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Executive Summary 
 
Cascading failure occurs when an initial disturbance in a power transmission system propagates 
to cause a widespread blackout. Large cascading failures are not frequent, but they have 
substantial risk due to their large societal costs. The August 2003 cascading blackout of portions 
of the northeastern U.S. and eastern Canada had direct costs of the order of $6-$10 billion. Large 
blackouts can also have significant indirect effects, including negative perceptions of the electric 
power industry and changes in industry regulation.  
 
The project has pursued advances in methods to address cascading failure risk, particularly fast 
simulation for online support for operators, fast computation of emergency islanding control to 
mitigate cascading, and methods to monitor and quantify cascading risk from recorded or 
simulated data. 
 
Part A: High Speed, Extended-Term Time Domain Simulation for Online Cascading 

Analysis of Power Systems 
 
Use of online tools by system operators to mitigate cascading failure risk has been limited by 
computational complexity and time. Part A makes algorithmic improvements in numerical 
methods. 
 
In a previous PSERC project we made progress toward providing operators with very fast 
computational tools to predict system response and to identify corrective actions for low 
probability, high-consequence catastrophic events (e.g., blackouts). These tools relied on 
analytical modeling and fast numerical simulation studies. The computational efficiency was 
mainly harnessed by reducing the solution time for solving sparse linear systems. 
 
In this project we have made further progress towards increasing computational efficiency of 
time domain simulators through algorithmic improvements and application of new integration 
algorithms. We used the Hammer-Hollingsworth 4 (HH4) algorithm which has all the properties 
of Trapezoidal integration algorithms commonly found in time domain simulation in commercial 
software. Hammer-Hollingsworth 4 has higher order precision because it is a higher order 
algorithm. It can speed simulation solutions because it is capable of larger time steps during a 
simulation.  
 
We developed a new algorithm implementation design using parallel platforms. The essential 
design feature is the separation of the stiff and non-stiff part from differential algebraic equations 
(DAE) via a recursive projection method. Both parts are then solved through parallel 
implementation. This work exploits the error estimation for stiffness detection. For the stiff part, 
waveform relaxation is used for further division of the non-linear equations obtained from the 
DAE via discretization with integration algorithms. The non-linear equations are solved with 
Newton-based methods using fast sparse libraries from the public domain.  
 
To achieve high computationally efficiency suitable for online time domain simulation, we used 
a combination of (1) state-of-the-art algorithms for integration, (2) solvers for non-linear and 
linear equations, and (3) efficient hardware.  
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We plan to continue our online tool development research through implementation of the parallel 
strategy. 
 
Part B: Power System Reconfiguration Based on Multilevel Graph Partitioning 
 
Power system reconfiguration is an emergency control against cascading events. Reconfiguration 
responds to a worsening operating condition and isolates the impact of a disturbance by isolating 
a specific area. In anticipation of a vulnerable operation condition, the power network can be 
partitioned into two or more subsystems (i.e., electrical islands). If a major problem occurs in a 
subsystem and it is successfully isolated, the remaining system can still operate in an acceptable 
condition. Such a network reconfiguration strategy is a “Smart Grid” technique to enhance the 
shock absorption capabilities of a power system.  
 
Determination of the system partitioning strategy is a challenging task due to the large-scale 
nature of power systems and the complexity of system operating constraints. In our research, we 
develop an area-partitioning algorithm that applies the state-of-the-art multi-level graph 
partitioning technique to obtain a new system configuration with minimized real and reactive 
power flows on the partitioning boundary. The proposed algorithm is intended to sustain the 
system frequency and voltage after islanding by minimizing the real and reactive power 
imbalance within each island. 
 
Simulation results on a 200-bus system showed that the area-partitioning method performs better 
than an algorithm that only considers real power balance. The higher performance is achieved by 
incorporating reactive power balance, thereby improving the voltage profile. The proposed 
algorithm successfully separated a 200-bus system into two stable islands and avoided a system 
collapse. Simulation results on a 22,000-bus system demonstrated that the proposed algorithm is 
highly efficient. As a result, we found that it is feasible to determine the optimal partitioning 
strategy and identify the new configuration in a real-time environment. 
 
The next steps are to validate on very large test systems, adjust the partitioning to take account of 
company boundaries, and determine the wide area protection and control systems needed for 
implementation. Moreover, post-islanding controls, such as automatic capacitor switching and 
automatic generation control, should be developed to further stabilize the islands formed by 
system reconfiguration. An automatic defense system scheme that integrates area partitioning 
operations, load shedding and post-islanding control actions should be investigated in the future 
research. 
 
Part C: Methods to Estimate Propagation and the Distribution of Blackout Extent for 

Cascading Blackouts 
 
In cascading failure blackouts, initial outages become widespread by propagating to cause 
further failures. We developed and tested methods of quantifying the amount of propagation 
using both observed utility data and simulated cascading outages. The amount of propagation 
describes the power system resilience to cascading failure and is a key parameter of high-level 
models that can estimate the statistics of the blackout size. The project showed that two such 
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high level probabilistic models of cascading failure were close to each other and generally 
consistent with the observed and simulated data. That is, high-level models can, in most of the 
cases tested, estimate the distribution of blackout size from the size of the initial failures and the 
amount of propagation.  
 
For cascading failure simulations, we showed that the chance of large cascading blackouts can be 
estimated with many fewer simulation runs. Two measures of blackout size are (1) number of 
transmission lines outaged and (2) amount of customer load that is outaged. We developed 
methods for both measures and analyzed them with simulated data. 
 
The observed blackout data was the transmission line outage data that must be reported to North 
American Electric Reliability Corporation using the Transmission Availability Data System. We 
computed how these transmission line outages propagated, showed that the data was consistent 
with a high-level probabilistic model, and then showed how to estimate the statistics of the total 
number of line outages. This appears to be a practical method of quantifying cascading failure 
based on data available to the industry. One outcome is that the statistics of the total number of 
lines outaged can be determined from much shorter data records. (The alternative of waiting for 
enough large blackouts to occur to get meaningful statistics takes too long.) Access to testing 
data is so far limited, but the results on the available data are very good. 
 
The next steps are to obtain more observed data sets to gain more experience with applying the 
calculations, design new metrics for cascading failure to summarize the information in the 
calculations, and make the calculations available to industry with software so that the 
calculations can be tested and improved with industry advice. 
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1. Introduction 

1.1 Overview 

A cascading event is recognized as chronological sequence of multiple lower-order 
dependent events from [1]. Caused by an initial disturbance on power transmission system, 
cascading failure can propagate to become a widespread blackout. Although the most severe 
cascading events occur infrequently, however when they occur they can have significantly 
economic and social impacts. A typical example of a large cascading event is the North 
American blackout that happened in August 2003, which not only had direct impacts on 
residents and customers but also on the regulatory environment and perceptions of the entire 
industry. The vulnerability assessment of cascading events need to be evaluated and managed 
in power system operation and planning, and constructive information about the security of 
the power system, especially on the analysis of high consequence events, needs to be 
supplied to help operators in control center. 

Extended-term time domain simulation is significantly beneficial for the analysis of power 
system security, especially when cascading events occur on the system and span over 
minutes or even hours. This is because the power system response to disturbances is decided 
not only by fast dynamics led by electronic elements, but also by the action of slow processes 
such as rotor of machines and load dynamic. The simulation time from minutes to hours is 
helpful to investigate the effect of a series of events on power system and unearth the power 
system’s ability to withstand large disturbances over extended periods of time. Due to the 
fact that such information is not available today in control centers with dynamic simulation 
tools, it is meaningful and necessary to provide operators with more information about 
extended-term simulation, which makes it easy to see the impact brought by the potentially 
possible high consequence events  

There are mainly two objectives for the extended-term time domain simulation of power 
system, 1) online monitoring and tracking of high consequence events, 2) providing 
preventive or corrective action strategies for mitigating the impact of the high consequences 
events. For online application of extended-term simulation, one feasible idea is to simulate a 
system with the well selected contingencies (N-1 and N-k) as fast as possible and then 
corresponding corrective or preventive actions are taken to decrease damage to the system. 
[1,2,3] The simulation process associated with contingency selection and corrective operation 
can be illustrated in Figure 1, which includes three parts, 1) contingency selection, 2) time 
domain simulation and 3) intelligent and automatic operation part.   
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Figure 1.  Relationship between contingency selection, time domain simulation,  

and corrective operation 

 

 
For a power system in normal operation, all state variables are in balanced state, which 
means that all state variables describing the system don’t vary with the time.  The balance of 
the system can be broken by a potential event such as outage of transmission lines due to 
lightning and the impedance matrix Y of the system will be changed due to the outage of 
transmission lines. Contingency selection part in 

Contingency selection 

Figure 1 supplies the contingencies (n-1) 
from the networks topology processing of EMS (Energy Management System) or potential 
possible contingencies via historic statistic data. The cascading events are usually trigged by 
protection system, and with the analysis of protection system the potential high consequence 
event(n-k) can be supplied, in which a lot of research has been done [1].   

 
Because of the change of impedance matrix Y due to the potential events, some state 
equations describing the system will be not be balanced and dynamic process of many 
dynamic elements such as generators, excitation, governors and load will occur. The essence 
of analyzing the dynamics of power system is to solve a large set of differential algebraic 
equations (DAE). The initial values describing the differential equations can be acquired via 
computation of power flow when the system is in static state. 

Time domain simulation 

 
After the occurrence of a potential high consequence event, a stable case is one in which each 
variable in the DAE system describing the power system is able to achieve a new balanced 

Intelligent and automatic operation part 
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point and each variable is within an acceptable bound. However, for the most of cases, the 
high consequence event may lead to the instability or oscillation of system, and also some 
variables may become out of the acceptable bounds. Corrective actions like load shedding, 
generation re-dispatch and reactive power compensation, can be taken to prevent the possible 
cascading outages. The information about these actions can be supplied by computations, 
such as optimal power flow, or the experience of operators. 

During this simulation process, high computational efficiency plays a decisive role in the 
whole application, since the faster the simulation is, the less damage there will be. On the 
other hand, highly efficient time domain simulation is always welcomed for offline analysis 
of power system security, especially when the power system is of large scale. It usually 
happens that much longer time has to be taken to simulate a large scale system for very short 
period. High speed of extended-term time-domain simulation for a large scale system is 
required for both industrial usage and academic research. 

1.2 High Speed Extended Term (HSET) Time Domain Simulator (TDS) 

High-speed extended term (HSET) time domain simulator (TDS) is of a new functionality for 
control center security assessment. This functionality is motivated by the low-probability, 
high consequence events to which the power system is continuously exposed. Such events, 
usually comprised of multi-element (so-called “N-k”) outages, often causing additional 
cascading events spanning minutes or even hours, are typically perceived to be unlikely and 
therefore undeserving of preventive action and the associated increased costs due to off-
economic dispatch typically involved in preventive action. Yet, such events do occur, and in 
today’s energy control centers, operational personnel have no decision-support function 
available to assist them in identifying effective corrective action, or even in becoming 
familiar with system performance under such events[4] .  

HSET-TDS, intended to be a part of the energy management system (EMS), contains the 
following attributes: 

Probability-based contingency selection: Contingencies are selected based on topological 
processing of node-breaker data based on user-specified probability order of magnitude.  

Extended-term: Cascading sequences can play out over several hours, and so HSET-TDS has 
capability to simulate for this time frame. 

Computational efficiency: Time-domain simulation, involving the solution of numerical 
integration, is computationally intense. Therefore, it has been extremely challenging in 
today’s control centers to implement associated functionality even for a short amount of 
simulated time, e.g., 10 seconds, for a limited number of contingencies. On-line simulation of 
minutes to hours for a very large number of contingencies requires computational efficiency 
several orders of magnitude greater than what is today’s state-of-the-art. 

Fast and slow-dynamics: HSET-TDS must capture phenomena such as inertial instability 
affected by traditional fast dynamics (e.g., machine, excitation, speed-governing) but also 
phenomena such as voltage instability and cascading affected by slow dynamics (e.g., AGC, 
thermal changes in boilers, tap changing, and load variation). 
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Failure detection: HSET-TDS must detect, within the simulation, unacceptable system 
performance such as out of step conditions, voltage deterioration, and thermal overload. 

Corrective action identification: Failure detection must be followed by, within the 
simulation, the identification of corrective actions such as redispatch, load shedding, network 
switching, or islanding.  

Result storage: HSET-TDS may be helpful in a responsive mode where it is run following 
initiation of a severe disturbance. Alternatively, we envision that it will play a heavy role in 
an anticipatory mode, continuously computing responses to many contingencies and storing 
preparatory corrective actions that would be accessed by operational personnel should one of 
the contingencies occur. The goal is to cover as much as the event-probability space as 
possible within a particulate computing time, e.g., 1 hour. Results can be archived and re-
used when similar conditions are met. 

1.3 Motivation 

In order to meet the requirement of on-line security assessment, we have been developing a 
new functionality that we refer to as high-speed extended term (HSET) time domain 
simulator (TDS). HSET-TDS, intended to be a part of the energy management system 
(EMS), contains the attributes, such as probability- based contingency selection, extended-
term, computational efficiency, fast and slow dynamics, corrective action identification and 
result storage. An important attribute of HSET-TDS is very fast on-line computational 
capability to predict extended-term dynamic system response to disturbance. This work 
mainly focused on the acceleration of the extended term time domain simulation of power 
system from the following five perspectives, 1) hardware, 2) integration methods, 3) 
nonlinear solvers, 4) linear solver libraries. 

As far as the hardware is concerned, HSET-TDS is being developed on two different 
platforms, sequential computing based on Windows and parallel computing based on Linux, 
which can be shown in Figure 2. The purpose of the sequential computing of HSET-TDS is 
to explore new numerical methods, nonlinear solvers and linear solvers which are suitable for 
time domain simulation of power system, and compare the HSET-TDS with currently 
available commercial software. Besides, for the small and medial scale power system, the 
sequential computing is more meaningful than parallel computing. The parallel computing 
version of HSET-TDS is based on Linux operation systems, which are currently available on 
parallel computing clusters of HPC-Class, and IBM Bluegene/L in Iowa State University. 
The goal of parallel computing of HSET-TDS is to explore the parallel computing algorithms 
suitable for extended term time domain simulation when the power system is large. 
Additionally, we intended to make use of high performance computer, IBM Bluegene/L, with 
large processors (1024), to experiment whether a high simulation speedup can be acquired. 
The parallel computing version of HSET-TDS is also intended to meet the requirement of 
high speed for online simulation of cascading on large power systems. 
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Figure 2.  Hardware platforms of HSET-TDS 
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Figure 3.  Structure of numerical methods in HSET-TDS 

 

HSET-TDS has been developed to include numerical methods as many as possible to find the 
more suitable ones, and the structure of HSET-TDS related to numerical methods is shown in 
Figure 3. The motivation of exploring each categories can be described as follows: 
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 Strategies. 

The classification of strategies is introduced in Chapter 2, and it includes alternating solution 
method and direct solution method. The motivation of this part is to find a suitable and 
efficient programming structure for HSET-TDS, and then to make the execution of 
integration methods, nonlinear solvers and linear solvers more flexible.  

 Integration methods 

The integration methods in HSET-TDS have been developed to include many methods, 
including explicit methods, implicit method and projection methods, which are controlled by 
users and are intended to be applied into simulation freely. The motivation of this part is to 
explore new integration method which is suitable for power system. An integration method, 
which is called Hammer-Hollingsworth 4 (introduced in Chapter 3), has been applied for the 
first time for time domain simulation in the HSET-TDS, and some satisfying simulation 
results have been achieved. 

 Nonlinear solvers 

Nonlinear solvers are indispensible part in the solution of differential algebraic equations. 
The motivation of this part is to explore some parallel algorithm (such as Waveform 
Relaxation), which is able to separate the algebraic equations into independent parts and 
make the parallel computing easily realized. 

 Linear solver libraries 

The process of solving Ax=b is necessary in the solution of algebraic equations when 
Newton method is used. Currently, there are many open source sparse linear solver libraries 
available in the world, such as GMM++, SuperLU, UMFpack, MUMPS. Some of these 
libraries are just for sequential computing, and some can be used for parallel computing. 
Besides, the performance of these libraries are different because of different methods and 
different programming approaches. Additionally, since the jacobian matrix in power system 
is high sparse, and the sparsity can impact the simulation performance tremendously. It is 
meaningful to include as many as linear solvers in HSET-TDS and compare the 
performances of these linear solvers. 

Focusing on strategies, integration methods and linear solver libraries on how to enhance the 
efficiency of time-domain simulation, this work introduces a strategy of directive solution 
method, a new implicit integration method of Hammer-Hollingsworth 4(HH4), and serial & 
parallel SuperLU library of open source linear solver. Using small and large scale power 
system cases, all of proposed numerical methods are compared with traditional methods 
adopted in many commercial softwares.  
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2. Approaches for High Speed Execution for HSET-TDS 

2.1 Problem Formulation 

Time domain simulation of power system involves the solution of a large number of 
differential algebraic equations (DAEs), which are constructed based on the modeling of the 
power system electric elements and networks, such as generators, exciters, governors and 
other electronics devices. The general form of the DAEs can be described as follows. 

       (2.1)  

The ordinary differential equations (ODE) in (1a) describe the dynamic property of machines 
and the associated control systems correspondingly. The algebraic equations (AEs) in (1b) 
describe the network steady state equations and the machine algebraic equations.  When a 
series of events such as faults initialization, faults clearing, lines outage, or operation on 
machines are investigated, the DAE system will change, and the changes are dependent on 
the variation of topology and the parameters of machines. 

2.2 Approaches for Time Domain Simulation 

Electric power system contains power networks and many different kinds of elements, such 
as generators, exciters, governors and other electronics devices,  all of which can be describe 
as a set of differential algebraic equations (DAEs)[5,6]. Thus, the essence of time-domain 
simulation is to solve a set of DAEs on time domain. The methodologies for time-domain 
simulation of power system can described as a hierarchical pyramid shown in Figure 4. There 
are five categories of methodologies on programming during the process of solving DAE 
system in power system simulation, 1) hardwares for execute time domain simulation,  2) 
general methods for programming power systems and solving DAE, 3) numerical integration 
methods for discretization of differential equations, 4) numerical iterative solvers for solving 
nonlinear algebraic equations, 5) solver libraries for linear algebraic equations. In this report, 
we define following terminologies to describe each hierarchical category. 

 

 
Figure 4.  Hierarchical pyramid for time-domain simulation 
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Hardware – the hardware where the time domain simulation is executed. It can be classified 
into platforms for sequential or parallel computing.  

Strategy – the general methods for constructing the DAE system and programming the 
solution of the system. There are two strategies in this category, alternating solution method 
and direct solution method[6]. 

Integration method – the numerical integration methods for discretizing the ordinary 
differential equations (ODE) in the whole DAE system. 

Nonlinear solvers – the numerical iterative solvers for solving nonlinear algebraic equations. 
The usual solver for this category is Newton method, which can be utilized to solve the value 
of next time step in the ODE system when implicit integration methods are used and solve 
the algebraic variables in the DAE system after the differential variable of the next time have 
been obtained. 

Libraries – the various solvers for linear algebraic equations like Ax=b which are 
indispensible in the process of Newton method. There are many available open source 
libraries for this category, such as Gmm++, SuperLU.  

During the process of time-domain simulation, the selection of different choices in each 
hierarchical category of the pyramid will lead to different programming scheme, different 
computational efficiency and different computational precision. Besides, the different choice 
in the top category has much influence on the bottom category, especially in the 
computational quantity. Currently, much information for each category in Figure 4 is 
reported in the technique papers of many kinds of commercial software for the time-domain 
simulation of power system, such as PSS/E [7 ], BPA [6], ETMSP [8 ], EXTAB [9 ], 
EUROSTAG [10,11].  The following sections will discuss each category respectively. 

2.3 Hardware 

Hardware is the basis for any calculation on computers. According to the numbers of 
processors used in the computation of time domain simulation, we classify the hardware into 
the platforms for sequential computing and parallel computing. For the sequential computing, 
the HSET-TDS is generally developed on the PC with windows; while for the parallel 
computing, the HSET-TDS is complied and built on Linux operation system which is 
adopted by high performance computers in Iowa State University. In this section we mainly 
introduce the hardware for parallel computing.  
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Table 1.  High Performance Computing local recourses in Iowa State University  

HPC‐class Cluster  BlueGene/L  Sun 

Front‐end 3.06 GHz dual Intel Xeon 
server with 2 GB of error‐correcting 
memory. 

Front‐end node, service node, 
and storage nodes   

16 compute nodes, 2.8 GHz dual Intel 
Xeons each with 2GB of ECC memory 
and 73GB of scratch disk. 

