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Executive Summary 

This research project presents and examines an online voltage security assessment 
scheme to evaluate post-contingency voltage security in real time by using synchronized 
phasor measurement units (PMUs) and periodically updated decision trees (DTs). The 
main objective is to develop a fast and accurate tool to predict whether certain severe 
contingencies will initiate voltage collapse at the current operating condition for the 
purpose of preventing voltage collapse in a modern power system. The online assessment 
results are then used to guide system operators in real-time decision making. This project 
involved the participation of a PSERC member company – American Electric Power 
(AEP) Corporation – that provided supplemental funding for the project and the 
associated data, and participated as an industry advisor to the project. 
 

With increasing difficulty in approving and installing new transmission lines, modern 
power systems are operated closer to their limits due to the continuous increase in load 
demand and generation capacity for the past few decades. Thus, severe contingencies, 
e.g., loss of critical tie lines or several generators simultaneously, may affect system 
stability leading to a large scale blackout such as the one that occurred on August 14th, 
2003 in North America. Among different stability problems, voltage stability is one of 
the most critical issues that threaten system secure operations. Voltage stability is defined 
as the ability of power system to maintain acceptable bus voltage magnitudes at normal 
or contingent operating conditions. Once a disturbance like a fast load change or a severe 
contingency causes a continuous and uncontrollable decline in bus voltages, voltage 
instability is considered to occur, especially at stressed operating conditions with 
insufficient reactive power support. Without timely and correct control actions, the low 
voltages may spread throughout adjacent areas and eventually cause a wide area blackout 
instead of a localized outage. 

 
Traditionally system states were monitored through the supervisory control and data 

acquisition (SCADA) system which did not have the capability of capturing fast transient 
behaviors due to the relatively low data sampling frequency. Besides, the measurements 
are not synchronized, which makes it impossible to obtain system snapshots in real time. 
The time span of losing voltage stability ranges from 0.1 second to several hours, 
representing transient and long-term voltage instability respectively. For the fast 
transients following severe disturbances, detailed voltage security analysis for online 
application becomes a great challenge because of the high computational burden in a 
large power system. Therefore, it is imperative to develop a fast and accurate voltage 
security assessment tool to detect the potential voltage problems, enable remedial control 
actions and effectively minimize the adverse impact of voltage insecurity on the whole 
system. 

 
A literature survey was first conducted to examine the principles of voltage 

instability and review the approaches to evaluate voltage stability in the stage of real time 
operation. Taking advantage of the previous efforts, this research report presents a DT 
based voltage security assessment scheme by using PMUs for online application. The 
main idea is to first perform detailed voltage security simulations offline at various 
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operating conditions that represent all the system states forecasted for the next 24 hours. 
A supervised data mining tool DT is adopted to identify critical system attributes as 
voltage security indicators from the databases that are created by offline study. At the 
stage of online application, synchronized phasor measurements are collected to compare 
with these thresholds and obtain a final assessment result after a severe contingency is 
detected. The proposed scheme has been developed using the operational model that 
represents the North American Eastern Interconnection in which the eastern AEP system 
has approximately 2400 buses. The details of this scheme are developed in the following 
steps: 

 
i. Offline DT Training (24 hour ahead). Based on the detailed power flow file of the 

AEP system and load changing pattern for a period of time in March 2007, 29 
operating conditions are generated by adjusting the load levels and generator outputs. 
These operating conditions represent the system states under stressed conditions in 
order that voltage stability problems in the AEP system can be identified. The bus 
voltages are all at normal operating levels although some transmission lines are 
overloaded. Exhaustive voltage security simulations are conducted for a list of 
critical contingencies that have the possibility of losing voltage stability, provided by 
the AEP staff. DTs are then trained to obtain the desired prediction performance 
based on the databases that consist of offline simulation results and different PMU-
related pre-disturbance system attributes. 

 
ii. Periodic DT Update (1 hour). The offline trained DTs select a small number of 

system attributes as voltage security indicators and their thresholds are also 
determined in the tree models. In order to obtain good prediction performance in 
case of any significant change in the system, these DTs are updated on an hourly 
basis. For example, loss of a transmission path will change the power flow patterns 
and the post-disturbance operating conditions are not included in previous offline 
simulations. In this case, voltage security analysis for the new operating conditions 
needs to be carried out and included in the databases for DT updating. The modified 
DTs, if necessary, are finally used for online application during the next hour. 

 
iii. Online Application. At this stage, real time measurements from PMUs are dropped 

into the DTs and compared with the corresponding thresholds to determine whether 
a severe disturbance will cause voltage instability. The process is very fast since only 
a few comparisons are performed. An insecure prediction result will then provide an 
alarm and guide system operators to take prompt remedial control actions to prevent 
the occurrence of losing voltage stability. 

 
This scheme takes advantage of all the available and planned PMUs across the whole 

AEP system to evaluate global voltage stability problems. The synchronized signals and 
high sampling frequency endow PMUs with the capability of observing different states 
across the whole system in a common time frame with much higher accuracy. The DT 
technique serves as an effective data mining tool to solve the classification problems in 
high data dimensions. The periodically updated DTs not only uncover critical system 
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attributes, but also build a nomogram in terms of the thresholds of these system 
parameters. This provides system operators with an effective alternative for system 
monitoring and online decision making. In addition, once a PMU measurement is missing 
or invalid, DTs will pick up effective “competitors” as candidates for online application. 
The test study shows that properly trained DTs perform quite well in assessing voltage 
security in real time. Several innovative ideas to improve DT performance in assessing 
voltage security including the applications of “Multiple DTs”, “Corrective DTs” and 
“Maximum DTs” are also introduced. The main accomplishments resulted from this 
research project are listed below: 

 
i. The feasibility of using periodically updated DTs and synchronized PMUs for 

online voltage security assessment is analyzed. The proposed scheme is tested on an 
operational snapshot of the AEP system. The test results have shown good 
prediction performance on the system model considered. 

 
ii. The project work has incorporated (1) the Dynamic Security Analysis Tools 

(DSATools) software developed by Powertech Labs for operating condition 
generation and voltage security analysis, and (2) ‘Classification And Regression 
Trees’ (CART) developed by the Salford system, for training and testing DTs. A 
software platform that implements the entire scheme, including data collection, data 
conversion and interface design, has been developed in MATLAB and VC++ codes. 
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1 Introduction 
 

As modern power systems are operated closer to their operating limits, voltage 
stability has become a critical issue that threatens secure system operation. Without 
accurate security assessment and timely control action, voltage instability may lead to a 
large scale blackout with tremendous economic consequences. In real time operations 
setting, traditional analysis methods are not fast enough to evaluate post-disturbance 
voltage stability problems in a timely manner. This research effort explores the feasibility 
of an online voltage security assessment tool to rapidly assess voltage security by using 
synchronized phasor measurement units and periodically updated decision trees. 

 
The main objective of this research project is the design of such a tool for the purpose 

of obtaining a fast and accurate voltage stability assessment. It is therefore important to 
review the mechanisms of voltage instability and the existing methods to evaluate voltage 
stability that are related to the objectives of this project. An online voltage security 
assessment scheme is proposed and tested on an operational snapshot of the American 
Electric Power system model. The properly trained DTs are able to select a small number 
of PMU related system attributes as voltage stability indicators and they have shown 
satisfactory prediction performance that will effectively guide system operators in real 
time decision making. This research report is organized as follows: 

 
In Section 1, the authors first introduce the background of this research project and 

conduct a literature review to address the above issues. Feasibility analysis of the 
proposed online voltage security assessment scheme is performed while the principles of 
synchronized PMUs and DTs are also explored. In Section 2, the details of the proposed 
scheme that consist of 3 major steps, “Offline DT Building”, “Periodic DT Update” and 
“Online Application” are discussed. Section 3 tests this scheme on the AEP operational 
power system. All the details regarding operating condition generation, database creation, 
predictor selection, voltage security analysis and DT training are included. In addition, 3 
innovative methods to improve DT performance and robustness for online application are 
presented. Section 4 draws conclusions from this project; while Section 5 lists the 
publications resulting from this project and the references that are related to this research 
effort. 

