
Data Mining to Characterize Signatures
of Impending System Events

or Performance from PMU Measurements

Final Project Report

Power Systems Engineering Research Center

Empowering Minds to Engineer
the Future Electric Energy System



 

 

 

Data Mining to Characterize 

Signatures of Impending System 

Events or Performance from PMU 

Measurements 
 

 

 

Final Project Report 

 

 

 

Project Team 

 

Vijay Vittal, Project Leader 

Trevor Werho, Graduate Student 

Arizona State University 

 

Mladen Kezunovic 

Ce Zheng, Graduate Student 

Vuk Malbasa, Post-Doctoral Research Associate 

Texas A&M University 

 

Junshan Zhang 

Miao He, Graduate Student 

Arizona State University 
 

 

PSERC Publication 13-39 

 

 

 

August 2013 



 

 

For information about this project, contact 

 

Vijay Vittal 

PO Box 875706 

Arizona State University 

Tempe, AZ 85257-5706 

E-Mail: vijay.vittal@asu.edu 

Phone: (480)-965-1879 

 

 

Power Systems Engineering Research Center 

 

The Power Systems Engineering Research Center (PSERC) is a multi-university Center 

conducting research on challenges facing the electric power industry and educating the 

next generation of power engineers. More information about PSERC can be found at the 

Center’s website: http://www.pserc.org. 

 

 

For additional information, contact: 

 

Power Systems Engineering Research Center 

Arizona State University 

527 Engineering Research Center 

Tempe, Arizona 85287-5706 

Phone: 480-965-1643 

Fax: 480-965-0745 

 

 

Notice Concerning Copyright Material 

 

PSERC members are given permission to copy without fee all or part of this publication 

for internal use if appropriate attribution is given to this document as the source material. 

This report is available for downloading from the PSERC website. 

 

 

 2013 Arizona State University and Texas A&M University.  

All rights reserved. 

mailto:vijay.vittal@asu.edu


 

 i 

Acknowledgements 

This is the final report for the Power Systems Engineering Research Center (PSERC) 

research project titled “Data Mining to Characterize Signatures of Impending System 

Events or Performance from PMU Measurements” (project S-44). We express our 

appreciation for the support provided by PSERC’s industry members and by the National 

Science Foundation under the Industry / University Cooperative Research Center 

program. 

 

We wish to thank: 

 Naim Logic – Salt River Project 

 Juan Castaneda – Southern California Edison 

 Khaled-Abdul Rahman – California Independent System Operator 

 James Kleitsch – American Transmission Company 

 Sharma Kolluri – Entergy. 



 

 ii 

Executive Summary 

This project applies data mining techniques to characterize signatures of 

impending system events or performance from phasor measurement units (PMU) 

measurements. The project will evaluate available data mining tools and analyze the 

ability of these tools to characterize signatures of impending systems events or 

detrimental system behavior. The use of PMU measurements from multiple locations will 

also be considered. The performance of the data mining tools will be verified by 

comparing the results obtained for measurements corresponding to know events on the 

system. The basis of the proposed approach is to use a historical data set of PMU 

measurements, along with information regarding actual events that occurred on the 

system during the historical period considered in the data set, and apply the decision tree 

based data mining techniques available in the commercial software Classification and 

Regression Trees (CART) to identify signature of impending events. A decision tree can 

be thought of as a flowchart representing a classification system. It consists of a sequence 

of simple questions regarding critical attributes (CAs).  

The project consists of three parts Part 1 deals with the use of data mining in 

conjunction with PMU measurements to characterize signatures of impending system 

events. Part 2 deals with power system oscillatory stability and voltage stability based on 

voltage and current phasor measurements. Part 3 deals with fundamental research to 

improve the performance of decision trees using robust ensemble decision trees with 

adaptive learning and also accounting for loss of PMU measurements. Some details of 

each part are provided below. 

 

Part 1:  Data Mining to Characterize Signatures of an Impending Island Formation 

from PMU measurements 

 

This study is aimed at using real PMU measurements to predict and detect 

significant system events with the help of the data-mining tool CART. The program 

CART (classification and regression trees) produced by Salford Systems is a data-mining 

tool that can be used to analyze problems that contain a large number of variables.  The 

historical PMU data used in this study is from the Entergy power system in Louisiana 

when hurricane Gustav impacted the network. During the storm, 14 tie lines were lost 

that created an electrical island containing Baton Rouge and New Orleans. The PMU 

measurements captured during the storm where studied in a variety of ways to identify 

signatures that provide critical information regarding the status of the system. 

Careful analysis was conducted to determine whether or not the island could be 

detected by only using the PMU measurements. It was found that the most effective 

approach of identifying the creation of the island was to use the PMU measurements of 

voltage phase angle. By comparing the phase angle measurements between PMUs, in this 

case, the island could have been detected in approximately 4 seconds. Also, by 

comparing different sets of PMUs, the location of the island could be determined by 

which PMUs were inside or outside of the affected area. Because this approach only 

considers the PMU measurements to form conclusions, the same method could be applied 
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to any system containing PMUs, with only slight modification, and still provide the 

ability to quickly and reliably detect the formation of an island within the system. 

Provided with the system power flow and dynamic data corresponding to the time 

when hurricane Gustav entered the system, simulations were conducted to attempt to 

recreate and match the event to the historical PMU data. Load and generation levels 

across a wide range of the system were adjusted to closely match the phase angle 

difference see in the PMU data. Next, the conditions inside the island were adjusted using 

the known generator dispatch and the available SCADA data. It was found that the 

direction of the power flowing on the last tie line must have been opposite to the SCADA 

data. Also, it was found that in order to match the simulation to the PMU frequency 

measurements, the governor reference at one of the generators must have been reduced 

just following the creating of the island. Performing these actions allowed the event to 

closely match to the PMU measurements and provide a better understanding of what 

happened just after the island formed. 

Lastly, the PMU data was used to try to predict the island formation and identify 

signatures that predicted impending events. Since there was insufficient data to search for 

signatures by using the single island formation in the available PMU data, 50 simulations 

were conducted to build a CART database. The simulations were analyzed intuitively and 

with CART to determine any predicting signatures. It was found that there is a strong 

correlation between a sudden change in voltage phase angle and the loss of a tie line. A 

number of simulations also showed a sudden change in voltage within the island area 

after the loss of a tie line. These different signatures were searched for in the real PMU 

data at the times when tie lines were reported to have been removed from the system. It 

was found that when the second to last tie line went offline, there was a 12º change in 

phase angle measured inside the island. This signature precedes the island formation by 

38 minutes and could have alerted system operators that this area needed attention.  

This study was successful in using CART, along with an in-depth knowledge of 

power systems, to analyze PMU data from a historic event. The data-mining tool CART 

helped quantify and understand the phenomenon observed in the PMU data. The method 

of identifying an island formation using voltage phase angle measurements is both 

effective and reliable, and could be used in real applications. The signatures found to 

predict the island formation is much less reliable. Large changes in load or generation 

could also create a sudden change in phase angle and the method could be prone to false 

alarms. This method of island formation prediction could likely be improved by pairing it 

with additional information, such as SCADA data. However, this study only considers 

the information that can be drawn from the PMUs alone. In the future as more PMUs are 

placed in the power system, it is a reasonable assumption that the predicting signatures 

found in this study will be easier to identify and provide more information.  

 

Part 2:  Data Mining to Characterize Impending Oscillatory and Voltage Stability 

Events 

 

Traditionally, time-domain simulation based on system modeling is used as the 

primary tool to analyze power system stability. This method is straightforward and 

accurate as long as an adequate system model and measurements are used. However, two 

obstacles have prevented this method from being applied in real-time applications: 1) it is 
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computationally involved; 2) when a simplified model is used, concerns may be raised 

over approximate analysis results. As the importance of real-time stability monitoring and 

early detection of system events has been increasingly emphasized in literature recently, 

an alternate approach based on data mining methods, with a focus on the Decision Tree 

(DT) method, has been explored in this project. 

This report first presents the use of classification trees for rapid evaluation of 

power system oscillatory stability and voltage stability based on voltage and current 

phasor measurements. An operating point is grouped into one of several stability 

categories based on the value of corresponding stability indicator. A new methodology 

for knowledge base creation has been elaborated to assure practical and sufficient training 

data sets. Encouraging results are shown using the generated knowledge base and the 

explored methodology. The impact of DT growing method and node setting on the 

classification accuracy has been explored in detail.  

After that a regression tree-based approach to predicting the power system 

stability margin and detecting impending system events is proposed. The input features of 

the regression tree (RT) include the synchronized voltage and current phasors from 

measurement points across the power grid, gathered using PMUs. Modal analysis and 

continuation power flow are the tools used to build the knowledge base for off-line RT 

training. Corresponding metrics include the damping ratio of the critical oscillation mode 

and MW-distance to the voltage collapse point. The robustness of the proposed predictor 

to measurement errors and system topology variation is analyzed. The optimal placement 

for the PMUs based on the importance of RT variables is proposed. The differences in 

performance between regression tree and several other data mining tools have also been 

explored. 

Next, by using a probabilistic learning tool in the proposed active learning scheme 

to interactively query a learning data set based on the importance of unlabeled data 

points, we show that much fewer operating conditions need to be processed via time 

domain simulation for accurate voltage stability and oscillatory stability estimation. The 

proposed methodology significantly reduces the computational burden of creating a 

learning data set. 

A measurement-based approach to analyzing the actual PMU measurements 

without knowledge of detailed system model parameters is presented at the end. DT is 

used to estimate useful information of inter-area electromechanical oscillations, such as 

mode frequency and damping ratio, for online oscillatory stability assessment. 

 

Part 3:  Data Mining for Online Dynamic Security Assessment using PMU 

Measurements  
 

This study focuses on online dynamic security assessment (DSA) of power 

systems by using DTs and real-time PMU measurements. While previous studies have 

proven the effectiveness of DTs for power system security assessment, two practical 

issues can compromise the performance of DTs when applied to online DSA: 1) power 

system operating condition (OC) variations and topology changes, which can result in 

different critical decision rules and inaccurate decisions of DTs; 2) missing PMU 

measurements of the critical attributes of DTs, which may make data-mining-based 
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online DSA infeasible. In this study, ensemble DT learning-based online DSA 

approaches are developed to handle these challenges. 

Part 3 first presents a novel approach for handling OC variations and topology 

changes in online DSA. Different from existing approaches that rely on a single fully-

grown DT, the proposed approach utilizes an ensemble of small-height DTs, each of 

which is assigned a voting weight for final security decision making. These small-height 

DTs and the corresponding voting weights are identified by using a rigorous gradient-

descent algorithm in offline training. As new cases are added to the knowledge base in 

online DSA, the small-height DTs and the corresponding voting weights are updated, so 

that the classification model could smoothly track the changing situations of power 

systems. 

Next, online DSA with missing PMU measurements is studied by using ensemble 

DT learning and a novel random subspace method. Specifically, each small-height DT is 

trained in a random attribute subspace (i.e., trained by using a randomly selected attribute 

subset). The random subspace method exploits the hierarchy of wide-area monitoring 

system (WAMS), the locational information of attributes, and the availability of PMU 

measurements, so as to improve the overall robustness to missing data. Particularly, in 

case of missing PMU measurements, the voting weights of small-height DTs are re-

calculated for accuracy assurance.  

The proposed approaches have been applied to the Western Electricity 

Coordinating Council (WECC) system, as well as IEEE test systems for illustrative 

purposes. The effectiveness of the proposed approaches is demonstrated via several case 

studies, by using a variety of realized system OCs and practical WAMS reliability 

indices. 
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 1 

1 Data Mining to Characterize Signatures of an Impending Island 

Formation from PMU Measurements 

1.1 Introduction 

The objective of this aspect of the project is to examine the efficacy of the 

commercial data-mining tool CART, in identifying signatures of impending power 

system events by using actual phasor measurement unit (PMU) measurements. The 

historical PMU data used in this study is from the Entergy power system in Louisiana. In 

September of 2008, hurricane Gustav made landfall in southern Louisiana. During the 

course of the storm an electrical island was formed around Baton Rouge and New 

Orleans. This study aims to use CART to analyze the PMU measurements captured 

during the hurricane to better understand future islanding events. 

1.1.1 CART 

The program CART (classification and regression trees) produced by Salford 

Systems is a data-mining tool that can be used to analyze problems that contain a large 

number of variables. CART uses a procedure called binary recursive partitioning to build 

a decision tree. Starting at the root node, simple questions called critical splitting rule 

(CSR) are asked regarding a critical attribute (CA). Each answer to the question creates 

two branching nodes such that each will have its own CSR. Nodes that do not branch off 

to other nodes are called terminal nodes that end the growth of the tree. Once all terminal 

nodes are reached the decision tree is complete and can be used to categorize new inputs. 

When given input and output data, CART will determine its inherent input-output 

relationship in the form of a decision tree. This process is called decision tree training. 
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Once training is complete, new input data can be dropped down the decision tree to 

generate the previously unknown output. Using this method, the historical PMU 

measurements will serve as the necessary information needed to train the decision tree. 

By training the decision tree, CART will determine any precursor signatures of the 

impending system event that is contained within the data. With this decision tree 

completed, new PMU measurements could be dropped down the tree to determine if a 

particular system event is likely to occur in the future [1]. 

1.1.2 Sample Case from Entergy 

The historical PMU data used in this study is from the Entergy power system in 

Louisiana. On September 1, 2008 at 9:30 AM hurricane Gustav made landfall close to 

New Orleans. Over the course of several hours the Entergy system lost 13 tie lines that 

interconnected the Baton Rouge and New Orleans area to the rest of the grid. At 2:49 PM 

the 14
th

 and final tie line was tripped that resulted in the formation of an electrical island 

containing most of Baton Rouge and New Orleans in southeast Louisiana. At the time of 

the island there were 19 PMUs within the Entergy system that recorded the islanding 

event. Each PMU was capable of measuring voltage phasor, current phasor, frequency 

and frequency rate of change. This historical PMU data was made available by Entergy 

for the purpose of this study [2]. 

1.2 Island Detection Analysis 

Any prediction signatures detectable by PMUs would be most effective if an 

island formation could be quickly and reliably detected. Historical PMU frequency and 

voltage phase angle measurements from different PMUs in the Entergy system were 
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studied to determine whether island formation, time and location, could be detected with 

a high level of confidence. 

 To determine if the location of the Entergy island could be predicted by only 

using the PMU measurements, the frequency data from four PMUs were selected; 

Mablevale, Sterlington, Ninemile, and Waterford. One hour of frequency data around the 

reported time of islanding for each of the selected PMUs can be seen in Figure 1.1, 

Figure 1.2, Figure 1.3, and Figure 1.4. 

 

Figure 1.1  Mablevale frequency versus time 

 

Figure 1.2  Sterlington frequency versus time 
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Figure 1.3  Ninemile frequency versus time 

 

Figure 1.4  Waterford frequency versus time 

It became apparent that by comparing data from different PMUs the location of the island 

could be observed and determined. It is clear that Mablevale and Sterlington are 

connected together as well as outside the island. Also, it can be seen that Ninemile and 

Waterford are connected together and are inside the island. Therefore, the instant at 

which an island formation is detected; comparing measurements from different PMUs 

would allow the affected area to be determined. 

 Two PMUs were selected, Waterford and Sterlington, to determine the amount of 

time needed to determine that an island had formed in the Entergy system. Normally, the 

PMU phase angle measurements are bounded between +240° and -180°. If the phase 

angle goes to 241°, the measurement will report -179°. In this way the data is “wrapped” 
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around the interval +240° to -180°. In order to sensibly view the phase angle 

measurements, the data must first be “unwrapped”. This is done by taking phase angle 

measurements from two PMUs and taking their difference. Logic must then be used to 

ensure the data always lies between +240° and -180°. Once this is done the data will still 

be bounded to between +240° and -180°. To remove this bound, logic can be used to 

check the conditions just before the 360° jumps in angle and can shift accordingly so the 

data is a continuous curve [3]. The adjusted difference in voltage phase angle at 

Waterford and Sterlington was plotted around the time of island formation and can be 

seen in Figure 1.5. 

 

Figure 1.5  Waterford-Sterlington phase-angle difference versus time 

Before island formation the voltage phase angle difference between Waterford and 

Sterlington was ~20º. Approximately four seconds after island formation the voltage 

phase angle climbs to over 500 degrees. At this point it is clear that Waterford and 

Sterlington are no longer connected. Therefore, in this case, the island formation could 

have been detected in ~4 seconds. 
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1.2.1 Island Detection CART Analysis 

The initial analysis of island formation detection was mostly intuitive. The 

frequency and voltage phase angle data corresponding to the island formation and island 

reconnection was analyzed with CART to provide a more quantitative approach to 

identifying the island.  

 In order for CART to run an analysis it must first have a database. This database 

must be in a specific format in order to be used. An example CART database can be seen 

in Table 1.1. 

 

Table 1.1  Example CART Database 

Output Label Input 1 Input 2 

1 10 X 

0 10 Y 

0 10 Y 

1 10 Z 

1 10 X 

1 10 X 

0 15 Y 

1 20 X 

1 25 X 

0 30 X 

 

The CART database can have any number of input variables up to what the CART 

license will allow. Adding an additional input variable would increase the CART 
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database by 1 column. Additional rows may be added to the database to increase the 

amount of data points included in the analysis. Each CART input variable can be either 

continuous or categorical. The database constructed for island formation detection 

analysis contained 4 input variables. The variables used in the CART database are as 

follows: 

• Frequency and voltage phase angle data measured at Waterford (inside island) 

• Frequency and voltage phase angle data measured at Ninemile (inside island) 

• Frequency and voltage phase angle data measured at Sterlington (outside island) 

• Frequency and voltage phase angle data measured at Mablevale (outside island) 

 

The output label used in the island detection database was Island or No Island depending 

upon the time the frequency and phase angle measurements were taken and whether or 

not the island was present in the system. The final CART island detection database 

contained 9 columns and approximately 120,000 rows (1 hour of PMU recordings). 

 The program CART uses the database to train a decision tree. A decision tree 

contains a specific input-output relationship. Using the decision tree requires one value of 

each of the input variables included in the study that correspond to the same sample. An 

example of this would be any of the rows of the CART database minus the output label. 

Starting at the top most node; apply the logic rule to the input data. This rule will then 

point to one of the two adjacent nodes. Continuing to apply the rules at each node will 

eventually point to a terminal node or a node that does not lead to any of lower nodes. 

Each terminal node corresponds to one of the possible output labels. The label of the 

terminal node that the inputs lead to is the output that corresponds to those particular 

inputs. In this way, a specific output category can be given to every set of input data.  
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 The PMU data used in the CART island formation analysis was the frequency and 

voltage phase angle data from Ninemile, Waterford, Sterlington, and Mablevale. The 

PMU frequency data was given to CART unmodified while the voltage phase angle 

measurements required the same adjustments done in the previous island detection 

analysis. In the CART database all of the phase angle measurements are relative to 

Sterlington and the phase angle measurements at Sterlington are entered as all zeros. For 

example, the statement (Ninemile Phase = -10°) means the phase angle at Ninemile is 10° 

less than the phase angle at Sterlington. The decision tree generated by the CART island 

formation analysis can be seen in Figure 1.6. 
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Figure 1.6  Decision tree created from island formation data 

The decision tree created by CART contains 9 nodes. The properties of each node are as 

follows: 
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• Node 1: 

• If  Waterford phase < -15.7° go to Terminal Node 1 

• If  Waterford phase > -15.7° go to Node 2 

• Terminal Node 1: 

• Terminal Node 

• Label: Island 

• Conditions to reach: Waterford phase < -15.7° 

• 17973 data points of the training data lead to this terminal node 

• Node 2: 

• If  Waterford phase > 32.44° go to Terminal Node 5 

• If  Waterford phase < 32.44° go to Node 3 

• Terminal Node 5: 

• Terminal Node 

• Label: Island 

• Conditions to reach: Waterford phase > 32.44° 

• 630 data points of the training data lead to this node 

• Node 3: 

• If  Ninemile phase < 69.97° go to Node 4 

• If  Ninemile phase > 69.97° go to Terminal Node 4 

• Terminal Node 4: 

• Terminal Node 

• Label: Island 

• Conditions to reach: Waterford phase > -15.7° and Waterford phase < 32.44°, Ninemile 

phase > 69.97° 

• 25 data points of the training data lead to this node 

• Node 4: 

• If Waterford frequency < 60.1 Hz go to Terminal Node 2 

• If Waterford frequency > 60.1 Hz go to Terminal Node 3 
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• Terminal Node 3: 

• Terminal Node 

• Label: Island 

• Conditions to reach: Waterford phase > -15.7° and Waterford phase < 32.44° and 

Ninemile phase < 69.7° and Waterford frequency > 60.1Hz 

• 8 data points of the training data lead to this node 

• Terminal Node 2: 

• Terminal Node 

• Label: No Island 

• Conditions to reach: Waterford phase > -15.7° and Waterford phase < 32.44° and 

Ninemile phase < 69.97° and Waterford frequency < 60.1 Hz 

• 88417 data points of the training data lead to this node 

 

Scoring the decision tree using the training data shows the decision tree is correct 

99.999% of the time. However, it would still not be judicious to apply this decision tree 

to a future island formation, even to an islanding event in the same location. This is 

because the CART database only contains the data from a single islanding event. Only by 

training a decision tree with many different island formations would the decision tree 

become reliable enough to be implemented for island detection. However, this decision 

tree is still useful. Notice that about 99.97% of all training data points lead to terminal 

nodes 1, 2, and 5. These are the dominant terminal nodes. Combining the rules of all 

three dominant nodes leads to the statement; if the phase angle at Waterford is between 

+32.4396° and -15.6969° from Sterlington then there is no island, otherwise, an island 

must exist. The exact values of the thresholds found by CART are unique to this 

particular event, but the rule suggests that when the phase angles recorded at PMUs 

within one area differ greatly from PMUs outside that area, then there is a high likelihood 
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an island has formed. This is very similar to what was seen in the intuitive analysis of 

island detection. It can be seen that CART only uses frequency data to classify 8 data 

points of the ~120,000 points of training data. This supports the finding that voltage 

phase angle measurements are much more sensitive to island formations than frequency. 

 A CART analysis was also done using the PMU data corresponding to the island 

resynchronization. The PMU data used in the CART island resynchronization analysis 

was the frequency and voltage phase angle data from Ninemile, Waterford, Sterlington, 

and Mablevale. The decision tree created by CART island resynchronization analysis can 

be seen in Figure 1.7. 

 

Figure 1.7  Decision tree created from island resynchronization data 

The decision tree created from the resynchronization data contains 55 nodes. The bounds 

on the phase angle data used in the resynchronization cannot be removed like in the 

island formation analysis. In the island formation event it can be assumed that before 

island formation the phase angles are within 360° of one another. Once the island forms 

and the phase angles begin to wrap, it can be assumed that the phase angle has exceeded 

the bounds of +240° and -180°. However, in the island resynchronization event, before 

resynchronization the phase angles could be any multiple of 360° away from one another. 

Once the areas reconnect the phase angles will only approach the closest multiple of 

360°. Because of this reason, it is unknown how far to shift the phase angles before the 



 

 13 

resynchronization occurs and the phase angle data cannot be modified like the previous 

analysis. Because the phase angle data does not contain the same information as the 

previous analysis CART must use the frequency data when detecting the island 

reconnection. This causes the decision tree to become much more complex. The decision 

tree’s dominant nodes state that if Ninemile phase angle is within +43.11° and -73.0714° 

of Sterlington and Ninemile frequency is within .04 Hz of Mablevale then there is no 

longer an island present. If these conditions are not true then an island is present. These 

rules show some resemblance to the rules found in the island formation decision tree. 

Here the bound in phase angle is much wider but still suggests that a large difference in 

phase angle is a strong indicator of an island being present. 

1.3 Simulation of Entergy Power System 

The power flow and dynamic data, that represents the Entergy Power system as it 

was at 2:49 PM on September 1, 2008 when the southeast area disconnected from the rest 

of the system, was made available by Entergy for the purpose of this study. Previous 

attempts by other investigators to recreate the islanding event in simulation did not match 

the historical PMU data [4]. As part of this study, the system power flow and dynamic 

data were used to accurately represent the system at the time of islanding. Several 

modifications were made to the system data in order to generate these results. 

1.3.1 Network Data Modification 

The first modification from the original data was done using the historical PMU 

measurements of phase angle. The PMU measurements showed that the phase angle 

between the islanding area and the center of the Entergy system at 8:00 am was around 
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11º (with the inside of island leading the outside). However, the power flow data showed 

that the phase angle between these two areas was around 40º (outside of island leading 

the inside). The load and generation over a large area were reduced. Additionally, the 

generation at bus #303007 was increased. These changes resulted in a phase angle 

difference of 9.24º (inside of island leading the outside). The adjusted areas can be seen 

in Table 1.2. The adjusted generator can be seen in Table 1.3. 

Table 1.2  Area Load and Generation Modifications 

Area Numbers Area Names Old Values New Values 

332 

351 

502 

503 

LAGN 

EES 

CELE 

LAFA 

P Load = 15632 

Q Load = 5288 

P Gen = 14750 

P Load = 13248 

Q Load = 4476 

P Gen = 12753 

 

Table 1.3  Generation Modification 

Bus Old Value New Value 

303007 5.49 MW 575 MW 
 

The next modification from the original data was done using the known generator 

dispatch and tie line SCADA data. The original data was modified such that there were 

only 3 generators online within the islanded area. The generator Ninemile Unit 5 was set 

to 220 MW, Waterford Unit 1 was set to 49 MW, and Gypsy Unit 2 was set to 77 MW. 

All other generators in the islanded area were turned off. The load within the island was 

determined using the known generator dispatch and the SCADA data from the tie line 

Gypsy-Fairview 230kV, which was last to go offline. The SCADA data available from 

the last tie line shows that power was flowing into the island. It was later determined 

through simulation that power must have been flowing out of the island instead but with 
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similar magnitude. The generators modified within the island can be seen in Table 1.4 

and the final island generator and load settings can be seen in Table 1.5. 

Table 1.4  Generators Modified Within Island 

Bus Number Bus Name Pold Pnew 

336002 GA Gulf 8 offline 

336151 WAT U1 41 49 

336179 UCARBST2 39 offline 

336222 GYP U2 36 77 

336252 NMIL U5 220 220 

 

 

Table 1.5  Final Island Generator and Load Settings 

Bus Numbers P Gen Q Gen P Load Q Load 

335568-335572 

335601 

335613-335620 

335665 

336001-336464 

 

 

346 

 

 

-358 

 

 

246 

 

 

56 

 

1.3.2 Dynamic Data 

Within the island there are three generators online: Waterford Unit 1, Gypsy Unit 2, 

and Ninemile Unit 5. The dynamic data used for these three generators can be seen in 

Tables 1.6, 1.7, and 1.8. The generator dynamic models and the exciter dynamic models 

were not altered from the dynamic data received from Entergy. However, the governor 

dynamic models did receive modifications. First, the governor model for Ninemile was 

originally set as an IEESGO model. When initial simulations did not match the PMU 

data, the governor model was switched to a TGOV1 model to match the other governor 

models. This was done to remove any variations a difference in governor models might 
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cause while investigating the simulated event. Also, the parameter values for all governor 

models were reverted back to the default model values. Finally, the values of R were 

increased on all governor models. These changes helped modify the initial simulated 

frequency response after island formation.  

