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Executive Summary 

The recent advances in the state of the art of storage technology have led to wider deployment of 
storage technologies in today’s electricity networks. This project developed models, simulation 
methodologies and control strategies for analyzing the effects of storage integration into grids at 
the transmission and distribution levels and for their effective operations in those grids. The 
advancements reported here explicitly make use of storage as a system resource that provides the 
flexibility to mitigate the effects of variable renewable energy sources, improves the overall 
system reliability, and has the ability to provide energy- and capacity-based ancillary services.  

The research was performed in four separate parts with two focusing on the transmission level 
integration of storage resources and the other two on the distribution grid integration. The scope 
of work and the results are presented in the four parts. The following is a summary of each of the 
four parts. 

Part 1:  Simulation of Energy Storage in a System with Integrated Wind Resources 
Wind is a clean and renewable source of energy with zero fuel costs. However, wind generation 
outputs are highly variable, intermittent and with rather limited controllability by the operator. 
The wind speed patterns present a key challenge to integration of wind resources since the wind 
may not blow when the system most needs the wind resource output or blow in hours of surplus 
generation, creating concerns about “spilling” wind energy due to the insufficiency of the load 
demand. The basic tool operators use to manage the wind variability is the raising of the reserve 
levels, which, typically, results in increasing the overall production costs. As such, the full 
economic and environmental benefits of harnessing wind energy cannot be realized. Such 
situations create excellent applications for utility-scale storage to facilitate the improved 
harnessing of the wind resources by storing wind energy for release during peak-load hours so as 
to displace the costly energy from polluting generating units. We have developed a stochastic 
simulation methodology to emulate the behavior of power systems with integrated wind and 
storage resources. This methodology is able to evaluate the impacts of storage integration into a 
grid with wind resources, taking explicitly into account various sources of uncertainty, wind 
variability and intermittency and the impacts of the time varying transmission constraints on the 
deliverability of the electricity to the loads. The methodology may be used to quantify the 
variable effects of large-scale power systems with storage and intermittent wind resources 
operating in a market environment. There is a broad range of applications of the simulation 
methodology to planning, investment, transmission utilization and policy formulation and 
analysis studies for systems with integrated storage and variable energy sources. In addition, the 
methodology is very useful in the study of a broad array of what if questions. 

The simulation methodology – based on the deployment of Monte Carlo simulation techniques – 
uses systematic sampling mechanisms to compute the realizations of the various stochastic 
processes used to represent the sources of uncertainty and to construct the so-called sample 
paths. The approach uses an hour as the smallest indecomposable unit of time and uses the 
realizations of the stochastic processes at these discrete sub-periods. A salient characteristic is 
the ability to capture effectively the synergies between variable energy resource outputs and 
storage units so as to include the impacts of storage integration into power systems with multi-
site wind farms. We have developed a storage scheduler to determine, given the initial state of 
the system and its forecasted evolution, the optimal trajectory of the state of each integrated 
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storage unit for each hour in the scheduling period with the objective to maximize the system 
total social surplus over that period. We simulate the clearing of the hourly transmission-
constrained day-ahead markets by solving the DCOPF problem that is used to represent each 
hourly market. As such, the approach explicitly represents the chronology of time-dependent 
phenomena and transmission network constraints that influence the deliverability of the energy. 
The methodology is capable to account for the spatial correlation among the stochastic processes 
representing the variable energy resources as well as the correlation with the loads and over time. 
We also devoted much attention to ensure the computational tractability of the tool so as to allow 
the simulation over longer-term periods.  

The presented results of representative case studies effectively illustrate the synergies among 
wind and storage resources. Our studies indicate that the deepening penetration of wind 
resources in systems with integrated storage resources contributes to significantly reducing the 
LMPs and the expected wholesale purchase payments and provides marked improvements in the 
system reliability. The presence of utility-scale MWweek storage units indeed accentuates such 
benefits, particularly at deeper wind penetrations where it t ends to attenuate the “diminishing 
return” effects of installing more wind capacity. The case study results discussed the impacts that 
the siting of a storage unit can have on certain nodes and even the entire system performance. 
Furthermore, our studies on t he integration of multiple storage units show that it is more 
beneficial, in general, to implement smaller distributed storage units into the network rather than 
the installation of a single large storage unit.  

Part 2:  Modeling and Simulation to Study the Impacts of Storage on the Reliability of 
Composite Power Systems with Wind Farms 

Many countries, including the United States, have set targets to include a si gnificant share of 
wind and solar resources into their energy portfolios. However, wind power is highly variable 
and uncertain because of its intermittent and fluctuating characteristics. Storage devices offer 
substantial benefits to system operations by providing the flexibility to mitigate the effects of 
variable renewable energy sources and the ability to provide energy- and capacity-based 
ancillary services. The basic objective of this effort is to develop modeling and simulation 
methodology to study the impacts of storage on the reliability of power systems when wind 
farms are integrated into the composite system. 

To develop realistic models for the composite system, it is important to construct good models 
for the subsystems. The reliability models of conventional generation have been well developed. 
However, the models for the wind farms are inadequate and lack realism. As such, we devote the 
first subsection to describe the work done to improve the wind farm models. We then discuss in 
the subsequent sections the modeling and simulation methodology to study the effect of storage 
on the reliability of the composite power system and the optimization scheme developed for the 
optimal storage deployment to manage the variable characteristics of wind using sensitivity 
analysis. 

We present several studies to illustrate the use of the methodology incorporating the improved 
wind farm models and the storage optimization scheme. We make use of Monte Carlo 
simulation, based on ne xt event form of sequential approach. We evaluate the Loss of Load 
Expectation (LOLE) and the Expected Energy Not Supplied (EENS) indices to assess the system 
reliability, making extensive use of National Renewable Energy Laboratory wind data. We 
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investigate and analyze the results on the IEEE Reliability Test System (RTS) under different 
scenarios.  

Part 3:  Integration of Electric Energy Storage into a Distribution Level Grid  
with Integrated Renewable Energy Resources 

We investigate the reliability and economic impacts of energy storage and renewable energy 
integration into the distribution level grid. We examine various operational strategies of the 
distribution grid integrated energy storage and renewable energy resources, making use of a 
dedicated reliability and economy framework. We construct the methodology for optimizing the 
energy storage size and its operation to achieve optimal reliability and economy. A key focus is 
on the scheduling and operation of distribution systems with energy storage so as to effectively 
harness the major benefits of electric energy time-shift, power supply capacity and transmission 
congestion relief imparted by the deployment of energy storage. We analyze the solution of the 
effective scheduling of the energy storage by a load aggregator who participates in the day-ahead 
and the real-time balancing markets. The judicious application of a Model Predictive Control-
based approach allows the scheduling of the storage so as to minimize the energy costs of the 
load aggregator across the two markets. We investigate the impacts of the price and load forecast 
uncertainties on the energy costs. 

We investigate the adequacy and economy characteristics of distribution grid integrated energy 
storage and renewable energy resources under different operational strategies. The use of the 
operational flexibility in the storage deployment results in a wide range of results for the tightly 
coupled economic benefits and reliability impacts. We discuss in detail these impacts in the load 
aggregator case utilization of energy storage for the minimization of the energy purchase costs. 
We construct an assessment framework, based on sequential Monte Carlo simulation approach, 
to evaluate the reliability and economic impacts. We illustrate its application to study the 
distribution system reliability enhancement in an islanding operation with renewable and storage 
energy power supplies.  

We also investigated how to effectively take advantage of the multi-purpose benefits of energy 
storage deployment. In this context, we study a multi-objective approach to design energy 
storage implementation in distribution systems. A modified particle swarm optimization 
approach is proposed for the design of energy storage utilization in distribution systems, where 
not only the energy storage capacity and power are determined but also the energy storage 
operation strategy. 

Part 4:  Algorithms for Decentralized Control of Distributed Storage Resources 
The objective of this research is to enable the effective utilization of distributed storage resources 
(DSRs) connected at the distribution level voltage at various places in the network. The basic 
concept is to develop appropriate coordination mechanisms to deploy DSRs for the provision of 
frequency response services. Such a task needs to be accomplished with the minimum amount of 
communications among the dispersed devices and the aggregating entity of these resources. A 
potential application of the mechanism is to the aggregation of battery vehicles in a single 
parking lot or in multiple parking lots during the day and to the aggregation of battery vehicles 
that are charged during the night at disparate locations on the network. 

Two possible communication and control architectures exist to enable the effective coordination 
of DSRs – either completely centralized control architecture or distributed architecture. In 
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centralized control architecture, each DSR is commanded from a cen tral controller. To 
implement this centralized architecture, it is necessary to overlay a c ommunication network 
connecting the central controller with each distributed resource, and requires knowledge of the 
DSRs that are available on the distribution side at any given time. An alternative is to implement 
a completely distributed architecture where DSRs react to local signals and signals provided by 
neighboring DSRs. This distributed architecture has the potential to offer several advantages 
over its centralized counterpart:  i) it is more economical because it d oes not require 
communication between a centralized controller and the various devices, ii) it does not require 
complete knowledge of the DSRs, and iii) it can be  more resilient to faults and/or unpredictable 
behavioral patterns by the DSRs. Such a solution may rely on inexpensive and simple 
communication protocols, e.g., ZigBee technology, that provides the required local exchange of 
information for the distributed control approach to work. In this research, we pursue this 
distributed approach, providing algorithms that enable utilization of distributed resources for grid 
support. 

In the setting we consider, each DSR can only exchange information with storage devices in its 
immediate neighborhood, and is endowed with a processor that can perform simple 
computations. We assume that the individual ability of each DSR is upper bounded by known 
capacity limits. Communication links between DSRs can be asymmetric, i.e., DSR j may be able 
to send information to DSR i, but not necessarily the other way, so that the information exchange 
between DSRs in the system can, in general, described by a directed graph. Our focus is on linear 
iterative algorithms in which a DSR j maintains a set of values that are updated to be weighted 
linear combinations of the device’s previous values and the values of the DSRs that can send 
information to DSR j. A convergence analysis of the algorithms is presented, followed by the 
discussion of a modification that enhances the resiliency of the algorithms when the 
communication links are imperfect. We describe the development of a h ardware testbed 
comprised of low-complexity devices equipped with wireless transceivers that implements the 
algorithms. We conclude by illustrating the efficacy of the algorithms by utilizing the hardware 
testbed to demonstrate each of the distributed algorithms. 

In the setting we consider, each DSR can only exchange information with storage devices in its 
immediate neighborhood, and is endowed with a processor that can perform simple 
computations. We assume that the individual ability of each DSR is upper bounded by known 
capacity limits. Communication links between DSRs can be asymmetric, i.e., DSR j may be able 
to send information to DSR, but not necessarily the other way, so that the information exchange 
between DSRs in the system can, in general, described by a directed graph. Our focus is on linear 
iterative algorithms in which a DSR j maintains a set of values that are updated to be weighted 
linear combinations of the device’s previous values and the values of the DSRs that can send 
information to DSR j. A convergence analysis of the algorithms is presented, followed by the 
discussion of a modification that enhances the resiliency of the algorithms when the 
communication links are imperfect. We describe the development of a h ardware testbed 
comprised of low-complexity devices equipped with wireless transceivers that implements the 
algorithms. We conclude by illustrating the efficacy of the algorithms by utilizing the hardware 
testbed to demonstrate each of the distributed algorithms. 
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Principal Outcomes 
The project efforts resulted in improved ability to exploit the increased flexibility imparted by 
storage applications to the power system through the development of appropriate models, 
methodologies and control strategies. The major results include: 

• The development of a comprehensive stochastic simulation methodology to quantify the 
economic, environmental emission and reliability variable effects of storage integration 
into power systems with integrated intermittent renewable resources; 

• A practical approach for the analysis of various problems and issues in system planning, 
operations, investment analysis, decision-making under uncertainty and policy 
formulation concerning bulk power system operations in the smart grid environment 
under deepening penetration levels of renewable resources;  

• The effective deployment of energy storage to manage the A Model Predictive Control-
based approach is developed to study the potential to better manage the energy cost of a 
load aggregator with EES in a m arket mechanism consisting of day-ahead market and 
real-time balancing market is explored. 

• An assessment framework based on sequential Monte Carlo simulation approach is 
developed to assess the reliability and economic impact of proposed operation strategies. 

• A multi-objective optimization methodology to construct Pareto-optimal solutions for 
conflicting objectives in the optimal design of storage utilization; 

• An optimization methodology for the assessment of the impacts of storage on the 
reliability of a composite system with integrated variable energy sources; 

• More realistic modeling of wind farm power production for use in reliability assessment; 

• A distributed control architecture for distributed storage resources and associated robust 
and convergent algorithms that adhere to the communication topology; 

• A hardware testbed comprised of low-complexity devices with wireless- transceiver-
based implementation of the algorithms for the coordination of distributed storage 
resources. 
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1. Introduction 

Wind is widely viewed as a clean and renewable source of energy with zero fuel costs and zero 
emissions. However, wind generation outputs are highly variable, intermittent and only 
controllable by t he operator to a limited extent. The wind speed variable/intermittent nature 
presents major challenges in the integration of wind resources as the wind may fail to blow when 
the system actually needs the wind generation output and so make it difficult to use the wind 
resource at such times. Indeed, a very frequent phenomenon in many regions with wind 
resources is the pronounced output of wind generation, due to the appropriate wind speeds, in the 
low-load hours and rather low or near zero outputs, due to the low wind speeds, during the peak-
load periods. Such a mismatch of the generation and load due to the wind speed patterns, coupled 
with the limited controllability over wind resources, implies that the full potential of grid 
integrated wind resources may not be realized. Moreover, there are serious concerns about the 
“spilling” of wind energy during low load conditions due to the insufficient load demand. 
Indeed, in such cases, the grid is unable to harness all the benefits from the use of the wind 
energy to meet the demand. The basic mechanism that system operators use to manage the wind 
variability and intermittency is to raise the reserve levels. Such operational tactics, typically, lead 
to increases in the overall production costs and emissions, notwithstanding the zero fuel costs 
and emissions of the wind resources. It is precisely such situations that create excellent 
applications of utility-scale storage resources, with MWweek storage capability, to improve the 
utilization of the wind resources by storing wind energy whenever produced for release during 
peak-load hours so as to displace the costly energy from polluting generating units. While 
storage resources are highly costly investments, their effective management – charge-discharge 
schedule and operations – impacts considerably the total costs since they influence the variable 
portion of the costs. As such, power system engineers need appropriate tools for the effective 
deployment of such resources so as to ensure that the improved harnessing of variable generation 
units is realized. A particularly acute need is a practical simulation tool that can reproduce with 
good fidelity the expected variable effects in systems with variable energy resources (VER), such 
as renewable and storage units. Such a tool allows the quantification of the variable effects and is 
useful in power system planning, operations and investment analysis. We describe in this part of 
the Final Report the development of a comprehensive and sufficiently general methodology – the 
models and the simulation approach – that forms the basis of the simulation tool, which is 
capable to provide answers to a broad range of planning, investment, emission reduction 
quantification and reliability improvement questions. In addition, the methodology allows 
engineers to analyze issues in the areas related to the economically efficient and effective 
utilization of storage devices in the grid. 

We developed the stochastic simulation approach of systems with integrated wind and storage 
resources with the ability to take explicitly into account  

• The market structure;  

• The various sources of uncertainty, wind variability and intermittency; 

• The coordinated operation of multiple integrated storage units; and 
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• The impacts of the time varying transmission constraints on t he deliverability of the 
electricity to the loads in the evaluation of the expected production costs, expected 
emissions and reliability indices.  

The methodology allows the quantification of the variable effects of large-scale power systems 
with storage and intermittent VERs. The conventional probabilistic simulation approach cannot 
be used to capture the time-varying nature and the inter-temporal effects required in the 
simulation of the storage and intermittent VERs. Consequently, the representation of the loads 
and resources in the system requires that stochastic-process-based models be used. The 
methodology is capable to account for the spatial correlation among the stochastic processes 
representing the VERs as well as the correlation with the loads and over time. We also devoted 
much attention to ensure the computational tractability of the tool so as to allow the simulation 
over longer-term periods.  

The approach uses an hour as the smallest indecomposable unit of time and uses the realizations 
of the stochastic processes at these discrete sub-periods. In addition, a snapshot representation of 
the grid is used to represent the transmission-constrained day-ahead markets (DAMs). The 
modeling of the storage operations takes into account arbitrage possibilities in the charging and 
discharging of the units and storage cycle efficiency characteristics. The simulation methodology 
– based on the deployment of Monte Carlo simulation techniques – uses systematic sampling 
mechanisms to compute the realizations of the various stochastic processes and to construct the 
so-called sample paths. A salient characteristic is the ability to capture effectively the synergies 
between VER outputs and storage units so as to include the impacts of storage integration into 
power systems with multi-site wind farms in the assessment of the reliability, emission and 
economics metrics. We compute such metrics using the outcomes of the hourly DAMs. We 
obtain the market clearing results of the transmission-constrained hourly DAMs by determining 
the solution of the optimal power flow using a linearized DC model – the so-called DCOPF 
problem [1]. Based on the sample paths used as inputs into the DCOPF problem, we construct 
the approximations to the various economic, emission and reliability metrics. These metrics 
include the hourly expected locational marginal prices (LMPs), congestion rent contributions, 
revenues of the generators, payments made by buyers, either energy charged into or discharged 
by storage, and the emission, the LOLP and the EUE contributions. We note that in all these 
metrics, we implicitly account for the effects of the deliverability of the electricity. From the 
hourly values, we then determine the values for the simulation periods, which are then used to 
determine the metric values for the study period. The methodology is able to capture the seasonal 
effects in loads and wind speeds, the impacts of maintenance scheduling and the ramifications of 
new policy initiatives. For the performance of various policy studies, we also provide weekly 
unit commitment schedules that allow the user to specify the weekly reserves requirements. 
These features are essential in the analysis of the substitutability of conventional generation by 
renewable resources and storage technologies under deepening penetration levels. There is a 
broad range of applications of the simulation methodology to planning, investment, transmission 
utilization and policy formulation and analysis studies for systems with integrated storage and 
VERs. A very useful feature of the tool is the ability to quantitatively assess the impacts of 
deepening penetration of wind and storage technologies. 

There are five additional sections in this volume of the Final Report. We devote the next section 
to describe the key features of the modeling and the construction of the Monte Carlo simulation 
technique used in the methodology we developed. In section 3, w e discuss the issues in the 
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modeling and scheduling of energy storage resources. We outline, in section 4, the various steps 
used in the implementation of the methodology to ensure computational tractability in the study 
of large-scale systems over longer time periods. In section 5, we provide a list of applications of 
the methodology and illustrate with the results of representative case studies. We conclude in 
section 6 with some summary remarks and directions for future work.  

2. The Monte Carlo Simulation of Power Systems with Integrated Wind and Storage 
Resources 

We start out the discussion of the simulation approach by setting the stage with a description of 
the time frame definition. The study period of the simulation is partitioned into non-overlapping 
simulation periods, whose union covers the entire study period. We define each simulation 
period in such a w ay that the system resource mix and its unit commitment, the transmission 
grid, the operating policies, the market structure and the seasonality effects have uniform 
characteristics over its entire duration. While there are many choices for the study period, to 
make this discussion concrete, we specify each simulation period to be of one-week duration. We 
further decompose each simulation period into its constituent sub-periods, where a sub-period is 
the smallest indecomposable unit of time in the models deployed. We choose the sub-period to 
be of one-hour duration. Such a ch oice represents a compromise between the needed level of 
detail for a realistic representation of the power system and market operations behavior and the 
computational resources to carry out all simulation studies that constitute the study period.  

The incorporation of the time-dependent storage and VERs cannot be accommodated in the 
conventional probabilistic simulation framework [2, 3]. The modeling of the highly variable and 
intermittent characteristics of the VERs and the various sources of uncertainty, both of a 
climatological and geographic nature, with which they are associated, require that we represent 
them as discrete-time indexed stochastic processes defined at each sub-period in the simulation 
period. As such, we also need to represent the loads and the conventional resources by s uch 
stochastic processes. A salient feature of the methodology is the fact that the models are capable 
to account for the spatial correlation among the stochastic processes representing the VERs as 
well as the correlation with the loads and over time. Clearly, since the storage operations are 
dependent on the VER and conventional resource outputs, we represent each storage unit by a 
similar stochastic process. An important feature of the simulation scheme is the ability to capture 
effectively the synergies between VER outputs at multi-site locations and storage units so as to 
include the impacts of storage integration in the emulation of the side-by-side power system and 
market operations. We next briefly discuss the representation of uncertainty in the wind 
resources, the loads and the conventional resource capacity availabilities by discrete-time 
stochastic processes.  

We represent the daily patterns of the multi-site wind speeds and the resulting power outputs by 
discrete-time indexed stochastic processes defined for each hour of the day. We use the collected 
wind speed data to determine the corresponding wind power output patterns at the multiple 
locations for each day in a specific season and classify the patterns into groups with “similar” 
patterns [4]. From the categorized groups, we approximate the joint probability distributions of 
the daily multi-site wind output pattern stochastic processes so as to explicitly take into account 
the spatial and temporal correlations of the wind power outputs. While the discussion here is in 
terms of wind resources, the simulation scheme is general and can accommodate any other VERs, 
such as solar units. 
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We model the system load as a discrete-time indexed stochastic process defined over a week for 
each hour of the week. We assume that the time-indexed random variables making up s uch 
stochastic process are statistically independent. The immediate consequence is that the joint 
probability distribution of the stochastic process can be decomposed into the product of the 
marginal probability distributions of the time-indexed random variables. As such, we gather 
weeks of hourly data to construct the marginal probability distributions of the system load for 
each hour of the week. In the simulation, we assume that each buyer bids a specified, constant 
fraction of the system load. This representation allows us to capture the correlation with the time-
varying VER output patterns. 

We model a conventional generator as a multi-state unit whose transition times between its 
states, such as the failed, a nonnegative number of derated and the fully operational states, are 
characterized by independent exponentially-distributed random variables. We use a discrete-state 
Markov chain to represent the underlying stochastic process [5]. We make the assumption that 
the conventional generator stochastic processes are statistically independent from one another. 
The parameters of the exponentially-distributed transition time random variables of each Markov 
chain of a unit are based on historical data for the performance of the units. 

A key element in the Monte Carlo simulation is the construction of the sample paths of the 
stochastic processes that represent the resources – supply and demand – in the power system. A 
sample path contains the realizations of the time-indexed random variables that constitute the 
stochastic process. We use independent sets of random numbers for sampling purposes in the 
sample path construction. The sampling is done to be consistent with the correlations among the 
time-indexed random variables. In this way, we are able to represent the interactions between 
VER outputs at multi-site locations and storage units over time. For the conventional units, we 
obtain the sample path of the available capacity of each unit by drawing samples from the 
associated Markov chain over the one-week simulation period. The sampled available capacity 
of a unit determines the maximum power output the unit may offer into the DAM of that hour. 

The simulation uses the sample paths to determine the outcomes of each of the 168 transmission-
constrained DAMs, one for of each hour in the simulation period. The realizations on the so-
called “driver” sample paths, as seen on Fig.1, correspond to a particular hour of the simulation 
and provide the information for the construction of the offers of the sellers and the bids of the 
buyers in the corresponding DAM. We use a sn apshot representation of the transmission 
network, with the time-varying characteristic of the network captured by the nodal injections – 
outputs of all the supply sources at a node – and nodal withdrawals – loads at a node – as 
determined by the realizations on the corresponding “driver” sample paths. We use a DC power 
flow to represent the real power balance relationships at the nodes of the network. We determine 
the hourly DAM clearing results from the solution of the optimal power flow (OPF) problem 
corresponding to that hour’s realizations on the sample paths associated with the collection of 
stochastic processes. The DCOPF problem solution for the DAM then provides the realization 
for that hour of the values of the market outcomes that we use in the evaluations of the metrics. 
Since the variables that provide the inputs into the market clearing are random, so are the 
corresponding output variables that we use to characterize the performance of the side-by-side 
power system and market operations.  The values of the metrics of interest – such as the LMPs, 
congestion rent contributions, revenues of the generators, payments made by buyers, either the 
energy charged into or the energy discharged by s torage, and the emission, the LOLP and the 
EUE contributions – obtained from the clearing of a particular hour h DAM clearing results 
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provide the realizations from which we construct the corresponding sample paths of the 
“outcome” stochastic processes that represent those metrics. The simulation thus captures the 
time-dependent and uncertain nature of these metrics. Figure 1 depicts the conceptual procedure 
– in practice called simulation run – through which we obtain a sample path for each metric of 
interest represented by the associated “outcome” stochastic process. We note that, although not 
explicitly shown in the diagram of Fig. 1, some stochastic processes are multi-dimensional and 
their realizations at each time-indexed value are a vector. For example, a realization of the daily 
wind power output pattern at time-index h is a vector of the power outputs of the wind farms at 
the different sites. 

