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Executive Summary 

Visualization of power system conditions can help power system operators maintain adequate 
situational awareness. This project’s purpose was to perform research to increase the 
effectiveness of power system visualizations, with a particular emphasis on visualization used in 
the control center environment. Six areas where specific research accomplishments were attained 
in this project include: 

• A new power system visualization approach, known as geographic data views, to provide 
better visualizations for use during operator initiated power system control and for 
engineering analysis 

• Two new approaches to reduce the time needed to produce power system contours 
• A technique for using phasor measurement unit (PMU) data to determine status changes 

of devices such as transmission lines and generators 
• Direct visualization of the voltage angle information being provided by PMUs 
• Insight and analysis on the human factors aspects of power system visualization 
• Use and visualization of GPS synchronized data for power system stability assessment. 

Each of these accomplishments is briefly described below. 

1. A new power system visualization approach, known as geographic data views, to 
provide better visualizations for use during operator initiated power system control and 
for engineering analysis 

The first accomplishment of the project was the development of geographic data views 
(GDVs) to dynamically show wide-area power system information. The idea behind GDVs is to 
create power system visualizations “on-the-fly” by combining information derived from a power 
system model with geographic information that is embedded within the power system model. 
The resultant visualizations usually contain graphical symbols to represent power system 
quantities, with the location of the graphical symbols determined from the embedded geographic 
information. Typically one or more symbol attributes are dependent upon the values for the 
underlying power system data.  

2. Two new approaches to reduce the time needed to produce power system contours 
Currently one of the most numerically intensive aspects of modern power system control 

center visualizations is the display of contours, usually for bus-based values. The first approach 
uses the concept of creating a unique influence distance for each data point (e.g., a bus-based 
value such as voltage magnitude). The distance is based on a specified closest number of buses, 
instead of previous methods that use the same influence distance for each bus. Significant speed 
improvements are possible by a factor of five in some situations, often with improved pictorial 
quality of the resultant contours. The second approach takes advantage of the highly parallel 
structure of the graphics processing unit (i.e., the display card) to significantly speed up an 
existing algorithm. Prototype results with contouring speeds of up to 30 frames per second were 
demonstrated. 
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3. A technique for using PMU data to determine status changes of devices such as 
transmission lines and generators 

The increased deployment of PMUs in the power grid has led to a significant increase in a 
new type of data available to power system operators. To make sense of this new data, and to use 
it to increase situational awareness, new analysis techniques need to be developed. A new 
algorithm was developed to use this data to detect single-line outages based on voltage and 
current phasor angles obtained from PMUs. The algorithm accurately detected a line outage that 
occurred on the TVA system based on data obtained from TVA's PMUs. 

4. Direct visualization of the voltage angle information being provided by PMUs 
Currently the ratio of PMU buses to buses without PMUs is quite small. This presents a 

challenge because there is no way to estimate the entire system state with these limited data. One 
way of handling this challenge is to reduce the system to an equivalent system consisting entirely 
of PMU buses. After the system reduction, the voltage angles may be displayed directly or the 
differences may be displayed. Displaying differences is useful in a wide-area because it alerts 
operators that something has changed. It is also possible to use the equivalent system to convert 
the angles into injections. This is useful because injections are easier to interpret than angles. To 
demonstrate the equivalent system approach, a test case was developed using power flow cases 
from the August 14, 2003 blackout. 

5. Insight and analysis on the human factors aspects of power system visualization 
Human factors analyses were used to evaluate a correct generation control tool with 

geographic data views. They were also used to develop a prototype demonstrator display that 
incorporated key human factors principles in its design. The main challenge in design of wide-
area power system displays is the mapping of a large number of relevant system variables into a 
limited number of graphical variables on the visual display. We approached this problem by 
surveying operators on the most important variables they need to see, and by reviewing research 
literature for guidelines and principles for display design. We also performed a detailed task 
analysis of solving line overloads using the highly automated solver tool that we developed. 
These systems were evaluated by a modified human factors checklist as well as by interviews of 
several experienced reliability coordinators at the TVA Regional Operations Center. The results 
indicated that the systems did not need much improvement. These results were carefully 
documented with suggestions for future upgrades. Specifications for and user comments on the 
prototype display were also documented. 

6. Use and visualization of GPS synchronized data for power system stability assessment 
GPS synchronized data can be used for monitoring system stability. Of particular interest in this 
project was enabling an operator to quickly determine the loss of synchronism of individual 
generators using direct visualization of PMU data along with monitoring the total energy of the 
system. This approach requires streaming data from PMUs and real-time data processing to 
extract the true dynamic system state. The SuperCalibrator approach was adopted to filter the 
streaming data from GPS synchronized equipment using a high fidelity dynamic state estimator. 
Using our approach, the dynamic system state can be calculated at each substation independently 
without requiring remote information. This avoids the complication of communications and 
transmitting data from other parts of the system. Time latencies are limited to local 
communications only.  
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Effective Power System Control Center Visualization 

1.0 Introduction 

The research effort described in this report deals with useful visualization of large amounts of 
real time data. Electric power systems are characterized by large amounts of data. The general 
goal of this project is to continue the development of innovative methods to assist players in the 
electricity industry to extract and visualize usable information from this large set of power 
system data, with a particular emphasis on control room applications. Previous projects resulted 
in the developments of useful visualizations. In particular, UIUC and Georgia Tech were both 
involved in the previous PSERC project, “Visualization of Power Systems and Components” 
(S18, which began in June 2002 and finished in May 2005). Under the previous project, The 
Georgia Tech team developed visualization engines for complex components of electric power 
systems including HVDC components, transformers, generators, etc. A unique characteristic of 
that work was to be able to monitor not only the electric performance of a component but also 
the thermal performance of a component. These visualizations are important for monitoring the 
thermal loading of components in real time and therefore provide useful information to 
operators. This work has been extended in this project to provide more in-depth visualizations. In 
particular in this project we focused on monitoring the effect of component loading and 
transients on the stability of the system. The visualization of the system stability is assisted by 
the presence of GPS synchronized measurements in the system. 

The work under this project was separated in several subtasks which were allocated to the 
University of Illinois and Georgia Tech. The work in the University of Illinois focuses on 
determining what information needs to be visualized using a method known in the human factors 
domain as Cognitive Task Analysis (CTA) and then on the development of system-level 
visualizations. CTA is a very effective technique for determining a wealth of information about 
operators’ strategies and decisions associated with the performance of various tasks. In addition 
the issue of visualizing critical information as well the reactive power support of the system has 
been addressed. The results of this work and all related developments are presented in the first 
part of the work. The Georgia Tech team focused on the use of GPS-synchronized data, filtered 
or unfiltered, for visualization of system oscillations/swings, visualization and animation of the 
motion of generators and monitoring the stability of the system. 

GPS-synchronized data, filtered or unfiltered, provide new dimensions and opportunities for 
visualization of system oscillations/swings, visualization and animation of transient stability 
indicators  and possibly characterizing the swings as stable/unstable. We have investigated the 
utilization of data streams that are becoming available from projects such as the EIPP (Eastern 
Interconnection Phasor Project) and data from relays that are GPS-synchronized in addition to 
the standard SCADA data. The task of developing meaningful visualizations of system swings 
and transient stability indicators is very difficult because of two reasons: (a) the data throughput 
and refresh frequency is quite high generating the issue of response time, and (b) meaningful 
indicators of transient stability require substantial computational processing of raw data before 
meaningful visualizations can occur. For example PMU data provide streaming data of phasors 
and therefore of phase angles. It is well known that phase angles alone do not provide useful 
information about the transient stability of the system. We propose the following approaches for 
the purpose of developing meaningful visualizations of transient stability indicators and system 
swings. First, it is important that the data be filtered from error and inconsistencies. Since the 
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application is real time, we propose to experiment filtering the data with local state estimators 
that will operate on a model consisting of a generator under consideration and the circuits to the 
next substation. The state estimation filtered GPS-synchronized data will provide the phasors of 
the voltages, the frequency of the waveforms and the rate of frequency change. This information 
will be useful in the visualizations. Second, we will build on previous visualizations of phase 
angles that have been developed in S18 to somehow include the rate of change of phase angles 
(frequency) so that the operator can visualize the speed by which system conditions are 
changing. These visualizations should be 3-D and it will require substantial experimentation for 
becoming effective in conveying the information. Thirdly, we propose to utilize ideas developed 
in out of step relaying for developing visualizations of transient stability indicators. Specifically, 
out of step relays include logic that decides whether a system oscillation/swing is going to be 
stable or unstable. The advantage of this approach is that it requires only local information which 
is used to trace the movement of the impedance trajectory. We propose to mimic various out of 
step relays and develop visualizations of the logic output. One idea for these visualizations is to 
represent the generator as a mass suspended by an elastic string that stretches and compresses as 
the apparent impedance changes, it changes colors as the impedance enters the out of step relay 
blinders and “breaks” when the out of step relay trips. Finally, we also propose to use energy 
function ideas for developing visualizations of transient stability indicators. The local state 
estimator approach to filter the data fits very well with this idea. Specifically, using the results of 
the local state estimator, energy functions can be defined for each generator, i.e. kinetic energy, 
potential energy or total energy. One potential method for visualizing these energy functions will 
be a 3-D surface plot. Methodologies for determining stability regions will be reviewed and 
applied. The information from these analyses could be potentially added to the visualization 
graphs, for example regions of instability can be colored red, etc. This approach in itself is a 
difficult research project without well established and proven methods. It will be very interesting 
to try this approach and see how successful it will be. It is important to note that there is another 
proposed project to use PMU data for the purpose of determining transient stability. The 
approach there is to use pre-simulated results and identify the operational point by interpolating 
real time measurements into pre-simulated results. It is expected that if both projects are 
approved, the results from one project will be useful to the other project and vice versa. 

The report is organized as follows. Chapter 2 presents a new power system visualization 
approach, known as geographic data views, that was developed for this project with the goal of 
providing better visualization for operator initiated power system control. Chapter 3 discusses 
how the performance on an existing visualization technique, contouring, can be substantially 
improved. Chapters 4 and 5 then focus on the use of PMU data, with Chapter 4 discussing how 
PMU data can be used to determine power system device status, while Chapter 5 focuses on the 
use of voltage phase angles. In Chapter 6 the results from the human factor evaluation are given. 
Finally, Chapter 7 presents our work in the use of GPS-synchronized data. Please note, in order 
to maintain confidentiality of the actual electric system data used with this project, the results 
presented a number of Figures has been deliberately blurred (Figures 2.5, 2.14, 2.15, 2.16, 2.18, 
2.19, and 2.20).  
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2.0 Geographic Data Views 

Over the last decade or so there have been tremendous advances in the area of power system 
visualization. For example, prior to the year 2000 in practically all power system control centers 
operational quantities, such as power flows and voltages were represented either as analog fields 
on substation one-line displays or as numeric fields on tabular displays. Dynamic display of 
system information was quite limited, such as the use of dashed lines to represent device status 
and font color for limit violations. An overview of the system had only been available on a static 
map board with the only dynamic data shown using different colored lights.  

However since 2000 many power system control centers have adopted more advanced 
visualization techniques, particularly for wide-area displays. For example, now the use of color 
contours to show voltage magnitude variation across large regions is common. Animated arrows 
may be used to show line flow direction, while dynamically sized pie charts are used to indicate 
which transmission lines and transformers are close to or are exceeding their limits, or are out-of-
service. A more detailed discussion of these techniques are provided in [1] and [2]. Figure 2.1 
shows a wide-area display used at the TVA Regional Operations center. 

 

 
Figure 2.1:  TVA Regional Operations Center Display 

2.1 The Need for Geographic Data Views 
Typically such wide-area displays are based upon a predefined graphical one-line format. The 

use of these techniques on predefined displays can be particularly effective for power system 
monitoring. Being geographically-based they can rapidly provide system operators and engineers 
with an overview of current system conditions, letting them quickly focus on problem areas. 
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Since the displays are predefined, they also have the advantage of providing a consistent and 
known view of the system. Panning and zooming can be used to provide more detail as needed. 

However, when the task switches from monitoring to corrective control or analysis one 
potential short-coming of this approach is it can be quite difficult to design a priori a single 
display, or even a set of displays, that contains all the information needed to make effective, 
corrective control decisions. For example, consider the common application of generation re-
dispatch to remove a line overload, either for an actual violation or for a contingent violation. 
The two most important pieces of information for deciding which generators to change are 1) 
their control sensitivity with respect to the overloaded line, and 2) their effective real power 
(MW) control range. While one could design a display to show this information (indeed Figure 
10 of [2] shows the use of control sensitivity contours), it would be difficult to construct 
beforehand since it requires the simultaneous display of sensitivity information that is device 
dependent, along with generator MW control ranges. Also, showing this information on an 
existing display designed for system monitoring could result in slow display performance and a 
more cluttered appearance.  

The need to extend the power system visualization methodology for engineering analysis also 
became apparent as a result of this project. This occurred during the development of the human 
factors test cases discussed in Chapter 6. The starting point for the development of these cases 
was a 43,000 bus MMWG power flow case of the entire Eastern Interconnect along with a one-
line diagram showing the 161 kV and higher voltage transmission system (shown in Figure 2.2). 
Overall the one-line contained more than 7100 buses and about 9500 transmission lines and 
transformers. Such a one-line could have been quite useful if one were simply interested in 
seeing which lines were overloaded, or with producing voltage contours.  

 

 
Figure 2.2:  Eastern Interconnect One-Line Diagram 
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However, the design goal for the development of the test cases was to create a much smaller 
equivalent case, centered on TVA, with a strong north to south power flow pattern. Therefore it 
was necessary to both determine which nearby areas should be retained and which more distant 
ones should be deleted, and to visualize the importing and exporting areas in order to create the 
desired power flow pattern. For this task the one-line was much less useful. 

The epiphany moment in the development of the concept that became known as geographic 
data views was the recognition that while the Figure 2.2 one-line did not show the desired 
information, the one-line, along with the underlying power system model, did contain the 
necessary information. The trick was to provide a way of dynamically extracting it, a technique 
known as geographic data views (GDVs). 

2.2 Overview of Geographic Data Views 
The idea behind GDV displays is to dynamically create power system visualizations by 

combining information derived from a power system model with geographic information that is 
embedded within the power system model. The resultant visualizations usually contain graphical 
symbols to represent power system quantities, with the location of the graphical symbols 
determined from the embedded geographic information. Typically one or more symbol attributes 
are dependent upon the values for the underlying power system data. Example attributes include 
size, color, rotation, and shape. 

The key to an effective GDV implementation is to allow the dynamic displays to be easily 
customized to display the desired power system quantities. For wide-area visualizations the most 
important geographic information will be the bus locations, or at least the locations of the 
substations containing the buses. Once the location of the buses (or their substations) are known, 
the location of some other objects, such as operating areas can be estimated. Transmission lines 
could be dynamically drawn either by embedding the actual coordinates for the lines with the 
model, or by approximately their paths just from the location of their terminal buses. Depending 
upon the application, geographic display information about the location of devices modeled 
within a substation, such as generators, switched shunts, and loads, could either be stored 
explicitly, or just default to their bus’s location. Simple overlap avoidance algorithms could be 
used to avoid overlapping display symbols. 

To illustrate the GDV approach, again consider the Figure 2.2 case, in which the initial design 
goal was the creation of a smaller equivalent system, centered on TVA. This was to be 
accomplished by retaining all the buses in some electrical areas, and equivalencing all the buses 
in others. Overall the model had 144 areas, some with well known names like NYISO that easily 
denoted their geographic location, but also with many that were quite cryptic such as SETH, a 
name that was not geographically helpful. Some contained large amounts of generation and load, 
while for others the amounts were quite small. The power system model contained information 
about the operating areas themselves, such as their names and what buses they contained. From 
the list of buses an area’s electric characteristics, such as total generation, load and interchange 
could be easily determined.  

In order to create the GDVs the power system model was augmented to assign every bus to a 
substation, and then to provide each substation with a geographic location. While this step 
obviously takes a significant amount of work, it is a step that only needs to be done once in its 
entirety since substations do not move. Furthermore, if a detailed one-line diagram is available, 
substation geographic coordinates can be automatically determined from the one-line. With all 
the data in place, a GDV can be created “on-the-fly.”  Figure 2.3 shows a GDV in which cyan 
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colored rectangles are used to show the location of the various operating areas from the Figure 
2.2 case, with the size of each rectangle proportional to the area’s total generation. Black text is 
centered on each symbol is used to show the area’s name. For this example the geographic 
location of each rectangle was determined by a simple averaging of the locations for the area’s 
buses. To provide a geographic context, the rectangles are shown superimposed upon a map of 
the US state boundaries. However, the point of emphasis about GDVs is that they can literally be 
created from scratch within seconds. This allows for quick visual display of almost any power 
system data. Also, by combining different graphical element attributes multi-attribute 
visualizations are possible. For example, Figure 2.4 extends the Figure 2.3 GDV by making the 
rectangle color dependent upon the area’s interchange, with blue shades corresponding to 
exporting areas, and red importing areas.  

 

 
Figure 2.3:  GDV of Eastern Interconnect Operating Areas  

with Size Proportional to Area Generation 
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Figure 2.4:  Display with Rectangle Color Based on Area Interchange 

(Exports are Blue, Imports are Red) 

 
Before moving on to the details on a GDV implementation, the issue of which geographic 

coordinates showed be implemented within the power system model needs to be considered. 
Traditional utility control center map boards and other wide-area displays have usually been 
constructed using pseudo-geographical coordinates at best. That is, while the displays have some 
relationship to the actual geographic location of the modeled devices, the need to show the one-
line in a readable format tends to be the dominate design factor. A pure geographic 
representation, as might be done in a geographic information system (GIS), is seldom practical 
since locations of great interest electrically (e.g., substations) usually have a very small 
geographic footprint. Also, transmission lines sharing a common tower would be 
indistinguishable in a true GIS representation. Finally, some one-line elements, such as aggregate 
loads, are often spread over a large geographic area. Therefore it is expected that most GDV 
models would use such a pseudo-geographic approach. 

However, there may be times when having a visualization that contains the exact geographic 
location of the power system elements could be useful. For example, one might wish to 
superimpose power system information with weather radar images, lightning strike data, or show 
the exact location of a transmission line fault. Or perhaps a substation level GDV could be used 
to show the exact equipment locations. Therefore it might prove useful to design GDV models so 
buses, lines and other elements (e.g., breakers), are modeled using two coordinates systems. One 
coordinate system would contain the pseudo-geographic location for the device, with the design 
goal being display clarity, while the second coordinate system would contain its exact latitude 
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and longitude. Which system to use would then just become another option when the display is 
created. All of the GDVs shown in this report were created using a pseudo-geographic approach.  

2.3 GDV Implementation 
To better illustrate the GDV approach this section describes an initial implementation of the 

concept. Of course, a wide variety of different implementations are possible, and the 
implementation shown here is certainly still a work in progress. But key design goals would be 
to make it easy to select the information to visualize, and to make it easy to customize the GDVs. 
For the GDVs shown here the approach was to have the objects and initial field to be displayed 
selected from tabular “case information displays.”  An example of such a display is shown in 
Figure 2.5, in this case with the display showing all of the substations within Energy, Southern, 
and TVA, with the list sorted by generator real power output. Key functionality of these case 
information displays is their ability to allow filters to limit the objects displayed, and allow easy 
sorting. To create a GDV of a particular set of objects one would selected the desired objects 
within the column corresponding to the initial field to show. As an example, the 163 substations 
with on-line generation were selected, with the initial field to display set to generator MW. 
Right-clicking on the selection, and selecting the appropriate option from a local menu results in 
the display of the GDV Customization Dialog, shown in Figure 2.6.  
 

 
Figure 2.5:  Substation Case Information Display Showing Entergy, Southern and TVA 

Generation Substations (intentionally blurred for data confidentiality) 
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Figure 2.6:  Geographic Data View Customization Dialog, Common Options Page 

The GDV Customization Dialog has two main pages, corresponding to its two main tasks. 
The first task is to specify the background for the new GDV. Currently several options for US 
state borders and Canadian provincial borders are implemented, along with the more common 
option of using a specified template file which could include any desired predefined background. 

