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Executive Summary 

Massive amounts of novel data are currently being acquired and stored as part of ongoing 
electricity grid transformation efforts. This data will enable discovery of complex system 
behavior and enable new decision-making processes to realize higher grid reliability, 
economy, and sustainability objectives. This project presents various mechanisms to 
systematically exploit the new data, advancing the current understanding of the load. 

Part I:  Real-Time Dynamic Parameter Estimation for an Exponential Dynamic 
Load Model (Abur, Northeastern University) 
Load modeling has been an important area of investigation due to the importance of loads 
as part of the network model used in various different power system studies. Dynamic 
behavior of loads in particular is of special interest in studies involving power system 
dynamics. This report is also concerned about real-time modeling and identification of 
dynamically changing loads in power systems. The motivation for the study is the 
availability of synchronized measurements which can be used to identify the composite 
behavior of loads behind a measured bus. 

An exponential dynamic load model was proposed earlier and was well accepted by 
several investigators who worked on this topic. This work considers this model and 
identifies its parameters in real-time by using measurements. An Unscented Kalman 
Filter (UKF) is used to track the unknown parameters of the exponential dynamic load 
model.  

The report first implements and tests the proposed method using simulated 
measurements. The method is then applied to actual recorded utility measurements to 
identify and track the bus load of a utility feeder.  

The results suggest that the proposed approach can provide reasonably accurate dynamic 
loads for on-line applications requiring detailed load models. 

Part II:  Exploiting Smart Meter Data for Enhanced Load Modeling 
(Grijalva, Georgia Institute of Technology) 
As part of the ongoing smart grid transformation, smart meters have been widely installed 
producing massive amounts of data and information. One of the critical needs for 
distribution system operations and planning applications is modeling of the load, in 
particular, its dependence on the voltage. This study is aimed at using smart meter 
measurements for enhanced load modeling by using data-mining methods.  

The two major barriers for a data-mining-based load model are the load’s time-variant 
properties and the low resolution sampling rate of the current advanced metering 
infrastructure (AMI). We address the first barrier through data aggregation and hour 
partitioning processes. We address the second barrier by introducing the load condition 
assumption, which justifies the data-mining-based modeling method intuitively from the 
statistical point of view. Meanwhile, various data-mining and machine learning 
algorithms are evaluated such as K-subspace method, Davies-Bouldin Index (DBI) and 
Silhouette Coefficients. 
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In the first section, we introduce the smart meter deployment on the Georgia Tech main 
campus as the testbed for the study. We developed an interactive visualization tool, 
“Smart Grid Plotter”, for easier visualization of the cumulative smart meter database. The 
visualization tool allows researchers to navigate historical data collected by smart meters 
for all buildings on campus. Users can further configure and save the desired plot through 
various parameters on the menu. 

In the second section, we propose a novel enhanced load modeling method based on data-
mining and machine learning algorithms. The enhanced load model is a time-variant 
model that writes the load’s active and reactive power usage as a function of both time 
and voltage. The detailed steps for the new load modeling method are further discussed in 
details through three aspects: data aggregation, hour partition and the load condition 
assumption. 

In the third section, we further explore the smart meter data for both off-line and real-
time utility functions. In the report, we show that as a very important information source, 
smart meter data (both real time data and historical data) can be the core of other 18 
potential applications when combined with other data, such as weather and GIS 
information. Two sample applications, refined power flow analysis and dynamic 
distribution network reconfiguration, are studied to show how smart meter data and the 
proposed enhanced load model improve power system analysis results and facilitate 
advanced energy efficiency operations. 

In the future, the smart meter data will be more tightly integrated into the vast majority of 
utility applications for both energy efficiency and reliability improvements. One of the 
immediate integrations includes a next generation customer information system (CIS) 
based on smart meter database, weather information and GIS data. 

Part III:  Exploiting Weather and Load Recording Data to Enhance Load Modeling 
(Christy, Iowa State University) 
In Part III, we show a method for calculating the AC motor load using historical load and 
temperature data. Historical temperature data is now readily available from internet 
sources, and historical load data is more and more available through various recording 
means. The concepts have been illustrated using the load for various companies in the 
PJM interconnection, but the same concepts can be applied at the feeder level or even at 
the individual customer level. 