1024 compute nodes, dual‐core 
PPC440 CPU, 700 Mhz, 512 MB 
RAM 

400 nodes, dual processor, 
AMD quad core, 3200 cores, 3.2 
TB memory, 

 
11 TB storage  96 TB storage 

 
5.7 TF peak compute power  27.6TF peak compute power 

Handles small‐medium jobs  Handles large jobs  Handles large jobs 

 
 
Table 1 illustrates the high performance computers available in Iowa State University. 
HSET-TDS is mainly debugged on two platforms, HPC-class cluster and BlueGene/L. The 
IBM Blue Gene/L represents today’s state of the art in computing. Compared to other 
computing solutions, it is small and very fast, has low power consumption, and is relatively 
inexpensive. These attributes are achieved by providing massive parallelism via thousands of 
processing nodes connected together and organized into a grid, mesh, torus or hypercube 
arrangement to allow each node to communicate with the other nodes. Iowa State University 
has recently purchased a Blue Gene/L consisting of 1024 chips, where each chip has two 
modified PowerPC® 440s running at 700 MHz. The structure of BlueGene/L is shown in 
Figure 5. These chips are connected by five networks having latency of about 4 
microseconds and bandwidth of 350 Mb/sec. Each chip manages 64 compute nodes for a 
total of 65536 compute nodes. The system stands within a rack having power consumption of 
28.14 kW. It has 512 GB of RAM and executes at 5.7 Tflops, in comparison to a 2.8 Ghz 
Pentium machine which typically has about 2 GB RAM and executes at 5.6 Gflops.  A key 
feature of the Blue Gene/L is that its hardware is designed so that computational 
improvements are maximized when an algorithm is inherently parallelizable and 
implemented accordingly. We intend to achieve good parallelization results on Bluegene/L, 
and the preliminary experiments are made on HPC-Class. 
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Figure 5.  BlueGene/L at a glance 

2.4 Strategies 

Power system includes networks and various electric elements. Generator and load are the 
main parts for dynamic analysis. The Figure 6 illustrates the relationship of main variables 
between generator, load and power networks. The number of generators and loads is 
dependent on different cases, and different generators includes different control systems 
constructed by exciters, governors, PSS, etc. Therefore, we cannot use a static mode to 
construct and program the whole DAE system. There are two kinds of strategies of 
constructing and programming DAE system, alternating solution method and direct solution 
method. 
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Figure 6.  DAE construction of power system 
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2.4.1 Alternating Solution Method 

The strategy of Alternating Solution Method (ASM)[6] is adopted in many kinds of software 
such as BPA and EXTAB. The main idea is to solve the injective current of each node using 
the voltage value of last step and then correct the voltage values by solving networks 
equations. The whole iterative process can be illustrated in Figure 7, where it can be seen that 
there are main iterative loop and sub iterative loops during the process of computing the next 
step value of DAE system. The main loop iterates bus voltage between networks, and 
generators and load of inductor motor, while the sub loops iterate the differential variables 
describing dynamics of generators and inductor motors. An advantage of this method is that 
the generators can be replaced by equivalent circuit with constant current sources and 
admittances, which can be also combined to network admittance matrix, and then it will be 
convenient to solve bus voltages by solving linear complex algebraic equations. However, 
much computation has to be added due to the necessary iterative processes from main 
iterative loop and sub iterative loops shown in Figure 7. 
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Figure 7.  The iterative process of Alternating Solution method 

 

2.4.2 Direct Solution Method 

The main idea of direct solution method is first constructing all the ODEs and algebraic 
equations describing electric elements and power networks and then solving the whole 
system DAE with numerical methods. One difficulty of programming and realizing the direct 
solution method is how to organize differential and algebraic variables. A kind of 
organization structure,  keeping sparsity, shown in Figure 8, is adopted in HSET-TDS for 
differential and algebraic variables in a DAE system of power system. It can be noticed that 
this structure includes all the details in the power system, and thus much memory is needed 
to construct the final DAE system. Besides, since the scale of DAE system becomes larger 
compared with that in alternating solution method, it will take much time to solve the bigger 



 

12 

scale linear equations if sparsity is not considered. However, the whole structure in Figure 8 
can hold the variable sparsity in each differential and algebraic equation, and this attribute 
will greatly improve the efficiency of time-domain simulation. Additionally, direct solution 
method is able to supply final expression of power system dynamics, and thus makes it easy 
to apply or change different integration methods to time-domain simulation. 
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Figure 8.  Organization structure of differential and algebraic variables 

(The generator shown is of 4th order model) 

 

2.5 Integration Methods 

Numerical integration methods is the core for the solution of DAE. All the listed commercial 
software utilize similar numerical integration methods, which is shown in Table 2. It is seen 
that trapezoidal rule algorithm is used by each of commercial software in different forms. For 
example, the  -method formula [9] used by EXTAB is trapezoidal rule when 5.0 , and 
2nd order Adams used by EUROSTAG share the same formula with trapezoidal rule. The 
more details about the traditional numerical methods are discussed in Chapter 2. 
Additionally, a lot of investigation has been taken on the developed numerical methods, such 
as multi-rated method[12][13] and stiffness decoupled method[14,15,16] , to make the whole 
DAE solution believable because of numerical stability and stiffness problem. Most of the 
developed methods are based on the trapezoidal rule because of its attribute of A-stability. 

In HSET-TDS, a new integrator named Hammer-Hollingsworth 4 [41] is adopted, and the 
details are discussed in Chapter 3. Hammer-Hollingsworth 4 is not only A-stable sharing the 
same stability domain as Trapezoidal rule, but it also is has the ability to compute the value 
of next point more precisely. The attribute of high precision make it possible to enlarge the 
integration step, and therefore the whole integration times can be substantially decreased.  
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Table 2.  Integration methods adopted by several commercial software 

Commercial Software  Integration Method  Step Technique

PSS/E  Trapezoidal rule  Fixed step 

BPA  Trapezoidal rule  Fixed step 

ETMSP  Trapezoidal rule  Variable step 

EXTAB   ‐method (c=0.47)  Variable step 

EUROSTAG  Mixed Adams‐BDF (2nd order Adams) Variable step 

 

2.6 Nonlinear Algebraic Equations Solver 

The process of solving nonlinear algebraic equations, which is the third stage in Figure 4, is 
indispensible for computing the next step values with the nonlinear equations generated by 
the third stage of integration methods. Also, nonlinear algebraic equations solver supplies the 
linear algebraic equations to the fifth stage in Figure 4, and then these linear algebraic 
equations will be solved by linear equations libraries .There are two main iterative methods 
for solving nonlinear algebraic equations, i) Newton-Raphson method, and ii) Gaussian-
Seidel method. 

2.6.1 Newton-Raphson Method 

Newton-Raphson method is an efficient method to solve the nonlinear equations, and it has 
been used in power system for long time, such as the solution of power flow. The main 
attribute of Newton method is that the solution is solved from the linear optimum (slope) 
direction, and thus the iterative times is least compared to other methods. Figure 9 illustrate 
the flow chart on the relationship between the numerical integration method, Newton method 
and linear solver libraries. In time domain simulation, the linear algebraic equations from 
Newton method is usually of large dimension and high sparsity. To guarantee the 
computational efficiency, it is necessary to adopt sparse linear solver to solve the linear 
equations. 
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Figure 9.  Newton method in time-domain simulation 

 

Additionally, when the integration step becomes big, failure of Newton-Raphson method 
may occur because of bad starting points. Figure 10 from [17] shows three possible reasons 
for the failure of Newton method. Paper [9] introduced a modified Newton method where a 
deceleration factor is introduced. After the deceleration factor is involved, failure of Newton 
method due to “cycle” may be avoided, however the convergent direction is no longer the 
optimum, and thus iteration time will be increased. A strategy used in HSET-TDS to tackle 
with the failure of Newton method is the step control technique discussed in last section, and 
a threshold of iteration times of Newton method is considered be a criterion to vary 
integration step. For the nonlinear algebraic equations 0)( XG , the modified Newton-
Raphson method can be described as follows. 

   






bXJ

XXX nn )()1(

 
       (2.2) 

where  
)( nXX

X

G
J










 denotes Jacobian matrix;  is deceleration factor;    )( )(nXGb  . 

At the beginning the deceleration factor is set to be 1.0, and it will be decreased by a small 
value if the max norm of X is constant or becomes larger. If the whole iteration times 
exceed a setting values, the Newton method is considered to be failure, and the integration 
step will be decreased so that the starting points for a new process of solving 0)( XG with 
Newton method can become appropriate. The whole iteration of Newton method will be 
stopped until the X is smaller than precision tolerance. 
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Figure 10.  Failure of Newton method  

 

2.6.2 Gaussian-Seidel Method 

Gaussian-Seidel method is a natural iterative method for solving nonlinear algebraic 
equations. The main idea of Gaussian-Seidel method is to solve the next step value of one 
variable explicitly by using the same values of last step values of other variables, or using the 
predicted value as initial values to iterate and correct. The predictor-corrector scheme is 
adopted by many commercial software of time-domain simulation, because it can make 
programming easy and conveniently deal with the non-linearity caused by non-linear 
elements (such as amplitude limiter) in power system dynamics. However, different from the 
Newton-Raphson method, Gaussian-Seidel method is not able make the convergent direction 
towards the optimum direction (slop), and therefore there will be more iteration steps and 
more computation in the whole convergent process.  

One idea to develop the original Gaussian-Seidel method is to solve a small group of 
variables in one iterative step using the last step values of other variables. This idea is called 
Waveform Relaxation method based on Gauss-Jacobi relaxation, which has been discussed in 
many papers [18,19,20,21 ]. The main advantage of waveform relaxation method lies in that 
the nonlinear algebraic equations can be decoupled into several parts, where parallel 
computing can be implemented. Therefore, Waveform Relaxation may be competitive 
though the convergent direction of each variable is not optimal. Figure 11 shows the flow 
chart when Waveform Relaxation method is used in time domain simulation. HSET-TDS 
includes the Waveform Relaxation solver with parallel computing, which will be reported in 
future work. 
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Figure 11.  Waveform Relaxation method in time-domain simulation 

 

2.7 Linear Solver Libraries 

Gaussian Elimination is the basic method to solve a set of linear equations, and there are 
many available open source libraries, such as GMM++[22] , SuperLU[23] , for solving linear 
algebraic equations. Since much computation is involved during the process of solving linear 
equations in time-domain simulation, there are many papers on how to efficiently solve the 
linear equations to accelerate time-domain simulation by parallel computing, such Conjugate 
Gradient Method[24] [25] , or how to partition the system via linear equations, such as Block 
Bordered Diagonal Form(BBDF)[26] . The listed commercial software in Table 2 do not 
report what kind linear solver libraries they adopted to solve the linear equations. Chapter 6 
will discuss the open source library of SuperLU, and corresponding comparison with other 
linear solver in GMM++ will be elaborated. 
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Figure 12.  Parallel computing strategy of DAEs for Blue Gene/L 

 

2.8 Overall Design for Parallel Computing On BlueGene/L 

 

Figure 12 shows our overall design for high-speed execution of extended-term dynamic 
security assessment. The solution process divided into three distinct levels. The first level is 
the partition of DAEs into stiff part and non-stiff part by stiffness decoupling method, which 
will discussed in chapter 4. For the non-stiff part, the explicit method will be used to 
discretize the differential equations, which can be directly assigned into m processors since 
these formulated differential equations are naturally decoupled. The second level is the 
partition of the stiff part of the DAE where Waveform Relaxation Method (WRM) with 
Epsilon decomposition algorithm are used to continue to partition the stiff part of the DAE. 
Each partitioned part can be formulated by implicit method to ensure stability. The third level 
is the process of solution with a Newton-like method. Very dishonest Newton (VDHN) can 
be used to fix the Jacobian matrix constant for several steps, and Multi-frontal Massively 
Parallel sparse direct Solver (MUMPS) [27,28] will be adopted to solve the sparse linear 
equations. The final solution of one step will be integrated together, and the computational 
error will be estimated to control the stiffness detection and the step values for stiff part and 
non-stiff part. 
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There are 3 special cases of concern in the design of  

Figure 12.  

At some integration steps, the ODE parts may not be very stiff so that all differential 
equations can be solved by the explicit method, and thus the bottom branch of  

Figure 12 need not be applied.  

Even in the case where stiff parts are detected, it may be difficult to find an epsilon 
decomposition scheme that results in WRM convergence, and so in this case, the lower 
branch of  

Figure 12 will be applied but without WRM; here, load balance can be maintained by 
appropriate parallelization via MUMPS.  

Under the circumstance of failure in stiffness detection, the entire integration is done by 
WRM.  

The ability to detect and respond to these special cases results in a design where the different 
partition methods and linear solution methods cooperate with each other to make the solution 
load of DAE at each processor balanced. A key feature of this design is that the DAE is 
divided into two different integration schemes, one for stiff and one for non-stiff parts, and 
then both parts are solved via a parallelized implementation. Numerical experiments will be 
reported in future work. 
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3. Generator Models and Validation of HSET 

HSET-TDS is designed for fast dynamic simulation of power system, which involves with 
the numerical computation of a large set of differential equations shown in (2.1). With the 
given DAE system, the following chapters are going to introduce how to utilize different 
numerical technique to accelerate the solution of DAE system describing power system 
dynamics. One important issue before showing the simulation results is whether the basic 
DAE system is acceptable, and whether the simulation results is able to match with the 
results from commercial software such PSS/E when the same system is solved. In order to 
satisfy the requirement of the many different practical systems, the HSET-TDS has been 
developed to include the following ten different generator models[29, 30, 31] . 

2nd order simplified Classic model, (just 'dX ) 

2nd order Classic model ( 'dX  and 'qX ) 

3rd order model ( 'qE ) 

4th order model ( 'qE  and 'dE ) 

6th order model ( "qE  and "dE ) 

6th order model  considering generator speed dynamics in stator equations. 

8th order model ( modeling from perspective of flux, no simplification, and considering stator 
dynamics) 

GENROU model ( 'dE , 'qE , 'd , 'q ) 

GENROU model ( 'dE , 'qE , 'd , 'q , and considering speed dynamics in stator equations) 

GENROU model ( 'dE , 'qE , 'd , 'q , and considering stator dynamics) 

However in this chapter, only two of the ten generator models above , namely the 6th order 
model and GENROU model are introduced. Simulation results are compared with those from 
PSS/E and presented.. 

3.1 Generator 6th order model in HSET-TDS (GEN6) 

The basic Generator equations after Park transformation can be expressed as follows. 

 0 0 0 00

0
dq dq dq dqdq

fDQ fDQ fDQ fDQ

u r iS
p

u r i

         
                   

     

 (3.1) 

where  0dqu  Tqd uuu 0  -- stator voltage after Park transformation 

 fDQu  TQDf uuu -- rotor voltage after Park transformation 
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0dqi  Tqd iii 0  -- stator current after Park transformation 

 fDQi  TQDf iii   -- rotor current after Park transformation 

 0dq  Tqd 0
 -- stator flux  

 fDQ  Tqd 0
 -- rotor flux  

 0dqS  Tdq 0 
 

 0dqr  aaa rrrdiag  

 fDQr  QDf rrrdiag  

 
)(sdt

d
p

B
  

The basic flux equations from d-axis and q-axis can be described as follows. 
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       (3.2) 
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When subtrasient process is considered in generator equations, "qE and "dE can be acquired 

according to the diagram shown in figure 13. 
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(a)Expression of d for "qE    (b)  Expression of q for "dE   

Figure 13.  Modeling d  and q  for "qE  and "dE  
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We can define 'qE , 'dE  , "qE , "dE  according to [30] which can be shown as follows. 
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The time constant  '0qT , '0dT  , "0qT , "0dT can be expressed as follows. 

g

g
q r

X
T '0

   (3.8)    
f

f
d r

X
T '0

  (3.9) 

Q

g

aq
Q

q r

X

X
X

T

2

0"



   (3.10)    
D

f

ad
D

d r

X

X
X

T

2

0"



  (3.11) 

The transient and sub transient inductance can be described as follows. 

aqlq XXX '    (3.12)   adld XXX '    (3.13) 

glaqlq XXXX //'    (3.14)   fladld XXXX //'    (3.15) 

Qlaqlq XXXX //"    (3.16)   Dlfladld XXXXX ////"   (3.17) 

From the equations of flux on d-axis and q-axis shown in (3.6) and (3.7) and the rotor 
mechanical equations, we can get the 6 order differential equations and 2 stator voltage 
equations to describe synchronous generator. 
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where fE and mT are the voltage from excitation and the mechanical torque from prime 

turbine.  In HSET-TDS, the available model for excitation and governor are IEEE1 excitation 
model as in PSS/E (or EXC-1A as in ETMSP) and GOV1 model as in PSS/E (or GOV-8 as 
in ETMSP) respectively  [32] [33]. The description of these two model can be illustrate in 
Figure 14 and Figure 15. These two excitation and governor model can be embedded with all 
generator models in HSET-TDS if there are input of fE and mT . Besides, these two models 

are just for research grade use, which means that for the dynamic data from practical power 
system the dynamic data needs to be revised to match these two models. However, these two 
models are enough for the objective of comparison between HSET-TDS and commercial 
software such as PSS/E. 
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Figure 14. IEEE1 excitation model  
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Figure 15.  GOV1 excitation model 
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3.2 GENROU Model in HSET-TDS 

GENROU [33] is a standard generator model, which is widely used in practical dynamic 
analysis of power system. According to the dynamics data from PJM in May of 2009 with 
around 10000 buses system, over 90% of the generators use GENROU model. The manual of 
PSS/E supplies the diagram about how to express "d and "q  from d-axis and q-axis, which 

can be shown in Figure 16 from [33]. 

 

 

Figure 16.  Electromagnetic model of Round Rotor Generator from PSS/E [33] 
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Figure 17.  Voltage behind subtransient reactance model [34] 

 

[34] supplies similar diagram of GENROU which is shown in Figure 17. It can be found that 
these two diagram is basically the same with respect to the differential part but different with 
respect to saturation. In HSET-TDS, the GENROU model does not consider saturation 
currently, and the differential parts follow the diagram in Figure 17.  The mathematical 
equations about 'qE , 'dE  , "qE , "dE can be described as follows: 
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qdad iru            (3.32) 

dqaq iru            (3.33) 

 

Similarly with the 6th order model, fE and mT in GENROU can be embedded with the IEEE1 

or GOV1 model. Besides, these two values can be set to constant depending on different 
situation. As far as the stator equations in the GENROU model described above are 
concerned, it can be found that there are some difference compared with stator expression 
(3.1).  There are two assumptions about the stator equations 

The stator dynamics is not included, which means 
dt

d d
and 

dt

d q are too small to be 

involved. In the process of disturbance, the speed of generator rotor is around its rated value, 
and then  1  . 
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The first assumption is acceptable since 
dt

d
is much less than   in practical case, and 

therefore the stator equation becomes to be linear equations. The second assumption is 
acceptable, since there are many control unit to render rotor speed around rating value such 
that the system frequency can be guaranteed around rated values. In HSET-TDS, there are 
auxiliary model about GENROU, which includes the dynamics of stator or variable rotor 
speed in stator equations. The comparison and analysis with report to this issue is going to be 
shown in the future report. 

3.3 Validation of HSET-TDS by PSS/E 

In this section three cases are adopted to make the comparison between HSET-TDS and 
PSS/E. The first case is the New England 39 buses and 10 generator system, and the second 
one is the expanded system of 39 buses system. In HSET-TDS, initial values of DAE system 
is calculated by power flow, which is based on Newton-Raphson method. There are 
differential equations,  algebraic equations  and  variables. The integration methods used in 
the cased is variable-step Trapezoidal rule, which will be discussed in next chapter. The 
nonlinear solver is based on Newton method, and SuperLU library is chosen as linear solver. 

3.3.1 Case of New England 39 buses, 10 gen system 

IEEE New England 39 Bus 10 Gen system is a simplified system, which can be shown in 
Figure 18. In HSET-TDS, GEN6 and GENROU are adopted for simulation, while in PSS/E 
GENROU is adopted. fE and mT  are assumed to be constant in each software.  The event of 

the case is selected to be bus fault on bus 17 starting from 0.5s and lasting for 0.1s. The 
voltage of bus 37 and the speed of G8 will be monitored. The whole simulation lasts for 10 

second.   

Figure 20 shows the simulation results from HSET-TDS and PSS/E. 

3.3.2 Case of expanded 3900 bus system 

In order to verify the ability of HSET-TDS to solve large systems, a large system is 
constructed from the basic 39 bus system. The idea of expanding New England 39 buses 
system is to copy the systems for several times and then connect the buses within each 
system. To guarantee the stability of large system constructed, the transmission lines 
connecting each 39 buses system are of small impedance. This constructing approach is 
similar to the way of connecting large system nowadays utilizing ultra high voltage 
transmission lines.  

In this case, the 39 buses system is going to be copied for 100 times according to the mesh 
shown in Figure 19. Bus 2, 9, 23, 29 are going to connected to adjacent systems. The new 
large system contains 3900 buses, 1000 generators and 4960 lines. In the DAE system, there 
are 6000 differential equations, 18000 algebraic equations and 24000 variables when Gen6 is 
adopted. 
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The event of the case is selected to be bus fault on bus 17 starting from 0.5s and lasting for 
0.1s. The voltage of bus 37 and the speed of G8 will be monitored. The whole simulation 
lasts for 10 second.  