The second page, the Class/Field Options, is used to specify how the object field data is 
displayed on the GDV. The page itself contains a number of subpages, with the General Display 
Options page shown in Figure 2.7. This page has a number of general options such as what 
symbol to use (rectangle, triangle, oval, etc), its default border color, border thickness, fill color, 
and whether identifier information should be shown on the symbol (e.g., its name and/or 
number). This page also provides an option to automatically determine a default size for the 
objects on the new GDV display. This can be quite useful since it can be quite difficult to 
determine a priori what size to make the objects to create a useful display. A display created 
using the default values, except that the border and fill colors have been changed, for the 163 
substation example is shown in Figure 2.8. 
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Figure 2.7:  Geographic Data View Customization Dialog, Class/Field Options Page 

 

 
Figure 2.8:  A Default Geographic Data View Showing the 163 Generation Substations 
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By itself the Figure 2.8 display does little more than show the geographic locations of the 
generation substations. While useful, especially since each display object is automatically linked 
to the underlying substation object allowing easy display of additional substation information, 
the real power of the GDV approach is in its ability to customize the visualization based upon the 
field values. This can be done either when the GDV is being created using subpages from the 
Figure 2.7 dialog, or after the GDV has been created by right-clicking on any of the display 
objects. For both approaches the object appearance can be dynamically updated by using the 
First Field Formatting and Second Field Formatting pages from Figure 2.7. Examples of these 
pages are shown in Figure 2.9 and Figure 2.11. 

 
Figure 2.9:  Geographic Data View Customization Dialog, First Field Formatting Page 

The main idea for both of these formatting pages is to change the appearance of the screen 
object based upon the value of an object field. The field itself is selected at the top of the dialog, 
with the generator real power output set as the first parameter in the Figure 2.9 example. Once 
the field has been selected, various attributes can be customized based upon the field value. 
While a variety of different attributes are possible, only four are currently available: Fill Color, 
Total Area, Border Color, and Rate of Rotation. Once the attribute has been selected, the right 
side of the page is used to map the field’s values to a characteristic value for the attribute. For 
Total Area and Rate of Rotation this is accomplished using a piece-wise linear mapping from the 
field value to a real number. In the Figure 2.9 example the total area (size) of the display symbol 
is set to be proportional to the total substation generation, with the mapping going from 81 
square display units if the generation is at or below 6 MW to 40080 square display units if the 
generation is at or above 3456 MW. Again intelligent default values are used to simplify this 
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process. The results of this modification are shown in Figure 2.10. Now the locations and relative 
amounts of generation are available at a glance. 

 
Figure 2.10:  Visualization with Size Proportional to Substation Generation 

Additional insight is possible by simultaneously associating other attributes with other field 
values. The current implementation only allows the dynamic display of two independent  
attributes. Certainly higher numbers of independent attributes could be possible, however one 
would need to avoid using too many to maintain display clarity. 

Figure 2.11 shows an example in which fill color is being mapping to the ratio of the 
generators’ reactive power output to real power output (i.e., the Q/P ratio). For the color-based 
attributes (fill color or border color) the right side of the page is used to select a color mapping 
between the field values (with a Q/P ratio range of between -0.4 and 0.4 for this example) and a 
color. The color mapping was chosen so generators producing reactive power are shown with a 
blue shade, while those absorbing reactive power are shown with a red shade. The result of the 
simultaneous visualization of total substation generation and generator Q/P ratio is shown in 
Figure 2.12. Of course many other substation fields could be visualized as well, with the current 
implementation allowing about one hundred. Figure 2.13 shows just one additional possibility, in 
which the color mapping is changed from showing the Q/P ratio to showing the generator 
reactive power reserves.  
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Figure 2.11:  Geographic Data View Customization Dialog, Second Field Formatting Page 

 

 
Figure 2.12:  Visualization with Fill Color Proportional to Generator Q/P Ratio 
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Figure 2.13:  Visualization with Fill Color Proportional to Reactive Reserves 

While the GDV have been designed to be quickly created and customized, it is certainly not 
outside the realm of reason to expect that certain GDVs would be reused. Therefore two options 
for quickly recreating these displays are available. First, the GDV itself can be saved just like the 
predefined visualizations mentioned in the beginning of the chapter. This allows the GDV to be 
easily used to monitor the system state albeit showing the same objects as when it was first 
created. Second, the customizations used to create the GDV can be saved. This allows very quick 
creation of new GDV but possibly with different fields. For example, the Figure 2.13 display 
could be recreated showing the generation for a different subset of substations.  

2.4 Application of GDVs to the Line Overload Problem 
This last section of the chapter provides a specific example of how GDVs can be applied to 

help with corrective control  As was mentioned earlier, a common operator task is the redispatch 
of generation to remove a line overload. This task requires a knowledge both of what generators 
are available to participate in the redispatch, and the impact each generation change would have 
on the flow of the overload line (i.e., the line flow sensitivities). The design criteria for this 
application was to provide the operator with options on how a particular line overload could be 
corrected, while minimizing the amount of numerical calculations they needed to manually 
perform. Hence the goal was to have the computer do much of the underlying math, assisting but 
not replacing, the operator in the decision-making process. This section describes how this can 
be accomplished using the Line Overload Correction Form (LOCF). A human factor analysis of 
the LOCF is presented in Chapter 6. 
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To begin the development of the LOCF it is helpful to first focus on the two types of 
information needed, the available generators, and their line flow sensitivities. Information about 
the generators available to participate in the redispatch, or specifically the available correction 
range for each generator, is independent of which line(s) is violated. From a visualization 
perspective this is a relatively straightforward problem since there is only one set of information 
that needs to be shown, and that information is usually readily available. This information could 
be shown either in a tabular list format or more graphically. Figure 2.14 shows an example of the 
latter in which the information is visualized using a GDV with objects to represent the generation 
available for re-dispatch, either up or down, within the TVA footprint (aggregated at the 
substation level).  This is done using vertically symmetric quadrilaterals, denoted here as  
“kites,” that merge two isosceles triangles, an upward pointing one whose area is proportional to 
the amount by which the generation can be increased, and a downward pointing triangle whose 
area is proportional to the amount by which the generation can be decreased.  

 
Figure 2.14:  Visualization of Available Generation in TVA Footprint Using Kites 

(intentionally blurred for data confidentiality) 

However, in contrast to available generation range, the line flow sensitivities depend upon 
which line is violated. Therefore they need to be calculated with a knowledge of the specific line 
whose flow should be corrected. In the current LOCF implementation this information is 
obtained when the LOCF is initialized by requiring the operator to right-click on either a 
transmission line or transformer on a one-line diagram, or on its associated pie chart. For 
example, for the Figure 2.15 case right-clicking on the “105%” pie chart symbol would cause the 
display of the LOCF. 
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Figure 2.15:  One-line Diagram Showing Overloaded Transmission Line  

(intentionally blurred for data confidentiality) 

The LOCF was designed to allow the option to show the information needed to assist with the 
correction of line overloads in either a textual format or graphically using a GDV. An example of 
the textual format option is shown in Figure 2.16, while the GDV option is shown in Figure 2.20. 
The LOCF itself has three main sections. The first section, which is in the upper left, contains 
identifier information for the overloaded device.  

The second section, which comprises the bottom 75% of the form, contains the generator 
sensitivity information that has been designed to help the operators make the decision about 
which generators to change to correct the line overload. This section of the form contains three 
tabbed pages that present the generator to line flow sensitivity in three different ways. The first 
two pages present the sensitivity information in the text-based format, with data provided for 
individual generators on the first page, and for generators aggregated by substation on the second 
page. The third page presents the generator information using a GDV aggregated by substation. 
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Figure 2.16:  Line Overload Correction Form (LOCF) Showing Text-Based Option 

(intentionally blurred for data confidentiality) 

The individual generator page contains two lists of generators, with the left list showing the 
generators that would be most effective in correcting the line violation if their outputs were 
increased, while the generators on the right list would be most effective if their outputs were 
decreased. The first two columns in this list are just the name of the generator’s bus and its ID. 
The third column gives the current status for the generator. Only generators that are either on-
line or are fast start (such as combustion turbines) are listed. The fourth column lists the current 
output of the generator, plus any proposed changes (described later), while the fifth column lists 
the generator’s maximum output. The sixth column then tells the sensitivity of how the line’s 
MVA flow would decrease if the generator’s MW output were increased. This sensitivity 
information, which is line dependent, is calculated automatically using the underlying power 
flow Jacobian matrix. Note, while the current implementation uses the ac power flow Jacobian, 
very good sensitivity information could also be calculated using a dc power flow Jacobian, 
which would not require the availability of an ac power flow solution. The sign convention for 
the sensitivities is such that positive numbers always indicate the most effective generators. The 
last column lists the product of the line flow sensitivity with the generator’s available range. By 
default the list is initially sorted by this value, so the most sensitive generators that actually have 
available regulation range are listed first. The right list contains essentially the same column 
fields, except the signs on the sensitivities have been changed to represent the different 
movement direction, and the limit field corresponds to the generators’ minimum limit.   

The initial design philosophy for the LOCF was that in order to actually correct the line 
violation one would initially select a generator from the left list by clicking on it, and then 
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another from generator from the right list. That is, generation is changed in pairs with one going 
up and one going down. However, based upon results from the TVA operator testing this 
restriction should probably be removed.  In the current implementation once a pair is selected, 
the next step is to click on the “Select MW Amount” button shown in the title area above the 
right list to select the MW amount by which the generator pair should be varied. Clicking on this 
button displays the “Line Flow Correction Dialog” shown in Figure 2.17.  
 

 
Figure 2.17:  Line Flow Correction Dialog (intentionally blurred for data confidentiality) 

The design goal for this dialog was to eliminate, as much as possible, the manual math that 
the user needs to do in order to actually select the amount by which the generation should be 
changed. The first two lines in the dialog list the selected generators. The third line then lists 
their combined line flow sensitivity. Hence it shows how the line’s MVA flow would decrease if 
the first generator’s output were increased and the second generator’s output were decreased by 
the same amount. The fourth line tells the required line flow change needed to correct the 
overload, while the fifth line is just the product of the third line and fourth line. Hence it tells 
how much the two generators should be varied if they were to single-handedly correct the 
violation. The sixth line tells how far the generation pair could actually change, taking into 
account the maximum limit on the first generator and the minimum limit on the second 
generator. The last line, which is the only enterable field on the dialog, is where the user 
specifies the desired MW change for the pair. By default this field is the minimum of the fifth 
and sixth fields. This change is actually scheduled by selecting the “OK” button.  

Changes for other pairs of generators can be made by repeating the above process, again 
selecting a generator from the left list, and generator from the right list, and clicking the “Select 
MW Amount” button. Now, however, when the Line Flow Correction Dialog is shown the 
results on lines four, five and seven will take into account any previously selected changes.  
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Before describing the remaining pages in the second section of the form, it would be useful to 
finish the form’s overview with a description of the last section, which is shown in the upper 
right. Figure 2.18 gives a zoomed view is this section. The first three fields in the section list the 
original maximum MVA flow on the line, the line’s limit and the desired correction percentage. 
The desired correction percent tells the desired new MVA flow on the line as a percentage of its 
limit. For the human factor testing this value was set to 98%, with the rationale being we wanted 
to slightly overcorrect to take into account for any nonlinearities in the sensitivity calculations. 
The fourth field tells the required MVA change needed to achieve this correction percentage. 
The fifth field displays the estimated new MVA line flow taking into account any proposed 
generation changes shown in the “List of Selected Generation Changes”.  
 

 
Figure 2.18:  Proposed Line Corrections Portion of LOCF  

(intentionally blurred for data confidentiality) 

The “List of Selected Generation Changes” contains the proposed generation changes made 
using the lower portion of the dialog. However, these changes are not actually made in the power 
flow until the “Make Requested Generation Changes and Solve Power Flow” button is clicked. 
Prior to this happening the entries in the list can be edited or deleted by left clicking on them. 
Clicking the button automatically changes the generation, resolves the power flow and updates 
the form. Figure 2.19 lists the form showing the results of the proposed changes listed in Figure 
2.18. 
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Figure 2.19:  LOCF After Changes (intentionally blurred for data confidentiality) 

Returning to the other tabbed pages on the lower portion of the form, the second page tab is 
similar to the first in that it provides a tabular list of the generators to increase and the generators 
to decrease. However, rather than listing individual generators, on the Select Generation by 
Substation page the generators are listed aggregated by substation. The process to select the 
generators to change is exactly the same as before, except rather than selecting individual 
generators the generation is selected by substation. The remainder of the procedure is the same. 
When the “Make Requested Generation Changes and Solve Power Flow” button is clicked the 
program automatically adjusts the individual generators within the selected substations, using an 
algorithm that the most sensitive generators are adjusted first. 

The last tabbed page also displays the generators aggregated by substation, but rather than 
using a tabular format the information is presented graphically using a modified version of the 
GDV shown in Figure 2.14. The GDV version of the LOCF is shown in Figure 2.20. The GDV 
itself augments the one from Figure 2.14 by applying color mapping to the fill of each kite so its 
color is proportional to the sensitivity of the line’s MVA flow with respect to decreasing the 
substation’s generation. The color mapping is such that red represents locations where the 
generation should be increased and blue where it should be decreased. Therefore to correct the 
line overload the user would be looking for red upward pointing kites and blue downward 
pointing triangles. 
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Figure 2.20:  Line Overload Correction Form (LOCF) Showing GDV Option  

(intentionally blurred ) 

Similar to the other two pages, one selects the generation at one substation to increase, and 
one to decrease. This is done by simply left-clicking on the symbols, which causes a thick green 
border to be drawn on the symbol. Then the user clicks on the “Select MW Amount” button to 
display the Line Correction Dialog, with the remainder of the procedure the same as what was 
described earlier. The second display condition for the human factor testing results from Chapter 
6 used this display.  

To summarize, this chapter has introduced the concept of GDVs, in which new visualizations 
are created on-the-fly based upon power system information coupled with embedded geographic 
information. A key advantage of GDVs is they can be used to visualize a wide variety of 
different power system field values with the ability to use different display attributes to 
simultaneously show different fields. However, it should be emphasized that GDVs are not 
intended to replace existing text-based and predefined object visualizations. Rather they are 
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intended to supplement existing techniques, with the major uses expected in the areas of power 
system analysis and corrective control particularly for wide-area visualizations.  
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3.0 Improved Power System Contouring1 

A second aspect of this project considered how to speed up existing visualization techniques. 
Certainly an important visualization requirement is the need for responsive displays, a 
requirement that was mentioned in a number of the initial control center visits for this project. 
Currently one of the most numerically intensive aspects of modern power system control center 
visualizations is the display of contours, usually for bus-based values. This chapter presents two 
techniques for improving the computational efficiency of existing contouring routines. The 
chapter first presents the basics of contouring along with the method of using an influence region 
to determine how much of the contour each bus will affect. Then, a new contouring algorithm, 
called the Adaptive Influence Region Algorithm, is introduced, whose objective is to produce 
quality contouring images at faster speeds compared to previous algorithms. After presenting a 
theoretical analysis of contour timing, empirical results for the Adaptive Algorithm are 
discussed. Next, the use of the new algorithm is validated through an examination of the created 
visualizations. Finally, a potentially much faster numerical algorithm that takes advantage of the 
graphics card processor is introduced. 

3.1 Contouring Basics 
Before discussing contour plots in detail, it is useful to consider what constitutes a good 

graphical representation. Since the quality of the images is important, some simple guidelines 
must be established to define effective visualizations. The three keys set out by [3] are: 

• Natural encoding of information 
• Task specific graphics 
• No gratuitous graphics 

A natural encoding of the information implies that the display’s meaning is intuitively obvious 
to the user, and that no training is necessary to explain the objective of such displays. For a task-
specific representation, the task is the underlying control of what is being displayed. Features not 
pertinent to the task are disregarded. Recall that the goal of these visualizations is to transmit 
information, not to create an aesthetically pleasing picture. Gratuitous graphics, which do not 
hold operationally useful information, must also be suppressed so as not to confuse the user. In 
[4], the argument is made that contour plots do in fact meet these criteria. Contour plots are 
fairly common tools that most people can associate with. The prevalence of weather maps on 
evening news shows provide widespread exposure of such representations and give many pe
an inherent understanding of the data. The guidelines for providing task-specific and essenti
graphics can be satisfied by creating customized one-line diagrams that enable a clear 
interpretation of the data. 

ople 
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Now that contouring has been justified as a viable visualization option, it is important to 
consider implementation strategies. A significant amount of power system data, including 
voltage magnitude and angle, load, and generation, is referenced to the system buses. 
Unfortunately, since buses exist at discrete points in the system, employing contouring requires 
that these points be mapped onto a continuous surface. For computer implementation, this 
continuous surface can be represented as a grid of data points, where each point corresponds to a 

 
1 Much of the material presented in the beginning of this section is reproduced from project publication A, 
“Adaptive Influence Distance Algorithm for Contouring Bus-Based Power System Data”, presented at the 40th 
Hawaii International Conference on System Sciences (HICSS), Kona, HI, January 2007 
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pixel on the monitor. The color of each pixel is determined by mapping the value of the data 
point according to some color scheme. For pixels representing actual buses, the data value is 
known. However, for other pixels (those representing points in between the buses) a virtual value 
must be calculated. There are many possible algorithms for creating these virtual values, some of 
which are addressed in the next section.  

3.1.1 Shepard’s Method 
Shepard’s method is a brute force approach where each virtual value is calculated as a 

weighted-sum of the values of all the system buses [5].  The weighting is based upon the 
distance separating the bus and the virtual point. Buses that are closer to the virtual point shou
have higher weightings than those further away. With reference to 

ld 

1,y1).  

Figure 3.1, since d1 > d3 > d2 
for the calculation of the virtual value at point (x0,y0), the value at (x2,y2) is weighted more than 
(x3,y3) which is weighted more than (x

This algorithm assumes that buses near one another geographically are also near one another 
electrically. This assumption is validated through judicious construction of the one-line diagram. 
Care should be taken to ensure that the one-line correctly represents the geography of the real 
system. The virtual values are calculated using (3.1). 
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Figure 3.1:  Virtual Value Calculation 
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where 
νp   = value for virtual position p 
νi    = value for bus i 
dpi  = distance from position p to the center of bus i 
α    = parameter controlling weight 

 
The α parameter can be changed to control the relative weightings of close versus far buses. A 

higher α value results in more weight given to the nearest buses. For general purposes, using α = 
2 is preferred because it gives satisfactory surface mapping results and it provides for the fastest 
computation time. 

3.1.2 Mapping Virtual Values Into A Color Scheme 
Once the virtual values for all the pixels on the screen are created, they must be mapped into a 

color scheme. Most computers use a three primary color additive model, where shades of the 
three primary colors (red, green, and blue) add together to produce the perceived color. 
Assuming a typical system, where each pixel consists of 24 bits, each pixel can be colored one of 
224 (16.7 M) distinct colors. This means the primary colors can take on one of 28 values (0 – 
255), which decide its shade. Zero denotes none of the primary color, and 255 denotes a 
maximum or saturated value. An example of a common mapping method is shown in Figure 3.2 
where high values are mapped to red and low values are mapped to blue.  

 
Figure 3.2:  Color Mapping for Red = High, Blue = Low 

Another available option is the use of continuous versus discrete color mappings. For a 
continuous mapping an upper, lower and nominal value is defined while the rest of the scale is 
defined by an interpolative blending of these values. For continuous color scales, no definite 
sections exist, making it difficult, with a large degree of accuracy, to determine a pixel’s value. 
When using a discrete mapping, however, the color scale is divided into discrete sections. The 
value of any pixel is guaranteed to be within the scale limits specified by its corresponding color. 
Figure 3.3 shows a 10-color discrete scale. The main advantage of discrete scales is that the user 
can always determine, within some definite range, the value of any pixel. This is the color scale 
utilized for the experimental analysis in Section 3.4. 
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Figure 3.3:  Ten-Color Discrete Scale 

3.2 Influence Distance 

The weighted-sum calculation method for the virtual values is the basis for all of the 
algorithms explored in this paper. Unfortunately, the original Shepard’s method has several 
shortcomings, the most prominent being its computational inefficiency. Every bus is considered 
in the summation calculations of every virtual value, which is not only slow but also nonsensical, 
since buses that are separated by hundreds of miles normally have negligible effects on one 
another. Since only “near” buses significantly influence virtual values, one solution for 
improving efficiency is to eliminate calculations from distant buses. One approach, the fast 
contouring algorithm, introduced by [4], suggests the use of an arbitrary distance criterion, where 
only virtual points located within some specified distance from a bus contribute to the weighted-
sum. 

Within this algorithm, each virtual point is no longer influenced by every bus in the system, 
but instead by only a collection of geographically close buses. An influence region, as seen in 
Figure 3.4, is established for each bus in the system as a conceptual circle radiating out from the 
midpoint of the bus. This work defines the radius of said circle to be β. Only virtual points within 
this circle are affected by the bus. As β grows the total number of pixels being colored grows, 
and the influence regions begin to coincide and merge. As β approaches infinity, the results 
approach those found using the original Shepard’s method. 
 

