̂  is determined by finding the difference between x̂  and the actual 
value of x. The actual value of x is known due to the fact the analyses were performed on 
the IEEE 57 bus test bed where the bus voltage magnitude and bus voltage phase angles 
are known. The error values in Table 3.4 represent the mean of the norm of the error in 
the bus voltage magnitude and bus voltage phase angle. The number of trials performed 
is 10,000. Note that there is little improvement in the error in |V|, and small improvement 
seen in the error in δ. 

At this point, Example 5 is introduced as an example, using the IEEE 57 bus test 
bed, and using several state measurement weights. Figure 3.4 is a graph showing varying 
weights applied to a phasor measurement (wSM) on bus 33 for Example 5. The weight ma-
trix used in Example 5 is 

⎥
⎦

⎤
⎢
⎣

⎡
=

Iw
I

W
SM0
0

, 
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where I is the identity matrix. Note the linear growth in the predicted singular distance 
and the leveling off of the actual singular distance. Note the change predicted using 
(2.22) and weight of 1 is an increase in d of 97%, and the actual change seen is 58%. The 
linearization equations for the change in condition indicators are for small changes, not 
for such significant changes as seen in Example 5. The singular distance is the smallest 
singular value of the gain matrix (i.e., the denominator of the condition number of the 
gain matrix). As the singular distance increase the condition number decreases and the 
gain matrix is further from the closest singular matrix. 

 
Table 3.4 Comparison of three test cases using the IEEE 57 bus test bed 

  Example 2: 
No PMUs 

added 

Example 3: 
1 PMU 
added 

Example 4: 
5 PMUs 
added 

Location of PMU using  (8) N/A 33 25, 30, 31, 
32, 33 

Final iteration  kG‡ 36,163 22,920 14,682 
Predicted  
using (8) N/A -17,828 -29,015 

ΔKG Actual value on  
solution G N/A -13,243 -21,481 

Final iteration d‡ 0.2897 0.4570 0.7130 
Predicted  
using (7) N/A 0.2817 1.1760 

Δd Actual value on 
solution G N/A 0.1673 0.4233 

in |V| of all 
buses* 0.1319 0.1312 0.1321 

in δ of all 
buses* 6.4059 6.1048 5.6289 

in δ at bus 33 0.6655 0.2998 0.0581 

 
 
Error in x̂  

in δ at buses 
25, 30, 31, 32, 
33* 

2.9076 2.3816 0.9589 

*  2-norm is used in error calculations 
‡ “Final Iteration” refers to the converged solution of the nonlinear SE prob-
lem. 

 
 

3.7 Condition Analysis in the Examples 4 and 6 

The examples using condition analysis described above are discussed further 
here. The issue of whether added measurements (e.g., 5 PMUs in Example 4 above) 
should be analyzed one-at-a-time or all-at-once was studied. Recall that Example 4 is the 
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case of five state measurements added at once. The addition of state measurements one-
at-a-time is denoted as Example 6. Table 3.5 shows the effects of adding PMUs one-at-a-
time predicting the change in condition number and singular distance. In the case of one-
at-a-time addition of measurements, the gain matrix G after adding one measurement was 
used to identify the impact of the second added measurement. The subsequent gain ma-
trix is used to find the impact of the third addition, and so on. The PMUs were added to 
buses in the following order: (1st) 32, (2nd) 30, (3rd) 31, (4th) 33, and (5th) 25. 
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Figure 3.4 Impact of state measurement weight on singular distance using the IEEE 57 
bus test bed (singular distance of HtWH is depicted at the SE solution, Example 5) 

 
Table 3.5 contains a comparison of predicted (P) versus actual (A) changes in the 

condition number and singular distance of the SE gain matrix G. Two cases are depicted. 
In the case of one-at-a-time design, five different ΔKG and Δd values are tabulated for the 
sensitivity based predictions (P) entries in Table 3.5 are readily compared to actual (A) 
changes. The error due to the sensitivity-based approximations is assessed by observing 
the error depicted as |P-A|. Three observations are made: 

• The error both in the ΔKG and Δd, due to the sensitivity-based approximations 
generally decreases as measurements are added one-at-a-time. 

• The improvement (i.e., decrease in ΔKG and increase in Δd) decreases as 
measurements are sequentially added one-at-a-time. 

• The errors |P-A| for the one-at-a-time calculations are significantly less then 
the error for the five added at once calculations. 
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Table 3.5 Comparison of predicted values from (2.22, 2.23) to actual values  
(Examples 4 and 6) 

  ΔKG Δd 
  P A |P-A| P A |P-A| 

1st -17828 -13243 4585 0.2817 0.1673 0.1144 
2nd - 8106 - 6182 1924 0.2501 0.1686 0.0815 
3rd - 2970 - 1396 1574 0.1349 0.0569 0.078 
4th - 956 - 483 473 0.0453 0.0221 0.0232 O

ne
-a

t-a
-

tim
e 

5th - 616 - 176 440 0.0305 0.0085 0.022 
5 added at 

once -29015 -21481 7534 1.1760 0.4233 0.7527 

                 P = Predicted from (2.22, 2.23)           A = Actual value 
 
Figure 3.5(a) is a depiction of how eigenvalues of G migrate when measurements 

are added. Note that the smallest eigenvalue of G can “overtake” the second smallest ei-
genvalue as in Figure 3.5(b). It is possible to define a second condition number of G 

 ( )

2

2

λ
λs

GK =  (3.1) 

and notice that (2.23) can be rewritten as  
 ( )

( )
2

22
22

2
2

22
2 )(

)( k
kk

kGks
G h

hV
VkV

K Δ
Δ+

−
=Δ
λ

 (3.2) 

Then it is desired to minimize some measure of KG and KG
(2). For example: 

• Minimize max {KG, KG
(2)} 

• Minimize KG + αKG
(2) 

where α is a suitable constant, e.g., α = (0.1). A need for such a function has been ob-
served as in the case of placing five PMUs all at once, Example 4. In Example 4, the ei-
genvalue migration depicted in Figure 3.5 (b) occurred. 
 
3.8 Redundancy Analysis of the Example 

The foregoing is an analysis of the placement and effectiveness of state measure-
ments based on condition indicators. An improvement was seen in the condition number 
of the gain matrix, and improvement was observed in the accuracy of the state estimation. 
Another measure of improvement in state estimation relates to the robustness of the 
measurements. An indicator of robustness of a measurement set is the redundancy of 
measurements.  

References [84, 85, 86] are a sampling of methods used to identify a critical 
measurement and critical sets (e.g., a critical measurement couple or a critical measure-
ment triple). In reference [86], the redundancy is determined with respect to the integer 
local redundancy (i.e., the number of measurements needed to be removed to make the 
measurement a critical measurement) and the non-integer redundancy (i.e., a study of the 
sensitivity matrix coefficients) by studying the residual sensitivity matrix, S, 

 ( )WHHGIS t1−−= . (3.3) 
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(a) 

 

 
(b) 

Figure 3.5 Pictorial of movement of eigenvalues upon addition of a measurement: (a) mi-
gration of eigenvalues as measurements are added, (b) example in which eigenvalue λ1 

‘overtakes’ λ2 

 
Local redundancy of a specific measurement is expressed as the number of meas-

urements which have connection to a given measurement point [87]. Reference [88] cate-
gorizes the redundancy of a measurement as: 

• Not redundant if it is a critical measurement; 
• Singly redundant if it is a member of a critical measurement couple (two 

measurements are a critical couple if elimination of one makes the other 
critical); 

• Multiply redundant if the measurement is not a critical or a singly redun-
dant measurement. 

To identify the critical measurements, the sensitivity matrix, S, is formed. When 
the diagonal element of the sensitivity matrix S is 0, the corresponding measurement is a 
critical measurement. According to [86], to obtain the local redundancy, the residual cor-
relation matrix is formed  

 ( ) ( ) ( ) 2
1

2
1 −−

= SdiagSSdiagK . (3.4) 
where ‘diag’ refers to a diagonal matrix of entries Sii. The largest off-diagonal element in 
the ith row corresponds to the largest correlated measurement of measurement i. The most 
correlated measurement of measurement i is eliminated until measurement i becomes 
non-redundant (i.e. the measurement being studied becomes a critical measurement). 
Each of the measurement eliminations is counted as one local redundancy.  

Using the foregoing redundancy evaluation, Table 3.6 shows the redundancy level 
of the IEEE 57 bus test bed with the given measurements set. It is observed that four 
critical measurements are identified in Example 2 (i.e., no phase measurements added); 
the addition of one phase measurement at bus 33 in Example 3 eliminates two critical 
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measurements and the addition of phasor measurements at buses 25, 30, 31, 32, 33 in Ex-
ample 4 eliminates all critical measurements identified in Example 2.  

Inspection of Table 3.6 indicates that in Example 2, all four indicated measure-
ments are critical. In Example 3, the condition analysis identified bus 33 as a desired lo-
cation of a state measurement. This identification is consistent with the appearance of the 
redundancy index of two for lines that terminate at bus 33. That is, redundancy analysis 
shows that if a measurement is placed in line 32-22, redundancy increases. In the Exam-
ple 4 column of Table 3.6, it is noted that addition of five PMU identified using condition 
analysis further improves the measurement redundancy (note the appearance of redun-
dancy two and redundancy 3 in Example 4 in Table 3.6). These remarks indicate the con-
sistency between redundancy analysis and condition analysis. For all cases studied, the 
analysis of condition indicators is found to be consistent with redundancy analysis, and 
for this reason, condition analysis is offered as an additional tool in the assessment of 
placement of measurements. 

 
Table 3.6 Redundancy indices for the IEEE 57 bus test bed 

Line flow 
measurements 

Example 2 
No PMUs 

Example 3 
1 PMU 

Example 4 
5 PMUs 

P32 33 1 2 2 
Q32 33 1 2 2 
P37 39 1 1 3 
Q37 39 1 1 3 

P = Active power 
measurement 

Q = Reactive power meas-
urement 

 

3.9 Conclusions 

It appears it is possible to “engineer” the eigenspectrum of G (sensor placement in 
H) using linearized analysis. An innovative way to place measurements using condition 
indicators is presented. The placing of measurements by optimizing condition indicators 
is recommended to be used in conjunction with other measurement placement strategies 
(e.g., observability analysis or contingency analysis). An illustration was given showing 
placement of bus voltage phase measurements with regard to impacts on the condition 
indicators. The sensitivity-based formulas for condition indicators give an assessment of 
the effects of added measurements on the eigenvalues of the gain matrix. The accuracy of 
the sensitivity-based calculations of condition indicators decreases as the number of 
measurements increases. Placement of added state measurements using a condition indi-
cator philosophy appears to be consistent with placement using redundancy analysis. 

The condition analysis concepts above are proposed for the following applica-
tions: 

• Application to an existing system in which the SE has a valid G matrix. 
The system is under study for added measurements 
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• The condition analysis is a tool used in connection with other placement 
techniques. It is assumed that the system is observable. 

• A “sanity check” for proposed measurement placement. 
In these applications, it was found that the impact of measurement noise on state estima-
tion is attenuated. Also, it is found that the condition analysis of the placement of the 
proposed measurements agrees with redundancy analysis. 

• The error both in the ΔKG and Δd, due to the sensitivity-based approxima-
tions generally decreases as measurements are added one-at-a-time. 

• The improvement (i.e., decrease in ΔKG and increase in Δd) decreases as 
measurements are sequentially added one-at-a-time. 

• The errors |P-A| for the one-at-a-time calculations are significantly less 
then the error for the five added at once calculations
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4 The Measurement Outage Table 

4.1 The Construction of a Measurement Outage Table 

 A “measurement outage table” is a tabulation of possible failure status scenarios 
versus their probability of occurrence. The measurement outage table is analogous to the 
generation capacity outage tables described in [89]. In the example capacity outage table 
seen in Table 4.1, states of the availability of generators versus the probability of occur-
rence of those states are tabulated. The capacity outage table is used in various applica-
tions in generation sufficiency analysis such as calculation of the loss of load probability, 
the calculation of expected available generation, and then calculation of generating mar-
gin [89 – 92]. 

 
Table 4.1Sample capacity outage table 

taken directly from [84] 
Unit 1 

(5 MW) 
Unit 2 

(3 MW) 
Unit 3 

(3 MW) 
Capacity out of 
service (MW) 

Individual 
probability 

Cumulative 
probability 

1 1 1 0 0.941192 1.000000 
1 1 0 3 0.019208 0.058808 
1 0 1 3 0.019208 0.039600 
0 1 1 5 0.019208 0.020392 
1 0 0 6 0.000392 0.001184 
0 1 0 8 0.000392 0.000792 
0 0 1 8 0.000392 0.000400 
0 0 0 11 0.000008 0.000008 

Status 1 = in service  
Status 0 = out of service 

 
The measurement outage table uses the probability of a measurement failure. Ta-

ble 4.2 is the proposed measurement outage table from Rice [93,94]. Rows of Table 4.2 
correspond to a specific measurement failure. The measurement outage table is offered as 
a potential tool to analyze state estimation sensory impacts. For example, using the right 
most columns of Table 4.2, it is possible to statistically evaluate the condition indicators. 
In Table 4.2, qi is the sensory outage rate of sensor i and πi  is used at the “reciprocal” of 
qi,  

πi = 1 - qi. 
Note that πi is the probability of measurement i being in service. The individual probabil-
ity of the state occurring is ps and Ps is the cumulative probability, (i.e. the sum of all 
rows prior and including row s), 

ss

s

i
is pPpP +== −

=
∑ 1

1
. 

It is conjectured that it is possible to identify where a phasor measurement can be 
placed to increase the robustness of the state estimator design, (i.e., the entire system is 
still observable after a measurement failure). The performance indicators used in the table 
should not only detect if a measurement outage produces an unobservable island, but 
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should also detect how “well conditioned” the process matrix, H, is, and the impact of 
measurement failure on state estimator expected error. 

 
Table 4.2 A measurement outage table 

 Sensor Outage State 
Individual 
Probability 

Cumulative 
Probability 

State Estimator 
Performance 

State 1 2 3 4 … m-1 m (ps) (Ps) KG λ1 f 
1 1 1 1 1 1 0 (a) P1 
2 1 1 1 1 

… 
0 1 (b) P1 + P2 

… …                   … … … 
m-1 1 0 1 1 1 1 … … 

1s
en

so
r f

ai
lu

re
 

m 0 1 1 1 
… 

1 1 (c) ∑
=

m

i
iP

1
 

m+1 1 1 1 1 … 0 0 
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+
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1

1
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for "N-3," "N-4," … cases   

The state estimation 
performance indica-
tors might include: 
expected condition 
number, singular 
distance, and scal-
ing factor. 
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4.2 Sensor Outage Rate 

The forced outage rate of generators is documented by [92, 95-96]. However in 
the literature little appears relating to sensor outages. This section contains a discussion 
about calculating sensor outage rates used in the measurement outage table.  

A failure curve is formed by a piecewise function,  
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Both functions resemble a bathtub. The probability density function is broken into three 
parts. The large percent failure in the time from 0 to T1 is due to defective products. This 
interval may be termed representative of “infant mortality.” Time T2 is the predicted end 
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of life of the asset. A low percent of failures can be observed from T1 to T2. Time beyond 
T2 is after predicted life of the product. Figure 4.1 is a probability density function of a 
Weibull distribution. The dotted line is the piecewise function 

⎪
⎩

⎪
⎨

⎧

<+−
≤<

≤≤+−
=

tt
t

tt
tp

5.1112.0)5.11(123.0
5.1175.112.0

75.1012.0114.02.0
)( . 