 
 

1.1 Background 

Modern power systems are interconnected by transmission lines to transport large 
amounts of electric power over thousands of miles for both reliability and economic 
reasons. Uninterruptable electricity supply with high quality constitutes one of the most 
important requirements for the development of human societies. During the past few 
decades, countries with highly developed economies have seen the consumption of 
electric power in industrial, commercial and residential areas rise at consistent annual 
rates. The growth of electric power consumption all over the world from the year 1980 to 
2005 is shown in Figure 1-1. In 2005, the world’s total electricity power consumption 
increased to 15,746.54 million kWh, which is approximately 2.147 times of the 
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consumption in 1980 [1]. In order to keep pace with the load growth, generation capacity 
has also been boosted by constructing large, concentrated power plants. The annual 
growth of world total generation capacity for the same time period is shown in Figure 1-2. 
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Figure 1-1: World Power Consumption Growth from 1980 to 2005 
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Figure 1-2: World Total Electricity Installed Capacity from 1980 to 2005 

 
However the growth in load demand and generation capacity has not resulted in a 

concomitant increase in the transmission capability due to the difficulty of approving new 
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transmission lines caused by the increasing environment and investment concerns. As a 
consequence, existing power networks are likely to be operated under great stress with 
transmission lines carrying power near their limits during peak load periods. At normal 
operating conditions, electric power transactions are well scheduled and planned in 
advance to minimize the overall economic cost, while during disturbances the 
interconnected systems can provide active and reactive power support to the area that is 
subjected to the disturbance, such as a fast load increase or loss of several critical 
transmission lines. If the disturbance is small, a new equilibrium point will be reached by 
re-scheduling power flows and switching equipments in the surrounding areas. Mature 
power systems in North America should have the capability of tolerating the loss of any 
one element in the system (N-1) according to NERC standards such as the outage of a 
large generator, a critical transmission line or a heavily loaded transformer. But in 
extreme cases, loss of one or more critical transmission path(s) may initiate system-wide 
stability problems such as transient stability and voltage stability. This situation could be 
worsened when any additional contingency occurs in an already disturbed system, which 
forms an N-2 or even N-k condition.  

 
Once a severe disturbance causes a large imbalance between generator output and 

load demand in an area, transient stability is more likely to be affected with generator 
rotor angles swinging against each other; while voltage instability is likely to occur when 
such a contingency causes insufficient reactive power support to a load area with a large 
amount of reactive power demand. Many of previous research efforts were focused on 
addressing various aspects of the transient stability problem. Approaches for transient 
stability monitoring and detection, transient stability margin identification, transient 
stability prediction, online security assessment and the design of stability controls have 
been widely reported in [2]-[11]. On the contrary, effective measures to evaluate voltage 
stability for real time operation of a realistic interconnected power system are limited. 
Thus, this research project focuses on addressing the online voltage security assessment 
issue, takes advantage of previous efforts and presents a decision tree based scheme for 
this subject. 

 
Voltage instability (or voltage collapse) is one of the most critical problems that 

threaten secure operations of an interconnected power system, which is typically 
associated with lack of sufficient reactive power support in a heavily loaded area. Once 
initiated by a serious disturbance, bus voltage magnitudes progressively decline to an 
unacceptable level and the decreasing voltages cannot be controlled back to normal levels. 
The low voltages not only affect the local load area, but also spread throughout adjacent 
areas of the power system. Cascading outages of transmission lines due to protective 
relay actions may be triggered that eventually cause a large scale blackout instead of a 
localized outage. Figure 1-3 shows the progress of a voltage collapse phenomenon. 
Several voltage collapse incidents in the world that resulted in tremendous losses were 
reported in [12].  
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Figure 1-3: Progress of a Voltage Collapse Case 

 
Voltage instability is usually caused by either a fast load increase or a major change 

in network topology resulting from a critical contingency, both of which will cause the 
lack of effective reactive power compensation. In addition, the decreasing bus voltage 
profiles may deteriorate during transients due to the excessive use of capacitor banks 
since the reactive power provided by the capacitors is proportional to the associated bus 
voltage magnitudes. Due to different mechanisms of losing voltage stability, the time 
scale for this phenomenon ranges from 0.1 second to several hours. For long-term 
stability that takes several minutes to several hours to occur, system operators may have 
ample time to take remedial control actions to ensure enough reactive power reserve by 
generation re-scheduling, gas-turbine starting up, fast load shedding and shunt element 
switching. But for the fast transients like loss of large induction motors, voltage collapse 
can start as soon as the disturbance occurs. In order to effectively prevent voltage 
collapse, both these types of voltage instability require an accurate and fast assessment 
result addressing whether a certain disturbance at the current OC will cause severe 
problems.  

 
From the literature survey conducted, it is observed that different methods have been 

developed to evaluate voltage stability including sensitivity analysis, modal analysis, PV 
and QV curve calculation, L index and other voltage stability indices [12]-[18]. However 
as the size of a power system grows very large, detailed voltage stability analysis for 
online application becomes a great challenge because of the high computational burden. 
This leaves insufficient time for operators to examine the post-disturbance system 
behavior and take remedial control actions. As a result, an accurate and fast assessment 
tool to determine the voltage security in real time becomes a necessity for preventing the 
occurrence of voltage instability. 
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This report focuses on the voltage collapse problems that are caused by severe 
contingencies and adopts an effective data mining tool, decision tree (DT), to assess 
voltage stability in real time operation. The main idea is to first perform detailed voltage 
security simulations offline at various operating conditions that represent the system 
states forecasted for the next 24 hours. Decision trees are then trained to identify critical 
system attributes as voltage security indicators from the databases that are created from 
the offline study. The thresholds of these critical system attributes are also determined in 
the DT models. At the stage of online application, synchronized phasor measurements are 
collected to be compared with these thresholds and obtain a final prediction result. The 
details of this proposed scheme that consists of 3 major steps are discussed further in 
Section 2. 

 
This scheme takes full advantage of all the available and planned PMU measurements 

across a power system to assess post-contingency voltage security and it is tested on an 
AEP operational snapshot that consists of 2414 buses, 116 generators and 2416 
transmission lines. The result shows that with correctly selected parameters from current 
PMU locations, properly trained DTs perform well on the OCs during a specific load 
period. Several new ideas to improve DT performance and reliability including the 
applications of “Multiple DTs”, “Corrective DTs” and “Maximum DTs” are also 
developed and tested. Before discussing the proposed method in more detail and its 
application on a realistic power system, principles and advantages of PMUs and DTs are 
introduced in the following two subsections. 

 
 

1.2 Phasor Measurement Unit 

State monitoring in power systems plays an important role in system operation and 
online decision making and is the basis for the real time power flow analysis used in 
voltage stability or transient stability analysis. Traditionally power system states like 
voltage magnitude, voltage phase angle, current magnitude and power flows on 
transmission lines were monitored using analog devices such as current transformers and 
potential transformers  and communicated to the energy management system (EMS) 
through the supervisory control and data acquisition (SCADA) system. System 
information is periodically updated with the sampling frequency in the range of a few 
seconds. State estimation is then performed to obtain a converged solution for further 
application. This approach served the industry well but lacks the ability of observing 
measurements across the whole system because the data was not time synchronized. 
Thus, there is no way of obtaining a real time snapshot of the system.  

 
The advent of phasor measurement units (PMUs) has revolutionized the field of 

power system state monitoring.  PMUs have significant advantages over the traditional 
measurements in terms of both accuracy and frequency of sampling. A basic PMU 
configuration consists of a global positioning system (GPS) receiver, a filter, an 
analog/digital converter and a microprocessor as shown in Figure 1-4. 
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Figure 1-4: Basic Structure of a Phasor Measurement Unit 

 
From the satellites, the GPS receiver receives a one pulse per second (PPS) signal 

with a time stamp containing the year, day, hour, minute and second, which is divided 
into a number of pulses for the sampling of the analog signals derived from conventional 
measurement devices. The number of pulses can be defined by the users, which is usually 
12 times per cycle in a 60 Hz system. With these synchronized time stamps, analog 
signals are converted to digital signals and sent to the microprocessor for further 
calculation. Thus, generator angles, bus voltages, bus angles, power flows, frequencies, 
currents, power factors and other system information can be calculated in the 
microprocessor. The time-stamped phasors calculated in the PMUs are synchronized to a 
common time frame by satellites and then assembled into a series of data streams for 
communication to remote control centers [19]. Therefore, a PMU has the ability to 
observe different system states across the whole system in real time even if they are 
thousands of miles away from each other.  