Estimation of the AC fraction of load was performed using change-point curves and it 
was shown that separate change-point curves should be constructed for each different 
system loading state: weekday daytime, weekday nighttime, weekend daytime, and 
weekend nighttime. Of course, construction of these curves has been programmed so that 
the process is automated. Furthermore, a straightforward program can be written to 
estimate the AC fraction of load at any particular time of interest. The steps for this 
application were shown. 

Naturally, the amount of motor load will depend on the outdoor ambient temperature at 
the time of the event. The higher the temperature, the higher the AC motor load will be. 
These results use historical load and temperature data to take the guess work out of 
estimating the AC motor fraction of load. 
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Part 1. Real-Time Dynamic Parameter Estimation for an Exponential 
Dynamic Load Model 

1.1 Load Modeling in Power Networks 

1.1.1 Introduction 

Obtaining more accurate load models which properly reflect dynamic behavior of loads 

under various disturbances is one of the challenges in today’s energy management 

systems. Various on-line applications that rely on dynamic simulation studies require 

detailed and accurate load models. Use of models that fail to accurately capture the 

dynamic behavior of loads may lead to inconsistent results for dynamic stability and 

voltage collapse studies [1-5]. A load model is a mathematical representation related to 

the measured voltage and/or frequency at a bus, and the real and reactive power 

consumed by the load [6]. Hence, load modeling is considered as a system identification 

problem.  

As expected the topic of load modeling occupies a large volume in power systems 

literature. Proposed load modeling approaches can be broadly classified into two 

categories: Component-based [7] and measurement-based [8, 9] approaches. The 

drawback of the first category is that it requires full knowledge of the load inventory of 

typical loads in order to synthesize composite load models. Thus, successful 

implementation of this approach strongly depends on the true inventory of the loads 

connected to the feeders which is regretfully not always available [10]. The second 

category estimates load parameters using measurements. This gives a more precise 

picture of real-time loads and their dynamic characteristics [11]. This project’s approach 

falls in this second category. 

Load models can be broadly classified as either static or dynamic [6]. A static load model 

does not depend on time [12], and therefore it relates the active and reactive power at a 

given time to the voltage and /or frequency at the same instant of time. Static load model 

is suitable to represent static load components such as resistive loads and light bulbs. 

While they are also used to approximate the dynamic load components, their accuracy is 
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usually not sufficiently high. On the other hand, a dynamic load model describes the load 

behavior as a function of time and therefore provides a much more accurate tool for 

dynamic simulations.  

This work considers one of the most widely accepted dynamic load models and aims to 

identify and track its parameters on-line. This is the exponential dynamic load model 

proposed and described in [8]. Aggregate load model (ZIP augmented with induction 

motor) is also considered by several researchers [13-16]. Perhaps one of the main 

shortcomings associated with this model is that, it has considerably more unknown 

parameters and state variables to be identified and estimated compared to the exponential 

dynamic load model. Computational burden associated with the estimation of the large 

number of parameters significantly prohibits the real-time implementation of this model. 

In order to overcome this limitation, an Extended Kalman Filter (EKF) based technique is 

used to estimate the dominant parameters of the aggregate load model assuming that the 

other parameters can be approximated for different types of loads [15]. This 

approximation however leads to reduced accuracy of the load parameter identification. 

Other alternatives such as the hybrid learning algorithm which combines the genetic 

algorithm and nonlinear Levenberg-Marquardt algorithm [16] have also been proposed 

for parameter identification of the aggregate load model. All of these approaches share 

the same limitation of high computational burden as a real-time application. In [17] two 

different approaches for PSS/E CLOD complex load model parameter estimation are 

investigated. The first approach, compare and re-simulate, solves for the load model 

using a generic nonlinear minimization routine. This approach suffers from long run 

times and it is vulnerable to measurement error and noise. The second approach is called 

simulate then calculate which emulates the time-consuming simulation process using a 

simple matrix manipulation, which reduces the computation time significantly, but also 

decreases the accuracy of the solution and it is sensitive to the distribution which is 

considered for the parameter set.  
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1.1.2 Project Objectives and Description 

This work is motivated by the decisive effect that load representation has on voltage 

stability studies. One of the main objectives of this work is to find the most updated load 

model in real-time which can represent the latest characteristics of the corresponding 

actual load. Consequently, two important factors should be taken into the account. First, 

the chosen load model should be capable enough to represent the dynamic behavior of the 

actual load. Second, simultaneously it should not be too complex. Since as the load 

model becomes more complex (more unknown parameters) the computational effort for 

load identification will also increase.  