Table 1.6  Generator Dynamic Models 

Generator Waterford U1 Gypsy U2 Ninemile U5 
Model GENROU GENROU GENROU 

T’do 

 

5.6 4.6 4.33 

T”do .05 .05 .041 

T’qo 1 .52 .481 

T’qo .06 .072 .059 

H 2.539 2.944 2.62 

D 0 0 0 

Xd 1.9701 1.5795 1.783 

Xq 1.9305 1.512 1.764 

X’d .3247 .1849 .291 

X’q .5692 .3901 .411 

X”d=X”q .2148 .1251 .249 

X1 .1611 .1201 .199 

S(1.0) .074 .1 .11 

S(1.2) .381 .464 .119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 17 

Table 1.7  Exciter Dynamic Models 

Exciter Waterford U1 Gypsy U2 Ninemile U5 

Model IEEX2A IEEX1 IEEX1 

TR 0 0 0 

KA 500 50 400 

TA .04 .06 .02 

TB 0 0 0 

TC 0 0 0 

VRMAX 1.5 1.5 8.15 

VRMIN -1.5 -1.5 -7.33 

KE .05 -.045 1 

TE .2 .5 1.21 

KF .08 .08 .03 

TF1 1 1 1 

E1 3.1875 3.3784 2.71 

SE(E1) .17 .074 .94 

E2 4.25 4.5045 3.62 

SE(E2) .24 .267 1.25 

 

Table 1.8  Governor Dynamic Models 

Governor Waterford U1 Gypsy U2 Ninemile U5 

Model TGOV1 TGOV1 TGOV1 

R .07 .07 .07 

T1 .5 .5 .5 

Vmax 1 1 1 

Vmin 0 0 0 

T2 3 3 3 

T3 10 10 10 

Dt 0 0 0 

 

1.3.3 Dynamic Simulation 

The islanding event recorded by the PMU measurements was recreated in 

dynamic simulation. The island at the time of the hurricane had 14 tie lines that 

interconnected the islanded area to the rest of the system. The network data used for the 

simulation contains 13 of the 14 tie lines. When the line connecting bus #303153 to bus 

#335507 was added to the network the solution would not converge. It was decided to 
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neglect this tie line because it is a lower voltage tie line (138kV) and other simulations 

have shown this line has little impact during the event. 

 The simulation was conducted by removing the tie lines in the order that they 

went offline during the hurricane. However, line Coly – Willow Glen 500kV was not 

disconnected in the same way as the other tie lines. Information available indicated that 

this line was unable to serve the island because the three transformers at Willow Glen 

went offline. To simulate this scenario the Willow Glen bus #335618 was disconnected 

from the system rather than disconnecting the tie line.  

Many simulations were performed in order to understand the governor response to the 

island formation. It was concluded that actions must be taken during the dynamic 

simulation in order to match the simulation frequency to the historical PMU data. Four 

seconds after the island is formed in the simulation the load within the island is increased 

40 MW. After eight seconds, the load in the island is increased again another 80 MW. 

The exact actions taken during simulation are shown in Table 1.9. 
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Table 1.9  Actions Taken During Dynamic Simulation 

Time of Action Bus Number(s) Action Taken 

0-5sec -- Flat Line Run 

5sec 336462-500360 Disconnect Line 

10sec 336015-336016 Disconnect Line 

15sec 336032-303202 Disconnect Line 

20sec 336141-303204 Disconnect Line 

25sec 336006-336007 Disconnect Line 

30sec 335568-335660 Disconnect Line 

35sec 335536-335665 Disconnect Line 

40sec 335771-303200 Disconnect Line 

45sec 335500-335618 Disconnect Line 

50sec 335568-335659 Disconnect Line 

55sec 335657-335658 Disconnect Line 

60sec 335618 Disconnect Bus 

70sec 336190-336138 Disconnect Line 

74sec  Increase island load 40 MW 

82sec  Increase island load 80 MW 

100sec  End Simulation 

 

The island formation captured by PMU measurements can be seen in Figure 1.8. 

The frequency inside the island was measured at Ninemile. The frequency outside the 

island was measured at El Dorado. The plot of frequency of the simulated event can be 

seen in Figure 1.9. 
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Figure 1.8  PMU frequency measurements of island formation 

 

Figure 1.9  Frequency plot of simulated island formation 

The simulated event has a maximum frequency of 60.542 Hz, compared to the 

PMU measurements of 60.54 Hz. Also, the duration of the first peak in simulation is 
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around 5.6 seconds compared to around 5 seconds in the PMU data. It can be seen that 

the frequency in the island under simulation recovers to 59.934 Hz. The frequency in the 

PMU data (ignoring present oscillations) recovers to about 59.9 Hz. The oscillations seen 

in the PMU data were being driven by some unknown source within the island. Those 

oscillations would not be able to be captured by the dynamic simulation. 

It was decided that generation reduction just after island formation was much 

more feasible than the load increasing. A second simulation was conducted using the 

same conditions as the previous island formation simulation. Instead of scaling load after 

island formation, the governor reference at Ninemile Unit 5 was reduced while leaving 

the other generators, Waterford Unit 1 and Gypsy Unit 2, unmodified. Four seconds after 

island formation the governor reference at Ninemile Unit 5 was reduced by 6 MW. 

Twelve seconds after island formation the governor reference at Ninemile Unit 5 was 

reduced by an additional 2.5 MW. The exact actions taken during simulation are shown 

in Table 1.10. 
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Table 1.10  Actions Taken During Second Dynamic Simulation 

Time of Action Bus Number(s) Action Taken 

0-5sec -- Flat Line Run 

5sec 336462-500360 Disconnect Line 

10sec 336015-336016 Disconnect Line 

15sec 336032-303202 Disconnect Line 

20sec 336141-303204 Disconnect Line 

25sec 336006-336007 Disconnect Line 

30sec 335568-335660 Disconnect Line 

35sec 335536-335665 Disconnect Line 

40sec 335771-303200 Disconnect Line 

45sec 335500-335618 Disconnect Line 

50sec 335568-335659 Disconnect Line 

55sec 335657-335658 Disconnect Line 

60sec 335618 Disconnect Bus 

70sec 336190-336138 Disconnect Line 

74sec  Ninemile Gref reduced 

6MW 

82sec  Ninemile G ref reduced  

2.5 MW 

100sec  End Simulation 

 

The island formation captured by PMU measurements can be seen in Figure 1.10. 

The frequency inside the island was measured at Ninemile. The frequency outside the 

island was measured at El Dorado. The plot of frequency of the simulated event can be 

seen in Figure 1.11. 
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Figure 1.10  PMU frequency measurements of island formation 

 

Figure 1.11  Frequency plot of simulated island formation 

The simulated event has a maximum frequency of 60.542 Hz, compared to the 

PMU measurements of 60.54 Hz. Also, the duration of the first peak in simulation is 

around 7.7 seconds compared to around 5 seconds in the PMU data. It can be seen that 
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the frequency in the island under simulation recovers to 59.934 Hz. The frequency in the 

PMU data (ignoring present oscillations) recovers to about 59.9 Hz. Just as in the first 

simulation, the oscillations seen in the PMU data are not captured in this dynamic 

simulation.  

The plot of Gypsy-Fairview 230kV historic line flows can be seen in Figure 1.12. 

The plot of simulated line flow of Gypsy-Fairview 230kV can be seen in Figure 1.13. 

 

Figure 1.12  Historical line flows of Gypsy – Fairview 230 kV 
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Figure 1.13  Simulated MW flow of Gypsy – Fairview 230 kV 

The plot in Figure 1.12 is measured over the course of 10 hours and the plot in Figure 

1.13 is measured over a simulation of 150 seconds. The relative distance between tie line 

tripping is different in the plots. However, the locations of the important events are 

labeled in both plots. The first important point to compare the two plots is when the 1
st
 tie 

line trips. It can be seen that in both plots the loading on Gypsy-Fairview 230kV 

increases. The second important point to compare the two plots is when the 13
th

 tie line is 

lost. At this point the flows in both plots are most similar. The power flow in the PMU 

data is approximately 115 MW and the power flow in the simulation is about 91 MW. 

Before the 13
th

 tie line trips the flow levels in simulation do not match that of the 

recorded data. This is mostly likely because the simulation is designed to best recreate the 

conditions in the system just before island formation, whereas the SCADA data records 

the tie line operation up to 10 hours before the island formed. It is reasonable to assume 

that the simulation would not match conditions present in the system hours prior to island 

formation.  
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 The original power flow and dynamic data received from Entergy was modified to 

more closely match the conditions present when hurricane Gustav hit the system. The 

simulations done using the modified power flow and dynamic data showed a reasonable 

match to the available historical data, and should represent the actual conditions of the 

system more accurately at the time of island formation. 

1.4 Island Prediction Analysis 

Ideally, the best way to determine and characterize signatures of an impending 

island formation would be to build a CART database of only real PMU measurements of 

island formations. However, this would require many different island formations captured 

by PMUs, and the island formed would need to always be in the same location. The real 

PMU data available for this study only contains one island formation, making this 

approach impossible. It was decided that the best alternative would be to build a CART 

database using simulated island formations. The island formed in the simulations would 

always be the same island that was formed during hurricane Gustav. In this way, any 

predicting signatures found by this study could be searched for in the real PMU data to 

determine whether or not the Gustav island formation could have had any advance 

warning. 

1.4.1 Hurricane Isaac Cases and Simulations 

Building a CART database of simulated island formations requires having several 

different operating conditions of the Entergy power system. To ensure any signatures 

found from this database can be applied to the Gustav event, it is important that the 

power flow cases used to build the database come from times around when a hurricane 
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has hit the system. Five power flow cases were provided by Entergy, that correspond to 

hurricane Isaac. Hurricane Isaac made landfall at 7:00 PM on August 28, 2012 near the 

mouth of the Mississippi River [5]. The five power flow cases correspond to the times; 

10:30 AM August 28
th

, 12:00 PM August 28
th

, 12:00 PM August 29
th

, 6:00 PM August 

29
th

, and 12:00 PM August 31
st
. Along with using the five different operating conditions, 

ten different orders of tie-line outages were used to create a total of 50 simulations to 

complete the CART database. The order of line outages that actually occurred during the 

Gustav event was included as one of the ten orders. The remaining nine orders were 

mostly random. However, the last two lines in each of the nine orders were intelligently 

selected to allow every line, at least once, to serve as either the last line or second to last 

line in the outage order. The simulations were conducted using PSS®E v33.3. As stated 

previously, the same island in each simulation was created using one of the five power 

flow cases and one of the ten tie-line outage orders, providing a total of 50 simulations. 

During each simulation, the bus values of frequency, voltage magnitude, and voltage 

phase angle, were recorded at each of the PMU sites at El Dorado, Mablevale, Waterford, 

and Ninemile. In each simulation, the 14 tie lines were removed at a rate of one every 

five seconds until the island formed. As an example, the exact actions taken during the 

simulation using the original Gustav line outage order is shown in Table 1.11. 
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Table 1.11  Actions Taken During Island Simulation 

Time of Action Bus Number(s) Action Taken 

0-5sec -- Flat Line Run 

5sec 336462-500360 Disconnect Line 

10sec 336015-336016 Disconnect Line 

15sec 336032-303202 Disconnect Line 

20sec 336141-303204 Disconnect Line 

25sec 336006-336007 Disconnect Line 

30sec 335568-335660 Disconnect Line 

35sec 335536-335665 Disconnect Line 

40sec 335771-303200 Disconnect Line 

45sec 335500-335618 Disconnect Line 

50sec 335568-335659 Disconnect Line 

55sec 335657-335658 Disconnect Line 

60sec 303153-335456 Disconnect Line 

65sec 335618-335837 Disconnect Line 

70sec 336190-336138 Disconnect Line 

90sec -- End Simulation 

 

1.4.2 Simulated Island Formation Results 

Once all 50 simulations were complete, the simulation output file was converted to 

an Excel document to plot and review the results. After carefully studying the simulation 

results, several features were observed. The frequency data in each simulation did not 

seem to show any useful information. Both the voltage magnitude and voltage phase 

angle showed interesting characteristics, and the simulations appeared to create three 

categories. In the first category, a sudden change in difference in phase angle of at least 

5º was observed during the removal of at least one tie line. In some simulations, a sudden 
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change in phase angle could be observed for the loss of several lines. A clear example of 

this can be seen in figure 1.14. 

 

Figure 1.14  Voltage phase angle at Waterford versus time 

In the second category, a sudden change in voltage magnitude in the islanded area of at 

least 5% was observed during the removal of at least one tie line. An example of this can 

be seen in figure 1.15. 
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Figure 1.15  Voltage magnitude at Waterford versus time 

In the third category, any sudden changes in voltage phase angle or voltage magnitude 

were either deemed too small to be seen by a PMU among normal disturbances in the 

system or no sudden changes were observed at all. An example of this can be seen in 

Figure 1.16 and Figure 1.17. The gentle slope in phase angle seen in Figure 1.17 is seen 

at all four buses and does not result in any change in phase angle difference between 

areas. 

 

Voltage Drop 

Voltage Drop 
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Figure 1.16  Voltage magnitude at Waterford versus time 

 

Figure 1.17  Voltage phase angle at Waterford versus time 

After looking through all the simulations it was found that 43 of the 50 simulations fell 

into category one, 31 of the 50 simulations fell into category two, and five of the 50 

simulations fell into category three. Some simulations qualified for both category one and 

category two simultaneously.  
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 This information suggests that there is a correlation between changes in the PMU 

data and the loss of a tie line. This could be very important in predicting island 

formations. By using PMUs to monitor changes in tie line status, if the number of 

remaining tie lines is very low, a system operator could be notified that an island 

formation in a particular area is a reasonable threat. 

1.4.3  Island Prediction CART Analysis 

Before CART can train a decision tree, a CART database must be created using the 

island formation simulations. It is very important to assemble the CART database 

correctly. Setting up a CART database poorly would make CART look at the data in a 

way that has nothing to do with the problem being studied, and provide useless results. 

An example of the island prediction CART database structure can be seen in Table 1.12.  

Table 1.12  Island Prediction CART Database Structure 

Lines El V M V W V N V M A W A N A El F M F W F N F 

4 data data data data data data data data data data data 

4 data data data data data data data data data data data 

4 data data data data data data data data data data data 

3 data data data data data data data data data data data 

3 data data data data data data data data data data data 

2 data data data data data data data data data data data 

2 data data data data data data data data data data data 

1 data data data data data data data data data data data 

1 data data data data data data data data data data data 

 

As a reminder, the quantities recorded during simulation are voltage (V), phase 

angle (A), and frequency (F). These values were recorded during simulation at the PMU 

sites at El Dorado (El), Mablevale (M), Waterford (W), and Ninemile (N). The reason El 

Dorado phase angle is not seen in the CART database is that the other phase angles were 

taken relative to the phase angle at El Dorado. Doing this causes the angle at El Dorado 

to always be zero and is not needed in the analysis. For each simulation, only the duration 
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of the simulation where only four tie lines (or less) are remaining is used in the database. 

It was decided to only use the data from the last four tie lines for a number of reasons. 

Firstly, the CART license being used for this study has a database size limit of 8 

megabytes. Only using the data from the last 4 tie lines prevents the database from 

reaching this limit. Also, it was observed that most of the significant changes in recorded 

data occurred during the loss of the last few tie lines. Lastly, it is more important to 

identify when the system goes from having four tie lines to having only one or two lines 

remaining than the loss of earlier tie lines.  

The column labeled “Lines” is the target variable. For each time-step, the data 

recorded is labeled corresponding to the number of tie lines still operating in the system. 

Each row of the database is independent of the other rows. Therefore, the order that the 

simulations are entered into the database is irrelevant. Setting up the database in this way 

will force CART to try to determine the number of tie lines remaining by only looking at 

the data that would be available from the PMU locations in the system. If there is a 

correlation between changes in measurements and the loss of tie lines, CART will be able 

to find and characterize it. 

1.4.4 Island Prediction Decision Tree Testing 

For the first CART analysis, two CART databases were constructed. Both 

databases used the same structure as that described previously. The first database 

contained the data from the first 25 simulations. This database serves as the decision tree 

training database. The second database contained the data from the second 25 

simulations. This database serves as the decision tree testing database. By building a 

decision tree using the first 25 simulations and then testing the accuracy of the tree using 
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the second 25 simulations, CART will show whether or not a correlation between the 

simulation data and changes in tie line status exists.  

 The decision tree created by CART using the first 25 simulations contained 876 

terminal nodes. The result of testing this tree using the remaining 25 simulations is shown 

in Table 1.13. 

Table 1.13  Decision Tree Test Results 

Actual 

Class 

Total 

Class 

Percent 

Correct 

1 Line 2 Lines 3 Lines 4 Lines 

1 Line 28846 47.5% 13703 6601 4756 3786 

2 Lines 28824 18.62% 7255 5367 7403 8749 

3 Lines 28824 26.35% 1994 7374 7594 11862 

4 Lines 28824 62.96% 1649 3276 5751 18148 

 

The most important results of this test are in the column labeled “Percent Correct”. Since 

there are four possible classes, if it were truly impossible to determine the number of 

remaining tie lines by looking at the available data, one would expect all the numbers in 

this column to be 25%. This would correspond to the decision tree just randomly 

guessing. For the classes 2 Lines and 3 Lines this seems to be the case, at 18.62% and 

26.35% respectively. However, the classes of 1 Line, at 47.5%, and 4 Lines, at 62.96%, 

show significant improvement. It was not expected that CART be able to look at the 

available simulation measurements and determine exactly how many tie lines remain in 

the system at every time step. However, this does confirm the suspicion that there is a 

correlation between PMU measurements and changes in tie line status. It is important to 

point out that these results only used 25 simulations of training and there are only four 

PMU locations being measured. In the future, as more PMUs are placed in the system it 

is a reasonable assumption that the ability to determine tie line status from PMU 

measurements would vastly improve. 
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1.4.5 CART Signature Characterization 

For the second CART analysis, a single decision tree was trained using all 50 

simulations. It was already shown that there is a correlation between the simulation data 

and changes in tie line status. The purpose of this second decision tree is to give some 

idea of the rules CART uses to classify the data. Because the optimal decision tree using 

all 50 simulations has over 800 terminal nodes, the decision tree was pruned down to 5 

terminal nodes. Pruning a decision tree reduces the size of the tree by removing the less 

significant splitting rules. This causes terminal nodes to combine together and reduce the 

size of the tree. Pruning the decision tree will reduce the overall accuracy of the tree, but 

also highlights the most significant attributes used for classification. The pruned decision 

tree using all 50 simulations can be seen in Figure 1.18. 
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Figure 1.18  Pruned CART decision tree 
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The decision tree created by CART contains 5 terminal nodes. As a reminder, all phase 

angles in the CART database are relative to the phase angle at El Dorado. The rules 

required for data to reach each terminal node are as follows: 

• Terminal Node 5: 

• Label: 4 Lines 

• Conditions to reach: Ninemile angle > -1.91º  

• Terminal Node 4: 

• Label: 3 Lines 

• Conditions to reach: Ninemile angle >-31.58º and Ninemile angle <= -1.91º and 

Waterford Angle > -5.55º 

• Terminal Node 3: 

• Label: 1 Line 

• Conditions to reach: Ninemile angle >-31.58º and Ninemile angle <= -1.91º and 

Waterford Angle <= -5.55º, and Waterford voltage has reduced no more than -.0192 pu 

• Terminal Node 2: 

• Label: 3 Lines 

• Conditions to reach: Ninemile angle >-31.58º and Ninemile angle <= -1.91º and 

Waterford Angle <= -5.55º, and Waterford voltage has reduced more than -.0192 pu 

• Terminal Node 1: 

• Label: 1 Line 

• Conditions to reach: Ninemile angle <= -31.58º 

 

This decision tree contains several interesting aspects. First, frequency is not used to 

classify data in the pruned decision tree. This agrees with what was observed after 

plotting the simulation results. Also, when the phase angle at Ninemile is close to the 

phase angle at El Dorado, the decision tree determines there are 4 tie lines operating. 

When the phase angle at Ninemile is more than 31.58º behind the phase angle at El 
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Dorado, the decision tree determines that there is only 1 tie line remaining. This suggests 

that large changes in voltage phase angle between areas are important in identifying the 

loss of a tie line.  

1.4.6 Signatures in Gustav Island Event 

It was shown previously that a sudden change in difference in phase angle 

between two areas is correlated to a loss of a tie line that connects said areas. Also, in 

some island simulations the loss of a tie line caused a significant change in voltage in the 

islanding area. Because the islands created in simulation were always the same island that 

was formed during hurricane Gustav, these signatures can be searched for in the real 

PMU data. The island formed during hurricane Gustav had 14 tie lines that connected it 

to the rest of the system. The time that each of these lines went offline was recorded 

during the event. Any signatures of interest contained in the PMU data must be at these 

locations. 

The real PMU voltage magnitude and voltage phase angle data were studied at the 

times were tie lines were removed from the system. The last two lines to go offline were 

Coly-Willow Glen 500 kV (2
nd

 to last) and Gypsy-Fairview 230 kV (last). The first 

period of interest was the location where the 2
nd

 to last tie line went offline. The PMU 

data at this point showed a signature in the phase angle measurements, but nothing was 

found in the voltage measurements. A plot of the voltage phase angle difference between 

Ninemile (inside island) and Sterlington (outside island) can be seen in Figure 1.19 and a 

plot of the voltage phase angle difference between Waterford (inside island) and 

Sterlington (outside island) can be seen in Figure 1.20. 
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Figure 1.19  Ninemile-Sterlington phase angle difference versus time 

 

Figure 1.20  Waterford-Sterlington phase angle difference versus time 

At the moment the 500 kV line was lost, the PMU data observed a ~12º change in the 

difference between phase angles that stands out from the rest of the data. This is 

consistent with what was seen in the simulated island formations. Observing this 

signature at this instant is very important because this line was lost 38 minutes before the 
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island was formed. This signature was a warning sign that an island formation in the 

nearby area was a reasonable threat and that the area should be closely monitored. 

 Other points where lines were lost in the PMU data were reviewed, but only one 

other disturbance was found. The Webre-Willow Glen 500 kV line was the 6
th

 to last line 

to be lost before the island formed. A plot of the voltage phase angle difference between 

Waterford (inside island) and Sterlington (outside island) can be seen in Figure 1.21. 

 

Figure 1.21  Waterford-Sterlington phase angle difference versus time 

The change in phase angle when this line was lost was only about 3º. It is very unlikely 

that this could have alerted operators to what was going on. However, it is important to 

show that it is visible, and if the operating conditions in the system had been different at 

the time this may have been much more significant. 

1.5 Conclusions 

This study aimed at using real PMU measurements to predict and detect significant 

system events especially islanding with the help of the data-mining tool CART. The 

PMU data offered by Entergy, containing the island formation event when hurricane 

Gustav impacted the system, provided an excellent case for this study. During the storm, 
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14 tie lines were lost that created an island containing Baton Rouge and New Orleans. 

Careful analysis was conducted to determine whether or not the island could be detected 

by only using the PMU measurements. It was found that the most effective approach of 

identifying the creation of the island was to use the PMU measurements of voltage phase 

angle. By comparing the phase angle measurements between PMUs, in this case, the 

island could have been detected in approximately 4 seconds. Also, by comparing 

different sets of PMUs, the location of the island could be determined by which PMUs 

were inside or outside of the affected area. Because this approach only considers the 

PMU measurements to form conclusions, the same method could be applied to any 

system containing PMUs, with only slight modification, and still provide the ability to 

quickly and reliably detect the formation of an island within the system. 

Provided with the system power flows and dynamic data corresponding to the time 

when hurricane Gustav entered the system, simulations were conducted to attempt to 

recreate and match the event to the historical PMU data. Load and generation levels 

across a wide range of the system were adjusted to closely match the phase angle 

difference see in the PMU data. Next, the conditions inside the island were adjusted using 

the known generator dispatch and the available SCADA data. It was found that the 

direction of the power flowing on the last tie line must have been opposite to the SCADA 

data. Also, it was found that in order to match the simulation to the PMU frequency 

measurements, the governor reference at one of the generators must have been reduced 

just following the creating of the island. Doing these things allowed the event to closely 

match to the PMU measurements and provide a better understanding of what happened 

just after the island formed. 
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Lastly, the PMU data was used to try to predict the island formation. With not 

enough data to search for signatures by using the one island formation in the PMU data, 

50 simulations were conducted to build a CART database. The simulations were analyzed 

intuitively and with CART to determine any predicting signatures. It was found that there 

is a strong correlation between a sudden change in voltage phase angle and the loss of a 

tie line. A number of simulations also showed a sudden change in voltage within the 

island area after the loss of a tie line. These different signatures were searched for in the 

real PMU data at the times when tie lines were reported to have been removed from the 

system. It was found that when the second to last tie line went offline, there was a 12º 

change in phase angle measured inside the island. This signature precedes the island 

formation by 38 minutes and could have alerted system operators that this area needed 

attention.  

 This study was successful at using CART, along with a strong knowledge of 

power systems, to analyze PMU data from a historic event. The data-mining tool CART 

helped quantify and understand the phenomenon observed in the PMU data. The method 

of identifying an island formation using voltage phase angle measurements is both 

effective and reliable, and could be used in real applications. The signatures found to 

predict the island formation is much less reliable. Large changes in load or generation 

could also create a sudden change in phase angle and the method could be prone to false 

alarms. This method of island formation prediction could likely be improved by pairing it 

with additional information, such as SCADA data. However, this study only considers 

the information that can be drawn from the PMUs alone. In the future as more PMUs are 
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placed in the power system, it is a reasonable assumption that the predicting signatures 

found in this study will be easier to identify and provide more information. 
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2 Data Mining to Characterize Impeding Oscillatory and Voltage 

Stability events 

2.1 Introduction 

2.1.1 Problem Statement 

Several electrical utility companies are installing large numbers of phasor 

measurement units (PMUs) to monitor system conditions. In addition, several utilities 

also have collected a significant amount of historical PMU data. These sets of stored data 

also include measurements obtained during known events occurring on the system. At the 

PSERC summer workshop in Maine, and as noted in the 2010 research solicitation, there 

is a definite need to identify signatures of impending events detrimental to system 

performance from PMU measurements.  

From the control center operators’ point of view, the fast assessment of power 

system oscillatory stability and voltage stability is of great importance for real-time 

operation. It is desirable that the impending system events can be immediately detected 

and that operators are provided with updated information on whether or not a power 

system can maintain synchronism and acceptable voltage levels when subject to 

disturbances. 

Traditionally, the method of time-domain simulation is used to analyze system 

stability status [6]. However two obstacles prevent the traditional method’s application in 

real-time monitoring and control. Firstly, full system model computation makes the 

simulation method time-consuming. Considering the fast onset of an instability event, the 

traditional methods may not be able to provide immediate event detection. On the other 
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hand, using a simplified system model could accelerate the simulations, but this brings 

concern over approximate analysis results leading to inaccurate decisions. Secondly, the 

data used for the stability analysis in electrical utilities are obtained from the supervisory 

control and data acquisition (SCADA) system or state estimation functions, which are 

refreshed on a time scale from several seconds to several minutes. Figure 2.1 shows the 

state-of-the-art data acquisition structure and its possible implementation in analyzing 

two types of power system stability status, i.e. oscillatory stability and voltage stability. 