 
The development of PMUs dates back to the middle 1980s when the PMU was first 

introduced at Virginia Tech. PMUs have been commercialized and widely used in f 
power systems all over the world, an example of which is shown in Figure 1-5 [20]. As 
more advanced control techniques and devices are used, the applications of PMUs in 
power system are being widely reported in the areas of wide area monitoring, loss of 
synchronism detection, multi-area state estimation, oscillation mode identification, 
voltage stability protection and system dynamics monitoring [21]-[25].  
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Figure 1-5: Block Diagram of the Macrodyne 1620 PMU (January 1992, taken from [20]) 

 
 



 

1.3 Decision Tree 

The decision tree technique is an effective supervised data mining tool to solve the 
classification problems in high data dimensions. It was first developed by Leo Breiman in 
1980’s, and is now widely used in many fields including medical diagnosis, finance 
analysis, statistical analysis and decision makings in power system [26]. Different 
applications of DTs depend on the ability to describe the problem by creating a database 
that consists of a sufficient large number of cases. Each case is represented by a vector of 
predictors (or variables) along with an objective. The DT is designed to represent a 
classification or predictive model for this objective by identifying critical attributes that 
affect this objective most effectively and directly. 

 
The DT structure is usually dimidiate and there are two types of nodes in a DT, the 

“internal node” with two successors (or children) and the “terminal node” without 
successors. For each internal node, a question or critical splitting rule (CSR) is asked to 
decide which successor the classification process should drop into. The splitting rule 
could be numerical or categorical, by comparing the variable value with a threshold or 
checking whether the current value belongs to a specific data set, respectively. For each 
terminal node, a classification will be assigned in terms of the majority classes of the 
objective, e.g., “secure” or “insecure”. The classification process is very simple and fast, 
which is to drop the associated predictors down the tree model by comparing the CSRs in 
different levels. The whole process starts from the root node until a terminal node along 
with a final classification is reached. One sample of decision tree that has 4 internal nodes 
(in blue boxes) and 5 terminal nodes (in red boxes) is depicted in Figure 1-6.  

 

 

Figure 1-6: A DT Sample with 4 Internal Nodes and 5 Terminal Nodes 
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This DT is trained from a database with 5907 cases and is similar to the DTs trained 
in later sections, in which FB$ is a categorical predictor representing the faulted bus 
location of a contingency; while the remaining predictors that represent voltage phase 
angle difference between two PMU buses, A_195_4767, A_3901_5648 and A_35_2221 
are all numerical predictors. The classifications in this tree are “Secure”, represented by 
the gray bars at the terminal nodes and “Insecure”, represented by the black bars. For 
each internal node, the node description includes the node name, the critical splitting rule 
(CSR) with its threshold and the number of cases that fall into this node. For each of the 
terminal nodes, the node name and the number of cases that fall into this classification are 
shown. The length of the bars at the bottom demonstrates the percentage of different 
classifications. An example of the classification progress is as follows. Starting from the 
root, if the faulted bus location is in the set {1003,…}, the whole classification goes to 
the left child node, otherwise it goes to the right. Let’s assume the contingency occurs 
just at bus 1003. The second level comparison is conducted by checking whether the 
measured value of A_195_4767 is smaller or equal to -19.650. If so, an insecure 
assessment result will be provided, which is the “decision” of the DT. 

 
Training a DT not only uncovers critical system parameters that contribute to the final 

objective for the known cases, but also optimizes the prediction ability on the unknown 
cases. Therefore, a learning set (LS) and a test set (TS) in the same data format are 
required before a DT is trained. In the beginning, a maximum DT is first trained from 
the LS by recursively splitting a parent node into two purer child nodes. The splitting 
process starts from the root of the tree and continues until further splitting of a node can 
not improve the overall DT performance or when a predefined threshold is reached. In 
order to obtain the CSRs in the DT, all the available predictors in the LS are scored in 
terms of the impurity reduction performance by using the equation below. 

 
 
 

)()()(),( RL tItItItI −−=Δ α

Where t represents the current node in the tree, tL is the left child node, tR is the right 
child node, α is the splitting rule and I(t) is the tree impurity function. Each predictor has 
its own splitting rule, α, and the one with the highest score is selected to be the critical 
splitting rule for this node. The remaining splitting rules with equal or less scores are 
called “competitors”, which could provide good alternate candidates. Details of 
algorithms for identifying CSRs and split stopping rules are discussed in [26], [27]. By 
definition, this maximal tree possesses the highest accuracy for the LS involved. It is then 
pruned using the TS to generate a series of smaller DTs in terms of the misclassification 
cost on the TS, which is defined as 
 

∑=
ji

TS
ijTS

TS Njic
N

MC
,

),(1  

 
where MCTS is the misclassification cost of the whole tree, NTS is the total number of 
cases in the TS, c(i, j) represents the cost of misclassifying the i class as a j class and 

is the number of j-class cases misclassified as i-class cases in the TS. The optimal 
tree is then defined as the one with the lowest misclassification cost. It always has a 
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ijN

9 
 



 

medium size, because a small tree does not contain enough useful information and a large 
DT usually has the over-fitting problem. 
 

In order to illustrate how an optimal DT is obtained, a sample of the DT training 
process is shown in Figure 1-7. This optimal DT is trained to assess voltage security 
problems in the AEP system using commercially available software, Classification and 
Regression Trees (CART). In this case, there are altogether 37 DTs trained in a series. 
The first DT is the smallest with only 2 nodes, while the largest DT has 94 nodes. From 
the 37 DTs, eight trees are selected for comparison with their prediction accuracy shown 
in Table 1-1. In the column indicating the overall accuracy for the learning set, the 
accuracy keeps increasing as the DT grows larger, because the splitting algorithm in 
CART keeps using new predictors to find out more splits to obtain a higher accuracy. 
Then the test set is used to prune the large trees by calculating the misclassification costs 
for every built tree. Thus, DT-20 is selected to be the optimal one, since its 
misclassification cost value on the test set is the lowest, 0.194. 
 

 
Figure 1-7: A Sample of DT Training Process in CART 

 
Table 1-1: Performance Comparison of the 8 Selected DTs on the LS 

No. of  
DTs Size 

Classification Accuracy (%) 
Insecure Secure Overall  

1 2 89.2% 52.19% 64.95% 
5 10 90.73% 89.74% 90.08% 
10 18 96.22% 91.28% 92.99% 
15 30 95.49% 95.95% 95.79% 
20 36 97.24% 95.16% 95.87% 
25 55 98.77% 95.98% 96.94% 
30 70 99.02% 97.01% 97.70% 
37 94 99.29% 97.61% 98.19% 
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Training a good DT usually considers several constraints: 
a) Minimum misclassification cost:  

This ensures that the overall cost for both of the misclassified insecure cases and 
misclassified secure cases is the minimum. 
b) Overall prediction accuracy:  

This requirement considers the total number of misclassified cases to be minimized, 
which could be different from the first constraint since a higher cost is usually assigned to 
the misclassified insecure case. 
c) Size of the DT:  

It is usually desired that the obtained DT has a compact size in terms of depth and 
total number of terminal nodes, because a large tree has a much higher complexity than a 
smaller tree. 
d) Number of cases in the terminal nodes:  

Such a constraint helps to improve the efficiency of a DT. 
e) Robustness:  

If the system operation condition is disturbed, the performance of a properly trained 
DT on this OC is an important rule to measure this tree model. 

 
Usually, a compromise needs to be made from the above requirements. In this report, 

the minimum misclassification cost on the test set is considered as the most important 
constraint before the final DT is trained. The size constraint of a DT is ignored in this 
research work, because all the DTs trained have a reasonable size and the voltage security 
predictors are collected from the existing PMUs across the AEP system. 