The solid line is the continuous function of two Weibull functions 
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Figure 4.1 Probability density piecewise (dotted line) and continuous (solid line) Weibull 

models failure rates  
 

The Canadian Electrical Association has a database of most equipment (“assets”) 
failures in Canada since at least 1988. Reference [98] contains a summary of the Cana-
dian Electrical Association benchmarking report for equipment failure from 1988 to 
1992. The data in [98] will be used in determining a sensor outage rate to be used in a 
measurement outage table. Table 4.3 is a summary of terminal related forced outages. 
Figure 4.1 is a plot of kilometer years and outages versus voltage class. Note the two 
largest voltage classes are the 100 – 149 kV and 200 – 299 kV and largest number of out-
ages occurred in these two voltage classes. Figure 4.2 is a plot of mean and median repair 
time versus voltage class. Note the large difference between the mean and median, which 
infers a small number of outages that may have taken much longer to repair than most 
outages. Table 4.3 is taken directly from the literature [98] and Figure 4.2 and Figure 4.3 
are interpretations inferred from Table 4.3. Note that “km.a” in Table 4.3 refers to “kilo-
meter-years.” 
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Table 4.3 Summary of transmission line statistics for terminal-related sustained forced 
outages (taken directly from [98]) 

 Voltage Class (kV) 

Statistic 100 – 
149 

150 – 
199 200 – 299 300 – 399 500 – 599 600 – 699 

Kilometer 
years (km.a) 9,583 627 5,263 1,147 606 539 

Number of 
outages 1,574 82 991 150 186 153 

Total time (h) 16,352 619 8,618 3,889 8,887 3,949 
Frequency  
(1/ km.a) 0.1642 0.1307 0.1883 0.1307 0.3069 0.2394 

Mean duration 
(h) 10.4 7.0 8.7 25.9 47.8 25.8 

Median 
duration (h) 0.05 0.30 0.22 0.37 0.64 1.70 
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Figure 4.2 Number of outages and kilometer years versus voltage class for transmission 
lines in Canada 

 
Reference [98] separates terminal related outages by type including: control and 

protection equipment, surge arrester, bus, disconnect, circuit switcher, current trans-
former (free standing), potential devices, wave traps, other, and unknown. Table 4.4 
shows the percentage of terminal related line outages from subcomponent failure. Note, 
the large percentage of outages associated with unknown causes.  
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Figure 4.3 Hours of outage versus voltage class for electrical transmission system  
in Canada 

 
Table 4.4 Percent of terminal related sorted by voltage class and subcomponent failure   

(created from [98]) 

 Voltage Class (kV) 
Cause 100 – 

149 
150 – 
199 

200 – 
299 

300 – 
399 

500 – 
599 

600 – 
799 

Control and 
protection 
equipment 

42.02 26.66 58.05 42.69 53.24 38.55 

Surge arrester 0.85 0 0.42 0 0 0.67 
Bus 2.13 0 2.02 0.69 9.16 3.26 

Disconnect 6.52 3.67 7.49 14.00 7.01 36.59 
Circuit switcher 0.12 0 0.69 1.3 3.23 0.67 

Current 
transformer 

(free standing) 
0.3 0 0.69 0 6.45 1.96 

Potential device 2.92 2.45 7.86 15.3 3.23 7.18 

Wave traps 0 0 0 0.69 0.55 0 
Other 5.79 1.22 5.26 3.98 5.38 8.48 

Unknown 39.34 65.88 17.58 21.35 11.83 2.63 
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For the sensory outage rate used in the following section, only the statistics for the 
current transformers and potential devices are used. The statistics of control and protec-
tion equipment failures are not used because the control and protection equipment cate-
gory includes failures in the mechanical workings of circuit breakers (e.g. leaks in the gas 
tanks). Since the end objective is to find a time-to-failure of voltage and current sensors, 
the circuit breaker data are omitted. For the IEEE 57 bus test bed system, an aggregate of 
all voltage classes in Table 4.4 will be used. Table 4.5 is the calculation of outages in the 
four year study.  

 
Table 4.5 Subcomponent failure in the four year study 

 Voltage class (kV) 

 
100 - 
150 

150 - 
199 

200 - 
299 

300 - 
399 

500 - 
599 

600 - 
799 Total 

Number of po-
tential devices 
outages 

46 2 78 23 6 11 166 

Number current 
transformer out-
ages 

5 0 7 0 12 3 27 

Potential device 
outage (h) 2.3 0.6 17.16 8.51 3.84 18.7 51.11

Current trans-
former outage 
(h) 

0.25 0 1.54 0 7.68 5.1 14.57

  
To determine the hours of outages the median was used instead of the mean due 

to disparity between the data. Note that the median is much smaller than the mean. The 
median was multiplied by the number of outages attributed to the subcomponent failure. 
The total hours of outage for potential devices is 51.11 hours and for current transformers 
is 14.57 hours for the four year study. By logic, the sensor outage rate for potential de-
vices is 1.46x10-4 and for current transformers 4.16x10-5,  
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The power measurements rely on the operative status of both the current transformers and 
potential devices. Thus power measurement failure rate is  

( )( ) ( )( )( )failfailfailfailfail PTprobCTprobPTCTrePowerMeasu −−−=∪= 111  . 
Therefore the failure rate of power measurement sensors is 1.87x10-3.  
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4.3 IEEE 57 Bus Test Bed 

A measurement outage tables were created for the IEEE 57 bus test bed in three ex-
amples: 

• Example 7 - 0 PMUs 
• Example 8 - 1 PMU 
• Example 9 - 5 PMUs. 

As described in Chapter 3 System 1, the IEEE 57 bus test bed system, will be used with a 
voltage measurement at all buses, real and reactive power flows of all transmission lines 
and ten pairs of real and reactive power injections. Each of the measurements were re-
moved individually from the measurement set, creating a new set of measurements zN-1. 
State estimator solved using zN-1. Then using the final iteration gain matrix of the state 
estimator the condition number, singular distance, and scaling factor were calculated. In 
Examples 7 - 9, in the N-1 cases no cases were found to make the gain matrix singular 
(i.e. the condition number equal to zero). Table 4.6 is a sample of a measurement outage 
table for Example 7. The failure rate of the voltage phase and magnitude measurements 
use the potential device failure rate calculated in the prior section.  
 Table 4.6 was obtained from a calculation of KG, d, and F using their definitions 
(2.15, 2.16, 2.17). It is also possible to calculate the expected KG, d, and F. From Table 
4.6, 
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These are “exact” expectations as obtained from full analysis of 238 gain matrices (each 
of which is 113 by 113). Note that P237 refers to the cumulative probability summed over 
the state 0, 1, 2, … , 237. The expectations can also be estimated from ΔKG, Δd, and ΔF 
formulas (2.22, 2.23, 2.24). These estimates result in 

 ( ) ( ) ( )( )∑
=

=Δ+=
237

1
0237 36211.10

i
iGiGG KpKPKE  

 ( ) ( ) ( )( )∑
=

=Δ+=
237

1
0237 0.28932

i
ii dpdPdE  

 ( ) ( ) ( )( )∑
=

=Δ+=
237

1
0237 10462.64

i
ii FpFPFE . 

The difference between the “exact” expected KG and the estimated is 0.549%. The differ-
ences in d and F between the “exact” expected values and the estimated are 0.410% and 
0.020% respectively.  
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Table 4.6 Samples of measurement outage table of IEEE 57 bus test bed with 0 PMUs, Example 7 
State 

Lost Measure-
ment Location Type 

Failure 
Rate 

Probability 
of State 

(ps) KG ps*KG d ps*d F ps*F 

0 
Base case no 
measurement 

lost 
  0.656706 36163.21 23748.6 0.289701 0.190248 10476.51 6879.989 

1 1 Active Injection 0.001873 0.001232 35107.44 43.2529 0.288361 0.000355 10123.62 12.47247 
2 2 Active Injection 0.001873 0.001232 35342.23 43.5422 0.289434 0.000357 10229.24 12.60259 
3 3 Active Injection 0.001873 0.001232 35972.06 44.3182 0.289703 0.000357 10421.23 12.83913 

… … … … … … … … … … … 

18 25 
Reactive Injec-

tion 0.001873 0.001232 36356.6 44.7919 0.288278 0.000355 10480.81 12.91254 

19 53 
Reactive Injec-

tion 0.001873 0.001232 36161.52 44.5516 0.28981 0.000357 10479.98 12.9115 

20 18 
Reactive Injec-

tion 0.001873 0.001232 36163.22 44.5537 0.289696 0.000357 10476.34 12.90702 
21 1 Active Flow 0.001873 0.001232 35567.17 43.8193 0.289694 0.000357 10303.6 12.6942 
22 15 Active Flow 0.001873 0.001232 36179.75 44.574 0.289291 0.000356 10466.47 12.89486 
… … … … … … … … … … … 

179 75 Reactive Flow 0.001873 0.001232 36169.61 44.5615 0.289648 0.000357 10476.47 12.90718 
180 77 Reactive Flow 0.001873 0.001232 36177.95 44.5718 0.289581 0.000357 10476.44 12.90715 
181 1 Voltage Mag 0.001458 0.000959 36193.44 34.696 0.289509 0.000278 10478.33 10.04479 
182 2 Voltage Mag 0.001458 0.000959 36193.45 34.696 0.289557 0.000278 10480.05 10.04645 
183 3 Voltage Mag 0.001458 0.000959 36196.38 34.6988 0.289356 0.000277 10473.65 10.04031 
… … … … … … … … … … … 

Note: ps = probability of state s 
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Table 4.7 is summary of the measurement outage tables completed in the illustra-
tions. Only the N-1 cases were performed (i.e. N-1 sensors are in service). That is, the N-
k, k ≥ 2 cases are deemed to be of low probability and these are omitted. Note the im-
provement in all of the condition indicators and in both extremes and expected values as 
the number of PMUs goes from zero to one to five. The main observations are: 

• The system study had no critical measurements (i.e. none of N-1 cases 
studies resulted in gain matrix, G, being singular).  

• Table 4.7 shows that largest condition number for a single measurement 
failure decreases significantly for the addition of a single PMU. 

• The expected of condition number of the gain matrix, KG, decreases line-
arly as voltage phase angle measurements are added. 

• The linearized formulas for ΔKG, Δd, and ΔF (2.22, 2.23, 2.24) estimate 
the expected values of the condition indicators within 1%. 

 
Table 4.7 Summary of measurement outage tables for System 1  

 Example 7: 
0 PMUs 

Example 8: 
1 PMU 

Example 9: 
5 PMUs 

Cumulative Probability 0.9331 0.9327 0.9310 
Max (KG) 90892 36163 27115 
E(KG) 36411.06 23019.91 14813.92 
E(KG) calculated using (2.23) 36211.10 22918.44 14680.10 
Min (d) 0.115267 0.289701 0.386095 
E (d) 0.28814 0.45493 0.70776 
E(d) calculated using (2.22) 0.28932 0.45644 0.71221 
Max (F) 10560.46 10558.34 10551.53 
E (F) 10464.71 10462.98 10457.41 
E(F) calculated using (2.24) 10462.63 10460.93 10455.73 

 

4.4 Conclusions 

 The measurement outage table uses the probability of a measurement failure. This 
is analogous to the probability of loss of generation in a generation capacity outage table. 
The measurement outage table is offered as a potential tool to analyze state estimation 
sensory impacts. For example, it is possible to statistically evaluate the condition indica-
tors. It is possible to identify where a phasor measurement can be placed to increase the 
robustness of the state estimator design, (i.e., the entire system is still observable after a 
measurement failure). 
 The maximum condition number in the gain matrix decreases substantially more 
for the first PMU added compared to the addition of the next four PMUs. The smallest 
singular distance in the measurement outage table increases significantly more for the 
addition of first PMU than the addition of the next four PMUs. 
 The main conclusions of this chapter are that it is possible to calculate the ex-
pected values of the condition indicators for the measurement outage table using the lin-
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earized formulas (2.22, 2.22, 2.24), and that the addition of PMU measurements de-
creases expected condition numbers of the state estimator during failure scenarios. As-
suming reasonable measurement failure rates, the expected condition number drops by a 
factor of nearly three for the addition of five PMUs. 
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5 Application of the State Estimation Conditional Analysis to a Utility 
Operated Electric System 

5.1 Test Bed:  A Utility Operated Electric System 

 System 2 is representative of a US power system in the southwest in summer 
2005. Table 5.1 contains basic descriptions of System 2. This system is approximately 3 
times the size of System 1. Appendix D contains the system data. This system does not 
lend itself to depiction on a printed page, but Figure 5.1 shows the 230 kV and 500 kV 
portions of the system alone. Figure 5.1 is a conceptual drawing of the electrical connec-
tions of System 2 to display of complexity of the system. The entire system contains 
buses in the voltage classes 69 kV – 500 kV. 
 

Table 5.1 Summary of System 2 parameters 

Number of Buses 180 

Number of Transmission Lines 254 

Number of States 359 

Number of Measurements 748 

  

5.2 Impact of Adding PMUs to the Utility Operated Electric System: Example 10 

 In Example 10 a study the impact of adding PMUs to test System 2 is examined. 
The objectives of the study include the impact of the PMUs on condition indicators. In 
Example 10, the measurements are created from a power flow performed on System 2. 
The locations of active and reactive power measurements and voltage magnitude meas-
urements are from a local utility. The voltage phase angle measurements are from the 
solved power flow. 
 The condition number of gain matrix for final iteration of state estimation for Sys-
tem 2 is 6.456 x 1010. The condition number of the gain matrix is this size due to the scale 
difference of branch impedances. The system has branches that have impedances from 
1x10-5 to 0.4787 per unit on a 100 MVA base. The singular distance is 1.267 and the scal-
ing factor is 8.182 x 1010. The number of actual buses in System 2 is 150 and 30 buses 
are virtual buses for sectionalized lines. 
 

   



    

48  

 
Figure 5.1a East side of the 230 – 500 kV portions of test System 2 
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Figure 5.1b West side of the 230 – 500 kV portions of test System 2 
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 Figure 5.2 depicts the condition number of G as the PMUs are added one at a time 
to decrease the gain matrix as described by (2.23). A quadratic trend line is added to Fig-
ure 5.2 to show the behavior of KG with number of added PMUs. In Figure 5.3 the pre-
dicted change in condition number of the gain matrix is plotted. Equation 2.23 is used to 
predict the change in the singular distance of the gain matrix for each PMU measurement 
added. Note, that 
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  91026.8 xKG −=Δ . 
This prediction can be compared to the change in condition number of the gain matrix 
observed in Figure 5.2, namely -7.56 x 109. The slope of the trend line of Figure 5.2 is 
quadratic and the slope of the Figure 5.3 is linear. Thus, these observations show the rela-
tionship between predicted and calculated (actual) change in condition number of the 
gain matrix.  
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Figure 5.2 Condition number of the solved gain matrix for System 2 as PMUs are added 

(Example 10) 
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 The singular distance of the gain matrix, d, is plotted versus the addition of meas-
urements from PMUs in Figure 5.4. The trend line is quadratic with high component with 
a linear coefficient. In Figure 5.5 the predicted change in singular distance is plotted. 
Equation 2.22 is used to predict the change in the singular distance of the gain matrix for 
each PMU measurement added. Note, that 
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196.0=Δd . 
This prediction can be compared to the change in d observed in Figure 5.4. The change in 
d from zero PMUs in the system to 150 PMUs in Example 10 is 0.185. The slope of the 
trend line of Figure 5.4 is quadratic and the slope of the characteristic in Figure 5.5 is lin-
ear. Thus, these observations show the relationship between predicted and calculated (ac-
tual) change in d.  
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Figure 5.3 Predicted change in the gain matrix of the System 2 using (2.23) for the addi-

tion of PMUs (Example 10) 



    

52  

y = -8.15E-06x2 + 2.51E-03x + 1.27E+00
R2 = 1.00E+00

1.25

1.30

1.35

1.40

1.45

1.50

0 20 40 60 80 100 120 140 160

Number of PMUs

S
in

gu
la

r D
is

ta
nc

e 
of

 th
e 

G
ai

n 
M

at
rix

d Poly. (d)  
Figure 5.4 Singular distance of the gain matrix of System 2 as PMUs are added one at a 

time (Example 10) 
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Figure 5.5 The predicted change using (2.21) in singular distance of the gain matrix for 

System 2 as PMUs are added one at a time (Example 10) 
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5.3  Impact on State Estimation of Utility Owned System by Addition of PMUs 

 System 2 is tested using pseudorandom Gaussian distributed noise inserted in the 
power and voltage magnitude measurements at levels of 5%, 10%, and 15%. The PMU 
measurements are modeled with 0.5% and 1% noise. The state estimator solves 1,000 tri-
als each with 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 150 PMUs. The PMUs are lo-
cated using the ranking done as described in Section 5.2. The PMUs are added in the or-
der of rank. Table 5.2 is the organization of Examples 11 - 16. 
 