In addition, the SCADA measured data does not have the characteristics needed to 

implement the new analysis and control tools due to the lack of time-synchronized 

sampled waveform data [7]-[8]. Compared to a traditional SCADA system, 

synchrophasor IEDs such as PMUs enable a much higher data sampling rate and provide 

the synchronized phasor measurements across the network. 

In some cases the forecasted load pattern and unit commitment dispatch are used 

instead of actual data to predict system performance. When a disturbance occurs and 

immediate controls need to be initiated, traditional stability analysis using slowly updated 

or forecasted data can only provide very limited decision making support. 

To make the situation worse, in power system planning and on-line applications, a 

complete model may not be readily available. This model is necessary for obtaining the 

linearized system description required by traditional oscillatory stability analysis [9]. 

Similar problems exist in the voltage stability assessment process [10]. Under such 

circumstances, the data mining techniques, benefiting from accurate generalization ability 

without detailed knowledge of all system parameters, becomes an attractive alternative. 
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                                       Approx. 30 times/sec

                                                    Every 3 min

                                               Every 4-10 sec    
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Figure 2.1  Power system stability analysis using data from various sources 

 

2.1.2 Project Objectives 

The objectives of this project are summarized as follows: 

 Investigate the use of data mining tools to examine historical PMU 

measurements and develop decision trees (DTs) to characterize signatures for 

identifying and preventing future events or failures; 

 Evaluate the performance of CART (Classification and Regression Trees), 

[11], algorithm for processing synchrophasor measurements; 

 Evaluate other available data mining tools and analyze the ability of these 

tools to characterize signatures of impending systems events or detrimental system 

behavior; 

 Consider the use of PMU measurements from multiple locations; 
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 Verify the performance of data mining tools by comparing the results 

obtained for measurements corresponding to known events on the system. 

The commercial data mining software CART developed by Salford Systems, [12], 

is employed in this project. It allows users to analyze data from many different 

dimensions or angles, categorize them, and summarize the relationships identified. 

 

2.1.3 Literature Review 

In the field of power systems, Wehenkel et al. first introduced the DT method to 

solve the transient stability assessment problems using SCADA data [13]-[14]. In [15]-

[19], DTs were successively applied to assess system operational security by applying a 

pre-defined set of credible contingencies and enforcing an acceptable threshold criterion 

on system variables based on standard operating practices. Later, in [20], the system post-

disturbance stability has been analyzed by DT using its fast evaluation capability. In [21], 

a genetic algorithm was applied in feature selection to search for the best inputs to DT for 

oscillatory stability region prediction. In [22] and [23], Kamwa et al. showed that there is 

a trade-off between a data mining model’s accuracy and its transparency. A review of 

literature reveals that the problem of using DT for stability margin monitoring from 

substation field measurements has not yet been fully explored. 

The concept of decision tree comprises the Classification Tree and Regression 

Tree, [11]. While in previous works classification trees have been extensively studied to 

group an operating point (OP) into one of several pre-defined stability categories, the use 

of regression trees (RT) to predict the stability margin, i.e. how far the system is away 
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from a possible instability event, has not yet been fully studied. With respect to its online 

use, the areas that remain unexplored include how fast the RT can process PMU 

measurements, how well the RT can deal with measurement errors, and how robust the 

RT is to the system topology changes. It is also imperative to develop a systematic 

approach to generating a sufficient and realistic knowledge base for off-line training of 

DT. 

Several other data mining tools such as Neural Networks, [24], and Support Vector 

Machines, [25], have been used to evaluate the system stability status. Compared with 

some “black-box” tools, the DT’s piece-wise structure provides system operators with a 

clearer cause-effect relationship of how the system variables lead to the onset of an 

instability event. Using DTs it is possible to identify the critical variables and thresholds 

that need to be analyzed to gain insight into the stability margin of a system. 

 

2.1.4 Proposed Research 

As shown in Figure 2.2, both the model-based and measurement-based (depending 

on whether the system model data is used) methods will be explored in this project. For 

the model-based approach, a knowledge base will be created through exhaustive 

simulations on known system model parameters and then utilized to train the decision 

trees. In situations where detailed model parameters are missing, a measurement-based 

approach using data mining and signal processing techniques will be explored to estimate 

system stability status directly from the synchrophasor measurements collected at the 
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PMU-equipped substations. The efficacy of the measurement-based approach is going to 

be tested using field PMU measurements. 

In addition, the following two issues are involved in the proposed research: 

 Performance comparison between the DT and other data mining tools; 

 Robustness test of the DT predictive model. 

In particular, the relationship and difference between the conventional time-domain 

simulation approach and the proposed data mining technique, the DT method, is shown in 

Figure 2.3. Compared with the traditional method, the advantage of DT method lies in its 

capability of fast analysis facilitated by fewer required inputs and straightforward model 

structure. By learning the system behavior from a known set of operating points (OPs), 

the DT model can predict system responses without detailed model computations. In 

addition, the DT method is appealing because it uses a white-box model, which makes 

the results easy to interpret. Based on the combination of splitting rules along a path of 

the tree, preventive and corrective control strategies could be formulated. 
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Figure 2.2  Proposed research framework 

 

Figure 2.3  Difference between conventional approach and the DT method 
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A specification of the proposed research is as follows: 

 Develop a methodology that makes use of the PMU collected 

synchrophasor measurements for online stability estimation and early detection of 

impending system instability events; 

 Examine the prediction accuracy and robustness of DT for online 

assessment of system oscillatory stability and voltage stability status. The 

comparison in accuracy and efficiency between the DT and other data mining 

tools such as Support Vector Machine (SVM) and Neural Networks (NN) will be 

compared; 

 The important issue of DT robustness with respect to PMU measurement 

errors and changes in system topology will be explored; 

 Develop a methodology for optimal PMU placement. Check the 

performance of DT using synchrophasor measurements from a limited number of 

PMUs; 

 Develop an approach that takes use of active learning technique to reduce 

the computational burden of both simulation and training by selecting the most 

effective training dataset; 

 Explore a measurement-based approach that directly applies data mining 

and signal processing techniques to field PMU measurements. 
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2.2 Technical Background 

2.2.1 Introduction 

The proposed assessment scheme (using DTs on PMU measurements) is shown in 

Figure 2.4 and compared with existing analytical method (using model simulation and 

SCADA data). As mentioned before, classification and regression trees are trained to 

emulate system behavior and predict system stability status. An abnormal operating point 

with an insufficient stability margin can be immediately identified. Compared with the 

traditional time-domain simulation approach that requires full model computation each 

time a new OP emerges, the DT method is faster since repetitive model computations are 

avoided. 

2.2.2 Theoretical Formulation 

Two important aspects of system operational performance, namely oscillatory 

stability and voltage stability, are targeted for monitoring. First the definition of an 

instability event is revisited: 

 Oscillatory stability is related to Hopf bifurcation. An instability event 

occurs whenever, following a small disturbance, the damping torques are 

insufficient to bring the system to a steady-state operating condition which is 

identical or close to the pre-disturbance condition [9]. 
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Figure 2.4  From time-domain simulation to the proposed scheme 

 Voltage stability is related to saddle-node bifurcation. Voltage instability 

occurs when the load attempts to step beyond the capability of the combined 

transmission and generation system [10] [26] [27]. 

2.2.2.1 Oscillatory Stability Assessment (OSA) 

Modern power systems have evolved into systems of increasingly large size. 

Initially separate systems have been interconnected. Different areas with larger 

generation capacity and inertia are added. Due to the deregulation and the difficulty of 

transmission expansion today, system operators are often forced to operate the system 

close to its stability limits, which leads to the recurrence of small-signal oscillation 

problem. As a consequence, in large interconnected power systems small signal stability, 

especially inter-area oscillatory stability, become increasingly important. 
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The oscillatory stability may be analyzed by modal analysis. A power system can 

be described as a set of non-linear differential algebraic equations (DAE): 

 








),,(0

),,(

uyxg

uyxfx
 2.1 

where x is the state vector, y is the algebraic vector, and u is the input vector. The 

DAEs are formulated by detailed modeling of each network component. By linearizing 

the non-linear equations in Eq. 2.1 at a particular system operating point, the following 

equations are derived: 
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The matrices A, B, C, and D in Eq. 2.2 provide a linearization around the system 

equilibrium point. Each pair of complex conjugate eigenvalues of matrix A corresponds 

to an oscillation mode of the system. The A matrix can be further decomposed as: 

 A  2.3 

In Eq. 2.3,  represents the diagonal eigenvalue matrix, and  and  are left and 

right eigenvector matrices respectively. For the i
th

 oscillation mode with the following 

conjugate eigenvalues: 

 iii j   2.4 

The oscillation frequency is given by: 

  2/iif   2.5 
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The mode damping ratio (DR) can be calculated by: 

 
22

ii

i
i







  2.6 

The oscillation modes that carry a significant amount of energy, but with 

insufficient DR, are critical among all modes and need to be closely monitored. 

Occurrence of an instability event is possible when a poorly damped mode is excited by a 

small or large disturbance.  

In this work the DR of the critical oscillation mode is used as the oscillatory 

stability margin (OSM) indicator. Assuming DRcrit is the damping ratio of the critical 

mode, the scheme shown in Figure 2.2 is proposed for OSA. As shown in the figure, the 

OSM becomes progressively more stringent as the value of critical mode DR decreases. 

The damping ratio is not an index from the parameter space, so strictly speaking it 

may not be proper to term it as ‘margin’. In this work DR is selected as the OSM 

indicator in the sense that it provides smooth movement trajectory, a clear partition 

between stable/unstable states, and an explicit distance from unstable point.  

As shown in Figure 2.5, three oscillatory stability states, namely “Stable” 

(including “Good” and “Fair”), “Alert” and “Unstable’, are defined according to the 

value of DRcrit. A classification tree (CT) is used to assign a system operating point (OP) 

into one of the above stability states. 
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Figure 2.5  Proposed oscillatory stability assessment scheme 

2.2.2.2 Voltage Stability Assessment (VSA) 

The variation of load bus voltage magnitude with different load demand is plotted 

as the P-V curve shown in Figure 2.6. The MW-distance from the current operating point 

to the voltage collapse point (‘Knee’ point), where the load demand equals the maximum 

deliverable power, provides a reasonable measure of system voltage stability margin. The 
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VSM referred to here corresponds to system long-term voltage stability [6], which cannot 

be used to capture the short-term voltage stability. 

 

 

Figure 2.6  Proposed voltage stability assessment scheme 

The focus is to find the voltage collapse point. In this work the idea of Continuation 

Power Flow (CPF) proposed in [28] is applied. Assuming a constant load power factor, 

slowly increasing load demand will push the operating point from the base case towards 

the collapse point along the P-V curve. The voltage collapse point is achieved when the 

load flow Jacobian becomes singular. System voltage stability margin is hereby 

expressed as: 
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         distance max currentMW P P 
                                                2.7 

where Pmax is the maximum deliverable power, and Pcurrent is the active load 

demand of current OP. The proposed procedure for voltage stability margin prediction is 

as follows: 

(a)  Generate n different OPs 

(b)  For each OP, determine the maximum deliverable power by means of the 

CPF technique 

(c)  Calculate the voltage stability margin for the i
th

 OP using the following 

index: 

 %100

max


i

i

distancei

margin

P

MW
VS  2.8 

(d)  Train the RT off-line using selected features from the n OPs and their 

corresponding VS 
i
margin 

(e)  Use the trained RT to predict VSM in real time 

As shown in Figure 2.6, for the given voltage stability thresholds θSTB and θALT 

(θSTB > θALT), OPs will be labeled as “Stable” as long as they satisfy VS
i
margin ≥ θSTB; and 

‘Unstable’ when θALT ≥ VS
i
margin. The remaining OPs are labeled as “Alert”. 
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2.3 Model-based Approach for Real-Time Stability Assessment Using Classification 

Tools 

2.3.1 Categorization of Stability States 

In this work the data mining classification tools, in particular the Classification 

Tree (CT) method, have been adopted to estimate the system operating stability in real 

time. 

As is shown in Figure 2.5 and Figure 2.6, several stability categories have been 

defined for oscillatory and voltage stability respectively. These states are specified 

according to the value of corresponding stability indicator. 

2.3.2 Approach to Generating Training Database 

The knowledge base is a database used for off-line training of the CT-based 

predictive model. It is composed of a number of instances, and each instance represents a 

system operating point, labeled with corresponding stability states, [29]. Our preliminary 

research revealed that the larger the system is, the more attributes, and more instances, 

are needed to characterize the OP using CT. These attributes comprise voltage and 

current phasors, active/reactive power flow, and some composite attributes. 

Typically, the DT-based predictive model will gain more generalization power if a 

larger number of instances are included in the knowledge base. However, the database 

generation process should be correctly designed; otherwise it may not capture sufficient 

information from the entire problem space. 

Both the voltage stability and oscillatory stability are closely related to the 

load/generation composition of a power system, and their increase/decrease trend at a 
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certain system snapshot [30]. If the load/generation composition varies, different OPs are 

formed. The change in the load demand and generation output can be described as: 

GGG PPP  0

        GGG QQQ  0
 

 LLL PPP  0
         

000 / LLLLL PQPQQ   2.9 

where PG and QG are active/reactive power outputs of all the generators except the 

slack bus generator, and PL and QL are vectors of active/reactive power delivered to the 

loads. Superscript 0 represents the base case OP. The vectors PG, QG, PL and QL 

stand for the variations in power. 

In this work, the commercial software PSS/E [31] is used for iteratively solving 

load flows, and deriving the characteristic matrix A at different OPs through numerical 

perturbation. Python and MATLAB [32] programs are developed to automate the PSS/E 

simulations, perform modal analysis, conduct the CPF-based voltage stability analysis, 

compute stability margins, and establish the knowledge base. The pseudo-code for 

knowledge base creation is illustrated below. 

2.3.3 Features Available to CT for Prediction 

With respect to the input attributes of a decision tree, it is reported that different 

attribute combinations may result in different data mining accuracies [33]. In order to 

accelerate the prediction process, it is desirable to use the least number of attributes as CT 

inputs while keeping an acceptable level of overall prediction accuracy. Typically the 

input attributes are selected using engineering insight and empirical evidence. 

In this work we consider the basic measurements from a PMU. The involved CT 
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input attributes are as follows: 

 VM_i and VA_i: positive sequence voltage magnitude and phase angle at 

Bus i 

 IM_i_j and IA_i_j: positive sequence current magnitude and phase angle 

from Bus i to Bus j 

The commercial software CART [12] is used to develop CTs for evaluation of 

oscillatory stability and voltage stability. 

2.3.4 Performance Examination of Classification Tree 

2.3.4.1 Description of Test Systems 

Two test systems, namely the IEEE 3-machine 9-bus system [34] and the IEEE 10-

machine 39-bus system (New England system) [35], are used to implement the proposed 

scheme. The one-line diagrams of these two test systems are shown in Figure 2.7. 

2.3.4.2 Knowledge Base Preparation 

Using the previously described approach, the knowledge bases for the two test 

systems are generated and summarized in Table 2.1. 
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Figure 2.7  One-line diagrams of the IEEE 9-bus and 39-bus test systems 
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Table 2.1  Knowledge Base Generated for Classification Analysis 

System 
Instances included in OSA Knowledge Base 

Total 
Stable Alert Unstable 

9-Bus 
663 

(61.90%) 

358 

(33.43%) 

50 

(4.67%) 
1071 

39-Bus 
2549 

(71.30%) 

962 

(26.91%) 

64 

(1.79%) 
3575 

 Instances included in VSA Knowledge Base  

9-Bus 
707 

(51.68%) 

495 

(36.18%) 

166 

(12.13%) 
1368 

39-Bus 
2206 

(60.21%) 

1175 

(32.07%) 

283 

(7.72%) 
3664 

 

2.3.4.3 Adjustment of Priors and Selection of Attributes 

It can be observed from Table 2.1 that the number of instances included in each 

class is highly unbalanced. Compared with some other data mining tools that do not 

perform well when dealing with unbalanced data sets, the classification tree integrated in 

CART has the ability to assure that every class will be treated equally regardless of its 

size. This is achieved by specifying the Priors for each class. In this work the Prior for 

the “Unstable” class has been adjusted to be slightly higher than that of other classes. The 

objective is to put more emphasis on the detection of unstable instances. 

2.3.4.4 Performance Comparison Using Different Tree Growing Methods 

The theoretical background of developing a CT in CART can be found in [11]. 

Each of the above generated knowledge bases has been randomly split into two data sets: 

80% of the instances are used as training set; the remaining 20% serve the purpose of 

independent testing. Due to the stochastic nature of the splitting process, slight 

differences may occur between the derived CTs which affect their performance. 
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Therefore, in this work the process of knowledge base splitting, tree training and testing 

has been replicated at least 10 times until the mean value and standard deviation of 

independent case testing accuracy become stable. 

The Entropy method is adopted to grow the CTs in CART. The performance of 

CTs in independent case testing is summarized in Table 2.2. 

Table 2.2  Performance of the Classification Tree 

System Method 
Accuracy of New Case Testing 

OSA VSA 

9-Bus Entropy 98.63% 99.56% 

39-Bus Entropy 94.38% 97.95% 

 

The independent case testing results of CT for the IEEE 39-bus system are shown 

in Figure 2.8. An interesting observation from Table 2.2 and Figure 2.8 is that the CT 

performance for OSA is less than that of VSA. This is because the system oscillatory 

stability behavior is highly non-linear. In order to reach certain prediction accuracy, a 

larger training dataset is needed by OSA-CT compared with VSA-CT. In this work, more 

instances could be generated if we set the Stopping Criterion 2) in Section 4.2 with a 

higher accuracy requirement. 

The classification tree can be developed using different methodologies, e.g. Gini, 

Twoing, and Entropy, [12]. Another important setting is the minimum cases a parent node 

should have, which may impact the size of resulted CT. In this work the tree settings are 

varied to explore their impact on assessment accuracy.  

The results are shown in Figure 2.9. 
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        a) Testing results of 39-bus OSA                  b) Testing results for 39-bus VSA 

Figure 2.8  CT stability assessment for the 39-bus system in one replication 

 

 

Figure 2.9  Classification tree performance using different tree growing methods 

Two conclusions could be made from Figure 2.9: 1) the CT performance for the 

stability assessment problem is related to how a tree is trained. In this case the Entropy 

method achieved the best classification accuracy; 2) the setting for minimum parent node 

cases can alter the shape of the resulted tree as well as its performance. In general, the 

more cases a parent node is required to have, the fewer terminal nodes the derived CT 



 

 66 

may possess. This experiment demonstrated that there is a trade-off between tree 

complexity and accuracy. A large-sized tree may encounter the over-fitting problem, 

whereas a small-sized tree that is not adequately developed may produce less accurate 

classification results. A trial and comparison process is needed to find the best CT size, 

and this can typically be accomplished by nested cross-validation. 

2.3.5 Summary 

This section explores the use of classification trees for fast evaluation of oscillatory 

stability and voltage stability. The following is a summary of the research: 

 The two previously proposed stability metrics have been deployed to 

define corresponding stability states. The classification trees are trained to 

estimate system operating stability status in real time; 

 A systematic methodology for knowledge base generation has been 

proposed. Stopping criteria were elaborated to assure a sufficient dataset for CT 

training. Encouraging results were obtained through performance examination 

using the generated knowledge base; 

 The CT classification accuracy is related to how the tree is developed, and 

the setting for minimum parent node cases can alter the shape of the resulting tree 

impacting its accuracy. 
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PSEUDO-CODE FOR KNOWLEDGE BASE GENERATION 

1. Initialize PSS/E in Python. Import system model parameters: 

Number of Generation Buses = i,  Number of Load Buses = j 

Number of buses with shunt capacitor = k 

2. Let u (uN) be the iteration index with a step change of CG/L/S % 

    Suppose G1 is slack bus. Repeat: 

      for A2=0u2  do 

         Scale the output of G2 to: %)1(
22

0

22 GGG CAPP    

      … 

      for Ai=0ui  do 

         Scale the output of Gi to: %)1(0

iGiGiiG CAPP   

      for Ai+1=0ui+1  do 

         Scale load 1 to: %)1(
1)1(

0

11 LiLL CAPP    

      … 

      for Ai+j=0ui+j  do 

          Scale load j to: %)1( )(

0

jLjiLjjL CAPP    

      for Ai+j+1=0ui+j+1  do 

         Scale shunt 1 to: %)1(
1)1(

0

11 SjiSS CAQQ    

      … 

      for Ai+j+k=0ui+j+k  do 

          Scale shunt k to: %)1( )(

0

SkkjiSkkS CAQQ    

          Solve the load flow at:  SkSLjLGiG QQPPPP ,...,,,...,,,..., 112  

    If this OP is unsolvable: eliminate 

    Oscillatory Stability Analysis:  

        Import system model dynamic data. Derive the A matrix. 

      Voltage Stability Analysis: 

        Derive the voltage collapse point via continuation-based method 

    Export computed features of current OP 

    End Loops 

3. Repeat: for i=0number of OPs  do 

 Modal analysis of A matrix using (3)-(5): DR (i)  

 Compute voltage stability index using (6)-(7): VS 
i
margin 

 Export computed stability margins 

    End Loop 
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2.4 Model-based Approach for Real Time Stability Margin Prediction Using 

Regression Tools 

2.4.1 Proposed Research 

2.4.1.1 Regression Tree Method 

Compared with the traditional time domain simulation approach that requires full 

model computation each time a new OP has emerged, the advantage of RT method lies in 

its simplified model structure and fast OP analysis facilitated by fewer required inputs. 

Figure 2.10 provides a simple example of RT structure. The unfolding OP is related to its 

stability margin through a unique top-down path. The splitting rule at each node that 

belongs to a given path represents an operational threshold. Based on the combination of 

splitting rules along the path, preventive and corrective control strategies could be 

formulated and initiated. 

 

Figure 2.10  An example of the RT model structure 
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In regression analysis, a case refers to an instance (x, y) where x is the vector of 

attributes and y is the target value, to be predicted. The relationship between x and y is 

usually described by a regression function, through which it is possible to estimate how 

the target y changes when x is varied. In our proposed approach, the regression function 

is replaced by a binary tree structure, where x are the synchrophasor measurements and y 

is the system stability margin, i.e. the damping ratio or MW-distance. CART is used to 

develop OSM-RT and VSM-RT used for evaluating oscillatory and voltage stability 

margins. 

The approach to build a RT entails three steps: 1) tree growing using learning 

dataset; 2) tree pruning using a test dataset or cross-validation; 3) selection of the best 

pruned tree. Experimental tests show that there is a trade-off between the tree complexity 

and its accuracy: a small-sized tree cannot capture enough system behavior, and a large-

sized tree usually leads to imprecise prediction due to over-fitting on training data. In this 

work the rule of minimum cost regardless of size to search for the best pruned RT 

commensurate with accuracy is adopted. The complexity cost parameter in CART has 

been set to equal to zero. The RT growing, node splitting, tree pruning and optimal tree 

selection algorithms are detailed in Appendix. 

2.4.1.2 Proposed Approach 

The proposed framework for RT-based stability margin prediction and event 

detection is shown in Figure 2.11. PMU measurements from different substations are 

collected and time-aligned by the Phasor Data Concentrator (PDC). The synchrophasor 

measurements are then delivered to the Wide Area Measurement System (WAMS) server 

located at the central control facility. At the control center operator room, the RTs for 
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monitoring OSM (OSM-RT) and VSM (VSM-RT) are trained and updated periodically. 

The PMU data of an upcoming OP is dropped down the respective tree until it reaches a 

terminal node. Then the predicted stability margin is the average value of the learning set 

samples falling into that terminal node. Any OP with insufficient stability margin will be 

detected immediately by checking corresponding thresholds. Operators are alerted with 

the possible event and preventive control strategies can be initiated in a timely manner. 

 

 

Figure 2.11  Proposed framework of the RT-based stability margin prediction and event 

detection 

2.4.2 Knowledge Base Generation 

Using the approach illustrated in previous section, the power supply at generation 

buses, demand at load buses, and the output of shunt capacitors were systematically 
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varied. A total of 1071 OPs with corresponding OSMs, and 1153 OPs with corresponding 

VSMs have been produced for the 9-bus system. The number of records generated for the 

39-bus system knowledge base is 4276 and 3664 for the VSM and OSM tasks, 

respectively.  

In addition, in this work the generator active/reactive power limits have been taken 

into account to reflect the practical stability margin. This has significant impact on the 

computation of VSM: when the load demand increases, a feasible load flow solution may 

not exist due to the limited generation capacity, even before the maximum loadability of 

the transmission system is reached. Therefore the derived Pmax may be somewhere on the 

top half of the PV curve before the “Knee” point shown in Figure 2.6. 

In order to build a sufficiently large knowledge base, in this work two stopping 

criteria are followed: 

1) Each generator/load/shunt should be varied at least 4 times (u≥4) 

and the total variation should be at least 30% of the base value (uCG/L/S≥30). The 

goal is to capture the most system behavior from the problem space; 

2) The RT training and testing accuracy converges. The R
2
, residuals 

squared, metric is used to measure the prediction accuracy and will be detailed in 

next section. 

The trajectory of the 39-bus system stability margin is shown in Figure 2.12. 

Corresponding stability thresholds are shown as the flat planes dividing each margin 

space into two halves: an instability event will be immediately identified in the top half. 

For this power system the voltage stability threshold is put at VSmargin=30%. This value 
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can be further adjusted according to the real-time operational needs. 

As it can be observed from Figure 2.12, a large imbalance in size between the 

stable and unstable cases exists. This is a very practical issue in power system operation 

since most of the time the system is in its stable state. From the classification point of 

view, compared with some other data mining tools that do not perform well when dealing 

with unbalanced data, the decision tree implemented in the CART software has the 

property of assuring that every class is treated equally regardless of its size. This is 

achieved by specifying the Prior of each class. From the regression point of view, there is 

no need to set Priors because each case will be treated as an equal point on the 

continuous stability margin space. Because of the least squares loss function for 

regression, as implemented in CART, large mistakes are penalized more than smaller 

ones, thus large errors at any OP are emphasized, be they on the stable or unstable part of 

the stability margin space. Once the relationship between input and output is identified, 

the regression model defines a mapping of an OP to its stability margins regardless of the 

state/class the OP belongs to. 
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Figure 2.12  Trajectory of voltage and oscillatory stability margins of the IEEE 39-bus 

(New England) test system 

2.4.3 Off-line Training and New Case Testing 

Each knowledge base is split into two independent data sets: 80% of the records are 

randomly selected for training of OSM-RT and VSM-RT; the remaining 20% of the 

records will serve the purpose of RT testing. The 10-fold cross validation method is 

adopted to grow the RT in CART. In experiments, because of the random nature of the 
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splitting process, slight differences may occur between the performances of each derived 

RT. Therefore in this work, the process of knowledge base splitting, tree training and 

testing has been replicated 10 times, until the mean and standard deviation of RT 

accuracy become stable. 