 
 

1.4 Feasibility Analysis 

The main advantages of the decision tree tool over the other data mining tools like 
neural network and support vector machine are the simpler structure and better 
readability of the model for prediction, which make it very convenient to input the PMU 
measurements directly and compare with the thresholds on the CSRs to obtain a security 
assessment. This process is very fast since only a few comparisons are required. Once a 
final DT is trained with satisfactory performance for online applications, the CSRs in the 
tree provide a “nomogram” in the space of critical attributes, which defines a secure 
operating region. When the system state is changing rapidly during and following 
disturbances, it is imperative that these critical attributes be measured simultaneously to 
determine whether the current OC falls inside the nomogram or outside it. This 
requirement can be satisfied by the synchronized measurements obtained from the PMUs 
across the system. From the perspective of speed, the DT training process from start to 
finish usually takes one or two minutes on a PC with a Intel Core2 CPU 6700 (2.66 GHz) 
and 2.0 GB of RAM once the database is created. The major computational burden rests 
with the need to conduct a large number of offline voltage security simulations to obtain 
a sufficient large database. However, this problem can be easily solved by parallel 
computations because all the cases in the database are independent of each other.  
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Therefore, properly trained DTs are quite suitable to identify critical system attributes 
from various system states that are related to power system security problems and 
feasible for real time transient stability assessment. Several applications involving 
decision trees have been addressed in real-time transient stability prediction and 
assessment, voltage security monitoring and estimation, and loss of synchronism 
detection and timing of controlled separation in power systems [28]-[33]. A tool has been 
recently developed to combine DTs with the other data mining tool for prediction 
performance improvement in the field of dynamic security controls [34]. Robustness and 
a high level of prediction accuracy are two aspects of great importance to be addressed 
before a final DT is obtained for online application. The following sections will consider 
a realistic power system to illustrate the process of this proposed scheme for online 
voltage security assessment in more detail. 
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2 The Proposed Online Voltage Security Assessment Scheme 
 
 

2.1 Introduction 

The proposed scheme consists of 3 major steps, “Offline DT Training”, “Periodic DT 
Update” and “Online Application”, which is similar to the approach developed for online 
dynamic security assessment in Section III of [6]. The flow chart of the developed 
procedure is depicted in Figure 2-1, in which each of the 3 major procedures includes 
several aspects. In this scheme, two important assumptions are made: 

 
i. The voltage profiles of the whole system at the base cases are maintained at 

normal levels, no matter how stressful an operating condition is. This assumption 
ensures that no low voltage problems exist at the base cases even if some of the 
transmission lines are overloaded. 

 
ii. Voltage collapse cases are initiated only by critical contingencies. The voltage 

instability caused by continuous load increase is not directly addressed here. In 
fact, the load increase effect on system voltage security can be effectively 
reflected by including operating conditions at different load levels. 

 
 

2.2 Offline DT Training 

A number of OCs (Noc) representing all the details of system states including load 
levels, generation patterns, power flows and equipment status are first collected for the 
past 24 hours and the next 24 hours from load forecasting techniques. A list of 
contingency (Nc) is required for the purpose of identifying the critical contingencies that 
may cause voltage collapse and they can be obtained from historical events and 
experiences of system operators. For each of these Noc operating conditions, detailed 
voltage security analysis for all of the provided Nc contingencies are conducted. From 
simulation results, each contingency case is assigned a voltage security label, secure (S) 
or insecure (I). By collecting different types of PMU-related system parameters for use as 
voltage security predictors from the pre-disturbance system parameters, a database 
consisting of Noc*Nc contingencies is then created. Therefore, DTs can be trained offline 
to obtain the security classifications for the next day. The selection of voltage security 
predictors will be discussed in Section 3.  

 
 

2.3 Periodic DT Update 

During the operation time horizon, system information is periodically checked and 
updated on an hourly basis in order to account for changing system states as accurately as 
possible so that the offline trained DTs may continue to perform well on the new system 
states. If significant changes exist in network topology such as the loss of big generators 

13 
 



 

or a sudden load increase, voltage security simulations are conducted on these changed 
OCs to build new cases for DT test. Good performance of DTs indicates that the DTs do 
not need to be re-trained or modified. Otherwise, the newly created cases are combined 
with the original database to build new DTs with higher prediction accuracy. The updated 
DTs are then used for online applications during the next hour. 

 
 

 
Figure 2-1: Flowchart of the Proposed Scheme 

 

14 
 



 

2.4 Online Application 

During real time operation, a fault detection system is required to identify whether a 
critical contingency in the list occurs. If so, the obtained DT is used for online security 
assessment by reading the measurements from PMUs to check whether the thresholds in 
the DT are violated. Once an insecure assessment result is obtained, it will provide 
system operators an alarm and trigger remedial control actions. No action is taken until 
the contingency occurs. This research project only addresses the topic of security 
assessment. The topic of corrective and preventive control is beyond the scope of the 
work done in this research effort. 

 
 

2.5 Advantages 

This scheme takes advantage of the PMU measurements across the whole system to 
obtain a voltage security assessment, instead of using only local measurements. Should a 
particular CSR measurement become missing or unavailable, the competitors for this 
CSR can be used in making the assessment. This approach can effectively reduce 
dependence on the local measurements in assessing voltage problems. In addition, the 
periodically updated DTs only pick up a small number of system parameters as voltage 
stability indicators, which results in enhanced efficiency compared to traditional analysis 
methods to obtain a security result. The CSRs can be recommended PMU locations. After 
severe disturbances occur, system operators have more time to take remedial control 
actions to adjust the current OC away from the insecure boundaries if an insecure 
assessment is obtained. Furthermore, since the offline voltage security simulations can be 
conducted by parallel calculation and the DT training process only takes a few minutes, it 
ensures enough time to update these databases and DTs every hour for real time 
application. This 1-hour time interval could be shortened if necessary. 
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3 Case Study 
 
 

3.1 Introduction 

The proposed scheme is tested on an American Electric Power operations snapshot. 
This power system model contains 18168 buses, 2753 generators, and 19358 lines of the 
North American Eastern Interconnection of which a subset numbering approximately 
2400 buses represents the eastern AEP system. The service area of the eastern AEP 
system is shown in Figure 3-1. 

 

 

Eastern AEP System 

Figure 3-1: Service Territories of the Eastern AEP System  
 
 
Currently, there are 12 PMUs located across the eastern AEP system and 15 

additional units planned that cover a wide area and their geographical locations are 
shown in Figure 3-2. One PMU is on a 138 kV bus, 11 PMUs are on 345 kV buses while 
the remaining PMUs are on 765 kV buses, which are listed in Table 3-1. These PMUs are 
installed to monitor the states of the key buses and stations including bus voltage 
magnitudes, voltage phase angles, MW and MVAr flows, and current magnitudes of the 
associated branches.  
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Figure 3-2: PMU Locations in the Eastern AEP System (Installed and Planned) 

In this case study, a software platform involving a variety of simulation tools has 
been developed to test this scheme. Operating conditions are all generated using the 
Powerflow & Short-circuit Analysis Tool (PSAT) and voltage security studies are 
performed using the Voltage Security Assessment Tool (VSAT), both of which are 
components of the Dynamic Security Analysis Tool (DSATools). DSATools is an advanced 
package for power system security evaluation and is developed by the Powertech Labs, 
Canada [35]. The decision trees are trained and tested using a commercial data mining 
package, Classification and Regression Trees (CART), which is developed by Salford 
System, CA [36]. The database generation, data conversion and analysis work are 
conducted using MATLAB and Microsoft Visual Studio VC++ codes.  