Table 5.2 Summary of examples of SE simulations performed with System 2 

PMU Noise Level SCADA Noise 
Level 0.5% 1.0% 

5% Example 11 Example 12 

10% Example 13 Example 14 

15% Example 15 Example 16 

 
 
5.4 Results of Example 12  

 Examples 12 and 15 are chosen to for illustration below. The results from Exam-
ple 11 – 16 are best presented graphically. For purposes of terminology of the graphical 
results, note that the subsequent figures are labeled: 

• Maximum voltage angle error is the largest absolute difference between the 
voltage phase angle from the solved power flown and estimated voltage phase 
angle from the converged state estimator. 

• RMS voltage angle error is the root mean square of the difference between all 
voltage phase angles estimates and that of the power flow. 

• Maximum voltage magnitude error is the largest absolute difference between 
the voltage magnitude from the solved power flown and estimated voltage 
phase angle from the converged state estimator. 

• RMS voltage magnitude error is the root mean square of the difference be-
tween all voltage magnitudes estimates and that of the power flow. 

 For clarity some definitions are given of the terminology used on the Figures 5.7 
– 5.18. The data points are:    

• Max data points are of the largest maximum error in all 1000 trials with a 
given number of PMUs, e.g. 15 PMUs. 

• Min data points are the smallest maximum voltage phase angle error of the tri-
als performed with a given number of PMUs. 

• Mean data points are mean of all 1000 trials for a given number of PMUs. 
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The maximum bus voltage phase angle error, Ω, is evaluated (maximized) over 
the 150 buses in the system to create 1000 data points. Each of the 1000 data points cor-
responds to one trial in the Monte Carlo study. Thus Ω1, Ω2, … , Ω1000 is an ensemble de-
noted {Ω}. The maximum of {Ωi }, i = 1, … , 1000 is plotted as “Max” in Figure 5.7. 
Further, the minimum of {Ωi }, i = 1, … , 1000 is plotted as “Min.” And the mean of the 
ensemble {Ωi }, i =1, … , 1000 is plotted as “Mean.” This notation is depicted in Figure 
5.6, where each circled row corresponds to a trial. The notation e stands for the error be-
tween bus voltage phase angle estimated and bus voltage phase angle from the power 
flow. 
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Figure 5.6 Notation used for the statistical study of maximum bus voltage phase angle 

error 
 
 

Example 12 is a 1,000 Monte Carlo trials simulation with SCADA measurement 
noise level of 5% and 1% noise in PMU phase angle measurements. Figure 5.7 displays 
the maximum phase angle error of Example 12 as voltage phase angles are added. The 
max line decreases 0.093 degrees from 0 PMUs to 150 PMUs, and min line decreases 
0.001 degrees from 0 PMUs to 150 PMUs. The mean of maximum voltage phase angle 
error decreases 0.032 degrees from 0 PMUs to 150 PMUs. Small changes are seen in 
voltage phase angle errors in Examples 11 – 16. In these Examples the weight of the 
PMU measurement is same as SCAD measurements. Example 17 presented in Appendix 
F is of the state estimation with weighting the PMU 10 times greater than the SCADA 
measurements. In Example 17, the mean of the maximum phase angle error is reduced by 
half by adding 135 PMUs. 
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Figure 5.7 Maximum voltage angle error for SCADA noise 5% and PMU noise 1% on 
System 2 (Example 12) 

 
 Similar to the maximum phase angle error the RMS bus voltage phase angle error, 
Φ, is evaluated over the 150 buses in the system to create 1000 data points. Each of the 
1000 data points correspond to one trial in the Monte Carlo study denoted {Φ}. Thus Φ1, 
Φ 2, … , Φ 1000 is an ensemble of RMS bus voltage phase angle error. The maximum of 
{Φ i }, i = 1, … , 1000 is plotted as “Max” in Figure 5.9. Further, the minimum of {Φ i }, i 
= 1, … , 1000 is plotted as “Min.” And the mean of the ensemble {Φ i }, i =1, … , 1000 
is plotted as “Mean.”   
 Figure 5.8 depicts RMS phase angle error of Example 12. The max line decreases 
0.013 degrees from 0 PMUs to 150 PMUs, and the min decreases 3.62 x 10-5 degrees 
from 0 PMUs to 150 PMUs. Note, the quadratic shape of the max voltage phase angles 
measurements. The mean of RMS voltage phase angle error in Example 12 decreases 
0.002 degrees from 0 PMUs to 150 PMUs. 
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Figure 5.8 RMS voltage angle error for SCADA noise 5% and PMU noise 1% on System 

2 (Example 12) 

 
 

As in the case of maximum bus voltage phase angle error, Ω, the maximum volt-
age magnitude error is evaluated (maximized) over the 150 buses in the system to create 
1000 data points. Each of the 1000 data points in the ensemble corresponds to one trial in 
the Monte Carlo study. The maximum of the ensemble is plotted as “Max” in Figure 5.9. 
Further, the minimum of the ensemble is plotted as “Min.” And the mean of the ensemble 
is plotted as “Mean.” 
 Figure 5.9 depicts the maximum voltage magnitude error of Example 12. The max 
decreases 7.2 x 10-4 p.u. from 0 PMUs to 150 PMUs. The min decreases 1.4 x 10-4 p.u. 
from 0 PMUs to 150 PMUs. The mean shows a decrease in maximum voltage magnitude 
error of 1.9 x 10-5 p.u. from 0 PMUs to the addition of 150 PMUs. Plots of min, max and 
mean for Example 12 show no significant changes as phase angle measurements are 
added. This is attributed to weak coupling between voltage phase angle state and voltage 
magnitude state in the state estimation algorithm. 
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Figure 5.9 Maximum voltage magnitude error for SCADA noise 5% and PMU noise 1% 

on System 2 (Example 12) 

 
 The RMS bus voltage magnitude error is evaluated over the 150 buses in the sys-
tem to create 1000 data points. Each of the 1000 data points in the ensemble corresponds 
to one trial in the Monte Carlo study. The maximum of ensemble is plotted as “Max” in 
Figure 5.10. Further the minimum of ensemble is plotted as “Min.”  And the mean of the 
ensemble is plotted as “Mean.” 
 Figure 5.10 shows RMS voltage magnitude error of Example 12. The max line 
increases 3 x 10-5 p.u. from 0 PMUs to 150 PMUs, and the min line decreases 3 x 10-8 
p.u. from 0 PMUs to the addition of 150 PMUs. The mean shows a decrease in RMS 
voltage magnitude error of 2 x 10-6 p.u. from 0 PMUs to the addition of 150 PMUs. The 
slight increase in error in both the max data and mean is due to the fact that the phase an-
gle measurements can “push” the error away from those state estimates and into other 
states estimates, e.g. the error is “pushed” away from the voltage phase angle states to 
voltage magnitude states.  
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Figure 5.11 displays the condition number of the converged iteration gain matrix, 
KG, of the state estimator with noise in the SCADA measurements of 5% and 1% noise in 
PMU phase angle measurements, Example 12. Note, mean of KG in Example 12 is the 
same as in Example 10, System 2 with no measurement noise. Figure 5.12 depicts the 
singular distance of the converged iteration of the gain matrix, in Example 12. The plot of 
the mean of d for Example 12 agrees with Example 10. 
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Figure 5.10 RMS voltage magnitude error for SCADA noise 5% and PMU noise 1% on 

System 2 (Example 12) 
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Figure 5.11 KG for solved iteration of System 2 with SCADA noise 5% and PMU noise 

1% (Example 12) 
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The full calculations shown above (i.e., 1000 Monte Carlo trials, each finding the 
KG and d for the ~ 360 by 360 G matrix) are now compared to linear approximations 
found from (2.23), (2.22). In Example 10, the linear approximations are used and Figure 
5.11 could be “overlaid” with Figure 5.2. Thus the general observation for Example 10 
also applies to Example 12: the ΔKG can be predicted using the simple linearized formu-
las and the result is accurate to within 2.2% of the actual change in KG. Similarly, Δd can 
be predicted using the simple linearized formulas and the result is accurate to within 
3.0% of the actual change in d. 
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Figure 5.12 Parameter d for solved iteration of System 2 with SCADA noise 5% and 

PMU noise 1% (Example 12) 

5.5 Results of Example 15 

Example 15 is a 1,000 Monte Carlo trials simulation with SCADA measurement 
noise level of 15% and 0.5% noise in PMU voltage phase angle measurements. Figure 
5.13 shows the maximum voltage phase angle error of Example 15. Table 5.2 is of the 
change in the min, max, and mean of maximum voltage phase angle in Example 15 as 
PMUs are added. Note that the changes in the min, max, and mean all decrease in nonlin-
ear fashion. That is the decrease in the maximum voltage phase angle error is greater for 
the first 45 PMUs placed on the system than the last 45 PMUs. The decrease in min and 
max of maximum voltage phase angle as PMU measurements are added in Example 15 is 
an order of magnitude larger than that in Example 12, 1% PMU noise and 5% SCADA 
noise. The decrease in mean of maximum voltage phase angle in Example 15 is twice as 
observed in Example 12. 
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Figure 5.13 Maximum voltage angle error for SCADA noise 15% and PMU noise 0.5% 

on System 2 (Example 15) 
 

Table 5.3 Change in min, max, and mean of maximum voltage phase angle for  
Example 15 

PMUs Added Δ Min Δ Max Δ Mean 

0 to 45th PMU 0.00765° 0.35659° 0.04780° 

45th PMU to 105th 0.00402° 0.14049° 0.04381° 

105th PMU to 150th 0.00426° 0.03847° 0.01557° 

 
 Figure 5.14 depicts the RMS phase angle error Example 15, noise in the SCADA 
measurements of 15% and 0.5% noise in PMU phase angle measurements. The max de-
creases 0.035 degrees from 0 PMUs to 150 PMUs. Note, the quadratic shape of the max 
as voltage phase angles measurements are added to the measurement set. The min and 
mean show a slight decreases in RMS voltage phase angle error. Note that the change in 
the min and mean lines are also quadratic in shape. Thus the improvement in RMS volt-
age phase angle error is greater for the addition of first PMU than the subsequent PMU. 
Also note, the decrease in max and mean of RMS phase angle error in Example 15 is 
three times that in Example 12, 1% PMU noise and 5% SCADA noise. 
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 Figure 5.15 shows the maximum voltage magnitude error in Example 15. The 
max decreases 3.1 x 10-4 p.u. from 0 PMUs to 150 PMUs. The min decreases 3.2 x 10-4 
p.u. from 0 PMUs to 150 PMUs. The mean data shows a decrease in RMS voltage mag-
nitude error of 1.9 x 10-4 p.u. from 0 PMUs to the addition of 150 PMUs. A decrease in 
min, max, and mean of maximum voltage magnitude error as 150 phase angle measure-
ments are added only occurs in Examples 15 and 16, SCADA noise of 15%. 
 Figure 5.16 displays the RMS voltage magnitude error in Example 15, noise in 
the SCADA measurements of 15% and 0.5% noise in PMU phase angle measurements. 
The max increases linearly 2.4 x 10-4 p.u. from 0 PMUs to 150 PMUs. The min data in-
creases 3.8 x 10-6 p.u. from 0 PMUs to 150 PMUs. This increase from start to end does 
not follow any trend line. The mean data shows a decrease in RMS voltage magnitude 
error of 1.1 x 10-5 p.u. from 0 PMUs to the addition of 150 PMUs. The mean line has 
negative slope until the addition of 75th PMU then the slope of the mean line is positive. 
That is the mean has a minimum point at 75th PMU addition. The slight increase in error 
the max data is due to the fact that the phase angle measurements can “push” the error 
away from those state estimates and into other states estimates. 
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Figure 5.14 RMS voltage angle error for SCADA noise 15% and PMU noise 0.5% on 

System 2 (Example 15) 
 

Figure 5.17 depicts of the condition number of the converged iteration gain ma-
trix, KG, of the state estimator with noise in the SCADA measurements of 15% and 0.5% 
noise in PMU phase angle measurements (Example 15). The plot of mean agrees KG of 
Example 10, zero noise, and Example 12, 5% noise in SCADA and 1% noise in PMUs, to 
two places of accuracy. The max plot in Figure 5.19 is approximately 2 x 109 larger than 
previous max plots of KG in Examples 11 - 14. Figure 5.19 is of the singular distance of 
the converged iteration of the gain matrix, d, in Example 15. The plots of min, max, and 
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mean data points agree with singular distance calculated in Example 10 and Example 12 
to two places of accuracy. 
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Figure 5.15 Maximum voltage magnitude error for SCADA noise 15% and PMU noise 

0.5% on System 2 (Example 15) 
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Figure 5.16 RMS voltage magnitude error for SCADA noise 15% and PMU noise 0.5% 

on System 2 (Example 15) 
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Figure 5.17 KG for solved iteration of System 2 with SCADA noise 15% and PMU noise 

0.5% (Example 15) 
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Figure 5.18 Parameter d of the solved iteration of System with SCADA noise 15% and 

PMU noise 0.5% (Example 15) 
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 In Example 15, 1000 Monte Carlo trials are performed. For each trial the condi-
tion number and singular distance of the converged gain matrices (G is of the size 359 by 
359) are calculated. The mean of KG in Example 15 is the same as the KG calculated in 
Example 10. The change in the mean of KG is compared to the linear approximation of 
ΔKG calculated in Example 10 using (2.23), and the simple linearized approximations of 
ΔKG are within 1.8% of the observed change in KG. Similarly, the change in d can be pre-
dicted using the linearized formula (2.22) and is found to be within 2.6% of the change 
observed in Example 15.  
 
5.6 Summary of Examples 11 - 16 

Examples 11, 13, 14, and 16 are shown in Appendix E. These examples are in-
cluded in the summaries below. The improvement in mean of the voltage phase bus angle 
error increased as the noise level of the SCADA measurements increased for the addition 
of 150 PMU phase angle measurements. Table 5.4 shows the change in mean of the 
maximum phase angle. Note in Table 5.4, the change is not dependent on the noise level 
in PMU phase angle measurements. This could imply that the improvement is more from 
the direct measurement of the state, than the accuracy of the phase angle measurement. 
Table 5.5 shows the change in the error of the mean of RMS voltage phase angle error. 
The change in mean of RMS phase angle error increases in size as the SCADA noise lev-
els increase, but changing the noise level in the voltage phase angle appears to have no 
effect on the improvement in the accuracy. The change in RMS error is an order of mag-
nitude smaller than the change in maximum voltage phase angle. 

  
Table 5.4 The decrease in the mean of maximum voltage angle error data from 0 PMUs 

to 150 PMUs in the measurements (Examples 11 – 16) 

PMU noise level SCADA noise 
level 0.5% 1.0% 

5% 0.033° 0.032° 

10% 0.065° 0.072° 

15% 0.107° 0.107° 
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The improvement in mean of voltage magnitude error increased as the noise level 

of the SCADA measurements increased for the addition of 150 PMU measurements. Ta-
ble 5.6 contains the change in mean of the maximum voltage magnitude. Note in Table 
5.6 the mean of maximum voltage magnitude increases for noise level of 5% SCADA 
and 0.5% PMUs. This could imply that error was pushed from the voltage phase angle 
state to the voltage magnitude states, however, this phenomenon is only seen in this case 
and the change is insignificantly small. 

 
Table 5.5 The decrease in the mean of RMS voltage angle error data from 0 PMUs to 150 

PMUs in the measurements (Examples 11 – 16) 

PMU noise level SCADA noise 
level 0.5% 1.0% 

5% 0.002° 0.002° 

10% 0.005° 0.005° 

15% 0.007° 0.007° 

 
Table 5.6 The change in the mean of maximum voltage magnitude error data from 0 

PMUs to 150 PMUs in the measurements (Examples 11 – 16) 

PMU noise level SCADA noise 
level 0.5% 1.0% 

5% 1.5 x 10-4 p.u. -1.9 x 10-5 p.u. 