We carry out multiple simulation runs in order to create the sample paths from which we 
estimate the expected values of the metrics. Each simulation run corresponds to a sample path. 
We determine the number of simulation runs from the statistical accuracy requirements we 
specify for the estimation of these expected values. This accuracy is a function of the confidence 
interval with which the expected value is determined. We construct the confidence interval for 
the true expected value of each time-indexed random variable corresponding to the metric 
stochastic process making use of the standard deviation of the sample mean estimator. The 
confidence interval width is inversely proportional to the square root of the number of sample 
paths used, i.e., the number of simulation runs. Hence, we determine the number of simulation 
runs from the confidence interval width corresponding to the specified statistical accuracy of the 
expected value estimate [6]. 
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Figure 1:  Conceptual representation of a single simulation run for the set of “driver” sample paths and the set of resulting “outcome” sample paths 
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We use the sample paths of the market outcome discrete time-indexed stochastic processes to 
determine the values of the economic, reliability and emission metrics. For each hour of the 
simulation period, we estimate the expected values of the random variables using the realizations 
in the sample paths corresponding to that hour. In this way, we compute for that hour the 
expected LMPs, the contribution to congestion rents, the revenues of the generators, the 
payments made by the buyers, either the expected energy delivered or the expected energy 
displaced by storage, as well as, the contributions to the expected emissions, LOLP and the EUE. 
The repeated evaluation of the metrics allows us to assess the variation from hour to hour of each 
metric during the simulation period. The weekly values of the metrics, with the exception of the 
LMPs, are obtained by summing up the hourly contributions over all the hours in the week. Other 
metrics that may be of interest can also be evaluated using this procedure. Also, we can use the 
sample paths to approximate the joint probability distributions of all the stochastic processes that 
are defined from the market outcomes. Thus, the Monte Carlo simulation provides the ability to 
estimate virtually any metric that measures the performance of the side-by-side power system 
and market operations. Also, as the Monte Carlo simulation allows the approximation of the joint 
probability distributions of all the stochastic processes, such approximation may be used in the 
evaluation of all probability-based measures that are of interest. 

3. Storage Modeling and Scheduling 

The incorporation of the models for the simulation of utility-scale MWweek storage units 
increases the complexity of the methodology development. These models represent the storage 
operations that occur across multiple hours and thus impact, and are impacted by, the hourly 
DAM outcomes. Indeed, a storage unit may be, at any point in time, either a generator, a load or 
idle. Moreover, for a storage unit to act as a generator is only possible once it has been charged. 
The implication is that the unit acts as a load in some of the preceding hours. In our simulation, 
we consider utility-scale storage units that are controlled by the Independent Grid Operator 
(IGO). The IGO operates the storage units so as to maximize the total social surplus over time, 
i.e., the sum of the hourly social surpluses as determined by the outcomes of the hourly DAMs. 
Under such premises, the IGO must be able to schedule each storage unit operations over 
multiple hours, while accounting for the available resources in those specific hours, including the 
intermittent outputs of the VERs and the operations of the other storage units. We assume that the 
final charge in each storage unit equals its initial charge. In this way, all the charged energy must 
be discharged during the simulation period.  

We have developed a storage scheduler to assist with the decisions to determine the status of 
each storage unit, by t aking full advantage of arbitrage opportunities in their operations, in a 
power system with integrated wind resources. We model the construction of such a storage 
schedule as a multi-period economic dispatch optimization that explicitly represents the inter-
hourly constraints imposed by s torage operations with the objective to maximize storage 
utilization for the benefit of the system over the period. The scheduler may be run at any hour to 
make use of the information to determine the status of each storage unit based on the current 
state of the system and its forecasted evolution. The scheduler indicates for each hour of the 
scheduling period the status of each storage unit – idle, charging or discharging – and provides 
the associated charge/discharge energy. The produced schedule determines the optimal 
operations of the storage units should so as to provide maximal benefits to the system in terms of 
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economics and reliability. As such, the schedule specifies the hours in which to charge 
(discharge) each storage unit during the low-load (peak-load) conditions.  

We use the scheduler to provide an initial storage schedule at the beginning of the simulation 
period so as to provide the appropriate information for the hourly DAMs. We may rerun the 
scheduler at different points in the simulation period, as deemed necessary. For example, 
whenever the realized current state is considerably different from that forecasted, we rerun the 
scheduler for the remaining hours in the simulation period. The most recent schedule determines 
the way each storage unit participates in the hourly DAMs during the remaining periods of the 
simulation period. Whenever the storage unit is not idle, the schedule-determined 
charge/discharge energy is used to formulate the unit’s bid or offer in the DAM. The storage unit 
participates in the hourly DAMs as a buyer (seller) to charge (discharge) with the scheduled 
energy providing the limiting value of the bid (offer). The bid price of a charging unit is set very 
high – typically at the value of loss of load (VOLL) so as to ensure the storage unit is charged. 
The offer price of a discharging unit is set to zero so as to encourage the use of the stored energy 
to displace the output of more expensive and dirty conventional units. While the outcomes of the 
hourly DAMs may deviate from the schedule in the realized operations of the storage units due to 
unforeseen load of loss or excessive congestion events, we observe, in general, the hourly DAMs 
tend to follow the storage schedule rather faithfully.  

The procedures described above on the deployment of the scheduler and the participation of the 
storage units in the DAMs provide the means used to construct their sample paths to explicitly 
include their impacts in the side-by side power system and market operations. The actual impacts 
are determined from the sample paths of the market outcome metrics. 

4. Implementation Aspects of the Monte Carlo Simulation 

We discuss in this section the steps taken to ensure the computational tractability of the 
simulation approach. This is an important requirement due to the large-scale nature of the power 
systems and the need to run the simulation for longer-term periods. An important step in 
improving the computational tractability of the simulation approach is the selection of the 
representative simulation periods. Rather than simulate each of the 52 weeks of a year, we take 
advantage of the fact that several weeks in a season have similar wind and load patterns and the 
resources have the same planned outages in terms of the maintenance schedule. The 
identification of the representative weeks reduces the number of simulation periods to be run, 
thereby cutting down the computational efforts required to assess the power system economics, 
reliability and environmental impacts. The results of each representative week are multiplied by 
the total number of weeks to determine their contribution to the annual figures.  

A second way to reduce the computational burden is the deployment of variance reduction 
techniques in the Monte Carlo simulation. We have investigated the use of various variance 
reduction techniques, including control variants, stratified sampling, common random numbers 
and antithetic variables. We make use of the stratification of daily wind patterns possible with 
the regime categorization developed earlier [4]. These techniques are effective in reducing the 
number of sample paths to obtain the desired statistical accuracy. The gains in computational 
tractability with these techniques are not large and they vary depending on the particular market 
outcome stochastic process. 
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Also, as the DCOPF solution is that of a linear program, the solution times may be reduced by 
the use of appropriate starting solutions [7, 8]. We implemented such a scheme in the simulations 
we run. 

The proposed simulation approach also lends itself well to parallel processing. Each 
representative week may be simulated on a different core/computer. Additional parallelization is 
achievable also for the simulation of a representative week. Indeed, it is possible to parallelize 
the simulation runs in a simulation period by sampling the stochastic processes that represent the 
supply and demand resources. The stored sample paths allow their processing in parallel and can 
be then recombined to provide the results for the evaluation of the metrics for the 168 hours. 

5. Applications of the Methodology and Case Studies 

The proposed simulation approach is designed to be very versatile so as to be able to answer a 
wide range of what if questions. It may be used in a broad range of planning and operations 
analysis, investment decision-making and risk assessment, and policy formulation/analysis 
processes. We list a number of representative application areas, along with relevant examples, 
that can reap major benefits from the use of the proposed simulation approach. We have grouped 
the areas into eight broad classes and they are listed below in an unranked order together with 
some representative examples: 

• Resource planning studies 

o year of commissioning of a wind farm or storage plant 

o siting of a storage unit 

o transmission utilization under increased ADRR implementation 

• Production costing issues 

o impacts of various penetration levels of wind and/or storage resources 

o impacts of increases in fossil fuel prices 

• Transmission utilization issues 

o impacts of renewable storage integration on transmission utilization 

o identification of frequently-congested transmission lines for use in the  
construction of portfolios of financial transmission rights 

• Environmental assessments 

o identification of generation resource mixes to reduce CO2 emissions by a specified 
fraction and a specified point in time 

o wind and storage resource synergies in terms of CO2 emission impacts 

• Reliability analysis 

o assessment of the effective load carrying capability of renewable resource addition 
requirements 

o evaluation of the reserves in a power system with deepening levels of renewable 
penetration 
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• Investment analysis 

o assessment of the expected returns of wind resource investments 

o risk assessment of investments to deepen the penetration of renewable resources 

o assessment of transmission investments to integrate renewable resources 

• Policy formulation and analysis 

o incorporation of a cap and trade carbon market in the US 

o assessment of the impacts of policies aimed at providing financial incentives for 
the retrofitting of old and dirty generation units 

• Broad range of questions 

o sensitivity studies on storage sizing 

o selection of remuneration schemes for ADRRs 

o scenario analysis of the impacts of future technology developments 

o various what if questions 

This list of topics is, by no m eans, all inclusive and the methodology is sufficiently 
comprehensive and has wide flexibility to be applied to numerous other areas not included 
above. 

We have tested the methodology on a large number of test systems and under a wide range of 
conditions. For the purposes of illustrating its application, we select three representative studies 
to investigate some issues of interest in the integration of storage batteries into a grid with 
integrated wind resources. All these studies are performed on a modified version of the IEEE-
118 bus test system [9]. All the results are for a single year of simulation so as to allow the 
discussion to focus on the key thrusts of the application discussed. Additional details on the test 
system and the scope of the studies may be found in [10]. 

The first study is concerned with the determination of the impacts of a utility-scale storage 
nominal capacity on a power system with integrated wind resources. In this study, the aggregated 
nameplate capacity of wind power was fixed at roughly 30 % of the annual peak load of 8,021 
MW. The storage unit reservoir (capability) was limited to 5,000 MWh. We ran sensitivity studies 
with different nominal storage capacity values ranging from 0 to 400 MW as indicated in Table 
1. 
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Table 1:  Storage capacity sensitivity studies 

case storage capacity (MW ) 

A 0 

B 200 

C 300 

D 400 

E 500 

The following are the main findings of the study results: 

• The storage unit always tends to charge in the low load hours so it can discharge during 
the peak load hours.  

• Storage utilization increases as the nominal capacity grows as illustrated in Fig. 2. 

 Figure 2:  Average hourly storage utilization 
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• The total expected wholesale purchase payments by the buyers decrease as t he storage 
nominal capacity increases. For a nominal capacity of 400 MW – about 5% of the annual 
peak load – the expected annual savings are 11.5% below the payments in the case 
without a storage unit. This is the case shown in Fig. 3. This decrease is primarily due to 
the fact that the storage unit displaces expensive thermal units in the peak load hours, 
thereby lowering the LMPs in the affected hours. 

 
 

• The expected congestion rents tend to decrease slightly as the nominal capacity increases. 
The storage location at the particular node in the network reduces the system congestion. 

• The expected CO2 emissions do not vary significantly with changes in the nominal 
storage capacity. They largely depend on t he generation mix of the considered power 
system, more specifically on the emission rates of the conventional units displaced by the 
storage unit and the emission rates of those units used to charge the storage. 

• Both the LOLP and the EUE decrease as the storage nominal capacity increases, 
indicating an improvement in system reliability. Fig. 4 shows both the annual LOLP and 
EUE for the different values of storage capacity. 

Figure 3:  Expected weekly wholesale purchase payments 
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• The reductions in the expected total wholesale purchase payments, expected congestion 

rents, the LOLP and the EUE become less pronounced as the nominal storage capacity 
increases, indicating diminishing returns with increased capacity.  

These sensitivity studies are effective in providing some insights into the utility of a single 
storage resource and in indicating the limitations that may arise. 

We discuss a second representative study, which investigates the impacts of deepening wind 
penetration in a power system with or without an integrated utility-scale storage unit. In this 
study, the storage nominal capacity is fixed at 400 MW, but the nameplate wind capacity 
increases from 0 t o 2720 MW in increments of 680 MW as shown in Table 2. The maximum 
nameplate capacity is about one third about of the annual peak load of 8090.3 MW. We maintain 
constant reserve margins throughout the study.  

Table 2:  Wind penetration sensitivity studies 

case 
total installed wind 

 nameplate capacity in MW 

F  0 

G  680 

H 1,360 

I 2,040 

J 2,720 

  

Figure 4:  Annual reliability indices 
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We briefly summarize the key findings of the study: 

• The deeper penetrations of wind resources tend to reduce the LMPs, total expected 
wholesale purchase payments, the expected CO 2 emissions and to improve the system 
reliability. For illustrative purposes, we provide in Fig. 5 the average hourly LMP 
duration curve at bus 80. We present in Fig. 6 the corresponding annual reliability 
indices. 

 
 

Figure 5:  Average hourly LMP duration curve at bus 80 

Figure 6:  Annual reliability indices 
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• We can readily observe that the storage resource works in synergy with the wind 
resources: the integration of the storage unit increases the benefits due to deepening wind 
penetration, particularly in terms of the expected wholesale purchase payments and the 
improved reliability indices.  

• The expected CO 2 emissions need not be reduced as a result of the storage unit 
integration. Indeed, they may increase slightly under some cases. Such an outcome is 
primarily due to the fact that the hourly aggregated wind power output cannot cover the 
base load and therefore the energy charged into the storage unit relies on the fossil fuel 
fired conventional generation. A representative plot of CO2 emissions for the 5 case 
studies is shown in Fig. 7. 

 
Figure 7:  Weekly expected CO2 emissions 

• Similarly to the first study, we observed diminishing returns on all metrics of interest as 
the penetration of wind resources deepens. However, the integration of the utility scale 
storage unit tends to attenuate the “diminishing returns” effects and makes the deeper 
penetration of wind resources more attractive. 

This study serves to provide some useful insights into the benefits attainable with storage 
integration, particularly for deepening penetrations of intermittent resources.  

We focus on a third study, in which we examine the impacts on the power system of the location 
of a utility-scale MWweek storage resource. More specifically, we investigate the nature of the 
impacts of siting the storage unit electrically farther and farther away – in terms of intermediate 
nodes - from the most important load center in the network on the LMP at the load center, as well 
as on t he expected total system wholesale purchase payments, the LOLP, and the expected 
congestion rents. The detailed results are reported in [11]. We highlight below some of the key 
findings of the study: 
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• The location of the utility-scale MWweek storage unit impacts acutely the power flows in 
the vicinity of the load center and may result in congestion in the transmission lines in the 
neighborhood of its location. As a result, the LMPs are affected. This location-dependent 
phenomenon is illustrated in Figs. 8. and 9 where the average hourly LMP at the most 
important load center closely follows the hourly average congestion rents depending on 
the location of the storage plant (the nodes where the storage plant is located are one node 
away from the considered load center). 

 
Figure 8:  Average hourly LMP at the load center 

 

Figure 9:  Average hourly congestion rents 
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hours 

• The load center LMP is strongly correlated with the congestion pattern in the power 
transfer corridor that connects the center to certain nuclear power plants. Indeed, the 
location of the storage plant near the nuclear plants may result in congestion on that 
corridor during the low-load hours due to the charging energy from the nuclear units. 
However, the location is beneficial during peak-load hours as the storage plant relieves 
congestion during those hours, when it provides energy to the load center. Exactly the 
opposite congestion pattern conditions arise with the location of the storage unit near the 
nuclear power plant. 

• In general, the siting of the storage unit in the vicinity – one or two nodes away – of the 
load center is more beneficial, in terms of economics and reliability, than farther away. 
The only exceptions are for the location at the nodes near the nuclear power plants, 
notwithstanding the fact that these sites are three nodes removed from the load center. 
We display the results of some sensitivity studies for the storage location in Figs. 10 and 
11. 

 
 

Figure 10:  Average hourly purchase payments 
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hours 
 

 

Figure 11:  Average hourly contributions to the LOLP 

The key conclusion from this study is that storage plant siting must be determined on a case-by-
case basis. While the objective to locate the storage unit so as to avoid giving rise to new 
congestion patterns near the most important load center is reasonable, so are the objectives to 
provide access to the cheap energy for charging the storage in the low-load hours and to the 
energy discharged to serve load during the peak-load hours. Since these objectives may compete, 
it is not always possible to meet them in the same system.  

We discuss our experiences with the simulation of power systems with multiple integrated 
storage units. In the case studies presented in Table 3, we integrate a total storage capacity of 
1000 MW with 25,000 MWh of reservoir capability distributed over multiple storage units: 

Table 3:  Multiple storage sensitivity studies 

case 
total number of 

storage units 
storage unit  

capacity in MW 

storage unit  
capability in 

MWh 

K 1  1,000 25,000 

L 2  500 12,500 

M 3 333 8,333 

N 4 250 6,250 

O 5 200 5,000 
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Our key findings from such case studies are the following: 

• The impacts of the storage resources in such a system largely depend on the locations of 
the individual storage units. Storage units that are located close to one other in the 
network – within two nodes – may vie for the same charging energy, thereby limiting the 
benefits they may bring in terms of improving the power system performance. 

In general, it is better to have many smaller storage units dispersed all over the network rather 
than a single big storage unit. Virtually, all the metrics of interest, particularly, the average 
hourly congestion rents as illustrated in Fig. 12 or the average hourly LMP at the most important 
load center as illustrated in Fig. 13, improve under a geographic diversification strategy for the 
siting of the storage units. Note that we display duration curves rather than chronological ones 
for the sake of clarity. 

There are some other findings in terms of efficiency characteristics that are difficult to 
generalize. 

 
Figure 12:  Average hourly congestion rent duration curve 
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Figure 13:  Average hourly LMP duration curve at the load center 

We also share some additional observations related to the way we deploy the tunable elements in 
the Monte Carlo simulation and the implementation issues. In the deployment of the storage 
scheduler, our experience indicates that the shortest scheduling horizon must exceed 48 hours in 
order to avoid possible distortions in the results brought by shorter duration periods. We observe 
that the storage schedule is not particularly sensitive to errors in the forecasted system state 
evolution and so, in general, it is not necessary to rerun the scheduler it in too many cases. For 
example the mere fact that the sampled wind power outputs deviate from their expected values or 
that the sampled load values differ from their expected values are not sufficient factors to rerun 
the scheduler. The same is true for a conventional unit that unexpectedly transitions to another 
state. The more frequent running of the scheduler had insignificant effect on the values of the 
metrics.  

In the construction of the sample paths for the stochastic processes that represent the multi-site 
wind output patterns for a day, we found that the use of 7 sample paths, one for each day of the 
week, was adequate to obtain from those realizations, the values of the wind resource capacities 
to be offered into the hourly DAMs. 

The number of sample paths is difficult to specify a priori for an arbitrary system. For the test 
system in the case studies discussed in this section, the use of 100 sample paths, in other words 
100 simulation runs, was adequate to obtain statistically accurate estimates of all the metrics of 
interest. In the simulation of the test system used for the case studies discussed, we use 16 
representative weeks out of the annual 52, to obtain the above results without perceptible impacts 
to the annual values of the metrics. 
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6. Conclusions 

In this project, we have developed a stochastic simulation methodology for the quantification of 
the variable effects in systems with variable energy resources (VER), such as wind, into which 
energy storage units are integrated. The attention to computational tractability allows such 
quantification to be performed over longer-term periods. The methodology can assess impacts of 
wind and storage resource integration on the variable economic, reliability and emission effects 
of the power system in a market environment. The simulation approach explicitly represents the 
time-varying nature and the uncertainty of the wind, load and storage resources together with the 
side-by-side interactions of the hourly transmission-constrained DAMs and the power system 
operations. We make extensive use of Monte Carlo simulation techniques to systematically 
sample the stochastic processes associated with the wind resources, loads and conventional 
generator available capacities. We have developed a storage scheduler to determine, given the 
initial state of the system and its forecasted evolution, the optimal trajectory of the state of each 
integrated storage unit for each hour in the scheduling period with the objective to maximize the 
system total social surplus over that period. We simulate the clearing of the hourly transmission-
constrained DAMs by solving the DCOPF problem that is used to represent each hourly market. 
We formulate the offers and the bids into each market based on the realizations used to construct 
the sample paths of the wind, load and conventional resource available capacity random 
processes together with the storage scheduler results to determine the bid/offer actions of the 
units that are not idle. As such, the approach explicitly represents the chronology of time-
dependent phenomena and transmission network constraints that influence the deliverability of 
the energy. The methodology provides a broad range of capabilities and is applicable to a wide 
array of planning, investment analysis and operational planning problems. Salient characteristics 
include the ability to allow the comparison of various resource mixes and network configurations 
and the ability to answer a broad spectrum of what if questions.  

We have presented the results of some representative case studies to effectively illustrate the 
synergies among wind and storage resources. Our studies indicate that the deepening penetration 
of wind resources in systems with integrated storage resources contribute to significantly 
reducing the LMPs and the expected wholesale purchase payments and provide marked 
improvements in the system reliability. The presence of utility-scale MWweek storage units 
indeed accentuates such benefits, particularly at deeper wind penetrations where it tends to 
attenuate the “diminishing return” effects of installing more wind capacity. The expected CO 2 
emissions depend upon the particular system resource mix. In the case studies presented, the 
base-loaded units, typically, pollute more than the peaking units and therefore can lead to slight 
increases of CO 2 emissions as the storage units tend to use charging energy from the base-loaded 
units so as to displace some of the peaking unit generation. The integration of storage resources 
exerts strong influence on the congestion patterns, thereby impacting the congestion rents and the 
LMPs. The case study results discussed the impacts that the siting of a storage unit can have on 
certain nodes and even the entire system performance. However, such matters require detailed 
assessment on a case-by-case basis as the results are highly system dependent. Furthermore, our 
studies on the integration of multiple storage units show that it is more beneficial, in general, to 
implement smaller distributed storage units into the network rather than the installation of a 
single large storage unit.  

Some clear directions of future work include the integration of additional resources, including 
demand response and solar [12]. A topic of considerable interest is the analysis of the impacts of 
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renewable resource integration on ramping capability requirements. For this end, a more detailed 
representation of power system operations is required. Future efforts on the assessment of 
including such requirements will focus on t he evaluation of the reliability, economic and 
emission impacts. 
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1. Introduction 

Many countries have set targets to include significant share of wind and solar power into their 
energy portfolios. However, wind power is unstable because of its intermittent and fluctuating 
characteristics. Storage devices offer substantial benefits to system operations by providing the 
flexibility to mitigate the effects of variable renewable energy sources and the ability to provide 
energy- and capacity-based ancillary services. The basic objective of this effort is to develop 
modeling and simulation methodology to study the impact of storage on the reliability of power 
systems when wind farms are integrated into the composite system. 

To develop realistic models for the composite system, it is important to construct good models 
for the subsystems. The reliability models of conventional generation have been well developed. 
However, it was felt that the models for the wind farms are inadequate and lack realism. 
Accordingly, the first subsection describes the work done to improve the wind farm models and 
the subsequent sections describe the optimization methods employed and the modeling and 
simulation methodology to study the effect of storage on the reliability of the composite power 
system. This includes the optimal storage deployment for managing fluctuation characteristics of 
wind with sensitivity analysis. 

Several studies for illustrating the use of this methodology are also presented. Monte Carlo 
Simulation [8]-[10] is used for system simulation. It uses next event form of sequential method 
and the results are compared. The improved wind farm models and the storage are incorporated.  
To calculate the system reliability we use indices [11]-[12] such as Loss of Load Expectation 
(LOLE), Expected Energy Not Supplied (EENS. The results from the simulation are analyzed 
and compared for different scenarios. Wind data used is from National Renewable Energy 
Laboratory (NREL) [13] and load data is from IEEE Reliability Test System (RTS) [14]. 

2. Background 

Since turbines generate electricity from the entering wind, the wind speed (energy) entering a 
turbine is higher than that leaving it. During this process, in the area behind a turbine, leeside, 
turbulent flow occurs. This power loss is called wake effect [1]. Because of this effect, 
downstream wind turbines generate less power, because of lower wind speed. In general, for a 
free standing wind turbine, there is no wake effect by other wind turbines. However, when a 
turbine is located in a relatively close spacing with others, wake effect can have a significant 
influence on the calculations. As the effect gets stronger, loadability of wind farms decreases. 
Therefore, it is essential to consider the wake effect and to examine its impact on the overall 
wind power system reliability and economics for more accurate and reliable wind power 
calculation. This report shows that wake effect does make an impact on the reliability of a wind 
farm and quantifies this impact. 

A wind farm model [2]-[4] can be divided into two sub-models, a wind speed model and a wind 
turbine model. For wind speed model, a transition rate method [5] and clustering method [6]-[7] 
are proposed and compared.  The proposed transition rate method considers all transition 
behaviors between wind speed states from an actual wind speed. And the probability of each 
wind state can be derived by using the transition rates. On the other hand, the clustering method 
assigns given wind speed and load to some clusters so that the correlation between them is 
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reflected in time. Wind turbines are modeled as a two state generating unit, fully available state 
or out of service state. For each wind speed state, corresponding power generated by turbines is 
calculated.  

3. Proposed Wind Farm Model 

Conventional units generate power depending on their failure/repair status. Unlike these units, 
wind turbines in wind farm generate power, depending on the wind speed as well as their 
operational status. This is why wind farm is represented by wind speed model and wind turbine 
model.  The output of each wind turbine is determined by combining these two models. This 
research uses the general wind power curve [15] whose input information is a cut in speed, rated 
speed, cut out speed, and rate power to determine wind power. And then overall power of wind 
farm which is added by all wind turbines is supplied to the load at a given time. 

Figure 3.1 shows the state space of a wind farm. The circles in the left box represent wind speed 
states, and the squares in the right box indicate wind turbine states. The arrows between the 
circles represent transitions between different wind speed states and the arrows between the 
squares are failure and repair transitions of turbines with specific rates.  State Up is properly 
working state, and state Down is out of service state. The lines between the circle and the squares 
indicate that for a given wind speed, a turbine could be either up or down. The transition rates 
between the up and down states could be represented as a function of the wind state as the failure 
rate may depend on the wind speed. The aggregate state of wind farm is updated with sampling 
so that the corresponding power is determined during simulation. 