 
 

3.2 Operating Condition Generation 

In this step, 29 operating conditions (OCs) are generated in PSAT based on the 
generation and load patterns provided by the AEP operations staff. They represent 
stressed OCs that include all the details of load levels, generator outputs and branch 
power flows during a specific period of time. Some of these OCs stress the system well 
beyond the normal operating ranges. The load levels of these OCs are depicted in Figure 
3-3. The voltages of all the buses in the AEP system are within reasonable levels at the 
base case: 

(a) All the bus voltage magnitudes are adjusted to be between 0.90 and 1.10 in p.u. 
(b) The voltages of 138~765kV buses are adjusted in the range of 0.95~1.10 p.u.  
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Table 3-1: PMU Locations in the Eastern AEP System 

No. Bus Name Bus No. 
1 Rockport 765 kV  4974 
2 Kanawha River 345 kV  195 
3 Jacksons Ferry 765 kV  1409 
4 Matt Funk  1440 
5 Maliszewski 765 kV  2221 
6 Cook 345 kV 5599 
7 Olive 345 kV 5872 
8 Dumont 345 kV 5648 
9 Dumont 765 kV 5649 
10 Dequine 345 kV  4808 
11 Twin Branch 345 kV 5983 
12 Jackson Road 345 kV 5746 
13 Meridian 345 kV 4913 
14 Sorenson 345 kV 5407 
15 Desoto 345 kV 4811 
16 Breed 345 kV 4767 
17 Jefferson 765 kV 4872 
18 Sw Lima 345 kV 4186 
19 Marysville 345 3900 
20 Marysville 765 kV 3901 
21 Hayden 345 kV 4491 
22 Hyatt 345 kV 4513 
23 Hanging Rock 765 kV 2116 
24 Baker 765 kV 539 
25 Culloden 765 kV 129 
26 Amos 765 kV 35 
27 Cloverdale 765 kV 1277 

 
 

Load Pattern of the 29 OCs (MW)
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Figure 3-3: Load Pattern of the 29 Stressed OCs 
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3.3 Voltage Security Analysis 

A list of critical contingencies that may cause severe voltage problems is selected 
according to previous operating experiences in the AEP system. This list contains 163 
critical contingencies including different transmission line and transformer outages. This 
research project adopts a static analysis method to evaluate post-contingency voltage 
security and a voltage collapse judgment is given when a contingency results in the 
divergence of the power flow solution [9], [13]. Thus, the database consists of 
29*163=4727 voltage security simulations with either security or insecurity labels 
marked on each case.  
 
 

3.4 Predictor Selection & Database Generation 

Since all the voltage insecure cases are caused by contingencies in the list, the 
voltage security predictors for DT training should include the contingency-dependent 
information together with contingency-independent parameters in the system. For the 
contingency-dependent parameters, an unordered bus pair x and y is adopted to denote 
the faulted transmission line or transformer, because the voltage security analysis method 
estimates voltage security by solving power flows without the faulted branch and it does 
not need any detail of the fault such as type, duration or location. The only useful 
information is the bus locations of the faulted branch. To eliminate the ordering of the 
two buses of a critical branch during DT training, each contingency case is doubled in the 
form of “Bus-1=x and Bus-2=y” and “Bus-1=y and Bus-2=x”, which treats the two buses 
equally. As a result, a database containing 4727*2=9454 cases is generated. This measure 
allows the DTs to identify buses or substations common to contingencies that are more 
prone to cause voltage collapse. The contingency-independent parameters reflect critical 
system states in real time; therefore they are chosen from the PMU monitored pre-
disturbance system parameters in the AEP system. In order to compare the performance 
of different parameters in capturing post-contingency voltage behaviors, 8 groups of 
predictors are used as defined in Table 3-2. 

 
Table 3-2: Different PMU-related Predictor Groups in the AEP System 

No. Predictors 
Group 1 Faulted bus (FB) and Other bus (OB) of the contingency branch 
Group 2 Voltage phase angle differences (A_x_y) 
Group 3 A_x_y, FB, OB 
Group 4 Current magnitudes on branches (I_x_y), FB, OB 
Group 5 MVAr flows on branches (Q_x_y), FB, OB  

Square of voltage magnitudes (V2_x), FB and OB Group 6 
Absolute value of current magnitude multiplied by branch impedance 
(IZ_x_y), FB and OB Group 7 
A_x_y, Q_x_y, I_x_y, V2_x, IZ_x_y, FB, OB Group 8 
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Group 1 uses a categorical bus pair (FB and OB) to represent the contingency 
branch. Group 2 selects voltage phase angle differences among all of the 27 PMUs 
(A_x_y), where x and y are the PMU bus numbers. There are 27*26/2=351 angle 
differences chosen as voltage security predictors. Although the information contained in 
the 351 angle differences are redundant since only 27 values are collected, the DT only 
picks up the most effective ones as CSRs. The predictors in Group 1 and Group 2 help to 
compare the DT performance between contingency-dependent and contingency-
independent parameters. Group 3 evaluates the DT performance using the combination of 
these two types of predictors. Group 4 and Group 5 replace the phase angle differences 
with all the available current magnitudes and reactive power magnitudes on branches 
measurable by the PMUs. Groups 6 and 7 test the performance of square of voltage 
magnitudes on PMU buses and the absolute value of the current magnitude multiplied by 
the branch impedance. The selection of these contingency-independent predictors is 
designed to collect critical system information that can indicate voltage problems more 
precisely and intuitively. A_x_y and I_x_y are good measures to indicate the degree of 
stress at an OC; Q_x_y plays a more important role than active power flow (P_x_y) in 
supporting voltage profiles; V2_x is more sensitive than voltage magnitude itself 
especially after contingencies; and IZ_x_y covers more information than current 
magnitude in reflecting voltage problems. Finally, Group 8 includes all the predictors 
indicated above in order to compare their performance in the DTs.  

 
With all the case labels and predictors collected, 8 databases are generated in 

MATLAB codes for the 8 groups of predictors respectively. One sample of the created 
databases is shown in Table 3-3. The first column is the voltage security label obtained 
from VSAT results (S or I), the second and third columns represent the faulted bus (FB) 
and the other bus (OB) respectively, and the remaining columns are different types of 
measured values from PMUs. The ‘$’ sign in the first three columns is used to 
differentiate the categorical variables from the numerical ones. Each row in the database 
represents one voltage security simulation case following one critical contingency. The 
pre-disturbance system parameters for each OC are the same from case to case, and the 
only difference rests with the contingency bus pairs, FB and OB. From the simulation 
results in VSAT, the database contains 3258 cases out of 9454 cases (34.46%) that fail to 
obtain a convergent power flow solution following a single branch outage. They are 
regarded as “I” cases leading to voltage collapses. The remaining cases are labeled as “S” 
cases.  

 
 

3.5 DT Training and Performance 

All the 9454 cases in the created database are given equal weight and 1891 cases 
(20%) are randomly selected to form a test set. The remaining 7563 ones (80%) are used 
to form the learning set. In order that fewer insecure cases are misclassified as secure, the 
cost of misclassifying an insecure case to be a secure case is reasonably increased. Also, 
different algorithms including ‘Gini’, ‘Symmetric Gini’, ‘Entropy’, ‘Class Probability’, 
‘Twoing’ and ‘Ordered Twoing’ are tested and compared during the DT training progress 
to obtain the optimal DT [27]. Therefore, 8 optimal DTs from DT1 to DT8 are trained for 
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the above databases respectively, the prediction accuracy for both learning set (LS) and 
test set (TS) of which are all listed in Table 3-4.  

 
Table 3-3: Sample of the Created Databases 

SECU$ FB$ OB$ Q_35_129 I_4513_4515 A_35_129 … 
S 1998 2266 -398.5 13.4 0.9  
S 2266 1998 -398.5 13.4 0.9  
I 5983 9319 -398.5 13.4 0.9  

for OC1 I 9319 5983 -398.5 13.4 0.9 
S 1205 1207 -398.5 13.4 0.9  
S 1207 1205 -398.5 13.4 0.9  
… … … … … …  
       
I 1998 2266 -410 15 1.2 … 
I 2266 1998 -410 15 1.2  
S 5983 9319 -410 15 1.2  

for OC2 I 9319 5983 -410 15 1.2 
S 1205 1207 -410 15 1.2  
S 1207 1205 -410 15 1.2  
… … … … … … … 

 
 

Table 3-4: Performance Comparison of the Optimal DTs 

Opt. 
DTs Size 

Leaning Set Accuracy (%) Test Set Accuracy (%) 
I  S  Overall  I  S  Overall  

DT1 24 71.4 63.31 66.08 68.82 60.95 63.72 
DT2 7 87.61 76.99 80.63 86.96 80.07 82.50 
DT3 36 98.69 94.33 95.82 91.00 93.63 92.70 
DT4 50 99.50 95.66 96.97 92.95 94.93 94.24 
DT5 31 98.11 93.89 95.33 87.11 93.3 91.12 
DT6 38 96.49 92.42 93.81 88.91 91.91 90.85 
DT7 55 99.69 95.19 96.73 91.00 93.46 92.6 
DT8 51 99.11 96.00 97.06 90.55 94.44 93.07 