10% -8.7 x 10-5 p.u. -1.3 x 10-4 p.u. 

15% -1.9 x 10-4 p.u. -2.0 x 10-4 p.u. 

 
Table 5.7 shows the change in the mean of RMS voltage magnitude error in Ex-

amples 11 - 16. The change in the mean of RMS voltage magnitude error increases in 
size as the SCADA noise levels increase but changing the noise level in the voltage phase 
angle measurements appears to have no effect on the improvement in the accuracy. The 
change in RMS error is an order of magnitude smaller than the change in maximum volt-
age magnitude error. The noise levels used in Examples 11 -16 had little effect on the 
condition indicators of KG and d. That is the condition indicators are not dependent on the 
noise in the measurements. This observation appears to be intuitively evident because KG 
and d are functions of G only – not functions of noise. However, because the ultimate 
gain matrix G is derived at the solution, and G is obtained from linearization (see 2.1 – 
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2.2), the point of linearization does depend on noise. The impact of noise on KG or d is 
evident Figures 5.11, 5.12, 5.17 and 5.18 due to the three unique lines for min, max, and 
mean.  
 
Table 5.7 The change in the mean of RMS voltage magnitude error data from 0 PMUs to 

150 PMUs in the measurements (Examples 11 – 16) 

PMU noise level SCADA noise 
level 0.5% 1.0% 

5% -1.8 x 10-6 p.u. -2.0 x 10-6 p.u. 

10% -4.7 x 10-6 p.u. -7.3 x 10-6 p.u. 

15% -1.1 x 10-5 p.u. -1.1 x 10-5 p.u. 

 
 In Examples 11 – 16 improvement was seen in both the RMS and maximum of 
voltage phase angle in all cases. The improvement seen in both RMS and maximum volt-
age phase angle is not linear. Rather, the improvement in accuracy of phase angle esti-
mates for each PMU measurement added diminishes as more PMUs are added. 
 
5.7 Conclusions 

In this study, the impact of adding PMUs to test System 2 is examined. In Chapter 
5 System 2, a representation of a power system in the southwest US, was used approxi-
mately three times the size of IEEE 57 bus test bed, System 1. The condition indicators, 
condition number of the gain matrix (KG) and singular distance of the gain matrix (d), and 
linear approximations of the change in the condition indicators (2.22, 2.23) were calcu-
lated using System 2. The change observed when phase angle measurements were added 
was as predicted using the linear approximations for change of condition indicators. In 
Examples 11 – 16, the level of noise in either the SCADA measurements or PMU meas-
urements did not significantly alter the condition indicators of the gain matrix. 
 An improvement in state estimation accuracy was distinguished as PMUs were 
added to System 2 for all noise levels studied. The noise level of the SCADA measure-
ments had an impact on the improvement of the accuracy as PMUs were added. In Ex-
amples 11 – 16, if the PMU noise level is in the S/N ration range of 10 to 20, the impact 
of noise in the PMU voltage phase angle measurements has low impact on the improve-
ment of accuracy in state estimation.  
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6 Conclusions and Future Work 

6.1 Research Contributions  

The research contributions of this report have been in the area of state estimation 
of large scale power systems. The research contributions in this report are summarized in 
Table 6.1. 

 
Table 6.1 Summary of the main research contributions in this report 

Major Contributions 

• Definition of condition indicators 

• Utilization of condition indicators for state estima-
tion design 

• Formulas describing the linear behavior of condition 
indicators up the addition of measurements 

• The use of condition indicators to assess placement 
of PMUs 

• Definition of a measurement outage table 

• Utilization of a measurement outage table to asses 
robustness state estimator design 

• Formulations of probability of measurement outage 

Secondary Contributions 

• Case studies performed to test the performance of 
condition indicators on a large scale power system 

• Calculation of the probability of measurement out of 
service using reliability statistics  

• The use of linearized formulas of the condition indi-
cators to find expected values for the measurement 
outage table 

 
The study and review of condition analysis for state estimation using a least 

squares method revealed a correlation between decreasing the condition number of the 
gain matrix, G, and increasing the accuracy of state estimates. Some other innovative 
concepts and contributions include definition and use of: 

• Singular distance – calculating the distance between matrix A and the closest 
singular matrix. 

• Scaling factor – viewing the largest singular value of matrix A as a condition 
indicator. 

Further contributions are: 
• Measurement placement using eigenvectors – the use of eigenvector of small-

est eigenvalue to find placement of measurements.  
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• Linear approximations for the change in condition indicators - the use (2.21 – 
2.23) in predicting the change in the condition indicators. 

It appears it is possible to “engineer” the eigenspectrum of G (sensor placement in 
H) using linearized analysis. Illustrations were given showing placement of bus voltage 
phase measurements with regard to impacts on the condition indicators. The sensitivity-
based formulas for condition indicators give an assessment of the effects of added meas-
urements on the eigenvalues of the gain matrix. The accuracy of the sensitivity-based cal-
culations of condition indicators decreases as the number of measurements increases. 
Placement of added state measurements using a condition indicator philosophy appears to 
be consistent with placement using redundancy analysis. 

The condition analysis concepts above are proposed for the following applica-
tions: 

• Application to an existing system in which the SE has a valid G matrix. The 
system is under study for added measurements 

• The condition analysis is a tool used in connection with other placement tech-
niques. It is assumed that the system is observable. 

• A “sanity check” for proposed measurement placement. 
In these applications, it was found that the impact of measurement noise on state estima-
tion is attenuated. This point is illustrated in the examples shown in the report. The ex-
amples included a 180 bus system. In addition, it is found that the condition analysis of 
the placement of the proposed measurements agrees with redundancy analysis: 

• The error both in the ΔKG and Δd, due to the sensitivity-based approximations 
generally decreases as measurements are added. 

• The improvement (i.e., decrease in ΔKG and increase in Δd) decreases as 
measurements are sequentially added. 

 An additional contribution relates to the construction and use of a measurement 
outage table. The measurement outage table uses the probability of a measurement fail-
ure. This is analogous to the probability of loss of generation in a generation capacity 
outage table. The measurement outage table is offered as a potential tool to analyze state 
estimation sensory impacts. For example, it is possible to statistically evaluate the condi-
tion indicators. It is possible to identify where a phasor measurement can be placed to 
increase the robustness of the state estimator design, (i.e., the entire system is still ob-
servable after a measurement failure). The performance indicators used in the table not 
only detects if a measurement outage produces an unobservable island, but also detects 
how “well conditioned” the process matrix, H, is, and the impact of measurement failure 
on state estimator expected error. The main conclusions of about the measurement outage 
table are: 

• It is possible to calculate the expected values of the condition indicators for 
the measurement outage table using the linearized formulas (2.22, 2.22, 2.24); 
and 

• The addition of PMU measurements improves the condition indicators (i.e., 
the condition number decreases and singular distance increases) of the state 
estimator during failure scenarios.  
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6.2 Present Status of the EIPP Project 

The Eastern Interconnect Phasor Project, EIPP, is advancing toward the goal of 
widespread geographic penetration of PMUs in the eastern interconnect. The location of 
PMUs is decided by the utility installing, all of which have different criteria for place-
ment.  

The reference bus is a virtual bus calculated from three PMU measurements near 
a nuclear power plant in southeast Tennessee owned by Tennessee Valley Authority. The 
frequency, voltage phase angle, and voltage magnitude is broadcast to the Tennessee Val-
ley Authority control room in real time and stored in a super phasor data concentrator. 
The information from all PMUs reporting to the super phasor data concentrator is then 
broadcast to all participating utilities in near real time via fiber optic cable links. 

Members of EIPP are now preparing their energy management software (EMS) to 
include PMU measurements in the measurement set for state estimation. A software ven-
dor specializing in EMS is working with the members to include the use of PMU meas-
urements in state estimation and improve the metrics applied to the solved solution of the 
state estimator. Metrics that are being used to show improvement in accuracy of the state 
estimator are: 

• Variance of state – the inverse of the solved gain matrix, the smaller the val-
ues on the diagonal the closer to the actual state 

• Critical measurements – the local redundancy procedure outlined in this re-
port is performed 

• Condition number of the gain matrix – is used to determine the robustness of 
the state estimator for current topology and measurement set  

Other characteristics will be collected during a six month trial will be performed with the 
vendors state estimator using PMU measurements operating in parallel to an operative 
state estimator. The operative state estimator does not use PMU measurements. The trial 
period is expected to be six months long. Some of the statistics being collected on both 
state estimators are: 

• The number of converged solutions 
• Power flow mismatch at the buses  
• Accuracy of state estimation on congested transmission lines 
• Accuracy of critical bus voltages. 

 
6.3 Future Work and Recommendations 

 This report has focused on improving the state estimator of large scale power sys-
tems by including voltage phase angle measurements from PMUs. Future work and rec-
ommendations are:  

• Western EIPP – The Western Electricity Coordinating Council (WECC) was 
one of the first promoters of the use PMUs in protective relaying. Several 
utilities in the WECC have remedial action schemes based on PMU measure-
ments. The WECC has far fewer PMUs online than in the eastern interconnect 
and infrastructure needed for a super phasor data concentrator is still emerg-
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ing. A concerted effort needs to be made by the utilities in the western United 
States to follow the example of the EIPP and push for advanced metering 
technologies use on the WECC system. 

• Correlation with redundancy – In Examples 2 – 4 local redundancies are cal-
culated. Improvements in local redundancy are observed in Examples 3 and 4, 
when PMUs are added to improve the condition indicators. Further investiga-
tion in this phenomenon needs to be performed. 

• Experience with PMUs – The examples presented in this report models PMUs 
as described in journal articles. There is still much to be learned about actual 
performance of PMUs operated on utility owned electric system. 

• Use of PMUs in WACS – The research done in this report focused on the use 
of PMUs for state estimation. The speed and quality of the data from PMUs 
could make WACS more feasible. The location of PMUs to have the most 
significant impact on WACS needs to be studied. The time delay between 
measurements from PMU and control signals being sent needs to be studied.  
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SUMMARY OF EXAMPLES 
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Table A.1 Summary of Examples  

Example Intent of 
Example 

Ite
ra

tio
ns

 

Sy
st

em
 

Conditions Outcome 

1 Verify (2.22) on 
nonlinear state estimator 4 1* Augment H with +1 at (m+1,32) 

and (m+2, 89) 

Equation 2.22 can predict d 
accurately for all iterations of the 
state estimation 

2 Provide a base case for 
subsequent examples 4 1* Signal to Noise of 10 normally 

distributed. N/A 

3 

Observe the impact of 
adding an PMU on both 

SE accuracy and 
condition indicators 

4 1* 

PMU placed at bus 32. Signal to 
Noise of 10 normally distributed 
for power and voltage magnitude 
measurements. 

The accuracy of the state estimation 
improved slightly and significant 
gains in the condition indicators. 

4 

Observe the impact of 
adding 5 PMUs on both 

SE accuracy and 
condition indicators 

4 1* 

PMUs placed at buses 25, 30, 
31, 32, and 33. Signal to Noise 
of 10 normally distributed for 
power and voltage magnitude 
measurements. 

The accuracy of the state estimation 
improved and significant gains in 
the condition indicators. 

5 

Observe the impact of 
weighting  PMU on the 
prediction of condition 

indicators 

4 1* PMU placed at bus 32 and 
weight varied from 0 to 2. 

Increasing the  weight place on a 
PMU measurement decrease the 
accuracy of (2.22 – 2.24)  

6 
Observe the impact of the 
placing PMUs one-at-a-
time versus all-at-once. 

4 1* PMUs placed at buses 25, 30, 
31, 32, and 33.  

The same buses were picked as in 
Example 4, however improvement 
was seen in the prediction of 
condition indicators. 
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Example Intent of 
Example 

Ite
ra

tio
ns

 

Sy
st

em
 

Conditions Outcome 

7 Illustrate a measurment 
outage table 4 1* 

Condition indicators are 
calculated for n-1 contengcy of 
sensor outages and 0 PMUs. 

This Example is a base case which 
Example 8 and 9 are compared to. 

8 Illustrate a measurment 
outage table 4 1* 

Condition indicators are 
calculated for n-1 contengcy of 
sensor outages and 1 PMU. 

Decrease are seen in the maximum 
KG and expected KG compared to 
Example 7 and increases in 
minimum d and expected d. 

9 Illustrate a measurment 
outage table 4 1* 

Condition indicators are 
calculated for n-1 contengcy of 
sensor outages and 5 PMUs. 

Decrease are seen in the maximum 
KG and expected KG compared to 
Example 7 and 8 and increases in 
minimum d and expected d. 

10 
Observe the impact of 
placing PMUs on the 
condition indicators 

4 2*
* 

PMUs are placed at the buses 
one at a time. 

Equations 2.22 predicted the change 
in singular distance correctly. 
Equation 2.23 predicted the change 
in condition number in the gain 
matrix. 

11 
Observe the impact of 
placing PMUs on SE 

accuracy 
4 – 5 2*

* 

PMUs are placed at 0, 15, 30, … 
, 150. The noise is 5% for 
SCADA and 0.5% for PMUs. 

An improvement was seen in the 
accuracy of the angle error and 
singular distance and condition 
number of the gain matrix. 

12 
Observe the impact of 
placing PMUs on SE 

accuracy 
4 – 5 2*

* 

PMUs are placed at 0, 15, 30, … 
, 150. The noise is 5% for 
SCADA and 1% for PMUs. 

An improvement was seen in the 
accuracy of the angle error and 
singular distance and condition 
number of the gain matrix. 
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Example Intent of 
Example 

Ite
ra

tio
ns

 

Sy
st

em
 

Conditions Outcome 

13 
Observe the impact of 
placing PMUs on SE 

accuracy 
4 – 5 2*

* 

PMUs are placed at 0, 15, 30, … 
, 150. The noise is 10% for 
SCADA and 0.5% for PMUs. 

An improvement was seen in the 
accuracy of the angle error and 
singular distance and condition 
number of the gain matrix. 

14 
Observe the impact of 
placing PMUs on SE 

accuracy 
4 – 5 2*

* 

PMUs are placed at 0, 15, 30, … 
, 150. The noise is 10% for 
SCADA and 1% for PMUs. 

An improvement was seen in the 
accuracy of the angle error and 
singular distance and condition 
number of the gain matrix. 

15 
Observe the impact of 
placing PMUs on SE 

accuracy 
4 – 5 2*

* 

PMUs are placed at 0, 15, 30, … 
, 150. The noise is 15% for 
SCADA and 0.5% for PMUs. 

An improvement was seen in the 
accuracy of the angle error and 
singular distance and condition 
number of the gain matrix. 

16 
Observe the impact of 
placing PMUs on SE 

accuracy 
4 – 5 2*

* 

PMUs are placed at 0, 15, 30, … 
, 150. The noise is 15% for 
SCADA and 1% for PMUs. 

An improvement was seen in the 
accuracy of the angle error and 
singular distance and condition 
number of the gain matrix. 

17 

Observe the impact of 
weighting PMU phase 
angle measurements on 

SE accuracy 

4 2*
* 

PMUs are placed at 0, 15, 30, … 
, 150. The noise is 15% for 
SCADA and 1% for PMUs. The 
PMU weight is 10 and SCADA 
weight is 1. 

The impact of adding PMUs is far 
more signficant than in the case of 
unitary weighting, (Example 15). 
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Example Intent of 
Example 

Ite
ra

tio
ns

 

Sy
st

em
 

Conditions Outcome 

A.1 

To find greatest 
improvement in smallest 
eigenvalue of the power-

phase quadrant of H 
using (2.22) 

1 1* Augment power-phase quadrant 
of H with a +1 at (m+1, k). 

Equation 2.22 predicted the correct 
location of the largest change 

A.2 
To see the effects of 

weighting the augmented 
measurement 

1 1* Augment power-phase quadrant 
of H with 0<w<2 at (m+1, 32). 

Decrease weight on the augmented 
measurement produced more 
accurate  prediction d using (2.22)  

A.3 Verify (2.22) 1 1* Augment power-phase quadrant 
of H with +1 at (m+1, 32). 