In contrast with a classification tree for which the accuracy could be directly 

derived from the misclassification rate, the performance of a regression tree is measured 

through a statistical index, termed Residuals Squared Error (R
2
) [36]. We report the 

accuracy of a RT model as follows: 
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where TS is the set of training samples, xi is input, yi is the actual stability margin, 

d(xi) is the RT predicted value, and yroot is the mean of yi in the tree root node.  

In general the closer the value of R
2
 is to 1, the better the prediction is. However in 

practice, how good an R
2
 is depends on the particular application and the way it is 

measured [37]. Experimental results from this work show that a quite acceptable value of 

R
2
>0.90 can be achieved. 

Sometimes the R
2
 alone may not be sufficient, especially in the case when the 

typical difference between values predicted by RT and the actual stability margins is 

desired. Therefore another measure, the Root-Mean-Square (RMS), is utilized: 

 
 

n

xdy
RMS

n

i ii 


 1

2
)(

 2.11 



 

 75 

where n is the number of test cases. The numerator stands for the sum of squared 

deviations of the actual stability margins around the RT predictions. The value of RMS 

error depends on the base magnitude of the target stability margin to be predicted. In the 

proposed scheme, a typical value of OSM is in the range of -0.01 to 0.1, and the VSM is 

usually ranging from 0.05 to 1.0. Hence the RMS errors of VSM-RT are usually several 

times larger than that of the OSM-RTs. 

Once the training is complete, the derived RTs are evaluated using the unseen test 

cases. Much more emphasis must be put on the accuracy of unseen case testing because, 

for real-time applications, a predictive model which cannot predict the unseen system 

behavior well is unacceptable, even if high accuracy is obtained during the off-line 

training, as it lacks generalization power. The corresponding training and new case 

testing accuracy is summarized in Table 2.3. In addition, the results of new case testing 

were reported separately in terms of Security Test and Reliability Test. While the security 

test examines how well the stable OPs are predicted, the reliability test checks if all 

unstable OPs are correctly identified. 

The prediction for 300 new OPs of the 39-bus system is shown in Figure 2.14. The 

RT-based approach has exhibited encouraging capability for system stability margin 

prediction. 

The performances of differently sized OSM-RTs are summarized in the relative 

error curve shown in Figure 2.15. Among these trees, a 13-node subtree pruned from the 

45-node “optimal” tree is shown in Figure 2.15 (a), and the “Largest” tree with 465 nodes 

is shown in Figure 2.15(b). 
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Table 2.3  Performance of the Regression Trees 

System 

Oscillatory Stability Margin (OSM-RT) 

Train 

R
2
 

Unseen OPs 

Overall Accuracy 

Reliability and Security 

Test (RMS) 

R
2
 RMS Reliability Security 

9-bus 0.9984 0.9858 0.0023 0.00083 0.00235 

39-bus 0.9617 0.9519 0.0034 0.00386 0.00328 

System 

Voltage Stability Margin (VSM-RT) 

Train 

R
2
 

Unseen OPs 

Overall Accuracy 

Reliability and Security 

Test (RMS) 

R
2
 RMS Reliability Security 

9-bus 0.9928 0.9791 0.0184 0.03357 0.01480 

39-bus 0.9941 0.9694 0.0211 0.02736 0.01965 

 

          

Figure 2.13  RT predicted margins versus the actual stability margins of the IEEE 39-bus 

system. Left: OSM-RT performance; Right: VSM-RT performance 

Compared with the optimal tree, numerical results show that although the 465-node 

tree has boosted the training accuracy from 0.9617 to 0.9872 R
2
, its accuracy in unseen 

case testing actually dropped from 0.9520 to 0.9407 R
2
. This is because while an over-

developed tree may perform well in training, but it will lose the generalization power in 

predicting unseen instances. The optimal tree with the lowest relative cost has the best 
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generalization power and should be selected. 

 

Figure 2.14  Relative cost of a series of differently sized RTs 

 

(a) 13-node tree pruned from the optimal OSM-RT 

 

(b) Largest RT with 465 terminal nodes 

Figure 2.15  Regression trees for oscillatory stability margin prediction 
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N = 256

 

VA_17 >  -27.06

 

Node 5

 

IA22_23 <=  59.22

 

STD =

 

 0.004

 

Avg =

 

 0.031

 

N = 487

 

IA12_13 <= -45.00

 

Node 3

 

VA_17 <= -27.06

 

STD =

 

 0.006

 

Avg =

 

 0.026

 

N = 969

 

VM_20 <=   0.99

 

Terminal

 

Node 5

 

STD =

 

 0.004

 

Avg =

 

 -0.003

 

N = 67

 

VM_20 >    0.99

 

Terminal

 

Node 6

 

STD =

 

 0.004

 

Avg =

 

 0.011

 

N = 78

 

IA12_13 >  -45.00

 

Node 6

 

VM_20 <=   0.99

 

STD =

 

 0.008

 

Avg =

 

 0.004

 

N = 145

 

VA_2 <= -21.66

 

Node 2

 

IA12_13 <= -45.00

 

STD =

 

 0.010

 

Avg =

 

 0.023

 

N = 1114

 

VA_25 <= -17.87

 

Terminal

 

Node 7

 

STD =

 

 0.003

 

Avg =

 

 0.037

 

N = 89

 

VA_9 <= -11.40

 

Terminal

 

Node 8

 

STD =

 

 0.005

 

Avg =

 

 0.045

 

N = 112

 

VA_9 >  -11.40

 

Terminal

 

Node 9

 

STD =

 

 0.001

 

Avg =

 

 0.042

 

N = 513

 

VA_25 >  -17.87

 

Node 9

 

VA_9 <= -11.40

 

STD =

 

 0.003

 

Avg =

 

 0.042

 

N = 625

 

IA2_25 <= 164.95

 

Node 8

 

VA_25 <= -17.87

 

STD =

 

 0.003

 

Avg =

 

 0.042

 

N = 714

 

IA7_8 <=  29.63

 

Terminal

 

Node 10

 

STD =

 

 0.004

 

Avg =

 

 0.061

 

N = 279

 

IA7_8 >   29.63

 

Terminal

 

Node 11

 

STD =

 

 0.004

 

Avg =

 

 0.056

 

N = 216

 

IA7_8 <=  30.33

 

Node 11

 

IA7_8 <=  29.63

 

STD =

 

 0.005

 

Avg =

 

 0.059

 

N = 495

 

IA7_8 <=  31.29

 

Terminal

 

Node 12

 

STD =

 

 0.004

 

Avg =

 

 0.053

 

N = 283

 

IA7_8 >   31.29

 

Terminal

 

Node 13

 

STD =

 

 0.004

 

Avg =

 

 0.048

 

N = 254

 

IA7_8 >   30.33

 

Node 12

 

IA7_8 <=  31.29

 

STD =

 

 0.005

 

Avg =

 

 0.050

 

N = 537

 

IA2_25 >  164.95

 

Node 10

 

IA7_8 <=  30.33

 

STD =

 

 0.006

 

Avg =

 

 0.054

 

N = 1032

 

VA_2 >  -21.66

 

Node 7

 

IA2_25 <= 164.95

 

STD =

 

 0.008

 

Avg =

 

 0.049

 

N = 1746

 

Node 1

 

VA_2 <= -21.66

 

STD =

 

 0.016

 

Avg =

 

 0.039

 

N = 2860
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2.4.4 Comparison with Other Data Mining Tools 

In this work the performance of RT has been compared with two widely used data 

mining tools: Support Vector Machine (SVM) and Neural Network (NN). The R
2
 

accuracy of different data mining tools for the 39-bus system is summarized in Table 2.4. 

Table 2.4  New Case Testing Accuracy using Different Data Mining Tools for the 39-bus 

System 

Tools Testing R
2 

of OSM Testing R
2 

of VSM 

RT 0.9519 0.9694 

SVM 0.9591 0.9811 

NN 0.9579 0.9572 
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Figure 2.16  One-line diagram of the WECC 179-bus equivalent system 

According to the results, the RT-based model achieved almost identical prediction 

accuracy as other data mining tools. Compared with some “black-box” tools, the DT 

piece-wise structure as shown in Figure 2.15 (a) provides system operators with a clearer 

cause-effect relationship of how the system variables lead to the onset of an instability 

event. It is possible to identify the critical variables and thresholds that need to be 

analyzed to gain insight into the stability margin of a system. 
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2.4.5 Application to a Larger System 

2.4.5.1 Description of the WECC Equivalent System 

The RT-based predictive model has been applied to the Western Electric 

Coordinating Council (WECC) equivalent system shown in Figure 2.16 [38]. This 

network consists of 179 buses, 29 generators, 42 shunts, and 104 loads. 

2.4.5.2 Knowledge Base Generation and RT Performance 

The same methodology of creating the knowledge base for the 9-bus and 39-bus 

systems is adopted. In addition, two practical issues have been considered: 1) the 

real/reactive power output limit of each generator is more stringent in this larger system 

and should be complied with strictly; 2) it is computationally too expensive to generate 

the database by varying only one component each time. For instance, if the iteration 

index u is set to be 4, a total of 4
175

 OPs will need to be analyzed. It may be more 

practical to group the loads and generators according to their geographical locations. 

Seven areas are formed and it is assumed that the loads/generators within each area will 

increase/decrease at the same rate. 

A total of 12572 records have been generated for the OSM-RT and 15303 records 

for the VSM-RT. The impact of the size of training set on the performance of resulted RT 

is examined: 100%, 50%, 20%, 10%, 5%, and 2% of the training cases are used to derive 

RT for each task. All experiments have been replicated 10 times and the mean of unseen 

case prediction accuracy is summarized in Figure 2.17. It clearly shows that the 

prediction accuracy increased when more cases were used to train the RTs. 

In order to embed the RT model into an actual online application, three aspects 
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need to be examined and corresponding requirements must be satisfied: 1) Eligibility for 

high speed analysis; 2) Robustness to measurement error; 3) Capability to accommodate 

topology change. 

 

Figure 2.17  New case prediction accuracy of RTs trained with differently sized data sets. 

Left: OSM-RT; Right: VSM-RT 

2.4.5.3 Data Processing Speed 

Traditionally the data used for the stability analysis in electrical utilities are 

obtained from the SCADA system or state estimation functions, which are refreshed on a 

time scale from several seconds to several minutes. These slowly updated data can only 

provide limited decision making support for quickly developing situations where fast 

variations are present at both demand and supply side. The capability to take advantage 

of the quickly updated PMU data is critical in real-time applications. 

In practice, the PMU measurements are updated very quickly, most likely at least 

30 times per second. In order to evaluate the system stability status at each snapshot, the 

processing of PMU data must be less than 1/30=0.033 second. 
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Table 2.5  Computational Speed of Regression Trees 

Type of 

Regression 

Models 

IEEE 39-bus System WECC 179-bus System 

Off-line 

Training 

New Case 

Prediction 

Off-line 

Training 

New Case 

Prediction 

OSM-RT 
36.01 s 

(3421 cases) 

about 3 s 

(855 cases) 

164.97 s 

(10058 cases) 

about 5 s 

(2514 cases) 

VSM-RT 
31.38 s 

(2931 cases) 

about 2 s 

(733 cases) 

195.45 s 

(12242 cases) 

about 7 s 

(3061 cases) 

 

The data processing speed of RTs is summarized in Table 2.5. The computational 

time is estimated using the built-in clock of CART executed on an Intel Pentium IV 3.00-

GHz CPU with 2 GB of RAM. It can be seen that the derived OSM-RT or VSM-RT can 

assess 1000 new OPs in less than 4 s for the 39-bus system, and 3000 new OPs in less 

than 8 s for the WECC 179-bus system. According to the results, the RTs satisfy the 

speed requirement of real-time applications. 

2.4.5.4 Impact of Measurement Errors 

The phasor estimation process may introduce errors. PMUs manufactured by 

multiple vendors can also yield inaccurate readings. In real-time application, the PMU 

measurement errors of the i
th

 OP can be expressed as: 

VMi
real
i

meas
i VMVM      VAi

real
i

meas
i VAVA      

 IMi
real
i

meas
i IMIM         IAi

real
i

meas
i IAIA   2.12 

where the superscript real means actual values of the phasor, and meas stands for 

measured values. 

According to the IEEE C37.118 “Standard for Synchrophasors for Power Systems” 
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[39], PMUs that are Level 1 compliant with the standard should provide a Total Vector 

Error (TVE) less than 1%. This implies that the following constraints must be satisfied: 

 
real
i

real
i

real
i

real
i

meas
i

meas
i

VAVM

VAVMVAVM




%1   

 
real
i

real
i

real
i

real
i

meas
i

meas
i

IAIM

IAIMIAIM




%1  2.13 

Considering Eq. 2.12 and Eq. 2.13, random noise  has been added to the original 

phasor magnitudes and angles of the WECC 179-bus system knowledge base. In Table 

2.6 two scenarios were tested. While in both scenarios errors were added to the test cases, 

it is shown that the RTs trained with measurement error had much better performance 

than the ones without the error taken into account in the training data set. 

Table 2.6  Performance of the 179-Bus Regression Trees Considering PMU Measurement 

Error 

Type of 

Regression 

Models 

Add Noise Only to the Test Cases 

Security Test Reliability Test 

R
2
 RMS R

2
 RMS 

OSM-RT 0.7906 0.00106 0.7403 0.00121 

VSM-RT 0.8091 0.02785 0.7629 0.03010 

Type of 

Regression 

Models 

Add Noise to Both Training and Test Cases 

Security Test Reliability Test 

R
2
 RMS R

2
 RMS 

OSM-RT 0.9170 0.00068 0.8994 0.00071 

VSM-RT 0.9266 0.01789 0.9045 0.01940 
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2.4.5.5 Impact of Topology Variation 

In this work the robustness of RT to certain system topology changes was 

examined. The scenarios that were evaluated and RT performances are summarized in 

Table 2.7. 

Table 2.7  Regression Tree Performance under System Topological Variations 

Scenarios of 

Topology Change 
Type 

RMS Error of 

OSM-RT 

RMS Error of 

VSM-RT 

Line 8-9 taken out 
9 BUS 

N-1 
0.00880   0.154810 

G10 out of service 
39 BUS 

N-1 
0.00417 0.04089 

G10 and Line 26-28 

taken out 

39 BUS 

N-2 
0.00726   0.207020 

Line 1 of 76-82 out of 

service 

179 BUS 

N-1 
0.00337 0.03046 

Line 1 of 90-156 out 

of service 

179 BUS 

N-1 
0.00421 0.02654 

Line 1 of 95-98 out of 

service 

179 BUS 

N-1 
0.00385 0.03198 

Line 81-180 out of 

service 

179 BUS 

N-1 
0.00552   0.083250 

Line 1 of 90-156 and 

Line 1 of 76-82 out 

179 BUS 

N-2 
0.00473 0.04830 

G63-1 and Line 1 of 

95-98 out of service 

179 BUS 

N-2 
0.00574 0.03792 

G63-1 and Line 81-180 

out of service 

179 BUS 

N-2 
0.00588   0.107360 

 

It can be observed that OSM-RTs were able to provide somewhat acceptable 

predictions with low RMS errors, even under situations the network topology had 

changed.  

On the other hand, VSM-RTs appear to be less robust and the performance varied 

case by case: the N-1 test in the 9-bus system had a significant impact on the VSM 
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prediction due to the small size of the system; acceptable predictions were achieved for 

the case of generator outage in the 39-bus system; the N-2 scenario in the 39-bus system 

was too severe for the VSM-RT to handle.  

More case studies were conducted on the 179-bus system VSM-RT: low RMS 

errors were observed in experiments where slight topology changes are made, such as one 

of the double-circuit transmission lines out of service. 

2.4.6 Discussion 

2.4.6.1 Ability of RTs to Handle Evolving System Conditions 

The problem of how to sustain the prediction accuracy of RT under the evolving 

system operating conditions is critical for its online implementation. In general, the 

change of system operating conditions can be categorized into two types: 

 The variation of system load/generation patterns;  

 The variation of system topology due to contingencies, scheduled 

maintenance, and system dispatch. 

The work reported in previous sections tackles the first type of variation. As 

illustrated in the knowledge base creation process, the generator/load/shunt has been 

widely varied in a systematical way to capture the most system behavior from the 

problem space. 
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Figure 2.18  Scheme for RTs to handle system topology change 

In our preliminary research we found that changes in system topology are a major 

reason causing a data mining tool to fail in real-time applications. The results shown in 

Table 2.7 indicate that the RT sensitivity to topology changes becomes less distinct in 

large sized networks and under milder topology changes. It is also observed that RTs are 

not able to accommodate certain severe contingencies, e.g. the line 81-180 out of service. 

In the field of data mining and machine learning, the so-called ‘concept change’ describes 

methodology for dealing with such type of topology variation. A literature search reveals 

that there is not a generally effective way for the data mining tool to cope with concept 

change incrementally, although some work has shown results, [40]. Most of the time a re-

train using an updated knowledge base is necessary to reflect new topology conditions. 

2.4.6.2 When and How to Update the RTs 

To re-train an RT model whenever it is obsolete is time-consuming and may not 

satisfy the requirement of seamless on-line monitoring. An effective solution may be to 

prepare a knowledge base for each of the credible contingencies beforehand, and train a 
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series of candidate RTs accordingly. Figure 2.18 shows the proposed scheme. The list of 

credible contingencies is usually readily available at utility companies. If in online 

application an unseen contingency occurs and RT fails to provide accurate predictions, a 

new RT will be trained and deployed. The new contingency scenario and RTs will be 

added to the historical database. With the increase of contingency scenarios accumulated 

in database, fewer unseen topology conditions will be encountered. The obsolete models 

can be quickly replaced by the candidate RTs corresponding to the post-contingency 

condition. 

2.4.7 Summary 

In this work the approach of using regression trees to predict power system stability 

margins is explored and the following conclusions have been reached: 

 Synchronized voltage and current phasors have been used as RT input 

feature. With a sufficiently large knowledge base, the RT model can predict the system 

oscillatory and voltage stability behavior with high accuracy; 

 According to the test results, the RT model is fast enough to process PMU 

measurements, and it is robust to handle measurement errors that are within 1% TVE; 

 The RT sensitivity to system topology variation becomes less distinct in 

large sized networks and under mild changes in topology. 



 

 88 

2.5 Active Learning for Optimal Data Set Selection 

2.5.1 Introduction 

Analysis of synchrophasor measurements using data mining tools, in pursuit of 

precise stability assessment, requires a sufficiently large training data set. Traditionally 

the process of learning the underlying power system behavioral patterns introduces a 

significant computational burden, such that exhaustive simulations of all possible system 

operating conditions are necessary. Advancements in machine learning make it possible, 

in some cases, to reduce the amount of operating conditions that need to be analyzed 

while learning, without impacting the accuracy of stability assessment. By using a 

probabilistic learning tool in the described active learning scheme to interactively query 

operating conditions based on their importance, we show that significantly less data 

needs to be processed for accurate voltage stability and oscillatory stability estimation. 

Results show that the advantage of active learning is greater on more complicated power 

networks, where larger training data sets are involved. 

Traditional power system stability assessment relies on detailed system modeling 

and time domain simulations to estimate the stability condition of interest. While this 

approach is straightforward and accurate, as long as a precise system model and adequate 

measurements are used, it may introduce significant computational complexity, 

considering the large size of modern power systems. 

The recently emphasized importance of real-time stability monitoring has led to 

applications based on data mining tools such as classification and regression trees [11], 

artificial neural networks [24], and support vector machines [25]. While such tools can be 

used to provide near real-time stability estimation of a power system, compared to time 
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domain simulations, the large amount of operating conditions required for the training 

process is still a major obstacle to their online implementation. The occurrence of a fault 

event or system topology change, common in real time system operations, usually 

requires the data mining tools to be updated in order to reflect the evolving system 

configurations. In such situations, the re-training process may be an obstacle to seamless 

online stability monitoring. 

In this project we focus on reducing the computational burden of training data 

mining tools by applying a pool-based active learning methodology. This approach 

reduces the number of operating conditions that need to be generated via time domain 

simulations, and consequently considered during training, without impacting the stability 

assessment accuracy. 

 

2.5.2 Background 

In this work two types of power system operational performance have been 

examined. Power system voltage stability deals with how far the system load demand is 

from the combined transmission and generation capability [10], while oscillatory stability 

is related to whether the system damping torques are sufficient to bring the system back 

to a steady-state operating condition after a disturbance [9]. The data comes from PMUs.  

Data mining tools have been previously applied in power systems to assess the 

transient stability [13], system operational security [17] and system post-disturbance 

stability [22]; often in cases where the computational complexity of detailed modeling 

may be alleviated by creating highly accurate but approximate predictors. In [29] and 
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[41] the authors have used data mining tools to efficiently estimate the system voltage 

and oscillatory stability margins from system measurement data. In this work we explore 

a meta-learning scheme [42] aimed at reducing the computational burden of training, 

easing the application of data mining-based stability assessment. 

Active learning has often been applied in cases where labeled examples are time 

consuming to obtain [43]. Pool-based active learning has been explored in situations 

where it is necessary to have a human expert provide labels for data [44] and 

classification of large amounts of networked data [45]. This kind of active learning may 

be used to select the optimal subset from a pool of available PMU data for which to 

provide labels via time domain simulation, to be used for predictor training. A detailed 

and recent overview of the active learning literature is given in [43]. 

2.5.3 Methodology 

The task of power system stability assessment may be cast as a data mining 

classification problem [13], [17], [29]. In this case a data mining tool is used to create a 

mapping from the synchrophasor measurements, in our case the positive sequence 

voltage magnitude and angle, and the positive sequence current magnitude and angle, into 

one of the pre-determined stability states, or labels. The data are collected from PMUs 

installed at system substations, and synchronized using a satellite-based global 

positioning system (GPS). 

The stability states are determined according to the value of the corresponding 

stability margin indicator. In the case of oscillatory stability the damping ratio (DR) of 

the critical oscillation mode may be used as the stability margin indicator, and two basic 
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stability states can be defined as: “Stable” (with critical damping ratio, DRcrit > 0) and 

“Unstable” (with DRcrit < 0). Similarly, the voltage stability margin (VSmargin) may be 

defined using the continuation power flow (CPF) technique [20]. The MW-distance of 

the current system operating conditions (OC) from the critical voltage collapse point 

(usually the saddle-node bifurcation point) on the P-V curve is shown in Figure 2.19. 

Two voltage stability states have been defined as being “Stable” or “Alert” based on 

VSmargin. In this work the voltage stability threshold is set at θSTB =30%, however value 

can be further adjusted according to the real-time operational needs. 

 

Figure 2.19  Methodology for voltage stability assessment 

For simplicity of notation let us denote the synchrophasor measurements across a 

power system, including voltage magnitude and angle, and current magnitude and angle, 

characterizing the system in an OC i as xi = [xi1, xi2 … xi4P], where P is the number of 

installed PMUs. In the case of voltage stability, for each system OC i let us label voltage 

stability yi = 1 if VSmargin > 30% and −1 otherwise. Similarly, in the case of oscillatory 

stability let us label yi = 1 if the oscillatory stability state is stable (DRcrit > 0) and −1 

otherwise. 
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Gathering all measurements and their associated labels creates a labeled data set DL 

= {(xi, yi,), i = 1 … N}, where N is the total number of system operating conditions 

considered. A data set DL that may be used to train a data mining tool for either voltage 

or oscillatory stability margin predictions is therefore produced through extensive time-

domain simulation. Let us also introduce the notation DU for a pool of unlabeled 

measurements, consisting of OCs without their associated stability margin labels. 

In our previous work, [29], [41], we found that among the systematically generated 

OCs some are redundant and others are spurious. Spurious data can be considered outliers 

that should be removed from the training data set, for example by using techniques such 

as interquartile range measures [46]. 

The proposed approach is initialized by assuming all the measured data points are 

unlabeled, in DU. We then apply the presented pool-based active learning methodology to 

incrementally select, label and include only points judged significant for learning into DL. 

The procedure is iterated until a desired accuracy threshold is reached, or the budget of 

data points that may be included in DL is expended.  

In the case when labels are computed beforehand for all examples the presented 

pool-based methodology reduces only the computational costs associated with learning. 

When labels for all OCs are not pre-computed a substantial reduction in both time 

domain simulation and learning may be possible, since not all labels may need to be 

computed.  

Our approach uses the probabilistic and generalization properties of artificial neural 

networks and support vector machines to decide which system states should be labeled 
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and consulted during training, and which should not because they contain redundant 

information. 

2.5.3.1 Artificial Neural Networks 

Artificial neural networks (ANNs) are a biologically inspired mathematical model 

with significant applications in data mining. Feed-forward neural networks are composed 

of interconnected processing units, or neurons, each of which compute a simple transfer 

function, most commonly the logistic sigmoid, based on sum of their inputs, and produce 

an output, which may then be fed as the input into other neurons, until the output stage is 

reached. Therefore a neural network may be characterized by the number of neurons and 

connections between them.  

In our case the network architecture is a directed acyclic graph having 4P input 

neurons and one output neuron, with a hidden layer of 10 neurons in between. Training is 

performed by adjusting the weight of connections between neurons until a close match 

between the inputs xi and the desired output, yi, is obtained through the network across all 

training examples i. When making a prediction the input is propagated through the 

network and a continuous output value is produced at the output neuron.  

In traditional applications to classification tasks the output of ANNs is compared to 

a threshold in order to obtain a discrete prediction. For active learning, however, we will 

use the raw output as is typically seen in regression tasks because it can be used to 

provide a measure of uncertainty. 

A specific property of feed-forward artificial neural networks using a logistic 

sigmoid transfer function is that this tool generalizes the entire possible input space even 

if only a few examples are available for training, and may falsely provide highly 
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confident predictions for unseen examples which are very dissimilar to any observed data 

points. 

2.5.3.2 Support Vector Machines 

Support vector machines (SVMs) are mathematical models which, in their simplest 

form, solve a linearly separable binary classification problem by finding the maximum-

margin hyper-plane separating the two classes of points. More sophisticated SVM 

variants can make accurate predictions for non-linear problems, and are resilient to the 

presence of noise in data. 

For the pool-based active learning methodology presented here the SVM is used in 

regression mode, as an implicit probabilistic classifier (see Active Learning 

Methodology), which may be assumed to provide the certainty of an example belonging 

to a class. There are several variants of SVMs distinguished by the kernel function that is 

employed to compute distance between data points. In our preliminary experiments we 

have obtained the most accurate results using the radial basis function (RBF) kernel. 

Unlike the logistic sigmoid based neural networks, a properly trained SVM using the 

RBF kernel does not provide confident predictions for points which are dissimilar to 

examples observed during training. For the following experiments the SVM is used as 

implemented in the LibSVM library [47]. 

2.5.3.3 Active Learning Methodology 

In active learning a probabilistic data mining tool is used to interactively query a 

source of information (or oracle) that is assumed to always be correct, but is expensive to 

use. In our work the oracle is time domain simulation of a power system. With pool-
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based active learning we assumed a large number of unlabeled measurements xi ∈ DU are 

available without their associated labels yi. In this work we have explored an active 

learning methodology based on uncertainty sampling by choosing to label those examples 

whose class probability is closest to 0.5. Computing the uncertainty a predictor has about 

an unseen example, based on the output of a trained ANN or SVM requires the scalar 

continuous output f(xi) to be transformed into the probability of that example belonging to 

the positive class p(yi = 1|f(xi)). This can be accomplished by the transformation, [48], 

.
))(exp(1

1
))(|1(

i

ii
BAf

xfyp



x

                               2.14 

This function is monotonous and increasing for any value of B and of A < 0. 