Considering different load models proposed by researchers in the literature, the 

exponential dynamic load model is found to satisfy the conditions mentioned above. The 

mathematical representation of this load model is described in this work and the 

corresponding parameters which are needed to be identified are indicated.  

Next, it is necessary to implement a dynamic state estimator to track the parameters of the 

exponential dynamic load model. In this project UKF is implemented as a dynamic state 

estimator where an Unscented Transformation is used for obtaining the propagated mean 

and covariance of the state vector, leading to a better performance than EKF which is 

widely used for dynamic state estimation in the literature [18]. The algorithms associated 

with Unscented Transformation and UKF are also explained in this work. 

This report is organized in four sections. Section 2 includes the details of the algorithms 

and dynamic models which are used in this work. Section 3 presents the proposed 

approach and the simulations results where first based on the simulated measurements, 

the performance of the proposed approach is evaluated considering two different 

scenarios, then the results are shown based on real measurements coming from utility. 

The final section will conclude the report and also mention some of the future work. 

1.2 Proposed Algorithms and Dynamic Models 

In this work, an Unscented Kalman Filter (UKF) is used as a dynamic state/parameter 

estimator to track the unknown parameters/state variables associated with exponential 
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dynamic load model. Detailed application of the UKF algorithm to the considered 

exponential dynamic load model is described below. 

1.2.1 Exponential Dynamic Load Model  

The assumed load model is expressed as a set of non-linear equations, where real (active) 

and reactive powers consumed by the load are assumed to be related to the voltage in the 

following non-linear manner [8], [12]: 
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where: 

0V and 0P are the voltage and power consumption before a voltage change.  

rP is the active power recovery,  

lP is the total active power response, 

pT  is the active load recovery time constant, 

tα is the transient active load-voltage dependence, and  

sα is the steady state active load-voltage dependence.  

Similar equations are also valid for reactive power. The equations related to reactive 

power part are given below: 
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Similarly,  

0V and 0Q are the voltage and reactive power consumption before a voltage change. 

rQ is the reactive power recovery, 

lQ  is the total reactive power response, 

qT  is the reactive load recovery time constant, 

tβ is the transient reactive load-voltage dependence, and sβ is the steady state reactive 

load-voltage dependence. 

As an example Figure 1.1 shows the response of the exponential dynamic load when a 

disturbance is affecting the system. In this case an ideal voltage step has been applied and 

as a consequence, the total active power response of the load will reach to a new steady 

state after  recovery [8].  

 

Figure 1.1  Load response of the exponential dynamic load model under a voltage step 
change 

This work is mainly focused on the real-time estimation of the unknown parameters/state 

variables associated with this load model based on measurements and development of a 

real-time dynamic load model which represents the behavior of the monitored load with 

an acceptable accuracy. This is accomplished by using an UKF which is implemented as 
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a dynamic parameter estimator for the unknown parameters and state variables of the 

assumed load model. Here the unknown parameters are pts Tandαα , (for the real power 

model of (2.1)) and the state variable is rP . It is needless to say that an equivalent 

statement is true for the reactive power model of (2.2).  

1.2.2 Unscented Transformation 

Given the nonlinearity of the measurement and generator dynamic equations, it is quite 

cumbersome if not impossible to transform the entire probability density function (pdf) 

for the modeling and measurement errors. Use of first order approximation as done in 

EKF will introduce errors which may at times cause significant biases and even 

divergence [18]. 