Equation 2.22 can predict the change 
in all eigenvalues accurately using a 
single row in the eigenvector matrix 

A.4 

To find greatest 
improvement in smallest 
eigen-value of G using 

(2.22) 

1 1* Augment H with +1 at (m+1, k) 
and (m+2, k+57). 

Equation 2.22 predicted the correct 
location of the largest change 

*   System 1 is the IEEE 57 bus test bed  
** System 2 is representative power system in the southwest US 
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APPENDIX B  

EXAMPLES BASED ON SINGLE ITERATION LINEARIZED STATE ESTIMATION 
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B.1   Linearized Approximations of Condition Indicators Using the Power-Phase 
Quadrant of the H Matrix 

 
 In this Appendix, examples are presented to illustrate the use of condition indict-
ors on first iteration gain matrix. All examples appear in detail in Appendix A. For pur-
pose of terminology, the process matrix H is partitioned as 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

QVQ

PVP

HH
HH

H
δ

δ  

and HPδ is termed the power-phase quadrant of the matrix H. 
 Example A.1 is performed on power-phase quadrant of the H matrix. The H ma-
trix is constructed from measurements of System 1. Example A.1 is constructed to verify 
(2.22), the approximation of d, distance to the nearest singular matrix. The distance to the 
nearest singular matrix is also the smallest eigenvalue. In Example A.1, an extra row is 
augmented to the H matrix in which a single +1 is inserted in the column corresponding 
to the bus location at which a phasor angle measurement is added. 
 Figure B.1 shows that the linear approximation, noted as “Predicted,” is a good 
indicator for which +1 change in the H will have the greatest impact on d. Both the lin-
earized and actual change in d show the greatest improvement for a phasor measurement 
placed at bus 32. Figure B.1 also shows that the predicted change in d can be significantly 
larger than what is actually observed. 
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Figure B.1 Impact on singular distance of placement of a phasor measurement at a single 

bus (Example A.1, System 1) 
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 Example A.2 is performed on System 1 using only the power-phase quadrant of 
H. Example A.2 will examine how the size of Δh affects the accuracy of the prediction of 
d from (2.22). The largest change in d in Example A.1 occurred when a phasor measure-
ment was placed at bus 32. For Example A.2, the phasor measurement is placed at bus 
32. The size of Δh will be varied from 0 to 2.  
 Figure B.2 depicts the predicted change in d using (2.22) and the actual change in 
d. It can be noted that in (2.22) there is a quadratic relationship between Δh and change in 
d. In Figure B.2, the actual change in d “levels off” as Δh continues to increase. This can 
be contributed to the smallest eigenvalue of G is no longer the same eigenvalue. That is, 
as elements of H change, the eigenvalues of G migrate. The eigenvalues of G “move” 
smoothly as hi,j changes and it is possible that the locus of the smallest eigenvalues will 
cross the locus of another eigenvalue. In this sense, the previously identified smallest ei-
genvalues may not longer be the smallest. 
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Figure B.2 Magnitude variations in Δh versus change in singular distance (Example A.2) 

 
 The leveling off in Example A.2 is attributed to smallest eigenvalue being “differ-
ent” after the addition of phasor measurement; Example A.3 was constructed to confirm 
this hypothesis. In Example A.3 the power-phase quadrant of H of System 1 was used. A 
phasor measurement at bus 32 was augmented to the H matrix with a +1 in the 32nd col-
umn. Figure B.3 shows the spectrum of the eigenvalues of G. Note there is very little 
change in the eigenvalues of G by the addition of phasor measurement at bus 32. Also 
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note that the eigenvalues predicted using (2.22) agree with the actual values found after 
the augmentation of H. 

0.1 1 10 100 1000 10000
Eigenvalues

Predicted

Computed

Orginal

 
Figure B.3 Spectrum of eigenvalues of Example A.3 

 
B.2   Linearized Approximations of Condition Indicators Using the H Matrix 

 The next series of examples examines the impact of the linearizations when two 
measurements are added, one being the phasor measurement, and two being the voltage 
measurement. Equation 2.22 can be used with changes in multiple columns of H provided 
the columns of H are linearly independent. The change in d will be addition of the 
changes in the columns of H mapped onto the changes in the smallest eigenvalue by 
(2.22).  
 Example A.4 is performed on System 1 using the entire H matrix. Example A.4 is 
to verify (2.22), the approximation of d, distance to the nearest singular matrix. In Exam-
ple A.4, two rows are augmented to the H in which +1 is inserted in the columns corre-
sponding to the phase angle locations at which phasor angle measurements were added. 
 Figure B.4 shows linear approximation, noted as “Predicted.”  Both the linearized 
and actual change in d show the greatest improvement for a phasor measurement placed 
at bus 32. Figure B.4 also shows that predicted change in d can be significantly larger 
than actual change in d. 
 Equation 2.25 is a linearized model for the change in condition number of G 
based on the change in Δh. Figure B.5 is displays the change in condition number of G as 
a voltage magnitude and phase angle measurement are added. Note that Bus 32 is the bus 
with greatest change in both the using (2.25) and actual change in condition number. Also 
note that the predicted change is much greater than the actual change. 
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Figure B.4 Impact on singular distance by placement of a phasor measurement and volt-

age magnitude at one bus (Example A.4) 
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Figure B.5 Impact on condition number of G by placement of a phasor measurement and 

voltage magnitude at one bus (Example A.4) 
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 Figure B.6 shows Example A.1 and Example A.4 on the same graph. Note that the 
improvement seen d is greater for the full H (Example A.4) than just the power-phase 
quadrant of H (Example A.1). 
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Figure B.6 Example A.1 and Example A.4 changes in singular distance 

 
B.3   Summary of Examples  

 Table A.1 summarizes Examples A.1 -- A.6. The main observations are: 
• Small change is seen between the prediction of the change in the smallest eigen-

value of G using the power-phase quadrant of H (Example A.1) and using the en-
tire H (Example A.4) for the first iteration. 

• Equation 2.22 predicted the correct location of the largest improvement of the 
smallest eigenvalue, d. However, (2.22) predicted a significantly larger estimate 
of improvement than the actual computed value. 

• Equation 2.22 can predict all eigenvalues of G using limited information from the 
eigenvector matrix of G. 

• Decreasing the size of Δhk1 will improve the accuracy of (2.22). 
• The augmentation of one PMU in System 1 in Example A.4 decreased the condi-

tion number of G by 30.91%. 
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APPENDIX C  

ELECTRICAL CONNECTIONS OF SYSTEM 2 
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Table C.1 Transmission line data for System 2  
From 
Bus To Bus  Series (p.u.) Charging (p.u.) 

Number Number Section Resistance  Reactance Conductance Susceptance 
14000 14004 3 0.00000 0.00010 0.00000 0.00000 
14000 14004 1 0.00000 -0.01720 0.00000 0.00000 
14000 14004 2 0.00218 0.04901 0.00000 3.73739 
14000 15001 0 0.00074 0.01743 0.00000 1.32274 
14001 14002 1 0.00000 -0.00010 0.00000 0.00000 
14001 14002 3 0.00000 -0.00010 0.00000 0.00000 
14001 14002 2 0.00177 0.04189 0.00000 3.34000 
14002 14003 1 0.00000 -0.01269 0.00000 0.00000 
14002 14003 2 0.00077 0.01804 0.00000 1.39842 
14002 14006 2 0.00098 0.02319 0.00000 1.85366 
14002 14006 1 0.00000 -0.00660 0.00000 0.00000 
14003 14005 3 0.00000 -0.01188 0.00000 0.00000 
14003 14005 1 0.00000 -0.01188 0.00000 0.00000 
14003 14005 2 0.00241 0.05865 0.00000 4.86560 
14004 16000 0 0.00003 0.00030 0.00000 0.00000 
14004 16001 0 0.00003 0.00030 0.00000 0.00000 
14005 14006 1 0.00000 -0.00826 0.00000 0.00000 
14005 14006 2 0.00081 0.01925 0.00000 1.53854 
14005 15021 0 0.00040 0.00960 0.00000 0.90380 
14005 15021 0 0.00040 0.00960 0.00000 0.90380 
14005 15033 0 0.00000 0.00100 0.00000 0.00000 
14007 15089 0 0.00020 0.00440 0.00000 0.41670 
14007 15089 0 0.00020 0.00440 0.00000 0.41670 
14009 15090 0 0.00000 0.00050 0.00000 0.00000 
14009 15090 0 0.00000 0.00050 0.00000 0.00000 
14100 14101 2 0.00855 0.08218 0.00000 0.00000 
14100 14101 1 0.00000 -0.02072 0.00000 0.00000 
14100 14101 1 0.00000 -0.02072 0.00000 0.00000 
14100 14101 2 0.00860 0.08270 0.00000 0.00000 
14100 14102 2 0.00000 0.00010 0.00000 0.00000 
14100 14102 1 0.00361 0.06736 0.00000 1.02994 
14100 14103 0 0.00364 0.03474 0.00000 0.53082 
14101 79064 0 0.00030 0.00420 0.00000 0.07150 
14102 14103 1 0.00000 0.00030 0.00000 0.00000 
14102 14103 2 0.00340 0.03262 0.00000 0.49913 
14201 19052 0 0.00090 0.00970 0.00000 0.01864 
14202 14219 0 0.00330 0.02510 0.00000 0.05860 
14202 14221 0 0.00240 0.01870 0.00000 0.04500 
14203 14225 0 0.00800 0.07200 0.00000 0.15120 
14203 14500 0 0.00038 0.00281 0.00000 0.00260 
14204 14215 0 0.01180 0.06900 0.00000 0.14400 
14205 14215 0 0.00850 0.05400 0.00000 0.09800 
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From 
Bus To Bus  Series (p.u.) Charging (p.u.) 

Number Number Section Resistance  Reactance Conductance Susceptance 
14205 14230 0 0.00770 0.04490 0.00000 0.09000 
14206 14216 0 0.00035 0.00143 0.00000 0.31160 
14206 14218 0 0.00020 0.00070 0.00000 0.17000 
14206 14270 0 0.00030 0.00100 0.00000 0.06148 
14207 14231 0 0.00190 0.01714 0.00000 0.05932 
14207 15202 0 0.00096 0.00832 0.00000 0.03008 
14207 15211 0 0.00161 0.01460 0.00000 0.05006 
14209 19042 0 0.00830 0.08790 0.00000 0.16934 
14209 19052 0 0.00840 0.08870 0.00000 0.17078 
14210 14228 0 0.00090 0.00930 0.00000 0.03660 
14210 14232 0 0.00085 0.00837 0.00000 0.00000 
14210 15201 0 0.00081 0.00781 0.00000 0.02100 
14212 14270 0 0.00100 0.01010 0.00000 0.22772 
14212 15201 0 0.00040 0.00400 0.00000 0.00720 
14216 14219 0 0.00210 0.01680 0.00000 0.03400 
14216 14239 0 0.00135 0.00746 0.00000 0.01031 
14217 14220 0 0.00050 0.00501 0.00000 0.01877 
14217 14221 0 0.00158 0.01515 0.00000 0.03154 
14217 14227 0 0.00089 0.00887 0.00000 0.02000 
14218 14227 0 0.00053 0.00220 0.00000 0.53400 
14219 14221 0 0.00480 0.03720 0.00000 0.07200 
14219 14236 0 0.00388 0.02936 0.00000 0.06164 
14220 14221 0 0.00073 0.00721 0.00000 0.02591 
14221 15211 0 0.00015 0.00130 0.00000 0.00000 
14221 15211 0 0.00015 0.00130 0.00000 0.00000 
14221 19062 0 0.00001 0.00030 0.00000 0.00000 
14222 14243 0 0.01370 0.09600 0.00000 0.16740 
14222 14250 0 0.00000 0.00030 0.00000 0.00000 
14222 19501 0 0.01580 0.10970 0.00000 0.19112 
14225 14229 0 0.00666 0.04868 0.00000 0.09270 
14226 14229 0 0.00582 0.04254 0.00000 0.08200 
14226 14500 0 0.00266 0.01981 0.00000 0.04460 
14226 15219 0 0.00483 0.02824 0.00000 0.06230 
14226 19068 0 0.00000 0.00200 0.00000 0.00000 
14228 14231 0 0.00080 0.00900 0.00000 0.03540 
14230 14234 0 0.00361 0.02105 0.00000 0.04218 
14231 14246 0 0.00133 0.01054 0.00000 0.01916 
14231 15201 0 0.00213 0.01867 0.00000 0.06788 
14231 19052 0 0.00397 0.03480 0.00000 0.12662 
14231 19062 0 0.00272 0.02740 0.00000 0.13488 
14232 14239 0 0.00197 0.01540 0.00000 0.05855 
14232 15230 0 0.00074 0.00580 0.00000 0.01937 
14233 15230 0 0.00182 0.01419 0.00000 0.03918 
14234 14249 0 0.00420 0.02600 0.00000 0.04890 
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From 
Bus To Bus  Series (p.u.) Charging (p.u.) 

Number Number Section Resistance  Reactance Conductance Susceptance 
14235 14238 0 0.00090 0.00860 0.00000 0.01880 
14236 15207 0 0.00000 0.00030 0.00000 0.00000 
14236 15219 0 0.00083 0.00470 0.00000 0.01005 
14238 19052 0 0.00710 0.06470 0.00000 0.14380 
14241 15202 0 0.00000 0.00030 0.00000 0.00000 
14243 19062 0 0.00300 0.02130 0.00000 0.03710 
14246 19208 0 0.00067 0.00526 0.00000 0.00956 
14249 14250 0 0.00000 0.00030 0.00000 0.00000 
14350 14362 0 0.02710 0.12160 0.00000 0.01664 
14350 17001 0 0.01530 0.09430 0.00000 0.01314 
14350 19221 0 0.03800 0.23370 0.00000 0.03264 
14352 15103 0 0.00000 0.00030 0.00000 0.00000 
14356 14357 0 0.00010 0.00030 0.00000 0.00000 
14356 17013 0 0.01060 0.06490 0.00000 0.00904 
14356 19057 0 0.01710 0.10530 0.00000 0.01470 
14356 19211 0 0.00270 0.01660 0.00000 0.00232 
14357 14358 0 0.03091 0.25063 0.00000 0.02980 
14357 19048 0 0.03480 0.14890 0.00000 0.01976 
14357 19067 0 0.01540 0.09480 0.00000 0.01322 
14358 19057 0 0.02960 0.12340 0.00000 0.01630 
14359 19044 0 0.01370 0.03790 0.00000 0.00448 
14359 19057 0 0.08820 0.24420 0.00000 0.02622 
15001 15041 0 0.00176 0.04189 0.00000 3.32630 
15011 15051 0 0.00026 0.00382 0.00000 0.41947 
15011 15089 0 0.00048 0.01091 0.00000 1.06576 
15021 15061 0 0.00034 0.00724 0.00000 0.68725 
15021 15090 0 0.00003 0.00069 0.00000 0.64820 
15021 15090 0 0.00003 0.00067 0.00000 0.62620 
15021 15090 0 0.00003 0.00071 0.00000 0.53580 
15031 15033 0 0.00000 0.00010 0.00000 0.00000 
15032 15033 0 0.00000 0.00010 0.00000 0.00000 
15034 19038 3 0.00000 -0.01800 0.00000 0.00000 
15034 19038 2 0.00182 0.05144 0.00000 4.89200 
15034 19038 1 0.00000 -0.01800 0.00000 0.00000 
15041 15051 0 0.00046 0.00874 0.00000 0.70448 
15089 15090 0 0.00020 0.00428 0.00000 0.40122 
15090 15092 0 0.00000 0.00050 0.00000 0.00000 
15090 15093 0 0.00020 0.00550 0.00000 0.51350 
15090 15094 0 0.00000 0.00050 0.00000 0.00000 
15101 15102 0 0.00135 0.00236 0.00000 0.00014 
15102 15103 0 0.06184 0.18458 0.00000 0.01192 
15102 15108 0 0.00056 0.00168 0.00000 0.00011 
15103 19044 0 0.02706 0.08076 0.00000 0.00521 
15105 15133 0 0.00030 0.00130 0.00000 0.00020 
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From 
Bus To Bus  Series (p.u.) Charging (p.u.) 