 

 

Figure 18.  New England 39 buses 

 

 

(a)Original 39 buses system       (b)Expanding mesh 

Figure 19. Expanded system from New England 39 bus system (10×10) 
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(i)HSET-TDS with Gen 6 

   

  (ii) PSS/E 

  

(iii) HSET-TDS with GENROU 

(a) Voltage of Bus37   (b) Deviation of Speed on Gen8 

 

Figure 20.  Simulation results of New England 39 bus system 
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(i)HSET-TDS with Gen 6 

   

(ii) PSS/E 

  

(iii) HSET-TDS  with GENROU 

(a) Voltage of Bus37    (b) Deviation of Speed on Gen8 

 

Figure 21.  Simulation results of expanded 3900 bus system 
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Figure 21 shows the simulation results from HSET-TDS and PSS/E. From the simulation 
results in  

Figure 20 and  

Figure 21, it can be seen that the simulation results with the generator model of Gen6 and 
GENROU in HSET-TDS are totally the same. However, compared with GEN6 model since 
there is two more algebraic variables in GENROU which are d  and q , there are more 

algebraic equations in DAE system when GENROU model are used. Furthermore, it can be 
seen that the simulation results from HSET-TDS are nearly the same as those from PSS/E. 
The validation of HSET-TDS is able to make the simulation results in the following chapters 
more convincing and trustable. 
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4. Hammer-Hollingsworth 4 (HH4) Formula 

In this Chapter, a new integration method, Hammer-Hollingsworth 4 (HH4), will be 
introduced. The motivation of exploring the new integration method lies in that the 
traditional integration method adopted by most of commercial software is Trapezoidal rule, 
which is able to deal with not only stiffness problem but also hyper stability problem. 
However, due to that fact that the Trapezoidal rule is of second order precision, the 
integration step need to be small enough to guarantee the precision. We try to find a new 
integration method, which shares the same stability attribute with Trapezoidal rule but has 
advantage of higher precision than Trapezoidal rule.  

4.1 Traditional Integration Methods for Power System Simulation 

Discretization with numerical integration methods is a crucial process in solving any 
differential equations. A suitable integration methods for time-domain simulation of power 
system need to possess attributes which can cope with two problems, 1) stiffness problem 
and 2) hyper-stability problem. Since there are many various electric elements (generators, 
excitation, governor, PSS, ect.) with different time constants in power system, the DAE 
system describing power system can be stiff[14, 15, 16]. Stiffness problem can lead to large 
error in simulation or even make some integration methods like explicit methods not work 
[35]. On the other hand, [10] reported the phenomenon of hyper-stability of some numerical 
methods, which can make a really unstable system simulated as a stable one. Because the 
main goal of time-domain simulation is to check the stability of power system, the ability to 
deal with hyper-stability problem can be a criterion for a suitable integration method for 
time-domain simulation. 

Since the analysis of stiffness problem and hyper-stability problem involves with numerical 
stability analysis of integration methods, we will focus on the stability analysis of several 
integration methods used in current commercial software in this section, Trapezoidal Rule, 
Theta-method, Adams method and BDF. Besides, the local truncation error estimation of 
these methods is analyzed. 

4.1.1 Trapezoidal rule 

Trapezoidal rule is a second order implicit integration method which is popularly adopted in 
many software such as BPA and PSS/E. For the ODE system 

0 0

( )

( )

x f x

x t x


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
          (4.1) 

the trapezoidal rule can be described as 

 1 1( ) ( )
2n n n n

h
x x f x f x           (4.2) 

where h  is integration step. 

For the DAE system of (2.1), the Trapezoidal rule can be described as 
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We will discuss trapezoidal rule from two aspects, numerical stability and numerical 
precision. 

4.1.2 Numerical stability of trapezoidal rule  

Assume that the general form of a differential equation is ),( xtfx  . We linearize f in its 
neighborhood as follows. 
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Thus (1) can be transformed to 

xx             (4.6) 

Expression (3.6) is usually called test equation (see the definition as follows). For a set of 
differential equations, i are the eigenvalues of Jacobian matrix. 

Now we apply a numerical method to expression (3.6), for example Forward Euler method. 

nnnnnn xzRxhRxhxhxx )()()1(1       (4.7) 

where hz  . Assume that there is disturbance n  on nx , and the resulting disturbance on 

1nx is 1n . 

Then,  nn zR  )(1  . If we want nn  1 , we just need 1)( zR . 

Definition [35]: The function )(zR  is called the stability function of the method. It can be 
interpreted as the numerical solution after one step for 

  xx  ,  with 10 x , hz  , 

the famous Dahlquist test equation. The set  

  
 1)(;  zRzS C
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is called the stability domain of the method. 

It can be seen that the stability function of Forward Euler method is zzR 1)( , which is a 
unit circle in complex plane shown in Figure 22. If we apply trapezoidal rule (3) into 
Dahlquist test equation, we can acquire the stability function of trapezoidal rule, which is 

1 / 2
( )

1 / 2

z
R z

z





         (4.8) 

The stability domain of trapezoidal rule can be shown in Figure 22, which is the whole left 
part of complex plane. Trapezoidal rule is able to deal with stiffness problem, since it 
possesses the attribute of A-Stability. A method whose stability domain includes the whole 
left plane is called A-Stable [35]. If an explicit method doesn’t work for an ODE system and 
z is out of stability domain due to either too large integration step or too large eigenvalues 
(for example the point B in the Figure 22), trapezoidal rule is still able to make the numerical 
error convergent because z is still in the left part of complex plane.  However, it does not 
mean that we can select any large integration step for simulation due to the fact that 
trapezoidal rule can make the numerical error convergent when z is in the left part of 
complex plane. The global truncation error is still dependent on the local truncation error. 
Additionally, if an eigenvalue is positive and z is on the right part of complex plane, the 
whole system is unstable and the numerical error will be divergent. In this case, the 
simulation results will depend on the numerical precision of the integration method. The 
point C in Figure 22 shows this scenario, and we can find that trapezoidal rule is able to give 
an unstable result since 1)( zR  and nn xx 1  . 
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Figure 22.  Stability domain of Trapezoidal Rule and Forward Euler 
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4.1.3 Numerical precision of trapezoidal rule  

For the ODE system (3.1), the exact value of the next step can be expressed as follows 
according to Taylor expansion. 
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)( 1nxf  in expression (3.1) can be expanded by Tylor expansion, and the trapezoidal rule 

can be written as 
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Then the local truncation error of trapezoidal rule is 
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It can be seen that trapezoidal rule can guarantee the precision 2h for simulation results. 

4.1.4 Theta method 

There are two kinds of forms of theta method. For the ODE system (3.1), the first form of 
theta method [36] can be described as 

 1 1(1 )n n n nx x hf x x            (4.12) 

where   is a parameter with 0 1  . 

The second form of theta method [9, 37, 38, 39] can be described as 

 )()()1( 11   nnnn xfxfhxx  .     (4.13) 

where   is a parameter with 0 1  . 

The second form of theta method is adopted in EXTAB, and we will focus on the analysis of 
stability and precision of 2nd-form theta method. 

4.1.5 Numerical stability of theta method  

Apply the theta method (3.13) into Dahlquist test equation, and we can acquire its stability 
function, which is 
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Thus, the stability domain of theta method (11) is 
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There are following special cases when 5.0 , 0 , 1 . 

If 5.0 , the theta method becomes to be trapezoidal rule, and the stability domain is the 
whole left part of complex plain.   

If 0 , the theta method becomes to be Forward Euler method, and the stability domain is 
a unit circle in the left part of complex plain. 

If 1 , the theta method becomes to be Backward Euler method, and the stability domain is 
the whole complex plain except the unit circle in the right part of complex plain. 

If 5.0 , then the stability domain of theta method (11) can be written as 
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Figure 23.  Stability domain of Theta Method 

 

The Figure 23 shows the stability domain when   is 0, 0.25, 0.5, 0.75, and 1. It can be found 
that the theta method lose A-stability when 5.0 . Similar with the case of explicit method 
like Forward Euler method, the theta method ( 5.0 ) is not suitable for time domain 
simulation because integration step has to small enough to make z within the stability domain 
if there is a big eigenvalue. When 5.0 , it can be found that the stability domain contains 
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the whole left part of complex plane and some area of right part of complex plane, thus the 
theta method ( 5.0 ) is A-stable. However, the area of stability domain in right part of 
complex plane can lead to hyper-stability problem. 

Hyper-stability problem is that the simulation result shows a stable one while actually the 
ODE system is unstable. An example can be shown to illustrate the phenomenon. Consider 
the following ODE system, 

2)0(,2)0(
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400100

21

212

211
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

xx
xxx

xxx





         (4.15) 

ODE system (3.15) is a linear system, with two eigenvalues 100 200 j . According to 
Lyapunov stability theory, system (3.15) is unstable. Figure 24 shows the simulation results 
of  1x  , 2x  by the numerical method of theta method ( 0  , also Backward Euler) , and the 

corresponding points of z.  It can be found that when 410h  , 1 1 0.01 0.02z h j   , which 

is outside the stability domain, the simulation result is divergent and close to exact solution, 
which is simulated with 510h  . However, when 0.005h  , 1 1 0.5z h j   , which is 

within the stability domain, the simulation results turns out to be convergent. 
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Figure 24.  An example about Hyper-Stability problem 

 

The hyper-stability problem is destructive for time-domain simulation, and possibly leads to 
large numerical error when simulating an unstable case due to numerical integration method 
with strong convergent ability, such as Backward Euler method. The reason of hyper-stability 
problem can be investigated from point of the stability function. If Backward Euler method is 
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used to solve an unstable ODE system, we can find that 1
1

1
)( 




z
zR  if z is out of the 

unit circle in the right part of complex plane, and the method is able to make numerical error 
convergent such that nn  1 .  However, the method also makes nn xx 1  , while 

actually for the exact solution, nn xx 1  because the ODE system has positive eigenvalues. 

Paper [40] tried to improve Trapezoidal Rule with damping term, and the new trapezoidal 
rule is another expression of theta method. The damping term can make  5.0 , and thus 
make the simulation avoid numerical oscillation due to the pure imaginative eigenvalues 
which can make 1)( zR  . Paper [9] provides a suggestive value of theta, 53.0  

corresponding the formula (3.13), which have same effect of avoiding numerical oscillation. 
However, the Figure 25 shows that there are still some area in the right part of complex, 
which may lead to hyper-stability problem theoretically.  Additionally, there will be precision 
changes when 0.5  . The discussion on precision of theta method is shown below. 
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Figure 25.  Stability domain of Theta method ( 0.53  ) 

 

4.1.6 Numerical precision of theta method  

Similar with the analysis of Trapezoidal rule, )( 1nxf  in expression (11) can be expanded by 

Tylor expansion, and theta method (11) can be written as 
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Compared with the exact 1nx  from (7),  the local truncation error of theta method is 
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  (4.17) 

From the local truncation error term (10) of theta method, if can be found that the theta 
method will lose second order precision if 0.5  . From this point, the trapezoidal rule, 
which is the theta method with 0.5  , is more precise. 

4.1.7 Adams method and BDF 

The methods of explicit Adams, implicit Adams and BDF are multi-steps integration 
methods for solving differential equations. EUROSTAG adopts a method combined with 
Adams and BDF for time domain simulation. From the formula of Adams and BDF methods, 
the first order of implicit Adams is Trapezoidal rule, which is the main formula used by 
EUROSTAG.  [35] supplies the stability domain of implicit Adam and BDF, which is shown 
in Figure 26. It is be seen that the stability domain of Adams method becomes smaller and 
smaller as the order is increased, and therefore Adams method (order larger than 1) is not 
suitable for time domain simulation of power system. As far as BDF method is concerned, 
hyper-stability may possibly happen, and thus it is not suitable for power system either, 
which has been discussed in paper [10]. 
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Figure 26.  Stability domain of Implicit Adam and BDF (k is order) 
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4.2 Hammer-Hollingsworth 4 (HH4) Formula 

From the discussion on traditional integration methods in time domain simulation, 
trapezoidal rule is a suitable integration method, which is adopted by most of commercial 
software. The main advantage of trapezoidal rule lies in that it can effective deal with 
stiffness and hyper-stability problem, which means when the system is stable or unstable, the 
integration methods is able to provide correct stimulation results.  In order to accelerate the 
efficiency of time domain simulation with trapezoidal rule or theta method (when parameter 
theta is around 0.5), a practical technique is variable step integration [35, 36], which can 
adjust the integration step from the changes of simulation results. When the simulation 
results change slowly, the integration step can be increased, and thus the simulation 
efficiency can be developed; while when the simulation results change fast, the integration 
step needs to be decreased, and thus the simulation precision can be guaranteed. However, 
the integration step for trapezoidal rule is always limited by its precision 2h . If we can make 
the local truncation error shrunk, the integration step can be continued to increase and 
simulation times can be decreased. Therefore, the whole efficiency of time domain 
simulation can be enhanced. 

In this section, an integration method, Hammer-Hollingsworth 4 [36,41], based on Quadratic 
functions is discussed. Hammer-Hollingsworth 4, which is a fourth order implicit Runge-
Kutta method, was first introduced in paper [41]. Of all different kinds of explicit and 
implicit Runge-Kutta methods, Hammer-Hollingsworth 4 posesses distinct attributes from 
other methods, 1) A-stability and same stability domain as trapezoidal rule, 2) higher 
precision than trapezoidal rule. HH4 is one of  the implicit integration methods used in 
HSET-TDS, and it is expected to have better performance than trapezoidal rule. 

4.2.1 Formula of HH4 

For ODE system (2), [35] introduce an expression of the Hammer-Hollingsworth 4 
integration method  which can be described as 
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 then we can acquire another expression of HH4. 
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      (4.20) 

It can be seen that during the solution of HH4 two points  ,  are calculated by the first two 
equations in (3.20), and then the next step value 1nx  is calculated with values of points  ,  

(seen in Figure 27). 
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Figure 27.  Integration method of Hammer-Hollingsworth 4 

 

For the DAE system (2.1), the solution of 1nx  by HH4 integration method can be described 

as two stages, i) solution of vector  , , and ii) solution of 1nx . For the First stage, we need 

to solve the following non-linear algebraic equations. 
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For the second stage we need to solve 
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4.2.2 Numerical stability and precision of HH4 

If we can apply the integration method of HH4 (3.18) to Dahlquist test equation, we can 
acquire the stability function of HH4, which can be described as 
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The stability domain of HH4 is   
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which can be illustrated in Figure 28. It can be found that the stability domain of HH4 is the 
whole left part of complex plain. Therefore, the integration method is able to deal with 
stiffness and hyper-stability problems.  

Additionally, HH4 can guarantee the precision of 4h with the local truncation error of )( 5hO
which can be proved by Tyler expression. The attribute of high precision of HH4 is able to 
enhance the efficiency of time-domain simulation since it can increase the integration step 
while guaranteeing the precision. For example, if we require the precision of integration 

method in the order of 
410
, the maximum integration step for trapezoidal rule cannot be as 

large as 0.1 since its precision is in the order of 
2h , while the integration method of HH4 can 

make the integration step as large as 0.1 due to its fourth order of precision. From the 
formula (3.20) and (3.21) it can be seen that HH4 need to solve a double-size non-linear 
algebraic equation compared with trapezoidal rule. If Newton method is used to solve the 
nonlinear algebraic equations, double-size linear equations with highly sparsity are need to 
be solved. With the sparse linear solver library, the integration method of HH4 is very 
competitive and superior to the method of trapezoidal rule. The comparison between HH4 
and trapezoidal rule on time domain simulation of power system is shown in section 4.4. 
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Figure 28.  Stability domain of Hammer-Hollingsworth 4 

 

4.3 Error Estimation and Time Step Control Techniques 

Error estimation and time step control techniques are used in many commercial softwares of 
time domain simulation, such as EXTAB, EUROSTAG. Step control techniques is able to 
decrease or increase the integration step based on phenomena in simulation including the 
error estimation of integration methods, the number of iterations of Newton method and the 
changes in DAE system due to the switching events or faults. 

4.3.1 Time step control criteria 

In HSET-TDS, integration step is varied based on following criteria, i) the norm of the vector 
of error estimation is larger or smaller than a given threshold, ii) the iteration times of 
Newton method is more than a big value so that Newton iteration can be considered to be 
divergent, iii) DAE system is updated due to the switching events or faults and the error 
estimation cannot be estimated based on the previous values before updating. The first 
criterion can be described as follows [9]. 

  k

oldnew etolerancehh
/1


        (4.25) 

where 


e  is the max norm of the estimated local truncation error, and k is the order of the 

integration method. HSET-TDS adopts a double tolerance, upper tolerance and lower 
tolerance, to control integration step. If the norm of error is larger than upper tolerance, the 
integration step will be decreased; while if the norm of error is smaller than lower tolerance, 
the integration step will be increased. The purpose of double tolerance is to make more cases 
of integration step usable, and thus the extra recalculation can be decreased. 
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4.3.2 Estimation of truncation error 

The most important part in the time step control technique is how to estimate the truncation 
error. For an order k integration method, there are two methods to estimate its truncation 
error, i) extrapolation method, ii) another integration method with the same or larger order. 

4.3.3 Extrapolation method 

The main idea of extrapolation method is to make the integration step half, and then 
recalculated the value of next point, which is more precise than the next point value by 
original integration step. Then the main part of truncation error can be estimated by the value 
of next point of original integration step and half step. Assume that )( 1ntx  is the exact 

solution, ][
1

h
nx  is the numerical solution by an integration method of order k with integration 

step of h, and ]2/[
1

h
nx  is the numerical solution by the same integration method with integration 

step of 2/h  . Thus, according to Gragg (1964) theory[36], 
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where  )( 1nx  is nothing to do with h. Expression (3.26) subtracts (3.27), and then 
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which can be considered the main part of the truncation error. 

4.3.4 Error estimation by other integration methods 

The extrapolation method is able to estimate the main part of truncation error; however, it 
can be found that another two steps of simulations are needed to calculate a more precise 
values of next step point. The extrapolation method is not economic for error estimation 
since it would need twice quantity of computation compared with the method whose 
truncation error is needed to be estimated. Another method to estimate truncation error is 
using another integration method with same order or larger order. In HSET-TDS, every 
implicit method has different integration methods to estimate its truncation error. The 
selection criteria of integrator for error estimation is based on, i) the integrator is explicit for 
sake of efficiency, ii) the integrator is allowed to use the last one step value.  Table 3 shows 
the integration methods in HSET-TDS for error estimation for trapezoidal rule, theta method 
and HH4. 

The implementation of Hammer-Hollingsworth 4 and its error estimation scheme require 
much computation at one integration step. With Newton method and sparse linear solver, it is 
more competitive than trapezoidal rule, and the whole integration times can be greatly 
decreased.  The simulation comparison is shown in next section. 
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Table 3.  Integration methods for error estimation 
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4.4 Simulation Results 

IEEE New England system with 10 generators and 39 buses (shown in Figure 29) is utilized 
as a test system. Generator model for the system includes 4th order, 3rd order and classic 2nd 
order models, which are selected based on parameters. IEEE-1 standard model of excitation, 
shown in Figure 14, is used to control the voltage of generators, and governor model 8 in 
ETMSP manual [32]  (shown in Figure 15) is adopted to control the input of mechanical 
torque. HSET-TDS utilizes direct solution method to construct and solve the DAE system, 
and the whole DAE system includes 105 ODEs and 190 algebraic equations. The initial 
values of the DAE system is computed by power flow program in HSET-TDS, which is 
based on Newton-Raphson method. 

In order to compare the integration methods of Trapezoidal rule and HH4, an event of fault 
on bus 26 is selected, starting at 0.5s and lasting for 0.3 seconds. The whole transient process 
is simulated for 8 seconds, and the voltage and speed of generator 37 are monitored.  The 
whole simulation comparison is implemented from two perspective, i) fixed integration step, 
and ii) variable integration step. 
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Figure 29.  New England 39 bus system with fault on bus 26 

 

4.4.1 Fixed Integration Step 

The integration steps are selected as 0.001s, 0.01s and 0.1s for both trapezoidal rule and 
HH4. The simulation results by trapezoidal rule with h=0.001 is assumed to be the exact 
solution. The computational cost is shown in Table 4. From the results shown in Figure 30, it 
can be found that the simulation curves by trapezoidal rule with h=0.01 are still acceptable, 
and the curves by trapezoidal rule with h=0.01 deviates the exact solution; while points 
constructing the curves by HH4 with h=0.1 are well matched with the exact solution. 
Additionally, the computational time used by HH4 with h=0.1 is much shorter than the time 
used by trapezoidal rule with h=0.01. 

 

Table 4.  Simulation results with fixed integration step 

Integration  
Methods 

Integration 
Step (s) 

Algebraic 
Solver 

Linear Solver
 Library 

Simulation  
Time (s) 

Trapezoidal  0.001 Newton SuperLU 300.573 
Trapezoidal  0.01 Newton SuperLU 33.234 
Trapezoidal  0.1 Newton SuperLU 6.875 

HH4 0.1 Newton SuperLU 9.328 
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Figure 30.  Simulation results of New England 39 bus system with fixed integration step 
 

4.4.2 Variable Integration Step 

HSET-TDS is developed with variable step technique, and the error estimation methods are 
listed in Table 3. Since HH4 possesses the attribute of high precision together with same 
stability domain of trapezoidal rule. We expect that the simulation by HH4 with variable step 
technique will use less integration times than the trapezoidal rule, and the error bounds for 
both methods are set to be the same. The maximum integration step will be recorded, and the 
simulation results are shown in Figure 31 and Table 5. 
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Table 5.  Simulation results with variable integration step 

Integration  
Methods 

Maximum 
Step (s) 

Computation
Times 

Algebraic 
Solver 

Linear Solver 
 Library 

Simulation 
Time (s) 

HH4 0.170859 90 Newton SuperLU 19.046 
Trapezoidal  0.036041 437 Newton SuperLU 58.624 
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Figure 31.  Simulation results of New England 39 bus system with variable integration step 
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5. Stiffness Detection and Decoupling Method 

Step-by-step numerical integration is a basic way to solve differential algebraic equations 
(DAE). Usually numerical integration methods can be classified into two categories: explicit 
methods and implicit methods. In the explicit methods, the next step calculation uses only the 
solution information known, and the computation of each iteration points is efficient. 
However, it is reported that the explicit method involved with numerical stability problem 
when stiff problems are solved [5, 6, 35]. Stiff equations are problems for which explicit 
methods don’t work [35]. It can lead to large error when fixed integration step technique is 
used or too small integration step when variable step technique is used. In the implicit 
method, the calculation uses the unknown solution information of next-step(s), and it needs 
to solve non-linear equations at each step. The implicit methods are slow but stable. Implicit 
methods are commonly used for solving power system dynamic simulation. It is meaningful 
to make use of the advantages of explicit method and implicit method to integrate these two 
of methods. 