26 



 

 
Figure 3.4:  Bus Influence Distance 

 
The virtual value calculations are similar to the basic Shepard algorithm, with the exception 

that the summations are now over only “influencing buses” instead of “all buses.” The new 
virtual value calculation equation is defined in (2): 
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                       (3.2) 

 
A two-dimensional array, with entries for each point of the contour region, is used to store the 

two summations in (2). Each bus in the system is processed in turn. For those points within its 
influence region, the corresponding entry in the array is updated by adding an additional term to 
both summations. After all the buses are processed, the two summations are divided to calculate 
the virtual value. The virtual value calculation for bus i located at (xi,yi) looks like a double 
integral over a circular region as follows. 
 

For x = (–β + xi) to (β + xi) 
  For y = (–(β2 – xi)0.5 + yi) to ((β2 – xi)0.5 + yi) 
    d = ((x – xi)2 + (y – yi)2) 0.5 
    Update numerator sum at (x,y) with (vi/d) 
    Update denominator sum at (x,y) with (1/d) 
  Next y 
Next x    

 
For the weighted-sum-based algorithms, the virtual value calculation times are proportional to 

the number of computations, which is basically the number of times the summations are updated. 
For Shepard’s method, where every bus affects every pixel, the number of updates is equal to the 
product of the number of system buses and the number of pixels on the screen. Consider an 
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example with an N × M screen resolution and K system buses. The total number of computations 
would be N*M*K. However, the number of computations needed for the fast contouring 
algorithm is much lower, since only a subset of the total system buses are used, and each bus 
does not necessarily affect every pixel on the screen. 

The most significant shortcoming of the fast contouring algorithm is that contouring dense 
areas is substantially slower than contouring sparse areas. Dense areas have a larger subset of 
buses to consider than sparse areas. The reduction in speed is especially apparent for zoomed in 
views of dense areas. Since the influence distance is independent of the zoom level and the 
number of pixels on the screen, upon zooming in a bus’s influence region will encompass more 
pixels. As the zoom level increases, the number of affected pixels approaches the number of 
pixels on the screen. When this occurs, the difference in speed between Shepard’s method and 
the fast contouring algorithm is entirely based on the number of buses that affect the contour. 
The bus count for dense areas, while not as high as in Shepard’s method, is much higher than for 
sparse areas. This accounts for the disparity in speeds. The algorithm presented in the next 
section is an attempt to speed up contouring times by allowing each bus to possess a unique 
influence distance that may be reduced from the original. 

3.3 Adaptive Influence Region Algorithm 
The fast contouring algorithm is an improvement in terms of computational efficiency over 

the basic Shepard’s method. However, for the purposes of continuously updating contours based 
on real-time data, the need for an even faster contouring algorithm exists. In the fast contouring 
algorithm, all of the buses have the same size influence region. This causes problems in areas 
with a high bus density. Particularly if the influence distance is large, virtual points are 
influenced by too many buses, making the contour slow and less physically meaningful. To 
counter these issues, an algorithm must be developed where each bus can have a unique 
influence distance. Each bus’s influence distance is calculated as the minimum of the original 
influence distance and the distance to the gth closest bus, where g is a parameter set by the user. 
The higher g is set, the larger the influence distance. 

The individual influence distance calculations introduce computations not present in the fast 
contouring algorithm. However, a reduction in a bus’s influence distance results in fewer 
affected pixels, and thus a decrease in the computation count. The aspiration of the Adaptive 
Algorithm is that even with added computation time caused by the calculation of the reduced 
influence distances, the decrease in each bus’s pixel coverage will ultimately result in a faster 
algorithm. This algorithm can be stated as follows.    
 

Given: 
• N × M screen resolution 
• Rectangular contour region defined by the coordinates of [(MinX, MinY) (MinX, MaxY) 
(MaxX, MaxY) (MaxX, MinY)]  
• Original influence region radius of β0 
• i = 1,…K system buses, where bus i is located at coordinate (xi,yi) 
• g = the number of buses used to resize a bus’s influence distance 

 
Step 1: Create an N × M array (ContArray) to hold the two summations used to 

calculate the virtual values for each pixel in the contour region. 
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Step 2: Create a list of buses (ContourBuses) to be considered during the contouring. 

These buses are the subset of the K system buses located within the contour region or a 
distance less than β0 outside the region. 

 
Step 3: Cycle through ContourBuses, searching for and storing the minimum and 

maximum X and Y coordinates (BusMaxX, BusMinX, BusMaxY, BusMinY). These 
coordinates define the smallest rectangular region which encompasses all of the buses in 
ContourBuses.  

 
Step 4: Set up a grid to facilitate the adaptive sizing of each bus’s influence region. This 

step breaks up the rectangular region found in step 3 into a grid with the distance between 
the grid points at least equal to the original influence region radius, β0. Each cell in the grid 
holds a list of the buses associated with that particular section of the region.  

 
i) Find the size of the grid in terms of blocks. 

0

1BusMaxX BusMinXGridSizeX truncation
β

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠
         (3.3) 

0

1BusMaxY BusMinYGridSizeY truncation
β

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠
         (3.4) 

ii) Create and initialize a GridSizeX × GridSizeY array  (BusGrid) to hold the bus 
lists. 

 
iii) Cycle through each bus in ContourBuses, placing them onto the list in the 

appropriate cell defined by [NewX,NewY] of BusGrid. 

0

1ix BusMinXNewX truncation
β

⎛ ⎞−
= +⎜

⎝ ⎠
⎟                          (3.5) 

0

1iy BusMinYNewY truncation
β

⎛ ⎞−
= +⎜

⎝ ⎠
⎟                      (3.6) 

 
Step 5:  For each bus in ContourBuses, calculate a new influence distance that is 

possibly smaller than the original influence distance. The new influence radius, βi, will be 
the minimum of the original influence distance and the distance to the gth closest bus. 

 
For bus i: 

i) Retrieve the cell location in BusGrid for bus i. 
 

ii) Get a count of all the buses contained within not only this cell but all of the 
eight (less if the cell is on the region border) adjacent cells as well. This number is 
defined as NearbyCount. Before proceeding, one must decrement NearbyCount by 1, 
so as not to count bus i itself. 
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iii) If NearbyCount ≤ g, then stop and βi = β0. Else go to step iv). 
 

iv) Cycle through the bus lists for all nine (or less) cells and store in another list 
(Distance) the distance between bus i and each of the other buses. 

 
v) Sort Distance in ascending order. The new influence distance for bus i is the 

(g+1)th
 entry in the list (g+1 is used because the first entry will always be 0, the 

distance between bus i and itself). 
[Distance 1i gβ = ]+                             (3.7) 

 
Step 6: Process each bus in ContourBuses in turn, updating the summations in 

ContArray. Then calculate each virtual value by dividing the numerator summation by the 
denominator summation, as in (3.2). 

 
Step 7: Map the virtual value into a color scheme 

3.4 Adaptive Algorithm Testing 

Testing the effectiveness of the Adaptive Influence Region Algorithm requires two steps. 
First, timing data must be recorded under various conditions to compare the Adaptive 
Algorithm’s speed to the speed of the fast contouring algorithm. Second, an examination of the 
visualizations that the Adaptive Algorithm produces is conducted to ensure that no information 
has been lost in a tradeoff for faster computation time. 

3.4.1 Experimental Setup 
Contours were created per unit voltage data on a one-line diagram showing the transmission 

grid of Illinois. In order to show that the Adaptive Algorithm is effective under various 
conditions, combinations of several variables are changed to obtain the timing data: 
• The original influence distance, β0. Five different values of β0 are used: 1%, 25%, 50%, 

75%, and 100% of the allowable range in PowerWorld Simulator. 
• The number of “near” buses used to calculate the adaptive influence distance for each bus, 

g. Tests are run without adaptive sizing (g = ∞) and for g equal to 5, 10, 30, and 60. 
• The magnification level of the one-line diagram. Times are taken at five zoom levels: 

1.5%, 10%, 30%, 60%, and 100%. Zooming is centered on the Chicago area due to the 
region’s high density of buses. Zoomed-in views of dense areas usually create the slowest 
contouring times and thus are where the Adaptive Algorithm is most needed. 

3.4.2 Contouring Time – Theoretical Results 

Two main components affect contouring times:  the time it takes to evaluate each virtual value 
and the time it takes to map these values into a color scheme and display the image on screen. 
The goal of the Adaptive Algorithm is to increase the speed of the virtual value evaluations. The 
main timing issue is the number of computations needed to create these values. The number of 
computations is proportional to the summation, over the set of buses affecting the contour, of the 
number of on-screen pixels affected by each bus. 
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the number of computations i
i

VC p
∈Ω

∝ ∝∑               (3.8) 

ip iβ∝                                       (3.9) 

In (3.8) and (3.9), 

pi = the number of on-screen pixels contained in the influence region of bus i 
Ω = the subset of the K system buses considered in the contour 
VC = virtual values calculation time 
βi = the influence distance for bus i 

 
Three cases are considered, in which two of the variables are held constant and the last is 

varied. The three experimental timing variables are defined in Section A. Theoretical results are 
presented below and then compared to the experimental results in Section C. 
 

Case 1: g is allowed to vary while β0 and the zoom level are held constant 
Since β0 and the zoom level are held constant, the number of buses in Ω are constant, making 

the number of pixels covered dependent on the influence distance for each bus. As g increases, a 
bus is less likely to reduce its influence distance from the original. When these reductions take 
place, the margin of reduction is generally smaller for larger g values. Since the fast algorithm is 
equivalent to setting g to infinity, the use of the Adaptive Algorithm should generally result in 
faster contouring times. 
 

Case 2: β0 is allowed to vary while g and the zoom level are held constant 
Since g and the zoom level are held constant, an increase in β0 causes an increase in the 

number of pixels influenced by each bus, thereby increasing computations and contouring times. 
When using the Adaptive Algorithm, an increase in β0 will never result in the decrease of βi for 
any bus. The term βi will either stay at the distance calculated based on the g variable, or, as in 
sparse areas, will equal β0. Also, since the number of buses in Ω is defined as both those buses 
within the contour region and those buses a distance less than β0 outside the contour region, an 
increase in β0 can potentially lead to an increase in the number of buses contained in Ω. This also 
causes an increase in computations. 
 

Case 3: The zoom level is allowed to vary while g and β0 are held constant 
It is difficult to predict the results for this case. Zooming in on the one-line diagram causes the 

number of buses contained in Ω to decrease because the area being contoured is shrinking. This 
suggests a decrease in contouring times when zooming in. However, zooming in also causes the 
number of pixels encompassed by a bus’s influence region to increase because the influence 
distance is based on true distance, not on the number of pixels. In essence, zooming makes the 
influence area seem to grow larger and cover more pixels. For example, if the influence region 
covers from x = 3 to 6, after zooming in, the influence region still covers x = 3 to 6. However, 
since the screen resolution does not change, there are now more pixels located between x = 3 to x 
= 6 than originally. The increased number of pixels would indicate an increase in contouring 
times. 

31 



 

3.4.3. Contouring Times – Experimental Results 

Contouring times are recorded for every possible combination of the three variables, resulting 
in a total of 125 measurements. For the sake of space and ease, only a subset of these 
measurements is shown in this section. Examination of the measurements reveals several data 
trends. Note that for the tables in this section, g = ∞ refers to using the Fast Contouring 
Algorithm. 
 

Case 1: g is allowed to vary while β0 and the zoom level are held constant 
Table 3. shows the measurements for all combinations of zoom level and g, with β0 held 

constant at 50% of the allowable range. 

Table 3.1:  Timing Data for β0 = 50% of Allowable Range 

Zoom Level = 
1.5% 

Zoom Level = 
10% 

Zoom Level = 
30% 

Zoom Level = 
60% 

Zoom Level = 
100% 

Time 
(s) 

Time 
(s) 

Time 
(s) 

Time 
(s) 

Time 
(s) g g g g g 

∞ 0.88 ∞ 2.69 ∞ 4.13 ∞ 3.72 ∞ 1.43 
60 1.47 60 1.17 60 1.12 60 1.05 60 0.89 
30 1.41 30 1.14 30 0.99 30 0.82 30 0.73 
10 1.36 10 1.09 10 0.94 10 0.76 10 0.67 
5 1.36 5 1.04 5 0.90 5 0.72 5 0.63 

 
Several data trends can be discerned from the data in Table 3.. When utilizing the Adaptive 

Algorithm, the larger g is, the slower the contouring time. This is reasonable because the larger 
the g value is, the less likely a bus is to reduce its influence distance from the original. These 
results are consistent with theoretical expectations.  

Another theoretical expectation contends that the Adaptive Algorithm is faster than the fast 
contouring algorithm. This was true for zoom levels of 10% and higher. However, for the 1.5% 
zoom level, the Adaptive Algorithm is actually slower. At the 1.5% zoom level, most of Illinois 
and its surrounding connections in the Midwest are visible. Most of these areas are sparse, and 
running the Adaptive Algorithm does not reduce many of the buses’ influence distances. If a 
large number of buses on the screen do not reduce their influence, then the overhead of running 
the more complicated algorithm results in slower contouring times. As one zooms in, particularly 
on the dense Chicago area, more and more buses reduce their influence causing a reduction in 
the number of pixels covered and a reduction in computations that outweighs the increased 
overhead. It is important to note that while in most cases the Adaptive Algorithm is faster, this is 
not always the case. These same trends exist for all choices of β0. 
 

Case 2: β0 is allowed to vary while g and the zoom level are held constant 
Table 3. shows the measurements for all combinations of β0 and g, with the zoom level held 

constant at 10%. The data in Table 3. indicates that contouring times increase with β0, regardless 
of the use of adaptive sizing or the choice of g when adaptive sizing is in effect. These results 
agree with the theoretical expectations presented earlier. The larger the influence distance for a 
bus, the more pixels it will cover, creating more computations and raising contouring times. The 
same trend is observed for all zoom levels. 
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Case 3: The zoom level is allowed to vary while g and β0 are held constant 
Table 3. shows the measurements for all combinations of zoom level and g, with β0 held 

constant at 75% of the allowable range. For the fast contouring algorithm, the trade-off suggested 
in the theoretical expectations is observed. As one zooms in, the number of pixels covered by the 
influence regions of the buses increases and the contouring times begin to slow down. However, 
after zooming in past 30%, the number of buses contained in Ω decreases enough so that the 
contouring times begin to speed up. To better illustrate this effect, timing data is taken at more 
zoom levels for the g = ∞, β0 = 75% case. A plot of the contouring time versus zoom level is 
shown in Figure 3.5. It shows that the contouring time peaks between 25% and 35%. 
 

Table 3.2:  Timing Data at Zoom Level = 10% 
g = ∞ g = 60 g = 30 g = 10 g = 5 

β0 
(%) 

Time 
(s) 

β0 
(%) 

Time 
(s) 

β0 
(%) 

Time 
(s) 

β0 
(%) 

Time 
(s) 

β0 
(%) 

Time 
(s) 

1 0.93 1 0.93 1 0.91 1 0.84 1 0.79 
25 1.72 25 1.12 25 1.09 25 1.07 25 1.01 
50 2.69 50 1.17 50 1.14 50 1.09 50 1.03 
75 3.29 75 1.25 75 1.15 75 1.10 75 1.04 
100 8.57 100 1.26 100 1.21 100 1.18 100 1.15 

 

Table 3.3:  Timing Data for β0 = 75% of Allowable Range 
g = ∞ g = 60 g = 30 g = 10 g = 5 

Zoom Zoom Zoom Zoom Zoom 
Level Time (s) Level Time (s) Level Time (s) Level Time (s) Level Time (s) 
(%) (%) (%) (%) (%) 
1.5 1.10 1.5 1.76 1.5 1.68 1.5 1.62 1.5 1.57 
10 3.29 10 1.25 10 1.15 10 1.09 10 1.04 
30 4.90 30 1.15 30 1.00 30 0.99 30 0.95 
60 4.51 60 1.06 60 0.83 60 0.78 60 0.72 
100 1.59 100 0.90 100 0.74 100 0.67 100 0.63 
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Figure 3.5:  Zoom Level vs. Time for g = ∞, β0 = 75% 

This peaking behavior does not appear to occur when using the Adaptive Algorithm. This 
means that the Adaptive Algorithm is reducing the influence distances enough that the speed 
increase caused by the decrease in the number of buses in Ω is more dominant than the speed 
decrease caused by the increased pixel coverage. This illustrates one of the key advantages of the 
Adaptive Algorithm since the slowest contour times usually result from zooming in on dense 
areas. These same trends exist for all choices of β0. 

Results indicate that in general the Adaptive Algorithm is much faster than the fast contouring 
algorithm, but how much faster? This is difficult to quantify. Consider the zoom level of 30%. It 
is possible to compare the average time it takes for each choice of g, where the average is that of 
the data taken over all five choices of β0. Table 3. tabulates this data. 

Table 3.4:  Average Time Comparison for Zoom Level = 30% 
Average Time 

(s) 
# Times Faster 

Than g = ∞ g 

g = ∞ 5.52 --- 
g = 60 1.11 4.97 
g = 30 1.00 5.52 
g = 10 0.95 5.81 
g = 5 0.90 6.13 

 
The data shows that, on average, the Adaptive Algorithm is over five times faster than the fast 

contouring algorithm. Often times this average can mask the time variation that occurs as β0 
changes.  Table 3. shows the worst-case times over the five choices of β0. 

Table 3.5:  Worst Case Time Comparison for Zoom Level = 30% 
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g # Times Faster Than g = ∞ Worst-Case Time (s) 
g = ∞ 14.73 --- 
g = 60 1.16 12.70 
g = 30 1.10 13.39 
g = 10 1.03 14.30 
g = 5 0.99 14.88 

 
Table 3. shows that for the worst-case scenario, the Adaptive Algorithm is, on average, 14 

times faster. Another thing to note is that all of the times taken are total contouring times, 
constituting both virtual value calculation time and color mapping time. If one assumes that the 
mapping time is roughly constant, then the speed of calculating the virtual values alone is several 
times faster than what previously calculated. 

3.4.4 Contouring Images 
This research shows that the Adaptive Algorithm generally has an increase in speed. 

However, another important part of contouring is creating a quality image. If the picture 
produced has little physical meaning or is hard to understand, then the fact that the algorithm that 
produces it is faster is inconsequential. In this section the images are compared to those made 
using the fast contouring algorithm and, the merits of the Adaptive Algorithm images are 
discussed. 

Figure 3.6-10 are contours taken for different choices of g, while the zoom level and β0 are 
held constant at 60% and 25%, respectively. At first glance, the contour created using the fast 
contouring algorithm (Figure 3.6) may cause one to believe that almost all the buses in the 
contour region have a voltage between 1.00 p.u. and 1.01 p.u., since almost the entire diagram is 
the same color. Upon close inspection, small colored circles (representing 0.99 p.u. to 1.00 p.u.) 
can be discerned around some of the buses, especially those in the upper middle portion of the 
image. Also, small colored circles (representing voltage magnitudes between 1.01 p.u. to 1.02 
p.u.) are also observed around the buses in the upper left and bottom right portions on the region. 
 

 
Figure 3.6:  Contour with g = ∞ 

 

35 

A

MVA

A

MVA

Garfield

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

MVA

A

MVA

A

MVA
A

MVA

A

MVA

Ford City
A

MVA A

MVA

Hayford

A

MVA A

MVA

A

MVA

A

MVA

Sawyer

A

MVA

MVA

 84%
A

MVA

Oak Park

A

MVA

A

MVA

Ridgeland

A

MVA

D799

MVA
MVA

Galewood

Y450

A

MVA
 84%

A

MVA

 82%
A

MVA

A

MVA

Congress

Rockwell
Clybourn

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

A

MVAA

MVAA

MVA

Quarry

Lasalle

State

A

MVA

A

MVA

A

MVA
A

MVA

A

MVA
A

MVA

A

MVA
A

MVA

A

MVA

A

MVA

A

MVA

Crosby

A

MVA

Kingsbury

A

MVA

A

MVA

Jefferson

Ohio

Taylor

Clint

Dekov

Fisk

Crawford

University

A

A

MVA

Washington Park

A ADamenA

A

VA
A

MVA

A

MVA

D775

A

MVA

A

MVA

A

MVA

Bedford Park

Clearning

 -6.30 deg
 -7 .50 deg

A

MVA

A

MVA

A

MVA

   2.