Therefore we may conclude that the output of ANNs and SVMs can be implicitly 

interpreted as the class probability and used directly in active learning by considering 

predictions f(xi) closer to 0 in absolute terms as more uncertain, or having p(yi = 1|f(xi)) 

closer to 0.5, than those farther away from 0. 

The proposed active learning procedure is initialized by asking the oracle to 

provide the labels for a small number of examples from DU, removing them from DU and 

including them in DL. After learning on DL the tool makes a prediction on all the 

examples for which labels have not yet been computed, DU, and finds those which have 

predictions closest to 0 in absolute terms. In other terms the unlabelled examples are 

sorted according to certainty the tool has about their label and those with highest 

uncertainty are used to query the oracle again.  
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PSEUDO-CODE FOR POOL-BASED ACTIVE LEARNING 

1. Label and remove a small subset of examples from DU 

and place into DL 

2. While stopping criteria is not met: 

a) Train classifier on DL 

b) Make predictions on DU 

c) Choose a small subset of DU based on 

maximum uncertainty, remove them from DU, acquire 

labels for chosen examples from oracle and include 

them in DL 

2.5.4 Experiments 

Two IEEE test systems, namely the IEEE 3-machine 9-bus system and the IEEE 

10-machine 39-bus (New England) system, are used to evaluate the proposed approach. 

In order to create a sufficiently large training data set, different OCs have been 

generated by systematically varying the system generation/shunt outputs, as well as the 

load demands. PSS/E is used to perform load flow calculations, formulate linearized 

system models through numerical perturbation, and derive corresponding stability 

margins. MATLAB and Python add-on scripts are developed to automate this process. 

The procedures for creating the training data set are illustrated in Figure 2.20. 
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Figure 2.20  Procedures for creating the training data set 

 

Additionally, to build a sufficiently large training data set, each generator, load, or 

shunt has been varied at least 6 times (u≥6) and the total variation is at least 40% of the 

base value (u×CG/L/S%≥40%). The goal is to capture the most system stability behavior 

from the problem space. 

Using the procedures shown in Figure 2.20, and by labeling different OCs with 

corresponding stability states described in Section 5.3, the training data set generated for 

these two test systems is summarized in Table 2.8. 

For the following experiments the pool-based active learning methodology was 

used to train SVMs and ANNs. We first performed experiments in batch-mode using 5-
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fold cross-validation to obtain the optimal parameters for SVM and ANN training, and 

the used these parameters to test the active learning approach. 

Table 2.8  Operating Points Generated for Training of Data Mining Tools 

System 

OPs Generated for Oscillatory 

Stability Estimation  

OPs Generated for Voltage 

Stability Estimation 

Stable OPs Unstable OPs Stable OPs Unstable OPs 

9-Bus 1021 50 404 21 

39-Bus 4950 126 1843 59 

 

We compared the performance of training on OPs chosen by active learning with 

training on random subsets of equal size. In the following figures each horizontal axis 

represents the number of OPs that were used for training, chosen either through active 

learning (full blue line) or random sampling (dashed red line), while the vertical axis 

represents the ratio of correctly classified examples to total examples. Because of the 

class imbalance we also present the results of the mean predictor (green dotted line) 

which always predicts the majority class, in our case the positive or stable class. 

At each step of the proposed method we chose to label a single example from DU 

and include it in DL. Testing is then performed across the entire set of generated OPs in 

order to illustrate the generalization power of the proposed approach; however this step is 

not necessary in real applications. In each experiment four initial OPs were labeled by the 

oracle in order to start the procedure. 

2.5.4.1 Support Vector Machine Experiments 

Let us first consider the 9-bus system and the problem of oscillatory stability 

classification. From Figure 2.21 we note that from the start of the procedure active 
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learning outperforms random sampling. Random sampling starts to outperform the mean 

predictor only after 50 examples have been labeled. 

 

Figure 2.21  Comparison of active learning and random sampling on the 9-bus system for 

the oscillatory stability classification task using SVM 

 

In Figure 2.22 we show the comparison results for the 9-bus voltage stability 

estimation performance comparison between active learning and random sampling. From 

Figure 2.22 it can be seen that active learning outperforms random sampling more than in 

the case of OSM prediction.  

 

 

Figure 2.22  Comparison of active learning and random sampling on the 9-bus system for 

the voltage stability classification task using SVM 



 

 100 

We hypothesize that this is due to the drastic difference between the sizes of the 

positive and negative classes. The difference in class sizes means that a greater variance 

may be expected when randomly sampling points because the addition of a few unstable 

OPs in DL may drastically change the decision boundary.  

 

Figure 2.23  Comparison of active learning and random sampling on the 39-bus system 

for the oscillatory stability classification task using SVM 

 

Next we will illustrate how the active learning approach performs on the 39-bus 

system oscillatory stability assessment using SVMs. From Figure 2.23 the active learning 

approach significantly starts to outperform random sampling after 100 examples are 

labeled.  

In Figure 2.24 similarly to Figure 2.22 the simpler task of voltage stability margin 

estimation results in a smaller but still significant performance gain from using active 

learning. 
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Figure 2.24  Comparison of active learning and random sampling on the 39-bus system 

for the voltage stability classification task using SVM 

2.5.4.2 Artificial Neural Network Experiments 

Unlike the SVM, in many cases the ANN using a logistic sigmoid transfer function 

may provide very confident predictions for data points dissimilar to those observed 

during training. Because of the imbalance of classes the four points used to initialize the 

active learning training will often of be in the positive, or stable, class. These two causes 

force the ANN to behave like a mean predictor, classifying the entire input space as the 

positive class with high confidence, until a negative example is included in DL. To 

overcome this issue we included three positive and one negative point in the initialized 

DL. In the resulting figures this is reflected as poor performance when very few examples 

are included in DL. However, once enough points are included in DL the performance of 

ANN becomes closer to that of SVMs. 

In Figure 2.25 we compare active learning to random sampling and the mean 

predictor when using ANNs on the oscillatory stability task using 9-bus system data. 

From Figure 2.25 the active learning provides significant improvement when few 

examples are observed. Interestingly, random sampling provides better results when 

using ANN than SVM on this task after 250 points are included in DL. 
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Figure 2.25  Comparison of active learning and random sampling on the 9-bus system for 

the oscillatory stability classification task using ANN 

The next result, in Figure 2.26, shows the accuracy comparisons of using ANNs on 

the voltage stability task for the 9-bus system data set. Again after many labeled 

examples are included in DL the performance of random sampling becomes close to that 

of active learning. 

 

Figure 2.26  Comparison of active learning and random sampling on the 9-bus system for 

the voltage stability classification task using ANN 

In Figure 2.27 we show the 39-bus system oscillatory stability experiment results. 

Here random sampling struggles to become more accurate than the mean classifier even 
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when 300 points are included in DL. The ANN trained using active learning provides 

higher accuracy than random sampling in this case as well. 

Finally, Figure 2.28 we show the results of ANN using active learning and random 

sampling on the 39-bus system voltage stability classification task. Although initially in 

this case random sampling outperforms active learning, after 20 examples are included in 

DL the active learning trained ANN starts to outperform random sampling. Again, 

random sampling struggles to outperform the mean predictor. 

 

Figure 2.27  Comparison of active learning and random sampling on the 39-bus system 

for the voltage stability classification task using ANN 

 

 

Figure 2.28  Comparison of active learning and random sampling on the 39-bus system 

for the oscillatory stability classification task using ANN 
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In Table 2.9 we summarize the accuracy of predictors on the oscillatory stability 

tasks and in Table 2.10 we include accuracy on the voltage stability tasks after 300 points 

have been included in DL. 

Table 2.9  Accuracy Results on Oscillatory Stability Task 

DATA 

SET 

ANN SVM 

ACTIVE 

LEARNING 
RANDOM 

ACTIVE 

LEARNING 
RANDOM 

9-BUS 99.9% 99.7% 100% 99.2% 

39-BUS 98.5% 97.7% 99.4% 98.2% 

 

Table 2.10  Accuracy Results on Voltage Stability Task 

DATA 

SET 

ANN SVM 

ACTIVE 

LEARNING 
RANDOM 

ACTIVE 

LEARNING 
RANDOM 

9-BUS 99.8% 99.5% 99.8% 96.8% 

39-BUS 97.6% 96.6% 99.2% 96.9% 

 

2.5.5 Conclusion 

The following conclusions were reached: 

 A significant improvement in accuracy can be obtained from a reduced 

data set by using active learning to select a subset of data to learn from. In the 

case of an existing labeled data set the presented methodology can be used to 

filter out redundant data thus reducing the computational burden of training data 

mining tools. 

 When only a set of power system OCs is available without their associated 

stability states, and precise values of DR and VSmargin must be obtained through 

time domain simulation, the proposed method may be used to select which OCs to 
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query in order to create the most adequate data set to learn from. This may 

significantly reduce the complexity involved in time domain simulations. 

 The performance improvement observed on more complex power system 

tasks is greater than on simpler tasks. The experiments also show that for simpler 

tasks the used ANNs are less sensitive to data set selection than SVMs, as can be 

seen from the random sampling results in Tables 2.28 and 2.24. On more complex 

tasks, and in all examined cases employing active learning, higher accuracy can 

be obtained using SVMs. 

 We conclude that in the examined cases using active learning to pick 

which system OCs are simulated in the time domain, and afterwards used for 

training will lead to more accurate stability assessment, decrease the 

computational complexity, or both. 

2.6 Feature Selection and Optimal PMU Placement 

2.6.1 Introduction 

In previous sections, the RTs were fed with voltage and current phasors measured 

at all buses. An underlying assumption is that almost every substation is equipped with a 

PMU. In practice this is not economically feasible, since the installation of PMUs and 

corresponding telecommunications path is very costly. A reasonable approach may be to 

install only a limited number of PMUs at the most critical substations. The problem of 

finding the optimal PMU location is equivalent to selecting the best reduced set of RT 

input features without a significant degradation in RT performance. 
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2.6.2 Variable Importance Derived from Decision Trees 

Ideally, the optimal solution could be obtained through an exhaustive trial and 

comparison of all possible feature combinations. However this approach is too 

computationally involved. In this work we are proposing a different approach and the 

idea comes from a unique property of the RT model structure [41] [49]. The topology of 

the 9-bus system OSM-RT derived in Chapter 3 is shown in Figure 2.29. Each node has 

been split by an input variable, and the variable is selected as the splitter because it is the 

most powerful variable among all candidate features that can best split the node. The 

variables gain credit towards their importance by serving as primary splitters at a node, or 

as back-up splitters (surrogates) to be used when the primary splitter is missing. By 

summarizing the variables’ contribution to the overall tree when all nodes are examined, 

the Variable Importance (VI) can be obtained. 

 

Figure 2.29  OSM-RT topology and node splitters of the 9-bus system 

To calculate the VI, search all splits sS on variable xm at each tree node tT, and 

find the split s
*

m that gives the largest decrease in regression R [11]: 
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m tsRtsR


  ),(max),(  6.1 

Suppose s
*
 is the best of s

*
m , and ms~  is the split on variable xm that has the best 

agreement with s
*
 in terms of partitioning cases, the measure of importance of variable xm 

is defined as: 

 



Tt

mm tsRxVI ),~()(  6.2 

 

 

Figure 2.30  IEEE 9-bus system VSM-RT and OSM-RT variable importance 

Figure 2.30 shows the computed VI for the OSM-RT and VSM-RT of the 9-bus 

system derived in previous sections. The actual measures of importance have been 

normalized so that the most important variable has a VI of 100. 

2.6.3 Combined Bus Ranking 

The intuition behind Combined Bus Ranking (CBR) is as follows: The overall 

contribution of each bus to the oscillatory and voltage stability evaluation can be 
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quantified by combining the importance of variables measured at this bus. 

Mathematically the CBR of Bus i can be expressed as: 

 





 
ix

RTVSM
ix

RTOSMi xVIxVICBR )()(  2.15 

where X is the vector of RT input variables, x is the individual variable belong to X, 

and VI(x) is its importance. By specifying xi, only the variables measured at Bus i will 

be counted. 

2.6.4 Optimal PMU Locations 

A ranking list of the bus contributions can be obtained by sorting the CBR values 

from high to low. The optimal PMU locations will be suggested by selecting the top 

ranked buses from the list. In this work the CBR of top ranked buses were computed by 

considering only the primary splitters, because the surrogate variables that appear to be 

important but rarely split nodes are almost certainly highly correlated with the primary 

splitters and contain similar information. Once the top ranked buses were selected, the 

standard VI considering both primary and surrogate splitters were used to rank the 

remaining buses. In Table 2.11, the CBR for the WECC 179-bus system was calculated 

and top 10 buses are listed. Also shown in the table are the 10 buses with the lowest 

CBR. 

Suppose that a number of 4 to 20 PMUs will be installed in the WECC system. By 

placing them at the top ranked buses of Table 2.11, the resulting RT prediction accuracy 

for unseen OPs is summarized in Figure 2.31. The RT performance using the 
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measurements from the lowest ranked buses is also presented for the purpose of 

comparison. 

Table 2.11  WECC 179-Bus System Combine Bus Ranking 

Top Ranked Buses Lowest Ranked Buses 

Rank Locati

on 

CBR Rank Locati

on 

CBR 

# 1 Bus 

90 

100.8

2 

# 170 Bus 

162 

0.31 

# 2 Bus 

100 

100.2

3 

# 171 Bus 

163 

0.28 

# 3 Bus 

95 

38.27 # 172 Bus 

172 

0.24 

# 4 Bus 

96 

18.47 # 173 Bus 

168 

0.12 

# 5 Bus 

97 

13.99 # 174 Bus 

85 

0.11 

# 6 Bus 

67 

12.73 # 175 Bus 

50 

0.02 

# 7 Bus 

12 

12.52 # 176 Bus 

92 

0.02 

# 8 Bus 

11 

8.48 # 177 Bus 

94 

0.01 

# 9 Bus 9 8.44 # 178 Bus 

165 

0.01 

# 10 Bus 

20 

8.24 # 179 Bus 

171 

0.00 

 

As shown in Figure 2.31 in contrast with the RTs fed with measurements from the 

lowest ranked buses, those constructed using the measurements from top ranked buses 

have exhibited better performance. Another conclusion could be made by comparing the 

R
2
 of Figure 2.31 with Figure 2.17: almost identical RT prediction R

2
 was achieved by 

using the reduced set of measurements from the PMU locations suggested by CBR. Last 

but not least, there is a huge decrease of the complexity in RT training since fewer 

features are used. The training time of the 179-bus RTs has been reduced from about 3 

minutes to less than 30 seconds. 
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Figure 2.31  RT performance considering different PMU pacements in the 179-bus 

system 

2.6.5 Summary 

A novel methodology for optimal placement of PMUs in a power network is 

proposed. The variable importance of each DT input features can be derived from CART 

and utilized to rank the importance of network substations for stability assessment 

applications. The combined bus ranking derived from RT variable importance is used to 



 

 111 

suggest optimal PMU locations. The performance of DTs using synchrophasor 

measurements from a limited number of PMUs was checked. Test results show that the 

measurements from reduced locations can still lead to satisfactory RT prediction 

accuracy. 

2.7 Measurement-based Approach Applied to Field PMU Data 

2.7.1 Introduction 

Power system oscillatory stability assessment is the task of monitoring the rotor 

angle synchronism of generators at different locations. The recent trend in the electric 

power industry is to interconnect transmission lines linking small autonomous systems 

into large integrated systems, some of which span the entire continent. For example, in 

the United States and Canada generators which are located thousands of miles apart are 

operated simultaneously and synchronously. As a consequence inter-area 

electromechanical oscillations are becoming a more common occurrence. Since modern 

systems are optimally run near their stability threshold, the estimation of the distance of 

an operating point from instability region is critical for stable operation. 

Traditional oscillatory stability assessment methods may not satisfy the online 

monitoring requirements because: 1) they are based on time-domain model simulations 

which are computationally intensive and time-consuming; 2) they use data collected from 

Supervisory Control and Data Acquisition (SCADA) systems, or state estimation 

functions, both of which are updated relatively infrequently. 

With improved data acquisition technology, such as temporal synchronization of 

measurements at different locations, it may be possible to detect the onset of instability 
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more accurately. The ability of synchrophasors to capture system-wide dynamics shows 

their potential in real-time system stability monitoring applications. 

The advantages of a measurement-based approach include lower computational 

complexity, reduced knowledge requirements about system model parameters, and the 

potential to provide system stability assessment in real time. Most measurement-based 

approaches use appropriate signal processing or spectral analysis techniques to extract 

information from periodically collected power systems data. One such method is Prony 

analysis, which has been investigated by Kumaresan et al. in exponentially damped signal 

analysis [50]-[51], and later applied to power systems by Hauer et al. in oscillatory 

stability assessment [52]-[53]. Prony analysis is a powerful tool for mode parameter 

identification of electromechanical oscillations. However, if noise is present in 

measurements it performs poorly [51]. Another shortcoming of Prony’s method is that it 

is only suitable for transient, or ringdown, data analysis, and cannot be applied to ambient 

data such that the system is excited by random load variations [54]. Therefore it is termed 

a ringdown analyzer that operates specifically on transient portion of a measured signal. 

Alternatively, several mode meters, such as the Yule-Walker method [54], 

autoregressive moving average (AR/ARMA) model [55], and subspace estimation 

method [56]-[58], have been extensively studied in the past two decades in order to 

estimate mode parameters from both ambient data and transient data. While in previous 

efforts accurate estimation has been achieved for oscillation mode frequency, the problem 

of identifying mode damping, a more important task in terms of stability assessment, has 

not been satisfactorily resolved, although encouraging results were reported under certain 

test scenarios [52]-[59]. 
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In this work, a data mining approach is used to estimate oscillatory stability in real 

time. The decision tree (DT) method proposed by Breiman et al. is employed to map 

system operating points at each instant to one of several pre-defined stability states. 

Compared to previous research, the proposed approach casts the task as a multi-class 

classification problem, as detailed in Section 7.3. In Section 7.4 we show the results of 

the proposed method using the IEEE 39-bus test system. Finally, the data mining 

approach is evaluated on field PMU measurements from Salt River Project (SRP), a 

public electrical utility in Phoenix, Arizona, U.S.A. 

2.7.2 Theoretical Formulation 

2.7.2.1 Oscillatory Stability Assessment 

Oscillatory stability is associated with Hopf Bifurcation. An instability event occurs 

when, following a small disturbance, the damping torques are insufficient to bring the 

system back to a steady-state operating condition, identical or close to the pre-disturbance 

condition. 

As shown in Figure 2.32, power system oscillations may be classified into four 

categories in terms of frequency: 1) speed governor band, from 0.01 to 0.15 Hz; 2) inter-

area electromechanical band, from 0.15 to 1.2 Hz; 3) local electromechanical band, from 

1.2 to 5 Hz; and 4) torsional dynamics band, from 5 to 15 Hz. This work focuses on the 

second category: the low-frequency inter-area oscillations.  
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Figure 2.32  Typical frequency band of different oscillation types 

2.7.2.2 Mode Identification without System Model  

Traditionally, the stability of inter-area oscillations is evaluated through modal 

analysis of the system’s non-linear differential algebraic equations (DAE) using detailed 

system model parameters, as detailed in Section 2.2. The inter-area oscillation modes that 

carry significant amount of energy but with insufficient DR are critical among all modes 

and need to be closely monitored.  

In contrast to the model-based approach, the measurement-based approach does not 

require detailed system model information. Recent efforts take measurements from 

different locations during the same period of time, and identify oscillation mode 

parameters through signal processing techniques. The mode parameters that can be 

estimated include frequency, f, damping, , amplitude, A, and phase, , as shown in 

Figure 2.33. 

There are three types of relevant power system measurements: ambient data, 

transient (ringdown) data, and probing data. Figure 2.34 shows the ambient and ringdown 

measurements. The probing data is beyond the scope of this work and will not be 
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discussed further. For ambient data an AR/ARMA model is used to derive mode 

parameters while Prony analysis is used for ringdown data. 

 

Figure 2.33  Mode parameters identified from power system measurements 

 

Figure 2.34  Ambient/ringdown signals and corresponding analysis windows 

2.7.2.3 Oscillatory Stability Evaluation Using Prony’s Method 

Assume x(t) is the state of a linear time-invariant (LTI) dynamic system and u(t) is 
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the input to the system. The evolution of the state is expressed by: 

 
     

  
             2.16 

where A and B are constant matrices. 

Suppose the LTI system is brought to an "initial" state x(t0)=x0, at time t0, by means 

of the input u(t). Then, if the input is removed and there are no subsequent inputs or 

disturbances to the system, it will "ring down" according to a differential equation of 

form: 

 
     

  
       2.17 

where x is the state of the system and n is the number of components in x (i.e., the 

order of the system). Let xi, pi, qi be respectively the eigenvalues, right eigenvectors, and 

left eigenvectors of matrix A (of size nn). The solution to Eq. 2.17 can be expressed as 

the sum of n components: 

      ∑    
       

    
    2.18 

Let y(t) be the system response. As we have assumed the system is an LTI system, 

y(t) can be expressed in the form: 

 
     

  
             2.19 

where C and D are constant matrices. If the input is removed (u(t)=0), then Eq. 2.19 

simplifies to: 
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       2.20 

Suppose an observed record for y(t) is a signal consisting of N samples y(tk)=y(k), 

k=0, l, ..., N-l, that are evenly spaced by an amount t. Similarly to the Fourier series, 

Prony analysis builds a series of damped complex exponentials or sinusoids. Through 

Prony’s method, valuable information such as oscillation frequency, amplitude, mode 

phase and decay time could be extracted from a uniformly sampled signal. 

Prony’s method and its recent extensions are designed to directly estimate the 

parameters for the exponential terms in Eq. 7.3 by fitting a function: 

  ̂    ∑   
 
                     2.21 

After some manipulation utilizing Euler’s formula, the following result is obtained. 

This allows for more direct computation of terms: 

  ̂    ∑   
 
                     ∑

 

 

 
      

         2.22 

where           are the eigenvalues of component i, i are the damping 

coefficients, fi are the frequency components, i is the phase of component i, Ai is the 

amplitude of component i, and L is the number of damped exponential components. 
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The strategy for obtaining a Prony solution can be summarized as follows: 

PSEUDO-CODE FOR PRONY’S ALGORITHM 

1. Construct a discrete linear prediction model (LPM) that fits 

the record. 

2. Find the roots of the characteristic polynomial associated 

with the LPM of step 1. 

2. Using the roots of step 2 as the complex modal frequencies 

for the signal, determine the amplitude and initial phase for 

each mode. 
 

 

These steps are performed in z-domain. For power system applications the 

eigenvalues would usually be translated to s-domain, consistent with Eq. 2.16 - Eq. 2.17 

2.7.2.4 Oscillatory Stability Evaluation Using ARMA 

ARMA and AR methods are a common parametric approach to spectral analysis 

while fast Fourier transform (FFT) methods are nonparametric approaches. The AR and 

ARMA models allow the direct estimation of the electromechanical oscillation modes. 

The ambient noise is assumed to be relatively statistically stationary for a block of 

data for the frequencies of interest. For the ARMA model shown in Figure 2.35, the 

corresponding difference equations relating the input and output are: 

                        

                            2.23 
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Figure 2.35  ARMA model with white noise at the input 

2.7.2.5 Data Mining Approach 

The DT algorithm has been used as a classification tool for online oscillatory 

stability estimation. The DT is created by sequentially splitting the training data set at 

each tree node, starting from the root. The node splitting rule is determined by searching 

all candidate attributes, and finding the split which gives the largest decrease in class 

impurity. A terminal node is reached when maximum purity has been achieved. 

In the experimental section we compared results obtained using DTs with those 

obtained using feed-forward neural networks and support vector machines. Both 

techniques are well known for their powerful modeling and generalization capabilities in 

classification analysis.  

In this work the commercial software MATLAB is used to implement the neural 

networks and support vector machines. Synchrophasors collected from PMUs are used as 

the input attributes to data mining tools. 

2.7.3 Proposed Approach 

2.7.3.1 Framework 

A framework of the proposed measurement-based scheme has been previously 

shown in Figure 2.2. The model-based approach, which was investigated by the authors 

in [29] and [41], is also shown in the figure for comparison purposes. 
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For each power system, several stability thresholds are specified with respect to the 

typical damping ratio of the critical oscillation mode (DRcrit), and a set of stability states 

is defined accordingly. As shown in Figure 2.36, for the given oscillatory stability 

thresholds θSTB and θALT (θSTB > θALT), operating points (OPs) will be labeled as ‘Good’ 

if they satisfy DRcrit ≥ θSTB            ; “Fair” if they satisfy θSTB > DRcrit ≥ θALT; 

“Alert” if they satisfy θALT > DRcrit  ≥ 0; and ‘Unstable’ when 0 > DRcrit. In practice, the 

values of θSTB and θALT are usually around 10% and 5% respectively. 

 

Figure 2.36  Classification of oscillatory stability states 

2.7.3.2 Mode Parameter Identification 

Figure 2.37 illustrates the online application procedures of the proposed scheme. 

As the first step, a knowledge base needs to be created in order to train the classification 

tree. Included in the knowledge base are the input PMU measurements at each system 

operating point (OP), as well as the oscillatory stability state corresponding to each OP. 

The procedure is initialized with a window scanning of the historical PMU 

measurements. An Oscillation Detector (OD) is designed to detect whether a transient 

event occurs by monitoring the presence of a sudden deviation in recorded 

measurements. If there are no abnormal changes, the OD suggests that the system is 
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operated under a steady state, and an AR/ARMA model is employed to estimate the 

mode parameters in a sliding window manner. The required window length for ambient 

data analysis varies from 5 minutes to half an hour, depending on the variation level of 

system loads. If a sudden deviation is detected, but only limited to fewer than 5 data 

points, the corresponding measurements are considered outliers caused by sensor or 

communication error, and are discarded from consideration. If a continued deviation has 

been observed, the OD will report that a transient process is potentially occurring, and 

Prony analysis is applied to scan the transient data using a sliding window with a length 

of 5 to 10 seconds, depending on the critical mode frequency of the inter-area 

electromechanical oscillation. 
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Figure 2.37  Online application of the proposed scheme 

2.7.3.3 Classification Tree for Stability Assessment 

In order to overcome the limitations of Prony and ARMA methods, the ringdown 

data is pre-processed using a low-pass filter, and the window length of AR/ARMA model 

is sufficiently large to assure accurate estimation. Once a sufficient number of cases have 

been accumulated, the knowledge base is used to train the classification trees. The 

derived optimal DT is then applied online. As shown in Figure 2.37, new PMU 

measurements are dropped down through the tree to predict the oscillatory stability status 

of each OP in real time. 
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One of the key challenges of embedding DTs in online applications is the problem 

of evolving system operating conditions. Due to variations in system generation and 

loading patterns, and changes in system topology, the DRcrit of inter-area 

electromechanical oscillations may also change. To deal with this eventuality, the 

classification tree derived in CART needs to be periodically refreshed in order to reflect 

the most current system operating conditions. This is done by updating the knowledge 

base using the most recent PMU measurements, and re-training the DT. 