In this chapter, a decoupling method which can combine the explicit method and implicit 
method is going to be introduced. The main idea of this method is to decouple differential 
part of DAE into stiff part and non-stiff part. Explicit methods will be adopted to solve non-
stiff part, while implicit methods will be used to solve stiff part. The critical technique for the 
decoupling method is how to detect the stiffness in DAE system and how to relatively correct 
partition the DAE into stiff part and non-stiff part. The following sections will introduce the 
techniques, and the practical technique used in HSET-TDS. 

5.1 Automatic Stiffness Detection 

Stiff equations are problems for which explicit methods don’t work. There are two methods 
to detect the stiffness of ordinary differential equations [35]. 

5.1.1 Based on estimation of eigenvalues i  of the Jacobian matrix J 

Assume that the stability function corresponding to an explicit method is )(zR ,  where 
hz   and h is the step value. The stability domain of a method is the set  
 1)(;  zRCzS  . If the eigenvalue i  satisfies the condition that 1)( ihR  , then ih

lies in the stability domain. The differential equations whose eigenvalues do not satisfy the 
condition of 1)( ihR  are stiff.  

An example based on the test function xx   can demonstrate the stiffness phenomenon 
which is associated with eigenvalues and step. The explicit method is Forward Euler method 
(FEM), whose stability function is   )1( hRFEM   .We assume that step 001.0h , and   

is selected as 1001  , i100010002  , i100015003  , 

When 1001   , it can be obtained that 1)( ihR   , and the problem is non-stiff. From 

the Figure 32, it can be found that the simulation results is matched with the exact solution. 
When i100010002   , it can be obtained that 1)( ihR   where the critical 
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phenomenon appears. The simulation result show that there is much oscillation but the result 
is not totally divergent. When i100015003   , it can be found that  1)( ihR   , and 

the problem is stiff. The simulation results in figure become divergent. 

 

h1

h2

h3

0 0.002 0.004 0.006 0.008 0.01
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(
t)

 

 

Exact Solution

1001 

i100010002 

i100015003 

xx 

 

Figure 32.  Stiffness phenomenon associated with eigenvalues 

 

Therefore, during the process of one step integration, if all the eigenvalues of the Jacobian 
matrix from DAE system can be acquired, stiffness can be easily judged from the stability 
function of an explicit method. The differential equations whose eigenvalues are out of 
stability domain (for given explicit method) will be differentiated by implicit methods, while 
the explicit methods will be utilized to discretize differential equations whose eigenvalues are 
within stability domain. This method is not efficient since we need to calculate the 
eigenvalues of the Jacobian matrix by the numerical iterative methods such as QR 
decomposition or Arnoldi method, which are time-exhausting. Furthermore, since the 
eigenvalues are time-variable, the eigenvalues of Jacobian matrix needs to be updated after 
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each integration step. This issue makes the stiffness detection by calculation of eigenvalues 
hard to meet the requirement of fast simulation. 

5.1.2 Based on error estimation 

The main idea of this method is to check the variation of global truncation error (GTE) of 
each step by explicit methods. The global truncation error can be efficiently estimated by 
Richardson extrapolation method. When ih lies within the stability domain, global 

truncation error is convergent and the values have decreasing tendency; while when ih lies 

outside the stability domain, global truncation error is divergent and the values have 
increasing tendency.  

1) Illustration on a linear system 

We continue the example linear system discussed in the last section. For convenience, we 
skip the process of Richardson extrapolation or error estimation techniques introduced in 
chapter 4 and use the exact solution to calculate global truncation error directly. The exact 
solution for the test function is tetx )(  .The absolute values of GTE are shown in Figure 
33. 

From Figure 33, it can be found that when the differential equation is nonstiff for forward 
Euler method, the GTE is convergent finally. When the differential equations is in critical 
condition for forward Euler method, the GTE becomes a constant value. When the 
differential equations is stiff, the GTE becomes divergent.  

2) Illustration on a nonlinear system 

The next example shows whether the automatic stiffness detection based on error estimation 
works for   a nonlinear system when the eigenvalues will change time to time and the system 
varies from stiff to non-stiff for the method of forward Euler.  

Analyze the ODE  







0

2

)0( xx

xx
   The exact solution is 

0

1

1
)(

xt
tx


    We assume that step 

001.0h  . We still use Forward Euler method to calculate the system. In order to make the 
eigenvalues of the ODE system variable starting from different point, we set the initial values 
for three cases 4000 x , 10000 x  and 11000 x . The system is simulated for 0.2 second. 

We record the following curves, i) the trajectory of eigenvalues, ii) the simulation solution by 
forward Euler method with step h and h/2, iii) global truncation error by exact solution and 
extrapolation. The simulation results are shown in Figure 34 and the analysis is shown as 
follows. 

i) When 4000 x  , z starts from the inside of the stability domain. It can be found that 

both simulation results are able to match with the exact solution. Also, the GTE from 
both exact solution and extrapolation becomes smaller and smaller following the 
change of z.  

ii) When 10000 x  , z starts from the boundary of the stability domain. We can found 

that the simulation result with h/2 is able to match with the exact solution while the 
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simulation result with h becomes bad and not totally divergent. Besides, the GTE 
from both exact solution and extrapolation becomes smaller and smaller following the 
change of z, but the error at the beginning is larger than that when 4000 x . 

iii) When 11000 x  , z starts from the outside of the stability domain. It can be found that 

both simulation results are not able to match with the exact solution. Also, the GTE 
from both exact solution and extrapolation becomes larger and larger following the 
change of z.  
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Figure 33.  Stiffness phenomenon associated with GTE on test function 
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3) Illustration on a nonlinear system 

The next example shows whether the automatic stiffness detection based on error estimation 
works for   a nonlinear system when the eigenvalues will change time to time and the system 
varies from stiff to non-stiff for the method of forward Euler.  

Analyze the ODE  







0

2

)0( xx

xx
   The exact solution is 

0

1

1
)(

xt
tx


    We assume that step 

001.0h  . We still use Forward Euler method to calculate the system. In order to make the 
eigenvalues of the ODE system variable starting from different point, we set the initial values 
for three cases 4000 x , 10000 x  and 11000 x . The system is simulated for 0.2 second. 

We record the following curves, i) the trajectory of eigenvalues, ii) the simulation solution by 
forward Euler method with step h and h/2, iii) global truncation error by exact solution and 
extrapolation. The simulation results are shown in Figure 34 and the analysis is shown as 
follows. 

iv) When 4000 x  , z starts from the inside of the stability domain. It can be found that 

both simulation results are able to match with the exact solution. Also, the GTE from 
both exact solution and extrapolation becomes smaller and smaller following the 
change of z.  

v) When 10000 x  , z starts from the boundary of the stability domain. We can found 

that the simulation result with h/2 is able to match with the exact solution while the 
simulation result with h becomes bad and not totally divergent. Besides, the GTE 
from both exact solution and extrapolation becomes smaller and smaller following the 
change of z, but the error at the beginning is larger than that when 4000 x . 

vi) When 11000 x  , z starts from the outside of the stability domain. It can be found that 

both simulation results are not able to match with the exact solution. Also, the GTE 
from both exact solution and extrapolation becomes larger and larger following the 
change of z.  
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Figure 34.  Stiffness phenomenon associated with GTE on a nonlinear system 

 

The automatic stiffness detection based on error estimation can efficiently detect the stiffness 
of ODE system. The computational cost is just basic global error estimation. The potential 
problem about this stiffness detection method is how to detect the increasing or decreasing 
tendency of the GTE. It’s possible that the result of detection is conservative because 
probably there are many cycles of oscillation until the GTE decrease. There are two 
approaches to deal with this problem. 

 [35] introduces an idea, which is to check the error in succession (say 15 times). Then 
final conclusion of stiffness or non-stiffness can be drawn. 

 Another idea is to give a threshold for global truncation error. If the GTE is over the 
threshold, the corresponding equation is considered to be stiff. The stiffness threshold 
for an explicit method can be fixed before the simulation. It’s a good idea to set the 
threshold with reference to the critical case. Besides, concerning that the absolute 
GTE is unfair for each equation of ODE system, both relative and absolute GTE can 
be used to check the stiffness.  
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5.2 Stiffness Decoupling Method 

5.2.1 Recursive Projection Method 

The main idea behind achieving computational gain is to take advantage of both the explicit 
and the implicit methods and simultaneously achieve as much parallelism as possible. This is 
made possible through the division of the ODE part of the DAE into stiff and non-stiff parts 
through a partition algorithm called recursive projection method (RPM) [42,43], an invariant 
subspace method. Consider the ODE system described in (5.1).   

 







0)0(

)(

xx

xx f
         (5.1) 

where x is an n-dimensional vector, and f(x) is an n-dimensional vector function described in 
expression (3) 








),(

),(

nssnsns

nssss

xxfx

xxfx





        (5.2) 

where xs and xns are stiff and non-stiff variables, and fs and fns are stiff and non-stiff 
equations. For the non-stiff part of ODEs, explicit methods can be used to efficiently 
compute the values of next point with numerical stability guaranteed; while implicit methods 
deal with the stability problems for the stiff parts using iterative computing.   

The solution space 
nR  of ODEs (2) can be written as a direct sum of the span of the stiff 

eigenspace (say, invariant subspace P) and it’s orthogonal complement (say, invariant 
subspace Q), which is the non-stiff eigenspace. The original n-dimensional space can be split 
into two subsystems: 

)(),( 211 qZpZZqp TP  ff        (5.3) 

)(),( 212 qZpZZqp TQ  ff        (5.4) 

where Z1 and Z2 are basis of invariant subspace P and Q, respectively, Q is the orthogonal 
complement of P such that  PQ , and xZp T

1 , xZq T
2 . Thus, the ODEs system equations 

can be decoupled into two subsystems: 








)(),(

)(),(

212

211

qZpZZqpq

qZpZZqpp
TQ

TP

ff

ff





       (5.5) 

By solving the above decoupled equations, p and q can be calculated separately, and the 
original states qZpZx 21  . 

The critical problem of the recursive projection method is how to detect the stiffness, and 
how to fix the basis Z1 and Z2 of invariant subspace P and Q. As the Jacobian matrix of the 
original ODE systems is updated, the basis of invariant subspace P and Q changes 
correspondingly, meaning the basis Z1and Z2 needs to be updated as well. There are 
following several reported methods about estimating eigenvalues to detect stiffness.  
Reference [42] describes a method which approximates some vectors of the Jacobian matrix 
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and uses QR decomposition to detect the stiffness and fix the basis. Reference [43] utilizes 
the Cayley transform of the Jacobian matrix and an iterative process to construct the basis Z1.  
The Arnoldi method is adopted in [44]  to identify eigenvalues outside the stability domain of 
an explicit method. The stiffness detection based on the eigenvalues solution of Jacobian 
matrix is precise but computational. The other two methods, QR decomposition and Cayley, 
also involve obtaining eigenvalues, but the strategy based on QR decomposition may be 
more efficient since just one step of QR decomposition is implemented in a one step stiffness 
detection.   

5.2.2 Stiffness Decoupling Method used in HSET-TDS 

The recursive projection method introduced in [42] is able to roughly detect the stiffness in 
the differential part of DAE system. The computational cost the method is the one step QR 
decomposition of Jacobian matrix. There are mainly two disadvantages in the method, 1) one 
step QR decomposition can be much time-exhausting for large DAE system, 2) the roughness 
of stiffness detection may lead to failure of one step integration.  

 

 

Figure 35.  Stiffness Decoupling technique used in HSET-TDS 
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In HSET-TDS, stiffness decoupling based on error estimation is utilized. The technique 
process can be illustrated in Figure 35. Since the stiffness detection needs the error 
estimation, the stiffness decoupling defaults to use variable-step techniques, which will 
change the integration step and stiffness basis during the process of each integration step 
computation. The figure shows the example of explicit theta method and implicit theta 
method for non-stiff and stiff parts, and forward Euler method for error estimation. The main 
process of stiffness decoupling method associated with explicit theta and implicit theta 
method can be described as follows. 

1) The stiffness basis is set to be zero set at the beginning.  

2) The differential part of original DAE system is separated into stiff part and non-stiff 
part according to the stiffness basis. 

3) Explicit theta method is utilized to differentiate the non-stiff part, and implicit theta 
method is adopted to differentiate the stiff part. Therefore, the differential part of 
DAE system is transformed to be a set of algebraic equations. 

4) Newton method is used to solve the algebraic equations from differential part and 
algebraic part of DAE system, and then the solution by stiffness decoupling method 
can be acquired. 

5) Forward Euler method is utilized to differentiate the differential part of original DAE 
system. And the solution by forward Euler can be acquired after the Newton method. 

6) Error of this step can be obtain by error estimation formula specifically for theta 
method, and the error needs to be saved for next step calculation. 

7) Stiffness basis can be updated with the error of this step and that of the last step. For 
one differential equation in DAE system, it will be updated to be stiff if the equation 
is non-stiff from the stiffness basis of last step and the error now of the variable from 
this equation is larger than error from last step. Similarly, it will be update to be non-
stiff if the equation is stiff from the stiffness basis of last step and the error now is less 
than last step error or within a certain interval. 

8) Continue the variable step technique. 

During the process discussed above, two important issues needs to be clarified.  

1) The error estimation technique for theta method by forward Euler is feasible, since 
the estimation part will the part of 2h . This does not work if the theta is zero since the 
theta method becomes explicit Euler, and the error will be always zero. If the theta is 
0.5,  ][

1
h

nx   by theta method can be formularized as (5.6) where )( 1ntx  is the real value 

of next step. ][
1

h
nx   by Forward Euler method can be formularized as (5.7). The error 

part can be shown in (5.8). Since the estimation will maximized the real error, the 
estimated error will be multiplied by h  and a coefficient. 

)()()( 43
11

][
1 hOhxtxx nn

h
n           (5.6) 

)()()( 32
11

][
1 hOhxtxx nn

h
n          (5.7) 
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 )()( 32
1

][
1

][
1 hOhxxx n

h
n

h
n          (5.8) 

 

2) The criterion for updating stiff part of equations to be non-stiff part is different from 
that for updating non-stiff part to stiff part. Assume that a differential equation is non-
stiff from the last step stiffness list, which means the error of last step is calculated 
based on explicit theta method. According to the automatic stiffness detection in 
5.1.2, the eigenvalue corresponding to the differential variable of this equation will be 
outside stability domain if error of this step is larger than the error of the last step. 
While, if a differential equation is stiff from the last step stiffness list, which means 
the error of last step is calculated based on implicit theta method, the eigenvalue 
corresponding to the differential variable of this equation will still be outside stability 
domain if the error of this step is smaller than the error of the last step.  For example, 
when theta is 0.5, stability function of implicit theta method (Trapezoidal rule) can be 
expressed as (5.9), and the relationship between error and stability function can be 
described as (5.10). 

z

z
zR





2

2
)(          (5.9) 

)(1 zR
n

n 




         (5.10) 

If we want z is within the stability domain of explicit method(such as Forward Euler), 

the interval for z is  11  z . From (5.10), we can get the interval [ 1,
3

1
] for 

n

n


 1 , 

where n and 1n are the errors from this step and last step by implicit theta method 

respectively.  

The stiffness decoupling method embedded with variable step technique can more efficient 
than both variable step implicit method and variable step explicit method. The computational 
cost is just the updating stiffness basis in each integration step by utilizing the error of this 
step and last step. Because of double use of error for stiffness detection and integration step 
resetting, the stiffness decoupling method is of certain practical significance.   

5.3 Simulation Results 

The expanded 975 buses system expanded from New England 39 buses system by 25 times is 
adopted as a test system. The construction of the system is similarly to the 3900 buses system 
introduced in 3.3.2. The bus 2, 9, 23, 29 are reconnected, and the structure of construction 
follows the mesh shown in Figure 36. 

The event of the case is selected to be bus fault on bus 17 starting from 0.5s and lasting for 
0.1s. The voltage of bus 37 and the speed of G8 is monitored as shown in Figure 37. The 
whole simulation lasts for 10 second.  
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Three integration methods are going to be compared, stiffness decoupling method based on 
implicit theta and explicit theta methods, variable-step implicit theta method and variable-
step explicit theta method. The theta is set to be 0.5, and Forward Euler method is used for 
error estimation. The upper and lower boundary for variable step technique is 0.001 and 
0.0005.  The nonlinear solver for these three methods is Newton based method, and linear 
solver is SuperLU. The simulation results are shown in Table 6 and Figure 37. It can be seen 
that the stiffness decoupling method is relatively more efficient than other two methods. The 
explicit method takes more time, since its stability domain is limited and it need smaller 
integration step to guarantee the precision. 

 

       

(a) Original 39 Buses System      (b) Expanding Mesh 

Figure 36.  Expanded system from New England 39 bus system (5×5) 

 

Table 6.  Simulation results of Stiffness Decoupling, Explicit Theta and Implicit Theta 

Integration 

Methods 

Maximum 

Step (s) 

Computation

Times 

Algebraic

Solver 

Linear Solver 

Library 

Simulation

Time (s) 

Stiffness 
Decoupling 

0.050096 327 Newton SuperLU 82.264 

Explicit Theta 0.006050 1674 Newton SuperLU 223.632 

Implicit Theta 0.0417 405 Newton SuperLU 99.871 
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Figure 37.  Simulation results of expanded 975 bus system  
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6. Sequential and Parallel Library of SuperLU Solver 

6.1 Introduction 

The process of solving linear algebraic equations is important in time domain simulation 
when Newton-Raphson method is used. In Figure 4, it can be seen that the solution of solving 
linear equations is the bottom stage of all computational process, where usually most of 
computation is carried on during the whole process of time domain simulation. Due to the 
fact that coefficient matrices describing DAE system of power system and all Jacobian 
matrices of DAE system and nonlinear equations are highly sparse, it is indispensible to 
adopt a sparse solver of linear equations to improve the efficiency of time domain simulation. 
In this section,  SuplerLU[23, 45, 46, 47, 48, 49], an open source library developed by 
computer science division, university of California, Berkeley, CA, is introduced, and this 
library is one of sparse solvers included in HSET-TDS. 

The library of SuperLU contains three sub-libraries for both sequential and parallel 
computing, the status of which is summarized in Table 7 from [45]. The sub-library of 
sequential SuperLU is designed for sequential processors; multithreaded SuperLU 
(SuperLU_MT) is developed for shared memory parallel processors with shared memory 
routines of Pthreads or OpenMP; distributed SuperLU (SuperLU_DIST) is parallel linear 
solver for distributed memory parallel processors with MPI for interprocess communication. 
In the sequential computing version of HSET-TDS, the library of sequential SuperLU is 
included, while the library of distributed SuperLU is adopted to further develop the 
efficiency of time domain simulation in the parallel computing version of HSET-TDS. 

 

Table 7.  Status of SuperLU library 

 
Sequential  
SuperLU 

SuperLU_MT SuperLU_DIST 

Platform Serial Shared-memory Districuted-memory 

Language C 
C + OpenMP 
(or Pthreads) 

C + MPI 

Data Type 
real / complex 
single / double

real / complex 
single / double 

real / complex 
double 

 
 

[45] introduces the overall algorithm and him of sparse Gaussian elimination adopted in 
SuperLU, which can be described as following two steps. 

a)  Compute a triangular factorization LUPADDP ccrr  , where rD  and cD are diagonal 

matrices to equilibrate the system, and  rP  and cP are permutation matrices to reorder the 

rows and columns of A  . L is a unit lower triangular matrix ( 1iiL ) and U is an upper 

triangular matrix. 
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b)   Solve BAX  by evaluating 

)))))((((()( 11111111 BDPLUPDBDLUPPDBAX rrccccrr
   

SuperLU supplies several different routines to operate the solution, and HSET-TDS adopts 
some routines which are appropriate for time domain simulation of power system. 