                                               

Figure 3.1:  Electric Energy Storage Integrated in the Distribution System 

3.1 Wind Speed Models 

3.1.1 Transition Rate Model 

This approach is based on the transition rates among wind states. Transition rate is the ratio of 
number of state changes and duration stayed in the state before transition. To consider wind 
speed changes, all transition rates are gleaned from the original wind speed. Using those rates, 
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the frequency, duration, and probability of all wind states can be derived. And then wind state is 
generated in series by selecting the lowest transition time. The lowest transition time implies the 
highest probability of its transition. 

3.1.2 Clustering based model 

Load and wind speed may have a pattern of variation relative to each other as both values have 
some relation to the time of the day, season, or weather. In other terms, load and wind speed may 
be correlated variables. Exact transition method does not capture this correlation as the transition 
rate matrix contains average rates over the period of study and these are assumed constant. 
Clustering approach is proposed for such cases. Actual load and wind speed data as functions of 
time are collected. Each pair of wind speed and the corresponding load constitute one data point.  
Then using clustering algorithm, all given data points are grouped into several clusters using the 
nearest centroid sorting based on the Euclidean distance. Clustering is generally categorized as 
partitional method and hierarchical method [16]-[19]. In this work, partitional clustering is used 
and compared. It partitions original data into the specific data size holding data characteristics. 
K-Means (KM) is a simple and fast method. Once the clustering size is determined, it iterates to 
find the optimal clusters with the closest distance between clusters and points starting from the 
initially selected clusters. Fuzzy C-Means (FCM) provides additional membership probability of 
clusters for each point to show fuzziness. These two methods basically depend on the initially 
randomly selected clusters. So the final clusters can be different every iteration. To solve this 
issue, global approach can be applied for clustering like Global K-Means (GKM) and Global 
Fuzzy C-Means (GFCM). And for the faster simulation procedure, Fast Global K-Means 
(FGKM) and Fast Global Fuzzy C-Means (FGFCM) are also examined to the research. These 
global or global fast approaches find the optimal clusters by adding a cluster step by step, instead 
of starting initial guess with preselected clustering size. They are independent of the initial guess 
so that it is possible to make more accurate and reliable clustering from original data. 

As an input to clustering, cluster size should be determined using validity measurement [20]. 
Data consist of two dimensional observations; wind speed and load, and the size of the data is 
simulation period, one year in the research. The number of iterations for different clustering 
approaches is developed and compared in this work, shown by Table 3.1. Where n is the data 
size, k is the clustering size, and c is the number required to satisfy convergence. As the size of 
data or cluster becomes bigger, the simulation time of global approach exponentially increases 
more. And n is much bigger than k in general composite power systems so that fast global 
approaches like FGKM and FGFCM are efficient to simulate. 
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Table 3.1:  Integration of Clustering 

Number of iterations for different clustering 
approaches 

KM FCM 

nkc2  nkc2cnk 2 +  

GKM GFCM 
2222 nkkcnckn ++  22232 knkcn2ckn ++  

FGKM FGFCM 

nkccnk)1k(kn 22 ++−  nkc2cnkkn 322 ++  

By using the mean load and the corresponding wind speed in the same cluster and probability of 
each cluster, it is possible to capture the correlation and make a quantitative reliability analysis. 
This is because the data in the same cluster represents the similarity amongst data points. Power 
generated by wind energy can be different for the same wind speed because of the failure and 
repair characteristics of turbines. So, comparing correlated load with power generated by the 
corresponding wind speed, loss of load event is determined, and the corresponding reliability 
indices are also computed.  

3.2 Wind Turbine Model 

Like conventional turbines, wind turbines are also modeled using Monte Carlo simulation [8]-
[10]. Each turbine is assumed to have two generating states; fully available and out of service. 
From failure/repair rates of turbines, probabilities of two operating states can be calculated. As 
one of sequential methods, next event approach [21] is applied as the system simulation.  
Probability distribution function for transition duration time of each turbine is assumed to be 
exponential. And then the operating state of a turbine and its transition time demonstrates 
failure/repair behaviors of the turbine. 

3.3 Wind Turbine Model 

In general, there are three different wake effect models [23]-[27] for the wind, Jensen model, 
Ainslie (Eddy Viscosity) model, and G.C. Larsen model. The Jensen model is based on wake 
decreasing constant thrust coefficient which is related to the surface roughness and turbulence 
intensity. The Ainslie model is based on the differential equations demonstrating the wake 
velocity field. It includes turbulent mixing of wake and ambient turbulence on wake. The Larsen 
model comes from the turbulence boundary layer equations which are based on Swain’s paper 
[28]. In this report, Jensen model is used to generate wake speed of downstream wind turbines. 
This model was first developed by N. O. Jensen in 1983 which is a simple analytical model with 
a short calculation time.  This work adopts the Jensen model for its simplicity. However, any 
wake model could be used with the overall approach proposed in this research. From the 
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conventional Jensen model, a newly modified model is developed using wind shade, shear, and 
cumulative wake effect. 

Figure 3.2 shows the basic Jensen model which uses a cylindrical coordinate system in the radial 
and axial directions. Using this model, wake speed is determined from the given free wind speed. 

                                          
 

Figure 3.2:  Jensen Model Principle 

 ])
d
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Where inV [m/s] is free or incoming wind speed, xV [m/s] is downstream speed, tC  is thrust 
coefficient, kx2dr2d]m[d xx +=+= , and k is wake decreasing constant. The thrust coefficient 
is given, 
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Where tF  [ 2s/mkg ∗ ] is the thrust force, ρ  [ 3m/kg ] is air density, and r [m] is radius of the 
rotor. 

If thrust coefficient is zero, there is no waking, so the speed at an upstream turbine is the same as 
that at a downstream turbine. If distance x is zero, we can see that the relationship between 
leeside wind and free wind is derived. In general, k is set to 0.075 for onshore, and to 0.05 for 
offshore [29] installations. In this work, it is assumed to be 0.075. The leeside speed is given by 

 tino C-1VV =  3.3 

In practice, in a wind farm, free wind speed can be decreased by obstacles around, other 
neighboring turbines. This is called wind shade effect [23]. By considering this effect, previous 
model is modified. 
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Where sA [ 2m ] is shade area by the other upstream turbine, and A [ 2m ] is area of downstream 
wind turbine. If shade area is zero, there is no interruption by other turbine, so wind speed at 
upstream is the same that at downstream. If shade area is the same as downstream turbine area, it 
means that the downstream turbine is immediately behind the upstream turbine resulting in an 
eclipse phenomenon.  

In a wind farm, there are many wind turbines. So, cumulated effect of each turbine should be 
considered. As a result, using the momentum conservation theorem [30], the equation is 
modified, as follows. 

 ∑
n

i

si2

xi
tinx )]

A
A()

d
d)(C-1-1(-1[(VV =  3.5 

Where n is number of the upstream turbines of a downstream turbine, and siA [ 2m ] is shade area 
by upstream turbine i. 

There is one more consideration to take into account.  Atmosphere above 1km is hardly 
influenced by the friction against the ground. However, in the lower layers, wind speed increases 
as the height of air goes up. This is called wind shear effect [27]. So if the height of some wind 
turbines is different, this effect should be also incorporated.  
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Where refV  [m/s] is reference wind speed and oh [m] is roughness length.  

As a result, waked speed is calculated. 
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There is one more thing to consider in the wake effect on wind farm. Wind direction by its nature 
varies with time. Because of different wind directions, the relationship of upstream and 
downstream turbines can change over time. So wind direction also has an important impact on 
wake effect as well as shade effect. In general, there are two ways to express wind direction. One 
way is to express in terms of degree where exact degree value is measured at specific sampling 
time. The other is shown by wind rose which indicates wind speed and direction at the same time 
graphically. For this method, direction is usually recorded by 16 cardinal directions such as S, 
SW, NE, ESS, and so on in a specific sampling rate. 
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A wind farm consists of a number of wind turbines which generate power depending on wind 
speed. A general wind power curve [15] is adopted in this work. At cut in speed, turbines begin 
generating power and then power increases nonlinearly with the speed. From rated speed to cut 
out speed, turbine keeps generating rated power, and above cut out speed, turbine is shut down 
for the equipment safety. To incorporate the wake effect, the power of each turbine is determined 
by waked speed and not by free wind speed with varying wind direction.  The total power of a 
wind farm is calculated by the sum of the power of all turbines and by their failure/ repair 
characteristics.  

4. Optimization Techniques to Find Minimum Load Curtailment 

4.1 Two Phase Method for Linear Programming 

At composite level, all transmission constraints are considered for reliability analysis. DC power 
flow is embedded in the formulation of minimum curtailment of load formulation. In this 
formulation  N is the number of buses, kC  is load curtailments at bus k, kg  is generation at bus 
k, kjf  is real power flow between bus k and j, kd  is load at bus k, lowerg  is lower limit of 
generation, upperg  is upper limit of generation, lowerf  is lower limit of power flow, and upperf  is 
upper limit of power flow. 

This formulation is solved using linear programming. Simplex method uses the reduced costs of 
the system problem to get the final optimal solution with iterations. At the beginning, it is 
required to choose the initial basic feasible solution once the system problem is converted into 
the standard form. 

In general, the initial basic feasible solution may be unavailable from the original problem. As 
alternative method, artificial variables are added to the problem. There are generally we 
approaches for using artificial variables [32]; two phase method, and big M method - two phase 
method is used in this research. Two phase method has two phase levels to optimize a problem. 
At the phase one level, its objective function is the sum of all artificial variables. If the optimal 
value is not zero, it does not have any feasible solutions, since artificial variables are added to the 
original problem. Otherwise, it goes to next level, phase two. If some artificial variables are in 
basic variables, they are replaced by other non-basic variables. And it iterates the simplex 
process using the reduced costs to find the final optimal solution to the original problem. 
Programming code is developed for the algorithm of two phase method using a computer tool 
Matlab.  

 ∑
=

=
N

1k
kCminfunctionObjective  4.1 

 k
j

kjkk dfgC =−+ ∑  4.2 

 kk dC0 ≤≤  4.3 

 upperklower ggg ≤≤  4.4 



8 
 

 upperkjlower fff ≤≤  4.5 

4.2 Sensitivity Analysis in the Optimization Problem 

The Right Hand Side (RHS) of the power flow problem consists of load, available generation, 
and power flow capacity of the transmission. It changes over time, since load and generation 
vary every hour. In addition it can also change by storage deployment, since the upper bound of 
generation vector with storage increases. So if we run optimization process every time, it is very 
time consuming. Sensitivity analysis [32]-[33] is used to calculate the final optimal solution to 
sum of load curtailments in the power system. 

By using basic matrix B (coefficient matrix of constraints by basic variables), cost vector BC  
(coefficient vector of objective function by basic variables), and newly changed RHS newb , it is 
determined whether the optimization should be restarted or directly calculated by sensitivity 
analysis. If BC  times inverse of B  is greater or equal to zero, it means that previous basic matrix 
can hold the problem for feasible availability. So the final optimal solution is directly taken using 

new
1

B
* bBCZ −= . Otherwise, optimization should be restarted, since basic matrix is changed by 

newb .  

5. Storage Techniques 

5.1 Integration of Storage 

Wind power has fluctuating characteristics, since it is dependent on wind speed. So using wind 
energy alone is hard to satisfy varying load. To mitigate this problem, energy storage can be 
added on the wind farm. In general, electric energy cannot be stored itself. So it is required to 
convert into other types of energy like kinetic, potential, or chemical energy and so on. Table 5.1 
shows general storage types [34]-[36]. Considering the composite power level, Pumped Hydro 
Energy Storage (PHES) and Compressed Air Energy Storage (CAES) are used in the research. 



9 
 

Table 5.1:  Storage Types 

Types Usage level Storage Capacity Efficiency 
Pumped 
Hydro 
Energy 
Storage 
(PHES) Composite 

Pumping water 1 [GW] 70 [%] 

Compressed 
Air Energy 

Storage 
(CAES) 

Compressing air 100-
300[MW] 80 [%] 

Battery 
Complex Distribution 

Chemical process 20-50 [MW] 90-95 [%] 

Flywheels Spinning flywheel 25-30 [kW] 85-90 [%] 

Storage technologies are incorporated on the buses with wind farm. For buses without storage, 
conventional linear programming is used. For buses with storage, the upper limit of the 
generation constraint is changed by creating storage vector with charge/discharge rates, where kx  
is a storage vector at bus k, which is calculated using energy balance vector, bkx  and 
charge/discharge rates storage. Positive bkx  means energy storing mode, and negative bkx  means 
energy generating mode of storage. It represents storable energy amount at bus k. bkx  is taken 
from the difference between generation and load at bus k. Figure 5.1 shows the process of 
calculation of  kx  every time, where i is the sequence of time, and max_cap is the maximum 
capacity of. 

 kupperklower xggg +≤≤  5.1 
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Figure 5.1:  Flowchart for Calculation of Storage Vector 

5.2 Optimal Storage Placement 

One issue is to determine the buses where to place the storage. The placement of storage 
becomes important because of the transmission constraints. If there were no transmission 
constraints, then storage could be placed anywhere. Storage bus deployment cases can be a 
dimensionally complex problem depending on the power system size. For IEEE RTS [14], there 
are 24 buses. If we choose 3 buses as storage buses with wind farm, the number of possible 
locations is 3 combinations out of 24, which is 2024. To find the candidates for optimal storage 
buses, this report introduces an approach based on expected capacity [3]. 

The upper limit of generation vector with storage consists of maximum available generation 
vector and storage vector. Available generation depends on the failure/repair process of turbines. 
Storage vector is determined by the energy balance vector and charge/discharge rates. So once 
charge/discharge rates are fixed, the upper limit of generation vector with storage is determined 
by expected capacity of a bus. Where N is the number of available generation states at a bus, iC  
is the capacity of state i, iP  is the probability of state i. One possible simple approach seems to be 
to use a bus with higher expected capacity as a candidate of the optimal storage buses with wind 
farm. The idea is that if the capacity is high then at low load periods, the excess capacity could 
be used for charging. Then one could perform simulations on a selected number of candidates to 
make the final choice. 
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6. Simulation Procedure for Reliability Evaluation 

Figure 6.1 shows the simulation procedure of algorithm to find optimal storage deployment using 
sensitivity analysis with Monte Carlo and clustering. During simulation period, one year, optimal 
solutions for all clusters are gleaned and the final reliability indices by different storage cases are 
calculated using the probabilities of clusters. By comparing reliability indices of different storage 
deployment cases, the final optimal storage bus is determined with wind farm. The coefficient of 
variance [12] is set to be 5 [%] as convergence criterion for reliability indices. 

                                              
Figure 6.1:  System Simulation Procedure 

7. Case Studies 

Figure 7.1 shows the schematic of the proposed system from viewpoint of a bus. IEEE RTS has 
24 buses and 32 conventional generating units showing capacity 3405 [MW]. The annual peak 
load is 2850 [MW]. Three buses of the system have wind farm and storage. Generation system of 
IEEE RTS is placed for a swing bus or PV buses. Load is connected at PQ buses. Grid represents 
the transmission network of the system by the bus admittance matrix. Figure 7.2 shows the 
layout of wind farm which has 16 identical wind turbines with square by square structure. Here d 
[m] indicates the diameter of the turbine. Three wind farms are assumed to be installed at 
different buses. The capacity of each wind farm is 80 [MW], having each wind turbine 5 [MW]. 
Wind data is from National Renewable Energy Laboratory (NREL) [13]. The number of site area 
is 10. The wind speed and wind turbine data is shown in Table 7.1. 
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Calculate each cluster and its probability 

For each cluster/each hour/each storage 
deployment case,  
- Monte Carlo (All turbines failure/repair 
behaviors) 
- For wind turbines, calculate wind power 
with wake effect 
- Calculate generation and load of each bus, 
storage vector, changed RHS 
- Find optimal solution of the power flow 
problem with sensitivity analysis 

Stop 

Compare reliability indices for all storage 
cases to find optimal storage deployment 

Convergence criterion check 

Read load/wind data 
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Figure 7.1:  System Figure from Viewpoint of a Bus 

 
Figure 7.2 Layout of Wind Farm 

Table 7.1:  Wind Speed and Turbine Data 

Wind speed data 

Peak wind speed [m/s] 27.57 

Mean wind speed  [m/s] 8.20 

Standard deviation of wind 
speed [m/s] 3.19 

Wind turbine data 

Cut in speed [m/s] 6 

Rated speed [m/s] 11 

Cut out speed [m/s] 19 

Rated power [MW] 5 

Rotor diameter [m] 80 

Hub height [m] 70 

Table 7.2 shows failure/repair rates of conventional units and wind turbines. Transition rate of 
wind turbines depends on wind speed [37]. From original wind data, wind speed states are 
identified in Table 7.3. In the proposed transition rate method for wind speed modeling, all 
transition rates among wind speed states are required to be calculated.  
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Figure 7.3 demonstrates the correlation between load data and wind speed. These data are based 
on average values during a day. The magnitude of average hourly load is scaled down to 
compare them explicitly.  It is observed that power generated from wind speed is small during 
the peak load time, showing negative correlation. To take into account for the correlation, 
clustering approach is proposed in the research. For example, Table 7.4 represents the centroid 
and probability of each cluster using FGFCM. First column of each centroid is mean wind speed, 
and second one is mean load. From validity measurement, optimal cluster size is chosen to be 
seven. 

Table 7.2:  Transition Rates of Operating Turbines 
  

Units Conventional unit Wind turbine 

Weather  
Normal 

speed 
Extreme 

speed(>19m/s) 

Failure rate[#/yr] 6 6 36 

Repair rate[#/yr] 130 130 36 

Table 7.3:  Identification of Wind Speed States 

State Range 
[m/s] Prob. Freq 

[#/yr] 
Dur 
[h/#] 

Power 
[MW] 

1 0-4 0.0872 321 2.37 0 
2 4-5 0.0751 731 0.89 0 
3 5-6 0.0996 997 0.87 0 
4 6-7 0.1098 1138 0.84 0.43 
5 7-8 0.1162 1215 0.83 1.33 
6 8-9 0.1199 1202 0.87 2.30 
7 9-10 0.1088 1108 0.85 3.33 
8 10-11 0.0939 977 0.84 4.43 
9 11-12 0.0730 805 0.79 5 
10 12-13 0.0487 562 0.75 5 
11 13-14 0.0328 347 0.82 5 
12 14-15 0.0138 200 0.60 5 
13 15-16 0.0082 125 0.57 5 
14 16-17 0.0050 89 0.49 5 
15 17-18 0.0034 60 0.50 5 
16 18-19 0.0017 39 0.37 5 
17 19-20 0.0009 20 0.39 0 
18 20-21 0.0006 18 0.30 0 
19 21-34 0.0011 10 0.99 0 
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Table 1.4:  Clustering Information Using FGFCM 

Clusters Centroids 
([m/s],[MW]) 

Probabilities 

1 (8.21,1750.6) 0.1835 

2 (9.02,1362.7) 0.1563 

3 (7.26,2274.1) 0.1402 

4 (8.73,1111.2) 0.1220 

5 (7.91,1990.4) 0.1884 

6 (7.87,2488.2) 0.0687 

7 (8.23,1540.5) 0.1409 

Average hourly wind and load 

6.5

7.5

8.5

9.5

10.5

11.5

12.5

1 3 5 7 9 11 13 15 17 19 21 23

Hour

A
v
e
ra

g
e
 h

o
u

rl
y
 v

a
lu

e
s

Average hourly wind

Average hourly load

 
Figure 7.3:  Correlation between Load and Wind Speed 

To find the changes of wind states for different wake models in details, let us observe a case of 
south wind direction. When the wind blows from the south, upstream turbines are {4,8,12,16} 
and downstream turbines are {3,7,11,15},{2,6,10,14}, and {1,5,9,13} from Figure 7.2. Figure 
7.4 shows the state changes of downstream turbines. Arrows indicates the change of the state. 
Red color shows only one state drop, blue dotted ones show two state drops. Wind speed drop by 
wake effect relatively decreases, as the wind speed grows up. For example, for turbines {1, 5, 9, 
13} in Figure 7.4, states from 4 to 11 drop by two states. However, states from 12 to 16 falls only 
one state. And for high speed beyond state 17, there is no change by wake effect. Turbines {1, 5, 
9, 13} show more wake loss than {3, 7, 11, 15}. This is because that for turbines {1, 5, 9, 13} 
more wake effects are influenced by around upstream turbines as the combined wake effect 
increases. 
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Figure 7.4:  State Changes of Turbines 

From the proposed power system, 124 slack variables and 3 artificial variables are initialized for 
optimization in the two phase method. Equations (7.1)-(7.6) show original problem for bus 
number one in IEEE RTS. Where 1A  is the upper limit of generation at bus one. It changes every 
hour depending failure/repair behavior of turbines. The upper limit of transmission line 
connected with bus one is 175 [MW]. To convert into standard form, slack variables are added 
on the problem in equations (7.7)-(7.11). Where iS  indicates slack variable for i =1, 2, 3, 4, and 
5. The variables are non-negative. To have the initial basic matrix with non-negativity of RHS, 
an artificial variable should be added in equation (7.1). So it is replaced by equation (7.12) where 

1Z  is artificial variable. iS  and 1Z  are used for the initial basic variables to make up basic matrix 
in phase one. After simplex process, if 1Z  is zero, it goes to phase two so that the final solution 
to the original problem is derived. 

can do the numbering manually as below. 

 115131211 dfffgC =−−−+  7.1 

 11 dC0 ≤≤  7.2 

 11 Ag0 ≤≤  7.3 

 175f0 12 ≤≤  7.4 

 175f0 13 ≤≤  7.5 

 175f0 15 ≤≤  7.6 

 111 dSC =+  7.7 

 121 ASg =+  7.8 

 175Sf 312 =+  7.9 

 175Sf 413 =+  7.10 

 175Sf 515 =+  7.11 

1 2 3 5 6 9 11 16 17 10 4 7 12 15 8 19 18 13 14 

3 6 8 5 12 4 7 9 10 11 13 

1 2 3 5 6 9 11 16 17 10 4 7 12 15 8 19 18 13 14 

2 5 7 4 12 3 6 8 9 11 13 14 15 

Turbines {3,7,11,15} 

Turbines {1,5,9,13} 
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 1115131211 dZfffgC =+−−−+  7.12 

Table 7.5 shows the expected capacity of IEEE RTS. A probability of each capacity state is 
calculated using transition matrix approach [3]. From the TABLE, if we select three buses with 
storage, there exist two choices for optimal storage deployment; (23, 13, 18) or (23, 13, 21). 
Using sensitivity analysis to compare reliability indices, the final optimal storage buses can be 
determined. From the table, it is also possible to choose three more storage buses as candidates 
of optimal deployment. For example, if we select five storage buses, there is one choice; (23, 13, 
18, 21, 22) by expected capacity order. 

Table 7.6 compares LOLE [h] by different wind speed models using two phase method and 
sensitivity analysis. Wind farms are assumed to be installed at bus 3, 17, and 24. Clustering 
method is more accurate than transition rate method, since it deals with all correlations between 
load and wind speed. Especially, global or fast global approach of clustering is much closer to 
original wind data approach by making sure that it is convergent to the global optimum. Instead, 
it takes longer time than traditional clustering, KM or FCM in Table 7.7. The running time is the 
duration of clustering process for the optimal cluster size which is determined by validity 
measurement. Fast global approach accelerates the simulation speed. As the proposed wake 
model is incorporated on the system, reliability level drops in Table 7.8. As peak load increases, 
LOLE [h] also goes up. 

Table 7.5:  Expected Capacity of Bus 

Bus Expected capacity 
[MW] 

1 184.9639 

2 184.9639 

7 288 

13 561.4500 

15 207.6000 

16 148.8000 

18 352 

21 352 

22 297.0000 

23 619.4052 
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Table 7.6:  LOLE[h] by Different Wind Speed Model 

LOLE[
h] 

Exact transition original 
26.399 22.90 

Clustering 
KM FCM GKM FGKM GFCM FGFCM 

25.37 25.91 22.55 23.21 23.00 22.74 

Table 7.7:  Running Time of Different Clustering Approaches 

Time 
[min] 

Clustering 
KM FCM GKM FGKM GFCM FGFCM 

0.012 1.21 73.2 59.53 391.8 65.4 

Table 7.8:  LOLE[h] without and with Wake Effect 

Peak 
load[MW] 

Without 
wake 

With 
wake 

2750 11.3741 14.3104 
2850 22.7418 25.6343 
2950 38.1095 41.0188 

To determine the optimal storage buses, Table 7.9 compares LOLE [h] without and with storage 
for candidates of optimal bus using FGFCM with wake effect. As you see, for cases without 
storage, LOLE [h] is almost the same regardless of the location of wind farms. And we know 
that the final optimal storage buses with wind farms are bus 23, 13, and 18 by observing the 
changes of LOLE [h]. Table 7.10 shows LOLE [h] for selected optimal storage buses, 23, 13, 
and 18 by different peak load. For a case with peak load 2850[MW], reliability indices are 
compared by different storage performances in Figure 7.5 and Figure 7.6. As charge/discharge 
rates and capacity of storage increases, LOLE [h] tends to decreases. Finally, EENS [MWh/y] 
becomes greater for higher peak load, shown by Figure 7.7. 