  4 .80 deg

A

MVA

 96%
A

MVA

100%
A

MVA

 96%
A

MVA

100%
A

MVA



 

 

 
Figure 3.7:  Contour with g = 5 

 

 
Figure 3.8:  Contour with = 10 
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Figure 3.9:  Contour with g = 30 

 

 
Figure 3.10:  Contour with g = 60 

Though this contour correctly shows the bus voltage values, it is difficult to draw conclusions 
about areas in the region. For the contours created using the Adaptive Algorithm (Figure 3.7-10), 
there are several large dark colored areas. Upon looking at the image, one immediately notices 
that the majority of the buses in these areas have voltage values that are between 0.99 p.u. and 
1.00 p.u. or  between 1.01 p.u. and 1.02 p.u. corresponding to the correct color mapped by the 
legend. 

The above results indicate that the visualizations produced by the Adaptive Algorithm are 
easier to understand, making them, to some degree, better than those produced using the fast 
contouring algorithm. However, how do the Adaptive Algorithm images compare to each other? 
As g grows, the dark colored areas begin to shrink. This seems logical because, as g grows to 
infinity, the images grow toward the one in Figure 3.6, where the large dark colored areas do not 
exist. It is hard to say if any one of the Adaptive Algorithm images is better than all the others; 
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this is more of a human factors question. One result worth noting is in Figure 3.7 there are 
several areas where the pixels are uncolored (white). This makes the images less appealing. 
Perhaps it is better to use a larger value of g. The differences between the last three images 
appear to be marginal. Since Figure 3.8 is faster to create than Figure 3.9 and  Figure 3.10, it may 
arguably be the best. 

3.5 GPU-based Contouring 

There are two key motivations for speeding up the rendering of contours in power system 
visualizations. First, increasing rendering speed leads to an enhanced feeling of interactivity 
when working with the visualization. To achieve a true feeling of interactivity, a rendering speed 
of 16 frames per second (fps) is considered a minimum. With traditional CPU-based rendering, 
the frame rates obtained are closer to 1 fps due to the large computational burden placed on the 
CPU. Secondly, the visualization rendering rate should be able to keep up with the underlying 
data rate. With the advent of newer, faster measurement devices and state estimators, it is 
possible to get data at a much faster rate than CPU-based contouring can handle. As an example, 
some phasor measurement units are capable of providing samples at 30 Hz. In order to visualize 
this data in real time, the rendering speed must be equal to or exceed 30 fps, assuming that one 
frame is rendered per sample time. 

While CPU-based contouring methods have had trouble reaching such high rendering speeds, 
the use of the computation power contained with in the graphics processing unit (GPU) (i.e., the 
display card) shows much promise. Virtually every video game released in the past few years has 
employed the significant parallel power of the GPU in order to increase rendering speeds. By 
employing the GPU in contouring, we hope to get significantly shorter rendering times in order 
to promote greater interactivity and data/visualization cohesiveness. 

3.5.1 Advantage and disadvantages of GPU contouring 
There are significant advantages and disadvantages of moving the contour calculations from 

the CPU to the GPU. As with any application, the tradeoff between these factors must be taken 
into account in order to determine if a GPU-based approach is the best approach. 

The greatest advantage of GPU-based contouring is the ability of the GPU to perform parallel 
computations. A typical GPU contains multiple fragment and vertex shaders, each of which can 
operate independently on incoming data. This architecture, known as Single Instruction, Multiple 
Data (SIMD), can lead to dramatic increases in rendering speed if the rendering operations are 
easily parallelizable. This is in stark contrast to most CPUs, which employ a Single Instruction, 
Single Data (SISD) architecture which processes instructions in a serial rather than parallel 
fashion. Because the contouring algorithm we use can be easily parallelized, the GPU is able to 
take advantage of this parallelization whereas the CPU is not. It is because of this difference in 
parallelization that the GPU can achieve much quicker contour rendering. Another nice side 
effect of doing the contouring calculations on the GPU is that the CPU is then free to perform 
other tasks while the GPU performs the necessary calculations. 

Although using the GPU can achieve faster rendering speeds, particularly when parallel 
computations must be performed, there are still some disadvantages to using the GPU. First, in 
order to achieve high rendering rates, 16-bit floating point numbers must be used. While most 
GPUs support 32-bit floating point operations, using these larger data types can slow rendering 
to a crawl. As a result of using 16-bit floating point numbers, it is easy to get into problems with 
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round-off error, leading to undesirable visual artifacts. Furthermore, because GPUs use an SIMD 
architecture, it is not possible to read and write to the same memory address while executing a 
program. Introduction of new OpenGL extensions such as framebuffer objects have made this 
less of a hassle, but having to read from and write to separate memory locations requires high 
memory allocation and can be difficult to program effectively. Also, because GPUs tend to have 
much less memory available to them than CPUs, care must be taken to avoid running out of 
memory. 

3.5.2 Preliminary results 
We have implemented GPU fragment shaders to perform Shepard’s algorithm on an nVidia 

GeForce 7600 GT graphics card. These fragment shaders were written in the Cg programming 
language using 16-bit floating point numbers as mentioned above. For a large case with over 
1000 buses, the GPU-based contouring was able to achieve rendering speeds above 20 fps. Also, 
for the one-line diagram used in the investigation of dynamic influence distances, rendering 
times as low as 0.002 seconds have been achieved with a 1920x1200 resolution. The extremely 
fast rendering rates are encouraging; however, much more work needs to be done in order to 
optimize the performance of the GPU-based contouring algorithm. With the latest 
implementation, there are visual artifacts present which must be addressed before the GPU-based 
contouring can be brought out of the lab and into the control room. Hopefully, we will be able to 
make suitable modifications to the current implementation such that decreases in rendering times 
do not require a significant decrease in the quality of the resulting contours. An example contour 
using this technique for a 37 bus system is shown in Figure 3.11. 
 

 
Figure 3.11:  GPU-Based Contouring for 37 Bus System 
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4.0 Line Outage Detection Using PMU Data 

The deployment of phasor measurement units (PMUs) throughout the power grid has 
increased substantially in recent years, and this growth is expected to continue. With these new 
measurement devices, new techniques must be developed to take advantage of the wealth of 
information that they provide. In particular, the voltage and current phasor angles obtained from 
these PMUs should be used to increase the situational awareness of grid operators. In this chapter 
we discuss how line outages can be identified due to changes in phasor angles observed at a 
limited number of buses. Using these techniques, it should be possible to get early indicators of 
line outages anywhere in the grid. 

4.1 Problem Formulation and Theory 
With this detection algorithm, we hope to provide indications of line outages on the system 

that would otherwise not be obtained as quickly (or at all, if the line is in an external system). In 
order to perform this task, we begin with the DC power flow equations for changes in power 
injection: 
  (4.1) BΔθ = ΔP
 

Using the NERC System Data Exchange (SDX) along with existing study cases it should be 
possible for any control area to obtain the matrix used in equation (4.1). As discussed in the 
literature, the effect of an outage of a line in the system can be approximated by a power transfer 
between the terminal buses of the line that results in zero flow on the line. The necessary transfer 
from the “to” bus to the “from” bus on a line , denoted as 

B

kP%k , is related to the original line flow 
as follows: 
 

,1
from to

k
k

k k k

PP
PTDF -

=
+

%  (4.2) 

 
where  is the pre-outage flow on the line defined as positive if flowing from the “from” bus 

to the “to” bus, and 
kP

, from tok k kPTDF -

k

 is the Power Transfer Distribution Factor (PTDF) relating the 

change in flow on line  due to a transfer from line ’s “from” bus ( fromkk ) to its “to” bus ( ). 
If this transfer across the terminal buses of line  is imposed on the system, then a change in 
angles at all buses will occur. This change in angles, denoted as , is found by applying 
equation (4.1): 
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In this equation,  is the angle change vector which would result from a transfer of 1 p.u. 
from the “to” to “from” bus of line k ;  is obtained by simply multiplying  by the actual 
value of 

kΔθ
kΔθ% kΔθ

kP%. We can then separate Δθ  into two sets of angles—the changes in angles at buses 
where PMUs are located and the changes in angles at all other buses: 

k

 
k

k p
k
o

Δθ
Δθ =

Δθ

é ù
ê ú
ê úë û

 (4.4)  

 
pIn equation (4.4) and in the remainder of this chapter, the subscript is used to refer to buses 

with PMUs, and the subscript o is used to refer to all buses without PMUs. 
The next step is to consider the measured PMU phasor angle data. Once a discontinuity is 

detected in the phasor angles at one or more PMUs, the pre- and post-disturbance angles are 
subtracted from one another to give the observed angle change vector: 
 

obs
p after disturbance before disturbance

-obs obs
p pΔθ = θ θ  (4.5)  

 
With the observed angle change, , in hand, we can then try to determine which line 

outage caused this angle change. Even though neither the outaged line nor the pre-outage flow on 
the line is known, we can use the information we have to make a very good guess as to which 
line was outaged. In order to find the line l  that was outaged, the following search is performed: 

obs
pΔθ

 

( )line outaged arg min min obs k
p pPk L

l
∈

= Δθ -Δθ P
%

%  (4.6)  

where  is the set of all lines that we consider to be possibly outaged. The basic assumption 
underlying this search is that each line within the set  will give a unique change in angles 

L
k
pθΔL  

regardless of the scaling performed on the angles. In other words: 
 

, , if ,
m n
p p
m n
p p

m n L m n
Δθ Δθ
Δθ Δθ

" Î ¹ × = 1 (4.7)  

 
If this assumption holds, then the inner minimization of equation (4.6) will result in unique 

values for all lines under consideration. If equation (4.7) does not hold, then there will be lines 
that will be very hard to distinguish when considering which one was outaged. 

The search in equation (4.6) can be performed very quickly using dot products. To see why 
this is the case, consider two vectors, and b . From linear algebra, we know that the projection 
of ontoa ,

a
projab kb a-b , is the vector that minimizes , where  is an arbitrary scalar value. 

The formula for calculating 
k

projab  is: 
 

arg min
k

proj k

k k

ab a
a b b a
a a ¢

=
× ¢= = -
×

 (4.8)  
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Comparing equations (4.6) and (4.8), we can rewrite the inner minimization of (4.6) for a 

candidate line  as: k
 

min obs k
k pP

obs k
p p
k k
p p

P P= −

⋅
=

⋅

Δθ Δθ

Δθ Δθ
Δθ Δθ

%
% %

p

  (4.9) 

 
We can then rewrite (4.6) using dot products, which leads directly to the algorithm used to 

determine the outaged line: 
 

line outaged arg min
obs k
p pobs k

p p k k
k L p p

l
∈

⎛ ⎞⋅
= −⎜⎜ ⋅⎝ ⎠

Δθ Δθ
Δθ Δθ

Δθ Δθ
 ⎟⎟

 (4.10) 

 
Because is a fixed vector and  is scaled by the optimal value to minimize the 

difference between the two, the closeness of fit of the change in angles due to the outage of line 
 to the observed angle changes can be quantified by the distance between the normalized  

and  vectors. The error metric we use for ranking a possible line outage  is defined as the 
normalized angle difference ( ): 

obs
pΔθ k

pΔθ

obs
pΔθk

k
pΔθ k

kNAD
 

obs k
p

k obs k
p p

NAD
Δθ Δθ
Δθ Δθ

= - p  (4.11) 

 
Figure 4.1 shows the error metric and how it relates to the observed and expected angle 

changes. Clearly, the closer the fit between the observed and expected angle, the closer the 
value should be to zero. NAD

 
Figure 4.1:  Normalized Angle Difference 
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4.2 Line Outage Detection Algorithm 
In order to perform the search for which line is outaged, the following algorithm is used: 

 
1. Calculate using equation (4.5) obs

pΔθ
2. For each line k in the set of lines : L

a. Calculate  using equations (4.3) and (4.4) k
pΔθ

kP%b. Calculate  using equation (4.9) 
c. Calculate the error between the measured and expected angle changes using 

the results from step 2a and 2b: 
 

( ) obs k
p pAngleError k PΔθ Δθ= - % k

)

 (4.12) 
 
3. Determine the most likely line l  that was outaged by sorting the vector : 
 

AngleError

  (4.13) ( )arg min
k

l AngleError k=

 
4. Determine the pre-outage flow on line , , using equation (4.2) and the results from 

step 2b: 
lPl

  (4.14) ( ,1
from tol l l l lP P PTDF -= +%

The system B  matrix must only be factored once and, once factored, can be quickly used to 
calculate  in step 2a. Furthermore, this factorization (and the calculated values of ) must 
only be updated if a change in the B matrix occurs. Outside of step 2a, the algorithm requires 
only vector multiplications and one sort operation. 

k
pΔθ k

pΔθ

However, the algorithm is subject to several possible errors. First, the conditions under which 
the DC load flow equations hold (low impedance lines, small angle differences across lines, and 
voltages close to nominal) are necessary in order to treat the power system as a linear system. 
Because in a real system these conditions are never completely satisfied, error is introduced into 
the calculation of  and kP%k

pΔθ . As a result, the calculated error values in equation (4.12) may not 
accurately reflect the relationship between line outage and angle changes, leading to inaccurate 
line rankings. Another possible source of error is in the determination of , the observed 
change in angles vector. Filtering and disturbance detection can both have an impact on the 
accuracy of , which would ideally represent the steady-state change in phasor angles due to 
the line outage. 

obs
pΔθ

obs
pΔθ

Another possible concern with the algorithm is when multiple lines cause similar changes in 
phasor angles at the PMU buses. Because arbitrary scaling is performed on the vector , any 

lines  and such that 

k
pΔθ

1
a b
p p
a b
p p

⋅
Δθ Δθ
Δθ Δθ

a b ≈  are indistinguishable in deciding which one was 

outaged. However, as more PMUs are deployed on the grid, the chances of this happening should 
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p

p

Δθ
Δθ

decrease. Also, by comparing the differences in  for all lines based on different PMU 

placements, it should be possible to guide future placement of PMUs for line outage detection. 
Because of these complicating factors, modifications were made to the algorithm during 

implementation. The first modification is based on the observation that lines which require pre-
outage flows exceeding known line limits are most likely not the outaged lines. For example, if 
the pre-outage flow on a line would have to be 100 GW in order to get the observed change in 
angles, that line is probably not the outaged line. Therefore, lines with pre-outage flows above a 
cutoff value are removed from consideration after step 2. For the examples given below, the 
cutoff was set to twice the line limit or 10,000 MW if a line limit was not known.  

In addition to this refinement, the pre-outage flows (calculated using equation (4.14)) are 
presented along with the line rankings. This allows the user to use engineering judgement in 
deciding if pre-outage flows are reasonable. This is accomplished by replacing step 3, which 
initially provided only the most likely line to be outaged, by a set of instructions which returns 
the X most likely lines to have been outaged: 
 

3'. For rank = 1 to X 
( ) ( )arg minkLineWithRanking rank AngleError k=  a. 

( )AngleError rank AngleErrorb. Remove  from vector 

With this modification, line l  from step 3 of the initial algorithm definition becomes 
. In the actual system example, ( )1LineWithRanking X was set to ten to see the ten most likely 

lines to have been outaged (e.g., see Table 4. below). 

4.3 Test Case 
In order to gauge the usefulness of the algorithm on a large-scale system, we tested it with 

real data obtained from TVA. Calculation of the expected angle changes for each line considered 
were performed using the  matrix from an up-to-date state estimator case. The observed angle 
changes,  , were determined from actual PMU data. 

B
obs
pΔθ

Figure 4.2 shows the voltage phasor angles at the system’s PMU buses before and after the 
opening of a 500 kV line. The data resolution in this figure is 30 samples per second. In order to 
determine the change in angles at each of the buses, the angles were filtered on both sides of the 
disturbance using a weighted averaging of 30 samples to eliminate oscillations and noise. The 
voltage phasor angles obtained after filtering are shown in Figure 4.3. After filtering, the angles 
one second after the disturbance were subtracted from the angles one second before the 
disturbance to obtain . obs

pΔθ
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Figure 4.2:  Voltage Phasor Angles at PMU Buses 
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Figure 4.3:  Voltage Phasor Angles at PMU Buses, Filtered 

Using the full set of PMU voltage phasor angles, the outage was detected with little trouble. 
Table 4. shows the the top ten (sorted by ) lines, with the line that was outaged highlighted 
in bold. According to the state estimator case, the flow on the line before the outage was 1089 
MW. The algorithm calculated the pre-outage flow to be 1005 MW, therefore the percent error is 
only 7.7%.  Table 4.1 also shows that the normalized angle distance increases rapidly, indicating 
good differentiation between different line outages. 

NAD

NAD

 

Table 4.1:  Algorithm Results Using All Phasor Angles 
Rank Line number Pre-outage flow on line 

(MW) 
 

1 1466 0.028 1005.3509 
2 4801 0.325 -2576.4177 
3 1708 0.536 1025.9054 
4 3118 0.584 -4586.4965 
5 1625 0.616 -855.6809 
6 3420 0.644 1847.8298 
7 1448 0.658 603.0468 
8 2275 0.665 -751.2777 
9 1764 0.678 -2240.7109 

10 3124 0.703 -3962.6182 
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The algorithm was also run using all phasor angles except for the one with the largest change 
(the top-most angle plot in Figure 4.3). The correct outaged line was detected as shown in Table 
4.2, but the difference between successive normalized angle distances is much smaller when 
compared to the results from Table 4.2. Also noteworthy is that the calculated pre-outage flow is 
still very close to the actual value of 1089 MW. 

Table 4.2:  Algorithm results using reduced phasor angle set 

NADRank Line number Pre-outage flow on line (MW)  
1 1466 972.0643 0.012 
2 1685 673.4778 0.027 
3 2614 4284.1793 0.035 
4 2622 -4222.9484 0.043 
5 1684 974.1054 0.060 
6 1343 4724.7594 0.080 
7 72 -4282.2886 0.086 
8 710 894.8055 0.107 
9 4080 -3597.6625 0.109 

10 706 2654.7599 0.110 

 
A final test was run to see the impact of the cut-off process described above. Using the full 

PMU data set, the algorithm was run without taking into account line limits or extremely high 
flows. The results are shown in Table 4.3. Comparing these results to those of Table 4.1, it is 
clear that checking to see if pre-outage flows are above a certain cut-off value, whether it is 
based on known line limits or a fixed number, can aid substantially in differentiating between 
which lines could have caused the observed angle change. 

Table 4.3:  Algorithm results using all phasor angles, without line cut-off checks 

NADRank Line number Pre-outage flow on line (MW) 
1 1466 1005.3509 0.028 
2 5264 3787.8794 0.067 
3 5211 -343482.2388 0.088 
4 3298 -343493.9092 0.088 
5 1649 -343493.9092 0.088 
6 2103 -188572.2537 0.182 
7 364 27537.4776 0.185 
8 4192 -37230.4475 0.186 
9 2114 -5368.9884 0.204 

10 959 5368.9876 0.204 
 

4.4 Future Work 
While we are pleased with the results obtained thus far, more work needs to be done before 

this algorithm can be used in a real-time system. Some of the issues we wish to explore in the 
future are: 

• The practicality of checking for the simultaneous outage of more than one line 
• How to best detect events and calculate Δθ  using real, noisy data obs

p
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• The incremental benefit of adding a PMU at a particular location 
• Sensitivity to errors in the  matrix B
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5.0 PMU Voltage Angle Visualization 

PMUs are beginning to be deployed widely in the power system, which gives system 
controllers the ability to directly measure phase angles. PMUs also provide data at a much faster 
rate than traditional SCADA systems, which gives the ability to see higher frequency 
phenomena. However at present, PMUs are only deployed at a small percentage of buses. This 
presents a challenge: how to get useful information from the small number of data points. 

This chapter discusses the work that has been done on visualizing the new data provided by 
PMUs. The first section of this chapter discusses the problems surrounding the visualization of 
PMU data. The second section discusses the application of equivalent circuit theory to arrive at 
equivalent injections. Next, difference contours are introduced as a way to alert operators to 
important changes without cluttering the control room. Then, these ideas are applied to several 
power flow cases from the August 14, 2003 blackout. Finally, conclusions and future work are 
discussed. 

5.1 Problem Overview 
As mentioned above, the problem is to get as much useful information from PMUs as 

possible. The most straightforward approach is to add the PMU angles measurements as inputs 
into the state estimator, and this work is being done as part of other projects. This chapter 
discusses an approach to visualizing PMU data. The set of PMU measurements is much smaller 
than the total number of buses, making state estimation impossible.  