2.7.4 Case Study 

The IEEE 10-machine 39-bus test system (New England system) is used to 

implement the proposed scheme. Its one-line diagram is shown in Figure 2.7. Firstly the 

oscillation mode parameters are estimated through model-based eigenvalue analysis. 

They will be used later to validate the results of the measurement-based approach. 

The 39-bus system is modeled in MATLAB/SIMULINK. As shown in Figure 2.38, 

the Network Solution Module initializes the time-domain simulation, calculates power 

flow, and provides real time network solutions using dynamic model parameters.  

The low-frequency oscillation modes with insufficient DRs are listed in Table 2.12. 

They are obtained from model-based eigenvalue analysis of the IEEE 39-bus system. 

Also listed in this table are the dominant generators that participate in the correlated 

oscillation modes. 
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Figure 2.38  Simulink model of the IEEE 39-bus test system 

In this work the Mode #5 with a frequency of 0.58 Hz is targeted for monitoring. 

To simulate the load variations, Gaussian noise with Mean = 0.05 and Signal to Noise 

Ratio (SNR) = 20 dB has been introduced to four system loads. The time-domain 

simulation has been performed for 15 minutes. To create transient signal, a fault that 

caused the line between Bus 26 and Bus 28 to trip has been simulated. The fault occurred 

at t = 700s, and lasted for 0.02s. The resulting measurements from all system buses are 

recorded. In particular, the voltage magnitudes and phase angles at Bus 7 and Bus 39 are 

shown in Figure 2.39 and Figure 2.40. 

 

 

 

 



 

 125 

Table 2.12  Low-Frequency Oscillation Modes Obtained from Model Initialization 

 Mode #1 Mode #2 Mode #3 Mode #4 Mode #5 

Frequency 

(Hz) 
1.21 1.13 1.03 0.96 0.58 

Damping 

Ratio (%) 
1.06 4.62 1.87 8.81 6.35 

Dominant 

Generator 
G1, G3 G4, G6 G3 G10 G2 

 

 

Figure 2.39  Voltage magnitude signals 

 

Figure 2.40  Phase angles and their difference 

Prony analysis has been applied to the Bus 39 voltage magnitude signal during the 

transient process. The sliding window has a length of 5 seconds and the Prony model 

order is set to be N=30. 
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The AR model has been applied to the phase angle difference between Bus 7 and 

Bus 39, which is shown in Figure 2.40. The ambient data before the fault are treated 

using a sliding window with a length of 10 minutes. Different model orders have been 

deployed to compare the results. The mode damping ratios estimated by AR of order 

N=60 are drawn in Figure 2.41. The Mean of the damping ratios estimated with different 

model orders have been summarized in Table 2.13. Table 2.13 shows that the mode 

frequency estimated from AR and Prony are very close to the eigen-analysis results in 

Table 2.12. The damping ratio estimated by AR is approaching the actual value when 

increasing the model order. The DR estimated by Prony analysis is different due to the 

change in system topology. 

 

 

Figure 2.41  Damping ratios estimated from ambient measurements 
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Table 2.13  Estimate Mode #5 by Applying AR to Ambient Data 

 Order 
Frequency 

(Hz) 

Damping 

Ratio (%) 

AR 

N=30 0.5622 4.391 

N=60 0.5819 5.637 

N=90 0.5753 6.224 

Prony N=30 0.5787 5.185 

 

By varying the load disturbance level and fault scenario, the time-domain 

simulations have been replicated and a total of 4938 OPs with their corresponding 

stability states are included in the knowledge base. A classification tree has been 

developed in CART using 80% of the cases, and the rest 20% has been used in new case 

testing. The classification accuracy is evaluated as follows, 

.
sPredictionofNumberTotal

sPredictionCorrectofNumber
Accuracy                               (7.1) 

The DT accuracy is summarized in Table 2.14. It is observed that an overall 

prediction accuracy as high as 98.38% has been achieved.  

Table 2.14  Classification Tree Performance 

 Good Fair Alert Accuracy 

Good 610 8 2 0.9839 

Fair 3 349 1 0.9887 

Alert 0 2 13 0.8667 

Accuracy 0.9951 0.9721 0.8125 0.9838 
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2.7.5 Application to Field PMU Measurements 

The filed PMU measurements received from a public electrical utility in Phoenix, 

Arizona, U.S.A., the Salt River Project (SRP), have been used to evaluate the proposed 

scheme. The data include synchronized voltage and current phasor measurements, under 

both ambient and transient conditions. The transient data recorded two consecutive brake 

insertion applications at a major transmission substation. The voltage magnitude 

measured at another substation has been divided into two 5-minute signals as shown in 

Figure 2.42. Each of the signals includes one transient process. 

 

 
 

 

Figure 2.42  Field voltage magnitude measurements from PMUs 

A knowledge base has been created by applying the same procedure introduced in 

Section 2.7.4 to the field measurements from PMUs. The resulting DT performance has 

been summarized in Table 2.15. Two other data mining tools, the artificial neural 
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network (ANN) and support vector machine (SVM), have also been used to compare the 

results. 

From Table 2.15, the DT-based prediction model achieved similar accuracy to other 

data mining tools. Compared to some “black-box” models, however, the DT provides a 

more transparent structure with a clearer cause-effect relationship. Its piece-wise 

structure and node splitting rules enable the identification of the critical variables and 

thresholds that should be analyzed to gain insight into the oscillatory stability of a 

system. 

Table 2.15  Results Comparison 

Data Mining 

Tools 

Misclassification Rate 
Overall 

Accuracy 
Good Fair Alert 

DT 0.0219 0.0667 0.0737 0.9739 

ANN 0.0034 0.0902 0.1852 0.9873 

SVM 0.0008 0.0738 0.0602 0.9940 

2.8 Summary 

The use of Decision Trees for online stability assessment without the knowledge of 

system model parameters has been investigated in this work: 

 The proposed scheme is a measurement-based method that complements 

the traditional model-based approach. It is particularly useful when system model 

parameters are not readily available; 

 The proposed approach is able to provide control center operators with 

real time support by making use of the quickly updated PMU measurements; 
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 Once trained using the knowledge base, the DT-based predictor can 

achieve high accuracy in online oscillatory stability estimation; 

 The data mining tools are capable of reflecting the evolving system 

operating conditions when the most recent PMU measurements and corresponding 

knowledge base are used; 

 When the results are compared with other data mining tools such as ANN 

and SVM, it is observed that almost identical prediction accuracy can be achieved. 

2.9 Conclusions 

In this project the approach of using classification and regression trees to predict 

power system stability behavior from PMU measured synchrophasor data is explored. 

The following conclusions were reached in this work: 

 The DT-based data mining model provides an accurate assessment of the 

stability status of each system operating point. Compared with some other data 

mining tools, using DTs it is possible to identify the critical variables and 

thresholds that need to be analyzed to gain insight into the stability margin of a 

power system; 

 Encouraging results were obtained through performance examination 

using the proposed knowledge base generation methodology. With a sufficiently 

captured system stability behavior, the DT model can predict the system 

oscillatory and voltage stability status with high accuracy; 
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 The CT classification accuracy is related to how the tree is developed, and 

the setting for minimum parent node cases can alter the shape of the resulted tree 

as well as its performance; 

 According to the test results, an RT model is fast enough to process PMU 

measurements, and it is robust to handle measurement errors that are within 1% 

TVE. The RT sensitivity to system topology variation becomes less distinct in 

large sized networks and under mild changes in topology. The proposed DT update 

methodology enables seamless online stability monitoring; 

 A significant improvement in accuracy can be obtained from a reduced 

data set by using active learning to select a subset of data to learn from. In the case 

of an existing labeled data set the presented methodology can be used to filter out 

redundant data thus reducing the computational burden of training data mining 

tools. The performance improvement observed on more complex power system 

tasks is greater than on simpler tasks.  

 The combined bus ranking derived from RT variable importance is used to 

suggest optimal PMU locations. Test results show that the measurements from a 

reduced number of locations may still lead to satisfactory RT prediction accuracy; 

 The proposed measurement-based oscillatory stability assessment method 

complements the traditional model-based approach. It is particularly useful when 

system model parameters are not readily available; 

 The data mining tools are capable of reflecting the evolving system 

operating conditions when the most recent PMU measurements and corresponding 
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knowledge base are used; 

 When the results are compared with other data mining tools such as ANN 

and SVM, it is observed that almost identical prediction accuracy can be achieved 

by using DT. In addition, the DT model provides a more transparent structure with 

a clearer cause-effect relationship. 
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3 Data Mining for Online Dynamic Security Assessment using PMU 

Measurements 

3.1 Introduction 

Dynamic security assessment [60] can provide system operators important 

information regarding the transient performance of power systems under various possible 

contingencies. By using the real-time or near real-time measurements collected by phasor 

measurement units (PMUs), online DSA can produce more accurate security 

classification decisions for the present OC or imminent OCs. However, online DSA still 

constitutes a challenging task due to the computational complexity incurred by the 

combinatorial nature of N k ( 1,2,k  ) contingencies and the massive scale of 

practical power systems, which makes it intractable to perform power flow analysis and 

time domain simulations for all contingencies in real-time. 

The advent of data mining techniques provides a promising solution to handle these 

challenges. Cost-effective DSA schemes have been proposed by leveraging the power of 

data mining tools in classification, with the basic idea as follows. First, a knowledge base 

is prepared through comprehensive offline studies, in which a number of predicted OCs 

are used by DSA software packages to create a collection of training cases. Then, the 

knowledge base is used to train classification models that characterize the decision rules 

to assess system stability. Finally, the decision rules are used to map the real-time PMU 

measurements of pre-fault attributes to the security classification decisions of the present 

OC for online DSA. The data mining tools that have proven effective for DSA include 

decision trees [13][14][15][16][18][20], neural networks [61][62][63] and support vector 

machines [25][64][65]. More recently, fuzzy-logic techniques [22] and ensemble learning 
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techniques [19][66][67] have been utilized to enhance the performance of these data 

mining tools in security assessment of power systems. Among various data mining tools, 

DTs have good interpretability (or transparency) [68], in the sense that the secure 

operating boundary identified by DTs can be characterized by using only a few critical 

attributes and corresponding thresholds. As illustrated in Fig. 3.1, a well-trained DT can 

effectively and quickly produce the security classification decisions for online DSA, 

since only a few PMU measurements of the critical attributes are needed. The high 

interpretability of DTs is amenable to operator-assisted preventive and corrective actions 

against credible contingencies [69]. However, as discussed in [23], there exists an 

“accuracy versus transparency” trade-off for data mining tools. In order to obtain a more 

accurate classification model from DTs, one possible approach is to use an ensemble of 

DTs at the cost of reduced interpretability. Examples of ensembles of DTs for DSA are 

the multiple optimal DTs [18], random forest [19] and boosting DTs [66]. 

 

Figure 3.1  Fully-grown DT of height 5 for the WECC system using an initial 

knowledge base consisting of 481 OCs and three critical contingencies 



 

 135 

When applying data-mining-based approaches to online DSA with PMU 

measurements, there are two main issues that can compromise the performance of the 

classification model trained offline, as listed below: 

 The realized OCs in online DSA can be dissimilar to those in the initial 

knowledge base prepared offline, since the predicted OCs might not be 

accurate and the OCs can change rapidly over time. Further, it is possible that a 

system topology change may occur during the operating horizon due to the 

forced outage of generators, transformers and transmission lines.  

 In online DSA, PMU measurements can become unavailable due to the 

unexpected failure of the PMUs or phasor data concentrators (PDCs), or due to 

loss of the communication links.  

However, there have been limited efforts directed towards handling OC variations and 

topology changes. In the scheme proposed in [18], when the built DT fails to classify the 

changed OCs correctly, a new DT is built from scratch or a sub-tree of the DT is replaced 

by a newly built corrective DT. Aiming to deal with possible topology changes, 

references [62], [67] suggest creating an “overall” knowledge base that covers all 

possible system topologies and choosing the attributes that are independent of topology 

for data mining. Further, reliable PMU measurement is usually assumed in literature, and 

the issue of missing PMU measurements in online DSA has not been considered. 

To develop a robust data-mining-based online DSA scheme, the initial knowledge 

base and the classification model have to be updated in a timely manner to track these 

changed situations. Therefore, the two main objectives of our study in this project are:  
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 to develop data-mining-based online DSA schemes that are robust to power 

system dynamics, including OC variations and topology changes; 

 to develop data-mining-based online DSA schemes that are robust to WAMS 

failures, including missing PMU measurements. 

To these ends, state-of-the-art adaptive ensemble DT learning techniques have been 

developed and applied to online DSA, and shown to be effective through case studies 

with practical test systems. In what follows, technical background of adaptive ensemble 

DT learning is first introduced in Section 3.2. Then, the proposed approaches are 

presented in Section 3.3 and Section 3.4, respectively. 

3.2 Background on Adaptive Ensemble DT Learning 

The data-mining framework for DSA was originally developed in [13], in which 

DTs were introduced to perform DSA for power systems. A DT, as illustrated in Fig. 3.1, 

is a tree-structured predictive model that maps the measurements of an attribute vector x  

to a predicted value ŷ . When DTs are used for online DSA, the attribute vector can 

consist of various PMU-measured variables and other system information, and the binary 

decision given by DTs represents the security classification decision of an OC for a 

critical contingency (e.g., ˆ 1y    represents the insecure case, and ˆ 1y    for the secure 

case). Usually, bus voltage phase angles, bus voltage magnitudes and branch 

power/current flows that are directly measured by PMUs are used as numerical attributes. 

Fig. 3.1 illustrates the numerical and categorical attributes used in a trained DT, in which 

an attribute with initial ‘V’ stand for a bus voltage magnitude, the attributes with initials 

‘P’, ‘Q’, and ‘A’ stand for an active power flow, a reactive power flow, and a voltage 



 

 137 

phase angle difference between two buses, respectively (the bus numbers in attribute 

names are different from their real ones), ‘CTNO$’ stands for the index of contingency. 

In a DT, each non-leaf node tests the measurement of an attribute and decides 

which child node to drop the measurements into, and each leaf node corresponds to a 

predicted value. As shown in Fig. 3.1, in a DT for DSA, the predictive value of each leaf 

node is either ‘S’ or ‘I’, in which ‘S’ stands for secure cases and ‘I’ for insecure cases. 

Fig. 3.1 also illustrates the training cases that fall into each node, by using dark bars for 

secure cases and bright bars for insecure cases. The number of non-leaf nodes along the 

longest downward path from the root node to a leaf node is defined as the height of a DT. 

Given a collection of training cases 1{ , }N

n n ny x , the objective of DT induction is to find a 

DT that can fit the training data and accurately predict the decisions for new cases. State-

of-the-art DT induction algorithms are often based on greedy search. For example, in the 

classification and regression tree (CART) algorithm [11], the DT grows by recursively 

splitting the training set and choosing the critical attributes (numerical or categorical) and 

critical splitting rules (CSR) with the least splitting costs until some predefined stopping 

criterion (e.g., the size of tree or the number of training cases in a leaf node) is satisfied. 

In general, a fully-grown DT that accurately classifies the training cases might 

misclassify new cases outside the knowledge base. This feature of fully-grown DTs is 

usually referred to as “overfitting” [68]. In order to avoid overfitting, DTs are usually 

pruned by collapsing unnecessary sub-trees into leaf nodes. As illustrated in Fig. 3.1, in a 

pruned DT, some leaf nodes do not have pure training cases, which is a result of either 

tree pruning or early termination of tree growing [68]. By removing the nodes that may 

have grown based on noisy or erroneous data, the pruned DT is more resistant to 
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overfitting than a fully-grown DT without pruning, and thus can give more accurate 

security decisions. 

A major advancement in DT-based DSA schemes was made in [20], in which the 

authors proposed to build a single DT to handle multiple contingencies, by using the 

index of contingencies as a categorical attribute of the DT. It is worth noting that a DT 

built by using such an approach can give the security classification decisions of an OC 

concurrently for all the critical contingencies in the knowledge base, which is more 

efficient and can identify the critical attributes that are independent of contingencies. For 

example, the DT in Fig. 3.1, using CTNO$ as a categorical attribute, can give security 

classification decisions of an OC for three critical contingencies, i.e., CT6, CT45 and 

CT46, at the same time, and the critical attributes Q12,16, P7,2, Q7,9, A11,9, A12,19, A5,12 and 

P36,7 can give security classification decisions independent of contingence type for some 

cases. 

3.2.1 Small DTs 

A small DT with tree height J is obtained by stopping the splitting of any leaf node 

if the downward path from the root node to that leaf node has exactly J non-leaf nodes. 

According to [70], a small DT is much less prone to overfitting compared to a fully-

grown DT; therefore, the small DTs used in the proposed scheme are built without 

pruning. Examples of small DTs are given in Fig. 3.2 with J=2. It can be seen that the 

non-leaf nodes of 1h  are exactly the same as the corresponding nodes of the DT in Fig. 

3.1. It is worth noting that the optimal choice of J is highly dependent on the knowledge 

base, and should be decided based on a bias-variance analysis [68], which will be 

discussed in the case study. Note also that different from [68], the tree height, instead of 
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the number of nodes, is used as the metric to quantify the tree size. The reason, which 

will be soon apparent, is to restrict the number of nodes that will be revised when 

updating DTs to a value less than J. 

3.2.2 Ensemble DT Learning 

In ensemble-DT-based DSA schemes, the security classification decision of an OC 

vector x , denoted by ( )LH x , is made based on the voting of multiple DTs. For an 

ensemble of DTs ( 1,2, , )lh l L , there are two approaches to DSA classification: 

deterministic and probabilistic. For the deterministic approach, the security classification 

decision is given by: 

1
1, if ( ) 0

( )
1, o.w.

L

l ll
L

a h
H 

 
 



 x
x                                                               (3.1) 

          

(a) Small DT 1h                                         (b) Small DT 2h  

 
(c) Small DT 3h  

Figure 3.2  The first three small DTs (J=2) for the WECC system, the voting weights 

of which are 4.38, 3.04 and 0.93, respectively 
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where ( 1,2, , )la l L are the voting weights of DTs. To obtain probabilistic 

classification decisions, the “logistic correction” technique [71] can be applied. Then, the 

probability of an “Insecure” classification decision is given by: 

1

1
Pr( ( ) 1| )

1 exp( ( ))
L L

l l

l

H

a h


  

 
x x

x

                                                  (3.2) 

In this report, deterministic classification decision is used to calculate the 

misclassification rate for case studies. 

The existing methods for ensemble DT learning include bagging, random subspace 

method, boosting and random forest. A comparison of these state-of-the-art methods can 

be found in [72]. In previous work by the authors [66], an algorithm for boosting DTs is 

developed in the context of avoiding overfitting to noisy training data. In this project, the 

boosting algorithm is employed in online DSA to deal with OC variations and possible 

topology changes. The algorithm for building the small DTs and calculating the voting 

weights will be discussed in Section 3.3.1. Further, it is shown that random subspace 

methods can lead to improved accuracy and generalization capability, if the DTs are 

trained from a variety of compact and non-redundant attribute subsets. Usually, the 

attribute subsets used by DTs are selected in a randomized manner. For example, in the 

random forest algorithm, each DT is built by using an attribute subset that is randomly 

selected from all possible candidate attribute subsets with equal weights. For online DSA, 

it is observed that additional system information on the attributes could be utilized to 

create and select the attribute subsets. First, the candidate attribute subsets could be 

significantly refined by exploiting the locational information of attributes. Further, by 
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putting more weights on the attribute subsets that have higher availability when randomly 

selecting attribute subsets, the resulting small DTs would be more likely to be robust to 

possibly missing PMU measurements. 

3.2.3 Updating DTs 

One existing approach for updating a DT without rebuilding it from scratch is the 

efficient tree restructuring algorithm [73], with the main idea summarized as follows. 

When incorporating a new case, the DT remains unchanged if the new case is classified 

correctly; otherwise, the non-leaf nodes along the path which the new case passes are 

revised in a top-down manner. Specifically, for each non-leaf node to be revised, a new 

test is first identified by using the new case as well as the existing cases that fall into the 

non-leaf node. If different from the original test, the newly identified test is then installed 

at the non-leaf node, followed by tree restructuring operations recursively applied on the 

sub-tree corresponding to that non-leaf node (there are six slightly different restructuring 

operations for various structures of the sub-tree, which are not discussed here). The 

motivation for these restructuring operations is that the original test at the non-leaf node 

is highly likely to be the optimal tests for the two child nodes after restructuring, which is 

usually the case when categorical attributes are used by the test [73]; in this scenario, the 

two child nodes are exempted from further update. 

3.3 Proposed Robust Online DSA for OC Variations and Topology Changes 

In this project, a robust data-mining-based DSA scheme using adaptive ensemble 

DT learning is proposed to handle OC Variations and Topology Changes in an efficient 

manner. The proposed scheme for online DSA, as illustrated in Fig. 3.3, consists of three 
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steps, with the details described below. Specifically, the classification model for DSA is 

based on boosting multiple unpruned small-height DTs. Generally, the height of a DT is 

the maximal number of tests that is needed for the DT to classify a case. For the sake of 

brevity, small-height DTs are referred to as small DTs throughout. In offline training, the 

small DTs and their voting weights are sequentially identified in a “gradient-descent” 

manner to minimize the misclassification cost. The small DTs, together with their voting 

weights, are then periodically updated throughout the operating horizon by using new 

training cases that are created to account for any change in OC or network topology. 

 

Figure 3.3  Proposed online DSA using adaptive ensemble DT learning 
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Different from existing DT-based DSA schemes, the training cases are assigned different 

data weights by each small DT; and higher data weights are assigned to a new training 

case if it is misclassified by the small DTs. The aforementioned techniques are utilized to 

minimize the misclassification cost as new training cases are added to the knowledge 

base, so that the classification model could smoothly track the changes in OCs or system 

topology.  

3.3.1 Offline Training 

3.3.1.1 Initial Knowledge Base Preparation 

First, OCN  predicted OCs are generated day ahead for each period of the future 

operating horizon (e.g., the next 24 hours) based on day-ahead load forecast and 

generation schedules; each period may span several hours, and can be divided according 

to the hours of peak load, shoulder load and off-peak load. Then, for each of the OCN  

day-ahead predicted OCs, detailed power flow analysis and time-domain simulations are 

performed for K  critical contingencies that are selected by the system operator or based 

on prior experience. It is worth noting that the key focus here is on dealing with OC 

variations and possible topology change, and thus the selection or screening of critical 

contingencies is beyond the scope of this project. By using specified dynamic security 

criteria (e.g., transient stability, damping performance, transient voltage drop/rise, 

transient frequency, relay margin), the day-ahead predicted OCs are labeled as “Secure” 

or “Insecure” for each critical contingency. 

As a result, an initial knowledge base that consists of OCN N K   training cases is 

obtained, in which each case is represented by a vector 1{ , , , }Px x y , where 1x  is the 
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index of a critical contingency, 
2{ , , }Px x  are the values of numerical attributes 

obtained from power flow analysis of an OC, and y is the transient security classification 

decision of the OC for the critical contingency
1x . Based on the previous studies 

[16][18][20], the following PMU-measured variables are selected as numerical attributes: 

 Branch active power flows { ; }ijP i or j B B  

 Branch reactive power flows { ; }ijQ i or j B B  

 Branch current flows (magnitude) { ; }ijI i or j B B  

 Bus voltage magnitudes { ; }iV iB  

 Bus voltage phase angle differences { ; , }ij i jA A A i j and i j   B  

where B  denotes the set of PMU buses in the system. It is worth noting that only raw 

measurements reported by PMUs are used as the numerical attributes in this work; more 

generally, the variables computed using other system information may also be used, e.g., 

the voltage at the bus connected to a PMU bus when the branch impedance is constant 

[16]. 

3.3.1.2 Boosting Small DTs 

The basic algorithmic flowchart of boosting small DTs is illustrated in Fig. 3.4. For 

convenience, define JH  as the class of small DTs with height J , define LF  as the score 

of the weighted voting of the ensemble of small DTs, i.e.,
1

( ) ( )
L

L l ll
F a h


x x , and define 

 N LC F  as the cost function of LF  on the N  training cases, given by: 
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 ( )

2

1

1
( ) log 1 e n L
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y F
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n

C F
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



  nx
.                                                         (3.3) 

It is observed from (3.1) and (3.3) that  N LC F  lies strictly above the misclassification 

error rate of LH . Then, a primary objective of boosting is to minimize  N LC F , by 

identifying the small DTs l Jh H and their voting weights la R . An analytical 

formulation is provided as follows: 

1

1

, ,

, ,

: min ( )
L J

L

F N L
h h

a a

C F






H

R

P .                                                                              (3.4) 

The convexity and the differentiability of  N LC F  with regard to LF  make it possible to 

solve FP  in (3.4) by using a line search strategy [74], the details of which are 

summarized as follows. A small DT lh  is chosen to be the “gradient” of  .NC at 1lF   

projected onto JH , and the voting weight la  is computed as the “step size” that minimizes

1( )N l l lC F a h  . Then, the small DT lh  is added to 1lF   to obtain 1l l l lF F a h  . The 

 

Figure 3.4  Boosting small DTs 
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above steps are iterated, for 1,2, ,l L , by using
0F  as a zero function. More 

specifically, it is shown in [66] that the small DT 
lh  can be obtained by solving the 

following problem: 

( ) ( )

{ ( )}

1

1
: min

n l n
l J

N
l l

h n y h
h

n

w
N






 x1
H

P                                                                    (3.5) 

where 1 ( )( ) 1(1 e )n l ny Fl

nw  
x  is the positive data weight of the training case{ , }n nyx , and 

{ ( )}n l ny h x1  takes value 0 if the training case { , }n nyx  is correctly classified by the small DT 

lh  (otherwise, it takes value 1). By definition of
( )l

nw , it is easy to observe that the data 

weights are assigned adaptively by small DTs, in the sense that if the training case 

{ , }n nyx is misclassified by the small DT lh , then
( 1) ( )l l

n nw w   , i.e., the training case has a 

higher data weight in the next round of the boosting process. It is worth noting that highly 

skewed training data (e.g., the case in [19]) can be handled by scaling up the weights of 

under-represented cases, such that
( ) ( )

1 1

l l

n ny y
w w

 
  . As suggested in (3.5), the 

objective of 
( )l

hP is to determine the small DT that has the least misclassification error rate 

on the weighted training data. Thus, the small DT lh can be obtained by employing the 

standard CART algorithm [11] subject to the tree height J , and by using misclassification 

error rate as the splitting cost when building the DT. Then, its positive voting weight is 

obtained by solving the following problem: 

( ) ( ): min ( )l l

a N
a

G a
R

P                                                                                          (3.6) 
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where ( )

1( ) ( )l

N N l lG a C F ah  . Under the condition that lh is a “descent direction” of 

1( )N lC F  , it is easy to verify that ( ) (0) 0l

NG


 and ( ) ( ) 0l

NG a


 holds for any a R . 

Therefore, 
( ) ( )l

NG a has a unique minimum in R that can be found using standard 

numerical solution methods (e.g., Newton’s method). 