Table 7.9:  LOLE[h] without and with Storage 
Cases Without storage With storage 

Wind farm bus 23,13,18 23,13,21 23,13,18 23,13,21 

LOLE[h] 25.6535 25.6543 21.8774 22.3725 
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Table 7.10:  LOLE[h] of Optimal Storage 
LOLE [h] 

Peak 
load[MW] 

Optimal 
storage 

2750 12.3003 

2850 21.8774 

2950 36.7522 

LOLE by charging/discharging rate of storage
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Figure 7.5:  LOLE [h] by Different Charge/Discharge Rates 
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Figure 7.6:  LOLE [h] by Different Maximum Capacity 



19 
 

EENS by different peak load
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Figure 7.7:  EENS [MWh/y] by Different Peak Load 

8. Conclusions 

Power system is modeled by conventional generating turbines, wind farms, and storage devices. 
Turbines are based on two generating states; fully available and out of service. To find efficient 
wind speed modeling, transition rate method and clustering method are applied and compared. 
Clustering approach is more accurate than transition method, since it can capture the correlation 
between wind speed and load. It needs mean wind speed, mean load, and probability of each 
cluster to evaluate reliability in the power system. To find efficient algorithm for partitional 
clustering, k means, fuzzy c means, global approach, and fast global approach are being 
compared. As one of the best algorithm, fast global approach is applied on the power systems 
with wind farms. Optimal storage bus using sensitivity analysis and proposed clustering method 
will be chosen and compared. From the original N. O. Jensen wake model, newly developed 
wake model is proposed on wind farm. As wake effect is incorporated into the system, reliability 
level drops by energy losses. 

The flow model embedded in the linear program is DC power flow. To ensure that an initial 
basic feasible solution is available, artificial variables are added to the original constraints. Two 
phase method is applied to the system to get reliability indices.  For a bus with wind farms, 
storage is incorporated to regulate the fluctuation of wind power. The upper limit of generation 
vector at the bus is updated by the storage vector. As storage is added to the system, it is 
observed that the reliability is improved. Optimization process is needed for every hour of 
simulation. Using sensitivity analysis, we can reduce simulation running time.  Simulation 
methodology to select the optimal storage buses is developed and applied to the system, using 
LOLE [h] and EENS [MWh/y] to figure out the system reliability explicitly. 
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1. Introduction 

1.1 Background 

The goal of this part of part is to investigate the reliability and economic impact of energy 
storage and renewable energy integration at the distribution level. The reliability and economy 
evaluation framework is presented. Novel operation strategies of energy storage and renewable 
energy are proposed. The methodology for optimizing the energy storage sizing and operation 
strategy in order to achieve optimal reliability and economy level is developed. 

Section 2 investigates the scheduling and operation in distribution systems with energy storage. 
The major benefits of electric energy storage include electric energy time-shift, power supply 
capacity, and transmission congestion relief [3]. The types and amount of benefits of EES 
depend on how it is operated. The problem of scheduling and operation for a distribution system 
with energy storage focuses on how a load aggregator who participates in the day-ahead market 
and the real-time balancing market should utilize the energy storage to schedule its energy 
purchase in day-ahead market and operate in real-time market. The objective is to save energy 
purchasing cost in the market environment. By applying a Model Predictive Control-based 
approach, the potential to better manage the energy cost of a load aggregator with EES in a 
market mechanism consisting of day-ahead market and real-time balancing market is explored. 
As the price and load forecasts are crucial for this operation strategy, the impact of the forecast 
uncertainties is investigated. 

Section 3 discusses the adequacy and economy analysis of distribution systems with energy 
storage and renewable energy. Reliability impact and economic benefits are tightly related. 
Especially with the operational flexibility of EES, different EES operation strategies could bring 
different sets of reliability impact and economic benefits. A novel Model Predictive Control 
(MPC)-based operation strategy for distribution system load aggregator is proposed to improve 
the economy of system by minimizing energy purchasing cost in power market with the 
utilization of price, load, and renewable energy forecasts. An islanding operation with power 
supplies from RER and EES is implemented to enhance distribution system reliability. In order 
to accurately assess the reliability and economic impact brought by proposed operation 
strategies, an assessment framework based on sequential Monte Carlo simulation approach is 
presented. 

Section 4 discusses the multi-objective approach to design of energy storage in distribution 
Systems. The objective of energy storage is to help build a more reliable and efficient smart grid. 
Energy storage can help achieve many goals. Among these goals, we focus on two of the most 
important objectives which are reliability and economy. Majority of research done on energy 
storage design problems mainly considers the impact of energy storage capacity and power rate. 
The impact of energy storage operation strategy is ignored or not considered as a major factor. 
We demonstrate the significant impact of energy storage operation strategy on reliability level 
and economic benefits. A modified particle swarm optimization approach is proposed for the 
designing the problem of energy storage in distribution systems, where not only the energy 
storage capacity and power rate are determined but also the energy storage operation strategy. 
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Each major section is made almost independent for the convenience of the reader. In achieving 
this there is some repletion of the material but this will help the reader in navigating this part. 

2. Optimal Scheduling and Operation of Load Aggregator with Electric Energy Storage 
in Power Markets 

2.1 Introduction 

Electric power systems are operated on the basis of real-time balancing of supply and demand 
without large-scale electric energy storage (EES) capabilities. With the objective of 
transformation towards a more reliable, secure, and efficient smart grid, and with the recent rapid 
development of EES technologies, feasible applications of EES in power systems have started to 
be investigated [1]-[2]. This section models the EES as operated by a load aggregator that 
participates in the day-ahead market and the real-time balancing market. The focus is on the 
energy cost savings. 

Among the research efforts towards energy cost savings by utilizing storage, authors in [4] 
discusses the optimal demand-side response to electricity spot prices for storage-type customers 
(e.g. municipal water plants); Reference [5] reports on an experiment on the real-time pricing 
based control of thermal storage to save cost; Research in [6] investigates the economics of 
sodium sulfur batteries for the application of energy arbitrage in New York state's electricity 
market. Besides operating storage on the demand side, Researchers in [7] discusses the potential 
of using storage to increase profit of wind power in the day-ahead market and balancing market. 
Research work reported in [8] proposed a Model Predictive Control (MPC)-based method to 
solve the dispatch problem with intermittent resources using the short-term wind power and load 
forecasts. Several forecasting techniques for predicting short term electricity price [9]-[13] and 
load [14]-[16] are presented. Good short-term (e.g. within 24 hours) price and load forecasts are 
available. In this work, by applying a MPC-based method, the potential of taking advantage of 
these forecast technologies to better manage the energy cost of a load aggregator with EES in a 
market mechanism consists of day-ahead market and real-time balancing market is explored. In 
the presented MPC-based approach, the most updated price and load forecast information is 
integrated in the decision making process. 

2.2 Energy Cost Saving with Energy Storage in Distribution Systems 

2.2.1 Distribution Systems with Energy Storage 

The load aggregator provides power to its customers (i.e. load) in a distribution network. The 
demand is assumed to be price inelastic. It also operates an EES located within the same 
distribution network. The topology of the system is simplified as in Figure 2.1 The distributed 
loads are modeled into one lumped load. Load in each period, L(k), is price inelastic. The 
charging C(k) and discharging D(k) operations of the EES are determined by the load aggregator. 
The summation of the load and the EES power charging and discharging is the imported power 
U(k) from the power market, delivered from the external grid. The load aggregator’s objective is 
to minimize its energy cost by optimally scheduling the imported power in the day-ahead market 
and determining the imported power during operation in the real-time balancing market. 
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Figure 2.1:  Electric energy storage integrated in the distribution system. 

2.2.2 Day-ahead and Real-time Power Markets Model 

The power markets are simplified as the following day-ahead market model and real-time 
balancing market model. The market models are similar to the models in [7]. 

In the day-ahead market, the load aggregator submits its offers to import power to meet its 
demands for each period in the next day. After the closure of the day-ahead market, system 
operator will determine which offers are accepted and work out the market clearing price for 
each period of the next day. All the load aggregator’s offers are assumed to be cleared by the 
market and its bidding is assumed not affecting the market clearing price. In the day-ahead 
market, the energy cost for each period in the next day is 

2.1 )()( kPkUsch ⋅  

where Usch(k) is the amount of power scheduled to be imported in the day-ahead market for the 
period k in the next day, P(k) is the actual day-ahead market clearing price for the period k in the 
next day. The total energy cost for a day is the sum of energy cost of each period in the day. 

The amount of imported power scheduled by load aggregator is based on their prediction of the 
load and price, and EES characteristics in each period of the next day. The details of how the 
load aggregator optimally schedules its imported power are presented in Section 2.3.1 . 

As the prediction is not perfect, during the real time operation, based on the actual load and 
price, load aggregator might decide to adjust its actual imported power to minimize energy cost 
while meeting the actual load. The discrepancies between day-ahead scheduled imported power 
and actual imported power are settled in the real-time balancing market. The balancing cost for 
each period is: 

2.2 )()]()([( kPkUkU balancingschactual ⋅−  

where Uactual(k) is the actual imported power in period k during real-time operation, Pbalancing(k) is 
the imbalance cost due to upregulation or downregulation of generators. The balancing cost for a 
day is the sum of the cost for each period in the day. The real-time balancing market is simplified 
by introducing two penalty factors pup and pdown for upregulation and downreglation. The 
imbalance cost in period k is expressed as the penalty factor times the day-ahead market price for 
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the same period k 
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where pup ≥ 1 and pdown ≤ 1. 

The imbalance Uactual(k)−Usch(k) is based on the scheduled imported power in the day-ahead 
market, actual price and load, real-time forecasted price and load in the future periods, and EES 
characteristics. The details of how the load aggregator optimally determines the actual imported 
power during real-time operation is presented in section 2.3.2. The total energy cost is the sum of 
the day-ahead cost plus the real-time balancing cost. This is the objective function load 
aggregator tries to minimize. 

2.2.3 Imported Power Model 

The load is assumed to be price inelastic which needs to be met all the time. However, the 
charging and discharging behavior of the EES are fully controllable within its physical limits. 
Both load and EES are in the same distribution system, thus load and the charging and 
discharging behavior of the EES are combined together as the imported power for the load 
aggregator. The imported power is elastic to some extent because of the flexibility of the EES 
charging and discharging operation. Load aggregator is assumed to be net power importer. Thus, 

2.4 0)( ≥kUactual  

2.5 0)( ≥kU sch  

2.2.4 Electric Energy Storage Model 

EES is modeled by its energy storage capacity, charging power limit, discharging power limit, 
charging efficiency, discharging efficiency, available periods, initial storage level and final 
storage level. The storage level has to be equal or below its capacity. The values of charging and 
discharging power have to be within their limits. Power loss during discharging and charging 
operations are considered in its charging and discharging efficiencies. The storage is only 
available for operation during the specified available periods. Most of the EES technologies such 
as sodium sulfur batteries and flywheels are stationary and could be operated all the time after 
installation. However some EES such as PHEVs are not stationary, and are only available for 
operation during some specific periods (e.g. from 8AM to 6PM when plugged in charging 
stations). The operation of EES needs to meet the initial and final storage level constraints. For 
example, the energy stored in PHEVs’ batteries must be higher than certain level before leaving 
charging station. The storage level at the end of each period is determined by the previous period 
storage level and the charging and discharging operation during this period, it is expressed as: 

2.6 )()()1()( kDkCkXkX c −⋅+−= η  
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where C(k) is the power charged to EES, D(k) is the power discharged from EES, X(k) is the 
energy storage level at the end of period k. All three variables needs to be within their operation 
limits, expressed as: 

2.7 )()(0 kCkC Max≤≤  

2.8 )()(0 kDkD Max≤≤  

2.9 )()()( kXkXkX MaxMin ≤≤  

When the EES is not available, Cmax(k), Dmax(k), Xmin(k) and Xmax(k) are all zeros. 

2.3 Scheduling and Operation with Energy Storage 

2.3.1 Optimal Scheduling in the Day-ahead Market 

In the day-ahead market, the objective of the load aggregator is to schedule the imported power 
for each period in the next day at the least cost. As the day-ahead market clearing price P(k) is 
unknown before submitting its offers, and the actual load L(k) during real-time operation is also 
uncertain, day-ahead predicted price )(ˆ kP  and load )(ˆ kL  are used for day-ahead scheduling. 
There are several forecasting techniques for predicting electricity price and load. The focus here 
is on how to use the predicted price and load for optimal scheduling instead of how to predict 
them.  The objective function of the day-ahead market optimal scheduling problem can be 
formulated as a linear programming problem which minimizes the energy cost in the day-ahead 
market based on price and load forecast: 

2.10 )(ˆ)(.
1k

kPkUMin
K

sch ⋅∑
=

 

Subject to the constraints (2.5)-(2.9), and  

2.11 )()()(ˆ)( kDkCkLkU csch η−+=  

where K is the total number of periods in the next day. After submitting its schedule to the 
system operator, the market clearing price is worked out. The actual energy cost in day-ahead 
market can be calculated as: 

2.12 )()(
1k

kPkU
K

sch ⋅∑
=  

The forecasted day-ahead market price and load play an important role in the minimizing the 
total energy cost. If it can be perfectly forecasted, the load aggregator could optimally operate its 
EES to take advantage of the low prices periods by importing more power and storing it while 
reducing the imported power during the high price periods by supporting the load with the stored 
energy. 
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2.3.2 Optimal Operation in the Real-time Balancing Market 

Day-ahead forecasted price and load are not perfectly accurate, the discrepancies of scheduled 
imported power in the day-ahead market and actual imported power during operation are settled 
in the real-time balancing market. A MPC-based method is proposed to determine the optimal 
real-time operation. 

The basic approach of MPC is that a finite–horizon optimization problem determining the series 
of optimal control operations is solved before each control step, but only the first control 
operation is implemented. A predictive model is used to estimate the state space trajectory over 
the prediction horizon, with the initial state being the actual state of the system. After 
implementing the first control operation, the system updates the actual state of the system and the 
future states using the predictive model. Then the optimal control routine is repeated to 
determine the next step’s optimal operation. This method of receding-horizon strategy has been 
successfully applied in the real world, such as in chemical process industry. Applying the above 
MPC-based approach, balancing cost minimization problem with uncertain price and load at 
period i can be implemented as follows 

1) Obtain the actual load and price in the current period i. 
2) Select a receding optimization horizon N periods (e.g. 24 hours). Use a load and price 

forecast model to obtain the most updated load and price forecast for the future periods 
from i+1 to i+N. 

3) Solve the balancing cost minimization problem, which is a linear programming problem, 
formulated as: 

2.13 
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The first part [ ( )( ) ( )]actual sch balancingP iU i U i− ⋅  is the balancing 

cost of the current period i, its actual load L(i) and actual imbalance cost Pbalancing(k) is known. 
The second part )(ˆ)]()([

1k
kPkUkU balancing
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i
schactual∑ ⋅−

+

+=
 is the balancing cost of the following periods 

i+1 to i+N. Its load )(ˆ kL  and price ˆ ( )balancingP k  are real-time forecasted values. The solution 

of this optimization problem gives an optimal operation schedule for the periods from i to i+N. 

4) Implement the first period operation of the above solution, which is the period i to 
determine how the EES should be operated and the actual imported power Uactual(i). 
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5) Update the EES storage level state, move to the next period, then repeat the algorithm 
from step 1. 

The actual imbalance cost is simplified as the day-ahead price multiplied by a penalty factor. 
Thus both actual imbalance cost Pbalancing(k) and forecasted imbalance cost )(ˆ kPbalancing  are 
expressed as: 

2.14 
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The short-term (e.g. next 2-3 hours) forecast is more accurate than the relatively longer term (e.g. 
23-24 hours) forecast. Thus, by using this MPC-based method, the most updated price and load 
forecast could be effectively integrated into the operation decision making process to minimize 
the balancing cost. 

2.4 Case Studies 

2.4.1 Case I: Stationary Energy Storage 

In this case, the proposed method is applied to a load aggregator with a stationary EES. Both the 
day-ahead scheduling periods and real-time receding optimization horizon are 24 hours. Each 
hour is considered as a period. 

The forecasted and actual day-ahead market clearing price is shown in Figure 2.2. The penalty 
factors pup=1.2 and  pdown=0.8. The day-ahead forecasted load and actual load during real-time 
operation are shown in Figure 2.3. The actual load curve has the peak load at 10MW. 

 
Figure 2.2:  The forecasted and actual day-ahead market clearing price. 
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Figure 2.3:  Day-ahead forecasted load and actual load. 

The parameters of the EES are shown in Table 2.1 “Initial storage level” means the storage level 
at the beginning of 0AM. “Final storage level” means the storage level at the end of 11PM. 

Table 2.1:  Energy Storage Parameters 

Capacity(MWh) 10 

Charging Power Limit(MW) 1 

Discharging Power Limit(MW) 1 

Charging Efficiency 0.95 

Discharging Efficiency 0.95 

Available Periods 24/7 

Initial storage level(MWh) 3 

Final storage level(MWh) 3 

The energy costs of the following scenarios are simulated and compared:  

1) Load aggregator does not have EES. It schedules its import power in the day-ahead 
market based on perfect load and price forecast. 

2) Load aggregator operates EES. It uses the proposed method to schedule its imported 
power in the day-ahead market based on perfect load and price forecast. 

3) Load aggregator does not have EES. It schedules its imported power in the day-ahead 
market based on not perfect day-ahead load and price forecast. The discrepancies during 
real-time operation are settled in balancing market. 

4) Load aggregator operates EES. It uses the proposed method to schedule its imported 
power in the day-ahead market and operate in the real-time balancing market based on 
not perfect day-ahead and real-time load and price forecast. 
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The day-ahead and real-time forecast uncertainties in scenario 3 and 4 are set to be equal. The 
simulation results are shown in Table 2.2 

Table 2.2:  Case I Cost Comparison 

 

Scenario 1 
No EES/ 
Perfect 
forecast 

Scenario 2 
EES/ 
Perfect 
forecast 

Scenario 3 
No EES/ 
Not 
perfect 
forecast 

Scenario 4 
EES/ 
Not perfect 
forecast 

Day-ahead market 
cost($) 12958 12605 13280 12943 

Real-time balancing 
market cost($) 0 0 -187 -275 

Total cost($) 12958 12605 13093 12668 

The results in Table 2.2  show the cost savings the optimal scheduling and operation methods 
can bring, and the importance of the forecast accuracy. The negative cost in the real-time 
balancing market means the load aggregator over estimated the load in the day-ahead market, 
surplus power is sold during real-time operation. By comparing the cost difference caused by 
imperfect forecast, it also suggests that the proposed method is more robust to forecast 
uncertainty. 

Figure 2.4 shows the difference of the day-ahead scheduled imported power between scenario 1 
and 2. Generally, more energy is imported during the low price periods and less energy is 
imported in the high price periods. As the load correlates with price to some extent, the imported 
power curve is leveled to some extent. 

 
Figure 2.4:  Day-ahead scheduled imported power comparison. 

Figure 2.6 shows the day-ahead scheduled storage level variation based on the perfect forecasted 
day-ahead market price of scenario 2. EES is generally charged during the low price periods and 
discharged during high price periods. 
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Figure 2.5:  Day-ahead scheduled storage level variation based on the forecasted day-ahead 

market price of scenario 2. 

 
Figure 2.6:  The comparison of scheduled imported power in day-ahead market and actual 

imported power during real-time operation in scenario 4. 

Figure 2.6 shows the difference of the scheduled and actual imported power of scenario 4. The 
optimal real-time operations do not necessarily follow the day-ahead schedule. 

2.4.2 Case II: Mobile Energy Storage 

In case II, V2G (vehicle to grid) capable PHEVs’ batteries are utilized as the EES which can be 
charged and discharged according to control signals from the load aggregator. The PHEVs are 
assumed to be plugged in the charging stations located in the load aggregator’s distribution 
network where other commercial activities also reside. Load aggregator is assumed to have 
certain contracts with the PHEVs parked in the charging stations which allow it to operate the 
PHEVs’ batteries when they are plugged in. The topology of the distribution network could be 
simplified as in Figure 2.1. All the individual PHEVs are combined and modeled as one EES. 
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The load aggregator can operate the batteries as they wish, but need to ensure that before the 
PHEVs leave the charging station, the stored energy has to be above certain required level. The 
proposed methods are applied to help load aggregator optimally operate these PHEVs’ batteries 
to minimize its energy cost. The PHEV battery parameters used in the simulation are shown in 
Table 2.3. While we recognize that studying the inherent uncertainty of PHEVs’ availability at 
any given time is an important future research direction, here in this work we assume that 50 
PHEVs are available for operation from 8AM to 6PM in the simulation day. 

Table 2.3:  PHEV Battery Parameters 

Capacity(kWh) 5.2 

Charging Power Limit(kW) 2 

Discharging Power Limit(kW) 2 

Charging Efficiency 0.95 

Discharging Efficiency 0.95 

Availabile Periods 8AM to 6PM 

Initial storage level(kWh) 1 

Final storage level(kWh) 5 

A load curve of an aggregation of commercial activities is used. A price curve with large 
variation is used to show the volatile behavior of the electricity price in downtown load centers. 
The load without PHEVs and price curves are shown in Figure 7. 

 
Figure 2.7:  Load without PHEVs and price curves. 

The costs of the following two scenarios are compared: 

• Perfect day-ahead price and load forecast is assumed. The PHEVs are immediately 
charged when plugged in until reaching the required storage level. Load aggregator does 
not utilize the PHEVs’ batteries to reduce its energy cost. 
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• Perfect day-ahead price and load forecast is assumed. The load aggregator uses the 
proposed method to optimally schedule the imported power in the day-ahead market and 
operate the PHEVs’ batteries to reduce its energy cost while ensuring the required energy 
storage level before PHEVs’ leaving charging stations. 

Figure 8 compares the imported power of scenario 1, scenario 2 and the load curve without 
PHEVs. In scenario 1, the imported power jumped up from 8am to 1pm, because the PHEVs are 
being charged during those periods. In scenario 2, PHEVs’ charging and discharging operations 
are determined by load aggregator to manage its energy cost. Figure 9 shows the storage level 
variation in scenario 1 and scenario 2. In scenario 1, the storage level climbs up to the required 
level and stays there for the rest of the available periods. In scenario 2, the batteries are generally 
charged when the price is low and discharged to support the load when the price is high. The 
results in Table 4 show the cost savings by optimal scheduling the imported power and operating 
the PHEVs’ batteries 

 
Figure 2.8:  Load Imported power comparison between scenario 1 and scenario 2 with load curve 

without PHEVs. 

 
Figure 2.9:  Average storage level of each PHEV in Scenario 1 and Scenario 2 



13 

The cost comparison is shown in Table 2.4. 

Table 2.4:  Case II Cost Comparison 

 

Scenario 1 
Charging 
immediately/ 
Perfect forecast 

Scenario 2 
Optimal charging and 
discharging/ 
Perfect forecast 

Day-ahead market 
cost($) 189.12 183.43 

In the day-ahead market, a load aggregator can use the proposed method to schedule the 
imported power in each period of the next day with day-ahead forecasted price and load. During 
real-time operation, the discrepancies caused by the forecast errors are compensated in the real-
time balancing market. The load aggregator can use the proposed MPC-based method to 
optimally determine its actual imported power in balancing market and EES operations during 
real-time operation. The proposed MPC-based method integrates the most updated price and load 
forecast data over a receding horizon to achieve the optimal operation. 

2.5 Summary 

In competitive power markets, with increasing penetration of variable renewable energy 
resources such as wind power, electricity price becomes more uncertain. In distribution systems, 
adoption of renewable distributed generation technologies adds another dimension of uncertainty 
in load forecast. Facing these higher price and load uncertainties, it becomes more challenging 
for load aggregators to manage their electricity cost. Within this context, a Model Predictive 
Control (MPC)-based scheduling and operation strategy is proposed for the load aggregator with 
electric energy storage (EES) to manage electricity cost in day-ahead and real-time power 
markets with different levels of price and load uncertainties. Price and load forecasts are actively 
integrated into the scheduling and operation decision making process to determine the optimal 
operation. Two other strategies are also discussed and studied for comparison. Case studies 
demonstrate better performance of the proposed MPC-based strategy compared to the other two 
strategies facing different levels of price and load uncertainties. The MPC-based strategy is also 
shown to be robust with the increase of price and load uncertainties. The benefit of energy 
arbitrage with MPC-based strategy is also illustrated. With this MPC-based strategy, load 
aggregators schedule purchase power in the day-ahead market with day-ahead price and load 
forecasts. Then during real-time operation, real-time price and load forecasts are updated 
constantly in each period. By utilizing these forecasts, load aggregator optimally adjusts its 
operations to reduce real-time electricity cost.  

3. Adequacy and Economy Analysis of Distribution Systems Integrated with Electric 
Energy Storage and Renewable Energy Resources   

3.1 Introduction  

Although the potential benefits of RER are significant, many major challenges need to be 
conquered first. One of the major challenges is the reliability impact caused by intermittent RER 
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such as wind power. This problem could be ignored earlier because the integrated RER were 
only a very small percentage (e.g., 3%) of the total generation. The intermittent property of RER 
does not have a notable reliability impact on systems which are mainly supported by 
conventional fossil fuel generations. With expected greater penetration of RER (e.g., 20% wind 
power), their reliability impact can no longer be ignored. A comprehensive reliability analysis 
considering the impact of high RER penetration is required.  