6.2 Sequential SuperLU 

The computational routines of sequential SuperLU can be described in Figure 38. SuperLU 
supplies two main driver routines, which are convenient to call SuperLU library,  i) simple 
driver dgssv(), and ii) expert driver dgssvx(). From the option configuration given by users, 
both driver routines implement following operations shown in Figure 38, factorization, 
triangular solving, estimating condition number, equilibrating and refining solution. In the 
expert driver routine, more options are provided to supply, and factorization type of the same 
pattern sparsity is a good option which can further develop the efficiency of time domain 
simulation. In the process of time domain simulation, the sparsity of Jacobian matrix is 
updated only if the topology of networks will be changed, and for most of simulation process 

the sparsity of Jacobian is fixed. Therefore, the diagonal matrices ( rD  and cD ) and 

permutation matrices ( rP  and cP ) can be used repeatedly, and the computational efficiency 
of solving linear equations can be improved. 

 
 

ULDDPPXBA crcr ,,,,,,,,

 
Figure 38.  Computational routines of sequential SuperLU 
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6.3 Distributed-Memory Parallel SuperLU 

Figure 39 illustrates the basic routines for parallel SuperLU with MPI. There are mainly two 
driver routines to solve systems of linear equations, pdgssvx_ABglobal for the global input 
interface, and pdgssvx for the distributed interface. From the introduction in [45], both of the 
routines implement following functions, i) equilibrating the system if A is poorly scaled, ii) 
finding a row permutation that makes diagonal of A large relative to the off-diagonal, 
iii)finding a column permutation that preserves the sparsity of the L and U factors, iv) solving 
the system BAX  for X by factoring A followed by forward and back substitutions, v) 
refining the solution. The difference between the sequential SuperLU and distributed-
memory parallel SuperLU is that the matrices L and U in parallel SuperLU are distributed in 
a two-dimensional and him and him and him and him block-cyclic fashion so that the linear 
equations can be solved in parallel. The configuration on parallel computing is initialized by 
SuperLU process grid. More details about the data structure used in parallel SuperLU are 
elaborated in paper [45]. 

 
 

 
Figure 39.  Basic routines of distributed-memory parallel SuperLU 
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6.4 Simulation Results About SuperLU Performance In HSET-TDS 

The performance of a linear solver has great impact on time-domain simulation, since the 
solution of linear equations constructs the most part of Newton-Raphson method. HSET-TDS 
includes many linear solver libraries, and the performance of SuperLU can be very efficient. 
Table 8 and Figure 40 illustrate the performance of different linear solver in HSET-TDS, 
which are simulated on the New England system described in the section 3.4 with same 
contingency and simulation time. Other linear solvers which are compared with SuperLU 
include dense LU factorization and sparse generalized minimum residual method (GMRES) 
from GMM++.  

The numerical method used in Sparse GMRES solver is an iterative method, which can deal 
with the ill-conditioned matrix A in solving AX=B. The ill-conditioning of matrix A is 
possibly lead by the parameters of different degree level in some electric elements. Besides, 
when the solution vector from Newton method is close to the final solution, the some items 
of the Jacobian matrix can be very small, and under this circumstance the matrix A may be 
ill-conditioning. The iterative method in the solution of linear equations can be more 
effective to deal with ill-conditioning problem compared with direct solution. 

 

Table 8.  Comparison between SuperLU, Dense LU and Sparse GMRES 

Integration Methods  Dense LU Sparse GMRES SuperLU

Trapezoidal Rule  
( h = 0.01s) 

Time(s) 5275.368 1542.814 33.234 
Speed-up 1 3.4193 158.73 

Trapezoidal Rule  
( variable step) 

Time(s) 3942.143 1202.29 58.624 
Speed-up 1 3.28 67.24 

HH4 
( h = 0.1s) 

Time(s) 4001.47 707.955 9.328 
Speed-up 1 5.65 428.97 

HH4 
( variable step) 

Time(s) 6572.406 1366.27 19.046 
Speed-up 1 4.81 345.08 
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Figure 40.  Speedup of SuperLU, Sparse GMRES to Dense LU 

 

From the simulation results in Table 8 and Figure 40, we can find that SuperLU is highly 
more efficient than the dense LU factorization and sparse GMRES. Since the SuperLU linear 
solver library fully considers the sparsity of the matrix A and the Jacobian matrix in power 
system problems are usually highly sparse, it is natural that the efficiency of SuperLU will be 
much higher than the dense LU factorization. For GMRES, there are two possible reasons 
why SuperLU is faster. The first is that the algorithm used in GMRES needs more 
computation because of the attribute of iteration, while SuperLU is more like direct solution, 
and iteration will also be needed when too large error is produced. The second reason is 
about different programming approaches, such as how to make use memory, which may lead 
to different performance. 
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7. Conclusion 

7.1 Summary 

A new control center functionality called high-speed extended term (HSET) time-domain 
simulation (TDS) was proposed for the online analysis of cascading. Key to this functionality 
is computational speed. The work reported uses state-of-art algorithms to identify maximum 
on-line computational speed for HSET-TDS. The computational speed is intended to be 
enhanced from five hierarchical aspects, hardware, strategies, integration methods, nonlinear 
solvers and linear solver libraries. The work elaborated in this report can be generalized as 
follows. 

Hammer-Hollingsworth 4 (HH4), different from the traditional integration method 
Trapezoidal rule, which is adopted by many commercial software, is an important integration 
method used in HSET-TDS. HH4 not only shares the same advantageous attribute of 
Trapezoidal rule, symmetrical A-stability, which can cope with the stiffness and hyper-
stability problems, but also possesses the attribute of higher precision (h4). The higher 
precision make it possible to enlarge the integration step, and therefore the computational 
efficiency can be improved. The simulation results show that HH4 is a suitable integrator for 
time domain simulation of power system, and is superior to Trapezoidal rule. 

Linear solver library is an indispensible part when solving non-linear equations by Newton 
method. SuperLU, an open source linear solver library from Berkeley, is introduced and 
applied in HSET-TDS. The goal of the application of SuperLU in HSET-TDS is to expand 
the linear solver libraries in HSET-TDS, especially for the parallel version. The simulation 
results of sequential computing shows that SuperLU is competitive and suitable for time 
domain simulation of power system. 

7.2 Contributions 

The contribution of this work achieved and expected is summarized as follows. 

A new control center software called HSET-TDS has been developed. HSET-TDS is of two 
versions, sequential and parallel version. And in each version, it includes many different 
numerical methods which are intended to fully enhance the computational speed. The 
attribute of high speed computation of HSET-TDS make it possible and practical to analysis 
high consequence event such as cascading, which will be beneficial for the operation of 
control center. 

A new integration method, Hammer-Hollingswoth 4 (HH4), was first applied in the field of 
power system. Comparing with the traditional integration method, Trapezoidal rule, which is 
adopted by many commercial software, HH4 is not only symmetrical A-stable, but also 
highly precise, and therefore the integration step can be enlarged. HH4 can be a very efficient 
integrator for time domain simulation of power system. 

An new algorithm design for deployment on BlueGene/L was proposed, which is intended to 
enhance the computational speed with the following techniques i) projection method for 
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stiffness detection and decoupling, ii) waveform relaxation to decouple stiff part, iii) 
integration methods to decrease integration step, and iv) parallel linear solver.  

An new efficient stiffness decoupling strategy has been explored. The main idea of the 
scheme is to detect the stiffness of ODE by the numerical error, and this technique is more 
efficient than the stiffness detection strategy by seeking eigenvalues of Jacobian matrix. The 
stiffness decoupling strategy makes it possible to solve the stiff part of ODE by implicit 
methods and solve the non-stiff part of ODE by explicit methods. Since explicit methods are 
much more efficient than implicit method, the computation speed of time domain simulation 
can be further developed.  

7.3 Future Work 

We have reported on an algorithmic design for deployment on high-performance parallelized 
computer architectures shown in section 2.8.  

 Implementation of the proposed design will be taken as the next step.  

 The exploration of sequential and parallel linear solver libraries, such as SuperLU, 
UMFpack, GMM++, MUMPS, LAPACK will be carried on.  

 The comparison of these available linear solver libraries will be based on HSET-TDS. 
The simulation results can supply helpful information for industry regarding which 
sparse linear solvers are suitable for the time domain simulation of power system. 
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1. Introduction 

1.1 Overview 

Analysis of large scale blackouts in North America, Europe, and other countries shows 
that following the initiating contingencies, cascaded events may occur, leading to 
catastrophic power outages. It is important to take proper remedial actions to alleviate the 
vulnerable operating conditions in a power system in order to avoid a catastrophic outage. 
Area partitioning that splits a power network into self-sufficient islands is an emergency 
control to stop the propagation of disturbances and avoid cascading failures. 

Modern power systems are designed and equipped to incorporate the “grid protection” 
control actions, such as special protection schemes (SPS) and remedial action schemes 
(RAS) against the cascading failures [1]. The real challenge for the future “grid 
protection” control actions is to evaluate the system vulnerability and response to the 
disturbance and vulnerable operating condition in real-time. Power system 
reconfiguration is an important part of the future “grid protection” control actions. 
However, most of existing power system reconfiguration schemes determine the system 
partitioning solution based on off-line studies that may not reflect the real time system 
operation condition and may eventually lead to a poor partitioning plan. The main 
objective of this research project is to develop an efficient Area-Partitioning algorithm 
that can partition the power network into k-disjoint areas via minimizing the generation 
load imbalance in each area. The proposed algorithm must be computationally efficient 
so that it is feasible to determine the optimal partition in a real-time environment. 

1.2 Patterns of Cascaded Events 

1.2.1 General Sequence of Events 

In general, the sequences of events in the major blackouts followed a common process. 
Typically, the cascaded events were initiated by a single event or multiple events, such as 
the 500-kV line outage (U.S. 1996), the generator tripping and the 345-kV line outage 
(U.S. and Canada 2003 [2]), the line outage (Italy 2003) and the coupling operation of 
busbars at a substation (Europe 2006). 

Following the initiating events, the cascaded events took place sequentially. One 
component failure may trigger another event, which can bring successive line tripping 
and/or generator tripping. These subsequent events lead to power flow rerouting, 
overloads, voltage instability, and angle instability, which further weaken the system. As 
the cascaded events proceed, angle instability, power oscillations, and significant 
imbalances between the power supply and demand may take place, leading to a 
widespread voltage collapse and uncontrolled system splitting. 

An excessive imbalance between load and generation after system splitting further caused 
a severe frequency drop [3] and ultimately led to a large-scale outage [4]. During the 
early stage of cascaded events, the cascading process can proceed at a relatively slow 
speed [5], such as in the U.S. and Canada 2003 blackout [2]. However, once a critical 
point is reached, the successive load and generator tripping events can spread promptly 
and uncontrollably [6]. At this point, a large-scale blackout is inevitable.  
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1.2.2 Weakened System Conditions 

A weakened system condition is a contributing factor to four major blackouts shown in 
Table 1. When the system is highly stressed, power flows are high, the system voltage 
may decline and the power network components are highly loaded. As a result, the 
interactions between component failures tend to be stronger, and a single event is more 
likely to trigger other subsequent events that lead to a large blackout [7]. A summer peak-
load profile, heavily loaded transmission lines, out-of-service transmission facilities due 
to the scheduled maintenance can further weaken the system. 

Table 1 Major Blackouts in North America and Europe 

 

1.2.3 Patterns of Cascaded Events in Blackouts 

There are many causes of cascaded events that contribute to catastrophic outages. They 
typically include faults, undesired relay operations (including hidden failures), equipment 
failures or malfunctions, communication and information failures, and operational errors. 
Due to the mixture of the causes, prediction of the exact sequence of cascaded events that 
will take place is practically impossible. However, it is important to look into the 
fundamental patterns of cascaded events, i.e., which event can trigger other events. Some 
examples of fundamental patterns of cascaded events are: 

 Line Tripping due to Overloading [2], [8] 

 Generator Tripping due to Over-Excitation [2] 

 Line Tripping due to Loss of Synchronism [2], [6], [10] 

 Generator Tripping due to Abnormal Voltage and Frequency System Condition 
[2], [5], [6], [9] 

 Under-Frequency/Voltage Load Shedding [6], [8] 

1.3 Prevention of Cascaded Events by Power System Reconfiguration 

After the initiating contingency, cascaded events may occur one by one. Further 
contingencies may weaken the operating condition and the system may lose synchronism 
and be separated into several islands. Those islands are usually accompanied by severe 
imbalance of the generation and load. If the generation and load within the island cannot 
be balanced properly, the system frequency may violate constraints and lead to further 
line and generator tripping events. Disintegration of the islands may evolve and finally 
blackouts occur.  

Unlike the islands formed by uncontrolled separation, the islands determined by the 
proposed power system reconfiguration concept can minimize the imbalance between 
generation and load. Therefore, the system frequency within the island can be regulated 

Date Location Scale in terms of GW and Population Collapse Time
Aug.10th, 1996 US-Western Interconnection 30.5 GW, 7.5M people > 6 minutes
Aug.14th, 2003 Northeast US & Eastern Canada 62 GW, 50M people > 1 hour
Sep. 28th, 2003 Italy 27GW, 57M people > 25 minutes
Nov. 4th, 2006 Europe 17GW, 15M people > 20 seconds
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within allowable limits and the islands formed by controlled separation are less prone to a 
system collapse. If the power system reconfiguration scheme is conducted appropriately, 
the cascading events and large scale blackouts can be avoided. 

A few methods have been proposed to determine the optimal islanding configuration. A 
three-phase method utilizing ordered binary decision diagrams (OBDDs) to find proper 
islanding strategies is proposed in [11]. An automatic islanding approach that determines 
the islands from the identified slowly varying coherent groups of generators is reported in 
[12]. A partition strategy using minimal cut sets with minimum net flow is proposed in 
[13]. A spectral k-way partition algorithm is provided in [14]. Based on the generator 
grouping information, a two step partitioning approach including graph simplification 
and multilevel k-way partition is presented in [15] and qualitatively demonstrated on the 
August 14, 2003 blackout scenario [16].  

1.4 Contents of this Part 

Section 2 gives an introduction to graph partitioning as a graph-theoretic problem. An 
overview of multi-level graph partitioning and multi-objective graph partitioning is 
provided.  

Section 3 introduces the proposed graph theoretic area partitioning scheme, conceptual 
special protection scheme and architecture of the emergency control system. Advantage 
of using multi-level graph partitioning algorithm to determine the optimal system 
islanding is discussed.  

Section 4 presents the proposed graph theoretic area partitioning scheme that considers 
both real and reactive power balance. A framework of two stage area partitioning 
algorithm is provided. 

Section 5 presents an application of the proposed area partitioning algorithms for 
preventing cascading events on a 200 bus system model. Simulation results show that the 
proposed area partitioning algorithm minimizes both real and reactive power imbalance 
within the islands, which helps to improve the voltage profile after islanding and mitigate 
the possibility of further cascading. The proposed area partitioning is also applied on a 
22,000 bus system. Simulation results show that the proposed algorithm is 
computationally efficient. Therefore, it is feasible to determine the partitioning strategy 
and identify the system islanding configuration in a real-time environment. 

Section 6 provides the conclusions of this research and important issues that need to be 
addressed in the future. 
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2. Graph Theory Foundation 

An important objective in partitioning a power network is to identify optimal cut sets of 
the sub-networks while the electrical interdependency between sub-networks and the 
power imbalance within sub-networks are minimized. By graph theory, this task involves 
partitioning of a weighted graph into several smaller graphs with evenly distributed 
weights and minimized edge cut sets.  

2.1 Multilevel Graph Partitioning 

Graph partitioning with Minimum Ratio Cut is known to be NP-complete and it has many 
applications in scientific and engineering areas. Many graph partitioning algorithms have 
been developed. However, some of the algorithms are expensive for large graphs in terms 
of CPU time. The multilevel graph partitioning scheme [17] is a state-of-the-art technique 
that significantly reduces the computation time while generating high quality partitions. 
The multilevel partitioning scheme does not partition the original graph directly. Rather, 
it first reduces the size of graph through a number of levels by collapsing vertices and 
edges. Then, the condensed graph is partitioned. Finally, a procedure is used to propagate 
and refine the solution through successive levels to the original graph.  

Consider a weighted graph G0 = (V0, E0).  The three stages of a multilevel partitioning 
scheme, as shown in Fig. 1, are summarized here. 

  

Fig. 1 Multi-level Graph Partitioning 

1. Coarsening Phase. The initial graph G0 is transformed into a sequence of smaller 
graphs G1, G2… Gk such that |V0| >|V1| > |V2| > … > |Vk|. A simple way to obtain the 
coarse graph is to group the vertices of the graph into disjoint clusters and collapse 
the vertices of each cluster into a single vertex.  

2. Partitioning Phase. A partition Pk of the coarsest graph Gk = (Vk, Ek) that minimizes 
the edge cut and satisfies the balancing constraints is computed. Since the size of 
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coarsest graph Gk is small, various partition algorithms, e.g., recursive bisection, can 
be used to obtain the partition Pk. 

3. Uncoarsening and Refinement Phase. The partition Pk of the graph Gk is 
successively projected back to the original graph G0 by going through intermediate 
graphs Gk-1, Gk-2… G1, G0. At each step of the uncoarsening phase, the partition is 
further refined to reduce the cut set and improve the quality of solution. 

2.2 Multi-Objective Graph Partitioning 

The traditional graph partitioning algorithm is only able to find the optimal partition with 
a single optimization objective. However, in many engineering applications, there is a 
need to produce partitioning with multiple optimization objectives. One example is the 
problem of minimizing the number of wires cut by the partitioning as well as the 
propagation delay between the chips in the VLSI domain. This kind of problem can be 
formulated as a graph partitioning problem in which every edge in the graph will be 
assigned with multiple weights, and the partitioning objectives will minimize the edge-
cut with respect to each of the multiple weights. 

The multi-objective optimization is challenging since an optimal solution for one 
objective is not necessary optimal for another. In the multi-objective graph partitioning 
problem, different types of edge weights increase the difficulty in finding the optimal 
solution. The simple combination-based approach, such as adding two weights to a single 
weight, does not make sense. In [18], an algorithm is proposed that can handle both 
similar as well as dissimilar edge weights, allowing tradeoff among different objectives 
and resulting in predictable partitioning. This algorithm combines multiple objectives 
into a single objective in a scientific way and then applies a single objective graph 
partitioning algorithm to conduct partitioning. The way to combine multiple objectives is 
based on the intuitive notion of what constitutes a good multi-objective partitioning. The 
partitioning solution that is close to each optimal partitioning with respect to the single 
objective is considered to be good. The basic procedure to conduct a two-objective 
partitioning is shown below, 

1. A single objective graph partitioning for the first objective is conducted. The best 
edge-cuts C1 for the first objective is obtained. 

2. A single objective graph partitioning for the second objective is conducted. The best 
edge-cuts C2 for the second objective is obtained. 

3. A combined weight for each line is obtained by the sum of the normalized edge 
weight with best edge-cuts C1 and C2 and weighted by the controllable preference 
factor p. The preference factor p should be within the range of 0 and 1. 

ܾ݀݁݊݅݉݋ܿݓ ൌ
1ݓ
ܿ1
݌ ൅

2ݓ
ܿ2
ሺ1 െ  ሻ                                            (1.1)݌

The distance that each edge-cut is allowed to stray from the optimal solution is 
controlled by the preference factor p. Thus, the preference factor p controls the 
tradeoffs among different objectives. Since all edge weights are normalized with a 
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corresponding objective, they present a fraction of the optimal cutest and can be 
combined meaningfully [18].   

4. A single objective graph partitioning is applied with the new combined normalized 
edge weights. 
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3. Power System Reconfiguration with Multi-level Graph Partitioning  

Since a power network can be viewed as a weighted graph with buses and transmission 
lines being vertices and edges, respectively, reconfiguration can be formulated as a graph 
partitioning problem. The objective of obtaining the system separation strategy with 
minimum net flow on the islanding boundary can be formulated as a problem of finding 
the graph partitioning solution with minimum edge cut of the boundary.  

3.1 Proposed Area Partitioning Algorithm  

Based on the multilevel graph partitioning scheme discussed in section 2.1, an efficient 
power network area partitioning algorithm is developed [19].  This algorithm does not 
involve an intentional graph simplification stage for a large scale power network. The 
mere simplification process would lead to a loss of useful information, further reducing 
the accuracy of partitioning. A coarsening and uncoarsening process is included in the 
multilevel graph partitioning algorithm that will be applied.  

The proposed algorithm includes two stages. At the first stage, the network is modeled as 
an edge-weighted graph. Each bus of the power network is a vertex of the graph, each 
transmission line on the one-line diagram is an edge. The weight of an edge is the 
absolute value of the MW power flow on the transmission line. The basic graph structure 
of the power network can be constructed off-line. The final graph can be further updated 
with information of the topological changes and weights for the edges. Since line flows 
resulting from contingency analysis are used to determine the islanding configuration, the 
proposed area partitioning algorithm has the ability to determine the next configuration 
based on vulnerability considerations. 

At the second stage, a multilevel recursive bisection algorithm is used to partition the 
weighted graph into several isolated areas. In this stage, a circuit partitioning tool, 
pMETIS that implements a multilevel recursive bisection algorithm is utilized [18]. 
pMETIS is a professional graph partitioning software tool that has been widely used in 
VLSI design and  its performance in terms of the cut size and computational time is 
excellent. As an example, it is capable of partitioning a graph with 15,606 vertices and 
45,878 edges into 256 subareas with minimum cut set in 3.13 second on a PC [18].  With 
the fast computational speed, the proposed area partitioning algorithm has the potential to 
compute the system islanding configuration on-line.   