3.3.2 Periodic Updates 

3.3.2.1 New Training Case Creation 

In the initial knowledge base prepared offline, the predicted OCs generated using 

day-ahead forecast may not reflect the actual system conditions, which is very likely to 

be the case for power systems with high penetration of variable renewable generation and 

distributed generation. Therefore, as the operating horizon is approached and the data 

available to system operators is updated, it will be necessary to utilize short-term forecast 

and schedules to generate newly changed OCs and add them to the knowledge base on a 

slot-by-slot basis (one slot may span several minutes depending on the processing speed 

[16]). Further, in case of topology change, the post-disturbance OCs should also be 

incorporated into the knowledge base. After power flow analysis of these newly changed 

OCs, new training cases are generated as described in Section 3.3.2.1. It is worth noting 

that during the operating horizon, it is also likely that the knowledge base may need to be 

updated by incorporating new contingencies of interest. The solution to this problem has 

been discussed in [66]. In this work, the critical contingency list is assumed to remain 

unchanged during the operating horizon. 
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3.3.2.2 Updating the Classification Model 

Given the newly created training cases, the classification model is updated by using 

one new case at a time. Specifically, for the k-th new training case { , }N k N ky x , the 

classification model is updated by incorporating { , }N k N ky x with a data weight

1 ( )( ) 1(1 e )N k l N ky Fl

N kw    

  
x

into the small DT lh and recalculating the voting weight la , 

iteratively for 1,2, ,l L . 

A key step for incorporating a new training case into a small DT is to adopt the 

method described in Section 3.2.3. Since misclassification error rate is used as the metric 

of splitting cost, as suggested in (3.5), it is easy to observe that there exists a even simpler 

solution for updating the small DTs. Specifically, a small DT remains unchanged if the 

new case is correctly classified; otherwise, only the sub-tree corresponding to the first 

non-leaf node that has a different decision for the new case is subject to update. It is 

worth noting that, since the tree height is J , the total number of non-leaf nodes to be 

revised is at most J . After the small DT lh  is updated, its voting weight al is recalculated 

by minimizing
( ) ( )l

N kG a . 

The process of updating the classification model is summarized in Algorithm 3.1. It 

is useful to note that when the k-th new training case is used to update the small DTs, the 

data weights of the previous 1N k   training cases calculated in Step 4 of Algorithm 

3.1 are different from the data weights that were used in building or updating the small 

DTs in the past rounds. Therefore, unlike the case in offline training, it is possible that the 

updated small DT lh  is not a “descent direction” of N kC   at 1lF   any more. In order to 
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detect and handle this situation, an extra step is used in Algorithm 3.1. Specifically, if 

( )

1

( ) 0
N k

l

n n l n

n

w y h




 x , then lh  is a “descent direction” and used for weighted voting. 

Algorithm 3.1: Periodic updates using a new training case 

Input: A new training case{ , }N k N ky x . 

Initialization: 0F  0  

For 1l   to L do 

Recalculate the data weights of 
1

1{ , }N k

n n ny  

x . 

Incorporate { , }N k N ky x with weight
( )l

N kw  into lh . 

Calculate
( )

1

( )
N k

l

n n l n

n

w y h




 x . 

If 0  , then 

l lh h  

End if 

Recalculate  la  by minimizing 
( ) ( )l

N kG a . 

1l l l lF F a h   

End For 

3.3.3 Online DSA using PMU Measurements 

In real-time, when the synchronized PMU measurements are received, the pre-fault 

values of the numerical attributes are retrieved and combined with the indices of all 

critical contingencies to create K  unlabeled cases, which will be used by the 

classification model to give security classification decisions of the present OC for the K  

critical contingencies. Specifically, when an unlabeled case is processed by the 
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classification model, each of the small DTs uses the values of the attribute vector and its 

CSRs to produce a binary decision. Finally, the binary decisions of all small DTs are 

collected and used to give the security classification decisions of the present OC, 

according to (3.1). It is worth noting that distributed processing technologies [75] can be 

leveraged to speed up online DSA. Specifically, the K  unlabeled cases can be classified 

separately by using K  duplicates of the classification model, and in each classification 

model, all small DTs can process the attribute vector of an unlabeled case in a parallel 

manner. 

From the above development, it can be seen that the proposed scheme illustrated in 

Fig. 3.3 is derived from those in previous work [16][18][20], with the following major 

modifications. 1) The classification model is obtained via boosting multiple small 

unpruned DTs instead of a single fully-grown DT after pruning. It is suggested that 

boosting algorithms can lead to better model fitting and the produced classification model 

is quite resistant to overfitting [70]. Thus, boosting small DTs has great potential to 

deliver better performance in terms of classification accuracy. 2) Unequal data weights 

are assigned to the training cases adaptively by small DTs. In periodic updates, 

misclassified new training cases can have higher data weights than those classified 

correctly. This will speed up adapting the small DTs to newly changed OCs. 3) The small 

DTs are gracefully updated by incorporating new cases one at a time, whereas rebuilding 

DTs is used in [16][18][20]. 4) The DT and the knowledge base are updated only when 

the new cases are misclassified in [16][18][20]; whereas all new training cases are 

incorporated into the knowledge base in the proposed scheme. 
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3.3.4 An Illustrative Example 

The IEEE 39-bus test system [35] is used as an illustrative small system. As 

illustrated in Fig. 3.5, 8 PMUs are installed in the system, according to the placement 

design provided in [76]. In what follows, the main steps of the proposed approach, 

including attribute selection, knowledge base preparation and ensemble small DT 

learning, will be demonstrated by using the IEEE 39-bus test system. Finally, the results 

of robustness test on changed OCs will be presented. 

 

Figure 3.5  The IEEE 39-bus system with 8 PMUs 
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3.3.4.1 Knowledge Base 

3.3.4.1.1 Attribute Selection 

Based on the PMU placement and system topology in Fig. 3.5, 111 numerical 

attributes are selected according to the rules described in Section 3.3.1.1, including: 

 8 bus voltage magnitudes at the 8 PMU buses; 

 75 branch active/reactive power flows and current flows, which take any of the 

8 PMU buses as either a from-bus or a to-bus of the branch; 

 28 bus voltage phase angle differences, which are computed from the 8(8-1)/2 

pairs of phase angles. 

3.3.4.1.2 OC Generation and Contingencies 

The OC specified in [35] is used as the base OC. To enrich the knowledge base, 

more OCs are generated by randomly changing the bus loads (both active and reactive) 

within 90% to 110% of their original values in the base OC. For each generated OC, limit 

checking is carried out by using the power flow and short circuit analysis tool (PSAT) 

[77], so that any generated OC with pre-contingency overloading or violation of voltage 

magnitude/angle limits is not included in the knowledge base. Further, transient stability 

assessment is carried out for the 30 N-2 contingencies listed in [78, Table II]. These N-2 

contingencies, which can lead to stressed system conditions, are identified by exhaustive 

search among all possible N-2 contingencies. 

3.3.4.1.3 Transient Stability Assessment Tool and Criteria 

The transient security assessment tool (TSAT) [77] is used to assess the transient 

performance of the generated OCs. The time-domain simulation is executed for 10 
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seconds with a step size of 0.5 cycle. The power angle-based stability margin is used as 

the transient stability index (TSI), defined as 

360
100, 100 100

360

max

max


 




    


                                                        (3.7) 

where max  is the maximum angle separation of any two generators in the system at the 

same time in the post-fault response. In case of islanding, the above value is evaluated for 

each island and the smallest value is taken as the TSI. During the simulation time, 

whenever the margin   turns out to be negative, i.e., the rotor angle difference of any 

two generators exceeds 360 degree, the case is labeled as transiently insecure. 

3.3.4.2 Offline Training 

3.3.4.2.1 Choice of J and L 

V -fold cross validation (V =10) is carried out to determine the optimal tree height 

J  and the optimal number of small DTs L . Specifically, the training cases in the initial 

knowledge base are randomly partitioned into V  subsets of equal size. For given fixed J  

and L , a classification model is trained by using 1V   subsets, and tested using the other 

subset. The training process is then repeated V times in total, with each of the V subsets 

used exactly once as the test data. Finally, the misclassification error rate obtained by V -

fold cross validation is calculated by averaging over the V classification models. The 

results of the above procedure for different tree heights ( J =1, 2, 3) are illustrated in Fig. 

3.6. It can be seen that as L  increases, the misclassification error rate of each 

classification model decreases and reaches a plateau at some L . Then, when L  grows 

larger, each classification model incurs a larger variance and hence a higher 
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misclassification error rate. On the other hand, a larger tree height J implies a larger 

variance of classification model [68], which is also observed in Fig. 3.6. Based on these 

observations, J =2 is chosen, and L =15 at which the misclassification error rate drops 

below 1% and reaches a plateau is selected. 

 

3.3.4.2.2 Ensemble Small DT Learning 

When the optimal tree height J  and the optimal number of small DTs L are 

determined, the algorithm described in Section 3.3.1.2 is used to build the ensemble of 

small DTs. Specifically, for 1,2, ,l L , the data weights 
( )l

nw  are first computed 

according to (3.5). Then, the training cases together with their data weights are used by 

the CART algorithm to build a small DT lh  with height J , by using weighted 

misclassification rate as the cost function, as shown in (3.5). Note that each small DT 

gives security classification decisions for all critical contingencies. Further, the voting 

 

Figure 3.6  Ensemble small DT learning with different tree heights for the IEEE 39-

bus test system 
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weight of 
lh  is calculated by numerically solving (3.6). Then, the ensemble of small DTs 

is obtained. It is worth noting that, different from the V -fold cross validation procedure, 

the entire training set (not a subset) is used by each small DT of the ensemble. 

3.3.4.3 Robustness Testing 

3.3.4.3.1 Changed OCs 

In the IEEE 39-bus test system, generator G1, together with transmission lines (39, 

9) and (39, 1), represents the equivalent to the external system of the New England area 

[35]. It is now assumed that the capacity of G1 reduces from 1100 MW to 900 MW, 

which could be the result of either the loss of a transmission corridor or a generator 

tripping outside the New England area. Therefore, the OCs will change due to generation 

rescheduling. By setting the capacity of G1 to 900 MW, changed OCs are generated by 

rescheduling generation and re-solving power flows for each OC in the initial knowledge 

base. These changed OCs will be utilized to test the robustness of the proposed approach. 

3.3.4.3.2 Robustness Testing Results 

First, 200 OCs are generated to create the initial knowledge base consisting of 6000 

(200 OCs × 30 contingencies) training cases. Accordingly, another 200 changed OCs are 

generated, in which 100 OCs are used to update the small DTs and the other 100 OCs are 

used for robustness testing. In the proposed approach, Algorithm 3.1 is applied to update 

each of the 15 small DTs by using the 3000 (100 OCs × 30 contingencies) new cases. To 

illustrate the change of small DTs, the first small DT 1h  is used as an example. 

Specifically, 1h  obtained in offline training and updated with the 100 changed OCs by 

using the proposed approach are illustrated in Fig. 3.7(a) and Fig. 3.7(b), respectively. It 

is observed that due to the changed OCs and generation rescheduling, the critical attribute 
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in the root node of 
1h  changes from the voltage phase angle difference between bus 2 and 

bus 26, A_2_26, to the active power flow between bus 17 and bus 18, P_17_18. The 

CSRs of the non-root nodes change accordingly, as a result of the recursive procedure of 

the CART algorithm. The small DT 
1h  rebuilt with the 100 changed OCs is illustrated in 

Fig. 3.7(c), which has the same CSR at the root node as the small DT updated by using 

the proposed approach. Since the small DTs 1h  obtained by updating and rebuilding are 

different at non-root nodes, the other small DTs, 2h  to 15h  are also different. This is 

because the ensemble DT learning algorithm sequentially updates/builds the small DTs, 

in which each small DT depends on the previous small DTs. 

The proposed approach is compared with two benchmark approaches: 1) small DTs 

rebuilt by using the 100 changed OCs together with the initial 200 OCs, 2) small DTs 

without updating. The test results of the three approaches are presented in Table 3.1. It 

 
(a) Offline trained small DT 1h              (b) 1h updated by changed OCs 

 
(c) Small DT 1h rebuilt with changed OCs 

Figure 3.7  The first small DT 1h  ( J =2) for the IEEE 39-bus test system 
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can be seen that the proposed approach achieves comparable performance to the 

benchmark approach by rebuilding small DTs. The test results also suggest that when 

OCs change, the small DTs have to be updated in order to track the variation of OCs. 

Table 3.1 Misclassification error rate of robustness testing 

 Secure cases Insecure cases Overall 

Proposed 0.68% 0.36% 0.55% 

Small DTs (rebuilding) 0.59% 0.38% 0.54% 

Small DTs (no updating) 10.68% 6.85% 9.57% 

 

3.3.5 Application to the WECC System 

The test power system used in this case study is part of the WECC system. It 

consists of over 600 buses (of which 33 are PMU buses), 700 transmission lines and 100 

generators. 

3.3.5.1 Knowledge Base 

3.3.5.1.1 OC Generation 

The OCs used in the case study are generated by using real-life data of power 

flows, bus loads and generator power outputs that were recorded every 15 minutes during 

a 2008 summer peak day. The overall load profile is illustrated in Fig. 3.8. Based on the 

variations of the aggregate load, each period for offline training is chosen to span 8 hours, 

and the peak load period 1200 Hrs-2000 Hrs is investigated in this case study. Basically, 

there are three sets of generated OCs used in this case study: day-ahead predicted OCs, 

short-term predicted OCs and realized OCs. The day-ahead predicted OCs are used to 

create the initial knowledge base, the short-term predicted OCs are used to create the new 

training cases to update the knowledge base and the classification model, and the realized 

OCs are used for testing purposes only. 
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In what follows, the procedure for generating the three OC sets is discussed in 

detail. The realized OCs include the 33 recorded OCs and another 448 OCs that are 

generated by interpolation, as illustrated in Fig. 3.8. Specifically, following the method in 

[20], both the active and reactive load of each load bus for every minute of the 

investigated period are obtained by linear interpolation based on the two closest recorded 

OCs, and the generator power outputs are adjusted as needed to ensure valid OCs. To 

enrich the initial knowledge base, a day-ahead predicted OC is obtained by randomly 

changing the bus loads within 90% to 110% of the loads of the corresponding realized 

OC, by using a uniform distribution. Similarly, a short-term predicted OC is generated by 

uniformly randomly changing the bus loads within 97% to 103% of the loads of the 

corresponding realized OC. After solving the power flows for each OC using the power 

flow and short circuit analysis tool (PSAT) [77], 481 OCs are generated for each of the 

three OC sets. It is worth noting that different from the day-ahead predicted OCs, the 

short-term predicted OCs and the realized OCs are time-stamped. 

 

Figure 3.8  Aggregate load of recorded OCs and generated OCs by interpolation 
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3.3.5.1.2 Critical Contingency Selection 

A contingency list, which was created by the regional grid operator to account for 

possible outages of transmission lines, three-winding transformers and generators that 

could have significant impact, is used here. Specifically, the contingency list consists of 1 

N-4 contingency, 8 N-3 contingencies, 172 N-2 contingencies, and 0 N-1 contingencies 

(i.e., no N-1 contingencies lead to insecure conditions). The power angle-based stability 

margin defined in (3.7) is used as the transient stability index. After performing transient 

security assessment by using TSAT for all realized OCs and adhering to the above 

security criteria, three N-2 contingencies which lead to transiently insecure cases are 

selected as the critical contingencies in the knowledge base. Each of the three N-2 critical 

contingencies is initiated by a “three-phase short circuit to ground” fault at a bus which is 

cleared after 5 cycles, by tripping a transmission line that connects the bus and by 

disconnecting a generator that will go out of step as a result of the line tripping. 

3.3.5.1.3 Case Creation 

Combining the three sets of generated OCs with their transient security 

classification decisions for the three critical contingencies, N=1443 cases are created for 

the initial knowledge base, for updating and for testing, respectively. Based on the 

interconnection structure of the 33 PMU buses, 799 numerical attributes are identified 

using the rules described in Section 3.3.1.1; thus P=800. For each case, the values of the 

799 numerical attributes are obtained from the power flow solutions. Then, the initial 

knowledge base is organized into an N×(P+1) array. 
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3.3.5.2 Offline Training 

The initial knowledge base as an N×(P+1) array is first used by the CART 

algorithm to build the small DTs. Following the procedure described in Section 3.3.4.2, it 

is found that J =2 and L =35 give the best results of V -fold cross validation. The first 

three small DTs built from the initial knowledge base are illustrated in Fig. 3.2. For 

comparison, a fully-grown single DT with pruning is also built, as illustrated in Fig. 3.1. 

 

3.3.5.3 Online DSA Simulation 

The online DSA is simulated iteratively on a slot-by-slot basis, as illustrated in Fig. 

3.9. Generally, each slot spans M minutes. Since it is sufficient to perform security 

assessment of a short-term predicted OC for the three N-2 critical contingencies, M =1 is 

chosen here. In case of more critical contingencies or a larger test system, a longer slot 

can be chosen. In online DSA, a third scheme in which the classification model is 

obtained by boosting small DTs but updated by rebuilding is compared with the two 

aforementioned schemes. 

 

Figure 3.9  Flowchart for testing online DSA with periodic updates 
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3.3.5.3.1 OC variations in sub-period 1200 Hrs-1600 Hrs 

In each slot of this sub-period, the 3M test cases created from the M realized OCs 

with time-stamps falling into this slot are collected, and then used as the present OCs for 

online DSA to assess the performance of the classification model updated so far. 

Meanwhile, another 3M  new training cases created from the short-term predicted OC for 

the next slot are incorporated into the knowledge base to update the classification model. 

3.3.5.3.2 Topology change in sub-period 1600 Hrs-2000 Hrs 

At the peak hour 1600 Hrs, a topology change is imposed on the test system, and 

assumed to last for the remaining hours of the day. Specifically, among the 178 

contingencies that do not incur transient instability for all realized OCs, the contingency 

which has the least positive margin averaged over all realized OCs is chosen; as a result, 

a transmission line is removed and a generator is disconnected from the test system. 

Then, the new training cases and test cases during the latter sub-period are created using 

an approach similar to those used in the former sub-period, but by using a different 

system topology. 

3.3.5.4 Test Results and Discussion 

Throughout the entire horizon of the above online DSA simulations, the 

misclassification error rate and the computation time for updating in each slot are 

recorded and summarized in Table 3.2 and Fig. 3.10, respectively. 

3.3.5.4.1 Classification Accuracy 

As illustrated in Table 3.2, the two boosting-based schemes turn out to be more 

accurate than the single-DT-based scheme for both simulation sub-periods, and the 
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performance of the proposed scheme is quite close to the scheme based on boosting small 

DTs with rebuilding. 

Table 3.2 Misclassification error rate of online DSA 

Scheme 

Sub-period 1200-1600 Hrs Sub-period 1600-2000 Hrs 

Secure  

cases 

Insecure 

cases 
Overall 

Secure  

cases 

Insecure 

cases 
Overall 

Proposed 2.41% 1.03% 1.67% 2.54% 1.08% 1.74% 

A single DT 

(rebuilding) 
2.71% 1.80% 2.22% 2.26% 2.73% 2.5% 

Boosting 

(rebuilding) 
1.81% 1.03% 1.39% 2.26% 0.82% 1.5% 

 

 

3.3.5.4.2 Computation Requirement 

The computation time required by updating the classification models using new 

OCs is illustrated in Fig. 3.10. It is clear that the proposed scheme requires the lowest 

computation time. Further, as the number of new OCs increases, the proposed scheme 

 

Figure 3.10  Computation time for updating/rebuilding (executed in MATLAB on a 

workstation with an Intel Pentium IV 3.20 GHz CPU and 4GB RAM) 
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becomes less time-consuming than the other two schemes. The reason is that for each 

new OC, the two benchmark schemes rebuild DTs from scratch, while the graceful 

update of small DTs is carried out in the proposed scheme. Further, according to the 

CART algorithm [11], it is known that the sorting operation of the CART algorithm 

dominates the computational burden of DT building/rebuilding. When updating small 

DTs, the sorting operation is skipped [73]. Therefore, the proposed scheme has a much 

lower computational burden. 

3.4 Proposed Robust Online DSA for Missing PMU Measurements 

Previous studies on PMU measurement-based online DSA implicitly assume that 

wide area monitoring systems (WAMS) provide reliable measurements. However, in 

online DSA, PMU measurements can become unavailable due to the unexpected failure 

of the PMUs or phasor data concentrators (PDCs), or due to loss of the communication 

links. Recently, it has been widely recognized that PMU failure can be an important 

factor that impacts the performance of WAMS. For example, AESO’s newest rules on 

implementing PMUs [79] require that the loss or malfunction of PMUs, together with the 

cause and the expected repair time, has to be reported to the system operator in a timely 

manner. In the report [80], the deployment of redundancy is suggested by PMU 

manufacturers to reduce the impact of single PMU failure. Loss of PMUs has also been 

taken into account when designing WAMS and PMU placement [81]. Moreover, the 

delivery of PMU measurements from multiple remote locations of power grids to 

monitoring centers could experience high latency when communication networks are 

heavily congested, which could also result in the unavailability of PMU measurements. 
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Therefore, it is urgent to design DT-based online DSA approaches that are robust to 

missing PMU measurements. 

Intuitively, one possible approach to handle missing PMU measurements is to 

estimate the missing values by using other PMU measurements and the system model. 

However, with existing nonlinear state estimators in supervisory control and data 

acquisition (SCADA) systems, this approach may compromise the performance of DTs. 

First, the scan rate of SCADA systems is far from commensurate with the data rate of 

PMU measurements, and thus using estimated values from SCADA data may result in a 

large delay for decision making. Second, SCADA systems collect data from remote 

terminal units (RTUs) utilizing a polling approach. Following a disturbance, it is possible 

that some post-contingency values are used due to the lack of synchronization, which can 

lead to inaccurate security classification decisions of DTs. It is worth noting that future 

fully PMU-based linear state estimators [82] can overcome the aforementioned 

limitations; but this is possible only when there is a sufficient number of PMUs placed in 

system. With this motivation, data-mining based approaches are investigated in this 

paper, aiming to use alternative viable measurements for decision making in case of 

missing data. 

In DTs built by the classification and regression tree (CART) algorithm [11], 

missing data can be handled by using surrogate. However, a critical observation in this 

project is that when PMU measurements are used as attributes, most viable surrogate 

attributes have low associations with the primary attributes. Clearly, the accuracy of DSA 

would degrade if surrogate is used. This is because a DT is essentially a sequential 

processing method, and thus the wrong decisions made in earlier stages may have 
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significant impact on the correctness of the final decisions. Thus motivated, this paper 

studies applying ensemble DT learning techniques (including random subspace methods 

and boosting), so as to improve the robustness to missing PMU measurements. 

Aiming to develop a robust and accurate online DSA scheme, the proposed 

approach consists of three processing stages, as illustrated in Fig. 3.11. Specifically, 

given a collection of training cases, multiple small DTs are trained offline by using 

randomly selected attribute subsets. In near real-time, new cases are used to re-check the 

performance of small DTs. The re-check results are then utilized by a boosting algorithm 

to quantify the voting weights of a few viable small DTs (i.e., the DTs without missing 

data from their attribute subsets). Finally, security classification decisions of online DSA 

are obtained via a weighted voting of viable small DTs. More specifically, a random 

subspace method for selecting attribute subsets is developed by exploiting the locational 

information of attributes and the availability of PMU measurements. Conventionally, the 

availability of a WAMS is defined as the probability that the system is operating 

normally at a specified time instant [83]. In this project, the availability of PMU 

measurements is defined similarly, i.e., as the probability that PMU measurements are 

 

Figure 3.11  A three-stage ensemble DT-based approach to online DSA with missing 

PMU measurements 
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successfully collected and delivered to a monitoring center. The developed random 

subspace method guarantees that a significant portion of small DTs are viable for online 

DSA with high likelihood. Further, a boosting algorithm is employed to assign the viable 

small DTs with proper voting weights that are quantified by using the results from 

performance re-check, leading to the high robustness and accuracy of the proposed 

approach in case of missing PMU measurements. The proposed approach is applied to the 

IEEE 39-bus system with 9 PMUs. Compared to off-the-shelf DT-based techniques 

(including random forests (RFs) with and without using surrogate), the proposed 

ensemble DT-based approach can achieve better performance in case of missing PMU 

measurements. 

3.4.1 Handling Missing Data by using Surrogate in DTs 

A surrogate split at an internal node is the one that “mimics” the primary split most 

closely, i.e., gives the most similar splitting results for the training cases. Usually, the 

similarity is quantified by the association between the surrogate split and the primary 

split [11]. The significance of a surrogate split that has a high association (i.e., over 0.9) 

with the primary split is that the DT could still use the surrogate split at this internal node 

to give almost the same decisions when the PMU measurement of the primary attribute is 

missing. 

The performance of surrogate in DT-based DSA is evaluated via a case study, in 

which a single DT is built by using the same knowledge base for voltage magnitude 

violation analysis as in [66]. It is observed that co-located attributes (i.e., the attributes 

measured by the same PMU) would often be unavailable at the same time when the PMU 

fails, which implies that co-located attributes cannot be used as surrogate for each other 
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in online DSA. Therefore, a modified CART algorithm in which co-located attributes are 

excluded from surrogate searching is used to build a single DT and identify the surrogate 

attributes. The results regarding the performance of the surrogates identified by both the 

modified CART algorithm and the CART algorithm are given in Table 3.3.  

Two key observations are drawn. First, the results obtained by the modified CART 

algorithm suggest that all non-colocated surrogates have relatively low associations with 

the primary ones. The low association could be explained by the complex coupling 

structure of the attributes in power systems. According to the definition of surrogate, high 

association relies on the dependency between the surrogate and the primary attributes, 

i.e., the surrogate attribute gives similar decisions to the primary attribute on all the 

training cases regardless of any other attribute. However, in power systems, one attribute 

(i.e., voltage magnitude, voltage phase angle or power/current flow) is coupled with 

many other non-co-located attributes, as dictated by the AC power flow equations and the 

Table 3.3 Surrogates of the DT for the WECC system 

Node Primary Attribute 
By modified CART By CART 

Surrogate Association Surrogate Association 

1 V{217} V{207} 0.76 V{207} 0.76 

2 Q{204;207} Q{212;216} 0.33 Q{207;209} 0.50 

3 Q{204;207} V{209} 0.28 Q{207;209} 0.64 

4 I{211;204} P{008;011} 0.62 P{209;211} 0.83 

5 P{210;201} P{211;062} 0.87 P{231;201} 0.87 

6 Q{005;033} Q{801;999} 0.71 Q{801;999} 0.71 

7 P{213;222} Q{207;211} 0.85 P{222;223} 0.85 

8 Q{041;060} I{011;051} 0.50 I{011;051} 0.50 

9 P{211;062} P{213;216} 0.50 I{062;211} 0.75 

10 P{236;219} Q{230;052} 0.42 P{236;207} 0.68 
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network interconnection structure. Second, it is observed in Table 3.3 that the surrogate 

attributes found by the CART algorithm are mostly co-located with the primary 

attributes. This observation signifies the redundancy between co-located attributes when 

used for splitting the training cases, and thus sheds lights on exploiting the locational 

information to create the attribute subsets, as described in Section 3.4.2. 