As an alternative, an approximation to the true pdf can be generated by transforming 

individual points in state space and calculating a sample pdf based on them. This is 

essentially what an unscented transformation (UT) does. To illustrate the idea, consider a 

random vector x with mean x and covariance P . One can find a set of deterministic 

vectors called sigma points whose ensemble mean and covariance are equal to x and 

P . Let us also consider the nonlinear measurement function )(xhz = which can be 

used to obtain measurement points by substituting the sigma points for x in the 

measurement equations. The ensemble mean and covariance of the transformed vectors 

will give a good estimate of the true mean and covariance of z .  

Suppose that x is an 1×n vector that is transformed by a nonlinear 

function )(xhz = ,The unscented transformation base on Choosing n2 sigma points 

is mentioned by following steps: 

)(
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)( ii xxx +=             ni 2,...,1=                                   

T
i

i nPx )()(
* =      ni ,...,1=                                                                                

T
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Please note that inP )(  is the i th row of nP . Transform the sigma points as follows: 

)( )()( ii xhz = ni 2,...,1=                                   (1.2.4) 

The approximated mean and covariance of z can then be obtained as follows: 
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The unscented transformation mentioned above (which is based on choosing n2  sigma 

points) is not the only one that exists. As an example, it can be shown that general 

unscented transformation which uses 12 +n sigma points to obtain the propagated mean 

and covariance, gives the same order of mean and covariance estimation accuracy as 

given by unscented transformation base on n2  sigma points [18]. For computational 

saving purposes, we can use other type of transformations which use less number of 

sigma points. It can be shown [18] that minimum number of sigma points which makes it 

possible to obtain the propagated mean and covariance is equal to 1+n .  

As an example the superior performance of the unscented transformation based on n2  

sigma points in comparison with linear approximation (which is used in EKF) for finding 

the propagated mean and covariance of a state vector is shown in the Figure 1.2. In this 

figure 300 points are randomly generated for the following set of equations:  

θ
θ

sin
cos

2

1

ry
ry

=
=

                                                                                     (1.2.7) 

where r is uniformly distributed between ±0.1 and θ is uniformly distributed between 

±0.35 rad. 
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Figure 1.2  A comparison of the exact, linearized, and unscented mean and covariance of 
300 randomly generated points based on (2.7). 

The small points in Figure 1.2 represent the exact points generated by (2.7) and the bold 

point at (0,1) shows the linearized mean. The true mean and the approximate unscented 

mean are very close that they are plotted on top of each other and are both equal to (0, 

0.97). Hence, this figure validates the highly accurate estimates of the mean and the 

covariance when unscented transformations are used instead of linear approximations 

[18]. 

In this work we will consider the standard Unscented Kalman Filter or (UKF) which uses 

n2 sigma points. In the next part we summarize the UKF algorithm. 

1.2.3 Unscented Kalman Filter (UKF) 

The UKF uses the unscented transformation [18] for solving nonlinear problems by 

considering system dynamics and measurement equations as follows: 

kkk wkxfx +=+ ),(1                                                                                             (1.2.8) 

kkk vkxhz += ),(                                                                                               (1.2.9) 
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where 
nx ℜ∈ is a discrete state vector. 
mz ℜ∈ is a discrete measurement vector. 

),0(~ kk QNw  Gaussian process noise at time step k  

),0(~ kk RNv  Gaussian measurement noise at time step k  

kQ and kR are covariance matrices of kw and kv respectively.  

The UKF is initialized as follows: 

)(ˆ 00 xEx =+
,   ])ˆ)(ˆ[( 00000

TxxxxEP +++ −−=                          (1.2.10)                                                                            

Time update equations are: 

(a)  Calculation of  sigma points: 
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The measurement update equations are as follows: 

(a)  Calculation of  sigma points: 
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In order to save computational effort step (2.13) can be omitted [18] with a slight 

degradation in filter performance. 
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1.3 Proposed Approach 

State dynamics given by (2.8) and the measurement equations given by (2.9) can be 

developed for the considered exponential dynamic load model given in (2.1) by 

discretizing the equations using the second order Runge-Kutta method which is a 

numerically stable discretization method [5] as follows: 
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Please note that the discretized equations associated with the reactive part (2.2) can be 

obtained in a similar way. 