An efficient method of reliability analysis of electric power systems with time-dependent 
sources, such as photovoltaic and wind generation is presented in [20], in which the reliability 
impact of fluctuating characteristics of unconventional generation units is studied. Reference 
[21] investigates the reliability effects on a composite generation and transmission system 
associated with the addition of large-scale wind energy conversion systems using the state 
sampling Monte Carlo simulation technique, where the wind speed correlation is considered. The 
work in [22] presents a reliability analysis framework which includes both the deterministic and 
probabilistic approaches for bulk power system adequacy and security assessment when wind 
power is added. Considerable work has been done on RER integration in transmission systems. 
Reliability impact of RER integrated in distribution systems is also studied by researchers. In 
[23], the authors investigate the system reliability benefits of adding wind turbine generation as 
an alternative supply in a rural distribution system. In [19], both Monte Carlo simulation and 
analytical methods are used to assess distribution system adequacy including wind-based 
distribution generation units, with implementation of the islanding mode of operation in the 
assessment.  

With a rapid development of Electric Energy Storage (EES) technologies, and their operational 
flexibility, interest in integrating both RER and EES into power systems to improve systems 
reliability and economy has been growing. A reliability cost/worth evaluation method that can 
incorporate the impact of wind energy and EES utilization in electric power systems is presented 
in [18]. Research in [24] evaluates system reliability considering wind and hydro power 
coordination, where hydro facilities with energy storage capability are utilized to alleviate the 
impact of wind power fluctuations and also improve the system adequacy. A methodology for 
the operation of a hybrid plant with wind power and hydrogen storage to maximize economic 
benefits (i.e., maximizing profits) in a market environment is presented in [7].  

Previous reported work has been on either the reliability impact of RER and EES integration, or 
on economic benefits of the integration. However, reliability impact and economic benefits are 
tightly related. Especially with the operational flexibility of EES, different EES operation 
strategies could bring different sets of reliability impact and economic benefits.  

In this section, a novel Model Predictive Control (MPC)-based operation strategy for distribution 
system load aggregator is proposed to improve the economy of system by minimizing energy 
purchasing cost in power market with the utilization of price, load, and renewable energy 
forecasts. An islanding operation with power supplies from RER and EES is implemented to 
enhance distribution system reliability. In order to accurately assess the reliability and economic 
impact brought by proposed operation strategies, an assessment framework based on sequential 
Monte Carlo simulation approach is presented.  
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3.2 Distribution System Integrated with Energy Storage and Renewable Energy 

A distribution system integrated with distributed RER (e.g., wind-based distributed generation) 
and EES is shown in Figure 3.1. Load aggregator of a distribution system participates in the 
wholesale power markets to purchase electric energy to serve its customers in the distribution 
system. Meanwhile, load aggregator is also assumed to operate the RER and EES integrated in 
its served distribution system. Renewable energy generation can be controlled by curtailing 
available renewable energy output. EES devices are operated by determining the 
charging/discharging operations. It is assumed that electric energy price is determined by the 
markets and load is determined by customers, which is inelastic to price. The objective of the 
load aggregator is to serve its customers with reliable power supply while minimizing the electric 
energy purchasing cost in power markets. The goals are to propose novel operation strategies to 
enhance reliability and economy, and present a comprehensive framework for assessing both 
reliability and economy. 

 
Figure 3.1:  Schematic diagram of a radial distribution system integrated with wind turbines and 

electric energy storage. 

As most distribution systems are operated radial, the focus here is considering radial distribution 
system with RER and EES integrated. Figure 3.1 shows an example of a radial distribution 
system with RER and EES integrated, where “X” sign represents protective devices such as 
circuit breakers and reclosers. The following assumptions are used in the study of the system. 
Only the active power is considered. Voltage levels are assumed to be properly regulated. This 
assumption is normally acceptable in adequacy analysis for planning purposes. If the impact of 
voltage cannot be ignored, a more detailed distribution system AC power flow could be used 
instead. Power output from RER is considered constant within a period. 

3.3 Operation Strategies 

3.3.1 Modes of Operation 

A distribution system consists of components such as wires, circuit breakers and reclosers. A 
group of components can be modeled as one segment if the entry component is a protective 
device such as a switch or a recloser and the entry protective device is the only protective device 
of this segment. In this way, the distribution system is modeled by segments instead of 
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components. The rationale behind this segment modeling is that if a component failure occurs 
downstream of a protective device and within its protection zone, the protection zone will be 
isolated and all the customers in that protection zone will lose power supply. Even if there are 
other power sources such as RER or EES integrated into this segment, once a component failure 
occurs within this segment, the power supply from all energy resources is cut off. For example, 
in Figure 3.1, the components of the distribution system are grouped into 4 segments according 
to the location of protective devices. If a component failure occurs in segment 2, the protective 
devices isolate this segment, external grid power cannot be supplied to this segment, the power 
supply from wind turbines is also cut off, the load demand in this segment cannot be met and a 
loss of load event occurs. 

In a radial distribution system without distributed generation (DG) such as RER, if a component 
failure occurs within a segment, the segment is isolated and grid power cannot be supplied to the 
load within this segment and the segments downstream. However, when DG or EES is 
integrated, if a component failure occurs within a segment, the segment is still isolated but the 
downstream segments can utilize power from DG or EES integrated to support their load. In this 
case, the loss of load event might be avoided if there is enough power from these alternate 
energy resources. Following the previous example, when segment 2 is isolated, as there is no DG 
or EES integrated in segment 3, there is no power supply for its load. Instead, power from wind 
turbines and EES can be used to supply the load within segment 4. 

To summarize the above discussion, when there is a failure within a segment, all the power 
supply for this segment is cut off. When there is no failure within a segment, there are two modes 
of operation, grid connected mode and islanding mode. In grid connected mode, the transformers 
connecting transmission system and distribution are up, the external grid is capable of delivering 
sufficient energy. Thus grid power can be supplied to this radial distribution system and no 
failure occurs within any upstream segment. Thus the power from external grid can go through 
all the upstream segments and reach the studied segment. In islanding mode, at least one failure 
occurs in upstream segments, or the transformers are down, or the external grid is unable to 
deliver sufficient energy to this distribution system caused by outage. Thus power from external 
grid cannot be supplied to the segment under study. Power from the DG and EES integrated in 
this segment is utilized to support the load. The identification of operation modes is not limited 
for radial system. Operation mode of segment in non-radial system can also be identified through 
more complicated evaluation considering the distribution system topology. 

3.3.2 Operations in Grid Connected Mode and Islanding Mode  

EES operation strategies affect the reliability and economic performance of a distribution 
system. This part presents the proposed operation strategies in different operating modes.  
Operation Strategy in Grid Connected Mode: In grid connected mode, the power from external 
grid, RER and EES can all be utilized to serve the load. The objective of the load aggregator is to 
minimize its energy purchasing cost in power market while meeting the demand. The allocating 
of power supplies is crucial in determining the energy purchasing cost.  

With more and more accurate methods developed for load forecasting, renewable energy 
forecasting, and energy price forecasting, EES can utilize these forecasts to reduce the energy 
purchasing cost. A Model Predictive Control (MPC)-based operation strategy is proposed to 
minimize the energy purchasing cost by optimally coordinating the energy purchase from the 
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power market, EES charging/discharging operation, and utilization of RER. In the MPC-based 
operation strategy, short term forecasts of load, available renewable energy and energy price, are 
utilized to determine the operation. Power market modeling and EES modeling are introduced 
first before further describing of the proposed operation strategy. 

The power market here is simplified as a real time power market model. During each market 
period (e.g. an hour), load aggregator determines how much energy it needs to purchase from the 
market, then submits its offer to get that needed amount of energy. The market clearing 
mechanism determines the energy price for each period. Load aggregator is assumed to be a 
price taker whose transactions do not affect the clearing price determined by the market. The 
energy purchasing cost for N periods starting from period i +1 is 

3.1 ( ) ( )
i N

k=i+1
U k P k

+
⋅∑

 
With the proposed operation strategy, no specific EES technology is addressed. Rather the EES 
unit is modeled by its operation limits which include EES maximum and minimum state of 
charge level, charging/discharging power limit, charging/discharging efficiency. The energy 
storage state of charge level at any time has to be within its minimum and maximum range. This 
range is considered as the effective capacity. The charging and discharging rates have to be 
within the power limits. Power losses during charging/discharging operations are considered in 
its charging/discharging efficiencies. The state of charge at the end of each period is determined 
by the previous period state of charge level and the charging/discharging operation during this 
period, it is expressed as 

3.2 ( ) ( 1) ( ) ( )cSOC k SOC k C k D kη= − + ⋅ −

 
All EES operation variables are within their operation limits. 
The basic approach of MPC is that a finite–horizon optimization problem determining the series 
of optimal control operations is solved before each control step, but only the first control 
operation is implemented. After implementing the first control step, the system updates the 
actual state of the system and the future states using a predictive model. Then the control routine 
is repeated to determine the next step’s operation. Applying the above MPC approach, energy 
purchasing cost minimization problem with forecasted, load, available renewable energy and 
price at period i can be implemented as follows: 

1) Obtain the actual load, available renewable energy and price in the current period i. 
2) Select a receding optimization horizon of N periods (e.g. 24 hours). Use load, renewable 

energy and price forecast models to obtain the most updated load, renewable energy and 
price forecasts for the next N periods, from period i+1 to i+N.  

3) Solve the optimization problem, formulated as follows. 

Objective: Minimizing energy purchasing cost from period i to i+N 

3.3 . ( ) ( ) ( ) ( )
i N

f f
k=i+1

Min U i P i U k P k
+

+ ⋅⋅ ∑
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The first part ( ) ( )U i P i⋅ is the energy purchasing cost of the current period i. The second part 

( ) ( )
i N

f f
k=i+1

U k P k
+

⋅∑  is the predicted total energy purchasing cost of the following periods from i+1 

to i+N. ( )U i and Uf (k) are the decision variables to be solved.  

Constraints: 
EES operation constraints: 

3.4 0 ≤ C(k) ≤ CMax

 3.5 0 ≤ D(k) ≤ DMax

 3.6 SOCMin ≤ SOC(k) ≤ SOCMax

 where k=i,i+1,…,i+N. The charging and discharging operations of EES are to be solved. The 
maximum charging and discharging rates are constant. As one hour is considered as one period, 
the charging energy equal to C(k) multiplied by 1 hour. For convenience C(k) is used 
interchangeably as charging rate and energy charged in one hour. D(k) is treated in the same 
way. 

Available renewable energy constraints: 

3.7 0 ≤  R(i) ≤ RMax(i) 

3.8 0 ≤  Rf (k) ≤ Rf,Max(k) 

where k = i+1,…, i+N. The utilized renewable energy is equal to or less than the available 
renewable energy. Extra energy not utilized is dumped in ways such as adjusting the wind 
turbines’ blade pitch, so wind turbines do not generate the maximum power they can in that 
period. Utilized renewable energy for current period and future period are to be solved. 

Power balance constraints: 

3.9 U(i) + R(i) = L(i) + C(i) − ηdD(i) 

3.10 Uf (k) + Rf (k) = Lf (k) + C(k) − ηdD(k) 

where k = i+1,…,i+N. Load, available renewable energy, and price in current period i are the 
actual values and known. While load, available renewable energy, and price in future periods are 
predicted using forecast models, thus are given parameters for the optimization problem. The 
solution of this optimization problem gives an optimal operation schedule for EES 
charging/discharging operation, energy purchase and renewable energy utilization from period i 
to i+N.  

4) Implement the first period’s operation of the solved operation schedule, which is the 
current period i. 

5) Update the EES state of charge level, move to the next period, and repeat the algorithm 
from step 1. 
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The solved operation schedule is optimal with respect to the given forecast. The accuracy of 
forecast will affect the optimality of the solution because of the difference between the forecast 
and the actual values. We have assumed the forecast to be perfect but if information on 
characteristics of forecast uncertainty were available, it could be incorporated in the 
determination of the schedule. The short-term (e.g. next 2-3 hours) forecast is more accurate than 
the relatively longer term (e.g., 23-24 hours) forecast. By using this MPC-based operation 
strategy, load, renewable energy and price forecasts are updated according to the newest 
information after each operation step. Then the most updated forecasts could be effectively 
integrated into the operation decision making process to minimize the energy purchasing cost. 
By taking into consideration what the future load, renewable energy and price will be, better 
operation for current period can be determined. 24 hours is chosen as the optimization horizon 
considering the 24 hours cycling period of load variation, renewable energy variation and energy 
price variation. Because of the increasing forecast uncertainty into future periods, different 
choice of optimization horizon such as 12 hours, could lead to different operation schedule. More 
detailed information about the forecast uncertainty could be used to determine the optimal 
optimization horizon. 

The integration of RER and EES itself could reduce energy purchasing cost. However, the 
proposed MPC approach optimally determines from which power sources (RER, EES or external 
grid) to get power supplies to support the load, how much energy should be supplied by each 
selected power source, and chronological operations such as whether the renewable energy 
generated in this period should be used up now or stored for future use to avoid high energy 
price, and at which period EES should be discharged in order to release more storage capacity 
for storing lower priced energy in the coming periods. These operation decisions provided by the 
MPC approach could reduce energy purchasing cost even more than simply integrating RER and 
EES. The proposed MPC operation strategy reduces the energy purchasing cost by better 
coordinating the power supply from different power sources and energy usage along the time 
line. 

Operation Strategy in Islanding Mode: In islanding mode, avoiding and minimizing load 
curtailment is the objective. The available renewable energy is first utilized to serve the load. If it 
is not enough to cover the load, the energy stored in EES is discharged to avoid or minimize load 
curtailment. Only when the load demand is met, and there is renewable energy surplus, the extra 
energy is stored in EES for future usage without violating EES operation limits. The extra energy 
which cannot be stored in EES is then dumped.  

3.4 Reliability and Economy Assessment Framework 

The proposed reliability and economy assessment framework is based on Sequential Monte 
Carlo Simulation. During operation, EES sometimes serves as generation providing power to the 
load and sometimes it is charged acting as a load. Current EES state of charge level at a point in 
time is determined by the previous operations. The utilization of energy from EES in the current 
period is determined by both its current state of charge level and planed utilization in the future. 
Because of these unique chronological characteristics of EES, its impact on system reliability 
and economy is best captured using sequential Monte Carlo method, in which its specific 
operation strategies are integrated. The assessment flowchart is shown in Figure 3.2 Details of 
the assessment framework are presented as follows. 



20 

3.4.1 Distribution System Reliability Analysis 

In adequacy analysis, a power system is considered to be operating in either success state or 
failure state. A system is considered operating in success state when it has enough generation 
capacity to serve the load. When generation capacity is not sufficient to meet the load demand 
and loss of load occurs, the system is in failure state. The probabilities and durations associated 
with the system residing in success and failure states and energy not served during failure states 
are the adequacy indices for reliability analysis.  

For a distribution system modeled in terms of segments, a modified reliability analysis is 
presented to evaluate the reliability of the system in more details. In the modified analysis, 
besides evaluating the reliability of the distribution system, each segment of the distribution 
system is also evaluated. The determination of segment state is explained later. After the states of 
the segments are determined, the system state is then determined as following: the system is in 
success state if all the segments are in success state; the system is in failure state if any segment 
is in failure state. By performing the modified reliability analysis, reliability indices for each 
segment and the whole system can be obtained. The different reliability levels of segments 
caused by network topology, RER and EES can be evaluated. 

3.4.2 Segment State Determination and Operation 

In the assessment framework, time horizon is divided into periods (hourly). Once the component 
simulation is done, up or down state of each component in the distribution system is determined. 
Information of distribution system topology is needed with the component state information to 
determine segment operation mode. Then the success or failure state of each segment could be 
evaluated considering their operation mode.  

Under grid connected mode, the load is compared with the total power supply which consists of 
the available power from external grid, RER and EES. If the total power supply is not sufficient 
for the load, the system is identified as in failure state. If the total power supply can serve the 
load, it is in success state. After evaluating the segment state, MPC-based operation strategy is 
implemented using the most updated system state, and load, renewable energy, price forecasts. 
EES state of charge is then updated accordingly after each operation.  

Under islanding mode, the load is compared with the total power supply which only consists of 
RER and EES. The system is in failure state if the total power supply cannot serve the load. If 
the power supply can cover the load, it is in success state. With the state determination finished, 
islanding mode operation is implemented. EES state of charge is then updated accordingly. 
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Figure 3.2:  Proposed reliability and economy assessment framework flowchart. 

If there is a failure within a segment, this segment is in failure state. No operation is performed 
until the failure is removed. 

After state determination and operation for the current period, the process moves to the next 
period and starts another round of state determination and operation. Simulation stops when the 
specified maximum number of simulation years is reached or the probability of system in failure 
state converges. Considering there is generation integrated in the distribution system and the 
objective of comparing the available generation with the load, adequacy analysis indices, Loss of 
Load Expectation (LOLE) and Expected Energy Not Served (EENS) are calculated as the 
reliability indices. Other common distribution system indices, such as SAIFI and SAIDI, could 
also be calculated if needed. 
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3.4.3 Distribution System Economy Analysis 

Annual energy purchasing cost and customer interruption cost are used as the economic indices. 
Hourly energy purchasing cost is calculated according to the actual operation. Then annual 
energy purchasing cost is the sum of hourly energy costs in a year. We focus on the cost during 
operation. Thus the investment cost of RER and EES are not included in the economic indices, 
but it can be included if desired. If the optimal capacity of RER and sizing of EES are to be 
solved, the investment cost should be considered.  

Customer interruption cost is the cost of damage to customers caused by the power delivery 
interruption. When a service interruption occurs, the normal activities of customers in the 
distribution system could be affected and bear certain interruption cost. According to the nature 
of their activities, customers are grouped into 7 sectors, large user, industrial, commercial, 
agriculture, residential, government and institution, and office and buildings. Postal surveys have 
been conducted to estimate the customer interruption cost [25]. The survey data has been 
analyzed to provide Sector Customer Damage Function (SCDF). Customer damage cost is 
related to the type of customer and the duration of the interruption. As only limited interruption 
cost data is available, logarithmic interpolation and linear extrapolation can be used to calculate 
the cost within and outside the provided cost data. Composite Customer Damage functions 
(CCDF) are used to evaluate the interruption cost of mix types of customers. SCDF is used to 
construct CCDF using following equation 

3.11 
1

n

i i
i

CCDF k SCDF
=

= ∑  

where ik  is the per unit energy consumption of customer sector i, SCDFi  is the sector customer 
damage function of customer i, n is the number of customer sectors. SCDF gives the customer 
damage cost for each sector, while CCDF gives the total customer damage cost for a mix of 
customer types. 

For an unreliable system, its annual energy purchasing cost might be low. But it does not mean 
this system is more economically efficient. It is because larger amount of energy could not be 
purchased and delivered to the distribution system due to frequent and long duration service 
interruptions. By evaluating the customer interruption cost at the same time, a more complete 
picture of the system economy can be obtained.  

3.5 Case Studies 

A modified practical radial distribution system integrated with wind turbines and EES, as shown 
in Figure 3.3, is studied. A step-down transformer is connecting the external grid and the 
distribution system. The components of the distribution system are grouped into two segments. 
Wind turbines and EES are integrated in segment 2 at node 28. The integration node could be 
determined by the network topology and the capability of handling required power injection. 
Node 28 is assumed to be able to accommodate the power injection. Other suitable nodes could 
also be chosen. If the transformer has a fault or external grid fails to deliver sufficient energy 
because of outage, power could not be delivered to the distribution system. Thus in this 
reliability analysis, the transformer and external grid are considered as one component, with 
Mean Time To Failure (MTTF) of 1440 hours and Mean Time To Repair (MTTR) of 6 hours.  
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A series of cases are studied to investigate the reliability and economic impacts from integration 
of EES and wind turbines. Table 8 shows the studied 12 sets of EES effective capacity and 
power limit. The charging/discharging round efficiency is set to be 90%. EES is assumed to be 
perfectly reliable. 

 
Figure 3.3:  Proposed Modified practical radial distribution system with wind turbines and EES 

integrated in segment 2. 

Table 3.1:  Electric Energy Storage Parameters in Case Studies 

Capacity
(MWh) 

Power 
limit 
(MW) 

Capacity
(MWh) 

Power 
limit 
(MW) 

Capacity 
(MWh) 

Power limit 
(MW) 

5 1 10 1 15 1 
5 2 10 2 15 2 
5 2.5 10 2.5 15 2.5 
5 5 10 5 15 5 

Six sets of Wind Turbine Generation (WTG) capacities are studied. They are 1MW, 2MW, 
4MW, 6MW, 8MW and 12MW. Historical wind power output data is used [26]. 1MW capacity 
wind turbine’s MTTF is 720hrs and the MTTR is 30hrs. Other WTG capacities are obtained by 



24 

utilizing multiple 1MW wind turbines. The reliability indices for other capacities are also 
calculated accordingly.  

A case is formed by matching an EES unit, which includes its capacity and power limit 
characteristics, with a WTG capacity. Thus 72 (12×6=72) cases are formed and studied. A base 
case with no EES and WTG is also studied for comparison. In each case study, LOLE, EENS, 
energy purchasing cost, customer interruption cost of each segment and the system are obtained.  

When implementing the proposed MPC-based operation strategy, forecast tools are needed to 
obtain the price, load, and wind power forecasts. The actual forecasts are not perfect. The effect 
of inaccurate forecasts is investigated in research work [27]. 

The peak load of the distribution system is 8MW. IEEE-RTS load profile is used as the 
chronological load profile. Segment 1 and segment 2 each share 50% of the total system load. 
The MTTF of both segments is 1440 hours and the MTTR is 1 hour. The hourly energy price 
profile used in the case study is shown in Table 9. Customer interruption cost of three customer 
mixes representing high commercial activities, high industry activities and high residential 
activities respectively are studied. The percentages of each customer sector for the three mixes 
are shown in Table 10. 

Table 3.2:  Electric Energy Price 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Price 
($/MWh) 50 48 46 43 40 45 70 90 80 110 120 80 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Price($/M
Wh) 90 125 100 95 80 88 90 80 80 70 70 60 

Table 3.3:  Customer Sector Percentage For Each Customer Mix 

 Commercial (%) Industry (%) Residential (%) 

High Commercial Mix 80 10 10 

High Industry Mix 10 80 10 

High Residential Mix 10 10 80 
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Table 3.4:  Base Case Economy Indices (Million $/Year ) 

 

Segment 1 
Customer 
Damage 
Cost 

Segment 2 
Customer 
Damage Cost 

System Customer 
Damage Cost 

Energy 
Purchasing 
Cost 

High 
Commercial Mix 0.761 1.262 2.023 

3.435 High Industrial 
Mix 0.584 0.990 1.574 

High Residential 
Mix 0.268 0.439 0.707 

Base case without EES and WTG, and seventy-two cases with different matching of EES and 
WTG capacity were studied. For reasons of space limitations, only selected results are presented 
here. Base case results are shown in Table 3.3 and Table 3.4.  

In Table 3.4, the LOLE for the system is exactly the same as LOLE for segment 2. It is caused 
by this particular distribution system configuration, where segment 2 is in series with segment 1 
and downstream. For other configurations, LOLE are not necessarily the same for both system 
and one segment. Selected results of system with EES and WTG are shown in Table 13. The 
results demonstrate the reliability and economic improvement brought by the EES and WTG 
integration, and the proposed operation strategies. They also provide insights on how EES 
capacity, power limit and WTG capacity affect reliability and economy. These results could also 
be helpful in determining the proper EES capacity, power limit and WTG capacity to achieve 
desired reliability level and economy benefit. 
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Figure 3.4:  System LOLE when EES power limit is 1MW and 5MW. 
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Results show that increasing EES capacity, power limit, or WTG capacity can all enhance 
reliability, save energy cost and reduce customer interruption cost. However, the impact each 
factor has on reliability and economy depends on the situation. It can be observed from  Figure 
3.4 that only when EES power limit increases to a higher level (5MW), the increase in EES 
capacity can effectively improve system LOLE. That is because when power limit is low 
(1MW), it becomes the bottle neck preventing sufficient power discharged to support the load 
even when there is abundant energy stored. The potential of large EES capacity is not utilized. 
Meanwhile, with the EES power limit of 5MW, the LOLE improvement tends to saturate when 
increasing EES capacity from 10MWh to 15 MWh compared with the increase from 5MWh to 
10 MWh. This means with EES capacity of 10MWh and power limit of 5MW, a large portion of 
loss of load events could be avoided. Only a small additional portion of more rare and sever loss 
of load events would be eliminated with the additional 5MWh EES capacity. When the LOLE 
improvement will reach saturation with the increase of EES capacity is affected by the specific 
load level and segments failure rate. The proper matching of EES capacity and power limit is 
very important in the effectiveness of reliability improvement. 

Table 3.5:  Reliability Indices of System with EES and WTG 
Electric Energy 
Storage WTG 

Capacity 
(MW) 

 LOLE 
(hrs/yr) 

EENS 
(MWh/yr) Energy 

Capacity 
(MWh) 

Power 
(MW) 

5 1 1 
Segment 1 42.71 73.95 
Segment 2 48.06 120.56 
System 48.06 194.51 

5 1 4 
Segment 1 42.30 57.92 
Segment 2 46.14 91.86 
System 47.65 149.78 

5 2.5 1 
Segment 1 42.67 73.22 
Segment 2 46.59 116.57 
System 48.02 189.79 

5 2.5 4 
Segment 1 40.78 57.53 
Segment 2 43.05 89.50 
System 46.13 147.02 

10 1 1 
Segment 1 42.71 70.59 
Segment 2 48.06 114.92 
System 48.06 185.51 

10 1 4 
Segment 1 41.94 54.68 
Segment 2 45.46 86.45 
System 47.29 141.13 

10 5 1 
Segment 1 39.10 67.94 
Segment 2 40.63 105.19 
System 44.45 173.13 

10 5 4 
Segment 1 36.57 52.68 
Segment 2 37.44 80.49 
System 41.92 133.17 
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Figure 3.5:  Segment 1 and Segment 2 LOLE when fixing EES capacity at 5MWh and power 

limit at 1MW. 