 

3.4.2 Proposed Random Subspace Method for Selecting Attribute Subsets 

A key step of the random subspace method is to identify a collection of candidate 

attribute subsets S  and determine the weight ps  that dictates how likely a candidate 

attribute subset s S  is to be selected. In this project, by exploiting the locational 

information of attributes and the availability of PMU measurements, the random 

subspace method adheres to the following two guidelines: 

 G1: Co-located attributes do not co-exist within an attribute subset. 

 

Figure 3.12  Wide area monitoring system consisting of multiple areas 
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 G2: The average availability of the selected attribute subsets should be 

sufficiently high. 

Further, for a power system consisting of K  areas, the corresponding WAMS is 

assumed to have a hierarchical architecture [86]. As illustrated in Fig. 3.12, each area of 

the power system has a PDC that concentrates the PMU measurements of this area and 

submits them to the monitoring center. 

3.4.2.1 Candidate Attribute Subsets 

The candidate attribute subsets are created based on the three following specific 

rules: 1) Within a candidate attribute subset, all the attributes are from the same area. 2) 

In area k  ( 1,2, ,k K ), three categories of pre-fault quantities measured by PMUs are 

used as the numerical attributes: 

 Category 1: voltage magnitude iV , for 
PMU

ki I  

 Category 2: active power flow ijP , reactive power flow ijQ  and current 

magnitude ijI  , for  
PMU

ki I  and ( )j iN  

 Category 3: phase angle difference ij , for , PMU

ki j I  

where 
PMU

kI denotes the collection of the buses with PMU installation within area k , and 

( )iN  denotes the collection of the neighbor buses of bus i . An attribute subset of area k  

is created by including one voltage or flow measurement from each bus 
PMU

ki I and all 

phase angle difference measurements from this area. 3) The index of contingencies is 

included as a categorical attribute in any attribute subset. 
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The criteria used in creating the attribute sets are elaborated below. By restricting 

the attributes of a subset to be the PMU measurements within the same area, the impact 

of some scenarios, i.e., when a PDC that concentrates PMU measurements within an area 

fails, is significantly reduced, since the small DTs using the PMU measurements from the 

other areas could still be viable. For a given bus, since Category 1 and Category 2 PMU 

measurements are co-located, it suffices to include only one of them in an attribute subset 

so that the redundancy within an attribute subset is minimal. Further, all measurable 

phase angle differences are included. This is because theoretical and empirical results 

(e.g., in [18]) suggest that angle differences contain important information regarding the 

level of stress in OCs, and thus are more likely to be the attributes critical to assessing 

transient instability. It is also worth noting that the Category 2 attributes from two 

different buses are unlikely to be redundant, in the sense that they are the measurements 

from different transmission lines, given the fact that PMUs could provide power flow 

measurements and it is usually unnecessary to place PMUs at both ends of a transmission 

line to achieve the full observability of power grids. 

For convenience, let kS  denote the collection of candidate attribute subsets of area 

k . Then, the size of kS  is given by 

(3deg( ) 1)
PMU
k

k

i

M i


 
I

                                                                            (3.8) 

where deg( )i  denotes the degree of bus i , i.e., the number of buses that connect with bus 

i . Then, 
1

K

kk
S S  is the collection of candidate attribute subsets. 
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3.4.2.2 Randomized Algorithm for Selecting Attribute Subsets 

It is plausible to develop the randomized algorithm so as to achieve maximum 

randomness of the selected attribute subsets by maximizing the entropy of the weight 

distribution { , }p s s S . Without any other information of attribute, equal weights are 

usually used by existing random subspace methods (e.g., [87], [88]). Here, by adhering to 

guideline G2, an additional constraint is that the average availability of the randomly 

selected attribute subsets is above an acceptable level 0A . As a result, the weight 

distribution can be determined by solving the following problem: 

1

2
{ , }

: max log
p

p p





s

s s s
s

s
S

S

P                                                                              (3.9) 

0s.t. p A A


 s s

s S

 

1p


 s

s S

 

where As
 denotes the availability of an attribute subset s . According to the rules for 

creating the candidate attribute subsets, it is easy to see that each of the attribute subsets 

of an area consists of exactly two measurements from each PMU within this area. 

Therefore, the availability of an attribute subset s of area k , which was formally defined 

in Section I as the probability that the measurements of s are successfully delivered to the 

monitoring center, equals that of the WAMS within area k , i.e., 

,k kA A  s s S                                                                                       (3.10) 

In availability analysis of WAMS (e.g., in [83]), it is usually assumed that the 

availability of PMUs, PDCs and communication links are known (e.g., estimated from 
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past operating data) and independent from each other. Under these assumptions, the 

availability of the WAMS within area k  is given by: 

( )
PMU
k

PMU link PDC link

k i i k k

i

A A A A A


 
I

                                                                (3.11) 

where PMU

iA , link

iA , PDC

kA and link

kA denote the availability of the PMU at bus i , the 

communication link from the PMU at bus i to the PDC, the PDC and the communication 

link from the PDC to the monitoring center, respectively. It is worth noting that (3.10) 

and (3.11) are derived for the case illustrated in Fig. 3.12, and thus may not be directly 

applicable to the cases with measurement redundancy. For example, when multiple dual 

use PMU/line relays are utilized in substations, the availability of bus voltage phasor 

measurements can be enhanced. The procedure for analyzing the availability of WAMS 

in case of redundancy can be found in the literature (e.g., [89]). 

By taking (3.10) into account, it follows that the solution to problem 
sP  in (3.9) has 

the following property. 

Proposition 3.1: The optimal solution to sP  in (3.9) takes the following form: 

* * / ,k k kp p M  s s S                                                                           (3.12) 

where kM  is the size of kS  as defined in (3.8), and 
*{ , 1,2, , }kp k K  is the solution to 

the following problem: 

1
2

,
1

: min log ( / )
K

K

k k k
p p

k

p p M


sP                                                                  (3.13) 

0

1

s.t.
K

k k

k

p A A


  
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1

1
K

k

k

p


  

Proof: Since 
sP  maximizes a concave function with affine constraints, the Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient for a solution to be optimal. 

Therefore, 

* * *(1 ln ) / ln2 0,p A      s s s S                                                   (3.14) 

where * and *  are the KKT multipliers for the two constraints of 
sP . Then, by taking 

the equality in (3.10) into account, it is easy to verify that 
sP  have the same value for all 

ks S . Define k kp M p s
 for ks S , then 

sP  reduces to 
sP . 

The above result leads to the following implementation of the randomized 

algorithm, as summarized in Algorithm 3.2. Further, it is also observed from (3.14) that 

the attribute subsets which have higher availability are assigned higher weights. 

Algorithm 3.2: Randomized algorithm for selecting an attribute subset 

1. Calculate kM  and kA  according to (3.8) and (3.11), respectively, for 1, ,k K . 

2. Find { , 1, , }kp k K  by solving  sP  in (3.13). 

3. Select an area k  among the K  areas with weight kp . 

4. For the chosen area k , select an attribute subset s  from kS  with weight 1

kM  . 

3.4.3 Proposed Approach for Online DSA with Missing PMU Measurements 

First, L  small DTs are trained offline by using randomly selected attribute subsets. 

In case of missing PMU measurements in online DSA, L  ( L L ) viable small DTs are 

identified, and are assigned different voting weights. Specifically, the results of 
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performance re-check in near real-time are utilized to quantify these voting weights. 

Finally, the security classification decisions for the new OCs in online DSA are obtained 

via weight voting of the L  viable small DTs. 

3.4.3.1 Offline Training 

Given a collection of training cases 
1{ , }N

n n ny x  and candidate attribute subsets S , a 

primary objective of offline training is to obtain small DTs 1{ , , }Lh h so that the majority 

voting of them, i.e., 
1

( ) ( )
L

L ll
F h


x x  could fit the training data. The iterative process to 

obtain an LF  is summarized in Algorithm 3.3.  

 

In the l -th iteration, a small DT 1h  is first obtained by solving the following 

problem: 

( )

{ ( )}
1

1
: min l

n l nl

N
l

DT y hh
nN 


 x
1P                                                                         (3.15) 

Algorithm 3.3: Offline training using the random subspace method 

Input: Training cases 
1{ , }N

n n ny x , 0 (0,1)   

Initialization: 0F  0  

For 1l   to L do 

Select an attribute subset ls  by using Algorithm 3.2. 

Find a small DT lh  by solving ( )l

DTP  in (3.15) using the CART algorithm. 

1l l lF F h   

End For 
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where l

nx  denotes the measurements of the attribute subset 
ls . It is well-known that the 

problem in (3.15) is NP-complete [90]. Here, the CART [11] algorithm is employed to 

find a sub-optimal DT, by using misclassification error rate as the splitting cost function. 

It is clear from (3.15) that equal weights, i.e., 1/ N  , are assigned to all training data. 

When historical data that identifies potential weak spots of the system is available, these 

data can be integrated by assigning higher weights, and by replacing 1/ N  with unequal 

data weights. 

3.4.3.2 Near Real-time Performance Re-check 

In near real-time, a more accurate prediction of the imminent OC in online DSA 

can be made. Then, a collection of new cases 1{ , }N

n n ny x  are created in a similar manner 

to that in offline training and used to re-evaluate the accuracy of the L  small DTs. The 

re-check results are then utilized by the boosting process in online DSA. In case of 

variations between the OCs used in offline training and the new OCs in online DSA, near 

real-time re-check is also a critical step to make sure that the small DTs still work well. 

3.4.3.3 Online DSA 

The results of near real-time re-check 1{ ( ), }l N

l n n nh y x , 1, ,l L  , are utilized to 

choose a few viable small DTs to be used in online DSA and calculate the corresponding 

voting weights via a process of boosting small DTs. In order to make best use of existing 

DTs, the viable small DTs in online DSA include the small DTs without any missing 

PMU measurement and non-empty degenerate small DTs. 
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3.4.3.3.1 Degenerate Small DTs 

A degenerate small DT is obtained by collapsing the subtree of an internal node 

with missing PMU measurement into a leaf node. Specifically, a small DT degenerates to 

a non-empty tree if the PMU measurements used by the internal nodes other than the root 

node are missing, an example of which is illustrated in Fig. 3.13. Further, since each 

internal node of the original small DT is also assigned a decision in building the DT, the 

new leaf node of the degenerate small DT is assigned the same decision as the original 

internal node. Therefore, for a non-empty degenerate small DT, the re-check results on 

the N  new cases could be easily obtained. 

3.4.3.3.2 Weighted Voting of Viable Small DTs 

Let H  be the collection of viable small DTs. Then, weighted voting of the viable 

small DTs in H  is utilized to obtain the security classification decisions of online DSA, 

due to the following two reasons. First, in case that some small DTs degenerate to empty 

trees and the accuracy of non-empty degenerate small DTs degrades, weighted voting 

could improve the overall accuracy compared to majority voting, provided that the voting 

 

Figure 3.13  Degeneration of a small DT as a result of missing PMU measurements of 

attribute 1x  when node ( 1 1x S ) is originally assigned +1. 
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weights are carefully assigned based on the re-check results of the viable small DTs. 

Second, even though all the small DTs are viable, choosing the small DTs with proper 

voting weights based on their accuracy can still be a critical step to guarantee accurate 

decisions. This is because small DTs trained offline fit the training cases that are created 

based on day-ahead prediction, while the re-check results on the N  new cases contain 

more relevant information on assessing the security of the imminent OCs in online DSA. 

In the proposed approach, weighted voting of small DTs in H  is implemented via 

a boosting process. Following the method in [66], initially with 
0F  as a zero function, a 

small DT lh H  is first identified and added to
1lF 
, i.e., 

1l l l lF F a h                                                                                           (3.16) 

iteratively for 1,2, ,l L , so that the cost function, i.e., 

( )

2

1

1ˆ( ) log (1 e )n L

N
y F

L
n

C F
N





  nx
                                                             (3.17) 

is minimized in a gradient descent manner. In the boosting process, lh  is identified by 

solving the following problem: 

( ) ( )

{ ( )}
1

1
: min l

n l n
l

N
l l

DT n y hh
n

w
N 



 x
1

H
P                                                                     (3.18) 

and the data weights and voting weight are given by 

1

( )

( )

1
1, ,

1 e

argmin ( ) 1, ,

n l n

l

n y F

l l
a

w n N

a g a l L






  

 


x

R

                                                              (3.19) 
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where     haFCag
~~ˆ  1  . Boosting viable small DTs in online DSA is summarized in 

Algorithm 3.4.  

 

3.4.3.4 Further Discussion 

Through detailed complexity analysis, it is shown that the low computational 

complexity of the online processing renders that the time criticality of online DSA would 

not be compromised when the proposed approach is used. Specifically, the 

computationally intensive part of the online processing stage is the boosting process that 

consists of calculating the data weights ( )l

nw , solving 
( )l

DTP  and calculating the voting 

weights la  of small DTs. According to (3.19), calculating the data weights requires 

evaluating 
lF  for the new cases, which could be easily obtained from the re-check results 

of the small DTs. Therefore, it is easy to see that the complexity in calculating the data 

Algorithm 3.4: Boosting viable small DTs for online DSA 

Input: Re-check results 1{ ( ), }l N

l n n nh y x , 1, ,l L   

Initialization: 
0F  0  

For 1l   to L  do 

Calculate the data weights according to (3.19). 

Find a small DT lh  by solving 
( )l

DTP  in (3.18) using the CART algorithm. 

Calculate the voting weight la  according to (3.18). 

1l l l lF F a h  . 

End For 
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weights is ( )NO . Solving 
( )l

DTP  boils down to searching for the small DT in H  that has 

the least weighted misclassification error. Since the re-check results of the small DTs in 

H  for the new cases are already known, the optimal small DT could be found by 

comparing the weighted misclassification errors of the small DTs in H . Therefore, the 

complexity in solving 
( )l

DTP  is ( )LNO . In the l -th iteration of the boosting process, the 

voting weight is obtained by minimizing ( )lg a . It is easy to verify that '(0) 0lg   and 

''( ) 0lg a   holds for a R . Therefore, ( )lg a  has a unique minimum in R  that could 

be found by using standard numerical methods (e.g., Newton’s methods). Further, since 

( )lg a  is convex, standard numerical methods could find the minimum in a few iterations. 

In each iteration, 1l lF ah   needs to be evaluated for all the N  new cases. Therefore, the 

complexity in calculating the voting weight for a small DT is ( )NO . Summarizing, the 

overall computational complexity of the boosting process is 2( )L NO . 

The proposed approach above relates to that in [66] in the following sense: small 

DTs are utilized in both approaches; new cases are used in near real-time for accuracy 

guarantee by both approaches; the security classification decisions of online DSA are 

both obtained via a weighted voting of small DTs. However, the two approaches are 

tailored towards different application scenarios. The approach proposed here is more 

robust to missing PMU measurements, while the approach in [66] could give accurate 

decisions with less effort in offline training when the availability of PMU measurements 

is sufficiently high. The major differences of the two approaches are outlined as follows. 

First, the small DTs in the proposed approach are trained by using attribute subsets for 
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robustness, whereas the entire set of attributes is used in [66]. Second, the usage of new 

cases in near real-time is different. In [66], the new cases are used to update the small 

DTs, whereas in the proposed approach, the new cases are only used to re-check the 

performance of viable small DTs so as to quantify the voting weights. 

3.4.4 Case Study 

3.4.4.1 Test System 

The IEEE 39-bus system [35] is used as the test system which contains 39 buses, 

10 generators, 34 transmission lines and 12 transformers. Particularly, G1 represents the 

aggregated generation from the rest of eastern interconnection [35]. In this case study, the 

 

Figure 3.14  The IEEE 39-bus system in three areas and PMU placement 
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test system is assumed to consist of three areas. The three areas together with the PMU 

placement are illustrated in Fig. 3.14. It is worth noting that the PMU placement 

guarantees the full observability of the test system when the constraints at zero-injection 

buses are taken into account. 

3.4.4.2 Knowledge base 

The knowledge base only consists of the OCs that are both pre-contingency secure 

and 1N   secure. The cases in the knowledge base are created from the combinations of 

the PMU measurements of the OCs and their transient security classification decisions for 

a few selected 2N   contingencies. In this case study, the power flow solutions of an OC 

are used as the “PMU measurements.” 

3.4.4.2.1 OC Generation 

The OC given in [35] is used as the base OC. Following the method in [19], more 

OCs are generated for offline training, by randomly changing the bus loads (both active 

and reactive power) within 90% to 110% of their original values in the base OC; for the 

OCs generated for near real-time re-check and online DSA test, the bus loads varies from 

97% to 103% of their original values in the base OC. The rationale for the above 

percentage values is that offline training is usually carried out day/hours ahead, and thus 

the predicted OCs can have a larger prediction error than those in near real-time. The 

power flows of each generated OC are solved using the power flow and short circuit 

analysis tool (PSAT) [77], followed by a limit check such that the generated OCs with 

any pre-contingency overloading or voltage/angle limit violations are excluded from the 

knowledge base. 
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3.4.4.2.2 Critical Contingencies 

The loss of any of the 46 components (i.e., the 34 transmission lines, the 9 

generator-transformer pairs and the 3 transformers at (11,12), (12,13) and (19,20)) is 

considered as an 1N   contingency. Due to the large number of possible 2N   

contingencies, only a few of them are selected. Intuitively, a severe impact on the 

security of power systems is more likely if a second component gets overloaded after the 

loss of the first component. As such, the 2N   contingencies are selected in the 

following manner. First, each of the aforementioned 46 components is removed from the 

test system. Then, power flows are re-solved and limit check is rerun for the base OC 

using PSAT. The first removed component and any overloaded component are regarded 

as the removed pair of an 2N   contingency. As a result, 15 pairs are identified, as listed 

in Table 3.4. 

Table 3.4  1st and 2nd removed components of the selected N-2 contingencies 

line( 4,14), line( 6,11)  line(6,11), line(4,14) line(6,11), line(13,14) 

line(6,11), line(10,13)  line(10,11), line(10,13) line(10,13), line(6,11) 

line(10,13), line(10,11)  line(13,14), line( 6,11) line(13,14), line(10,11) 

line(16,21), line(23,24)  line(21,22), line(23,24) line(21,22), line(22,23) 

line(21,22), line(16,24)  line(23,24), line(16,21) line(23,24), line(21,22) 

 

3.4.4.2.3 Transient Security Assessment 

Transient security assessment tool (TSAT) [77] is used to assess the transient 

performance of the OCs that are pre-contingency secure. To create a contingency in 

TSAT, the “three-phase short circuit to ground” fault is applied at either of the two 

terminal buses of the first removed component with a primary clearing time of 4 cycles. 
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Therefore, 92 1N   contingencies and 30 2N   contingencies are created. The “power 

angle-based stability margin” defined in TSAT [77] is used as the transient stability 

index. 

3.4.4.3 Test Results and Discussion 

Three other approaches are used as benchmarks, including a single DT using 

surrogate, an RF using surrogate, and an RF without using surrogate. Following [88], 

unpruned DTs are used in RFs; in RFs, all training cases are used to build a single DT; in 

each split of DTs, a number of  2log 1P  attributes are randomly selected (where P =96 

according to Column 3 of Table 3.5); the optimal number of DTs in the forest is 

determined through out-of-bag validation [88]. Specifically, for the former two 

benchmark approaches, surrogate attributes are obtained from those which are not co-

located with the primary attributes; for the third benchmark approach, degenerated DTs 

are used. 

Table 3.5 Data used by Algorithm 3.2 for the IEEE 39-bus test system 

Area Placement 

Number of attributes 

kM  kA  kp  

Category 1 Category 2 Category 3 

1 8, 13, 39 3 24 3 700 b  0.28 

2 18, 25, 29 3 24 3 700 b  0.28 

3 16, 20, 23 3 30 3 1120 b  0.44 
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3.4.4.3.1 Attribute Subsets 

The hypothetical WAMS for the test system has a hierarchical architecture similar 

to that in Fig. 3.12. Based on the evaluation results of the reference [91], it is assumed 

that all the PMUs have the same availability a  ( a [0.979975, 0.998920]), and all the 

communication links from PMUs to PDC have the same availability linkA =0:999. 

Further, the availability of the PDC and the communication link from the PDC to the 

monitoring center is assumed to be 1. Let 3(0.999 )b a , and thus b 

[0.938299,0.993776]. Then, it follows that when 0A b , the solution to sP  in (3.13) 

exists, as given in Table 3.5. In what follows, the data in Table 3.5 is explained in detail. 

Specifically, Column 2 provides the indices of PMU buses, which can also be seen from 

Fig. 3.14. Column 3 contains the number of attributes for the three categories defined in 

Section 3.4.2.1. Take area 1 for example, there are 3 voltage magnitude attributes, 24 

transmission line (including power flow and current magnitude) attributes, and another 3 

attributes from voltage phase angle difference. Given the system topology and 

availability information, kM  in column 4 and kA  in column 5 are calculated using (3.8) 

and (3.11), respectively. Then, kp  is obtained by solving (3.13). 

3.4.4.3.2 Offline Training 

OCN =200 generated OCs which are both pre-contingency and 1N   contingency 

secure are used for offline training. Combining the generated OCs with their transient 

security classification decisions for the CN =30 selected 2N   contingencies, are used to 

generate the N =6000 cases in the knowledge base. The size and the number of small 

DTs are determined by bias-variance analysis [68] and V -fold cross validation [18]. In 
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this case study, L =40 and J =3 are used by the proposed approach; 45 DTs are used in 

the two RF-based approaches. 

3.4.4.3.3 Near Real-time Re-check 

By following the procedure described in Section 3.4.3.2, 100 OCs are generated for 

performance re-check. The DTs trained offline are applied to the new cases; the 

classification results are compared with the actual security classification decisions of the 

new cases. Then, these re-check results are used by Algorithm 3.4 to quantify the voting 

weights of DTs 

3.4.4.3.4 Online DSA Test 

Another 100 OCs are generated for testing, by following the procedure described in 

Section V.B. Recall that the availability of PDC and the communication links for PDCs is 

1, and then it can be seen from Fig. 3.13 and Fig. 3.14 that the total number of failure 

scenarios of all PMUs and links can be reduced to 512 (2
9
, since there are 9 pairs of 

PMUs and links). The online DSA test is repeated for all failure scenarios, by identifying 

the missing PMU measurements and viable small DTs, calculating the voting weights of 

viable small DTs, and evaluating the misclassification error rate. The misclassification 

error in online DSA is calculated by: 

512

1

e( ) Prob( ( ))e( | ( ))
k

F k F k


                                                                  (3.20) 

where, ( )k  denote the k -th failure scenario; Prob( ( ))k  denotes the probability to 

happen of ( )k , which can be easily calculated by using the assumed availability; 

e( | ( ))F k  denotes the misclassification error of F  under failure scenario ( )k   
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( e( | )F  is set to be 1 when all PMUs fail). 

The test are performed for various values of availability a, the test results of which 

are illustrated in Fig. 3.15. It is observed that the performance of the benchmark 

approaches is comparable to that of the proposed approach only around b =1. However, 

the gap becomes more significant as b decreases. 

 

Figure 3.15  Performance on online DSA in case of missing PMU measurements 

3.4.4.3.5 Impact of Measurement Noise 

In reality, PMU data may contain measurement noise. Actually, besides missing 

PMU data, noisy PMU data can be another important issue to online DSA and many 

other PMU measurement-based applications. Following the approach in [41], numerical 

experiment is carried out to study the impact of measurement noise on the performance of 

the proposed approach. 
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For convenience, let VV   and II   denote a voltage/ current phasor 

respectively; let VV 
~~

  and II 
~~

  be the corresponding measurement. For PMUs 

complying with IEEE C37.118 standard [39], a measurement should have a total vector 

error (TVE) less than 1%, i.e., 
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                                                                 (3.22) 

For convenience, let Vn  and In  denote the measurement noise in VV 
~~

   and II 
~~

  

respectively. In order to generate measurement complying with the above specifications, 

the complex noise Vn  and In  are randomly generated, by using the following density 

functions (note that other density functions can be also used) properly scaled and 

truncated from standard complexity Gaussian distributions: 
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Then, it is clear that all noisy measurements have TVE not more than 1%, and are 

complex Gaussian distributed within their support. The generated random measurement 

noise is added to the both training and testing data. The test results are provided in Fig. 

3.16. 

 

 

 Figure 3.16  Impact of measurement noise 
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3.5 Conclusions 

In this project, an online DSA scheme based on ensemble DT learning is proposed 

to handle the OC variations and topology changes that are likely to occur during the 

operating horizon. The proposed scheme is applied to a practical power system, and the 

results of a case study demonstrate the performance improvement brought by boosting 

unpruned small DTs over a single DT. Compared to single DTs, the classification model 

obtained from ensemble DT learning often have higher accuracy, and lend themselves to 

cost-effective incorporation of new training cases. The results presented here also provide 

an insight into the possibilities of other ensemble DT learning techniques, e.g., random 

forest, in handling the challenges of online DSA. 

Further, in order to mitigate the impact of missing PMU measurements in online 

DSA, a random subspace method that utilizes the topological information of WAMS and 

the availability of PMU measurement has been developed and incorporated into the 

ensemble DT learning. In particular, the various possibilities of missing PMU 

measurements in online DSA can make off-the-shelf DT-based techniques (a single DT, 

RF, etc) fail to deliver the same performance as expected. The proposed ensemble DT-

based approach exploits the locational information and the availability of PMU 

measurements in randomly selecting attribute subsets, and utilizes the re-check results to 

re-weight the DTs in the ensemble. These special treatments developed from a better 

understanding of power system dynamics guarantee that the proposed approach can 

achieve better performance than directly applying off-the-shelf DT-based techniques. 
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A1. Appendix 1: Regression Tree Growing and Splitting 

Suppose a knowledge base  consisting of N sample cases (x1, y1), (x2, y2), …, (xN, yN) is 

used to construct a RT. 

Using the Least Squares Regression: 
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Given the set of candidate splits S, for any sS that splits node t into tL and tR, let 
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 of node t is that split in S which decreases R(t) the most: 
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A RT with Tmax nodes is built by iteratively splitting nodes so as to maximize the 

decrease in R(T). Splitting stops when for every tTmax, N(t)  Nmin. N(t) is the number of 

samples falling into node t and Nmin is a pre-defined threshold. 

A1.1. RT Pruning and Testing 

For any subtree T Tmax, let us define its complexity as T
~

, the number of terminal nodes 

in T. Then its cost-complexity measure R (T) is: 

TTRTR
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where  ≥0 and is called the complexity penalty. 

For each value of , find the subtree T( ) Tmax such that the cost-complexity R (T) is 

minimized: 
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The result is a decreasing sequence of pruned trees, with an increasing sequence of  

values: 
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where T1 Tmax, t1 is the tree contains the root node only. 
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To select the right sized tree from the sequence {T1, T2, …}, a proportion of N is 

randomly selected and used as test samples TS. The cost of subtree Tk is: 
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Another test method is the V-fold cross-validation (CV). Dividing N in V subsets {N1, N1, 

…, NV}, let: 

  
 


V

V VNnynx

nknk
CV xdy

N
TR

1 ),(

2
)(

1
)(

 

The relative error RE
CV

(Tk ) of subtree Tk is given by: 
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A1.2. Selection of the Best Pruned Tree 

The Standard Error (SE) estimate is used to select the best pruned subtree commensurate 

with accuracy. 

Take the cross-validation testing for example, the subtree with Tk nodes is selected as the 

best pruned tree if: 
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