This chapter begins by exploring the meaning of a particular PMU measurement (i.e. what 
does a particular measured angle mean?). To do this, we will use the system B  matrix and 
equivalent circuit theory to examine the mapping between the PMU measurements and bus 
injections.  

5.2 Equivalent Circuit Theory 
Equivalent circuit theory was developed as a way of removing external areas from a power 

system model in order to reduce the problem size. We will make use of it to reduce the system 
down to a set of PMU buses. Starting with the linear circuit model 
 

  (5.1) Bθ = P
 

the vector of bus angles and  injections are partitioned into PMU buses and non PMU buses 
 

pp po p

op oo o o

⎡ ⎤ p⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

B B θ P
B B θ P

  (5.2) 

 
where the subscript p denotes values associated with PMU buses and the subscript o is used to 

denote values at non PMU buses. Now, (5.2) can be rewritten as 
 

  (5.3) -1 -1
pp po oo op p p po oo o⎡ ⎤ ⎡⎡ ⎤⎣ ⎦⎣ ⎦ ⎣B - B B B θ = P - B B P ⎤⎦
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This expression has reduced the system so that the system states are the equivalent power 
injections at the PMU buses and the angles at the PMU buses. So, we have 
 

  (5.4) equiv p equivB θ = P
where 

  (5.5) -1
equiv p po oo oP = P - B B P

and 
  (5.6) -1

equiv pp po oo opB = B - B B B

Equation (5.3) gives a way to map the angles measured by PMUs into injections. For a single 
line, the power flow across a single line is roughly proportional to the angle difference across the 
line. However, there is no clear interpretation to an angle difference that is not across a single 
line. We have found that mapping the measured (PMU) angles to equivalent injections yields 
diagrams that are easier to interpret. Of course, when this mapping is preformed one must be 
mindful of the changes that are introduced. To explore this mapping we first define 
 

  (5.7) -1
po ooM = B B

Now, we can see that  
  (5.8) equiv p oP = P - MP

 
which indicates that the equivalent injections are a function of the injections at PMU buses, 
, and the injections at non PMU buses modified by the matrix M . The matrix M describes the 

influence of the non PMU buses on the PMU buses. The number of rows in M  is equal to the 
number of PMU buses, and the number of columns in M  is equal to the number of non PMU 
buses. So, M is a very short and wide matrix. From (5.7) it is evident that  is purely a function 
of the subcomponents of the system B matrix, which means that for a  given set of PMU buses 

 is constant. 

pP

M

M

The rows of M determine how injections at non PMU buses map to injections at PMU buses. 
In other words, the rows of determine how loads and generation at non PMU buses show up 
at PMU buses. This is illustrated using the 7-bus case shown in 

M
Figure 5.1. 
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Figure 5.1:  7-bus sample case 

The set of non PMU buses, , is defined as buses 2, 3, 5, and 7. PMUs are at buses 1, 4, and 
6. For this system the M  matrix can be calculated as 

oP

 

  (5.9) 
0.3463 0.0989 0.1415 0
0.2224 0.2064 0.8029 0
0.3355 0.0959 0.0433 0

− − −⎡ ⎤
⎢− − −⎢
⎢ ⎥− − −⎣ ⎦

M = ⎥
⎥

 
The column of zeros corresponds to the slack bus (bus 7). The rows correspond to the PMU 

buses. For example, row 1 corresponds to bus 1 and row 2 corresponds to bus 4. Row 1 describes 
how injections at the non PMU buses (2, 3, 5, and 7) map to an injection at bus 1. Contours can 
be used to illustrate this. Figure 5.2 shows a contour of row 1 of (5.9). Bus 1, the blue bus, has 
been assigned a value of 1.0 because an injection at bus 1 will impact bus 1 with the total value 
of the injection. This also helps to make the bus of interest easily visible. The red shading 
indicates how much a bus impacts an equivalent injection at bus 1.  
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Figure 5.2:  7-bus sample case row contour 

After examining Figure 5.2, it can be seen that bus 2 impacts the equivalent injection more 
than bus 5. This is reasonable because bus 2 is closer than bus 5. This trend remains true in larger 
cases as well. Figure 5.3 shows a row contour for the area surrounding the PMU bus 
05KAMMER, which is located along the Ohio West Virginia border. This contour shows that the 
non PMU bus injections that map to the PMU bus at 05KAMMER are fairly diffuse. However, 
the contour is clearly darker around the high voltage buses near to the 05KAMMER bus. 
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Figure 5.3:  Large case row contour 

The columns correspond to non PMU buses. So, column 1 of (5.9) corresponds to bus 2. The 
columns of M tell how PMU injections map to non PMU buses. This information can be used to 
answer the question: what buses are responsible for the equivalent injection at this (PMU) bus?  
Figure 5.3 contains a contour of the column 1 (bus 2) values. This contour shows that the 
injections at bus 2 are caused by injections at buses 1, 4, and 6. The contour also indicates that 
the closer buses have more of an impact.  
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Figure 5.4:  7-bus sample case row contour 

The large case column contour does not show the same diffuse properties as the large case 
row contour. For example, Figure 5.4, which contains the column contour corresponding to the 
bus 05KAMMER1, shows that the contour values are localized. 05KAMMER1 is a generator 
bus nearby the 05KAMMER PMU bus. 
 

 
Figure 5.5:  Large case row contour 
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5.3 Difference Contours 
Because it is not possible to know the complete set of system values (e.g. line flows and bus 

voltages) when the only data is provided by PMU measurements, it may be more useful for 
operators to be alerted only when something changes. System operators are not generally 
concerned with the specifics of the areas outside of their control.  However, when something 
changes, it may indicate a problem that they would like to know about. This is the motivation 
behind difference contours. Difference contours are simply contours –like the ones commonly 
done for voltages—that contour a change rather than the actual value. When everything is 
operating normally, the screen can be calibrated to be as empty as possible, indicating that no 
large changes have taken place recently. 

Difference contours are a way of indicating temporal data without showing a movie. Moves 
are the traditional way of showing a change over time. The looping weather maps are probably 
the best example of this. However, in a control center this kind of display may make things very 
busy. Difference contours indicate change over time in a single static image by taking the 
difference between data points taken at two different times.  

Difference contours have the advantage of brining out information that is not normally 
perceptible. For example, if the load at bus 2 is changed from 40 MW (left) to 45 MW (right), 
the change in the contours shown in Figure 5.5 are not readily visible in a contour of the bus 
injections. The only difference is a slight change in the hue of regions surrounding bus 2 and bus 
7. There is a change at bus 7 because it is the slack bus, so it is automatically redispatched to 
serve the increase in load at bus 2. These small changes in color are not easy to perceive. 
However, when the difference is contoured, as shown in Figure 5.6 the differences are 
immediately apparent.  

5.4 Blackout Case Results 
In this section, the equivalent circuit ideas presented earlier in this chapter are combined with 

the difference contours. It was assumed that the voltage angles are known at PMU buses and 
their neighbors. For the blackout cases, there are 89 buses out of the 43,133 in the case that are 
reporting a voltage angle. In other words, only 0.206% of the buses have associated angle 
measurements. Clearly this is an extremely underdetermined system.  
 

 
Figure 5.6:  7-bus injection contours 
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Figure 5.7:  7-bus injection difference contours 

Four cases were considered from August 14, 2003. These cases are from 15:00, 15:05, 15:45, 
and 16:05. According to The Blackout Report, the system was in a relatively safe state between 
15:00 and 15:05. Between 15:05 and 15:45 things begin to take a turn for the worse. During this 
time period, three 345 kV transmission lines opened because of contact with trees. In this time 
period, it is conceivable that a major blackout could have been averted. Between 15:45 and 16:05 
things were out of control. Approximately 16 transmission lines were lost because of a cascade 
of overloads. At this point, a blackout would have been almost impossible to stop. 
 

 
Figure 5.8:  August 14, 2003 Blackout Case 1 - 15:05 to 15:00 difference 

Figure 5.8 shows the difference contour for the equivalent PMU buses between 15:05 and 
15:00. The difference contour does not show any significant changes occurring between 15:00 
and 15:05. Indeed, there were not significant changes to the system during this period. This is 
reflected in the difference contour by the fact that there are no contours on the one-line diagram. 
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An operator seeing this diagram would be able to accurately conclude that nothing much had 
happened during this time period. 

After the outage of the three 345 kV transmission lines, the system states had changed a good 
deal. This can be seen in the difference contour between 15:05 and 15:45, which is shown in 
Figure 5.9. It is particularly interesting that the contours show a change in the central Ohio 
region where conditions are beginning to deteriorate. The fact that this contour shows something 
significant happening in the right location gives a strong indication that the combination of the 
difference contours and system equivalents yields useful results. An operator who sees Figure 
5.10 would not know exactly which lines had opened, but he or she would know that something 
was going on, prompting them to investigate further.  
 

 
Figure 5.9:  August 14, 2003 Blackout Case 2 - 15:45 to 15:05 difference 

The final time period considered was between 16:05 and 15:45. This contour is shown in 
Figure 5.9. During this time period many small lines were outaged as the system cascaded 
toward the blackout that would occur in about 6 minutes. This contour does not show the same 
magnitude of change as the time period between 15:45 and 15:05, but there is clearly something 
going on. Again, the changes are seen in central Ohio and West Virginia. However, by this point, 
there is little time for operators to respond. 
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Figure 5.10:  August 14, 2003 Blackout Case 3 - 15:45 to 16:05 difference 

5.5 Conclusions 
PMUs are beginning to provide direct measurement of the phase angles on the power system. 

This chapter has explored methods to tease useful information out of this data. Circuit 
equivalents were used to reduce the system down to a small system consisting only of PMU 
angles and equivalent injections. The idea of differencing contours was introduced to show 
trends without the need for movies and looping. This helps to keep the visual clutter down. 
Finally, the circuit equivalents and difference contours were combined and applied to several 
cases from the August 14, 2003 blackout. The difference contours of the equivalent blackout 
cases showed something happening in the right place at the right time. 

5.6 Future Work 
The results presented in this paper are for several static snapshots (i.e. four blackout cases). 

Once enough PMU data has been obtained, the ideas presented in this chapter can be tested using 
real data. When this is done it will be necessary to consider the effects of missing data and the 
incoming data rate. It would also be useful to extend these methods to allow for the display of 
limit violations. Further work is also needed to explore the effects of errors in the B  matrix on 
the resulting equivalent flows.  
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6.0 Human Factors Testing 

The human factors contributions to this research consisted of evaluation of the Line Overload 
Correction Form (LOCF) from Chapter 2, including how it is used with the one-line diagram, 
and development of a prototype demonstrator display that incorporated key human factors 
principles in its design.  

6.1 Human factors challenges in display design 
The primary challenge in the design information displays for power transmission control 

room applications is the mapping of system variables to graphical variables, subject to the 
constraints of human perceptual and cognitive capabilities. This challenge arises from the 
asymmetry between the very large number of system variables operators must monitor and the 
very limited number of graphical elements than can be used on the displays. Two main problems 
that degrade the readability of displays  and that are to be avoided in display design are visual 
‘noise’, which may result from careless use of animation and color, and clutter, resulting from 
displaying too much information in too small display space. These present-day challenges are 
further aggravated by the future need to display predicted values (to augment human working 
memory in extrapolating system states into the future), visualizing dynamic information, and in 
particular, rate of change information, and displaying of uncertain (probabilistic) and old 
(unreliable) information. Figure 6.1 illustrates the display design problem of mapping system 
variables into (visual) graphical variables, subject to the human factors design guidelines.  

QuickTime™ and a
 decompressor

are needed to see this picture.

Graphical Variables:

�Lin
�Contras
�C
�Sha
�A
�T
�Symbols
�Tex
�Etc

e width
t

olor: hue, saturation
pe

nimation
ransparency

 (icons)
t and numbers (font and size)
. 

QuickTime™ and a
 decompressor

are needed to see this picture.

System Variables:

Voltage magnitude 
Line flow 
Line status

•
•
•
•
•

Capacitor bank status 
Generator output

• Load status
•
•

Load power requirement 
Generator reactive reserves

•
•
•

Transformer phase shift
Generator real power reserves
Phase angles

 
Figure 6.1:  Illustration of display design problem 

To determine the most important system variables to be displayed on the prototype display, a 
survey was done at the ABB User’s Group Spring 2006 Meeting in Chicago, IL, on June 12, 
2006. The survey consisted of 19 power systems variables and the respondents were asked to 
rank them according to their importance to them. Altogether 16 operators (including both 
reliability coordinators and transmission operators) responded, the results are depicted in Table 
6.1. below. 
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Table 6.1  Ranking of power systems variables 
by importance (1) by experienced power system operators (n = 16). 

Mean Rank Variable name and units 
3.8 Voltage magnitude: p.u. (per unit) 
4.4 Line flow 
4.5 Line status: Open or Closed 
4.6 Line flow:  % loading, (MVA/max MVA)  
4.8 Generator output: MW or MVAR 
4.9 Generator status: Disconnected or Connected to the grid 
4.9 Line flow: real power (MW) 
5.1 Line flow: current (A) 
5.6 Line flow: complex power (MVA) 
5.9 Line flow: reactive power (MVAR) 
7.1 Generator reactive reserves (delta MVAR) 
7.3 Load status: Disconnected or Connected to the grid 
7.9 Load power requirement:  MW or MVAR 
8.3 Capacitor bank status: MVAR;  
8.3 Generator real power reserves (MW)  

10.5 Phase angles (degrees or radians) 
10.5 Phase angle differences between buses  
12.2 Transformer phase shift (degrees or radians) 
12.3 Transformer turns ratio 

6.2 Human factors principles in display design 
The purpose of information displays in control room applications is twofold: they should 

enhance human capabilities on one hand and alleviate their limitations on the other. A 
particularly critical aspect of information displays and a useful metric in their evaluation is 
Information Access Cost (IAC). IAC may be quantified in different ways, for example number of 
saccades (rapid eye movements) necessary to locate information the operator is seeking and the 
dwell time needed to perceive and understand the information, or the number of menus and 
mouse-clicks necessary to find the information if it is not immediately visible. A general and 
very versatile way of measuring IAC is in terms of time required to obtain a given piece of 
information from the display. Information display design should hence seek to reduce IAC in 
during emergencies and in situations subjected to time pressure. Displays should further prevent 
human errors, or help in error detection, or mitigate error consequences. Novel display designs 
should never introduce new types of errors. 

Human information processing has enjoyed sustained attention since the World War II, and 
results of these research efforts have been documented in many handbooks and manuals (for 
example, [6]). Many display design principles are so fundamental to human perceptual and 
cognitive performance that they are generalizable across domains and specific applications. 
These principles are reproduced here in the next three sections. 

60 



 

6.2.1 Basic display design principles 
In [7] thirteen of the most basic display design principles are arranged in four groups, 

according to the components of the human information processing system: 

i. Perceptual principles: 
 (1) Principle of legibility (or, audibility): Clearly, for the display to be useful, the 

information on it must be legible to those using it and under the conditions it is used. 
Many factors affect legibility, however: the visual angle subtended by details (e.g., 
text and symbols), luminance, glare, and contrast (both color- and spatial contrast). 

 (2) Principle of absolute judgment limits: Operators should not be required 
operators to make decisions based on a single dimension of a variable, for example, 
judge the hue of color without a reference. See also P5.  

 (3) Principle of top-down processing: Operator experience and existing 
conventions should be heeded in display design, that is, the design should conform to 
operators’ expectations.  

 (4) Principle of redundancy gain: Whenever possible, redundant coding of 
critical variables should be provided, for example, color should be accompanied with 
unique shape or position of the signal. See also P2. 

 (5) Principle of discriminability: Similar signals can be confused; therefore 
different signals must be clearly differentiated. 

ii. Mental model principles:  
 (6) Principle of pictorial realism: The display should look like what it is 

representing, for example the geographic data view (GDV) presenting power 
transmission lines on a map closely approximating the physical layout of the power 
grid. 

 (7) Principle of the moving part: Movement (animation) on the display should be 
compatible with existing mental models and population stereotypes (e.g., movement 
up and to the right indicate increasing values). Animation of power flows in the 
GDV is a good example, with direction of the transmission line animation 
corresponding to the direction of flow in the physical system. 

iii. Principles based on attention: 
 (8) Principle of minimizing information access cost (IAC): Display efficiency can 

be measured by how quickly or with how little effort operators are able to glean 
information they need from displays. This factor is particularly critical when 
operators are responding to emergency situations or are otherwise under time 
pressure. 

 (9) Principle of proximity compatibility: Information from several sources must 
often be mentally integrated for proper decisions; to facilitate such mental 
integration, the information sources should be in close physical proximity on the 
display, or linked together in some other fashion (e.g., color coding, arranging them 
into a pattern, etc.). Good proximity compatibility will help minimize IAC (P8). 
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 (10) Principle of multiple resources: As was mentioned before, at times amounts 
of visual information presented on displays will exceed human capabilities to attend 
it all in a given (limited) time; hence, off loading the visual perceptual channel by 
presenting some of the information via auditory channels should be considered. 

iv. Memory principles: 
 (11) Principle of knowledge in the world: Due to the limitations of human 

working memory and the human propensity for errors in retrieval of information 
from the long-term memory, all information they need for their tasks should be 
readily available in the display.  

 (11) Principle of predictive aiding: Predicting future, or extrapolating system 
states into the future is a cognitively demanding task depending heavily on working 
memory and therefore susceptible to errors. Computers, however, can easily process 
complex algorithms and display resulting predictions, changing the resource-
demanding cognitive task into a simple perceptual one for the human operator. 

 (13) Principle of consistency: Finally, humans are creatures of habit and 
deviations from learned procedures or visual display elements invite errors of habit. 
Therefore, it is important that display design is consistent across different displays or 
display modes (cf. P8) as well as conforms to old display conventions (cf. P3). 

The above principles can easily be extended into situations where the operators are required to 
monitor and work with multiple displays. These display layout principles can be summarized as 
follows:  

• Frequency of use principle: Minimize information access cost (P8) by placing most 
frequently used displays in the operators’ primary visual area (PVA). 

• Display relatedness or sequence of use principle: This is closely related to the proximity 
compatibility principle (P9) above; related displays or displays that are viewed in a 
given sequence should be placed in close proximity and grouped in a manner that allows 
their systematic reading according to the task demands. 

• Organizational grouping principle: This principle is closely related to the previous one 
and should be followed to help minimize IAC (P8) 

• Stimulus-Response (S-R) compatibility principle: Display should be close to its 
associated control; in modern applications displayed information and associated controls 
are easy to integrate, with controls operated directly on the display by a mouse or some 
other pointing device. 

• Clutter avoidance principle: Clutter reduces the legibility of displays and increases IAC 
and should therefore be avoided. 

6.2.2 Design principles for the use of color in visual displays 
Further principles for the use of color in displays are found in [8] and detailed specifications 

in [9]. Although these guidelines and specifications have been developed for the particular 
application domain of air traffic control, they are readily generalizable to other domains, too, and 
in fact can be directly applied in electric transmission control room displays. 
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 (1) Displays must be designed for specific tasks they need to support and the 
environment in which they will be used, including color-coding scheme. Color displays 
also need to be designed for the lighting environments in which they will be used. 

 (2) Whenever color is used to code critical information, there must be some other 
signal to the meaning other than color. 

 (3) Limit the number of colors that need to be identified to six. More colors results in 
confusion and make it difficult to remember the entire color-coding scheme. This does not 
preclude the use of more than six colors on a display, however, but the use of additional 
colors should be limited to tasks that depend on being able to tell the difference between 
two or more colors that are always present, rather than tasks that depend upon identifying 
any single color (cf. P2) 

 (4) Adequate chromatic and luminance contrast that particular colors (foreground and 
background) will yield for legibility is 8:1 for items that need to be read; for details that do 
not need to be read, a contrast ratio of 3:1 (sometimes less) is acceptable. These guidelines 
were originally developed in [10].  

 (5) Obey color conventions: Red for danger, alert, or warning, green should indicate an 
‘OK’ status; yellow is typically used to convey caution. 

(6) Do not use pure blue for fine detail of background: when short wavelengths are in 
focus, all other wavelengths are slightly out of focus and vice versa; small blue symbols or 
text can appear fuzzy. 

 (7) Use bright and saturated colors sparingly to preserve the conspicuity of high 
luminance and to avoid ‘visual noise’. 

 (8) Use of color must be consistent across all of the displays that a single operator will 
use; meanings assigned to individual colors need to be compatible across displays (cf. P3 
and P13 above). 