The optimal number k of isolated areas is selected from several area partitioning 
scenarios ranging from two isolated areas to kmax isolated areas, where kmax is the 
largest acceptable number of isolated areas that a system can be divided into. The optimal 
k area partitioning is the one with minimum loss of load among all acceptable partitions. 
If load shedding is combined with this area partitioning algorithm, the optimal k area 
partitioning minimizes load shedding compared to all other acceptable partitions.  

3.2 Special Protection Scheme Architecture 

The controlled islanding actions can be initiated by a special protection system (SPS). A 
conceptual relaying system for controlled islanding is illustrated in Fig. 2. 
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Fig. 2 A Conceptual Relaying Architecture for Controlled Islanding 

This system consists of one central control unit (CCU) and several substation control 
units (SCUs). CCU acquires system data such as topology and power flows from SCUs 
and generates the system separation strategy using the proposed area partitioning 
algorithm. Power flow data can be obtained from on-line Energy Management Systems 
(EMSs). SCUs receive the system separation command from CCU and send breaker 
opening signals to specific auxiliary relays. These relays then send tripping signals to the 
appropriate circuit breakers. To ensure reliable and fast information transfer between 
CCU and SCUs, a dedicated communication network, such as a synchronous optical 
network (SONET), would be needed. 

3.3 Emergency Control and Area Partitioning 

The proposed power system reconfiguration scheme consists of a controlled islanding 
scheme and a load shedding scheme. The procedure shown in Fig.3 demonstrates how the 
proposed configuration control system can help to absorb a shock, block the propagation 
of disturbances, and avoid a catastrophic failure.  

After the system is separated into islands, load rich or generation rich islands may exist. 
At a generation rich island, if the system frequency violates the operating constraint, the 
excess generation can be removed by a rapid response of the speed governor or generator 
tripping. At a load rich island, load shedding is required to avoid a frequency decline 
caused by generation shortage. 

In response to the disturbance, the optimal configuration and the corresponding 
boundaries for the islands will be determined by the proposed graph theoretic area 
partitioning algorithm. If a load rich island exists in the new configuration, a power flow 
study for the islanding configuration can be performed to determine the amount of load to 
shed.  
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Fig. 3 Emergency Control Procedure 

Suppose that the system is initially operating in a normal state. When a major problem 
occurs in the system, a cascading sequence of events including line tripping, overloading 
of other lines, protection system malfunctions, and generator tripping events might be 
triggered. If it is triggered, the system may enter a vulnerable state. If the controlled 
islanding strategy along with load shedding is applied according to the real time 
vulnerability assessment result, the impact of disturbances can be isolated to within one 
island and the remaining system will survive the shock without losing too much load.  
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4. Power System Reconfiguration Considering Reactive Power Balance 

4.1 Introduction of the Methodology 

Reactive power plays an important role in supporting the voltage profile of a power 
system. Insufficient reactive power support leads to a low voltage profile that may result 
in voltage instability or undesirable line and generator tripping events. The reactive 
power deficiency in the Idaho area resulted in voltage instability that played a crucial role 
in the July 2, 1996 blackout [20]. A significant mismatch of the reactive power supply 
and demand causes high- or low-voltage conditions in the islands [21]. However, reactive 
power balance has not been incorporated in the development of power system 
reconfiguration methods. Existing controlled islanding methods are mainly focused on 
the frequency behavior after system separation through minimization of real power load 
and generation imbalance within each island.  

Real power balance does not necessarily imply that reactive power is also balanced. A 
small real power flow on islanding boundary lines may be accompanied with a large 
reactive power flow. Tripping of transmission lines that carry large reactive power flows 
can lead to insufficient reactive power support in one island, especially in adjacent area 
of the boundary lines. If the reactive power supply in this area is not increased in time, 
bus voltages may drop significantly and generators may become overloaded. As a 
consequence, reactive power demands may eventually exceed the sustainable capacity of 
reactive power resources, leading to a catastrophic failure. 

A balanced reactive power supply and demand in each island helps to improve the 
voltage profile and enhance the ability of an island to withstand a disturbance. It is 
desirable to find a system separation plan that keeps the real power balance and, at the 
same time, avoids insufficient reactive power support caused by tripping of transmission 
lines on the islanding boundary that carry large reactive power flows. In the proposed 
algorithm, minimization of the reactive power flow on the partitioning boundary is 
incorporated in the graph partitioning objectives. In the power system graph, each edge 
has two distinct weights. One edge weight is the absolute value of the MW power flow 
on the transmission line and the other is the absolute value of the MVar power flow on 
the same line. By graph theory, the two objectives in partitioning a power network lead to 
partitioning of a weighted graph into a number of smaller graphs such that the edge-cut 
with respect to each different type weight is minimized. Therefore, the power system 
partitioning problem is transformed into a multi-objective graph partitioning problem. 

4.2 A Framework of Proposed System Separation Strategy 

Since real power balance within the island has to be achieved hand in hand with reactive 
power balance, a two stage system separation strategy is proposed. There are two 
constraints for the subsystem formed by system separation: 

1. Real Power Balance Constraint (RPBC): In each island, real power generation is 
equal to or larger than real power load. 
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2. Boundary Bus Voltage Constraint (BBVC): The bus voltages of the buses at the 
islanding boundary after system separation should be maintained within 
tolerances by industry standards (0.95 pu to 1.05 pu for instance). 

The flow chart of the proposed system separation strategy is shown in Fig .4. 

 

 

Fig. 4 Proposed Area Partitioning Procedure 

1. At Stage one, the area partitioning algorithm only considers minimization of real 
power flow on the boundary described in section 3.1. Based on the partitioning 
solution, if RPBC is not satisfied, or if real power load is higher than real power 
generation in one island, the amount of load to shed is determined and the optimal 
islanding strategy is the solution obtained by Stage one area partitioning. If RPBC 
is satisfied, then BBVC is checked. If low bus voltages of the buses at islanding 
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boundary caused by insufficient reactive power support are expected to occur 
after islanding, then go to Stage two partitioning. 

2. At Stage two partitioning, a multi-objective multilevel graph algorithm is applied. 
The detailed step-by-step procedure is shown below. 

A. A single objective graph partitioning is computed with the edge weight equal 
to the absolute value of  reactive power flow on the transmission line, and the 
best edge-cuts Cq for this objective is recorded. 

B. A single objective graph partitioning is computed with the edge weight equal 
to the combined weight wcombined,,  where wcombined can be obtained from 
equation 1.1 with the best edge-cuts Cp obtained at Stage one partitioning, the 
best edge-cuts Cq obtained at the last step and the preference factor p. The 
input preference factor p is initiated to reduce the reactive power flow on the 
boundary.     

C. A single objective graph partitioning is applied with the new combined 
normalized edge weights. 

After Stage two partitioning, RPBC and BBVC are checked again. If both constraints are 
satisfied, this partitioning solution is chosen as the optimal system separation solution. 
Otherwise, modify the preference factor p and then apply Stage two area partitioning 
again. The multi-objective graph partitioning algorithm is able to enhance the 
minimization of real power flow and reduce the ability to minimize reactive power flow 
on the boundary by increasing the preference factor p. On the other hand, decreasing the 
preference factor p could reduce the total real power flow on the islanding boundary and 
increase the total reactive power flow on the islanding boundary. Similar to the proposed 
algorithm in section 3.1, the multilevel graph partitioning tool, pMETIS[17], is utilized to 
compute the single objective area partitioning at each step. 
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5. Numerical Studies and Simulation Result 

5.1 Simulation with a 200-Bus System 

A 200-bus system that is a variation of the simplified model of the western 
interconnection in North America is used to evaluate the performance of the proposed 
power network partitioning algorithm.  The one-line diagram of the system is shown in 
Fig .5.  

This system is operating under a peak load condition with a total generation of 64,417.32 
MW, 17,236.9 MVar, and a total load of 63,510.41MW and 16,171.75 MVar. The 
simulation is based on PSS/E power flow solutions and PSS/E time-domain simulation 
results. A cascading scenario is created on the 200-bus test system, and the sequence of 
cascading events is as follows, 

1) At t=0 second, three transmission lines (196-197, 76-181, 69-76) are out-of-service. 
(There are two double circuit transmission lines between bus 196 to bus 197 and between 
bus 69 to 76.) 

2) At t=60 second, line 72-197 is de-energized due to the line fault. 

3) At t=120 second, line 78-196 is de-energized due to the line fault. Generator G70 at 
bus 70 become overloaded. 

4) At t=240 second, generator G70 hit its field thermal capability limit and is tripped by 
over-excitation protection. 

In this cascading scenario, successive tripping of the lines leads to power flow rerouting 
and overloads. After tripping of generator G70, power swings become lightly damped. 
Progressive drops in bus voltage are observed with rotor angle instability. The generator 
angle difference between generator G77 in the North Island and generator G15 in the 
South Island, observed in Fig. 6, increases continuously after t=240 seconds and finally 
exceeds 180° at t=263 seconds approximately. As shown in Fig. 7, the voltage collapse 
occurs at about 280 second. Since load characteristics are considered in the dynamic 
model, with the cascading events, the total load in the system is reduced to 61,039.34 
MW and 15,227.48 MVar at t=240 second. 

5.1.1 System Separation Performance without Considering Reactive Power Balance 

In order to prevent the impending blackout, the system is separated into two areas, i.e., 
North Island and South Island, using the proposed area partitioning algorithm. The 
performance of system separation without considering reactive power balance is 
evaluated first. Only real power flow on the partitioning boundary is minimized. In other 
words, only Stage one graph partitioning described in section 4.2 is conducted. 

System islanding is initiated at 1s after tripping of generator G70. The edge cutset and the 
corresponding absolute value of real and reactive power flow on the islanding boundary 
are shown in Table 2. The Stage one partitioning boundary is shown in Fig. 5. It can be 
seen that the system is partitioned into two islands, North Island and South Island, with a 
roughly equal size. 
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Fig. 5 200-Bus System  
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Fig. 6 Bus Voltages without Islanding Strategy 

 

Fig. 7 Generator Angle Difference without Islanding Strategy 

The total real power flow on the islanding boundary is 893.5 MW. The total real power 
load and generation in North Island are 37203.4 MW and 37607.2 MW, respectively. The 
total real power load and generation in South Island are 23835.9 MW and 24335.5 MW, 
respectively. Both islands are generation rich islands and satisfy the Real Power Balance 
Constraint (RPBC). As shown in Fig. 8, after intentional system separation, South Island 
is successfully stabilized, all bus voltages are higher than 0.95 pu and no line is tripped 
by the impedance relay. 
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Fig. 8 South Island Bus Voltages  

Stage one partitioning does not consider the objective of minimizing the total reactive 
power on the partitioning boundary. As shown on Table 2, three transmission lines that 
carry about 1240 MVar reactive power in total are included in the islanding boundary. 
The direction of the reactive power flow on these three transmission lines is from South 
to North, which is the opposite direction of the real power flow. Tripping of these 
transmission lines that carry a large amount of reactive power flow will cause insufficient 
reactive power support in the area adjacent to the islanding boundary in North Island. As 
a result, after tripping of transmission lines on the islanding boundary that separates the 
system into two islands, significant voltage drop occurs at a few buses in the North 
Island. The bus voltages that are lower than the 0.95 pu in North Island are given in Table 
3. 

Table 2 Stage One Partitioning Cut Set  

 

Table 3 Low Bus Voltages in North Island  

 

As shown in Table 3, bus voltages at eight buses are below 0.95 pu. Although bus 196 is 
far from the system separation boundary, two 500 kV transmission lines connected with 
this bus are de-energized in the cascading process that leads to the low voltage profile at 
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Cut Set 174-175 176-177 178-179 156-155 155-167 189-188(1) 189-188(2) Total

MW 239.2 240.4 255.0 80.0 45.6 17.5 15.8 893.5

Mvar 402.8 405.9 430.8 30.0 41.6 13.9 8.3 1333.3

There are two transmission lines between bus 188 and 189.

Bus 104 107 108 111 174 176 178 196
Voltage(pu) 0.934 0.914 0.916 0.908 0.916 0.916 0.916 0.904
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this bus. If the reactive power device such as a shunt capacitor is switched on, the low 
voltage at this bus can be avoided.  

Except for bus 196, all other seven buses are close to buses 174, 176 and 178 that are on 
the system separation boundary. The low bus voltages in the adjacent area of the 
islanding boundary in North Island cause overloading of the generator at Bus 103.  The 
plot in Fig. 9 shows that the generator field voltage (EFD) at bus 103 is increased to 1.15 
pu after system separation. At t=350 second, the generator bus 103 is tripped by over-
excitation protection because the generator field voltage at bus 103 continuously exceeds 
threshold pick-up value of the generator field voltage capability limits for 100 seconds 
[22]. As soon as the generator at bus 103 is tripped, a voltage collapse occurs at North 
Island. Fig. 10 shows bus voltages at North Island in the process of cascading events and 
system separation. 

 

Fig. 9 Generator Field Voltage at Bus 103 

 

Fig. 10 North Island Bus Voltages 
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In this simulation case, the system separation strategy without considering reactive power 
balance successfully prevents a voltage collapse at South Island that has abundant 
reactive power support but fails to stabilize North Island after the intentional separation.  

5.1.2 System Separation Performance Considering Reactive Power Balance 

Since there is insufficient reactive power support and low voltage profile exists in the 
boundary area of North Island after the system separation based on Stage one partitioning, 
Stage two area partitioning described in section 4.2 is conducted. At first, the area 
partitioning boundary with the objective of minimizing reactive power flow on the 
islanding boundary is shown in Fig. 5. The islanding boundary obtained with this 
objective divides the system into East Island and West Island, which is significantly 
different from the islanding boundary obtained at Stage one. The total minimized reactive 
power flow on the islanding boundary is 490.3 Mvar. Note that this number is much 
lower than reactive power flow on the islanding boundary without considering reactive 
balance.  

The new combined edge weight is calculated with equation 1.1, where c1 = cp=893.5,  
c2 = cq=490.3. The preference factor is selected as 0.7.  The calculated system separation 
boundary with new combined edge weights is shown in Fig. 5. This boundary is close to 
the boundary obtained at Stage one partitioning geographically. However, the reactive 
power flows on the partitioning boundary are significantly reduced. The edge cut set and 
corresponding absolute values of real and reactive power flows and new combined edge 
weights are shown in Table 4. The total real power load and generation at North Island 
are 36513.4 MW and 37178.1MW, respectively. The total real power load and generation 
at South Island are 24525.9 MW and 24764.6 MW, respectively. Both islands are 
generation rich islands and satisfy the Real Power Balance Constraint (RPBC). 

After the system is separated according to the boundary shown in Table 4 at 1s after 
tripping of generator G70, both islands are stabilized. Fig. 11 shows the bus voltages in 
both islands. As shown in Fig. 10, only the bus voltage at bus 196 in North Island is 
stabilized at 0.905 pu that is lower than the 0.95 pu, all other voltages are equal to or 
higher than 0.95 pu. No generator hits the field capability limits. The Boundary Bus 
Voltage Constraint (BBVC) is satisfied. Fig. 12 shows that the stable frequency of the 
North Island and the South Island are 60.05 Hz and 59.97 Hz respectively. 

Table 4 Partitioning Cut Set Considering Real and Reactive Power Balance 

 

This example demonstrates that with the same islanding initiation time, the system 
separation strategy considering both real and reactive power achieves better performance 
than the strategy that only considers real power balance. The system separation strategy 
considering both real and reactive power successfully prevents the post-islanding system 

Cut Set 175-153 177-153 179-153 85-156 189-188(1) 189-188(2) Total

MW 239.2 240.4 255.0 326.6 17.5 15.8 1094.5
Mvar 188.0 191.8 237.6 78.0 13.9 8.3 717.6

Combined Weight 302.4 305.7 345.2 303.6 22.2 17.5 1296.5

There are two transmission lines between bus 188 and 189.
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collapse that occurs when the partitioning only considers real power balance. The 
proposed multi-objective multi-level graph partitioning algorithm is able to identify the 
optimal system separation boundary with minimized real and reactive power flow. The 
proposed power system reconfiguration scheme enhances the grid’s shock absorption 
capability with respect to the cascading failures. 

 

Fig. 11 Bus Voltages with Reactive Power Balancing Islanding 

 

Fig. 12 Bus Frequencies with Reactive Power Balancing Islanding 

5.2 Simulation with a 22,000-Bus System 

In order to evaluate the computational efficiency of the developed area partitioning 
algorithm, the proposed algorithm is tested with a 22,000 bus system. After converting 
this power network into a weighted graph, 22,000 vertices and 32,749 edges are obtained. 
To partition this graph into 2, 3, 4 islands with one single objective multilevel graph 
partitioning, the computation time using based on 2 GHz Pentium CPU and 1GB RAM is 
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0.07s, 0.081s and 0.09s, respectively. Since the proposed multi-objective multilevel graph 
partitioning algorithm involves three single objective graph partitioning processes, the 
computation time for this 22,000 bus system with proposed reactive power balance 
partitioning is less than 1s. The computational speed of the proposed algorithm is 
expected to meet the real time requirement.  

The simulation results of applying the proposed multi-level graph partitioning algorithm 
to separate the 22,000-bus system into two islands are as follows, 

Step 1. Only minimizing the real power flow on the islanding boundary 

The number of edge cuts is 299 for two islands. The total real and reactive power flow on 
the islanding boundary of two islands are 4708 MW and 2913.5 MVar, respectively. The 
maximum reactive power flow on one edge of the boundary is 202.4 MVar, the real 
power flow on this edge is 26.2 MW. 

Step 2. Only minimizing the reactive power flow on the islanding boundary 

The number of edge cuts is 325 for two islands. The total real and reactive power flow on 
the islanding boundary of two islands are 6913.2 MW and 1434.7 MVar, respectively. 
The maximum reactive power flow on one edge of the boundary is 101.5 Mvar, the real 
power flow on this edge is 135.8 MW. 

Step 3. Minimizing both the real and reactive power flow on the islanding boundary 

The preference factor p is selected as 0.7. The number of edge cuts is 308 for two islands. 
The total real and reactive power flow on the islanding boundary of two islands are 
5426.7 MW and 1734.7 MVar, respectively. The maximum reactive power flow on one 
edge of the boundary is 134.4 Mvar, the real power flow on this edge is 208.7 MW. 

Fig. 13 and Fig. 14 compares the partitioning results on the 22,000 bus system obtained 
by the Step 1,2 and 3 partitioning described above. It is seen that the proposed multi-
objective graph partitioning algorithm provides a good partitioning solution that 
minimizes both real and reactive power flows on the islanding boundary. The proposed 
algorithm is able to generate the partitioning that has a good tradeoff between the two 
objectives.  

 

Fig. 13 Normalized Edge-Cut Results with Different Partitioning Objectives  
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Fig. 14 Edge-Cut Results with Different Partitioning Objectives 
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6. Conclusion and Future Work 

Controlled partitioning of the power network is an emergency control that involves 
partitioning of the power network into self-sufficient islands. This report presents an area 
partitioning algorithm that not only minimizes the imbalance of real power generation 
and load in each island, but also minimizes the imbalance of reactive power generation 
and loads in each island. More balanced reactive power supply and demand in each island 
could avoid the low voltage profile after system separation caused by tripping 
transmission lines that carry large reactive power. Time domain simulations are 
conducted on a 200-bus system to test the performance of the proposed algorithm. A 
simulation example shows that the proposed area partitioning strategy successfully 
prevents the post-islanding system collapse that occurs when the partitioning only 
considers real power balance. The proposed area partitioning strategy has the capability 
to enhance the grid’s shock absorption capability with respect to cascading failures.  

Simulations on a 22,000 bus system demonstrate that the proposed algorithm is 
computational efficient. It is feasible to implement a real-time power system 
reconfiguration scheme with high speed communication devices and intelligent control 
equipments. 

The proposed area partitioning algorithm can be combined with a load shedding scheme 
to achieve a “smart grid” technology that enhances the robustness of the system and 
minimizes the impact of cascading events.  

There are important issues that need to be addressed in the future:  

 More detailed simulations including dynamic simulations should be conducted on 
very large systems, such as the 22,000 bus system to validate the proposed algorithm. 

 Since the boundaries identified by the proposed area partitioning algorithm are not 
always identical with company boundaries, the partition needs to take into account 
practical considerations.   

 More work is needed to determine the wide-area protection and control system 
needed for implementation of the proposed method.   
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1 Introduction

This is the final report for the part of the 2007-2010 PSerc project on Fast
simulation, monitoring and mitigation of cascading failure (S-32) performed
at the University of Wisconsin-Madison. The main objective of this part of
the project is to develop methods and tools to estimate propagation and the
distribution of blackout extent in cascading outage data and simulations.

1.1 Main accomplishments

The main accomplishments of the UW-Madison part of the project are

1. We analyzed industry data for cascading transmission line outages
recorded over ten years. The propagation of the outages increased as
the cascades proceed. The number of line outages in a blackout is
a measure of the blackout extent. We developed a practical method
to predict the distribution of the total number of lines outaged from
the initial line outages and the propagation. The new method uses
data that must be reported to NERC and appears to be promising
and practical. Access to testing data is limited, but the results on the
available data are very good. One outcome could be new metrics for
cascading failure.