Number Number Section Resistance  Reactance Conductance Susceptance 
15106 15109 0 0.02469 0.11702 0.00000 0.01640 
15106 15115 0 0.03040 0.14536 0.00000 0.01996 
15106 15134 0 0.00901 0.01407 0.00000 0.00144 
15107 15109 0 0.01739 0.09977 0.00000 0.01360 
15107 15117 0 0.00988 0.04722 0.00000 0.00648 
15107 15127 0 0.01327 0.03312 0.00000 0.00762 
15107 15128 0 0.03472 0.06072 0.00000 0.00714 
15108 15112 0 0.01742 0.05146 0.00000 0.00337 
15108 17001 2 0.01319 0.11675 0.00000 0.01592 
15108 17001 1 0.11333 0.39946 0.00000 0.05064 
15109 15117 0 0.01282 0.06033 0.00000 0.00856 
15111 15112 0 0.00004 0.00017 0.00000 0.00000 
15112 15116 0 0.01617 0.47870 0.00000 0.00313 
15113 15116 0 0.00178 0.00587 0.00000 0.00040 
15113 15122 0 0.00321 0.01013 0.00000 0.00067 
15114 15119 0 0.00549 0.01724 0.00000 0.00234 
15114 15121 0 0.01218 0.04139 0.00000 0.00732 
15114 15133 0 0.00160 0.00730 0.00000 0.00110 
15115 15119 0 0.00711 0.03321 0.00000 0.00468 
15115 15132 0 0.00117 0.00222 0.00000 0.00026 
15118 15126 0 0.00290 0.01385 0.00000 0.00190 
15118 15129 0 0.00430 0.02030 0.00000 0.00290 
15119 15126 0 0.01638 0.07814 0.00000 0.01080 
15121 15125 0 0.01000 0.03120 0.00000 0.00630 
15122 15129 0 0.01422 0.06811 0.00000 0.00466 
15123 15132 0 0.00119 0.00225 0.00000 0.00013 
15124 15126 0 0.00046 0.00292 0.00000 0.00094 
15125 15129 0 0.00888 0.02131 0.00000 0.00964 
15127 15129 0 0.03392 0.10392 0.00000 0.02028 
15132 15133 0 0.00040 0.00200 0.00000 0.00030 
15170 19071 0 0.00000 0.00050 0.00000 0.00000 
15171 19067 0 0.00000 0.00050 0.00000 0.00000 
15201 15202 0 0.00120 0.00988 0.00000 0.04042 
15201 15218 0 0.00141 0.01238 0.00000 0.04502 
15203 15207 0 0.00136 0.00845 0.00000 0.06192 
15203 15208 0 0.00110 0.00671 0.00000 0.05070 
15204 15207 0 0.00101 0.00877 0.00000 0.03218 
15204 15209 0 0.00067 0.00584 0.00000 0.02142 
15204 15211 0 0.00610 0.03608 0.00000 0.07322 
15204 15211 0 0.00611 0.03614 0.00000 0.07334 
15204 15217 0 0.00031 0.00185 0.00000 0.00374 
15204 15217 0 0.00031 0.00185 0.00000 0.00374 
15205 15207 0 0.00082 0.00716 0.00000 0.02604 
15205 15213 0 0.00080 0.00730 0.00000 0.02660 
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From 
Bus To Bus  Series (p.u.) Charging (p.u.) 

Number Number Section Resistance  Reactance Conductance Susceptance 
15206 15215 0 0.00948 0.05145 0.00000 0.10522 
15206 15216 0 0.00237 0.01409 0.00000 0.02852 
15206 15216 0 0.00237 0.01409 0.00000 0.02852 
15207 15209 0 0.00123 0.01072 0.00000 0.03912 
15207 15214 0 0.00314 0.01778 0.00000 0.04698 
15208 15230 0 0.00109 0.00941 0.00000 0.03512 
15208 19052 0 0.00249 0.02143 0.00000 0.08008 
15209 15211 0 0.00385 0.02510 0.00000 0.17054 
15211 19062 0 0.00003 0.00030 0.00000 0.00000 
15211 19062 0 0.00002 0.00030 0.00000 0.00000 
15212 15216 0 0.00187 0.01103 0.00000 0.02236 
15212 19502 0 0.00000 0.00050 0.00000 0.00000 
15212 19502 0 0.00000 0.00050 0.00000 0.00000 
15213 15214 0 0.00229 0.01096 0.00000 0.08382 
15213 15216 0 0.00148 0.01296 0.00000 0.04742 
15213 15222 0 0.00315 0.01386 0.00000 0.01562 
15218 15230 0 0.00050 0.00435 0.00000 0.01582 
15230 19052 0 0.00157 0.01274 0.00000 0.04801 
16100 16104 0 0.00101 0.01057 0.00000 0.19400 
16101 16104 3 0.00511 0.05386 0.00000 0.96200 
16101 16104 2 0.00000 0.00001 0.00000 0.00000 
16101 16104 1 0.00000 0.00010 0.00000 0.00000 
16101 16109 0 0.00407 0.04244 0.00000 0.77763 
16101 17010 0 0.00002 0.00021 0.00000 0.00379 
16102 16104 0 0.00498 0.05195 0.00000 0.95080 
16102 16104 0 0.00491 0.05135 0.00000 0.94180 
16103 16105 0 0.00063 0.00663 0.00000 0.12300 
16103 16107 0 0.00817 0.08550 0.00000 1.60340 
16104 16106 1 0.00508 0.04856 0.00000 1.07680 
16104 16106 5 0.00000 0.00010 0.00000 0.00000 
16104 16106 3 0.00592 0.06168 0.00000 1.13960 
16104 16106 4 0.00000 -0.02420 0.00000 0.00000 
16104 16106 2 0.00000 -0.02004 0.00000 0.00000 
16105 16109 1 0.00000 0.00010 0.00000 0.00000 
16105 16109 3 0.00185 0.01929 0.00000 0.35347 
16105 16109 2 0.00000 -0.01737 0.00000 0.00000 
16105 17005 0 0.00108 0.01185 0.00000 0.19640 
16216 16217 0 0.04330 0.23308 0.00000 0.00000 
16216 16220 0 0.01090 0.06078 0.00000 0.00000 
16216 89992 0 0.00000 0.11142 0.00000 0.00000 
16217 16220 0 0.01340 0.07974 0.00000 0.00000 
16217 89991 0 0.00000 0.10983 0.00000 0.00000 
16220 89990 0 0.00000 0.04913 0.00000 0.00000 
17001 89989 0 0.00000 0.12131 0.00000 0.00000 
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From 
Bus To Bus  Series (p.u.) Charging (p.u.) 

Number Number Section Resistance  Reactance Conductance Susceptance 
17002 17004 0 0.02090 0.12609 0.00000 0.00000 
17002 17009 0 0.01550 0.14199 0.00000 0.00000 
17002 17105 0 0.00330 0.02919 0.00000 0.06369 
17004 17013 0 0.15360 0.42814 0.00000 0.00000 
17013 19064 0 0.02140 0.13140 0.00000 0.00000 
19011 19012 0 0.00290 0.02317 0.00000 0.00000 
19011 19012 0 0.00000 0.00760 0.00000 0.00000 
19011 19022 0 0.01370 0.09500 0.00000 0.16600 
19011 89984 0 0.00000 0.04921 0.00000 0.00000 
19012 19022 0 0.02210 0.19372 0.00000 0.00000 
19012 19042 0 0.02280 0.16653 0.00000 0.00000 
19012 19082 0 0.00457 0.03292 0.00000 0.06020 
19012 89983 0 0.00000 0.01000 0.00000 0.00000 
19022 19042 0 0.00330 0.02916 0.00000 0.00000 
19022 19314 0 0.00830 0.06278 0.00000 0.00000 
19022 89982 0 0.00000 0.01144 0.00000 0.00000 
19037 19315 2 0.00307 0.04261 0.00000 0.69365 
19037 19315 1 0.00000 0.00001 0.00000 0.00000 
19042 19204 0 0.00620 0.06590 0.00000 0.12680 
19042 89981 0 0.00000 0.05233 0.00000 0.00000 
19044 19065 0 0.01040 0.06380 0.00000 0.00890 
19044 19066 0 0.01670 0.04690 0.00000 0.00568 
19044 19600 0 0.00000 0.00050 0.00000 0.00000 
19045 19215 0 0.00740 0.05120 0.00000 0.08892 
19045 19410 0 0.00200 0.01510 0.00000 0.03030 
19045 19410 0 0.00200 0.01510 0.00000 0.03030 
19047 19064 0 0.00900 0.05550 0.00000 0.00774 
19047 19221 0 0.00950 0.05820 0.00000 0.00812 
19048 19222 0 0.03640 0.10210 0.00000 0.01240 
19052 19055 0 0.00800 0.06350 0.00000 0.10920 
19052 19061 0 0.00430 0.03230 0.00000 0.06678 
19052 19500 0 0.00290 0.03020 0.00000 0.05792 
19053 19315 2 0.00563 0.07809 0.00000 1.27136 
19053 19315 1 0.00000 -0.04220 0.00000 0.00000 
19055 19061 0 0.01820 0.11740 0.00000 0.01510 
19055 19068 0 0.02200 0.11840 0.00000 0.01470 
19055 19410 0 0.00740 0.05810 0.00000 0.11940 
19057 19064 0 0.04590 0.14990 0.00000 0.01814 
19057 19652 0 0.00000 0.00050 0.00000 0.00000 
19062 19502 0 0.00420 0.03190 0.00000 0.06480 
19062 19502 0 0.00420 0.03190 0.00000 0.06480 
19065 19066 0 0.00840 0.05160 0.00000 0.00720 
19065 19071 0 0.00840 0.05160 0.00000 0.00720 
19065 19211 0 0.03100 0.19070 0.00000 0.00000 
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From 
Bus To Bus  Series (p.u.) Charging (p.u.) 

Number Number Section Resistance  Reactance Conductance Susceptance 
19067 19071 0 0.00830 0.05100 0.00000 0.00712 
19068 19218 0 0.00868 0.09030 0.00000 0.01080 
19204 19500 0 0.00770 0.00626 0.00000 0.20440 
19215 19502 0 0.00170 0.01150 0.00000 0.01990 
19314 19501 0 0.00475 0.03299 0.00000 0.05726 
19314 89980 0 0.00000 0.05620 0.00000 0.00000 
19410 89979 0 0.00000 0.28985 0.00000 0.00000 
79024 79032 1 0.00000 -0.04540 0.00000 0.00000 
79024 79032 2 0.00570 0.06500 0.00000 1.00700 
79024 79032 1 0.00000 -0.04540 0.00000 0.00000 
79024 79032 2 0.00550 0.06540 0.00000 1.00700 
79024 79053 1 0.00500 0.05950 0.00000 0.91620 
79024 79053 2 0.00000 -0.04170 0.00000 0.00000 
79024 79053 1 0.00490 0.05980 0.00000 0.91080 
79024 79053 2 0.00000 -0.04190 0.00000 0.00000 
79028 79093 0 0.00327 0.01100 0.00000 0.06906 
79032 89962 0 0.00000 0.02776 0.00000 0.00000 
79043 79063 1 0.00000 -0.10397 0.00000 0.00000 
79043 79063 2 0.01620 0.16110 0.00000 0.29490 
79043 79096 1 0.00000 -0.10397 0.00000 0.00000 
79043 79096 2 0.00229 0.02277 0.00000 0.04144 
79093 79096 0 0.00660 0.06578 0.00000 0.11970 

 
Table C.2 Transformer connections of System 2 

From 
Bus To Bus  Series (p.u.) From Magnetizing (p.u.) 

Number Number Ratio Resistance Reactance Conductance Susceptance 
14000 14100 0.97951 0.00021 0.01671 0.00252 -0.02094 
14000 14100 0.97951 0.00019 0.01641 0.00264 -0.02487 
14001 14101 1.02375 0.00018 0.01060 0.00313 -0.00686 
14004 14356 1.02435 0.00057 0.04562 0.00257 -0.02958 
14004 14357 1.02435 0.00055 0.04589 0.00243 -0.02487 
14005 14231 0.98438 0.00011 0.00839 0.00486 -0.03666 
14005 14231 0.98438 0.00011 0.00838 0.00504 -0.03948 
14005 14231 0.98438 0.00007 0.00857 0.00279 -0.00315 
14005 99993 1.05000 -0.00003 0.01261 0.00349 -0.03042 
14006 14234 0.99590 0.00047 0.04129 0.00085 -0.00205 
14006 14234 0.99590 0.00046 0.04124 0.00095 -0.00288 
14007 14238 1.05000 0.00040 0.03150 0.00141 -0.00240 
14100 14204 1.00000 0.00111 0.04225 0.00056 -0.00092 
14101 14211 1.00000 0.00028 0.01381 0.00172 -0.00563 
14101 14211 1.00000 0.00029 0.01390 0.00169 -0.00600 
14102 14221 0.97500 0.00028 0.01390 0.00168 -0.00589 
14102 14221 0.97500 0.00027 0.01404 0.00163 -0.00529 
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From 
Bus To Bus  Series (p.u.) From Magnetizing (p.u.) 

Number Number Ratio Resistance Reactance Conductance Susceptance 
14102 14221 0.97500 0.00019 0.01328 0.00165 -0.01530 
14222 14355 0.97500 0.00340 0.08392 0.00038 -0.00131 
14222 14355 0.97500 0.00318 0.08594 0.00018 -0.00025 
14225 14356 1.00000 0.00107 0.03440 0.00094 -0.00272 
14225 14357 1.00000 0.00085 0.03516 0.00058 -0.00258 
15001 16100 1.02375 0.00018 0.01456 0.00140 -0.00090 
15011 99988 1.02380 0.00006 0.00298 0.00000 0.00000 
15011 99989 1.02380 0.00056 0.01153 0.00000 0.00000 
15021 14931 1.07763 0.00011 0.00973 0.00567 -0.02637 
15021 14932 1.07763 0.00011 0.00964 0.00583 -0.02913 
15021 14933 1.07763 0.00011 0.00977 0.00583 -0.03833 
15034 15031 1.00000 0.00000 0.02000 0.00000 0.00000 
15034 15032 1.00000 0.00000 0.02000 0.00000 0.00000 
15041 99987 1.02380 0.00005 0.01308 0.00000 0.00000 
15051 99985 1.05000 0.00056 0.01153 0.00000 0.00000 
15051 99986 1.05000 0.00056 0.01153 0.00000 0.00000 
15061 99982 1.05000 0.00015 0.01717 0.00000 0.00000 
15061 99983 1.05000 0.00015 0.01717 0.00000 0.00000 
15061 99984 1.05000 0.00015 0.01717 0.00000 0.00000 
15094 15163 1.05000 0.00000 0.00280 0.00000 0.00000 
15206 15107 1.02500 0.00000 0.04222 0.00000 0.00000 
15206 15107 1.02500 0.00000 0.04065 0.00000 0.00000 
15207 99988 1.00000 0.00006 0.00958 0.00000 0.00000 
15207 99989 1.00000 0.00055 -0.00012 0.00000 0.00000 
15215 15124 1.00000 0.00000 0.03776 0.00000 0.00000 
15215 15125 1.00000 0.00000 0.03801 0.00000 0.00000 
15215 99987 1.00000 0.00006 -0.00183 0.00000 0.00000 
15222 99985 1.00000 0.00055 -0.00012 0.00000 0.00000 
15222 99986 1.00000 0.00055 -0.00012 0.00000 0.00000 
15230 99982 1.00000 0.00015 0.00553 0.00000 0.00000 
15230 99983 1.00000 0.00015 0.00553 0.00000 0.00000 
15230 99984 1.00000 0.00015 0.00553 0.00000 0.00000 
16103 99978 1.00000 0.00013 -0.01194 0.00292 -0.01192 
16105 99977 1.00000 -0.00014 -0.01249 0.00295 -0.01192 
16106 16220 1.00000 0.00015 0.01614 0.00130 -0.00065 
16107 99993 1.00000 0.00020 -0.00011 0.00000 0.00000 
16109 17105 1.00000 0.00000 0.02827 0.00000 0.00000 
16216 99978 1.00000 0.00013 0.02844 0.00000 0.00000 
16217 16000 0.99526 0.00039 0.02550 0.00202 -0.00551 
16217 16001 0.99526 0.00039 0.02550 0.00202 -0.00551 
16220 99977 1.00000 0.00041 0.02927 0.00000 0.00000 
17002 17001 1.00000 0.00000 0.09017 0.00000 0.00000 
17002 17001 1.00000 0.00000 0.09183 0.00000 0.00000 
17005 17004 1.02500 0.00000 0.04433 0.00000 0.00000 
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From 
Bus To Bus  Series (p.u.) From Magnetizing (p.u.) 