 (9) Color set should be selected for each type of display (e.g., CRT, LCD, plasma, or 
projection) and for the ambient environment. For dimly lit environments, a dark 
background is preferred, but an absolute black background should be avoided because of 
the glare that it invites. 

 (10) Any implementation of color must be tested in the environment in which it is 
intended to be used. 

6.2.3 Ecological interface design principles. 
Ecological interface design (EID) is theoretical framework for interface design and an attempt 

to extend the benefits of traditional direct-manipulation interfaces (DMI) to complex human-
machine systems [11]. EID is based in two fundamental concepts: (1) the Abstraction Hierarchy 
(AH), and (2) the Skills-, Rules-, and Knowledge (SRK) framework [12]. The abstraction 
hierarchy describes the level of understanding the operators may have of systems under their 
control, ranging from the functional purpose of the sytem (e.g., production flow models, system 
objectives) at the highest level to the physical appearance and anatomy of system components 
(the ‘nuts & bolts’) at the lowest. The SRK framework describes human behavior on three levels: 
Skill-based behavior (SBB) consists of sensory-motor performance during acts that (after a 
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statement of intention) take place without conscious control as smooth, automated, and highly 
integrated patterns of behavior. It is used for diagnostic troubleshooting by a direct match 
between the features of the problem observed and patterns previously experienced and stored in 
the long-term memory (LTM), and it is fast, requires little cognitive activity, accurate. The rule -
based behavior (RBB) is controlled by a stored rule; performance is goal-oriented, but the goal 
may not be explicitly formulated but is found implicitly in the situation that released the stored 
rules. Diagnosis is done by applying sets of rules stored in LTM, e.g., sequence of steps and the 
procedures for doing so. The knowledge-based behavior (KBB) is explicitly goal-controlled 
performance in unfamiliar situations where no rules or know-how are available; functional 
reasoning based on mental models. It relies on iterative diagnostic testing and subsequent 
analyses necessary for problem-solving. 

In complex human-machine systems the range of events operators must respond can be 
organized in three classes: (1) Familiar events for which they have necessary skills through 
repeated exposure (most frequently), (2) unfamiliar but anticipated events; lack of operator skill 
compensated by tools and aids anticipated by the designer (infrequently), and (3) unfamiliar and 
unanticipated events even by designers; hence, no procedures, tools, or aids are available but 
solutions must be improvised. In these situations cognitive control may rely on a repertoire of 
automated behavioral patterns (SBB), a set of cue-action mappings (RBB), or problem-solving 
operations on symbolic representations (KBB).  

The EID guidelines for display design are also grouped by the SRK framework: In SBB, the 
operator should be able to act directly on the display (i.e., direct manipulation device preferred 
over command-language interface). In RBB the display should provide consistent one-to-one 
mapping between the work domain constraints and the cues or signs provided by the interface 
(i.e., provide the operators signs they can use to select appropriate actions), allowing operators 
rely on perceptual cues instead of having to resort to KBB and take advantage of the economy of 
RBB while preserving the wide applicability of KBB. Finally, the display design should support 
KBB by revealing the problem space in the form of an AH presentation, providing  the operators 
a normative model of the work domain, supporting experimentation, and relieving the operators 
of the burden of keeping track of causal nets within which they are reasoning. 

The specific EID design guidelines can be summarized as follows:  

 (1) Support experimentation by making boundaries of acceptable performance visible and 
their effects observable and reversible. 

 (2) Provide feedback to support understanding and KB monitoring during RB 
performance, make visible latent constraints upon action. 

(3) At the RB level, the display should represent cues for action as readily interpretable 
signs and indicate the preconditions to their validity (i.e., signs should have symbolic 
content) 

 (4) To assist operators in coping with unanticipated situations at the KB level, provide 
tools for experimentation and hypothesis-testing without a need to impact the plant, or 
make these actions reversible 

 (5) Provide users with overview displays by which SB routines can be peripherally 
monitored 

 (6) At RB level, avoid procedural traps (strong-but-wrong rules) by providing integrated 
patterns as cues for action 
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 (7) At the KB level, support memory by externalized schematics of mental models 

(8) Present information based on available data that is simultaneously suitable for SB, RB, 
and KB processing 

 (9) Provide an externalized mental model to aid in causal reasoning 

 (10) Provide external memory aids for items, acts, and data that are not part of the present 
operational ‘gestalt.’ 

All of the above principles were used in the evaluation of the current version of LODF and in 
developing the prototype display. 

6.3 Evaluation of Line Overload Correction Form (LOCF)  
Formal evaluation of the one-line diagram used with the LOCF followed a modified human 

factors checklist from [13]. In addition, we performed a hierarchical task analysis (HTA) on the 
LOCF itself, and interviewed TVA operators on March 7-9, 2007. 

6.3.1 Task analysis 
Task analysis is defined as “A process for determining in detail the specific behaviors 

required of the personnel involved in a human-machine system” [14], or, in other words, a way 
of systematically describing a system to better understand how to match the demands of the 
system with human capabilities. Task analysis is hence a critical element of any human-machine 
system design, for it allows for representation of the operators’ needs for completing their tasks 
safely and efficiently, which consequently provides system designers guidelines for meeting 
these needs. Task analysis does not refer to any particular method, but rather to a collection of 
techniques for describing how people interact with systems. 

The specific task analysis technique chosen for this project was hierarchical task analysis 
(HTA). This technique produces a hierarchy of operations, different subtasks people need to do 
within a system, and plans, which describe the conditions necessary to undertake the operations 
[ ]. The HTA performed on the line overload solver tool is depicted in Table 6.15 . The procedure 
and results of the HTA are detailed in the following paragraphs as well. 

The purpose of the one-line diagram environment studied (see Figure 2.15 for an example) is 
to easily recognize, diagnose, and solve line overloads on a power line grid. There are no 
alternate functions associated, other than simply monitor the grid run smoothly, rather than 
search for line overloads. Line overloads trigger specific alerts in any case, greatly simplifying 
the monitoring task. 

As the operator monitors the system on the one-line, locating any line overloads should such 
arise is quite simple due to the very salient visual alerts. In further identifying these overloads, it 
is essential that the operator find the overload with the largest value (will be given in a percent.)  
(Should the operator accidentally mislabel an overload as the largest, the process will still 
function without a problem. The reasoning behind starting with the largest one is that upon 
compensating the generators’ outputs for that specific overload, it could in turn fix some of the 
smaller overloads as well.)  Assuming the operator has found the largest overload, he is to then 
open the Correct Line Overload dialog box by right-clicking on the error icon, then left-clicking 
on Correct Line Overloads. 

The next step is to pick the two best generators for fixing this line overload – one will have its 
output increased, the other will have its output decreased. This task has essentially been done 
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through the use of complex mathematical formulas. The final column in each category ranks the 
generators’ effectiveness based on a combination of their availability of power to be increased or 
decreased (pending which category is being inspected) and their sensitivity (how much the 
increase or decrease in power output will affect the generator’s performance – note: higher 
sensitivity is better). Once the best generator in each category has been determined, the operator 
is to left-click on each of them. 

The final step is to adjust the power output of the selected generators. After the generators 
have been selected, left-click “Select MW amount” towards the top right corner of the dialog 
box. Now comes the most important aspect of the task. The operator must inspect two values in 
the subsequent dialog box (that appears upon clicking on Select MW amount.)  And those two 
values are labeled Max Generation Change and Generation Change to Fully Correct. Simply 
put, the Max Generation Change is the maximum combined amount of power that can be altered 
from the selected generators. The Generation Change to Fully Correct is the minimum amount 
of power required to solve the overload. After comparing those two values, if the Max 
Generation Change value is larger than the Generation Change to Fully Correct, click OK, then 
click on Make Requested Generation Changes and Solve Power Flow. Then close the Correct 
Line Overload dialog box and look at the system. If the Max Generation Change is smaller than 
the Generation Change to Fully Correct, still click OK, but this means the power output of 
additional generators must be altered before this specific line overload is solved. To do this, 
return to the previous steps of how to select the best generators, then continue on. If the next pair 
of generators does still not provide enough power to fix the overload, choose another pair. When 
there is finally enough of a total change in power output for the Max Generation Change to be 
larger than the Generation Change to Fully Correct, simply follow those steps provided above. 

Following these procedural steps should solve the specified line overload. If there are other 
overloads as well, simply begin the process again. Although, as mentioned previously, solving 
one specific line overload may consequently solve additional overloads in the process, so do not 
be confused if the total amount of overloads decreased by more than one. 

The necessary time required to fix a specific line overload is (not necessarily linearly) 
proportional. If the overload is larger, it would require to be fixed quicker than a smaller 
overload. The exact ‘time limit’ is not known, but as in most cases, it is best not to wait and 
potentially let things worsen. That being said, it is also best not to rush since the task does not 
need to be completed within a matter of seconds.  
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Table 6.2:  Task Analysis 
Superordinate Task Analysis Plans/Operations Notes 

 
Can be multiple 0 SOLVE LINE OVERLOAD(S) 
 Plan 0: 
 Do: 1-6; if multiple errors, repeat beginning 
 at 3 
 1. Open simulator environment  
No time limit 2. Watch system 
Can be multiple 3. Locate error(s) 
 4. Open “Correct Line Overloads” dialog box 
 5. Select best 2 generators 
 6. Adjust generators’ output to eliminate overload 
 3 LOCATE ERROR(S) 
 Plan 3: 
 Do: 1, 2; 2 MUST be done before proceeding 
 1. Find all errors 
Value will be given in % 2. Find error with largest overload 
 4 OPEN “CORRECT LINE OVERLOADS”  
 DIALOG BOX 
 Plan 4: Do: 1, 2 
Drop-down menu choice 1. “Right-click” on largest error 
All subsequent indicated 2. “Left-click” on correct line overloads 
Clicks will be left clicks 

 5 SELECT BEST 2 GENERATORS 
Plan 5: Do: 1, 2 
1. Identify best generator in each category by 
(decreasing) rank in last column  
2. Physically click on the top generator in each 
category 

 6 ADJUST GENERATORS’ OUTPUT TO 
ELIMINATE OVERLOAD 
Plan 6: 
Do: 1, 2, compare values to determine which is 
greater, 3, if “Max Generation Change” is greater 
than “Generation Change to Fully Correct” then do 
4, 5. If Max Generation Change is less than 
Generation Change to 
Fully Correct, then stop and begin at plan 5 
1. Click “Select MW amount” 
2. Inspect Max Generation Change value  
against Generation Change to Fully Correct 
value 
3. Click “OK” 
4. Click “Make Requested Generation Changes 
and Solve Power Flow”  
5. Close Correct Line Overload dialog box 
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6.3.2. Display evaluation 
To evaluate the display in more detail, we used a human factors checklist, which was 

modified from [13]. This checklist represents an exhaustive review of human factors guidelines 
and standards pertinent to air traffic control (ATC) systems. As the ATC task environment has 
much in common with generic control room task environments and human supervisory control 
settings, the checklist was easy to modify for development and evaluation of electric power 
transmission control room displays. In the display development phase, design decisions should 
be made in a manner that each item in the list can be answered in the affirmative (= true). System 
evaluation or usability testing must be performed to validate the design in its intended task 
environment and by its intended users; any items answered in the negative (= false) warrant 
redesign. The display was in compliance with the majority of the items in the checklist (over 225 
individual items); recommendations for improvement follow. 
 

II.A.3. Essential operational information is never blocked or obstructed by other information. 
True  False  N/A  
Comments: When opening the “correct line overload” dialog box, it can cover the map of 
displayed overloads. While the box can be moved and shrunken as need be, perhaps it can be 
designed so the map is still viewable concurrently. 

 
II.A.4. All information that an operator needs to accomplish a task that is essential and time-
critical is located on a single page or in a single window. 
True  False  N/A  
Comments: See prior comment. 

 
II.A.6. Display clutter is not a problem. 
True  False  N/A  
Comments: The line overload icons, as well as the icons indicating which lines are disabled 
can be too large. While they are adjustable, it is still difficult because they can cover the part 
of the map beneath them. Perhaps they could be designed to be translucent. 

 
II.A.12. The operator will not need to identify more than five colors (i.e., to interpret the 
meaning of the color when it stands alone). 
True  False  N/A  
Comments: There are more than 5 colors displayed, but it is within reason I believe. Green 
arrows, Red error circles, White line failure circles, Gray state borders, Yellow Pink Blue 
and Orange power lines indicating power of the line. 

 
II.A.15. Saturated (i.e., vivid) red and blue are never presented next to each other. 
True  False  N/A  
Comments: In the overload correction graphical display, red and blue “triangles” can be 
displayed within close proximity of each other. 
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II.A.16. Colors are far enough apart in perceptual terms that they are not confusable even 
when "washed out" by sunlight, if applicable. 
True  False  N/A  
Comments: In the overload correction graphical display, when there is less sensitivity in the 
generator, the color is displayed as more washed out. It can be difficult to distinguish 
between the highly washed out reds and blues. 

 
II.A..19. To acquire needed information, the operator only needs to look at a single, localized 
display i.e., switching back and forth between two or more displays is not necessary to 
perform an individual task. 
True  False  N/A  
Comments: If the operator is in the line correction overload dialog box and wishes to see the 
“error map” displayed, he needs to move the dialog box so the other screen is displayed. 

 
II.A.31. Acronyms in the new display system have the same meanings as in the previous 
system. 
True  False  N/A  
Comments: I am not familiar with the old display system. I would assume they do, as that is 
where the acronyms come from, but since I am not sure, I will indicate N/A. 

 
II.A.32. Terms in the new display system have the same meanings as in the previous system. 
True  False  N/A  
Comments: See #31. 

 
II.A.33. Symbols in the new display system have the same meanings as in the previous 
system. 
True  False  N/A  
Comments: See #31. 

 
II.A..36 If size coding is used, it is limited to two widely different sizes. 
True  False  N/A  
Comments: I do not believe size coding is used. 

 
II.A.48 The heights and widths of characters appearing at the center and the four corners of 
the displays do not vary by more than 10 percent. 
True  False  N/A  
Comments: Pending how large or small the error icons are changed to (on the map), they 
text within them can be larger or smaller than other text on the screen. 

 
II.A.51. All colors are 8 times brighter than the static background symbology. 
True  False  N/A  
Comments: Some of the lines (gray state lines, possibly blue power lines) can be difficult to 
discern. 
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II.B.2. High-priority alerts and other critical information are located within the central 
display area (i.e., the central 15 degrees of the area where the operator normally looks, given 
the normal viewing position). 
True  False  N/A  
Comments: They can appear anywhere on the grid, but the red error against the background 
color should be enough to distinguish it immediately. 

 
II.B.6. The color red is used only for warning/danger. 
True  False  N/A  
Comments: Red is used in the graphical display of the correct line overloads map to indicate 
the generator’s ability to be increased. 

 
II.B.11. For a time-critical warning system (such as a conflict detection or resolution 
advisory), the operator response time that is assumed by the algorithm has been measured. 
True  False  N/A  
Comments: Time is critical, but since it is not required within seconds there is no algorithm 
measured. 

 
IV.A.2. The design assists the operator in detecting errors in data entry. 
True  False  N/A  
Comments: More could be done in the correct line overload tabular display. For instance, if 
2 generators are selected that do not meet the requirements to solve the selected overload, I 
feel it should be displayed. And similarly if they do meet the requirements. 

 
IV.A.3. The design assists the operator in correcting errors in data entry. 
True  False  N/A  
Comments: See #2. 

 
IV.A.5. This design helps the operator to integrate information from multiple sources, if the 
information is not already integrated before it is presented to the operator. 
True  False  N/A  
Comments: In the tabular and graphical view of the correct line overload dialog box, it is 
required to remember the map and the location of the subsequent errors.  

 
IV.A.34. When timesharing is necessary, the tasks to be timeshared are spread across the 
operator's resources, that is, visual, auditory, and manual capacities, instead of loading up on 
just one or two capacities. 
True  False  N/A  
Comments: No auditory capacity required (ie: no auditory alerts – perhaps there could be?). 
So the burden seems to be solely upon visual capacities. 

 
IV.A.36. Procedural task sequences are interruptable at any point. 
True  False  N/A  
Comments: The process of correcting a line overload can be cancelled at any point up until 
the submission of the correction. 
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IV.B.4. Automated features provide explanation of their intentions, recommendations, and 
actions in ways that are readily understood by operators  
True  False  N/A  
Comments: The help file in the simulator does not appear to be working, but everything that 
is required to explain the automation should be in there. 

 
IV.B.5. With this design, reversion to manual control will be easy; that is, the operator will 
have no problem stepping in when the computer cannot deal with a situation or when the 
automation fails  
True  False  N/A  
Comments: Only if the operator is experienced enough to have an understanding of where 
each generator is located, and it’s associated power output and sensitivity. 

 
V,D.1. Error messages are provided whenever needed  
True  False  N/A  
Comments: See IV:A, #2. 

 
VI.F.4. The mouse is equally usable with the left or right hand  
True  False  N/A  
Comments:  Lefties just need to use their middle finger for the “left-click” and index finger 
for the “right-click” functions of the mouse. Or they may use the mouse with their right hand. 
Or some special mouse may be designed (if it does not already exist) where it is a mirror of 
the right-handed mouse. 

 
Recommendations: 

 
1. Upon selecting ‘correct line overload’, perhaps the dialog box could be displayed side-

by-side with the display map. In other words, each window would occupy one-half of 
the total screen and that ratio could be adjusted as needed simply by expanding or 
minimizing each window as is normally done. 

2. In the ‘correct line overload’ dialog box (either tabular or graphical), there could be an 
indication of whether or not the selected generators will suffice in correcting the 
selected overload. Perhaps a green checkmark for a sufficient selection or a red X for 
an insufficient selection would be simple enough. This would be especially useful if 
multiple combinations of generators are required to fix a specific overload. 

3. If the algorithm of the system could be redesigned to include the location of each 
generator as a parameter for finding the best possible combination of generators, it 
could become more efficient. This could in turn help solve multiple line overloads in 
fewer steps. 

4. On the overview map, I feel it would be more beneficial if the error containing the 
largest overload was more easily distinguishable from the rest of the errors. Maybe it 
could default to being slightly larger, or a slightly different shade of red. 

5. When trying to zoom in on the overview map, the error icons do not get seem to move. 
They remain the same size while lying over top of the map, making it virtually 
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impossible to see beneath them. Icons should enlarge or shrink with the relative zoom 
of the map.  

6. In using the ‘correct line overload’ dialog box (both tabular and graphical), the 
selections do not reset after completing the selections. For example: In the tabular 
display, if one chooses the 2nd generator from the top in both columns and make the 
changes, then go to select another pair of generators, the cursor remains highlighting 
the 2nd generators in both columns. The same principle is applied in the graphical 
display (the previously used generators remain highlighted). The cursors should return 
to the top of the columns regardless of the prior selection in the tabular display, and 
they should reset completely in the graphical display (in other words – nothing should 
be highlighted any more.)  Figure 6.2 illustrates overlapping line overload indications 
masking the line information behind them. 

 
Figure 6.2:  Line overload indications 

6.4 Design of the prototype display. 
New display solutions were developed from ‘scratch’ according to the general display design 

guidelines as described above. There were two primary goals for the prototype display: (1) 
Reduction of ‘visual noise’ by avoidance of bright and saturated colors (reserved for alerts) and 
making animation less conspicuous, and (2) reduction of clutter by design of symbol and icon 
sizes and re-scaling display elements during zoom (i.e., the zoom function doubled as a declutter 
function). 
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6.4.1 Specifications for a Prototype Wide-Area Power Transmission 
Display 

(1) Units: The main units to be displayed are real power (MW) and reactive power (MVAR); 
both should be displayed on alternate displays, with a pull-down menu where the operator may 
choose the units to be displayed. 

The background map color was specified to be light tan; all colors were defined on the Hue, 
Saturation, Brightness scale. Hence, the background color was defined as H: 50˚, S: 50%, B: 
90%. The neutral background color allowed for adequate contrast with other display elements. 

A generator that is disconnected shall be represented by a solid black circle; a generator 
connected shall be represented by an open circle. Generator output was displayed as concentric 
circles of varying size and color under the generator-substation symbols. The size of the colored 
circle was scaled to the size of the max output circle around the generator (see Fig.) and scaled 
by area to the percent output of the generator. The maximum output of a generator was depicted 
as a dashed circle around the generator symbol; the size of the circle corresponded to the 
maximum output of the generator. Hence the circles around different generators adhere to a 
common scale.  