2. We pursued a parallel effort to analyze simulation data to quantify the
propagation of the cascades and predict the blackout size. This work
not only gives a metric for cascade propagation to help interpret sim-
ulation results, but allows prediction of distribution of blackout size
from much fewer simulation runs. In particular, we generalized the
method from predicting distributions of lines outaged to predicting
distributions of load shed and also developed the statistical analysis of
these methods to demonstrate the order of magnitude improvements
in using the approach to predict the distribution of the numbers of out-
ages for the larger blackouts. The improved statistical analysis is not
documented here, but is described in the journal papers [42, 24]. The
generalization to quantifying propagation of load and predicting the
distributions of load shed is summarized in section 3 and the journal
paper [31] in the appendix.

3. We have completed work that quantifies how well a branching process
model approximates a probabilistic model of cascading failure. We
have obtained useful bounds on the ratio and difference of the prob-
abilities from these two models. This work helps to justify the use

1



branching processes in the project to quantify cascading failure. This
work is summarized in section and will appear in a journal paper [32]
in 2010.

4. We put much effort into papers and talks to communicate our results
and respond to questions from reviewers. A few of the papers were
initiated with previous PSerc support and finished under the current
project. Contributions, including being task leader, to the IEEE PES
CAMS committee on cascading failure were made to help form the
community of engineers working on cascading failure. This participa-
tion led to the conference papers [49, 50].

1.2 Students and publications

We summarize the student education supported and the papers and talks
produced.

The project helped to support the following education at the University
of Wisconsin-Madison:

• MS degree for Janghoon Kim. Thesis: Properties of the branching
model and the cascading model of the failure propagation of the power
network, MS Thesis, University of Wisconsin-Madison 2008.

• PhD degree for Janghoon Kim (ongoing)

The conference papers produced are:

• Initial review of methods for cascading failure analysis in electric power
transmission systems IEEE PES CAMS Task Force on Cascading Fail-
ure, IEEE Power Engineering Society General Meeting, Pittsburgh PA
USA, July 2008.

• IEEE PES CAMS Task Force on Cascading Failure, Vulnerability as-
sessment for cascading failures in electric power systems, IEEE PES
Power Systems Conference and Exposition, Seattle WA USA, March
2009.

• J. Kim, I. Dobson, Propagation of load shed in cascading line out-
ages simulated by OPA, COMPENG 2010: Complexity in Engineer-
ing, Rome Italy, February 2010.
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The journal papers that are published to date or will be published are
the following:

• H. Ren, I. Dobson, B.A. Carreras, Long-term effect of the n-1 criterion
on cascading line outages in an evolving power transmission grid, IEEE
Transactions on Power Systems, vol. 23, no. 3, August 2008, pp. 1217-
1225.

• H. Ren, I. Dobson, Using transmission line outage data to estimate
cascading failure propagation in an electric power system, IEEE Trans-
actions on Circuits and Systems Part II, vol. 55, no. 9, Sept. 2008,
pp. 927-931.

• I. Dobson, J. Kim, K.R. Wierzbicki, Testing branching process estima-
tors of cascading failure with data from a simulation of transmission
line outages, Risk Analysis, vol. 30, no. 4, 2010, pp. 650-662.

• J. Kim, I. Dobson, Approximating a loading-dependent cascading fail-
ure model with a branching process, to appear in IEEE Transactions
on Reliability (accepted March 2010).

• D.E. Newman, B.A. Carreras, V.E. Lynch, I. Dobson, Exploring com-
plex systems aspects of blackout risk and mitigation, to appear in
IEEE Transactions on Reliability in 2011.

The following presentations were made:

• Criticality, Self-organization and Cascading Failure in Electric Power
System Blackouts, Princeton Plasma Physics National Lab, September
2007.

• Understanding Cascading failure, EPRI Workshop, Palo Alto CA De-
cember 2007.

• Cascading failure analysis, Lecture at EEI Transmission and Wholesale
Markets School Madison, Wisconsin, August 2008.

• Can we quantify the risk of cascading failure blackouts with branching
processes? Center for Nonlinear Studies seminar, Los Alamos National
Lab, April 2009.

• How can complex system feedbacks shape cascading failure blackout
risk towards criticality?, Center for Control, Dynamical Systems, and
Computation seminar, University of California at Santa Barbara, April
2009.
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• Modeling engineered and sustainable systems with complex system
feedbacks, First international conference on computational sustain-
ability CompSust09, Cornell University, Ithaca NY, June 2009.

• Extreme event research, California Energy Commission Transmission
Research Program Colloquium, Costa Mesa CA, September 2009.

• Modeling cascading failure, Presentation at workshop: Vulnerability
assessment of critical infrastructure, with case studies on power trans-
mission networks and dams, Madison WI, January 2009

• Can we quantify the risk of cascading failure blackouts with branching
processes? Center for Nonlinear Studies seminar, Los Alamos National
Lab, April 2009.

• How can complex system feedbacks shape cascading failure blackout
risk towards criticality?, Center for Control, Dynamical Systems, and
Computation seminar, University of California at Santa Barbara, April
2009.

• Modeling engineered and sustainable systems with complex system
feedbacks, First international conference on computational sustain-
ability CompSust09, Cornell University, Ithaca NY, June 2009.

• Propagation of load shed in cascading line outages simulated by OPA,
COMPENG 2010: Complexity in Engineering, Rome Italy, February
2010.

• Models of cascading failure in blackouts of electric power transmis-
sion systems, Electronic Power Grid Resilience Workshop, Naval Post
Graduate School, Monterey CA, May 2010.

• Modeling cascading failure with branching processes, Workshop on
Optimization and Control Theory for Smart Grids, Los Alamos na-
tional laboratory, Los Alamos NM, August 2010.
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1.3 Budget and challenges

The UW-Madison share of the budget for S-32 was a total of $56K planned
to be spread over 2 years. The S-32 funding was intended to be supplemental
funding for a larger project, but the base funding of the larger project came
through but was unexpectedly and unpredictably delayed for years. This was
partially addressed by a no-cost extension extending the time of performance
of the project.

There were many difficulties in obtaining reliability data for the project.
Many requests came to naught or encountered legal difficulties. There was
finally success in obtaining the line trip data analyzed in section 2. The
delays were partially addressed by a no-cost extension extending the time
of performance of the project. The lack of real data was also addressed in
part by working further on simulated data.

There were protracted negotiations with the reviewers of some of the
journal papers. All the papers were eventually published in good journals,
but the process was time consuming.
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2 Observed line outage data and testing new branch-
ing models

2.1 Summary

We analyze cascading transmission line outages recorded over ten years in
a North American utility, based on data that must be reported to NERC.
We obtain the empirical distributions of the number of lines outaged for
the initial line outages and for the total line outages after cascading. The
propagation of the outages increases as the cascades proceed. We test a new
method based on branching processes for predicting the distribution of the
total number of lines outaged from the initial line outages and the increasing
propagation. The new method is validated in the sense of being consistent
with the data and appears to be practical.

2.2 Outage data

The transmission line outage data is 8864 outages recorded by a North Amer-
ican utility over a period of ten years. This is standard data that is now
required to be reported by all utilities to NERC under the TADS Transmis-
sion Availability Data System. The data for each transmission line outage
includes the trip time (to the nearest minute) as well as other data. All the
line outages are automatic trips. More than 99% of the outages are of lines
rated 69 kV or above and more than 96% of the outages are of lines rated
115 kV or above. There are several types of line outages in the data and a
variety of reasons for the trips. In processing the data, both voltage levels
and all types of line outages are regarded as the same and the reasons for
the line outages are neglected. For this bulk statistical analysis, neglecting
these distinctions is a useful first step as we proceed.

2.3 Grouping outages into cascades and stages

For our analysis it is necessary to group the line outages first into different
cascades, and then into different stages within each cascade. Here we use
a simple method based on outages’ timing [42, 17]. Since operator actions
are usually completed within one hour, we assume that successive outages
separated in time by more than one hour belong to different cascades. Since
fast transients or auto-recloser actions are completed within one minute, we
assume that successive outages in a given cascade separated in time by more
than one minute are in different stages within that cascade. One result of
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Figure 1: Sum of line outages in each of stages 11 to 109 of all cascades.

the grouping of the outages into cascades and stages is that there are 5227
cascades and the longest cascade has 110 stages.

Table 1 is obtained by summing over all the 5227 cascades the number
of outages in each of stages 0 to 10. That is, of the 8864 outages, 6254 are
in stage 0 of a cascade, 1143 are in stage 1 of a cascade, and so on. The
number of outages in each of stages 11 to 109 is shown in Fig. 1.

The probability distribution of the number of initial outages is shown
by the circles in Fig. 2. The probability distribution of the total number
of outages is shown by the squares in Fig. 2. Both distributions seem to
have a power law character. However, there are too few line outages at the
highest number of line outages to accurately estimate the higher ends of
these distributions. The exponent of the power law distribution of the total
number of failures is roughly −2.7.

Table 1: Number of outages in initial stages summed over the cascades
stage number 0 1 2 3 4 5 6 7 8 9 10

number of outages 6254 1143 434 227 155 95 78 53 46 32 31

7



2.4 Propagation in the cascades

In our branching process model of cascading, each outage in each stage
(a “parent” outage) independently produces a random number 0,1,2,3,...
of outages (“child” outages) in the next stage according to an offspring
distribution that is a Poisson distribution of mean λ. The child outages then
become parents to produce the next generation and so on. If the number of
outages in a stage becomes zero, the cascade stops. The mean number of
child outages for each parent (the average family size) is the parameter λ.
λ quantifies the average tendency for the cascade to propagate.

There are two main ways to estimate the propagation. The first way is
to count all the outages in the cascade that are children and divide this by
all the outages that are parents. This gives the propagation λ averaged over
the number of stages [42]. We report on this calculation at the end of this
subsection.

The second way is to look at how many children are produced by each
parent at each stage. This gives an estimate λk for each stage k = 1, 2, 3, ...
which is computed by dividing the number of outages in stage k by the
number of outages in stage k−1. For example, stage 0 has 6254 outages and
these parents produced 1143 child outages in stage 1. Therefore the average
number of children in stage 1 per parent in stage 0 is λ1 = 1143/6254 = 0.18.
Stage 1 has 1143 outages and these outages considered as parents produced
434 child outages in stage 2. Therefore the average number of children in
stage 2 per parent in stage 1 is λ2 = 434/1143 = 0.38. The results of
computing λk for stages k = 1, 2, 3, ..., 19 are shown in Fig. 3 and Table 2.
As the cascade progresses, λk increases from 0.18 and appears to level off at
approximately 0.75. The higher stages have too few outages to accurately
estimate λk and the results for higher stages become noisy.

Table 2: Estimated stage propagations λk

k 1 2 3 4 5 6 7 8 9 10 11 12
λk 0.18 0.38 0.52 0.68 0.61 0.82 0.68 0.87 0.70 0.97 0.61 0.79

If we compute the propagation λ averaged over the number of stages
using the method of [42] by dividing the total number of children in all the
cascades by the total number of parents in all the cascades, we get λ = 0.29.
This value averaged over the stages is dominated by the stages 0 and 1. If
we omit stage 0 and recompute λ averaged over the remaining stages, we
get λ = 0.56. If we omit stage 0 and stage 1 and recompute λ averaged
over the remaining stages, we get λ = 0.70. It seems unsatisfactory to be

8



æ

ææææææ æ æ

æ

æ

æ

æ

æ

ææ
æ

ææ

æ

à

à

à

à

à
à

à

à

à
àà

à
àà
à
à

à

à

àà

à

àààààà à à

1 2 5 10 20 50 100

0.001

0.01

0.1

1

number of line outages

p
ro

b
ab

il
it

y

Figure 2: Probability distribution of initial (circles) and and total (squares)
line outages.

using methods that essentially assume λ to be roughly constant when it is
increasing significantly, so in this note we use a new method that accounts
for the increase.

2.5 Predicting total outage distribution with branching pro-
cess

We predict the distribution of the total number of outages using a branching
process model from the distribution of initial outages and the propagation.
The new aspect is that we account for the change in propagation as the
cascade proceeds. In particular we assume that the stage propagation is
given by Table 3, which is obtained from the estimated propagations for
the first 4 stages in Table 3, followed by an assumption of λk = 0.75 for
k ≥ 5. λk = 0.75 is a guesstimate of the asymptotic propagation based
on the noisy data in Fig. 3. The branching process is assumed to have
the initial distribution of outages given by the data as shown by the circles
in Fig. 2 and propagation at each stage with a Poisson distribution with
mean given by the stage propagations in Table 3. The general reasons for
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Figure 3: λk estimated from the outage data at stages k = 1, 2, ..., 19.

Table 3: Stage propagations λk for predicting total outage distribution
k 1 2 3 4 ≥ 5
λk 0.18 0.38 0.52 0.68 0.75

assuming a Poisson distribution are explained in [42]. The details of this new
computation are quarantined in the appendix. The predicted distribution of
total number of outages is shown by the line in Figure 4 and it can be seen
that the match with the empirical distribution of total number of outages is
very good.

2.6 Summary of calculations

This section assumes some familiarity with branching processes [27]. Con-
sider a single line outage that occurs in stage k and let the total number of
outages that are descendants of this outage in any subsequent stage (chil-
dren plus grandchildren plus great grandchildren and so on) be Yk. Let the
generating function of Yk be Fk(s) = EsYk . The number of descendants of
the single line outage plus the single line outage itself is Yk + 1 and Yk + 1
has generating function sFk(s). Let the generating function of the offspring
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Figure 4: Distribution of total number of outages from data (dots) and
estimated using branching process (line).
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distribution producing stage k from stage k − 1 be f(s). Then the basic
recursion for computing all the descendants of an outage at a given stage is

Fk−1(s) = f(sFk(s)) (1)

We now apply this recursion to compute the total number of outages
given the stage propagations λk in Table 3. Since λk = 0.75 for k ≥ 5,
the total number of outages that are descendants of an outage in stage 4
plus the outage itself is given by a Borel-Tanner distribution with parameter
0.75. We write fB(s, 0.75) for the generating function of the Borel-Tanner
distribution with parameter 0.75. We write f(s, λk) = exp[λk(s−1)] for the
generating function of the Poisson offspring distribution with mean λk. We
write f0(s) for the generating function of the initial distribution of failures.
f0(s) is computed from the empirical initial distribution of outages. We
write F (s) for the generating function of the total number of outages that
we wish to compute. Then applying the recursion (1) successively, we get

sF4(s) = fB(s, 0.75)
F3(s) = f(sF5(s), 0.68) = f(fB(s, 0.75), 0.68)
F2(s) = f(sf(fB(s, 0.75), 0.68), 0.52)
F1(s) = f(sf(sf(fB(s, 0.75), 0.68), 0.52), 0.38)
F0(s) = f(sf(sf(sf(fB(s, 0.75), 0.68), 0.52), 0.38), 0.18)

F (s) =f0(sf(sf(sf(sf(fB(s, 0.75), 0.68), 0.52), 0.38), 0.18))
(2)

Equation (2) shows that F (s) is a complicated polynomial, but it can be
evaluated by Mathematica for as many terms as needed. For example, com-
puting 500 terms of F (s) predicts the total number of outages as shown in
Fig. 5. Note the power law character of the distribution up to about 100
outages.

2.7 Conclusions

For this utility data set we conclude that:

• Propagation of line outages increases as the cascade progresses and
then appears to level out.

• The distributions of the initial and total number of line outages have
an approximate power law character over their initial portions that
correspond to smaller number of outages.
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Figure 5: Distribution of total number of outages predicted using branching
process up to 500 outages.

• The distribution of the total number of outages predicted with the
branching process matches well the empirical distribution of the total
number of outages. This validates the branching process model for
predicting the distribution of the total number of outages in the sense
that it is consistent with this data set.

• A branching process that accounts for the varying propagation as the
cascade progresses can give a good prediction of the distribution of the
total number of line outages from the distribution of the initial number
of line outages. Conventional risk analysis or a contingency list can
give the distribution of the initial number of line outages. The varying
propagation can be estimated from recorded line trips as demonstrated
in this section. This is a new method to predict the effect of cascading
on known or assumed initial line trips. The new method seems to be
practical and the computations are easy to implement with computer
algebra. It is likely that much less than ten years of data is necessary
for an accurate prediction of the propagation, but this has not yet
been analyzed.
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• The method uses standard TADS data that is required to be reported
to NERC.

This is the second line outage data set analyzed for propagation after
the initial analysis of a smaller data set in [42]. This analysis accounts for
varying propagation as the cascade progresses whereas [42] does not. In
both this section and [42], the outages are simply grouped into stages and
cascades according to their timing.
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3 Estimating the distribution of load shed

This section briefly summarizes a new method of estimating the probability
distribution of load shed from the initial load shed and an estimate of the
average amount of propagation of load shed. The details are given in the
conference paper [31] that is reprinted in the appendix. The average prop-
agation of the simulated load-shed data is estimated and then the initial
load shed is discretized and propagated with a Galton-Watson branching
process model of cascading failure to estimate the probability distribution
of total load shed. The distribution of total load shed, which gives the fre-
quencies of small, medium and large blackouts, is a basic metric of blackout
frequency since the load shed directly affects customers and society. The
main difference from previous work [24] that similarly estimated the prob-
ability distribution of the total number of lines outaged is that load shed
is a continuously varying quantity whereas the number of lines outaged is
an integer. Hence the need to devise a way to discretize the load-shed data
before applying the Galton-Watson branching process model.

This estimated distribution of total load shed was initially tested using
load-shed data generated by the OPA simulation of cascading transmission
line outages on the IEEE standard 300-bus test system. A key advantage
of this method is that it requires much less data (fewer simulated cascades)
to estimate the probability distribution of total load shed, and especially to
estimate the total load shed of the larger blackouts. (Direct simulation of
these rare events is very time consuming). This is not only helpful in reduc-
ing simulation times, which are always burdensome and often prohibitive for
cascading-failure simulations of large power-system models, but also will be
crucial in designing practical methods of estimating the probability distribu-
tion of load shed from cascades observed in the power system. The testing
showed that the estimated distribution is close to the empirical distribution
in most of the cases tested, suggesting that the branching process model
with an averaged propagation can capture some aspects of the cascading of
load shed, at least for the purpose of estimating the probability distribution
of total load shed. These first results are sufficiently promising that further
testing with other cascading failure simulations or on larger grid models is
warranted.
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4 Approximating a high-level cascading failure model
with a branching process

4.1 Introduction

This section motivates and illustrates the detailed analysis that will soon
appear in the 2010 journal paper [32]. The objective of [32] is to quan-
tify the closeness of the approximation between two high-level probabilistic
models of cascading failure. In one model called CASCADE, failing compo-
nents successively load the unfailed components, whereas the other model is
based on a Galton-Watson branching process. The CASCADE model more
directly summarizes a successive loading mechanism of cascading failure.
Both models are generic, idealized models of cascading failure of a large,
but finite number of components. For suitable parameters, the distributions
of the total number of failures from the branching process and CASCADE
models are close enough to make the branching process a useful approx-
imation. It is advantageous to use the simpler branching process model
when it is a good approximation. Moreover, there is a substantial and use-
ful literature on applying branching processes to other cascading processes
[27, 29, 25].

This section summarizes the CASCADE and branching process mod-
els and illustrates the closeness of the distributions of the total number of
failures. All the analytic work giving quantitive bounds on the closeness is
quarantined in [32].

4.2 Summary of models

The CASCADE model is an analytically tractable probabilistic model of
cascading failure that captures the weakening of the system as the cascade
proceeds [19]. There are a large but finite number n of identical components
and each component has a level of loading or stress. The initial load on each
component is an independent uniform random variable over a fixed range
of loading. There is an initial disturbance to the system that adds addi-
tional loading to each component. Each component has a maximum loading
threshold and fails if this threshold is exceeded. When any component fails,
all the other components are additionally loaded so that initial failures can
lead to a cascading sequence of failures as components successively overload
and additionally load the other components. The cascade continues until
there are no further failures or all the components are failed. The main pa-
rameters are the size d of the initial disturbance and the amount p by which
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load of other components is incremented when a component fails, which
controls the extent to which the cascade propagates.

The branching process model of cascading failure is a standard Galton-
Watson branching process [27] with Poisson offspring distributions, except
that there are a finite number n of components. The failures are produced
in generations. In generation zero, there is an initial Poisson distribution of
failures with mean θ that represents the initial disturbance to the system.
Each failure in each generation produces further failures according to a Pois-
son offspring distribution with mean λ until no more failures are produced
or all the components fail. The main parameters are the mean size θ of
the initial disturbance and the mean number of offspring failures λ which
controls the extent to which the cascade propagates.

The parameters of the CASCADE and branching process models corre-
spond according to

θ = nd (3)
λ = np (4)

4.3 Showing the qualitative agreement between the models

Both the CASCADE and the branching process model have analytic for-
mulas for the probability distributions of the total number of failures in
terms of the model parameters. The objective of [32].is to quantify how
well these formulas agree. In particular, [32]. gives explicit bounds for the
closeness of the probability distributions of the total number of failures for
the CASCADE and branching models.