Number Number Ratio Resistance Reactance Conductance Susceptance 
17010 17009 0.98040 0.00000 0.04444 0.00000 0.00000 
19037 19011 0.97510 0.00004 0.01420 0.00000 0.00000 
19038 19011 1.07520 0.00000 0.01514 0.00000 0.00000 
19045 19044 0.98040 0.00000 0.03000 0.00000 0.00000 
19045 19044 0.98040 0.00000 0.03000 0.00000 0.00000 
19053 19054 1.00000 0.00004 0.01420 0.00000 0.00000 
19054 19052 1.00000 0.00000 0.01586 0.00000 0.00000 
19218 19222 1.02500 0.00000 0.03000 0.00000 0.00000 
19315 19314 1.00000 0.00005 0.01795 0.00000 0.00000 
79028 79031 1.00000 0.00054 0.02695 0.00000 0.00000 
79032 79031 1.00000 0.00040 0.02270 0.00000 0.00000 
79032 79031 1.00000 0.00040 0.02270 0.00000 0.00000 
79053 19062 0.97500 0.00006 0.01614 0.00000 0.00000 
79053 19062 0.97500 0.00005 0.01614 0.00000 0.00000 
79053 19062 0.97500 0.00006 0.01644 0.00000 0.00000 
79063 79062 1.00000 0.00100 0.04220 0.00000 0.00000 
79064 79063 1.00000 0.00000 0.02333 0.00000 0.00000 

 
 

Table C.3 Shunt devices connected in System 2 
Bus Shunt 

Number Type MW MVAr  
14101 Gen. Bus 0.00 -90.00 
14216 Load Bus 0.00 35.00 
14219 Load Bus 0.00 300.00 
14221 Load Bus 0.00 153.00 
14227 Load Bus 0.00 43.20 
14356 Gen. Bus 0.00 49.20 
14358 Load Bus 0.00 15.60 
15101 Load Bus 0.00 28.80 
15108 Load Bus 0.00 27.00 
15119 Load Bus 0.00 27.00 
15121 Load Bus 0.00 40.00 
15207 Load Bus 0.00 150.00 
16216 Load Bus 0.00 39.60 
16220 Load Bus 0.00 33.10 
19037 Load Bus 0.00 -48.00 
19052 Load Bus 0.00 38.90 
19062 Load Bus 0.00 200.00 
79031 Gen. Bus 0.00 165.00 
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APPENDIX D  

EXAMPLE OF MATLAB SCRIPTS 
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This appendix contains a sample of the Matlab code used in examples. The scripts 
below creates the H matrix from the downloaded text file in IEEE format with branch 
information of System 1 and a text file containing measurements. 
 
clear 
system='ieee57cdf.dat' 
[Y]=IEEEtoYbus(system); 
G=real(Y); 
B=imag(Y); 
  
%intial guess Flat start 
[Vo,Phaseo]=IEEEintialguess(system); 
V=Vo; 
Phase=Phaseo; 
  
%Mesurement Set Uses PSAT power flow solution 
MeasureSet='57BaseCaseMeasure.txt'; 
[BusP, Pinj, BusQ, Qinj, sendQ, reciveQ, Qflow, Pflow, sendP, re-
civeP,LineIDp,LineIDq]=Measurementreader(MeasureSet); 
  
%Branch Information for Power Flow Measurements 
[send,recive,Circuit,g,b,Charging] = IEEEBranchInfo(system); 
Z=[Pinj;Qinj;Pflow;Qflow]; 
[r,c]=find(Y~=0); 
HpV=zeros(size(BusP,1),size(Y,1)); 
HpPhase=zeros(size(BusP,1),size(Y,1)); 
hPinj=zeros(size(BusP,1),1); 
hQinj=zeros(size(BusQ,1),1); 
for k=1:size(BusP,1) 
    m=BusP(k); 
    Hcolumn=0; 
    Hcolumn=find(r==m); 
    for l=1:size(Hcolumn) 
        n=c(Hcolumn(l)); 
        if n~=m 
            HpPhase(k,n)=V(n)*V(m)*(G(m,n)*sin(Phase(m)-Phase(n))-
B(m,n)*cos(Phase(m)-Phase(n))); 
            HpPhase(k,m)=-HpPhase(k,n)+HpPhase(k,m); 
            HpV(k,n)=V(m)*(G(m,n)*cos(Phase(m)-
Phase(n))+B(m,n)*sin(Phase(m)-Phase(n))); 
            HpV(k,m)=V(n)*(G(m,n)*cos(Phase(m)-
Phase(n))+B(m,n)*sin(Phase(m)-Phase(n)))+HpV(k,m); 
            hPinj(k,1)=V(m)*V(n)*(G(m,n)*cos(Phase(m)-
Phase(n))+B(m,n)*sin(Phase(m)-Phase(n)))+hPinj(k,1); 
        else 
            HpV(k,m)=V(m)*(G(m,m)*cos(Phase(m)-
Phase(m))+B(m,m)*sin(Phase(m)-Phase(m)))+HpV(k,m)+V(m)*G(m,m); 
            HpPhase(k,m)=-V(n)*V(m)*(G(m,n)*sin(Phase(m)-Phase(n))-
B(m,n)*cos(Phase(m)-Phase(n)))+HpPhase(k,m)-V(m)*V(m)*B(m,m); 
        end 
    end 
end 
HqV=zeros(size(BusQ,1),size(Y,1)); 
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HqPhase=zeros(size(BusQ,1),size(Y,1)); 
for k=1:size(BusQ,1) 
    m=BusQ(k); 
    Hcolumn=0; 
    Hcolumn=find(r==m); 
    for l=1:size(Hcolumn) 
        n=c(Hcolumn(l)); 
        if n~=m 
            HqPhase(k,n)=V(n)*V(m)*(-G(m,n)*cos(Phase(m)-Phase(n))-
B(m,n)*sin(Phase(m)-Phase(n))); 
            HqPhase(k,m)=-HqPhase(k,n)+HqPhase(k,m); 
            HqV(k,n)=V(m)*(G(m,n)*sin(Phase(m)-Phase(n))-
B(m,n)*cos(Phase(m)-Phase(n))); 
            HqV(k,m)=V(n)*(G(m,n)*sin(Phase(m)-Phase(n))-
B(m,n)*cos(Phase(m)-Phase(n)))+HqV(k,m); 
            hQinj(k,1)=V(m)*V(n)*(G(m,n)*cos(Phase(m)-Phase(n))-
B(m,n)*sin(Phase(m)-Phase(n)))+hQinj(k,1); 
        else 
            HqV(k,m)=V(n)*(G(m,n)*sin(Phase(m)-Phase(n))-
B(m,n)*cos(Phase(m)-Phase(n)))+HqV(k,m)-V(m)*B(m,m); 
            HqPhase(k,m)=-V(n)*V(m)*(-G(m,n)*cos(Phase(m)-Phase(n))-
B(m,n)*sin(Phase(m)-Phase(n)))+HqPhase(k,m)-V(m)*V(m)*G(m,m); 
        end 
    end 
end 
  
for k=1:size(sendQ,1) 
    BusS=sendQ(k); 
    BusR=reciveQ(k); 
    branch=0; 
    S=[]; 
    S=find(send==BusS); 
    for m=1:size(S,2) 
        if recive(S(m))==BusR 
            if Circuit(S(m))==LineIDq(k) 
                branch=S(m); 
            end 
        end 
    end 
    if branch==0 
        S=find(recive==BusS); 
        for m=1:size(S,2) 
          if send(S(m))==BusR 
              if Circuit(S(m))==LineIDq(k) 
                  branch=S(m); 
              end 
          end 
        end 
    end 
    HqfPhase(k,BusS)=-V(BusS)*V(BusR)*(g(branch)*cos(Phase(BusS)-
Phase(BusR))-b(branch)*sin(Phase(BusS)-Phase(BusR))); 
    HqfPhase(k,BusR)=-HqfPhase(k,BusS); 
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    HqfV(k,BusS)=-V(BusR)*(g(branch)*sin(Phase(BusS)-Phase(BusR))-
b(branch)*cos(Phase(BusS)-Phase(BusR)))-
2*(b(branch)+imag(Charging(branch)))*V(BusS); 
    HqfV(k,BusR)=-V(BusS)*(g(branch)*sin(Phase(BusS)-Phase(BusR))-
b(branch)*cos(Phase(BusS)-Phase(BusR))); 
    hQflow(k,1)=-V(BusS)*V(BusS)*(b(branch)+imag(Charging(branch)))-
V(BusR)*V(BusS)*(g(branch)*cos(Phase(BusS)-
Phase(BusR))+b(branch)*sin(Phase(BusS)-Phase(BusR))); 
end 
  
for k=1:size(sendP,1) 
    BusS=sendP(k); 
    BusR=reciveP(k); 
    branch=0; 
    S=[]; 
    S=find(send==BusS); 
    for m=1:size(S,2) 
        if recive(S(m))==BusR 
            if Circuit(S(m))==LineIDp(k) 
                branch=S(m); 
            end 
        end 
    end 
    if branch==0 
        S=find(recive==BusS); 
        for m=1:size(S,2) 
          if send(S(m))==BusR 
              if Circuit(S(m))==LineIDp(k) 
                  branch=S(m); 
              end 
          end 
        end 
    end 
    HpfPhase(k,BusS)=V(BusS)*V(BusR)*(g(branch)*sin(Phase(BusS)-
Phase(BusR))-b(branch)*cos(Phase(BusS)-Phase(BusR))); 
    HpfPhase(k,BusR)=-HpfPhase(k,BusS); 
    HpfV(k,BusS)=-V(BusR)*(g(branch)*cos(Phase(BusS)-Phase(BusR))-
b(branch)*sin(Phase(BusS)-
Phase(BusR)))+2*(g(branch)+real(Charging(branch)))*V(BusS); 
    HpfV(k,BusR)=-V(BusS)*(g(branch)*cos(Phase(BusS)-Phase(BusR))-
b(branch)*sin(Phase(BusS)-Phase(BusR))); 
    hPflow(k,1)=V(BusS)*V(BusS)*(g(branch)+real(Charging(branch)))-
V(BusR)*V(BusS)*(g(branch)*cos(Phase(BusS)-
Phase(BusR))+b(branch)*sin(Phase(BusS)-Phase(BusR))); 
end  
  
% Formation of the intial H matrix 
H=[HpfPhase, HpfV; HpPhase,HpV;HqfPhase,HqfV;HqPhase,HqV]; 
H(:,1)=[]; 
Hphase=[HpfPhase;HpPhase]; 
Hphase(:,1)=[]; 
[Hprows,Hpcolomns]=size(Hphase) 
Gphase=Hphase'*Hphase; 
RankHphase=rank(Hphase) 
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[Vphase,Eigphase]=eig(Gphase); 
  
% Testing the Equations 
  
% Insertion of the First PMU  Effects on Just Power Phase matrix 
deltG=1 
for k=1:size(Vphase,1) 
    PredictedEig(k,1)=Vphase(k,1)^2*deltG; 
end 
for k=1:Hpcolomns 
    Hphasep=[Hphase;zeros(1,Hpcolomns)]; 
    Hphasep(Hprows+1,k)=1; 
    EV=eig(Hphasep'*Hphasep); 
    ExpEig(k,1)=EV(1); 
    DeltaEigExp=ExpEig-Eigphase(1,1); 
end 
S=1:56; 
plot(S,PredictedEig,'r+', S,DeltaEigExp,'go') 
xlabel('G matrix changed by +1 at k,k') 
ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('H of Power and Phase') 
w=[0:0.01:.1,.2:.1:2]; 
for k=1:size(w,2) 
    WPredictedEig(k,1)=Vphase(32,1)^2*w(k)^2; 
    Hphasep=[Hphase;zeros(1,Hpcolomns)]; 
    Hphasep(Hprows+1,32)=w(k); 
    EV=eig(Hphasep'*Hphasep); 
    WExpEig(k,1)=EV(1); 
    WDeltaEigExp(k,1)=WExpEig(k,1)-Eigphase(1,1); 
end 
figure 
plot(w,WPredictedEig,'g--',w,WDeltaEigExp,'r:') 
xlabel('Size in Change of H matrix col 32') 
ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('H of Power and Phase') 
for k=1:Hpcolomns 
    PredictedEigDelta(k,1)=Vphase(32,k)^2*deltG; 
    PreEig(k,1)=Eigphase(k,k)+PredictedEigDelta(k); 
     
end 
Hphasep=[Hphase;zeros(1,Hpcolomns)]; 
Hphasep(Hprows+1,32)=1; 
EV=eig(Hphasep'*Hphasep); 
Orginal=ones(56,1); 
Predicted=2*Orginal; 
Exp=3*Orginal; 
K0=cond(Gphase); 
KPredicted=max(PreEig)/min(PreEig); 
Kactual=cond(Hphasep'*Hphasep); 
figure 
plot(diag(Eigphase),Orginal,'r+',PreEig,Predicted,'go',EV,Exp,'b^') 
axis([0,6500,0,4]) 
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xlabel('EigenValues') 
legend('Original','Predicted','Actual') 
title('H of Power and Phase') 
  
%  PMU measures both phase and angle What would the including volt 
measure 
%  do 
[Hrows,Hcolomns]=size(H); 
G=H'*H; 
RankH=rank(H); 
[VG,EigG]=eig(G); 
  
deltG=1; 
kG=cond(G) 
for k=1:size(Vphase,1) 
    PredEigPV(k,1)=VG(k,1)^2*deltG+VG(k+57,1)^2*deltG; 
    LargestEig(k,1)=VG(k,113)^2*deltG+VG(k+57,113)^2*deltG; 
    deltaK(k,1)=(VG(k,113)^2-kG*VG(k,1)^2)/(EigG(1,1)); 
end 
for k=1:56 
    Hp=[H;zeros(2,Hcolomns)]; 
    Hp(Hrows+1,k)=1; 
    Hp(Hrows+2,k+57)=1; 
    EV=eig(Hp'*Hp); 
    ExpEigPV(k,1)=EV(1); 
    K2(k,1)=cond(Hp'*Hp); 
end 
DEigExpPV=ExpEigPV-EigG(1,1); 
dK2=K2-kG; 
figure 
plot(S,PredEigPV,'r+', S,DEigExpPV,'go') 
xlabel('G matrix changed by +1 at k,k and 57+k,57+k') 
ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('Entire H') 
figure 
plot(S,deltaK,'r+', S,dK2,'go') 
xlabel('G matrix changed by +1 at k,k and 57+k,57+k') 
ylabel('Change in Condition Number') 
legend('Predicted','Actual') 
title('Entire H') 
w=[0:0.01:.1,.2:.1:2]; 
for k=1:size(w,2) 
    WPredEigG(k,1)=VG(32,1)^2*w(k)^2+VG(32+57,1)^2*w(k); 
    Hp=[H;zeros(2,Hcolomns)]; 
    Hp(Hrows+1,32)=w(k); 
    Hp(Hrows+2,32+57)=w(k); 
    EV=eig(Hp'*Hp); 
    WExpEigG(k,1)=EV(1); 
    WDeltaEigExpG(k,1)=WExpEigG(k,1)-EigG(1,1); 
end 
figure 
plot(w,WPredEigG,'g--',w,WDeltaEigExpG,'r:') 
xlabel('Magnitude of Change of H matrix col 32') 
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ylabel('Change in smallest Eigenvalue') 
legend('Predicted','Actual') 
title('Entire H') 
for k=1:Hcolomns 
    PredEigDeltaG(k,1)=VG(32,k)^2*deltG+VG(32+57,k)^2*deltG; 
    PreEigG(k,1)=EigG(k,k)+PredEigDeltaG(k); 
end 
Hp=[H;zeros(2,Hcolomns)]; 
Hp(Hrows+1,32)=1; 
Hp(Hrows+2,32+57)=1; 
EVG=eig(Hp'*Hp); 
Orginal=ones(113,1); 
Predicted=2*Orginal; 
Exp=3*Orginal; 
figure 
plot(diag(EigG),Orginal,'r+',PreEigG,Predicted,'go',EVG,Exp,'b^') 
%plot(diag(EigG),Orginal,'r+',PreEigG,Orginal,'go',EVG,Orginal,'b^') 
axis([0,6500,0,4]) 
xlabel('EigenValues') 
legend('Original','Predicted','Actual') 
title('Entire H') 
K0g=cond(G) 
KPredictedg=max(PreEigG)/min(PreEigG); 
Kactualg=cond(Hp'*Hp); 
  
figure 
plot(S,PredEigPV,'r+', S,DEigExpPV,'go',S,PredictedEig,'rx', 
S,DeltaEigExp,'g+'); 
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APPENDIX E  

EXAMPLES 11, 13, 14, AND 16 
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E.1  Results of Examples 11, 13, 14, and 16: State Estimation Error 

 System 2 is tested using pseudorandom noise inserted in the power and voltage 
magnitude measurements at levels of 5%, 10%, and 15%. The PMU measurements are 
modeled with 0.5% and 1% noise. Figure 5.1 is a one line diagram of System 2. Appen-
dix C contains information about the electrical connections in System 2. The state estima-
tor solves 1,000 trials each with 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 150 PMUs. 
The PMUs are located using the ranking done as described in Section 5.2. The PMUs are 
added in the order of rank. Examples presents here are: 

• Example 11: 5% noise in SCADA measurements and 0.5% noise in PMU 
measurements 

• Example 13: 10% noise in SCADA measurements and 0.5% noise in PMU 
measurements 

• Example 14: 10% noise in SCADA measurements and 1% noise in PMU 
measurements 

• Example 16: 15% noise in SCADA measurements and 1% noise in PMU 
measurements. 