Substation symbols were solid white (connected) or black (disconnected to the grid) squares. 
Load power requirement units were MW (for real power consumed) and MVAR (for reactive 
power consumed). Load power requirement were displayed as concentric circles of varying size 
and color under the substation symbol. The size of the colored circle started from twice the 
diameter of the substation symbol and increased at equal increments for each increment in load 
power requirement. At each increment the previous circle also changed color, creating a contour 
effect of a ‘valley’ centered at the substation. The main idea behind representation of generator 
output and load requirement as defined is to create an image of topography on the map, 
generators mimicking high ground and load consumed low ground (flow is then from ‘high’ to 
‘low’ areas on the map).  

The transmission lines displayed had the following nominal kV ratings: 500 kV, 230 kV, 161 
kV, 138 kV, and 115 kV. These lines were differentiated by the line width. Transmission lines 
that were closed (energized) appeared white; lines that were open (de-energized) appeared black. 

Line flow was represented by bright, animated (moving) segments on the line. The variables 
represented will be direction of the flow by direction of the movement of the segments, and 
percent loading, represented by the spacing of the segments. Even spacing of the segments 
represented 50% loading; as the loading increases, the proportion of the bright segments to the 
underlying line increased correspondingly so that when the line loading reached 100%, the entire 
line is highlighted in bright. When the line loading exceeded 100% the line alternated between 
bright and regular line colors to attract attention. 
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Figure 6.3:  Prototype Wide Area Display 

6.4.2 Future Directions 
One of the greatest obstacles to decluttering the proposed wide-area displays is the 

geographical realism of the location of substations/generators and the transmission lines between 
them. A valid and indeed critical research question therefore is: How important GDV is to the 
operators, and how far one could deviate from veridical geographic representation of the 
transmission grid on wide area displays without detrimental effects on operator performance. It 
may very well be that the benefits of decluttering the display would outweigh any loss of 
geographical realism. If this were the case, the map could be redrawn by transforming the 
latitude and longitude coordinates of substations and drawing transmission lines as straight lines 
between these, regardless of their true paths over terrain, so that the following criteria are met: 
(1) the transmission lines should be either vertical or horizontal so that (a) intersection between 
lines and (b) turns in them are minimized; (2) different substation symbols and transmission lines 
must not overlap; (3) the relative positions between substations is preserved; and (4) the 
magnitude of positional change for the substations from natural geographical to the schematic 
coordinates per the above constraints is minimized. 

This appears to be a problem that could be solved iteratively by a computer, possibly modeled 
as a mixed integer program and solved by a commercial solver (CPLEX). Redrawing the map in 
this manner would also offer opportunities for additional decluttering algorithms, and schemata 
for adding detail to become visible at higher zoom ratios. 
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7.0 Utilization and Visualization of GPS-synchronized Data for Stability Monitoring 

Monitoring the operating state of the system and assessing its stability in real time has been 
recognized as a task of paramount importance and a tool to avert blackouts. It is also recognized 
that when real time data are used to derive the real time dynamic model of the system, it is 
possible to predict the behavior of the system and therefore will enable preventive action. This 
report presents work in this area. The work is focused on the utilization of the available data for 
extracting a real time dynamic model which in turn is used to determine the stability of the 
system via energy functions. The described procedures are decentralized, i.e. the data are utilized 
at each substation/generating substation of the system and they are globally valid. It is shown 
that if GPS-synchronized data are available at each substation this is possible. We describe the 
technology of GPS-synchronized measurements first. The utilization of this data for extracting 
the real time dynamic model is described next. It is important to note that phasor data do not 
provide the rotor position of the generators directly. We have developed a dynamic estimation 
method that extracts the rotor position of all generators. In addition the estimated model is used 
to evaluate the total energy of the system and to extract and predict system stability.  

An important issue is the accuracy of the available data. Specifically, GPS-synchronized 
equipment (PMUs) is in general higher precision equipment as compared to typical SCADA 
systems. Conceptually, PMUs provide measurements that are time tagged with precision better 
than 1 microsecond and magnitude accuracy that is better than 0.1%. This potential performance 
is not achieved in an actual field installation because of two reasons: (a) different vendors use 
different design approaches that result in variable performance among vendors, for example use 
of multiplexing among channels or variable time latencies among manufacturers result in timing 
errors much greater than one microsecond, and (b) GPS-synchronized equipment receives inputs 
from instrument transformers, control cables, attenuators, etc. which introduce magnitude and 
phase errors that are much greater than the precision of PMUs. For example, many utilities may 
use CCVTs for instrument transformers. We refer to the errors introduced by instrument 
transformers, control cables, attenuators, etc. as the instrumentation channel error. The end result 
is that “raw” phasor data from different vendors cannot be used as highly accurate data.  

GPS-synchronized data offer the possibility of dramatically improved applications, such as 
real time monitoring of the system, improved state estimation, direct state measurement, precise 
disturbance monitoring, transient instability prediction, wide area protection and control, voltage 
instability prediction and many others. For proper functioning of each one of these applications, 
a certain precision of the data is required. The table below illustrates the data precision required 
for different applications in a qualitative way. 
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Table 7.1:  Applications and Required Accuracy 

Application Required Data 
Accuracy 

Steady State Monitoring Low 
Disturbance Monitoring Moderate 
State Measurement High 
State Estimation High 
Wide Area Protection Moderate 
Transient Instability Monitoring High 

 
Conceptually, the overall precision issue can be resolved with sophisticated calibration 

methods. This approach is quite expensive and faces difficult technical problems. Specifically, it 
is extremely difficult to calibrate instrument transformers and the overall instrumentation 
channel in the field. Laboratory calibration of instrument transformers is possible but a very 
expensive proposition if all instrument transformers need to be calibrated. In the early 90's the 
authors directed a research project in which we developed calibration procedures for selected 
NYPA’s high voltage instrument transformers [9]. From the practical point of view, this 
approach is an economic impossibility. An alternative approach is to utilize appropriate filtering 
techniques for the purpose of correcting the magnitude and phase errors, assuming that the 
characteristics of the various GPS-synchronized equipment are known and the instrumentation 
feeding this equipment is also known.  

We propose a viable and practical approach to correct for errors from instrumentation, system 
imbalances and data acquisition systems. It is important also to note that this process is 
integrated with the process of estimating the real time dynamic model of the system. The overall 
approach is based on an estimation process at the substation level for correcting these errors. 
Specifically, we propose a methodology that performs as a “super-calibrator”. This 
computational procedure may reside at the substation, and it can operate on the streaming data. 
The method can be implemented using standard communication protocols, such as the IEC 
61850. The process is fast and therefore it can be applied on real time data on a continuous basis 
introducing only minor time latencies. The proposed methodology is based on a statistical 
estimation methodology that requires (a) the characteristics of GPS-synchronized equipment 
(PMUs), (b) a detailed model of the substation including the model of the instrumentation, and 
(c) the detailed model of generating units. Subsequent paragraphs present the models of the GPS-
synchronized equipment as well as the substation and generating unit(s) model with the 
instrumentation channels.  

7.1 Method Description 
The methodology is based on a detailed, integrated model of the power system, 

instrumentation channel and data acquisition system. The power system model is a detailed 
three-phase, breaker oriented model and includes the substation, the generating units and the 
interconnected transmission lines. The instrumentation channel model includes instrument 
transformers, control cables, attenuators, burdens, and A/D converters. The modeling approach is 
physically based, i.e. each model is represented with the exact construction geometry and the 
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electrical parameters are extracted with appropriate computational procedures. As the data 
stream, each set of data at a specific time tag is processed via a general state estimation process 
that “fits” the data to the integrated model. The procedure provides the best estimate of the data 
as well as performance metrics of the estimation process. The most important metric is the 
expected value of the error of the estimates. The best estimate of the data is used to regenerate 
the streaming data flow (this data is now filtered). The overall approach is illustrated in Figure 
7.1. 
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Figure 7.1:  Inputs and Outputs of the Super-Calibrator as Dynamic State Estimator 

7.2 Generating Substation State Estimation 
The purpose of the generating substation state estimation is to extract the precise model of the 

generating system in real time. The model utilized in the estimation process is illustrated in the 
Appendix. Note that the form of the model is generically described as follows: 
 

( )zyxfi ,,1=  
( )zyxf ,,0 2=  

( )zyxf
dt
dz ,,0 3+=  

where the functions  are algebraic function of degree no greater than 2. The vector i are 
the terminal currents of the generator, x, y and z represent the state of the generator. The 

321 ,, fff
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measurements in this system are: terminal voltages and currents (phasors), frequency and rate of 
frequency change. The model equations are given in Appendix A. A conceptual view of the 
system and measurements is illustrated in Figure 7.2. The state of the system is defined as the 
minimum number of independent variables that completely define the state of the system. For the 
substation of Figure 7.1 the state of the system consists of: (a) the phasor voltages of phases A, B 
and C of the two buses (transformer high side and low side), and (b) the generator speed 
(frequency) and acceleration (frequency rate of change). In summary, the state of the generating 
substation of Figure 7.2 is defined in terms of 6 complex variables and two real variables. 

The number of measurements for this system from GPS-synchronized equipment, relays and 
standard SCADA system is quite large. Typically, the direct voltage measurements alone will 
have a redundancy of two to three, i.e. two to three times the number of voltage states. The 
available current measurements will generate a much larger redundancy considering that there 
will be CTs at each breaker, transformer, reactors, etc. For the system of Figure 7.2, and with a 
typical instrumentation, there will be more than 120 measurement data. This represents a 
redundancy level of 850%. 
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Figure 7.2:  Breaker-Oriented Three-Phase Generating Substation Model 

The state of the system, expressed with the variables x, y and z, is defined as the phasors of 
the phase voltages at each bus, the generator speed (frequency) and acceleration (rate of change 
of frequency) for each generating unit and a number of internal generator variables as described 
in Appendix A. A bus k will have three to five nodes, phases A, B and C, possibly a neutral and 
possibly a ground node. Under normal conditions the voltage at the neutral or ground will be 
very small and it will be assumed to be zero for this application. The state of the system at this 
bus is the node voltage phasors. We will use the following symbols: 

The state vector x represents the voltage phasors: 
 

iAkrAkAkAk jVVVV ,,,,,,
~~ +==  

iBkrBkBkBk jVVVV ,,,,,,
~~ +==  

iCkrCkCkCk jVVVV ,,,,,,
~~ +==  
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The state vector z represents the frequency (speed) and rate of frequency change 

(acceleration): 

dt
df

andf gi
gi ,  

The state vector y represents internal state variables needed for the quadratization of the 
model. 

The measurements can be GPS-synchronized measurements, relay data or usual SCADA data. 
A typical list of measurement data is given in Table 7.1. The measurements are assumed to have 
an error that is statistically described with the meter accuracy.  

Table 7.2:  List of Measurements 

Phasor Measurements Description Non-synchronized Measurements 
Description 

Voltage Phasor, V  ~ Voltage Magnitude, V  
Current Phasor, I~ Real Power Flow,  fP 

injI~Current Inj. Phasor,  Reactive Power Flow,  fQ
Frequency Real Power Injection,  injP
Rate of frequency change Reactive Power Inj.,  injQ

 
For monitoring the stability of the system it is imperative that the state of the generator is 

identified as accurately as possible. In this respect it is necessary to recognize that the 
instrumentation channel introduces substantial errors much higher than the errors introduced by 
the measuring device itself. For this reason the instrumentation channel model is included in the 
overall approach. Specifically, the instrumentation channel is modeled and each measurement is 
related to the state of the system via the transfer function of the instrumentation channel. We 
write: 
 
GPS synchronized measurements: 
 

( ) jtmeasuremenforzyxgjzz jijrj ,,,=+  
 
Non-synchronized measurements: 
 

( ) ktmeasuremenforzyxgz kk ,,,=  
 

The model of the instrumentation channel and its gain function is obtained from the physical 
characteristics of the instrument transformers, control cable, termination impedances, A/D 
conversion devices, etc.  

It is also important to recognize that it is not practical to measure the generator internal states. 
In this case it may appear that we do not have enough measurements to perform a state 
estimation. This is not true. We do have a number of equations that relate the internal generator 
states to other states. Each one of these equations can be viewed as a measurement with 
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certainty. We refer to these as pseudomeasurements which are added to the measurement set. A 
partial list of pseudomeasurements is provided below. 
 

1. Pseudo-measurements of the voltages at the remote end of lines 
2. Pseudo-measurements from Kirchoff’s current law 
3. Pseudo-measurements of individual phase voltages 
4. Pseudo-measurements of neutral/ground voltage 
5. Pseudo-measurements of neutral/ground currents 
6. Etc. 

7.3 Description of the Dynamic State Estimator 
Given a set of measurements, the state of the system is computed via the well known state 

estimation approaches. We elected to apply a least square approach to this problem as follows. 
First the differential equations are integrated with the quadratic method [1]. This procedure 
makes the system model a set of algebraic equations in which the dynamic states assume discrete 
values at specific time instances. We denote the algebraic equations with the state vector ( )xh  . 
Then a measurement  will be expressed as: iz
 

( )( )xhgz iii =  
 
The state is computed from the solution of the following optimization problem. 
 

( )( ) 2

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i i

iii xhgz
JMin

σ
 

 
iσ  is the meter accuracy. where 

 
Note that the above simple procedure has converted a dynamic estimation problem to a static 

state estimation problem. Solution methods for above problem are well known. In subsequent 
paragraphs, the models of the measurements and the details of the hybrid state estimator are 
described. By manipulating the above equations, the measurements will have a general form as 
follows: 
 
GPS-synchronized measurements: 
 

sss xHz η+=  
 
Non-synchronized measurements 
 

{ } ni
T

nn xQxxHz η++=  
 
The pseudomeasurements are in general quadratic equations, similar to above equations (in 
form). 
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Now, the state estimation problem is formulated as follows: 
 

∑∑
−∈∈

+=
synnonphasor

JMin
ν ν

νν

ν ν

νν

σ
ηη

σ
ηη

22

* ~~
 

 
Using the above quadratic formulation and the separation of the measurements into phasor, 

non-synchronized and pseudomeasurements as has been indicated earlier, the general form of the 
measurements is: 
 

sss xHz η+= ,  GPS-synchronized measurements 

{ } ni
T

nn xQxxHz η++= , non-synchronized 
{ } pi

T
pp xQxxHz η++== 0 , pseudomeasurements 

 
In above equations, the subscript s indicates phasor measurements, the subscript n indicates 

non-synchronized measurements and the subscript p indicates pseudomeasurements. The best 
state estimate is given by: 
 
Case 1: Phasor measurements only. 
 

( ) s
T
ss

T
s WzHWHHx 1ˆ −

=  
 
Case 2: Phasor, non-synchronized and pseudomeasurements. 
 

( ) { }⎥⎦
⎤

⎢
⎣

⎡

−−
−

+=
−+

ννν

ν
νν

xQxxHz
xHz

WHWHHxx
inn

ssTT
T

ˆˆˆ
ˆ

ˆˆ 11  

where: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

n

s

W
W

W
0

0 ,          
 

⎥
⎦

⎤
⎢
⎣

⎡
+

=
qnn

s

HH
H

H

 

7.4 Implementation  
The proposed methodology for correcting errors from various manufacturers is being 

implemented into a general state estimation method. The computer model has been named the 
SuperCalibrator. Presently the methodology operates on the data from one substation at a time. 
The overall approach is shown in Figure 7.3. Details of the SuperCalibrator approach can be 
found in [26]. 
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Figure 7.3:  Conceptual Illustration of the SuperCalibrator 

7.5 Applications 
The described dynamic state estimator within the SuperCalibrator provides the basis for many 

applications. In this report we describe two applications: (a) stability monitroring for electric 
power systems and (b) a new out of step protection scheme. These applications are discussed in 
this section. 

7.5.1 Stability Monitoring 
The output of the SuperCalibrator is the state of the substation including the full operating 

condition of the generators in case of a generating substation. Specifically, the generator speed, 
torque angle and acceleration is obtained from the SuperCalibrator. This information is enough 
to monitor the dynamics of the generator. Use of visualization techniques can display this 
information in a meaningful way to system operators. As examples, Figure 7.4 illustrates a 
visualization of generators with respect to the center of oscillations with displaced and moving 
balls, while Figure 7.5 illustrates a dynamic visualization of a system with pie charts for the 
generators in the system and Figure 7.6 illustrates the voltages during a transient swing. Note 
that the visualization shows many generators as it will be the case in a typical system. The 
visualization shows the position of each generator according to its torque angle. In addition the 
speed of the generator (above or below synchronous speed) is shown with arrows that are 
proportional to the numerical value of the speed. Note that as the information is updated from the 
SuperCalibrator, the visualization provides an animation of the motion of the system. 
Specifically, the SuperCalibrator may “run” at a rate of 60 times per second thus updating the 
visualization 60 times a second. This refresh speed is more than adequate to provide an excellent 
animation of the dynamics of the system in real time. 
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Figure 7.4:  Visualization of Generator Real Time State 

 
 

 
Figure 7.5:  3-D Visualization of System Phase Angles during a Transient Swing 
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Figure 7.6:  3-D Visualization of System Voltage Magnitude During a Transient Swing 

 
The output of the SuperCalibrator is also used for another important task. Specifically, this 

information is used to predict the stability of the system. For this purpose we use the output of 
the SuperCalibrator to compute the total energy of the system. Note that the total energy of the 
system is defined in terms of generator torque angle and speed. Using the quadratic formulation 
of this paper the energy function is also a quadratic equation of the form (defined in the usual 
way of the sum of the potential energy plus the kinetic energy): 
 

( )( ) )()( 21 txPtxxPtxV N
T
NN

T +=  
 

Note that this form includes the state variables c and s see appendix which are transcendental 
equations (sines and cosines). They define the stability region in the usual way via the separatrix. 
The total energy can be separated into kinetic energy and potential energy. Then, having this 
information a number of visualizations are implemented. For example Figure 7.7 illustrates the 
operating condition of the generator as a blue dot superimposed on a 2-D visualization of the 
potential energy function. Figure 7.7 also provides a visualization and animation of the stability 
status of the system and in particular the generator that is involved. For example if the blue dot is 
above the barrier of the potential energy function, then the generator is stable and will return to a 
stable equilibrium once the disturbance has been removed. If above the generator is unstable and 
eventually will have to be disconnected from the system. This particular property naturally leads 
to a device for the protection of generators against out of step conditions. Because the 
phenomena are so fast, operator action is not a possibility. The out of step protection concept is 
provided next. 
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Figure 7.7:  2-D Visualization of Generator Operating Point and Potential Energy 

7.5.2 Out of Step Relaying 
The best estimate of the dynamic state of the system provides the necessary information for 

monitoring the stability of the system and as a consequence it provides an elegant method for out 
of step relaying. This procedure will be demonstrated with an example. The test system consists 
of two generating substations, two step-up transformers and a two section overhead transmission 
line as is illustrated in Figure 7.8. The parameters of the system are presented in Table 7.2. 
 

 
 

Figure 7.8:  Test System Illustration 
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Table 7.3:  Test System Parameters 
Gen1 100MVA z= 0.001+j0.18 pu H=2.5 sec 

Gen2 300MVA z= 0.001+j0.18 pu H= 3.0 sec 

XFMR1 100MVA z=0.001+j0.07 pu 15 kV/115kV 

XFMR2 300MVA z=0.001+j0.08 pu 115 kV/18kV 

Transmission Line z=0.024+0.2346 pu 115 kV 

Load 1 S=1.33+j0.1 pu 115 kV 

Load 2 S=0.56+j0.1 pu 115 kV 

Common Sbase=100 MVA 

 
The Lyapunov theory is used to evaluate the stability of the system after the occurrence of a 

fault, using information from the dynamic model of the generators. In particular, the potential 
energy function is computed as a function of the difference between the angles of the two 
generators using the best estimate of the system state. The best estimate of the real time model is 
used to compute the equilibrium point in the post fault conditions. Specifically, the best estimate 
of the real time model provides the following system model: 

2
1 1

1 1 1 22

2 ( )m e
s

H d P P
dt
δ δ δ

ω
= − −  

2
2 2

2 2 1 22

2 ( )m e
s

H d P P
dt
δ δ δ

ω
= − −  

The generator real power equations are evaluated to be: 
 1 1 2 1( ) ( ) 0.5222 1.75748 cos( 100.008)e eP Pδ δ δ δ− = = − ⋅ +
 2 1 2 2( ) ( ) 0.7248 1.7592 cos( 100.008)e eP Pδ δ δ δ− = = − ⋅ − +

Above equations are manipulated to provide: 

( )( ) ( )( )
2

1 1 2 22
1 22 2

s s
m e m e

d
M M P P M P P

dt H H
δ ω ω

δ δ= − − −  

where M is the two generators equivalent mass: 
1 2

1 2

2
( ) s

H HM
H H ω

⋅
=

+ ⋅
 

Upon substitution the following swing equation is obtained. 
2

2
0.29563 1.375363 cos( 100.008)

0.0598 0.38242 cos( 100.008)

d
M

dt
δ

δ

δ

= + ⋅ +

− − ⋅ − +

 

The equilibrium point is computed to be at: 
 at the synchronous speed. 0

1 2 1.6142s s sδ δ δ= − =

Note that above model is provided in real time from the dynamic state estimator. 
The above model permits the evaluation of the potential energy part of the Lyapunov 

function: 

( )( ) ( )(
1 2

1 1 2 2
1 2

[
2 2

s s

s s
potential m e m eE M P P M P P

H H

δ

δ δ

ω ω )]δ δ
−

= − − − −∫ which for the specific system is given by the 

following formula: 
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0.23583 1.73214

1.375363 sin( 100.008) 0.38242 sin( 100.008)
potentialE δ

δ δ

= − ⋅ +

− ⋅ + − ⋅ − +
 

The kinetic energy of the system is: 
2

1 2
1 ( )
2kE M ω ω= −  

where δ=δ1-δ2 is the difference of the generators’ torque angles and ω1, ω2 are the generators’ 
speeds. 