Fig. 6 shows examples of the CASCADE probability distribution as p
increases in the case of n = 5000 components and small initial disturbance
d = 0.0002. The distribution for p = 0.0001 and np = 0.5 has an exponen-
tial tail slightly heavier than binomial. Hence there is an extremely small
probability of cascades in which a large fraction of the components fail. The
tail becomes heavier as p increases and the distribution for p = 0.0002 and
np = 1 has an approximate power law region over a range of r. This implies
a non negligible probability of cascades that extend to the system size, and,
in this case, the probability of all 5000 components failing is 0.00054. The
distribution for p = 0.0003 and np = 1.5 has an approximately exponential
tail for small r, zero probability of intermediate r, and a probability of 0.44
of all 5000 components failing. (If an intermediate number of components
fail, then the cascade always proceeds to all 5000 components failing.)

Fig. 7 shows the probability distribution of the total number of failures
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for p = 0.0001 and np = 0.5, but with a larger initial disturbance d = 0.0002
that gives a mean initial disturbance of nd = 10 components failed.

Comparing Figs. 6 and 8 illustrates the qualitative agreement between
the CASCADE and branching process models. The model parameters cho-
sen in Figs. 6 and 8 correspond according to (3) and (4). Plotting the
branching process probability distribution corresponding to the CASCADE
distribution in Fig. 7 yields a figure indistinguishable from Fig. 7.
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Figure 6: Probability distribution of total number of failures from CAS-
CADE model with n = 5000 components, initial disturbance d with nd = 1
and each failure causing load increment p with np = 0.5 (light gray dots),
np = 1.0 (dark gray dots), and np = 1.5 (black dots). The probability of
5000 failures is negligible for np = 0.5, 0.00054 for np = 1, and 0.44 for
np = 1.5. The probability of zero failures is 0.3678 in all cases.

4.4 Examples of results of analysis

We now give some examples of typical results from [32].

Example 1.
In our motivating application of cascading failure blackouts in power

transmission networks, estimates for the costs vary widely. For example, es-
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Figure 7: Probability distribution of total number of failures from CAS-
CADE model with n = 5000 components, initial disturbance d with nd = 10
and each failure causing load increment p with np = 0.5. The probability of
5000 failures is negligible. The probability of zero failures is 0.000045.

timates for direct costs of the August 2003 blackout of Northeastern America
vary from about 4 to 12 billion dollars. And indirect costs, such as when
there is rioting or damage to other infrastructures, can readily double or
triple the costs, but are uncertain and hard to quantify. Suppose that risk
is computed as probability of blackout times cost. Then there is little use
for estimates of blackout probability that are significantly more accurate
than the costs. For the sake of illustration, we measure the cascading black-
out size by the number of failures and require blackout probabilities to be
accurate within a factor of 2. That is, if we write R for the ratio of the
probability of the branching process having r failure and the probability
of the CASCADE model having r failures, then we require our branching
process approximation to have ratio R satisfy 1

2 < R < 2. A typical result
from the analysis in [32] is that a condition guaranteeing 1

2 < R < 2 is that
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Figure 8: Probability distribution of total number of failures from branching
process model with n = 5000 components, initial disturbance θ = 1 and
offspring mean λ = 0.5 (light gray dots), λ = 1.0 (dark gray dots), and λ =
1.5 (black dots). The probability of 5000 failures is negligible for λ = 0.5,
0.011 for λ = 1, and 0.44 for λ = 1.5. The probability of zero failures is
0.3679 in all cases.

0 < λ < 1, θ ≤ n
2 and

θ

1− λ
< r < min

{
0.83
√
n+ θ

1− λ
,
n

2

}
The range over which the approximation is valid increases with n.

Example 2. Practical industry models for power transmission networks
typically range from hundreds to tens of thousands of nodes. We choose
n = 1000 nodes, a small initial disturbance θ = 1 and λ = 0.5. Then a
typical result from the analysis in [32] is that 1

2 < R < 2 for 0 ≤ r ≤ 73.
This bound is fairly tight: direct calculation shows that in this case, the
maximum range of r over which 1

2 < R < 2 is 0 ≤ r ≤ 76.
To show the effect of increasing n, redoing Example 2 with n = 10000

nodes yields 1
2 < R < 2 for 0 ≤ r ≤ 234.
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Example 3. We choose n = 1000, θ = 1 and λ = 0.98. Then a typical
result from the analysis in [32] is that 1

2 < R < 2 for 0 ≤ r ≤ 750.
Redoing Example 3 with n = 10000 nodes yields 1

2 < R < 2 for 0 ≤ r ≤
4439.

4.5 Conclusion

High-level probabilistic models of cascading failure such as the CASCADE
model are emerging as one of the useful approaches in the study of large
blackouts. In this section we approximate CASCADE with a Galton-Watson
branching process and motivate and illustrate the closeness of the approxi-
mation for the probability distribution of the total number of failures that
is analyzed in detail in [32]. Since the branching process is a simple and
well understood probabilistic model, it is advantageous to use it when it is a
good approximation. The analysis accounts for the large but finite number
of components needed in the study of large blackouts.
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Abstract

We estimate with a branching process model the propa-
gation of load shed and the probability distribution of load
shed in simulated blackouts of an electric power system.
The average propagation of the simulated load shed data
is estimated and then the initial load shed is discretized and
propagated with a Galton-Watson branching process model
of cascading failure to estimate the probability distribution
of total load shed. We initially test the estimated distribu-
tion of total load shed using load shed data generated by the
OPA simulation of cascading transmission line outages on
the 300 bus IEEE test system. We discuss the effectiveness
of the estimator in terms of how many cascades need to be
simulated to predict the distribution of load shed accurately.

1 Introduction

Large blackouts are rarer than small blackouts, but are
costly to society when they do occur and have substantial
risk [12]. Large blackouts generally become widespread by
a cascading process of successive failures [18, 22, 23]. It
is useful to study mechanisms of cascading failure so that
blackout risk may be better quantified and mitigated. The
electric power infrastructure is vital in maintaining our so-
ciety, and maintaining high reliability is especially impor-
tant as the electric power infrastructure is being transformed
in response to changes in new energy sources, new loads,
technological advances, sustainability, markets and climate
change.

There are many and diverse mechanisms in power sys-
tems by which components tripping or failures cause further
components tripping [12, 15, 18, 22, 23]. These include line
overloads, failures in protection, communication, mainte-
nance or software, various types of instability, and errors in
coordination, situational awareness, planning or operations.
It is infeasible to analyze a full range of these mechanisms
with one simulation, so cascading failure simulations model
and analyze a selected subset of these mechanisms [15]. In

this paper we analyze load shed data produced by the OPA
simulation of cascading line overloads. Each simulated cas-
cade has successive generations in which transmission lines
are tripped and load is shed, and the total number of lines
tripped and the total amount of load shed are measures of
the size of the blackout.

In the OPA simulation model [2], the power system is
represented with a standard DC load flow approximation.
Starting from a solved base case, blackouts are initiated by
random line outages. Whenever a line is outaged, the gen-
eration and load is redispatched using standard linear pro-
gramming methods. The cost function is weighted to ensure
that load shedding is avoided where possible. If any lines
were overloaded during the optimization, then these lines
are outaged with a specified probability. The process of re-
dispatch and testing for outages is iterated until there are no
more outages. Then the total load shed is the power lost in
the blackout. The OPA model neglects many of the cascad-
ing processes in blackouts and the timing of events. How-
ever, the OPA model does represent in a simplified way a
dynamical process of cascading overloads and outages that
is consistent with some basic network and operational con-
straints. This paper considers a restricted form of the OPA
model in which the power grid is fixed and does not evolve
or upgrade; in other work the OPA model also represents
the complex dynamics of an evolving grid [3, 12, 19].

Branching processes have long been used in a variety of
applications to model cascading processes [1, 14], but their
application to the risk of cascading failure is recent [7,8]. In
particular, Galton-Watson branching processes give a high-
level and tractable probabilistic model of cascading failure.
There is some initial evidence that Galton-Watson branch-
ing processes can capture some general features of simu-
lated and observed cascading line trips [8, 9, 20] and can
approximate other probabilistic models of cascading fail-
ure [7, 11, 17]. The branching process gives a simple prob-
abilistic description of the cascading process as an initial
disturbance followed by an average tendency for the cas-
cade to propagate in stages until the cascade dies out or all
the components fail.
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In previous work [9, 10], we obtained cascading failure
data from the OPA simulation with 118 and 300 bus IEEE
standard test systems, estimated the initial number of lines
tripped and average propagation of line trips from this data,
and then used the branching process to predict the proba-
bility distribution of the total number of lines tripped. This
predicted distribution was then shown to match well with
the empirical distribution produced by exhaustively running
the OPA simulation in most of the cases tested. It is useful to
predict the distribution of total number of lines tripped via
the branching process because this can be done with signif-
icantly fewer simulated cascades. The total number of lines
tripped is a measure of blackout size of interest to utilities,
whereas load shed is a measure of blackout size and im-
pact of much more direct interest to all users of electricity.
Therefore in this paper we test estimating the propagation
and probability distribution of load shed.

In contrast with the case of number of lines tripped,
which are nonnegative integers, the amounts of load shed
are nonnegative real numbers. We estimate the initial distri-
bution of load shed and the average propagation λ from the
simulated load shed data. Then we discretize the contin-
uous initial distribution of load shed and use this discrete
distribution as the initial distribution of a Galton-Watson
branching process with average propagation λ to estimate
a discretized distribution of the total load shed.

Our previous work [10,24] also estimated the initial dis-
tribution of load shed and the average propagation λ from
simulated load shed data, but then took a different approach
using continuous state branching processes [13, 16, 21] to
estimate the distribution of the total load shed. The off-
spring distribution was assumed to be a gamma distribution,
with mean λ and variance estimated from the data. Then
computer algebra was used to manipulate cumulant gen-
erating functions to compute the distribution of total load
shed. In this approach, it is not yet known what form of
offspring distribution fits power system cascading data well
(the gamma distribution was chosen in [10, 24] because it
is easy to compute with). Also, there remain challenges in
estimating a second parameter of the offspring distribution
such as variance and in improving the methods that compute
the distribution of load shed for general offspring distribu-
tions. These challenges for the approach based directly on
continuous state branching processes may be met in the fu-
ture, but here we are able to suggest an alternative approach
that seems simpler.

We assume some background explanations in previous
papers. The OPA model is explained in detail in [2] and ref-
erences to a variety of cascading failure methods and sim-
ulations are in [12, 15]. The branching process model and
parameter estimation are explained in more detail in [9] and
general background on branching processes is in [1,13,14].

2 Estimating propagation and distribution of
load shed with a branching process

This section describes the procedure for estimating the
propagation and probability distribution of load shed with a
branching process.

For each simulated cascade the total load shed as well as
the load shed at each intermediate generation of the cascade
is recorded. The first step is to round very small load shed
amounts that are considered negligible (less than 0.5% of
total load) to zero. Then the data is modified so that each
cascade starts with a nonzero amount of shed. In particular,
cascades with no load shed are discarded. The remaining
K cascades are those with some non-negligible load shed.
Therefore the computed statistics, such as the probability
distributions of initial and total load shed, are conditioned
on the cascade starting with some non-negligible amount of
load shed. Moreover, for the cascades with no load shed
in initial generations and non-negligible load shed in sub-
sequent generations, we discard the initial generations with
no load shed so that generation zero always starts with a
positive amount of load shed.

Now the data has K cascades with non-negligible load
shed. Letting Xi

n denote the load shed at generation n of
cascade i, the data looks like this:

gen. 0 gen. 1 gen. 2 · · ·
cascade 1 X

(1)
0 X

(1)
1 X

(1)
2 · · ·

cascade 2 X
(2)
0 X

(2)
1 X

(2)
2 · · ·

...
...

...
...

...
cascadeK X

(K)
0 X

(K)
1 X

(K)
2 · · ·

The total load shed in cascade i is

Y (i) = X
(i)
0 +X

(i)
1 + . . .

The estimator for the average propagation λ is the stan-
dard Harris estimator [6, 13, 14, 25]:

λ̂ =

K∑
k=1

(
X

(k)
1 +X

(k)
2 + ...

)
K∑
k=1

(
X

(k)
0 +X

(k)
1 + ...

) (1)

The Harris estimator (1) is an asymptotically unbiased max-
imum likelihood estimator [14, 25]. Our cascading process
is assumed to be subcritical (λ < 1) and saturation effects
are neglected. (In supercritical or saturating cases, other es-
timators for λ are appropriate as discussed in [10, 17].)

The load shed amounts X(1)
0 , X

(2)
0 , · · · , X(K)

0 are sam-
ples from the probability distribution of initial load shed,
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assuming that some non-negligible load is shed. The aver-
age initial load shed θ is estimated as

θ =
1
K

K∑
k=0

X
(k)
0 (2)

To estimate the probability distribution of total load shed
from the initial load shed and the estimated propagation λ̂,
we discretize the samples of the initial load distribution and
assume they are propagated by a Galton-Watson branching
process with a Poisson offspring distribution of mean λ̂.

There are general arguments suggesting that the choice
of a Poisson offspring distribution is appropriate [4,5]. The
Poisson distribution is a good approximation when each
load shed increment is related to stress on the supply to a
large number of other loads so that each load shed increment
can be associated with a small, fairly uniform probability of
independently leading to other load shed increments in a
large number of locations.

We choose a discrete amount of load shed ∆. Then each
initial load shed sampleXk

0 is discretized to an integer mul-
tiple of ∆:

Zk0 = int
[
Xk

0

∆
+ 0.5

]
, (3)

where int[x] = integer part of x. Write Z0 for the initial
load shed expressed in integer multiples of ∆. Then the
empirical probability distribution of Z0 is

P [Z0 =z0] =
1
K

K∑
k=1

I[Zk0 =z0] (4)

Now, given the probability distribution (4) of the initial
distribution Z0 and the average propagation estimated from
(1), branching process theory implies that the discretized to-
tal load shed is distributed according to a mixture of Borel-
Tanner distributions:

P [Y =r∆] =
r∑

z0=1

P [Z0 =z0]z0λ(rλ)r−z0−1 e−rλ

(r − z0)!
(5)

3 Results

The cascading failure data is produced by the OPA simu-
lation on the IEEE 300 bus standard test system [26]. Three
load levels are considered: 1.0, 1.05 and 1.1 times the base
case load. 20 000 cascades were simulated for each load
level. The number of cascades K with non-negligible load
shed is shown in Table 1 for each load level. The proba-
bility of a cascade with non-negligible load shed (that is, a
significant blackout) is K/(20 000).

For the IEEE 300 bus system the load shed discretiza-
tion ∆ is chosen to be 952 MW, which is 4% of the base

case load of 23 800 MW. This value of ∆ is chosen by ex-
perimenting with a range of values. (As a possible point of
reference, the power system contains 409 lines as discrete
elements and each line comprises 0.24% of the total num-
ber of lines.) Too small a value of ∆ does not allow suffi-
cient samples within each discretization bin to get a good
estimate of the frequency of blackouts in that discretization
bin. Too large a value of ∆ gives insufficient resolution in
the load shed. In the cases tested we find that varying ∆ by a
factor of 2 has not much effect on the results. The choice of
∆ does affect the way that the branching process models the
cascading load, and we hope that future work will establish
more systematic methods for the choice of discretization.

The average propagation λ is estimated using (1) for
each load level and is shown in Table 1. The average ini-
tial load shed θ estimated using (2) for each load level is
also shown in Table 1.

Table 1. Average propagation λ and average
initial load shed θ in IEEE 300 bus test system

load level λ θ(GW) K
1.0 0.09 3.72 4137
1.05 0.21 3.57 8568
1.1 0.42 3.29 9381

For the base case load level 1.0, the probability distri-
bution of total load shed estimated via the branching pro-
cess is compared to the empirical distribution of total load
shed in Figure 1. Although both probability distributions
are discretized in load, the distribution of total load shed es-
timated via the branching process has its points joined by a
line so it can be clearly distinguished. The match is good,
but this is expected in this case since the average propaga-
tion λ = 0.09 is small and the cascading effect is small,
so that the distribution of total load is close to the initial
distribution of load.

For the higher load level 1.05, the probability distribu-
tion of total load shed estimated via the branching process
is compared to the empirical distribution of total load shed
in Figure 3. The average propagation λ = 0.21 and the
match is good. The empirical initial load shed distribution
is shown in Figure 2. The cascading has the effect of chang-
ing the initial distribution of load shed into a distribution of
total load shed with larger blackouts.

For the higher load level 1.1, the probability distribution
of total load shed estimated via the branching process is
compared to the empirical distribution of total load shed in
Figure 5. The average propagation λ = 0.42 and the match
is good except for the sharply dropping portion of the tail.
The empirical initial load shed distribution is shown in Fig-
ure 4. The cascading has a larger effect of changing the
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Figure 1. Probability distributions of total
load shed for IEEE 300 bus system at load
level 1.0. Dots are the empirical distribution;
line is estimated with the branching process.

initial load shed distribution into the total load shed distri-
bution.

4 Number of cascades for accurate estimates

This section roughly estimates how many fewer cascades
are needed to estimate propagation and then estimate the
probability distribution of load shed with the branching pro-
cess compared to direct empirical estimation of the proba-
bility distribution of load shed.

In our case of a Poisson offspring distribution, the
asymptotic standard deviation of the Harris estimator can
be worked out using the methods of [25] to be

σ(λ̂) ∼
√
λ(1− λ)√
Kθ/∆

(6)

Note that θ/∆ estimates EX0/∆ = EZ0, which is the
mean number of discretized amounts of initial load shed.

Let pbranch be the probability of shedding total load S,
computed via estimating λ from Kbranch simulated cas-
cades with non-negligible load shed and then using the
branching process model. pbranch is conditioned on a non-
negligible amount of load shed. Assume that the initial dis-
tribution of load shed is known with high accuracy. Then
the standard deviation of pbranch is

σ(pbranch) =
∣∣∣∣dpbranch

dλ

∣∣∣∣σ(λ̂)

=
∣∣∣∣dpbranch

dλ

∣∣∣∣
√
λ(1− λ)∆
Kbranchθ

(7)
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Figure 2. Probability distribution of initial
load shed at load level 1.05.
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Figure 3. Probability distributions of total
load shed at load level 1.05. Dots are the em-
pirical distribution; line is predicted with the
branching process.

Let pempiric be the probability of shedding total load S,
computed empirically by simulatingKempiric cascades with
non-negligible load shed. Then the standard deviation of
pempiric is

σ(pempiric) =

√
pempiric(1− pempiric)

Kempiric
(8)

If we require the same standard deviation for both meth-
ods, then we can equate (7) and (8) to approximate the ratio
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Figure 4. Probability distribution of initial
load shed at load level 1.1.
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Figure 5. Probability distributions of total
load shed at load level 1.1. Dots are the em-
pirical distribution; line is predicted with the
branching process.

of the required number of simulated cascades as

Kempiric

Kbranch
=
pempiric(1− pempiric)θ

λ(1− λ)∆

(
dpbranch

dλ

)−2

(9)

To obtain a rough estimate of the ratio, we evaluate (9)
for total load shed S = 9.52 GW for each of the three load
levels. dpbranch/dλ is estimated by numerical differencing.
We find that Kempiric exceeds Kbranch by an order of mag-
nitude or more.

5 Conclusion

In this paper, we suggest approximating the cascading
process of load shed in blackouts by discretizing the load
shed and then using a Galton-Watson branching process.
The average propagation of failures λ is estimated using
the standard Harris estimator from cascading load shed data
that records the load shed in each cascade generation. Then
the branching process model estimates the probability dis-
tribution of load shed from the discretized distribution of
initial load shed and the estimate of λ. We test this es-
timation on cascading failure data from the OPA simula-
tion of cascading transmission line outages in the 300 bus
IEEE electric power test system. The estimated distribution
is close to the empirical distribution in most of the cases
tested, suggesting that the branching process model with an
averaged propagation can capture some aspects of the cas-
cading of load shed, at least for the purpose of estimating
the probability distribution of total load shed.

The approach via propagation and the branching process
opens opportunities for estimation of the probability distri-
bution of load shed from fewer observed or simulated cas-
cades. We assume that the probability distribution of ini-
tial load shed is known accurately. These initial load shed
statistics can be estimated by methods of conventional re-
liability or by observations, since some load is shed much
more frequently than there is a large cascading blackout.
Given that the probability distribution of initial load shed
is known accurately, our initial testing of the estimation via
the branching process of the probability distribution of to-
tal load shed suggests that an order of magnitude or more
fewer cascades are needed for this estimation in the tail of
the distribution than is needed for direct empirical estima-
tion of the probability distribution of load shed. This is not
only helpful in reducing simulation times, which are always
burdensome and often prohibitive for cascading failure sim-
ulations of large power system models, but also will be a
crucial attribute in designing practical methods of estimat-
ing the probability distribution of load shed from cascades
observed in the power system. Empirical methods of ac-
cumulating blackout statistics that simply wait for enough
cascades to occur take too long to be practical when estimat-
ing the rare but important large blackouts in the tail of the
distribution. Model based approaches to cascading failure
such as the method presented here are needed to estimate
the probability of large blackouts from observations over a
time scale of about a year rather than over decades.

The approach seems to be easier than a previous method
[10,24] that estimates the offspring distribution of a contin-
uous state branching process and then uses computer alge-
bra to compute cumulant generating functions of the distri-
bution of total load shed.

This paper estimates average propagation and the distri-
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bution of load shed using a branching process. These first
results are sufficiently promising that further testing with
other power system models or more detailed cascading fail-
ure simulations is warranted.
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