Examples 12 and 15 are presented in 5.3 - 5.4. Terminology used in the discussion of Ex-
ample 11, 13, 14, and 16 is explained in 5.5. 
 The results of Examples 11, 13, 14, and 16 are depicted graphically in 16 figures. 
These figures are listed in Table E.1. 
 

Table E.1  List of Figures showing results of Examples 11, 13, 14, and 16 
Example Parameter Figure 

11 Maximum voltage phase angle error E.1 
11 RMS voltage phase angle error E.2 
11 Maximum voltage magnitude error E.3 
11 RMS voltage magnitude error E.4 
13 Maximum voltage phase angle error E.5 
13 RMS voltage phase angle error E.6 
13 Maximum voltage magnitude error E.7 
13 RMS voltage magnitude error E.8 
14 Maximum voltage phase angle error E.9 
14 RMS voltage phase angle error E.10 
14 Maximum voltage magnitude error E.11 
14 RMS voltage magnitude error E.12 
16 Maximum voltage phase angle error E.13 
16 RMS voltage magnitude error E.14 
16 Maximum voltage magnitude error E.15 
16 RMS voltage magnitude error E.16 
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Figure E.1 Maximum voltage angle error for SCADA noise 5% and PMU noise 0.5% on 

System 2 (Example 11) 
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Figure E.2 RMS voltage angle error for Example 11: SCADA noise 5% and PMU noise 

0.5% on System 2  
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Figure E.3 Maximum voltage magnitude error for Example 11: SCADA noise 5% and 

PMU noise 0.5% on System 2 
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Figure E.4 RMS voltage magnitude error for Example 11: SCADA noise 5% and PMU 

noise 0.5% on System 2 
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Figure E.5 Maximum voltage angle error Example 13: SCADA noise 10% and PMU 

noise 0.5% on System 2  
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Figure E.6 RMS voltage angle error for Example 13: SCADA noise 10% and PMU noise 

0.5% on System 2 
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Figure E.7 Maximum voltage magnitude error for Example 13: SCADA noise 10% and 

PMU noise 0.5% on System 2 
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Figure E.8 RMS voltage magnitude error for Example 13: SCADA noise 10% and PMU 

noise 0.5% on System 2 



 

112 

0

1

2

3

4

5

6

0 15 30 45 60 75 90 105 120 135 150

Number of PMUs

M
ax

 A
ng

le
 E

rro
r (

de
gr

ee
s)

mean min max  
Figure E.9 Maximum voltage angle error for Example 14: SCADA noise 10% and PMU 

noise 1% on System 2 
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Figure E.10 RMS voltage angle error for Example 14: SCADA noise 10% and PMU 

noise 1% on System 2 
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Figure E.11 Maximum voltage magnitude error for Example 14: SCADA noise 10% and 

PMU noise 1% on System 2   
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Figure E.12 RMS voltage magnitude error for Example 14: SCADA noise 10% and PMU 

noise 1% on System 2 
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Figure E.13 Maximum voltage angle error for Example 16: SCADA noise 15% and PMU 

noise 1% on System 2  
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Figure E.14 RMS voltage angle error for Example 16: SCADA noise 15% and PMU 

noise 1% on System 2 



 

115 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 15 30 45 60 75 90 105 120 135 150
Number of PMUs

M
ax

 E
rr

or
 V

ol
ta

ge
 (p

.u
.)

mean min max  
Figure E.15 Maximum voltage magnitude error for Example 16: SCADA noise 15% and 

PMU noise 1% on System 2 
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Figure E.16 RMS voltage magnitude error for Example 16: SCADA noise 15% and PMU 

noise 1% on System 2 
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E.2  Results of Examples 11, 13, 14, and 16: Condition Indicators 

 The condition indicators for Example 11, 13, 14, and 16 are depicted graphically. 
These Figures are listed in Table E.2. 
 

Table E.2 List of Figures showing condition indicators of Examples 11, 13, 14, and 16 
 Example Parameter Figure 

11 Condition number of converged G E.17 
11 Singular distance of converge G E.18 
13 Condition number of converged G E.19 
13 Singular distance of converge G E.20 
14 Condition number of converged G E.21 
14 Singular distance of converge G E.22 
16 Condition number of converged G E.23 
16 Singular distance of converge G E.24 
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Figure E.17 System 2, KG for solved iteration with SCADA noise 5% and PMU noise 

0.5% (Example 11) 
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Figure E.18 System 2, d for solved iteration with SCADA noise 5% and PMU noise 0.5% 

(Example 11) 

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

7.00E+10

8.00E+10

0 15 30 45 60 75 90 105 120 135 150

Number of PMUs

C
on

di
tio

n 
nu

m
be

r o
f t

he
 g

ai
n 

m
at

rix

mean min max  
Figure E.19 System 2, KG for solved iteration with SCADA noise 10% and PMU noise 

0.5% (Example 13) 
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Figure E.20 System, 2 d for solved iteration with SCADA noise 10% and PMU noise 

0.5% (Example 13) 

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

7.00E+10

8.00E+10

0 15 30 45 60 75 90 105 120 135 150

Number of PMUs

C
on

di
tio

n 
nu

m
be

r o
f t

he
 g

ai
n 

m
at

rix

mean min max  
Figure E.21 System, 2 Kg for solved iteration with SCADA noise 10% and PMU noise 

1% (Example 14) 



 

119 

1

1.1

1.2

1.3

1.4

1.5

1.6

0 15 30 45 60 75 90 105 120 135 150

Number of PMUs

S
in

gu
la

r d
is

ta
nc

e 
of

 th
e 

ga
in

 m
at

rix

mean min max  
Figure E.22 System 2, d for solved iteration with SCADA noise 10% and PMU noise 1% 

(Example 14) 
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 Figure E.23 System 2, Kg for solved iteration with SCADA noise 15% and PMU noise 

1% (Example 16) 
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Figure E.24 System 2, d for solved iteration with SCADA noise 15% and PMU noise 1% 

(Example 16) 
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E.3 Summary of Examples 11, 13, 14, and 16 

Table E.3 Summary of state estimation error in Examples 11, 13, 14, and 16 
Behavior of Parameter Example/ 

Figure No. Parameter Max from 0 to 
150 PMUs 

Min from 0 to 
150 PMUs 

Mean from 0 to 
150 PMUs 

11/ 
Figure E.1 

Maximum angle 
error ↑ 0.07º ↓0.005º ↓0.033º 

11/ 
Figure E.2 RMS angle error ↓ 0.011º ↓ 7.33 x10-5 deg ↓ 0.002º 

11/ 
Figure E.3 

Maximum volt-
age magnitude 

error 
↑ 1.5 x10-4 p.u. ↑ 2.7 x10-4 p.u. ↓ 3.9 x10-5 p.u. 

11/ 
Figure E.4 

RMS voltage 
magnitude  error ↓ 4.6 x10-5 p.u. ↓ 2.2 x10-6 p.u. ↓ 1.8 x10-6 p.u. 

13/ 
Figure E.5 

Maximum angle 
error ↓ 0.171º ↓ 0.015º ↓0.065º 

13/ 
Figure E.6 RMS angle error ↓ 0.021º ↓ 1.29 x10-4 deg ↓ 0.005º 

13/ 
Figure E.7 

Maximum volt-
age magnitude 

error 
↑ 3.2 x10-4 p.u. ↑ 7.7 x10-4 p.u. ↓ 8.7 x10-5 p.u. 

13/ 
Figure E.8 

RMS voltage 
magnitude  error ↓ 6.5 x10-5 p.u. ↓ 7.6 x10-6 p.u. ↓ 4.7 x10-6 p.u. 

14/ 
Figure E.9 

Maximum angle 
error ↓ 0.335º ↓ 0.013º ↓ 0.072º 

14/ 
Figure E.10 RMS angle error ↓ 0.025º ↓ 6.36 x10-4 deg ↓ 0.005º 

14/ 
Figure E.11 

Maximum volt-
age magnitude 

error 
↓ 2.5 x10-4 p.u. ↓ 3.8 x10-4 p.u. ↓ 1.3 x10-4 p.u. 

14/ 
Figure E.12 

RMS voltage 
magnitude  error ↑ 1.7 x10-4 p.u. ↑ 4.6 x10-6 p.u. ↓ 7.3 x10-6 p.u. 

16/ 
Figure E.13 

Maximum angle 
error ↓ 0.533º ↓ 0.016º ↓ 0.107º 

16/ 
Figure E.14 RMS angle error ↓ 0.035º ↓ 7.6 x10-4 deg ↓ 0.007º 

16/ 
Figure E.15 

Maximum volt-
age magnitude 

error 
↓ 3.3 x10-4 p.u. ↓ 3.4 x10-4 p.u. ↓ 2.0 x10-5 p.u. 

16/ 
Figure E.16 

RMS voltage 
magnitude  error ↑ 2.4 x10-4 p.u. ↑ 4.6 x10-6 p.u. ↓ 1.1 x10-5 p.u. 
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Table E.4 Summary of condition indicators in Examples 11, 13, 14, and 16 

Behavior of Parameter 
Example/ 

Figure No. Parameter Max from 0 to 
150 PMUs 

Min from 0 to 
150 PMUs 

Mean from 0 
to 150 PMUs 

11/ 
Figure E.17 KG ↓8.92x109 ↓ 8.41x109 ↓ 8.43x109 

11/ 
Figure E.18 d ↑ 0.1785 ↑ 0.1967 ↑ 0.1903 

13/ 
Figure E.19 KG ↓ 9.42x109 ↓ 8.27x109 ↓ 8.41x109 

13/ 
Figure E.20 d ↑ 0.1632 ↑ 0.2030 ↑ 0.1896 

14/ 
Figure E.21 KG ↓8.88x109 ↓ 8.07x109 ↓ 8.43x109 

14/ 
Figure E.22 d ↑ 0.1760 ↑ 0.2095 ↑ 0.1906 

16/ 
Figure E.23 KG ↓ 9.05x109 ↓ 7.86x109 ↓ 8.41x109 

16/ 
Figure E.24 d ↑ 0.1676 ↑ 0.2201 ↑ 0.1903 
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APPENDIX F 

THE IMPACT OF WEIGHTING MEASUREMENTS ON SYSTEM 2 



 

124 

F.1  Infinite norm of error in Example 17 

Example 17 is a 100 Monte Carlo trials simulation performed on System 2 with 
SCADA measurement noise level of 15% and 0.5% noise in PMU phase angle measure-
ments. The PMU measurements have a weight of 10 and the SCADA measurements are 
weighted 1. In this example, the PMUs are 30 times more accurate than the SCADA 
measurements (i.e., SCADA noise / PMU noise = 30). Figure F.1 depicts the maximum 
phase angle error. Note the significant drop in maximum phase angle error as PMUs volt-
age phase angle measurements are added. In approximate terms, the mean of the maxi-
mum phase angle error decreases at the rate of 0.0109º per PMU phase angle measure-
ment added. In a separated example not depicted here, if a weight of 50 is assigned to the 
PMU measurements, the improvement in error is about 0.0110° per PMU measurement 
added. 
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Figure F.1 Maximum phase angle error for Example 17: SCADA noise 15% and PMU 

noise 0.5% with PMU weight of 10 
 
F.2  L2 norm of error in Example 17 

 The RMS voltage phase angle error of Example 17 is shown in Figure F.2. Note, 
the significant improvement seen in RMS voltage phase angle error as PMUs are added. 
This improvement is significantly larger than the improvement seen in Example 15. In 
approximate terms, the improvement in RMS phase error is 0.0005 per added PMU, most 
of which occurs in the addition of the first few PMUs. 
 
F.3  Voltage Magnitude Errors in  Example 17 

 The maximum voltage magnitude error in Example 17 is shown in Figure F.3 and 
the RMS voltage magnitude error is shown in Figure F.4. Note the erratic behavior of 
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voltage magnitude error in Figures F.3 and F.4. This increase in voltage magnitude error 
in Example 17 is larger than seen in Examples 11 – 16. The increase in voltage magni-
tude error is due to the fact that the phase angle measurements can “push” the error away 
from the phase angle states and into other states estimates (i.e., voltage magnitude states). 
This is a drawback of weighting the PMU phase angle measurements 10 times larger than 
the SCADA measurements.  
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Figure F.2 RMS phase angle error for Example 17: SCADA noise 15% and PMU noise 

0.5% with PMU weight of 10 
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Figure F.3 Maximum voltage magnitude error for Example 17: SCADA noise 15% and 

PMU noise 0.5% with PMU weight of 10 
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Figure F.4 RMS voltage magnitude error for Example 17: SCADA noise 15% and PMU 

noise 0.5% with PMU weight of 10 
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F.4  Condition Indicators in Example 17 

 Figure F.5 displays the condition number in Example 17 of the converged itera-
tion gain matrix, KG. Note the significant improvement in the condition number for the 
addition of the first 15 PMUs. The improvement in KG from the addition of the first 15 
PMUs appears inconsistent with the improvement in KG from the addition of the subse-
quent PMUs. Figure F.6 depicts the singular distance of the converged iteration gain ma-
trix, d. Note, in F.6 the improvement per PMU phase angle measurement added in d in-
creases as more PMU phase angle measurements are added for the addition of 30th to 
150th PMUs.  
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Figure F.5 KG for solved iteration of Example 17: SCADA noise 15% and PMU noise 

0.5% with PMU weight of 10 

 
 Equations (2.22) and (2.23) allow for the prediction of the change in KG and the 
change in d in Example 17. These predictions are, for the addition of one PMU phase an-
gle measurement,  

0254.0=Δd  
101026.1 xKG −=Δ . 
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Figure F.6 Singular distance, d, for solved iteration of Example 17: SCADA noise 15% 

and PMU noise 0.5% with PMU weight of 10 
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