Two example cases are presented for this system, one corresponding to a disturbance that 
results in a stable system and another that leads to an unstable system. Table 7.3 provides the 
rotor location and rotor speed at the time of fault clearing for the two cases.  

Table 7.4:  Generators’ Torque Angles & Speeds at Fault Clearing time 

Stable Case Unstable Case 
δ=δ1-δ2=108.17ο δ=δ1-δ2=155.0280 

ω=ω1-ω2=7.3953 rad/sec ω=ω1-ω2=8.8404 rad/sec 

 
Specifically, a three phase fault that will be cleared at 0.5 seconds after the fault initiation 

results in a stable system. We shall refer to this case as “stable case”. A three phase fault that will 
be cleared at 0.6 seconds after fault initiation will result in an unstable system. We refer to this 
case as the “unstable case”. Figure 7.9 illustrates the total energy superposed on the graph of the 
potential energy function of the “stable case” at the time that the fault was cleared. Note that the 
total energy is below the highest value of the potential energy, indicating a stable system. Figure 
7.10 illustrates the total energy superposed on the graph of the potential energy function of the 
“unstable case” at the time that the fault was cleared. Note that the total energy is above the 
highest value of the potential energy, indicating an unstable system. 
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Figure 7.9:  Total and potential system energy-stable case 

 

 
Figure 7.10:  Total and potential system energy-unstable case 
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An important feature of the presented method is the ability to determine the time at which the 
system becomes unstable since it is a real time monitoring method. Figure 7.11 illustrates the 
trajectory of the total energy of the system as the disturbance is evolving. The instant that the 
total energy crosses the maximum value of the potential energy the system has become unstable. 
The total energy crosses the maximum value of the potential energy at 0.545 seconds after fault 
initiation. Thus the critical clearing time for this system is 0.545 seconds. 
 

 
Figure 7.11:  Test System Total Energy Trajectory 

It is illustrated in Figure 7.9 that the total energy is below the maximum value of the system’s 
potential energy, thus the system is stable, whereas for the second case the total energy is greater 
than the maximum value of the system’s potential energy, and thus the system is unstable.  

As a result, we presented an energy method based on the Lyapunov function of the system, 
from which we can evaluate whereas the system is going to be driven out of synchronism or not, 
providing an out-of-step relay protection scheme. Note that only the post fault system 
equilibrium points have been used, along with the system trajectory (as it is obtained by the 
dynamic state estimator) during the fault phase, and in particular the state values at the fault 
clearing instant. No dynamic information and data of the post fault system are necessary. 

The methodology described previously can be extended and applied in actual power systems. 
In particular, the dynamic state estimator provides the center of oscillation of the actual system, 
and the swing equation of a generator can be evaluated in terms of the center of oscillation. Thus 
the methodology can be applied to each generating unit individually no matter how many units 
exist in the system. Figure 7.12 illustrates visualization and comparison of the Impedance 
Trajectory based Out of Step Relaying and the Proposed Generator Stability Monitoring Method. 
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Figure 7.12:  Visualization and Comparison of the Impedance Trajectory 
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8.0 Conclusion 

Visualization has, and will continue to play an important role in the safe and reliable 
operation of large scale power systems. This research project has 1) developed a new method for 
visualization of such systems through its introduction of geographic data views, 2) introduced 
two new algorithms to reduce the time needed to produce power system controls, 3) provided 
new algorithms and insights on the use of phasor measurement unit data, and 4) provided insight 
and analysis in the human factors aspects of power system visualization. Clearly much has been 
accomplished. 

Nevertheless, significant challenges remain. Certainly we have just scratched the surface with 
respect to how the geographic data view concept can be applied to power system visualizations. 
More research is needed to more fully develop and demonstrate this approach. The use of the 
parallel processing power of the graphics processing units (GPUs) has just begun to be exploited. 
While this project demonstrated how the GPU can be used to significantly increase contouring 
performance, there are probably other power system applications as well. The application of 
PMUs data for on-line operations is certainly still in its infancy with several other uses still 
waiting to be discovered. Finally, the application of human factor techniques to power system 
visualization continues to be an area rich in research potential. Hence while we believe this 
project has been a success, more research is certainly needed to continue moving forward.  
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Appendix A:  Basic Problem in Dynamic State Estimation 

A basic problem in dynamic state estimation is to develop the mathematical model of 
synchronized measurements in one end of the line in terms of the dynamic state of the system at 
the two ends of the line. The solution of this problem provides estimates of the dynamic states of 
the system at the remote end of a transmission circuit from local information, thus avoiding the 
need for communications and the usual time latencies associated with the communication 
scheme. This appendix describes this problem. The problem is simplified to one simple single 
phase transmission line. It is assumed that PMU measurements are taken at one end of the line. 
The algorithm provides the relationship of all the local measurements to the dynamic states at 
both ends of the line. It is important to note that this model/algorithm is incorporated within the 
overall estimation algorithm of the SuperCalibrator. 

A.1 Description of the transmission line model 
 

The model of the transmission line is illustrated by Figure A.1. 
 

 
Figure A.1:  The Transmission Line Model 

 
The transmission line model is described by the following equations: 

 

[ ] [12
12 1 1 1 2 2 2

12

( )( ) ( ) cos ( ) ( ) cos ( )

( ) ( ) cos[ ( ) ]

a
a s s

a s

di tRi t L V t w t t V t w t t
dt

i t I t w t t

]δ ϕ δ

δ ϕ

⎧ + = + + − + +⎪
⎨
⎪ + +⎩

ϕ
 

 
So by substituting the second equation in to the first equation and define several internal 

variables, we will have the following model, 
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Where we have define, 
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

1 1

1 1

2 2

2 2

( ) cos ( )

( ) sin ( )

( ) cos ( )

( ) sin ( )

( ) cos ( )

( ) sin ( )

s

s

s

s

s

s

c t w t t

s t w t t

c t w t t

s t w t t

c t w t t

s t w t t

δ ϕ

δ ϕ

1

1

2

2

δ ϕ

δ ϕ

δ ϕ

δ ϕ

⎧ = + +
⎪

= + +⎪
⎪ = + +⎪
⎨

= + +⎪
⎪ = + +⎪
⎪ = + +⎩

 

A.2 States definition and Measurements definition 
 

We have the measurements as following: 

1 ( )mV t : magnitude measurement of voltage V1(t) 

1( )m
V tϕ : phase measurement of voltage V1(t) 

1 ( )mw t : frequency measurement of voltage V1(t) 

1 ( )m tα : change ratio of the frequency of voltage V1(t) 

( )mI t :magnitude measurement of current on line 1-2 

( )m
I tϕ : phase measurement of current on line 1-2 
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( )m
Iw t : frequency measurement of current on line 1-2 

( )m
I tα : change ratio of the frequency of current on line 1-2 

 
The state is defined with: 
 

[ ]

1 2

1 1 1 1 1 1

2 2 2 2 2 2

( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( )

T T T T
I

T

T

T
g

X X X X

with

X V t w t t c t s t

X V t w t t c t s t

X I t w t t c t s t

δ

δ

δ

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

 

A.3 Estimation model 
 
The estimation problem is defined in terms of 15 states as follows: 
 
The system states is 

[ ]

1 2

1 1 1 1 1 1

2 2 2 2 2 2

( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( )

T T T T
I

T

T

T
g

X X X X

with

X V t w t t c t s t

X V t w t t c t s t

X I t w t t c t s t

δ

δ

δ

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

 

 
The estimation model is as following. Please notice that the left side of the equation is a value, 

whether a measured value or a estimated value from the former steps while the right side of the 
equation is an expression of the state variables. Please also notice that if the at the end of the 
right side of the equation there is an errorη , it means this equation represents a actual 
measurement and otherwise it is a pseudo measurement. 

1 1( ) ( )mV t V t η= +  

( )1 1cos ( ) ( )m
V t c tϕ η= +  

( )1 1sin ( ) ( )m
V t s tϕ η= +  

1 1( ) ( )mw t w t η= +  

1 1 1 1 1
2( ) ( ) ( ) ( ) ( )

6 3 6
m m

m
h h ht t t h w t h w tα α α+ + − + − = η+  

1 1 1 1 1
5( ) ( ) ( ) ( ) ( )

24 3 24
m m

m m
h h ht t t h w t h w tα α α− + + − + − = η+  

( ) ( )mI t I t η= +  
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Appendix B:  Triangulation Methods for Visualization of Power System Data 

The visualization of various quantities of a transmission grid is achieved by rendering a 
smooth 3D interpolated surface. The surface can be rendered as a smooth surface (Figure B.3), 
3D IsoSurface (Figure B.4), or a 2D IsoSurface (Figure B.5). (Figure B.1 is Bounded Butterfly 
subdivision. Note that the height of the new vertices is contained within the original vertices). 
The complete algorithm is outlined below. Experimentation with these algorithms shows an 
effective an efficient methodology using triangulation techniques. The methods have been used 
for the visualizations in the main body of the report. Here we present the algorithms with 
examples of their performance. 

Input consists of the x,z locations of the sites where readings are available. At each of these 
sites the corresponding voltages are available. These are represented by the y coordinate for the 
sites.  

i) Perform a 2D Delaunay triangulation of the sites using only the x,z coordinates and 
generate a triangle mesh ‘M’. Each site is represented by a vertex in this mesh. 

ii) Update the mesh M with the ‘y’ coordinates of the corresponding sites to get a rough 3D 
triangulated surface. 

iii) Use the butterfly subdivision to add interpolated vertices in the triangle mesh. 
Implemented naively the inserted vertices may be above or below the vertices from 
which it is interpolated. This would be misleading so we bound location of the new 
vertex within the minimum and maximum of the vertices from which it was interpolated.  

iv) Apply the smoothing using the tuck operation as described earlier, but restrict it to the set 
of new vertices and keep the location of the original sites intact. Since we do not move 
the original sites we might see some discontinuity in the surface near the original sites. 
We fix this by tweaking the normals of the vertices adjacent to the original site. This is 
done by aligning the normals of the interpolated vertices with the normal of the original 
vertex which is adjacent to it. If the position of the interpolated vertices goes above or 
below the original vertices we clamp the position to the original vertex.  

v) We perform repeated subdivision and smoothing to get a visually pleasing 3d surface. 
 

 
Figure B.1:  Bounded Butterfly subdivision 
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Figure B.2:  Delaunay Triangulation of Points 

 

 
Figure B.3:  After Bounded Butterfly subdivision and Smoothing 
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Figure B.4:  3D Iso-Surface with 8 levels 

 

 
Figure B.5:  Flat Iso-Surface with 8 levels 
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B.1 Rendering the IsoSurface 
The smooth surface rendered in Figure B.2 might not be easy to comprehend though it is 

pleasing to the eye. We also show the surface as IsoSurface with different levels based on the 
height(voltage). Given the number of desired IsoSurface, we generate an OpenGL Texture which 
is mapped to the 3D triangle mesh surface to render the iso-surface. The texture map will have as 
many entries as there are isoSurfaces. The texture color at location 0,0 is the lowest IsoSurface 
and the color at location 1,0 is the highest IsoSurface color. Example for 8 IsoSurfaces we will 
have 8 different colors in the texture map. To map these colors to the surface and render the 
IsoSurface, the texture coordinate for a vertex is computed using its height 
(=vertexheight/MaxHeight). Ideally to generate the Iso-Surface we will have to compute the 
intersection of the IsoCurves with each of the triangle of the 3D mesh. But OpenGL texture 
mapping takes care of this for us if we set the correct texture mapping parameters. Example of 
the rendered IsoSurface is shown in Figures B.4 and B.5. Now we give the details of the steps 
described above. 

B.2 Delaunay Triangulation 
Given a set of planar points P, a Delaunay triangulation is a triangulation such that none of the 

triangle’s circumscribing circle contains any point from P. Some nice properties of Delaunay 
triangulation are 

• Compared to any o ngle in the Delaunay 
triangulation is at leas r. Thus it maximizes the 
minimum angle of all the angles of the triangles in the triangulation. However, the 

un essarily minimize the maximum angle. 
ints 

ns 

o its 

tex ‘P’ is added to the existing Delaunay triangulation as follows:  
i) Find the triangle which contains the new vertex V. Let the three points of the triangle 

rting from arbitrary triangle and moving in the 

BCP and CAP. 
iii) The edges of the old triangle ABC are inspected to verify that they still satisfy the 

empty circumcircle condition. If the condition is satisfied the edge remains intact. If 

ther triangulation of the points, the smallest a
t as large as the smallest angle in any othe

Dela ay triangulation does not nec
• The triangulation is unique if no 4 points lie on the same circumcircle and no three po

are on the same line. If 4 points lie on the same circle there can be multiple triangulatio
depending upon number of such occurrences in the point set P. 

• It has at most 3n-6 edges and at most 2n-5 triangles. 
• Efficient Algorithms exist to compute the Delaunay triangulation. 

The incremental insertion algorithm of Delaunay triangulation in 2D is very popular due t
simplicity and stability. This algorithm repeatedly adds one vertex at a time and re-triangulates 
the affected triangles. The steps are outlined below. 

1) Start with a triangle large enough to contain all the input points. Since this is the only 
triangle it satisfies the Delaunay property. 

2) A new ver

be A,B,C. This can be done by sta
direction of P. 

ii) Delete the triangle ABC and create three new triangles which have the vertices as 
ABP, 
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the condition is violated then the edge is flipped as shown in Figure B.6. Each 
flipping may result in two more edges becoming candidates for flipping. In worst case
all edges have to be flipped. But usually if the vertices are inserted in a random order 
only a few edges get flipped. 

 

 

 

 

Figure B.6:  Inserting points one-by-one 
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Figure B.7:  Delaunay Triangulation - Inserting points 

B.3 Data Structure used for the insertion algorithm 
The Corner Table [1] provides a compact data structure to represent triangle meshes: A 

triangle mesh is defined by specifying the set G of its vertices and a set T of its triangles. A 
triangle is defined by the IDs of the three vertices that it interpolates. The V-table stores the 
vertex indices of G in sets of three. Each of these set represents a triangle. The association of a 
vertex with a triangle is denoted as a corner. So a triangle can be represented by choosing its 
corresponding three corners. The three corners of a triangle are stored in clockwise order. Given 
this ordering and a corner we can get the previous or next corner. Every triangle has three 
neighbors. The corner table captures this information in the ‘O’ (opposite) table. For every 
corner ‘c’ the corner ‘o’ of the neighboring triangle opposite to corner ‘c’ is stored. We use the 
following notation for the corner table implementation: 

G[ ]: Stores vertex coordinates 

V[ ]:(V-table):Stores triplets of indices forming a triangle. The corresponding vertex coordinates 
of the triangle can be accessed by using these three indices into G. 

O[ ](O-table): Stores the opposite corner for every corner corresponding to V. 
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Figure B.8:  Corner Table operations 

Using the V and O tables, given a corner, c, we can access (See Figure B.7 - Inserting a point 
into the triangulation. Dashed lines indicate edges that need to be inspected. (e) is the result of 
flipping the dotted edge inside the circle in (d)). 

c.t: its triangle. 
c.v:its vertex 
c.p: previous corners in c.t 
c.n: next corner in c.t 
c.o: opposite corner 
c.l: left neighboring corner (c.p.o) 
c.r: right neighboring corner (c.n.o) 
 
The 2 main steps of the incremental algorithm are: 

i) Finding the triangle containing the newly inserted point 

ii) Create new triangles trivially and flip the edges if required to satisfy the Delaunay 
circumcircle criteria. 

The corner table is very h ulation algorithm. The 
corner table provides an easy method to walk through the triangle mesh and access the 
connectivity information. We briefly discuss how to do the above two operations using the 
corner table. 

andy for the incremental Delaunay triang

103 



 

B.4 Finding the triangle containing the new inserted point (see Figure B.8) 
i) Start from any arbitrary triangle. We need to reach triangle t1containing the point P 

be inserted. (Figure B.8). which is to 
neii) Make a li  segment which starts inside triangle t0 and ends at P (red line shown in 

 denoted as ‘L’. Find the edge of t0 which intersects the line 
 the corner opposite to this edge. 

0 which intersects the line segment ‘L’. Let ‘c’ be the corner opposite to 

 

Figure B.8). Let this be
c’ besegment ‘L’. Let ‘

 tiii) Find the edge of
this edge. 

 

Figure B.9:  Traversing the triangle mesh 

c=c.n (next corner) . iv) 
v) if( g(v(c)).isLeftOf(L) ) . 

c=c.r; /*(o(n(c))) move to right triangle*/ 
else c=c.l;/*o(p(c)) move to left triangle*/ 

vi) Check if c.t contains the point P. If yes then we found the triangle containing P else 
repeat step v). 

vii) Figure B.2 - Traversing the triangle mesh using the corner table approach for locating the 
triangle containing the point to be inserted 

B.5 Inserting the new point into an existing triangle 
Figure B.10 shows the configuration of the corner table after inserting the new vertex. 

Addition of this new vertex results in addition of 9 new corners. Instead of deleting the old 
corners c,c.p and c.n we re-use them for one of the new triangles. (Inserting a point in an existing 
triangle. Three new triangles are added and the old triangle is deleted. The V-table and O-table 
are updated as show in the Figure B.10). 
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Figure B.10:  Inserting a point in an existing triangle 

 operations on corner table described earlier. The result 
f flipping the edge is shown in the right configuration. The locations of the old corners are 

shown as well. (Flipping an edge using the corner table operators. The V-table and O-table are 
updated as show in the F).  

 

B.6 Flipping an edge of the triangle 
In Figure B.11, the red edge needs to be flipped. Corner ‘c’ is opposite to this red edge. The 

neighboring corners are marked using the
o

 
Figure B.11:  Flipping a triangle edge using the corner table operators 

n the middle of each edge. 
 Split each triangle into 4 triangles 

iii) At each step, adjust the position of the new vertices, using the butterfly rule (See Figure 
B.12). 

B.7 Butterfly Subdivision 
Once we have the triangulation of the points we use a customized butterfly subdivision 

scheme to subdivide the 3D surface. The main steps in the butterfly subdivision scheme are as 
follows: 

i) Insert a new vertex i
ii)

105 



 

  
Figure B.12:  Butterfly subdivision 

 

 
Figure B.13:  Butterfly Mask 

 

 
Figure B.14:  Example butterfly subdivision 

Though the butterfly subdivision attempts to produce smooth meshes we do not have control 
over the degree of smoothness. This is a problem because the introduced vertex might overshoot 
or undershoot the original vertices of the surface. For our purpose this can be misleading as the 
height can represent voltages. So we want the interpolated voltage to be contained within range 
of the original vertices. We modify the butterfly subdivision scheme by clamping the ‘y’ 
coordinates of the newly introduced vertices within the original vertices. (Figure B.13 - Butterfly 
Mask, the position of the new vertex (black dot) is calculated using the weights as shown in the 
Figure B.13). 
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B.8 Smoothing 
We use the following smoothing scheme in addition to the butterfly subdivision to control the 

smoothness of the triangle mesh surfaces. We define an operation tuck as follows 
tuck(s): displace each vertex by a fraction ‘s’ of its normal. 

The triangle meshed can be smoothed using the tuck operation by: 

computeVertexNormals();  
tuck(0.6);  
computeVertexNormals();  
tuck(-0.6);  
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