Reliability improvement for both segments is shown in Figure 3.5. With the increase of WTG 
capacity, reliability level of segment 2 is improved much faster than segment 1 when increasing 
WTG capacity to 6MW. After increasing WTG capacity over 6MW, the reliability of segment 2 
is still improving faster but not as significant as when the WTG capacity below 6MW. This 
result implies the possibility of reliability differentiation by integrating proper size of WTG and 
EES into the segments which need reliability improvement. Figure 3.6 shows the energy 
purchasing cost with EES capacity of 5MWh and 15MWh. The energy cost with EES having 
15MWh capacity and 1MW power limit is higher than that with EES having 5MWh capacity and 
2MW power limit. This phenomenon implies the importance of proper matching of EES capacity 
and power limit in order to achieve desired economic benefits. Customer interruption cost for 
high commercial mix system with EES capacity of 15MWh is shown in Figure 3.7. There is a 
sharp interruption cost reduction when increasing EES power limit from 1MW to 2MW. 
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Figure 3.6:  Energy purchasing cost when EES capacity is 15MWh and 5MWh. 
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Figure 3.7:  System customer interruption cost for high commercial mix system when fixing EES 

capacity at 15WMh. 

However, the reduction is very limited when increasing power limit beyond 2MW. This result 
suggests the nonlinear and saturation effect when utilizing EES to improve system economy.  
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3.6 Summary 

The integration of Renewable Energy Resources (RER) into an existing distribution system is an 
important topic in dealing with energy challenge the world is facing. With rapid development of 
Electric Energy Storage (EES) technologies, there is a growing interest in integrating both EES 
and RER into power systems to improve their reliability and economy. The adequacy and 
economy of distribution systems integrated with both EES and RER are assessed. A novel Model 
Predictive Control (MPC)-based operation strategy is presented to minimize distribution system 
energy purchasing cost by coordinating multiple power supplies from EES, RER and external 
grid. An islanding operation is implemented to improve the distribution system reliability and 
reduce customer interruption cost. A reliability and economy assessment framework based on 
sequential Monte Carlo method integrated with the MPC-based operation and islanding 
operation is proposed. Case studies are conducted to demonstrate the reliability and economy 
improvement by implementing the proposed operation strategies together with integration of 
EES and RER, and also investigate how EES capacity, power limit, and wind turbine generation 
capacity affect system reliability and economy. 

4. Multi-Objective Design of Energy Storage in Distribution Systems Based on Modified 
Particle Swarm Optimization 

4.1 Introduction  

The major benefits of energy storage include electric energy time-shift, frequency regulation and 
transmission congestion relief. Energy storage can help achieve many goals. Here, we focus on 
the objectives of reliability and economy.  Some researchers have investigated the effect of 
energy storage on improving reliability. Researchers in [28] explore the feasibility of installation 
of battery storage plant to enhance power system reliability and security. A reliability cost/worth 
evaluation method that can incorporate the impacts of wind energy and energy storage utilization 
in electric power systems is presented in [27]. 

Among the research efforts towards achieving higher economic benefits by utilizing energy 
storage, [4] discusses the optimal demand-side response to electricity spot prices for storage-type 
customers. Authors in [5] reports on an experiment on the real-time pricing based control of 
thermal storage to save cost. 

The energy storage sizing problems are also being investigated. Reference [17] describes an 
analytical approach to evaluate reliability improvement by using energy storage as a backup 
storage and determine the size of the storage, which includes the capacity and power rate, to 
meet a specified reliability target.  

Reliability impact and economic benefits are tightly related when considering energy storage 
integration [29]. Especially with the operational flexibility of energy storage, different operation 
strategies could bring different reliability impact and economic benefits. For load aggregator of 
distribution system integrated with energy storage, it is important to know the reliability and 
economy impact of the implemented energy storage operation strategies. Then proper energy 
storage operation strategies can be chosen and implemented to achieve desired reliability and 
economy improvement goals.  
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However majority of research done on energy storage design problems mainly consider the 
impact of energy storage capacity and power rate. The impact of energy storage operation 
strategy is ignored or not considered as a major factor. This work demonstrates the significant 
impact of energy storage operation strategy on reliability level and economic benefits. A 
modified particle swarm optimization approach is proposed for the designing the problem of 
energy storage in distribution systems, where not only the energy storage capacity and power 
rate are determined but also the energy storage operation strategy. 

4.2 System Description 

4.2.1 Energy Storage Integrated in Distribution System 

In a market environment, the load aggregator purchases electric energy from wholesale market 
and delivers the purchased electric energy to its customers in the distribution system. The 
objective of the load aggregator is to serve its customers reliably and economically.  

With the integration of energy storage devices in the distribution system, they could be utilized 
to improve distribution system reliability and economy. As most distribution systems are radial, 
the focus here is on considering such distribution systems. However, the proposed method can be 
also applied to other distribution systems with different configurations Figure 4.1 shows an 
example of a radial distribution system integrated with energy storage, where “X” represents 
protective devices such as circuit breakers and reclosers. The transformers and all the generation 
and transmission systems are represented as the external grid, through which the electric energy 
is delivered to the distribution system.  

 
Figure 4.1:  A radial distribution system integrated with energy storage. 

4.2.2 Modes of Operation 

In a radial distribution system without distributed generation (DG) or energy storage, if a 
component failure occurs within a segment, the segment is isolated. Grid power cannot be 
supplied to the load within this segment and the segments downstream. The load demand in all 
these segments cannot be met. However, when DG or energy storage are integrated, if a 
component failure occurs within a segment, the segment is still isolated but the downstream 
segments can utilize power supply from integrated DG or energy storage to support its load. In 
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this case, the loss of load event might be avoided if there is enough power from these energy 
resources. In Figure 4.1,when segment 2 fails and is isolated, as there is no DG or energy storage 
integrated in segment 3, there is no power supply for its load. Instead, power from energy storage 
can be used to supply the load within segment 4.  

To summarize the above discussion, when there is a failure within a segment, all the power 
supply for this segment is cut off. When there is no failure within a segment, there are two modes 
of operation, grid connected mode and islanding mode. In the grid connected mode, if the 
external grid is in success state grid power can be supplied to this radial distribution system and 
there is no failure within any upstream segment. Thus the grid power can go through all the 
upstream segments and reach the studied segment. In the islanding mode, at least one failure 
occurs in upstream segments or the external grid is in failure state. Thus grid power cannot be 
supplied to the segment under study. If there are no DGs and energy storage integrated in the 
studied segment, load in this segment cannot be met. If there are DGs and energy storage is 
integrated in the studied segment, power from DGs and energy storage is utilized to support its 
load. Loss of load might be avoided or loss of energy is minimized. 

4.3 Energy Storage Operation Strategies 

The operation of energy storage is very flexible and behaves very different from either 
generation or load. Energy storage can be flexibly operated to act as generation, load or simply 
standby according to the needs of load aggregator. How energy storage is operated has a major 
impact on distribution system reliability level and economic benefits. In this chapter, a standby 
backup operation strategy, a Model Predictive Control (MPC)-base operation strategy and a 
hybrid operation strategy are presented.  Approach for the reliability and economy improvement 
evaluation of these operation strategies is discussed. 

4.3.1 Standby Backup Operation Strategy 

One commonly used operation strategy is utilizing energy storage as a standby backup energy 
resource. The standby backup operation strategy is implemented as follows. In the islanding 
mode, power from external grid cannot reach the studied segment. Energy storage integrated in 
this segment is discharged to sustain the service in this segment. The objective is to avoid a loss 
of load event or minimize the unserved energy within its operation constraints including energy 
storage capacity limits and power rate limits. When the system is restored and the segment is 
back to the grid connected mode, energy storage is being charged until it reaches its energy 
storage upper limit and then it is in standby to prepare for the next failure. 

4.3.2 MPC-based Operation Strategy 

The presented MPC-based operation strategy minimizes the energy purchasing cost. This 
operation strategy is implemented in grid connected mode. With this strategy, short term 
forecasts of energy price and load are utilized to determine the optimal operation schedule. 
Power market modeling and energy storage modeling are briefly introduced first before further 
description of the MPC-based operation strategy. 

The power market is simplified as a real time power market model. However, this strategy can 
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also be implemented in other market structures. During each market period (e.g. an hour), load 
aggregator determine how much energy it needs to purchase from power market, then submits its 
offer to get that amount of energy. The market clearing mechanism determines the energy price 
for each period. Load aggregator is assumed to be a price taker who cannot affect the clearing 
price determined by the market. The energy cost for period k is 

4.1 )()( kPkU ⋅  

where U(k) is the amount of energy purchased in power market in period k, P(k) is the market 
clearing price in period k. Assume load aggregator can only purchase energy, we have 

4.2 0)( ≥kU  

The total energy cost for the period i and the following N periods is  
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The energy storage unit is modeled as a set of parameters and operation limits. Energy storage is 
modeled by its energy storage capacity, charging power limit, discharging power limit, charging 
efficiency, discharging efficiency. The energy storage state of charge (SOC) at the end of each 
period is determined by the previous period SOC and the charging/discharging operation during 
current period, it is expressed as 

4.4 ( ) ( 1) ( ) ( )cSOC k SOC k C k D kη= − + ⋅ −  

where C(k) is the power charged to energy storage, D(k) is the power discharged from 
energy storage, SOC(k) is the SOC at the end of period k, cη is the charging efficiency. All three 
variables need to be within their operation limits, expressed as 

4.5 MaxCkC ≤≤ )(0  

4.6 MaxDkD ≤≤ )(0  

4.7 ( )( ) ( )Min MaxSOC SOC k SOCk k≤ ≤  

The basic approach of MPC is that a finite–horizon optimization problem determining the series 
of optimal control operations is solved before each control step, but only the first control 
operation is implemented. A predictive model is used to estimate the state space trajectory over 
the prediction horizon, with the initial state being the actual state of the system. After 
implementing the first operation, the system updates the actual state of the system and the future 
states using the predictive model. Then the optimal control routine is repeated to determine 
optimal operation for the next step. Applying the above MPC-based approach, energy cost 
minimization problem at period i can be implemented as follows 
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1) Obtain the actual load and price in the current period i. 
2) Select a receding optimization horizon N periods (e.g. 24 hours). Use load and price 

forecast tools to obtain the most updated load and price forecasts for the future periods 
from i+1 to i+N. 

3) Solve the energy purchasing cost minimization problem, which is a linear programming 
problem, formulated as: 
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The first part )()( iPiU ⋅ is the energy cost in the current period i. Its actual load L(i) and energy 
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 is the total energy cost of the 

following periods from i+1 to i+N. Its load )(ˆ kL  and energy price )(ˆ kP are 
forecasted values. The solution of this optimization problem gives an optimal operation schedule 
for energy storage from periods i to i+N. 

4) Implement the first period’s operation of the above solution, which is the period i to 
determine how the energy storage should be operated and the amount of energy U (i) 
needs to be purchased. 

5) Update the energy storage level state, move to the next period, and then repeat the 
algorithm from step 1. 

Several forecasting techniques for predicting short term electricity price and load have been 
presented by researchers. Good short-term (e.g. within 24 hours) price and load forecasts are 
available. The very short-term (e.g. next 2-3 hours) forecast is more accurate than the relatively 
longer term (e.g. 23-24 hours) forecast. Thus, by using this MPC-based method, after each 
control step, the price and load forecast are updated according to the newest forecast. Then the 
most updated and accurate price and load forecast could be effectively integrated into the 
operation to minimize the energy purchasing cost. 

The proposed MPC-based control method is implemented in grid connected operation mode. 
Then in the islanding mode, the energy storage is operated to sustain the service in this segment 
to avoid a loss of load event or minimize the unserved energy within operation limits. 

4.3.3 Hybrid Operation Strategy 

The standby backup operation strategy can significantly improve reliability level, as the energy 
storage generally holds maximum amount of energy to support the load when an islanding 
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occurs. The loss of load events and unserved energy can be effectively reduced. The MPC-based 
operation strategy can significantly improve the economic benefits by reducing energy 
purchasing cost, as energy storage is actively utilized to store energy when the energy price is 
low and to discharge energy when the energy price is high. The basic idea of the hybrid 
operation strategy is conceptually dividing the energy storage device storage capacity into two 
portions. One portion of the energy storage is implemented with the standby backup operation 
strategy, while the other portion is implemented with the MPC-based operation strategy. The 
standby backup portion maintains a certain specified energy storage level to prepare for the 
failure event, which helps improve reliability. The MPC-based portion is taking the advantage of 
the energy storage operation flexibility to minimize energy cost, which contributes to the 
economic benefits. With a certain energy storage capacity, if the standby backup portion, 
expressed as B%, increases, the MPC-based portion, (100%−B%), decreases. Accordingly, the 
reliability of the system is further improved but the economic benefit is reduced, and vice versa. 
Through this operation strategy, a flexible tradeoff between reliability and economic 
improvements is achieved. The feasible range for B% is from 0% to 100%. When B% equals to 
0%, it is a pure MPC-based operation strategy; when B% equals to 100%, it is a pure standby 
backup operation strategy; when B% is in between, it is a hybrid operation strategy mixed with 
the MPC-based and the standby back operation strategy. Thus B% could be used as a parameter 
representing which energy storage operation strategy is implemented. This operation strategy 
parameter is as important as the other energy storage parameters such as energy storage capacity 
and power rate when it comes to the impact on distribution system reliability and economy. 

4.3.4 Reliability and Economy Evaluation 

With a given set of energy storage parameters including operation strategy parameter, energy 
storage capacity and power limit, etc, its impact on distribution system reliability and economy 
could be evaluated. 

In reliability evaluation, a power system is considered to be operating in either success state or 
failure state. A system is considered operating in success state when it has enough generation to 
serve the load. When there is not sufficient generation to meet the load demand, and loss of load 
occurs, the system is in failure state. Loss of Load Expectation (LOLE) and Expected Energy not 
Served (EENS) are chosen as the reliability indices. In economy evaluation, the annual energy 
purchasing cost for load aggregator is used as the economy index.  

In order to capture the inter-temporal characteristic of energy storage which has a key impact on 
distribution system reliability and economy, Sequential Monte Carlo Simulation is used for 
reliability and economy evaluation.  

4.4 Problem Formulation 

The objective of the energy storage design is to simultaneously optimize multiple objectives 
including reliability and economy by choosing the optimal energy storage parameters subject to 
the constraints for a specific distribution system. In this work, the design variables of energy 
storage include not only the energy storage capacity and power, but also the operation strategy, 
which is a major contribution of this research work. Other design variables such as 
charging/discharging efficiency could also be included. 
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4.4.1 Energy Storage Design Objectives 

Objective 1: Reliability 

One of the purposes of utilizing energy storage is to improve distribution system reliability. 
Reliability indices such as LOLE and EENS could be used to measure the reliability 
performance. These reliability indices are provided through the previously discussed reliability 
and economy evaluation using Sequential Monte Carlo Simulation.  

Objective 2: Cost 

The improvement of reliability normally comes with higher economic cost. Here, two sources of 
cost are considered. One is the annual energy purchasing cost, and the other is the annual energy 
storage cost. Annual energy purchasing cost is obtained through the reliability and economy 
evaluation. Annual energy storage cost is computed as the sum of the annual operation and 
maintenance cost, annualized total capital cost, and annualized replacement cost[30]. 

The annual operation and maintenance cost, OMC, is 

4.11 f MaxOMC OM C= ⋅  

where OMf is the annual operation and maintenance cost per kW.  
The total capital cost for energy storage, TCC, consists of three components: the total (power) 
cost of power electronic rectifiers/inverters, the total (energy) cost for storage units, and the cost 
for the balance of plant. 

The total cost for the power electronics, PCS, is 

4.12 PCS = PCSU ∙ CMax 

where PCSU is the cost for power electronics per kW. 

The total cost of storage units, SUC, is 

4.13 SUC = SUCU ∙ SOCmax 

where SUCU is the storage unit cost per kWh. 

The total cost for the balance of plant, BOP, is 

4.14 BOP = BOPU ∙ SOCmax 

where BOPU is the cost for the balance of plant per kWh. 
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The TCC is calculated as 

4.15 TCC = PCS + SUC + BOP 

The annualized capital cost, AC, is 

4.16 AC = TCC ∙ CRF 

where CRF is capital recovery factor, expressed as 
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where ir is the annual interest, y is the lifetime of energy storage (year). 

The annualized energy storage replacement cost, ARC, is 

4.18 AEC = OMC + AC + ARC 

4.4.2 Energy Storage Design Constraints 

A set of technical and operational constraints need to be satisfied when considering energy 
storage design. 

Energy storage technology constraints: Due the current energy storage technologies 
development, the choices of available energy storage are limited. Normally, for a specific energy 
storage technology, such as Sodium Sulfur battery, there are limits on how large the capacity and 
power rate can be built. The design choices of energy capacity and power rate should be within 
the feasible range.  

Power flow and other operational constraints: During operation, power flow should be balanced. 
Energy storage operations should be within the operational limits. These constraints are 
implemented in the reliability and economy evaluation process. Energy storage operation 
strategy, which is represented by the operation strategy parameter, B%, is within the range from 
0% to 100%.  

4.5 Solution Approach: Modified Particle Swarm Optimization Approach  

Particle Swarm Optimization (PSO) is a population-based stochastic optimization procedure 
originated from the ideas of swarm intelligence and field of evolutionary computation. It is being 
used in diverse optimization problems including power systems optimization, such as economic 
dispatch [31]. 

In this work, a constrained multi-objective particle swarm optimization approach is proposed to 
solve the energy storage design problem. Unlike single objective optimization, the optimal 
solutions of the multi-objective optimization are a set of non-denominated solutions. These 
solutions form a Pareto front which provides flexible choice of tradeoff among multiple 
objectives for decision maker. 
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The decision variables include energy storage capacity, power rate, and operation strategy. The 
solution candidate can be represented as 

4.19 1 2 3
[ , , ]i i i ix x x x=  

where 
1 2 3
, ,i i ix x x represents energy storage capacity, power rate, and operation strategy parameter 

respectively. i is the number of the particle. i1, i2, i3 represents the 1st, 2nd, and 3rd design 
variables of the ith particle. Each design variable is constrained within its design limit. 

4.5.1 Optimization Procedure 

The modified multi-objective particle swarm optimization procedure is implemented as follows: 

1) Determine the design variables constraints, which include the upper and lower bound of 
energy storage capacity, power rate, and operation strategy parameter. 

2) Initialize the first population of particles and their velocity by random generation within 
design variables constraints. 

3) Evaluation the predetermined objective values (i.e. reliability and economy) for each 
particle in the population. 

4) Select the personal best, pbest, through the personal best selection procedure described 
later. 

5) Select the global best, gbest, through the global best selection procedure described later. 

6) Update the member velocity v of each individual particle 

4.20 
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The parameters ω ,c1, and c2 (0<ω <1.2, 0< c1<2, 0< c2<2) are user-supplied coefficients. r1, and 
r2 (0< r1<1, 0< r2<1) are random values regenerated for each velocity update.vid(t) is the velocity 
of the dth design variable of the ith particle at time t. pbestid is the dth design variable of the ith 
particle’s personal best solution. gbestd is the dth design variable of the global best solution. N is 
the total number of particles. d is the number of design variables.  

7) Update the member position (design variable) of each particle 

4.21 d d di i i

N

= v

i = 1, , ; d = 1,2,3

x (t +1) x (t)+ (t +1),


 

8) Add turbulence factor into the current position. 
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where RT is a random value as the turbulence factor used to enhance the solution diversity. 

9) Check the feasibility of the design variables for each particle. If the design variables are 
out of the boundaries, the design variables are corrected to the nearest boundary values. 

10)  Increase the iteration by one. Stop the optimization and output Pareto front if the 
stopping criterion is reached (e.g. maximum number of iterations). Or go to step 3) to 
start another round of iteration. 

4.5.2 Personal Best and Global Best 

In step 4, personal best solution of a particle needs to be selected. This personal best selection 
procedure is implemented as follows. For each particle, there is a memory space for storing only 
one personal best solution. Thus N particles correspond to N personal best solutions. In the first 
iteration, each personal best memory is empty and then is filled in with the corresponding 
particle from the first population. After the first iteration, the personal best memory is not empty. 
Each personal best is then compared with the newly updated particle. If the newly updated 
particle is not dominated by the personal best in the memory, the newly updated particle replaces 
the personal best in the memory. And then used as the pbest for updating velocity. 

In step 5, global best solution of the population needs to be selected. The procedure is as follows. 
First, an initial size of the global best solutions archive is determined. This global best archive is 
used to store all the non-dominated solutions from the population. For each iteration, the 
personal best solution for each particle is added to the global best archive if any of the following 
criterions is met: 1) The archive is empty; 2) The personal best is not dominated by any solution 
in the archive. After adding all the personal best solutions meeting the previous criterions, the 
solutions in the global best archive is checked to eliminate any solution which is dominated by 
any other solution. This process is to maintain that all the solutions in the global best archive are 
non-dominated. The initial size of the global best archive is increased if more qualified solutions 
are to be added. After updating the global best archive, a solution in the archive is randomly 
selected as the gbest for updating velocity. When the iteration process is stopped, the solutions in 
the global best archive are outputted to provide the Pareto front for decision makers. 

4.6 Case Studies 

The proposed methodology is applied to the energy storage design problem in a modified 
practical distribution system, shown in Figure 34, where energy storage is integrated in segment 
2. The objectives considered in this case study are ENNS as the reliability index, and the total 
annual cost as the economy index, which is the sum of the annual energy purchasing cost and 
energy storage cost. IEEE-RTS load profile is applied. Electric energy price profile is shown in 
Table 3.2. The price and load forecasts are assumed to be perfect. The impact of the imperfect 
forecasts is studied in [27]. The energy storage design constraints and parameters, distribution 
system parameters, and particle swarm optimization parameters are listed in 
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Table 4.1. 

 
Figure 4.2:  Modified practical radial distribution system with energy storage integrated in 

segment 2 
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Table 4.1:  Case Study Parameters[32] [33] 
Energy storage capacity 0 to 30MWh 
Energy storage power rate 0 to 4MW 
Energy storage operation parameter 0% to 100% 
Energy storage efficiency 90% 
Energy storage technology Sodium Sulfur 
Energy storage unit cost for power electronics ($/kW) 1000 
Energy storage unit cost for storage units ($/kWh) 500 
Energy storage fixed O&M cost ($/kW) 20 
Energy storage unit cost for balance of plant ($/kWh) 0 
Energy storage financing interest rate 5% 
Energy storage Lifetime (year) 5 
Energy storage replacement times of lifetime 0 
Distribution system peak load (MW) 8 
External supply: Mean Time To Failure (MTTF) (hours): 1440 
External supply: Mean Time To Repair (MTTR) (hours): 8 
Segment 1: Mean Time To Failure (MTTF) (hours): 720 
Segment 1: Mean Time To Repair (MTTR) (hours): 4 
Segment 1: Shared load percentage 50% 
Segment 2: Mean Time To Failure (MTTF) (hours): 720 
Segment 2: Mean Time To Repair (MTTR) (hours): 4 
Segment 2: Shared load percentage 50% 
PSO: ω  1 
PSO: c1, c2 1,1 
PSO: Rt [-0.02,0.02] 
PSO: Number of Particles 25 
PSO: Maximum number of iterations 100 

After implementing the proposed approach on the studied system, the Pareto front is generated 
and displayed in Figure 4.3.  
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Figure 4.3:  Pareto front with the tradeoff between EENS and total annual cost. 

With the Pareto front, the decision makers could have the knowledge of what level of reliability 
improvement and economic benefits can be achieved through energy storage optimal design. 
After the desired level of reliability and cost are determined, corresponding energy storage 
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capacity and power sizing, and operation strategy can be determined. Depending on the specific 
energy storage technology considered, if the energy storage capacities and power rates are only 
available at discrete level, the nearest discrete level of capacity and power could be chosen as the 
feasible design. A list of design examples is presented in Table 4.2. Design #1 to #10 are Pareto 
optimal designs selected from solutions shown in Figure 4.3. Design #11 is a dominated design 
for comparison.  