 
From Table 3-4, the comparison of DT1 and DT2 indicates that contingency-

independent parameters are more important than contingency-dependent parameters in 
voltage security prediction at stressed OCs, because DT2 performs much better than DT1 
for both secure and insecure cases. One explanation is that the system OC is more critical 
than fault location in voltage collapse prediction. Voltage phase angle differences can 
effectively indicate the degree of stress at an OC and large values of A_x_y usually 
indicate a more stressed OC. A severely stressed OC is more vulnerable to voltage 
collapse than a lightly loaded one following the same contingency. Similar tests were 
conducted by using the other contingency-independent parameters alone as predictors 
such as I_x_y, Q_x_y, V2_x and IZ_x_y, but improvement in prediction accuracy was 
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not observed. Therefore, the remaining predictor groups in Table 3-2 (Group 3 to Group 
8) also include the contingency-dependent information for DT performance improvement 
and the results in DT3 to DT8 have proved this. The combination of FB, OB and various 
contingency-independent parameters are helpful for building much better DTs compared 
to DT2.  

 
In DT3, the prediction accuracy for the test set is increased to 91.0% for insecure 

cases and 93.63% for secure cases. The overall accuracy is 92.7%. A better decision tree 
(DT4) with higher accuracy for the test set is obtained by using current magnitudes as 
predictors, which can accurately predict 92.95% insecure cases and 94.93% secure cases. 
Similarly, DT5, DT6 and DT7 are respectively trained by including values of Q_x_y, 
V2_x and IZ_x_y from the same PMU locations, and they perform similarly to DT3. DT8 
attempts to cover all the above predictors for accuracy improvement in the test set 
because it includes the most system information. Unfortunately, the overall accuracy for 
the test set in DT8 does not see any significant improvement. Instead, the overall 
accuracy drops to 93.07%, which is even lower than DT4, although it has a better 
performance on the LS. This is mainly caused by the over-fitting problem in the DT 
training process, which uses too many parameters as predictors to build one DT. Another 
problem occurs because some of the important parameters are masked behind the CSRs 
in the DT since each splitting of the internal nodes guarantees the highest impurity 
reduction for the current node, instead of optimizing the performance of the whole tree.  

 
To illustrate the efficiency of the DTs trained, Table 3-5 lists the total number of 

CSRs selected in DT3 to DT8. Ns is the number of CSRs in the DT, while Nt represents 
the total number of predictors in the corresponding databases. It can be observed that 
only a small portion of the predictors are selected to be CSRs, indicating that the voltage 
security assessment process in real time is very fast. The important system parameters 
can be used to build an on line nomogram in identifying voltage security boundary and 
also provide an effective measure for the operators to steer the system conditions away 
from the security limits after severe disturbances occur. In addition, the critical system 
attributes that are selected in these DTs are listed in Appendix A and the structures of the 
optimal DTs trained in Table 3-4 are depicted in Appendix B. 

 
 

Table 3-5: Number of Critical System Attributes Selected in the Optimal DTs 

DTs Ns/Nt DTs Ns/Nt 
DT3 15/353 DT6 13/29 
DT4 16/87 DT7 17/87 
DT5 12/87 DT8 18/635 
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3.6 DT Performance Improvement 

The results in Section 3.5 indicate that the best performance on the test set using a 
single DT is in DT4, the overall accuracy of which is 94.24%. In other words, there are 
5.76% cases misclassified using this tree model. The misclassification problem in DTs 
could be caused by a variety of reasons, among which the formation of the LS and TS 
plays an important role. If the cases in the TS have great similarities with the ones in the 
LS, the DT has better performance on the TS. On the contrary, high accuracy of 
prediction on totally unknown cases may not be guaranteed. By periodically including 
new and unknown system states into the database, DTs are updated to learn more useful 
information for improving robustness and the classification accuracy can be effectively 
increased.  

 
Another observation is that DT performance in predicting voltage security depends on 

the distribution of the CSRs and a preliminary test is used to illustrate this phenomenon. 
Focusing on one CSR that has a severe misclassification problem in a DT trained by 
using A_35_539, FB and OB, it is found that most of the values of this parameter in the 
29 OCs are concentrated in a small range, as shown in Figure 3-4. The horizontal axis 
represents the number of different operating conditions, while the vertical axis stands for 
the phase angle difference between bus 35 and bus 539 (in degrees). The values of 
A_35_539 range from 0.2 to 1.3 and most of them are concentrated in the range from 1.0 
to 1.3. Only five OCs cover the range from 0.2 to 0.4. The values from 0.4 to 1.0 are 
totally missing. The distribution of these values shows a severe imbalance, which could 
be an important factor causing the misclassifications. As a result, more OCs were created 
for the values of A_35_539 to be distributed more evenly in this range. To accomplish 
this, generator active power outputs around bus 35 and bus 539 and the load levels in the 
AEP system are adjusted. This can effectively change the values of A_35_539 in the 
desired pattern. 22 new OCs are then created with the new distribution of A_35_539 
shown in Figure 3-5. Another database including 22*163*2=7172 cases is created for the 
DT training, in which there are 288 insecure cases (4%). We can also observe that 
A_35_539 becomes a very important CSR in the new DT, which is located in the second 
level. This test indicates that by adjusting the previously problematic variable to cover 
more information near the splitting boundary, it can yields a better DT.  

 
However, the proposed scheme for online voltage security assessment should work 

well for all kinds of unforeseen operating conditions no matter how the critical system 
parameters are distributed. Therefore, several methods to improve DT performance for 
online applications are discussed below when the future OCs for the next hour are 
relatively fixed. 
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Figure 3-4: Distribution of A_35_539 for the original 29 OCs 
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Figure 3-5: Distribution of A_35_539 for the new 22 OCs 
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3.6.1 Multiple Optimal DTs 

As discussed in Section 3.5, the combination of all the available predictors may not 
improve the DT performance on the TS because of the over-fitting and variable masking 
problems. In order to improve reliability and prediction accuracy, an approach using 
multiple optimal DTs that are trained by combinations of different predictors is 
presented. This method takes advantage of all the DTs that satisfy a desired threshold of 
performance instead of trusting the tree with the best performance only. The cases that 
are misclassified by the best DT may be correctly predicted by the other trees that use 
different PMU-related critical attributes. For online applications, all the optimal DTs are 
used to obtain a comprehensive classification result and the basic flow chart of this idea 
is shown in Figure 3-6. For any incoming case, using multiple DTs can obtain different 
prediction results. As an example, although DT4 provides an insecure result, all the other 
DTs provide secure results. Therefore, a comprehensive result, Secure, is provided, which 
is considered as the final prediction result. 

 

 
Figure 3-6: Concept of Multiple DT Application 

 
Based on the predictor groups introduced in Section 3.4, a heuristic search is 

conducted to identify different combinations of these predictors that contribute to good 
decision trees. The multiple DTs that are used for online application should be 
sufficiently different from each other because certain types of predictors can be totally 
masked when combined with other predictors to build a DT resulting in exactly the same 
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tree as the one trained before predictor combination. For example, when the predictor 
V2_x was combined with any other type of predictors, they were never selected as CSRs. 
Thus, all different combinations of A_x_y, Q_x_y, I_x_y and IZ_x_y are tested to create 
optimal DTs with sufficient difference. 9 DTs with good performance on the TS are 
obtained and shown in Table 3-6. 

 
The decision trees from DT9 to DT17 are all different from each other although some 

of the branches share the CSRs. The result shows most of them offer better prediction 
performance on the TS than the DTs trained before predictor combination. As a result, all 
the 15 decision trees from DT3 to DT17 are used for online application since they are 
capable of correctively predicting over 91% of cases in the TS. For any contingency case, 
15 voltage security assessments are obtained separately and a final assessment is given in 
terms of the majority classification results. A statistical analysis is conducted on the 1891 
cases in the TS and 7563 cases in the LS using these 15 DT models. The results indicate 
that there are only 101 cases and 179 cases that are misclassified 8 times or more in the 
TS and LS respectively. Therefore the overall prediction accuracy on the TS is increased 
to 94.66%; while the accuracy on the LS is increased to 97.75%. Although the overall 
improvement is limited, the results obtained from a variety of DTs using different critical 
attributes are more convincing than that of only one tree. In addition, using multiple DTs 
in real time will not cause a significant increase in the total security assessment time 
because the DTs are all trained offline and the assessment process using different DTs 
can be conducted individually. 