Table 4.2:  Energy Storage Design Solution Examples 
 Objectives Energy Storage Design 

# EENS 
(MWh/yr) Cost (M$/yr) Capacity 

(MWh) 
Power 
(MW) 

Operation 
Parameter 

1 610 3.41 0.00 0.00 - 
2 547 3.85 5.71 1.92 73% 
3 541 3.89 7.99 1.85 45% 
4 394 4.99 30.00 4.00 48% 
5 377 5.08 30.00 4.00 69% 
6 365 5.18 30.00 4.00 86% 
7 354 5.34 30.00 4.00 100% 
8 570 3.69 4.64 1.06 43% 
9 565 3.71 4.52 0.89 87% 
10 434 4.69 20.21 2.54 100% 
11 437 4.89 30 4.00 10% 

As shown in Table 4.2, one possible design (#1) is simply not having energy storage. In this way, 
cost is low due to no investment in energy storage, but the reliability is suffering. Design #2 and 
#3 give similar reliability and cost tradeoff, however the designs are quite different. Design #3 
has a much higher energy storage capacity. While design #2 has a much higher operation 
parameter, which means a larger portion of energy storage is operated with standby backup 
strategy. This result illustrates the importance of the matching of the energy storage design 
variables. Design #4, #5, #6, and #7 all choose the same highest energy storage capacity 
(30MWh) and power (4MW). However, the operation strategies are very different. The same 
energy storage operated with different strategies leads to very different reliability level and 
economic benefits. The energy storage capacity and power of Design #8 are higher than those of 
Design #9. Accordingly, the annual energy storage cost of Design #8 is higher than that of #9, 
which is part of the total cost. However, this does not necessarily mean the total cost of Design 
#8 is higher than Design #9. Design #8 utilizes a lower portion with standby backup operation 
strategy and a higher portion with MPC-based operation strategy, which reduces the energy 
purchasing cost. Because of the different operation strategies implemented, the total cost of 
Design #8 with more expensive energy storage is actually less than the total cost of Design #9. 
Design #11 is not a Pareto optimal design. Compared to Design #10, which is a Pareto optimal 
design, design #11 has a better energy storage capacity and power. But because #10 has a better 
matching of energy storage and operation strategy, both EENS and cost are less than those with 
design #11. These observations demonstrate the importance of operation strategy consideration 
when designing energy storage. 
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4.7 Summary 

The objectives of the movement toward the smart grid include making the power systems more 
reliable and economically efficient. The rapid development of the large scale energy storage 
technology, such as sodium sulfur batteries, makes it an excellent candidate in achieving the 
goals of the smart grid. This chapter presented a modified multi-objective particle swarm 
optimization approach to solve the energy storage design problem in distribution systems. A 
Pareto front is provided by the proposed approach for decision makers to determine the desired 
tradeoff between multiple objectives. Within the energy storage design variables, not only the 
conventionally considered energy storage capacity and power rate are included, but also the 
energy storage operation strategy. Three energy storage operation strategies are presented and 
their impacts on reliability and economy are illustrated. A case study is performed to 
demonstrate the effectiveness of the proposed approach. Insights based on the case study results 
are discussed.  

In this chapter, three energy storage operation strategies, which are standby backup strategy, 
MPC-based strategy and hybrid strategy, are presented. A parameter is proposed to represent the 
energy storage operation strategy in energy storage design process. The importance of energy 
storage operation strategy in reliability improvement and economic benefits is demonstrated. A 
modified multi-objective particle swarm optimization approach is proposed to solve the energy 
storage design problem which not only includes energy storage capacity and power rate, but also 
the operation strategy. The case study results demonstrate the effectiveness of the proposed 
approach in providing a Pareto front of the multi-objective optimization problem. Insights on the 
importance of the proper matching of the energy storage design variables and the impact of 
energy storage operation strategy are illustrated. 

5. Conclusions 

With the recent rapid development of energy storage technologies, expected large penetration of 
renewable energy, and the movement toward a more reliable and efficient smart grid, many 
technical challenges need to be solved. This part of the report focuses on the operation strategies, 
evaluation methods and optimization framework related to the integration of energy storage and 
renewable energy which could be utilized to make the electric grid more reliable and efficient. 
Several important topics in this research arena are investigated. 

• In the past, electric power systems have been basically operated on the basis of real-time 
balancing of supply and demand. With relatively more affordable large scale energy 
storage devices available, the conventional operation strategies should be revisited. In a 
market environment, a distribution system load aggregator with energy storage devices 
needs to understand how to optimally operate them. In Section 2, a method for 
determining the optimal scheduling and operation of a load aggregator with energy 
storage in power markets is presented. Load aggregators could use this method to 
minimize its energy purchasing cost in power markets. This method takes in the price and 
load forecasts as its input to determine what should be the optimal operation in the 
current period. With real-time updated forecasts, its operations are also adjusted to be 
optimal.  
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• The renewable energy penetration is increasing with the expectation to reach more than 
20% of the total generation. Energy storage could be utilized to facilitate the integration 
of renewable energy. A novel Model Predictive Control (MPC) based operation strategy 
is proposed to optimally coordinate the power supplies from renewable energy, energy 
storage and external grid in order to minimize energy purchasing cost. A reliability and 
economy evaluation framework integrated with the proposed operation strategies is also 
presented. Case studies demonstrate the relative benefits of the proposed operation 
strategies and also provide insights on how energy storage capacity, power limit and wind 
turbine generation capacity impact reliability and economy. 

• Utility scale energy storage devices are still a high cost investment. During the planning 
stage of energy storage installation and expansion, an optimization framework needs to 
be developed to determine the sizing of energy storage and its value to the power 
systems. A modified multi-objective particle swarm optimization approach is proposed to 
solve the energy storage design problem which not only includes energy storage capacity 
and power rate, but also the operation strategy. The case study results demonstrate the 
effectiveness of the proposed approach in providing a Pareto front of the multi-objective 
optimization problem. Insights on the importance of the proper matching of the energy 
storage design variables and the impact of energy storage operation strategy are 
illustrated.  

The proposed MPC-based operation strategy and hybrid operation strategy utilize renewable 
energy forecast, electric energy price forecast, and load forecast. The accuracy of these forecasts 
is important to the effectiveness of these strategies. With the development of the more accurate 
forecast techniques and algorithms, these operation strategies could be more beneficial to the 
power systems. Meanwhile, large scale stochastic optimization methods could be utilized to deal 
with the forecast uncertainties. The proposed energy storage sizing and operation strategy 
optimization framework needs to perform reliability and economy evaluation based on Monte 
Carlo Simulation. More efficient and accurate reliability and economy evaluation methods could 
in turn improve the efficiency of the optimization process. In order to cover the high investment 
cost, more revenue streams and benefits besides energy purchasing cost savings and reliability 
improvement needs to be investigated. The possible applications include frequency regulation, 
spinning reserve and transmission congestion relief, etc. These applications could be included in 
the proposed multi-objective particle swarm optimization framework to evaluate the investment 
and determine the energy storage sizing and operation strategy. With the understanding of the 
reliability impact on the transmission systems brought by the energy storage and renewable 
energy integrated in the distribution systems, system operators could more efficiently plan for the 
future demand growth with the utilization of these resources.  
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Chapter 1

Introduction

It has been acknowledged that distributed energy resources (DERs) have the potential to
provide ancillary services to power systems at the distribution level [1], [2], [3]. One example
is using inverter-interfaced DERs, e.g., photovoltaic (PV) systems or motor drives with
active rectifier inputs, to provide reactive power support. Although the primary function of
these power electronics-based systems is to provide active power, many of them are capable
of producing reactive power if appropriately controlled [4]. Another example is utilizing
distributed storage resources (DSRs) such as plug-in hybrid electric vehicles (PHEV) or
uninterruptible power supplies (UPS) to control active power for up and down regulation.
Such resources could provide energy peak-shaving during hours of high demand and load
leveling when demand is low [5], or could be utilized to provide frequency regulation.

Generally speaking, in order for DERs to provide these ancillary services to electric grids,
however, appropriate control and coordination mechanisms need to be developed. One po-
tential control architecture relies on a centralized strategy in which each DER is coordinated
through direct communication with a central decision maker. An alternative approach is to
remove the central decision maker and coordinate the DERs in a distributed fashion. Using
the latter control architecture to solve the resource coordination problem as it applies to the
control of distributed storage resources will be the primary focus of this report. Specifically,
we develop and implement several algorithms that solve the problem.

Specifically, given a set of DSRs that are each capable of providing energy over a given
period of time, the objective of the resource coordination problem is to utilize a communi-
cation network to allow these components to exchange information with neighboring DSRs
in order to collectively provide a certain amount of energy that is known by a leader. It
is assumed that the leading DSR can only communicate with a limited number of other
devices in the system and may not necessarily be aware of the total number of DSRs avail-
able. Furthermore, the leader does not provide any energy, but rather initiates a request
for energy by dividing the total energy demand equally among all neighboring components;
however, a leading component is not required, as a variation of the initialization procedure
could be used in which any DSR could initiate the request for energy. To address component
limitations, upper and lower bounds on the amount of energy each component can provide
over some period of time are considered when solving the resource coordination problem in
order to find a feasible solution.

In the experimental setup described in this report, each DSR is outfitted with a wireless
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transceiver to create a communication network that can be thought of as a stationary, yet
unplanned, ad-hoc network. An iterative process is used to exchange information among
DSRs such that they collectively meet the demand for energy. At the end of the iterative
process, the power output of each DSR is computed based upon the result of the algorithm
and the capacity constraints of the respective DSR.

The intention of this report is to develop and demonstrate distributed algorithms that are
suitable for coordinating DSRs without the need for a centralized controller. Specifically, the
purpose of this work is to document the development and application of a hardware testbed
that implements the algorithms proposed in [6], [7], [8]. The remainder of this report is
organized as follows.

Chapter 2 begins by providing a model to describe the communication between DSRs and
provides a precise problem definition. Next, a distributed algorithm is formulated that serves
to iteratively disperse energy demand among a set of DSRs with no limits on the amount of
energy they can provide. The unconstrained algorithm is extended to account for upper and
lower capacity constraints, and it is shown how the result of this algorithm can be used by
each DSR to independently determine when the collective capacity of the system has been
reached. The constrained algorithm is then adapted to create the robust algorithm which
converges despite imperfect communication links.

Chapter 3 discusses the development of a hardware testbed created to implement the
algorithms presented in Chapter 2. The testbed is based upon Arduino Mega microcontroller
boards equipped with XBee modules executing software that realizes each of the proposed
distributed algorithms.

Chapter 4 presents results which demonstrate the convergence of each algorithm running
on the hardware testbed. To conclude, we illustrate a case in which the constrained algorithm
is adapted to evenly split demand among all DSRs and demonstrate the ability for each node
to independently determine feasibility.

Chapter 5 provides some concluding remarks and discusses future work.

2



Chapter 2

Algorithm Formulation

In this chapter we formulate three algorithms that are suitable for controlling a set of dis-
tributed storage resources (DSRs) without relying on a centralized controller. We begin
by developing a model to represent the communication network linking resources that will
be used to facilitate analysis and development of the algorithms. Next, we formulate and
analyze the convergence of an unconstrained algorithm. We then extend the unconstrained
algorithm to account for individual capacity constraints. Finally, the constrained algorithm
is adapted to be more resilient to imperfect communication links.

2.1 Communication Model

Let G be a directed graph describing the communication network in system of DSRs capable
of exchanging packetized information via wireless links. Define V := V (G) to be the set of
vertices with each vertex corresponding to a DSR and E := E(G) to be the set of directed
edges with each edge corresponding to a communication link between a pair of DSRs. The
exchange of information between two DSRs i and j need not be bidirectional; thus, the
ordered pair (i, j) ∈ E if and only if DSR i can receive information from DSR j. For each
DSR i ∈ V , we define the set of DSRs from which i can receive information to be the in-
neighborhood of i, i.e., N−i := {j ∈ V : (i, j) ∈ E}. Similarly, we define the out-neighborhood
of i to be the set of DSRs that can receive information from i, i.e., N+

i := {j ∈ V : (j, i) ∈ E},
and we denote the cardinality of the out-neighborhood by D+

i := |N+
i |. We allow all vertices

to have self loops, i.e., (i, i) ∈ E , ∀i ∈ V ; thus, each DSR is included in both its own in- and
out-neighborhood. For the algorithms formulated in the following sections, it is assumed
that the graph G is strongly connected; that is, for each ordered pair of vertices i, j there is
a path from i to j [9].

2.2 Problem Definition

Consider a set of n+ 1 DSRs as described by the aforementioned communication model, i.e.,
|V| = n + 1, and assume that there exists one leader that knows the total system energy
demand, ρrd, over a given period of time ∆, where r = 1, 2, . . . indexes the interval over
which the energy demand is specified. Let xri be the energy provided by DSR i over period
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∆ at interval r, where the leader node is indexed by 0 and provides no energy, i.e., xr0 = 0,
and define ρr :=

∑n
i=1 x

r
i to be the total energy output of the set of DSRs during the same

period and interval. Furthermore, define l := D+
0 to be the out-degree of the leading DSR,

with l ≥ 2 since G is strongly connected. Given a demand for energy ρrd during interval
r, the objective of this work is to design and implement a set of algorithms which serve to
coordinate a set of DSRs such that they collectively meet the demand for energy without a
centralized controller. In particular, the algorithms should serve to drive the collective energy
output of the DSRs to meet the energy demand, i.e., ρr → ρrd. Throughout the remainder of
this chapter, we develop three algorithms that can used to implement the above-described
objective.

2.3 Unconstrained Algorithm

The case when each DSR has an unlimited amount of energy available is considered first.
Despite being unrealistic, the formulation of an unconstrained algorithm will provide the
basis for developing an algorithm that can account for individual DSR limitations.

Without constraints, a trivial method for meeting the demand for energy is to have each
DSR in the out-neighborhood of the leader adjust its energy output during interval r to be
ρrd
l

while the remaining n − l DSRs provide no energy. For the case when the capacity of
each DSR is limited, however, this method would be infeasible if the energy demand lies
outside the collective bounds of the l DSRs in the out-neighborhood of the leader. In order
to provide a more adaptable solution, a distributed iterative algorithm is formulated which,
after m iterations, divides the total demand among all n DSRs.

2.3.1 Algorithm Description

Each DSR participating in the distributed algorithm maintains an internal state variable
that is updated at each iteration. Let k = 0, 1, . . . , index the iterations, and let πi[k] be
the value of the internal state variable of DSR i at round k, where πi[0] = ρrd/l if i is in
the out-neighborhood of the leader, and πi[0] = 0 otherwise. For convenience, we define
θ[k] :=

∑n
i=1 πi[k], ∀k.

One method that can be used to distribute the energy demand throughout the system is
to have each DSR update its state at each iteration to be a linear combination of its current
state and the states of the DSRs in its in-neighborhood. That is, DSR i updates the value
of its state variable to be

πi[k + 1] = piiπi[k] +
∑
j∈N−

i
i6=j

pijπj[k], (2.1)

where pii is the self-weight of DSR i and pij is outgoing-weight of DSR j, ∀i ∈ V , and
∀j ∈ N−i , j 6= i. After performing m iterations DSR i adjusts its output to be xri = πi[m]
and, for the algorithm to be effective, the energy provided during interval r should meet the
demand, that is, ρr = ρrd.
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After some analysis, we will see that a carefully chosen set of weights will take advan-
tage of the distributed nature of the system while ensuring that the algorithm meets the
aforementioned objective. To find appropriate weights, we first write (2.1) in matrix form as

π[k + 1] = Pπ[k],

π[0] = π0,
(2.2)

where π0 =
[
π1[0], π2[0], . . . , πi[0], . . . , πn[0]

]T
, with πi[0] = ρrd/l if the leader is an in-neighbor

of i and πi[0] = 0 otherwise, and the matrix P is of the form

P =



p11 p12 · · · p1i · · · p1n
p21 p22 · · · p2i · · · p2n
...

...
. . .

...
...

pi1 pi2 · · · pii · · · pin
...

...
...

. . .
...

pn1 pn2 · · · pni · · · pnn


, (2.3)

where pij = 0 if and only if (i, j) /∈ E .
In a distributed system where individual components have only local knowledge of the

network, component i is limited to choosing its self-weight, pii, ∀i ∈ V , and outgoing-
weights, pji, ∀j ∈ N+

i , j 6= i, which correspond to the columns of P . Furthermore, since
the initial states of algorithm (2.1) are chosen such that θ[0] = ρrd, and since the objective
is for the demand to be distributed among all n DSRs after m iterations, i.e., θ[m] = ρrd,
it is sufficient for each DSR to choose weights such that the sum of internal states remains
constant throughout the iterative process. If the weights are chosen in such a way that the
matrix P is column stochastic, i.e., each entry is nonnegative and the columns sum to one,
we will see that the sum of the entries of the vector π[k] will remain constant for all k.

A simple choice that maintains column stochasticity of P is for each DSR to set its self-
and outgoing-weights to be the reciprocal of its out-degree, i.e., pii = pji = 1

D+
i

, ∀i ∈ V and

∀j ∈ N+
i , j 6= i. Thus DSR i will update its state according to

πi[k + 1] =
∑
j∈N−

i

1

D+
j

πj[k], (2.4)

and adjust its output to be xri = πi[m] after performing m iterations. Given this choice of
weights, it should be noted that the algorithm in (2.4) does not necessarily split the total
generation energy evenly.

2.3.2 Convergence Analysis

By rewriting the algorithm in (2.4) in matrix form according to (2.2), we use the character-
istics of the matrix P to prove that θ[k] remains constant at every iteration k. Furthermore,
we prove that the algorithm ensures the overall energy demand is met, i.e., θ[m] = ρrd, and
that the solution obtained is unique.
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In addition to being column stochastic by design, P is also primitive since the underlying
connectivity graph is assumed to be strongly connected and at least one of its diagonal
entries is nonzero [10]. Given a column stochastic primitive matrix, the Perron-Frobenius
theorem for nonnegative matrices (see, e.g., [10]) states that the matrix will have a unique
eigenvalue with largest modulus at λ1 = 1.

Let v and w be the right and left eigenvectors of P associated with λ1, respectively,
normalized such that vTw = 1. Given that P is column stochastic, all the entries of the
vector w must be equal. Without loss of generality, let w be the vector of all ones, i.e.,

w =
[
1, 1, . . . , 1

]T
, and given that vTw = 1, the entries of v must sum to one. Define

πr =
[
πr1, π

r
2, . . . , π

r
i , . . . , π

r
n

]T
, where πri is the steady-state solution of (2.4) for the rth

interval. Then by the Perron-Frobenius theorem, we have that limk→∞ P
k = vwT and the

vector of steady-state solutions is given by

πr = vwTπ0 =

(
n∑
i=1

πi[0]

)
v. (2.5)

Since the entries of v are nonnegative and add up to one and
∑n

i=1 πi[0] = ρrd, it follows
that the entries of the steady-state solution are nonnegative and sum to ρrd. Although this
proof implies that an infinite number of iterations are required to reach the steady-state
solution, experimental results have shown that a finite number of iterations are adequate for
convergence to a sufficiently accurate solution, thus the proposed algorithm can be used as
a practical method for distributively allocating DSRs [6].

2.4 Constrained Algorithm

Any physically realizable network comprised of DSRs will necessarily have limits on energy
capacity. Upper bounds on capacity are the most familiar—a battery is only capable of
providing power for a finite period of time—but it may also be necessary to enforce lower
bounds due to operational or device limitations. Thus, to develop an algorithm that is useful
in practical systems, the unconstrained algorithm in (2.4) is extended to account for both
constraints.

2.4.1 Algorithm Description

Let xri and xri for i = 1, 2, . . . , n, be the minimum and maximum energy DSR i can provide
during interval r and define the corresponding capacity vectors as

xr =
[
xr1, x

r
2, . . . , x

r
n

]T
, (2.6)

xr =
[
xr1, x

r
2, . . . , x

r
n

]T
, (2.7)

respectively. Define the collective lower and upper capacity limits of the DSRs during interval
r to be χr =

∑n
i=1 x

r
i , and χr =

∑n
i=1 x

r
i . As in the unconstrained case, the total amount

of energy demand in the system during interval r is ρrd and the total output of the DSRs
during the same period is ρr =

∑n
i=1 x

r
i . It is assumed that the collective capacity of the
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DSRs is sufficient to meet demand, i.e., χr ≤ ρrd ≤ χr, and that power rating of each DSR is
adequate to provide the demanded energy during period ∆, i.e., p

i
≤ xri/∆ ≤ pi, where p

i
and pi are the minimum and maximum power ratings of DSR i, respectively.

Instead of maintaining a single state variable, DSRs participating in the constrained dis-
tributed algorithm maintain two variables, each with different initial conditions that are
linear combinations of the capacity constraints. Let µi[k] and σi[k] be the state variables
maintained by DSR i at iteration k, where µi[0] = ρrd/l − xri if the leader is an in-neighbor
of i and µi[0] = −xri otherwise, and σi[0] = xri − xri , ∀i ∈ V . The algorithm given in (2.4) is
used to update the state variables of DSR i as

µi[k + 1] =
∑
j∈N−

i

1

D+
j

µj[k], (2.8)

σi[k + 1] =
∑
j∈N−

i

1

D+
j

σj[k]. (2.9)

After m iterations, DSR i computes its output for interval r to be

xri = xri +
µi[m]

σi[m]
(xri − xri ), (2.10)

and we have that ρr = ρrd and xri ≤ xri ≤ xri , ∀i ∈ V .

2.4.2 Convergence Analysis

To prove that the constrained algorithm coordinates the DSRs to meet the overall demand
without violating individual constraints, we first rewrite (2.8) and (2.9) in matrix form as

µ[k + 1] = Pµ0,

σ[k + 1] = Pσ0,
(2.11)

with P as defined in the formulation of the unconstrained algorithm and where the initial
vectors µ0 and σ0 are given as

µ0 =
[
µ1[0], µ2[0], . . . , µi[0], . . . , µn[0]

]T
,

σ0 =
[
σ1[0], σ2[0], . . . , σi[0], . . . , σn[0]

]T
,

(2.12)

with µi[0] and σi[0] as defined above.
From the proof of the unconstrained algorithm, it follows that the steady-state solutions

of the iterations in (2.11) are given by

µss = vwTµ0 =

(
n∑
i=1

(πi[0]− xri )

)
v

=

(
ρrd −

n∑
i=1

xri

)
v,

σss = vwTσ0 =

(
n∑
i=1

(xri − xri )

)
v,

(2.13)

7



where πi[0] = ρrd/l if the leader is an in-neighbor of i and πi[0] = 0 otherwise. Combining
(2.10) and (2.13), the output of DSR i is given as

xri = lim
k→∞

(
xri +

µi[k]

σi[k]
(xri − xri )

)
= xri +

µri
σri

(xri − xri ),
(2.14)

where the ratio of the steady-state solutions for interval r is defined to be

αri :=
µri
σri

=
ρrd −

∑n
i=1 x

r
i∑n

i=1(x
r
i − xri )

. (2.15)

After the algorithm has converged, αri ∈ [0, 1], ∀i ∈ V , if the overall energy demand can be
met by the system, i.e., χr ≤ ρrd ≤ χr. Thus, if the value of αri /∈ [0, 1], DSR i can determine
that the collective capacity of the system is insufficient to meet demand during interval r.

Similar to the proof of the unconstrained algorithm, this proof implies that an infinite
number of iterations are required to converge to the steady-state solution. The results
presented in the next section, however, illustrate that convergence to a sufficiently accurate
solution can be reached for a small network of DSRs in as few as 10 iterations.

2.5 Robust Algorithm with Constraints

Throughout the derivation of the previous two algorithms, it was implicitly assumed that the
communication links used to exchange information between DSRs were completely reliable.
In an uncontrolled environment, however, conditions such as temperature and humidity
as well as obstructions between DSRs can negatively affect link availability. To provide
an algorithm that can be useful in systems subject to such non-idealities, the constrained
algorithm is extended to be resilient to packet loss.

2.5.1 Communication Model Modifications

Before the algorithm described by (2.8) and (2.9) can be made more robust, the graph
modeling the exchange of information between DSRs needs to be modified to account for the
possibility that communication links may not be available at every iteration. In this case,
the graph is a function of the iteration index k, and is denoted G[k], where V = V (G[k]) is
independent of k, and E [k] = E(G[k]) is the set of edges where (i, j) ∈ E [k] if DSR i can
receive information from DSR j at iteration k. It is assumed that E [k] ⊆ E , ∀k ≥ 0, where E
is the set of available edges given completely reliable communication links. Furthermore, it is
assumed that each DSR determines the size of its out-neighborhood during an initialization
procedure that is perfectly reliable.

If the packets used to exchange information for the distributed algorithm are broadcasted
and no acknowledgments are sent, each DSR assumes that all transmitted information is
successfully delivered to the intended receiving DSR(s). However, if DSR i attempts to send
its weighted values to DSR j at iteration k and (j, i) /∈ E [k], this assumption is invalid
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and the information intended for DSR j is lost. In order to mitigate the effects of packet
loss without increasing the number of packets exchanged at each iteration, we modify the
distributed algorithm with constraints to allow the DSRs to collectively meet the overall
demand regardless of communication link availability.

2.5.2 Algorithm Description

One method that can be used to recover information lost due to dropped packets is for each
DSR to broadcast the sum of its weighted values up to and including the current iteration k
as proposed in [8]. In the case where no packets are lost, the weighted values received from
the in-neighbors of a DSR can be inferred at each iteration k, and the proposed method
is effectively the same as the constrained algorithm presented above. If packets are lost,
however, the algorithm seamlessly recovers any lost information.

At each iteration k, DSR i broadcasts two values that are linear combinations of its internal
state maintained throughout the iterative process. Let yi[k] and zi[k] be the values of the
internal states maintained by DSR i at iteration k and let µi[k] and σi[k] be the values
broadcasted to all out-neighbors of DSR i at iteration k. The value of µi[k] is simply the
sum of yi[k]/D+

i since the iterative process began and is given as

µi[k] = µi[k − 1] +
1

D+
i

yi[k] =
k∑
s=0

1

D+
i

yi[s]. (2.16)

Similarly, the value of σi[k] is the sum of zi[k]/D+
i up to and including the current iteration

k and is given as

σi[k] = σi[k − 1] +
1

D+
i

zi[k] =
k∑
s=0

1

D+
i

zi[s]. (2.17)

At each iteration, DSR i will update the value of its state variables as

yi[k + 1] =
1

D+
i

yi[k] +
∑
j∈N−

i
i6=j

(νij[k]− νij[k − 1]),

zi[k + 1] =
1

D+
i

zi[k] +
∑
j∈N−

i
i6=j

(τij[k]− τij[k − 1]),
(2.18)

where the values of νij[k] and τij[k] depend on the successful receipt of a packet from DSR
j during iteration k and are given as

νij[k] =

{
µj[k], if (i, j) ∈ E [k],

νij[k − 1], if (i, j) /∈ E [k],

τij[k] =

{
σj[k], if (i, j) ∈ E [k],

τij[k − 1], if (i, j) /∈ E [k].

(2.19)
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The initial values of the state variables are yi[0] = ρrd−xri if i is an out-neighbor of the leader
and yi[0] = −xri otherwise, and zi[0] = xri −xri > 0, ∀i ∈ V ; whereas the initial conditions for
the broadcasted values are set to µi[0] = yi[0]/D+

i and σi[0] = zi[0]/D+
i . After m iterations,

for large m, DSR i computes its output as

xri = xri +
yi[m]

zi[m]
(xri − xri ), (2.20)

and we have that ρr = ρrd and xri ≤ xri ≤ xri , ∀i ∈ V (for a proof see [8]). Similar to the
basic algorithm with constraints, we define the ratio of the values of the internal states after
m iterations as found by DSR i to be

αri :=
yi[m]

zi[m]
. (2.21)

Thus, DSRs participating in the robust algorithm with constraints can independently deter-
mine if the collective capacity of the system is sufficient to meet the overall energy demand
if αri ≥ 0 and αri ≤ 1

In order to compute the values in (2.19), each DSR needs to keep the most recent set of
values received from the DSRs in its in-neighborhood and thus needs to know the source of all
packets received. To accommodate this, each DSR creates a list of addresses corresponding to
the DSRs in its in-neighborhood during initialization that will remain unchanged throughout
the iterative process. Furthermore, when DSR i broadcasts its values µi[k] and σi[k], it also
includes its address in the packet.
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Chapter 3

Hardware Implementation

This chapter describes a hardware testbed created to implement the algorithms formulated
in the previous chapter. The testbed is centered around nodes with embedded processors ca-
pable of wirelessly exchanging information with other nearby nodes. The nodes are designed
to be independent of the DSRs, enabling the testbed to be portable to various applica-
tions. Throughout the remainder of the chapter, the hardware chosen is described while the
software used to implement the algorithms is explained.

3.1 Communication Hardware Platform

In this section, we describe the hardware chosen to create the testbed and provide a brief
overview of the software used to exchange information between devices and to implement
the algorithms.

3.1.1 Node Hardware

The hardware testbed is based around Arduino, an open-source electronics prototyping plat-
form. Arduino was chosen for its flexibility and ease of use as well as for the numerous
software libraries and extension circuit boards, called shields, that are available [11].

Each node in the testbed contains an Arduino Mega 2560 [12] microcontroller (µC) board
which is based on the AVR ATmega2560 [13]. The Arduino board, shown in Fig. 3.1a, pro-
vides access to the digital I/O and analog input ports on the µC and contains a USB connec-
tion for flashing and powering the device. The ATmega2560 µC has 256 kB of flash memory
and a clock speed of 16 MHz as well as four universal asynchronous receiver/transmitter
(UART) ports that enable it to communicate with several devices independently.

In order to enable the nodes to exchange information wirelessly, each Arduino Mega is
connected to a MaxStream XB24-DMCIT-250 revB XBee module [14] via a SparkFun Elec-
tronics XBee shield [15]. The XBee shield, shown in Fig. 3.1b, serves as an interface between
the Arduino board and the XBee module while providing the requisite 3.3 V power supply
via a voltage regulator. Furthermore, each shield is modified to allow the Arduino board
to communicate with a computer via USB and the XBee independently. The XBee, shown
in Fig. 3.1c, is an embedded RF module operating at 2.4 GHz that utilizes a built-in chip
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(a) Arduino Mega 2560 (b) SparkFun XBee Shield (c) MaxStream XBee
Module

Figure 3.1: Hardware

antenna and requires only a single connection to the µC via one of the UART ports.

3.1.2 Software Setup

To facilitate the exchange of values for the distributed algorithms, each XBee module is put
into API mode (AP=2 with escapes), and the three-layered communication protocol stack
shown in Fig. 3.2 is implemented. The lowest layer of the stack is based on the ZigBee
(IEEE 802.15.4) protocol [16], and is contained entirely on the XBee modules. The middle
layer consists of a modified version of the xbee-arduino API [17]. The modifications allow
wired communication between the nodes and a computer to continue uninterrupted while the
nodes exchange information wirelessly. Additionally, the API was altered to enable incoming
and outgoing messages to be time-stamped immediately upon receipt and just before being
sent to increase the accuracy of the time synchronization mechanism discussed in the next
section. The header of the top layer contains information about the distributed algorithm
being used while the payload holds the values exchanged during the iterative process.

All of the software created for implementing the distributed algorithms on the nodes
is written in C++. Furthermore, an object-oriented approach is taken where possible to
encourage code reuse and to simplify the initialization of the algorithms. The Arduino
software environment is used to program the µCs and for monitoring the serial port to
gather data.

3.2 Distributed Algorithm Implementation

In order to take advantage of the wireless medium used for communication among nodes, all
of the packets used to exchange values are broadcasted; that is, packets are not addressed
to a particular node. Furthermore, to minimize network traffic, no acknowledgements are
sent upon successful receipt of packets. To create a partially connected network despite the
close proximity of the nodes during testing, each µC is programmed to only accept messages
received from nodes in its in-neighborhood. In a more realistic setup, however, the testbed
could be adapted to allow the availability of links between nodes to be based upon signal
strength.

Throughout the formulation of the algorithms in the previous chapter, we assumed that all
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Figure 3.2: Communication protocol stack

participating DSRs update the value of their state variables in unison; i.e., DSR i updates
its state at iteration k at the same time DSR j updates its state, ∀i, j ∈ V . Without a
common time reference and with no acknowledgements, however, it is possible for the DSRs
to update their states at different times which could cause the DSRs to converge to the
wrong solution or possibly diverge. Thus, to ensure convergence to the correct solution, all
nodes are synchronized to a common reference before initializing the distributed algorithm.

The synchronization mechanism used in the hardware testbed is based on the hierarchy
referencing time synchronization (HRTS) protocol proposed in [18]. This protocol requires
very little overhead and is capable of synchronizing the clocks of several nodes to the clock of a
reference node using only three packets. As mentioned previously, given the close proximity
of the nodes during testing, the graph representing the communication structure in the
network is completely connected; thus, in order to simplify the process, no communication
restrictions are placed on the nodes during synchronization.

To initiate the time synchronization process, the reference node (e.g. the leader node)
broadcasts a sync_begin packet at time t1, specifying a target node from its out-neighborhood
chosen randomly. The target node then responds using a unicast packet that contains the
time the sync_begin packet was received, t2, and the time the response packet was sent, t3.
All other nodes interested in synchronizing to the reference node record the local time at
which the sync_begin packet was received, t′2, but do not respond. At time t4, the reference
node receives the response packet from the target node and thus owns all of the timestamps
required to determine the offset between its local clock and the local clock of the target node.
Assuming negligible propagation delay, the reference node computes the offset as

d =
(t2 − t1)− (t4 − t3)

2
(3.1)

and broadcasts it in a final packet also containing t2. At this point, the target node can
complete the synchronization process by adjusting its clock to be T = t + d, where t is the
local clock reading before synchronization. The timestamp t2 included in the final packet
from the reference node is used by all other nodes to estimate the offset between their local
clocks and the local clock of the target node as d′ = t2 − t′2. Using this estimate, the
remaining nodes can now adjust their clocks to be T = t + d + d′, where t is the local
clock of the respective node before synchronization. In the testbed, rather than adjust the
clocks of synchronized nodes, a function extending the low-level clock timer0_millis is used
which adds the offset found using HRTS to the local time, providing a clock that is common
throughout the network.
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Procedure 1: General distributed algorithm

Input: iteration period, number of iterations, initial command, (optional) constraints
Output: new resource command

begin
generate random transmit time;
foreach iteration do

begin timer;
while timer < iteration period do

look for incoming packet;
if packet available then

if sender ∈ in-neighborhood then
store incoming value(s);

if transmit time = time elapsed then
broadcast current value(s);

compute next value;

compute final command;

As mentioned above, the computation of the clock offset between nodes in the HRTS
protocol assumes there is negligible communication delay. Thus packets exchanged during
the synchronization process should be time stamped at the lowest possible protocol layer to
reduce error resulting from data propagating up the protocol stack. In the testbed, however,
the bottom layer of the stack cannot be modified, so all time stamps are generated at the
middle protocol layer. Given this configuration, the delay present in the system results in
a worst case clock error on the order of 10 ms. To mitigate the effects of this error on the
distributed algorithms, the nodes are restricted from transmitting data for a period of time
which exceeds the clock error during the beginning and end of each iteration.

After synchronizing the clocks of all of the nodes in the network, the distributed algorithm
begins. The number of iterations, m, and the period of each iteration is known by all of the
nodes a priori to ensure that synchronism is maintained throughout the iterative process.
The function in Procedure 1 outlines the basic routine executed at each node participating in
the distributed algorithm. The required arguments of this function are the initial value, the
iteration period and the number of iterations to be performed while resource constraints can
be passed as optional arguments. Although the ZigBee protocol seeks to minimize packet
collisions at the lowest layer of the protocol stack, the nodes attempt to avoid collisions by
broadcasting their values at randomly chosen times within the iteration period.

14



Chapter 4

Experimental Results

In this chapter, experimental results generated from the unconstrained, constrained and ro-
bust algorithms as implemented on the hardware testbed are presented. Throughout this
chapter, the inputs and outputs of the algorithms are in units of per unit energy. Further-
more, the terms node and DSR are used interchangeably.

4.1 Unconstrained Algorithm

The hardware testbed is used to implement the unconstrained algorithm on the 4-node
network with leader depicted by the graph in Fig. 4.1. For this experiment, the leader node
is indexed by 0 and the energy demand is ρrd = 1. The leader is an in-neighbor of DSRs 1 and
2, thus, π1[0], π2[0] = ρrd/l = 1

2
, π3[0], π4[0] = 0 and the nodes update their values according

to algorithm (2.4) as

π1[k + 1] =
1

3
(π1[k] + π2[k] + π3[k]),

π2[k + 1] =
1

3
(π1[k] + π2[k]) +

1

2
π4[k],

π3[k + 1] =
1

3
(π1[k] + π3[k]),

π4[k + 1] =
1

3
(π2[k] + π3[k]) +

1

2
π4[k].

(4.1)

Equation (4.1) can be written in matrix form according to (2.2), where π[0] =
[
1
2
, 1
2
, 0, 0

]T
and

P =


1/3 1/3 1/3 0
1/3 1/3 0 1/2
1/3 0 1/3 0
0 1/3 1/3 1/2

 . (4.2)

The evolution of the values of π[k] computed at each node is plotted in Fig. 4.2. From the
plot, it can be seen that the nodes converge to their steady-state values in approximately
8 iterations. For this experiment, the nodes are programmed to perform 14 iterations; thus
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Figure 4.1: Graph of 4-node network with leader
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Figure 4.2: Unconstrained results

the vector of final values corresponding to the amount of energy each DSR should provide

during interval r is given as xr = π[14] =
[
0.230, 0.345, 0.119, 0.306

]T
. Due to the directed

edge between nodes 3 and 4, this is an example where the DSRs do not equally split the
total energy demand among themselves.
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Figure 4.3: Evolution of the distributed algorithm for a network of 4 nodes with constraints

4.2 Constrained Algorithm Results

Similar to the unconstrained example, the 4-node network represented by the graph in Fig.
4.1 is constructed using the hardware testbed to evaluate the convergence of the constrained
algorithm. To illustrate the effects of link availability on convergence, we present a case in
which the constrained algorithm converges to the correct solution and a case in which it does
not.

4.2.1 Correct Convergence

In order to allow sufficient time for nodes to exchange information and compute their next
value, a period of 500 ms is apportioned for each iteration. Furthermore, nodes are restricted
from transmitting during the first and last 50 ms of each iteration to account for any syn-
chronization errors. As in the unconstrained example, the leader node is indexed by 0 and
the energy demand during interval r is chosen to be ρrd = 1. The lower and upper con-

straints are given by the vectors xr =
[
0.1, 0.05, 0.12, 0

]T
and xr =

[
0.35, 0.3, 0.26, 0.24

]T
,

respectively. To ensure a feasible solution, the individual limits are chosen such that the
total energy demanded from the DSRs lies within the bounds of the collective constraints,
that is, χr = 0.27 < ρrd < χr = 1.15.

Given the amount of energy demanded by the leader and the individual constraints, the
initial values for (2.8) and (2.9) are µ1[0] = 0.4, µ2[0] = 0.45, µ3[0] = −0.12, µ4[0] = 0 and
σ1[0] = σ2[0] = 0.25, σ3[0] = 0.14, σ4[0] = 0.24 and the constrained algorithm written in
matrix form is given as

µ[k + 1] = Pµ[k]

µ[0] =
[
0.4, 0.45,−0.12, 0

]T
σ[k + 1] = Pσ[k]

σ[0] =
[
0.25, 0.25, 0.14, 0.24

]T
,

(4.3)
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Figure 4.4: Incorrect evolution of the distributed algorithm for a network of 4 nodes with
constraints

where P is the matrix given in (4.2).
The evolution of the constrained distributed algorithm is shown in Fig 4.3. Although each

node i is not required to compute xri until the iterative process is complete, it is useful to
illustrate the evolution of the system. Thus the values of µi[k], σi[k] and xri [k] for i = 1, 2, 3, 4
are shown in the figure. The plots show that the nodes reach their steady-state values in
approximately 8 iterations, which given an iteration period of 500ms, requires around 4
seconds. As in the unconstrained case, the nodes are programmed to perform 14 iterations;
thus, the nodes compute the amount of energy each DSR should provide during interval r

according to (2.10) with m = 14 and we have that xr =
[
0.307, 0.257, 0.237, 0.199

]T
. If we

sum the energy provided by all the DSRs, we see that the collective output meets the overall
demand, i.e.,

∑4
i=1 x

r
i = 1 = ρrd, while no individual constraints are exceeded.

4.2.2 Incorrect Convergence

The iteration period was chosen conservatively in the previous experiment to reduce the
probability of packet collisions resulting from nodes broadcasting their values concurrently.
Moreover, nodes were restricted from transmitting information during the first and last 50
ms of each iteration to ensure that the algorithm would converge correctly despite synchro-
nization error. To illustrate the sensitivity to these parameters, the 4-node network is tested
again using a significantly smaller iteration period of 50 ms with no restrictions on broadcast
time.

Using the same initial conditions as in the previous example, the evolution of the values
maintained by the nodes is plotted in Fig. 4.4. From these plots it is evident that the
loss of packets induced by reducing the iteration period effectively removes the ability of
the algorithm to preserve the sum of the values maintained by the nodes, causing µ[k] and
σ[k] to quickly converge to zero. Although the values exchanged by the nodes approach
zero, the figure illustrates that the value of xr[k], computed as a function of the ratio of
µ[k] and σ[k], tends toward a nonzero steady-state solution. Running the algorithm for
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Figure 4.5: Graph of 6-node network with leader

99 iterations (only the first 15 are shown in the figure) results in a steady-state solution

of xr =
[
0.254, 0.204, 0.206, 0.147

]T
. The total energy provided by the DSRs is given as∑4

i=1 x
r
i = 0.811 6= ρd = 1. Thus there is a mismatch between the collective amount of

energy supplied and the total energy demand, and the algorithm is ineffective.

4.3 Robust Algorithm with Constraints Results

The 6-node network with leader node represented by the graph in Fig. 4.5 is created using
the hardware testbed to evaluate the robust algorithm with constraints. In order to induce
dropped packets, the iteration period is reduced to 40 ms and no restrictions are placed on
broadcast time.

For this experiment, the leader is indexed by 0 and the energy demand is chosen to be
ρrd = 1. Node 1 is the only DSR with the leader in its in-neighborhood, thus all of the energy
demand is passed to it initially. The minimum and maximum amount of energy each DSR
can provide during interval r are given, respectively, by

xr =
[
0.02, 0.1, 0.05, 0.08, 0.12, 0

]T
,

xr =
[
0.146, 0.208, 0.193, 0.167, 0.229, 0.159

]T
.

The collective lower and upper bounds are chosen to ensure the system is capable of meeting
the overall energy demand during interval r, i.e., χr = 0.37 < ρrd < χr = 1.102.

Using the energy demand and the constraints of each DSR, the initial values of the internal
states are given by the vectors

y[0] =
[
0.98,−0.1,−0.05,−0.08,−0.12, 0

]T
,

z[0] =
[
0.126, 0.108, 0.143, 0.087, 0.109, 0.159

]T
.

Furthermore, the matrix of weights used by the nodes is given by

P =


1/2 1/3 0 0 0 0
1/2 1/3 1/3 0 0 0
0 1/3 1/3 1/3 0 0
0 0 1/3 1/3 1/3 0
0 0 0 1/3 1/3 1/2
0 0 0 0 1/3 1/2

 .
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Figure 4.6: Evolution of robust constrained algorithm

The evolution of the internal states and the output of each DSR computed at each node
running the robust algorithm is shown in Fig. 4.6. The plots of the internal states y[k] and
z[k] show erratic behavior that does not appear to reach steady-state. Despite this, xr[k]
converges to a steady-state solution that meets the overall generation demand. After running
99 iterations, the generation output of each DSR is computed and given by the vector

xr =
[
0.128, 0.193, 0.173, 0.155, 0.214, 0.137

]T
.

If we sum the total amount of generation provided by the DSRs, we see that ρr = ρrd, while
none of the individual resource constraints are violated.

4.4 Determining Feasibility

As mentioned in Section 2.4.2, each node can independently determine if the collective ca-
pacity of the available DSRs is sufficient to meet the overall energy demand during interval
r. Specifically, after performing the specified number of iterations and computing αi accord-
ing to (2.15), each node can determine if the demand for energy is outside the collective
bounds of the DSRs if αi > 1 or αi < 0. By taking advantage of this property, it is pos-
sible, for instance, to designate a subset of DSRs as reserves which can participate in the
distributed algorithm with artificially restricted limits until determining that the capacity of
the remaining DSRs has been exceeded. To illustrate the ability of the individual nodes to
determine feasibility, we show results for a case in which the resource demand is within the
collective limit of the DSRs and one in which it is not. In both cases, the robust algorithm
with constraints is used to implement the 4-node network depicted by the graph in Fig. 4.1
and the total demand for energy is chosen to be ρrd = 1.

We first demonstrate the case in which the energy demand is within the collective bounds of
the DSRs. For this experiment, the leader node is indexed by 0, the energy demand is chosen
to be ρrd = 1. Let the minimum and maximum capacities of the nodes be given respectively by

xr =
[
0.15, 0, 0.15, 0.1

]T
and xr =

[
0.3, 0.15, 0.4, 0.25

]T
, such that χr = 0.4 ≤ ρrd ≤ χr = 1.1.
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Figure 4.7: Evolution of αr[k] for a 4-node system with feasible solution

Given the energy demand and the limits of the DSRs, the vectors of initial states are given

as y[0] =
[
0.35, 0.5,−0.15,−0.1

]T
, and z[0] =

[
0.15, 0.15, 0.25, 0.15

]T
.

The evolution of αri [k] for j = 1, 2, 3, 4 over 25 iterations is shown in Fig. 4.7. From the
figure, we see that after approximately 15 iterations, all nodes have converged to a solution
in which α = 0.857. Thus, the nodes determine the solution is feasible and compute the
amount of energy each DSR should provide during interval r according to (2.20), and we

have that xr =
[
0.279, 0.129, 0.364, 0.228

]T
.

We now demonstrate a case in which the collective capacity of the DSRs is insufficient to
meet the total demand for energy. Let the energy demand be the same as in the previous
case but adjust the minimum and maximum capacity of the nodes to be given respectively

by xr =
[
0.1, 0, 0.1, 0.1

]T
and xr =

[
0.25, 0.15, 0.3, 0.25

]T
, such that χr = 0.3 and χr =

0.95 < ρrd. Thus, the vectors of initial states are given as y[0] =
[
0.4, 0.5,−0.1,−0.1

]T
and

z[0] =
[
0.15, 0.15, 0.2, 0.1

]T
.

The evolution of αri [k] for the four nodes over 25 iterations is shown in Fig. 4.8. From this
figure, we see that after approximately 15 iterations, all nodes have converged to a solution
in which αr = 1.167. Thus, the nodes determine that the solution is infeasible and they
cannot adjust their output beyond their maximum capacities.

4.5 Even Splitting Algorithm

In the previous examples demonstrating algorithms that account for constraints, the output
of each DSR was computed such that the energy demand was distributed fairly among all
DSRs in the system. Specifically, as illustrated by (2.15), after the algorithm has converged,
each DSR i determines its generation output based upon its constraints and αri . Since αri is
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Figure 4.8: Evolution of αr[k] for a 4-node system with infeasible solution

the ratio of the total demand to the collective capacity of the system, the output of each DSR
is chosen to be proportional to the overall loading in the system relative to its constraints.
In the absence of constraints, however, the algorithm can be adapted such that the total
demand for energy is evenly divided among all DSRs in the system, i.e., xri = ρrd/n, ∀i.

To demonstrate a case in which the nodes split the overall demand evenly, the 7-node
network depicted by the graph in Fig. 4.9 is created using the hardware testbed and the
robust algorithm with constraints with xri = 0 and xri = 1, i = 1, . . . , 7. Unlike the previous
examples, there is no leading node. Rather, each DSR demands the values of energy given
by the the following vector [

0.2, 0.1, 0.05, 0.15, 0.25, 0.35, 0.5
]T
,

such that the total energy demand is ρd = 2.1 and the vectors of initial states are given as

y[0] =
[
0.7, 0.1, 0.05, 0.15, 0.25, 0.35, 0.5

]T
,

z[0] =
[
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

]T
.

Given the edges in the graph representing the communication network, the matrix of weights
is

P =



1/4 1/3 0 0 1/2 1/3 0
1/4 1/3 0 0 0 0 0
0 1/3 1/2 0 0 0 0

1/4 0 1/2 1/3 0 0 0
0 0 0 1/3 1/2 1/3 1/2

1/4 0 0 0 0 1/3 0
0 0 0 1/3 0 0 1/2


.
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Figure 4.9: Graph of 7-node network

The evolution of xr[k] for the seven nodes over 35 iterations is shown in Fig. 4.10. From the
figure, it can be seen that the nodes converge to a solution after approximately 30 iterations.
As expected, all DSRs split the total demand evenly and thus xri = 0.3 = ρd/7, i = 1, . . . , 7.
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Chapter 5

Concluding Remarks and Future
Work

5.1 Concluding Remarks

In this report, several algorithms suitable for controlling distributed storage resources with-
out the need for a centralized controller were proposed. We began by formulating an uncon-
strained algorithm that iteratively disperses the total energy demand among the DSRs and
analyzed its convergence. We then extended this algorithm to account for individual DSR
constraints and discussed how the result could be used by each DSR to ascertain the global
state of the system. Finally we adapted the constrained algorithm to be more resilient to
imperfect communication links. Each of the proposed algorithms was implemented using a
hardware testbed comprised of low complexity devices capable of performing simple com-
putations and exchanging information wirelessly with other nearby devices. Results were
presented illustrating the capabilities of the hardware testbed as well as the evolution of the
values computed at each iteration for the algorithms

All of the results presented herein were for systems comprised of relatively few DSRs.
Despite this, the algorithms are scalable, with only convergence speed being affected by the
total number of nodes participating (and the connectivity of the communication network
linking them). Furthermore, the application to distributed energy storage is just one of
many that would be well-suited for a distributed control architecture similar to the ones
proposed in this report. In fact, the algorithms discussed could be adapted for any class
of applications in which one wishes to coordinate a set of distributed agents such that they
collectively achieve a desired goal. Additionally, the algorithms could be used for applications
in which resiliency and self-healing are important since the distributed nature obviates the
need for a centralized controller with full knowledge of the network.

5.2 Future Work

One worthwhile future pursuit would be to account for both energy and power constraints.
In the formulation of the constrained algorithm, it was assumed that the power rating of each
DSR was sufficient to provide the amount of energy demanded over the specified period, i.e.,
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p
i
≤ xri/∆ ≤ pi. While this assumption is not unreasonable, it would be useful to account

for arbitrary combinations of power and energy constraints to accommodate several different
types of energy storage devices.

Another aspect we would like to address is the costs associated with each DSR. While we
demonstrated cases in which individual DSR constraints were accounted for, we neglected
the incremental costs associated with increasing or decreasing the output of the DSRs. Given
a quadratic cost function and upper and lower bounds on the energy output of each DSR, we
would like to find a solution that minimizes the total cost while meeting the total demand for
energy without violating DSR limits. That is, we would like to use a distributed algorithm
to find xri for i = 1, . . . , n, such that

minimize
n∑
i=1

(xi − αi)2

2βi

subject to
n∑
i=1

xri = ρrd

0 < xri ≤ xri ≤ xri , ∀i,

(5.1)

where αi ≤ 0 and βi > 0 are real numbers. To achieve this, we plan to expand our work
in [19] by implementing the proposed optimal solution utilizing the hardware testbed and
using it to optimally control the DSRs.
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