 
 

Table 3-6: DT Performance for Different Predictor Combinations 

Opt. 
DTs Size Predictor combinations 

Test Set Accuracy (%) 
I  S  Overall 

DT9 59 A_x_y, I_x_y, FB, OB 90.4 95.59 93.76 

DT10 49 A_x_y, Q_x_y, FB, OB 89.21 95.02 92.97 

DT11 47 A_x_y, IZ_x_y, FB, OB 90.85 94.12 92.97 

DT12 55 I_x_y, Q_x_y, FB, OB 92.95 95.26 94.45 

DT13 45 Q_x_y, IZ_x_y, FB, OB 91.00 93.79 92.81 

DT14 53 A_x_y, I_x_y, Q_x_y, FB, OB 92.95 95.18 94.39 

DT15 47 A_x_y, I_x_y, IZ_x_y, FB, OB 90.85 94.12 92.97 

DT16 53 I_x_y, Q_x_y, IZ_x_y, FB, OB 91.15 93.14 92.44 

DT17 45 A_x_y, Q_x_y, IZ_x_y, FB, OB 91.00 93.79 92.81 
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3.6.2 Corrective DTs 

The above method is designed to build many decision trees by using different critical 
attributes for successful classifications on the misclassified cases in the TS. The main 
problem is that the absolute computation burden is increased although the DT training 
process can be conducted in parallel. According to the observation that most of the paths 
in a single DT trained by only one type of contingency-independent parameters (e.g. 
DT3) have excellent prediction behaviors on the TS and only a few paths have severe 
misclassification problems, another idea is developed to partially modify the DT by 
replacing the problematic paths with corrective DTs for accuracy improvement. For each 
of the paths with poor performance, a corrective DT is trained by including more system 
information for all the cases that fall into this path in the original database. During the 
voltage security assessment process, these problematic branches in the original DT are 
not abandoned; instead they are linked to these corrective DTs for further classification. 
For example, a path with poor performance in DT3 is taken to explain how this method 
works and this path is plotted in Figure 3-7(a).  

 
DT3 is trained using the LS containing 7563 cases, among which there are 49 (24 

insecure and 25 secure) cases falling into Terminal Node 4. 14 out of 1891 cases in the 
TS are tested using this path and 6 secure cases are misclassified as insecure cases. 
Although higher accuracy for these 49 cases in the LS can be achieved by further 
splitting Terminal node 4 it will jeopardize the prediction performance on the TS. The 
problem lies in using A_x_y alone, as this information is not enough to clearly classify 
these cases. Therefore, the 49 cases in the LS and 14 cases in the TS are picked to form a 
smaller learning set (LS’) and a test set (TS’) respectively, but more predictors like I_x_y 
and Q_x_y are included. A corrective DT using LS’ and TS’ is now trained and it only 
misclassifies 5 cases in the LS’ and 3 cases in the TS’. This small DT (depicted in Fig. 
5(b)) performs much better than the original path that reaches Terminal Node 4 in DT3 
for these 49+14=63 cases. In real-time application, the original DT3 is first used to 
investigate voltage security. The cases that fall into Terminal Node 4 are further 
evaluated using this corrective DT to obtain the final security assessment. This approach 
preserves the branches with high accuracy and only modifies the paths with severe 
misclassification problems by using corrective DTs rather than re-training the whole tree. 
This method is tested on all the DTs from DT3 to DT7 that are trained using only one 
type of contingency-independent predictors and the improved DT performance are shown 
in Table 3-7. 

 
Table 3-7: Performance of the Corrected DTs 

Opt. 
DTs 

Overall LS Accuracy (%)  Overall TS Accuracy (%) 
Corrected Original Corrected Original 

DT3’ 97.46 95.82 94.02 92.70 
DT4’ 98.21 96.97 95.45 94.24 
DT5’ 98.70 95.33 92.07 91.12 
DT6’ 97.38 93.81 93.39 90.85 
DT7’ 98.40 96.73 93.92 92.6 
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Figure 3-7: Corrective DT for a Problematic Path in DT3 

 
From Table 3-7, all of the original DTs are improved with better performance for 

both learning set and test set. The best performance is achieved in DT4’ and it can 
correctively predict 95.45% cases in the TS, which has a 1.21% improvement. During the 
training of corrective DTs, not all of the problematic paths can be improved by adding 
more predictors for further classification. The main reasons are: (a) there are not enough 
cases falling into the problematic path to train a corrective DT; and (b) the cases in the 
LS that are classified by the problematic path all belong to one class, secure or insecure, 
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which makes it impossible to build the corrective DT. Further investigation of this 
“multi-level DT” idea to improve prediction accuracy will be carried out in the future 
work. 

3.6.3 Maximum DTs 

The third measure for increasing DT accuracy is by using the maximum trees with 
high accuracy for the whole database. Critical system states for the next hour can be 
obtained an hour ahead with the help of load forecasting techniques and timely updated 
system information. In this situation, almost all the incoming OCs for the next hour with 
sufficient accuracy can be included in the database and the DT performance on the whole 
database becomes more important to system operators. Therefore, the trained maximum 
DTs with high accuracy on the whole database are a good choice for online applications 
in the industry.  

 
To obtain a more reliable DT model, the “V-fold Cross Validation” method 

described in [27] is used to form the LS and TS. This method divides the whole database 
into n groups with equal number of cases, uses each group once as the test set while the 
remaining n-1 groups form the LS, and finally obtains a comprehensive DT based on the 
n generated DTs. Several tests were conducted to train the maximum DTs for the 
databases created in Section IV_C by setting n=10. The results in Table 3-8 indicate that 
any single DT trained from predictor Group 3 to Group 8 has an overall accuracy higher 
than 99.08%. More importantly, the overall prediction behaviors of these maximum DTs 
on the TS are around the level of 90%, which indicates that using the maximum trees for 
online application does not lose the prediction ability on the unknown cases. Higher 
accuracy on the whole database can be further achieved by setting the whole database as 
one learning set without any test set, but the corresponding maximum DT may have poor 
performance when system condition changes. The main problem of this maximum tree 
method is the high degree of complexity; however there is no need to install additional 
PMU devices because all the predictors are collected from the existing and planned 
PMUs. 
 

Table 3-8: Maximum DT Performance on the Whole Database 

Max. 
DTs Size 

Accuracy for the whole database (%) 
I  S  Overall  

DT3_M 117 99.91 98.72 99.13 
DT4_M 125 99.85 98.68 99.08 
DT5_M 112 99.85 99.11 99.37 
DT6_M 142 99.97 98.66 99.11 
DT7_M 126 99.85 99.05 99.32 
DT8_M 125 99.91 99.11 99.39 
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4 Conclusions 
 

This report presents a scheme for online voltage security assessment using 
synchronized phasor measurements and decision trees. The DTs are trained offline and 
periodically updated for robustness improvement. By comparing the PMU measurements 
with the CSRs in the DTs in real time, a fast voltage security assessment for severe 
contingencies can be obtained. 29 OCs for the AEP system are generated to represent the 
stressed system operating conditions during a peak load period. Voltage security is 
analyzed using VSAT to obtain a security label for each case following a severe 
contingency. Different PMU-related pre-disturbance system parameters are collected to 
create 8 databases for DT training. The result shows that the combination of fault 
information and current magnitudes performs the best on the test set using a single DT. 
Several new ideas including using “Multiple optimal DTs”, “Corrective DTs” and 
“Maximum DTs” are also introduced and tested to improve performance and reliability. 
In the future work, these methods will be further extended in more detail and other DT-
combined data mining tools will also be tested without losing the readability during the 
voltage security assessment process. 
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Appendix A. Critical System Attributes Selected in the Opt. DTs 

This Appendix lists all the contingency-independent critical system attributes that 
are selected in the optimal DTs in Section 3.5. 
 

Table A. 1 Contingency-independent CSRs in DT3 

No. Bus1 Bus2 Bus1 Name Bus2 Name Predictor  
1 3901 4974 MARYSVIL    345. ROCKPORT    765. A_x_y 
2 4811 5648 DESOTO      345. DUMONT      765. A_x_y 
3 35 1409 AMOS        765. JACKSONS    765. A_x_y 
4 4186 4513 SWLIMA      345. HYATTCS     345. A_x_y 
5 1409 4186 JACKSONS    765. SWLIMA      345. A_x_y 
6 195 2116 KANAWHAR    345. HANGINGR    765. A_x_y 
7 2221 4767 ORANGE      765. BREED       345. A_x_y 
8 35 1277 AMOS        765. CLOVERDA    765. A_x_y 
9 129 4974 CULLODEN    765. ROCKPORT    765. A_x_y 
10 1440 4767 MATTFUNK    138. BREED       345. A_x_y 
11 129 1409 CULLODEN    765. JACKSONS    765. A_x_y 
12 35 2221 AMOS        765. ORANGE      765. A_x_y 
13 4974 5983 ROCKPORT    765. TWINBRAN    345. A_x_y 

 
Table A. 2 Contingency-independent CSRs in DT4 

No. Bus1 Bus2 Bus1 Name Bus2 Name Predictor  
1 5648 8112 DUMONT      765. WILTONCE    765. I_x_y 

I_x_y 2 1440 1586 MATTFUNK   138. SHAWSVIL    138. 
I_x_y 3 1097 1409 WYOMING     765. JACKSONS    765. 
I_x_y 4 35 129 AMOS        765. CULLODEN    765. 
I_x_y 5 4872 4974 JEFFERSO    765. ROCKPORT    765. 
I_x_y 6 2116 2154 HANGINGR    765. MARQUIS     765. 
I_x_y 7 5599 9473 COOK        345. PALISADE    345. 
I_x_y 8 129 1097 CULLODEN    765. WYOMING     765. 
I_x_y 9 2221 2672 ORANGE      765. KAMMER      765. 
I_x_y 10 1989 2116 NPROCTOR    765. HANGINGR    765. 
I_x_y 11 35 605 AMOS        765. MOUNTAIN    765. 
I_x_y 12 195 622 KANAWHAR  345. SPORN       345. 
I_x_y 13 129 2108 CULLODEN    765. GAVIN       765. 

14 4974 5012 ROCKPORT    765. SULLIVAN    765. I_x_y 
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Appendix A. Critical System Attributes Selected in the Opt. DTs 

 
Table A. 3 Contingency-independent CSRs in DT5 

No. Bus1 Bus2 Bus1 Name Bus2 Name Predictor 
1 2221 3900 ORANGE      765. MARYSVIL    765. Q_x_y 

Q_x_y 2 539 2116 BAKER       765. HANGINGR    765. 
Q_x_y 3 4767 7791 BREED       345. WCASEY      345. 
Q_x_y 4 35 605 AMOS        765. MOUNTAIN    765. 
Q_x_y 5 5746 5983 JACKSONR    345. TWINBRAN    345. 
Q_x_y 6 4290 4491 BEATTY      345. HAYDEN      345. 
Q_x_y 7 1277 1414 CLOVERDA    765. JOSHUAFA    765. 
Q_x_y 8 4767 12718 BREED       345. WHEATLNA    345. 
Q_x_y 9 35 129 AMOS        765. CULLODEN    765. 
Q_x_y 10 35 1989 AMOS        765. NPROCTOR    765. 

 
 
 
 

Table A. 4 Contingency-independent CSRs in DT6 

No. Bus Bus Name Predictor  
V2_x 1 195 KANAWHAR    345. 
V2_x 2 129 CULLODEN    765. 
V2_x 3 1277 CLOVERDA    765. 
V2_x 4 4767 BREED       345. 
V2_x 5 5983 TWINBRAN    345. 
V2_x 6 35 AMOS        765. 
V2_x 7 1440 MATTFUNK    138. 
V2_x 8 1409 JACKSONS    765. 
V2_x 9 4808 DEQUINE     345. 
V2_x 10 4872 JEFFERSO    765. 
V2_x 11 2221 ORANGE      765. 
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Appendix A. Critical System Attributes Selected in the Opt. DTs 

Table A. 5 Contingency-independent CSRs in DT7 

No. Bus1 Bus2 Bus1 Name Bus2 Name Predictor  
1 5872 14830 OLIVE       345. GREENACR    345. IZ_x_y 
2 2116 4872 HANGINGR    765. JEFFERSO    765. IZ_x_y 
3 1989 2116 NPROCTOR    765. HANGINGR    765. IZ_x_y 
4 1440 1676 MATTFUNK    138. WSALEM      138. IZ_x_y 
5 35 129 AMOS        765. CULLODEN    765. IZ_x_y 
6 2116 7132 HANGINGR    765. CORNU       765. IZ_x_y 
7 4872 4974 JEFFERSO    765. ROCKPORT    765. IZ_x_y 
8 4513 4515 HYATTCS     345. HYATTCS     345. IZ_x_y 
9 36 195 AMOS        345. KANAWHAR    345. IZ_x_y 
10 4767 12718 BREED       345. WHEATLNA    345. IZ_x_y 
11 5599 9473 COOK        345. PALISADE    345. IZ_x_y 
12 35 1989 AMOS        765. NPROCTOR    765. IZ_x_y 
13 3901 4518 MARYSVIL    345. HYATTOP     345. IZ_x_y 
14 195 622 KANAWHAR    345. SPORN       345. IZ_x_y 
15 651 1409 BROADFOR    765. JACKSONS    765. IZ_x_y 

 
Table A. 6 Contingency-independent CSRs in DT8 

No. Bus1 Bus2 Bus1 Name Bus2 Name Predictor  
1 5872 14830 OLIVE       345. GREENACR    345. IZ_x_y 
2 2116 4767 HANGINGR    765. BREED       345. A_x_y 
3 539 2116 BAKER       765. HANGINGR    765. Q_x_y 
4 35 605 AMOS        765. MOUNTAIN    765. Q_x_y 
5 4872 4974 JEFFERSO    765. ROCKPORT    765. I_x_y 
6 1376 1440 HANCOCK     138. MATTFUNK    138. Q_x_y 
7 5648 8561 DUMONT      765. GREENTOW    765. I_x_y 
8 35 129 AMOS        765. CULLODEN    765. Q_x_y 
9 195 4974 KANAWHAR    345. ROCKPORT    765. A_x_y 
10 5599 9473 COOK        345. PALISADE    345. I_x_y 
11 35 129 AMOS        765. CULLODEN    765. I_x_y 
12 129 1097 CULLODEN    765. WYOMING     765. Q_x_y 
13 2116 2154 HANGINGR    765. MARQUIS     765. Q_x_y 
14 4290 4491 BEATTY      345. HAYDEN      345. Q_x_y 
15 4513 4514 HYATTCS     345. HYATTCS     345. Q_x_y 
16 3901 4518 MARYSVIL    345. HYATTOP     345. I_x_y 



 

Appendix B. Structure of Optimal DTs in Section 3.5 

This appendix depicts all the CSRs in the structure of the optimal DTs that are trained in Section 3.5. Due to space limitation, the 
thresholds of the CSRs and details of each node are not shown. The blue nodes denote stable terminal nodes and the red ones represent 
the insecure nodes. 
 

 
Figure B. 1 Structure of DT3 with critical splitting rules 
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Appendix B. Structure of Optimal DTs in Section 3.5 

 
Figure B. 2 Structure of DT4 with critical splitting rules 
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Appendix B. Structure of Optimal DTs in Section 3.5 

 
 

Figure B. 3 Structure of DT5 with critical splitting rules 
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Appendix B. Structure of Optimal DTs in Section 3.5 

 
Figure B. 4 Structure of DT6 with critical splitting rules 
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Appendix B. Structure of Optimal DTs in Section 3.5 

 
Figure B. 5 Structure of DT7 with critical splitting rules 
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Appendix B. Structure of Optimal DTs in Section 3.5 

Figure B. 6 Structure of DT8 with critical splitting rules 
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