In order to validate the dynamic estimator performance, a set of measurements is created 

by dynamic simulations on a system with known load model parameters. UKF is then 

implemented and used to estimate the augmented state vector which includes the state 

variable and unknown parameters associated with the exponential dynamic load model: 

T
ptsrk kTkkkPx )](),(),(),([ αα=                                                                             (1.3.2) 

where the measurement is assumed to be: 

klk vkPz += )(                                                                                                     (1.3.3) 

1.3.1 Implementation of the Proposed Approach Using Simulated Measurements 

Two scenarios are simulated in this section. Both scenarios involve changes in the load 

model. Measurements are created by using dynamic simulations and subsequently adding 

Gaussian noise according to the assumed additive noise model of (3.3). These two 

scenarios are described below. 

Scenario 1: 

In this scenario, the true parameters associated with the load model are assumed to be 

(the values are selected from [12]): 

[sec].70&65.1,32.0,867.00 ==−== pts TP αα  

 11 



 

Here are the detailed steps of the simulated events and assumptions made: 

• A voltage drop of %3.5/ 0 −=∆ VV  occurs at the load bus at t = 0. 

• Load parameter sα is increased from -0.32 to -0.28 at t = 5 min. 

• Total simulation time is 10 min and time-step=0.025 sec.  

• The UKF is initialized using arbitrary values in (2.10).  

• 41 −= eRk and 44
61 ×
− ×= IeQk . 

The results are shown in the following figures. Please note that in all plots, dashed and 

solid lines correspond to the estimated and true trajectories respectively. 
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Figure 1.3  Actual and estimated plot of 
rP -Scenario 1.  
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Figure 1.4  Actual and estimated plot of sα -Scenario1. 
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Figure 1.5  Actual and estimated plot of tα -Scenario 1. 
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Figure 1.6  Actual and estimated plot of 
pT -Scenario 1. 

Scenario 2: 

This scenario is similar to scenario 1 except for the fact that all load parameters are 

assumed to change linearly during the simulation. Their ranges of change are assumed as 

follows: 

• sα is reduced from -0.32 to -0.37.  

• tα  is increased from 1.65 to 1.7.  

• pT is increased from 70 sec. to 80 sec.  

The results are shown in the following figures. 
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Figure 1.7  Actual and estimated plot of rP -Scenario 2. 
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Figure 1.8  Actual and estimated plot of sα -Scenario 2. 
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Figure 1.9  Actual and estimated plot of tα -Scenario 2. 
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Figure 1.10  Actual and estimated plot of 
pT -Scenario 2. 

UKF is observed to successfully track changes in model parameters for both scenarios. It 

is capable of tracking the unknown and time-varying parameters of the exponential 

dynamic load model accurately when using simulated measurements and an exponential 

load model. However, in actual system operation, the load model is simply not known 

and therefore, UKF’s performance needs to be tested using actual recorded measurements 

in order to evaluate its performance as an on-line function. This is done in the next 

section. 

1.3.2 Implementation of the Proposed Approach Using Actual Recorded 
Measurements 

In this section, the proposed approach is evaluated based on actual recorded measurement 

data where synchronized voltage and power measurements are acquired every 6 seconds 

for a utility distribution feeder. The total duration of the recordings is 1440 minutes or 24 

hours. Figure 1.11 shows that the voltage of the feeder (V ) increases during this period 

(from almost 115 kV to 116.5 kV).  
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Figure 1.11  Voltage of the distribution feeder (V ). 

As in section A, UKF is used to estimate the unknown parameters of the assumed 

exponential dynamic load model. The following assumptions and data are used in 

implementing the UKF to track parameters of the unknown load based on the recorded 

measurements: 

• A time-step of 6 sec. is used by the filter. 

• Total duration of the tracking study is 1440 min.  

• UKF is initialized using arbitrary values in (2.10). 

• 41 −= eRk and 44
61 ×
− ×= IeQk . 

Figures 1.12 to 1.15 show the estimated values of the assumed exponential load model 

for the study duration.  
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Figure 1.12  Plot of estimated values for
rP . 
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Figure 1.13  Plot of estimated values for sα . 
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Figure 1.14  Plot of estimated values for tα . 
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Figure 1.15  Plot of estimated values for pT . 

Note that the true values are not known, so it is not possible to comment on the accuracy 

of the parameters, however given the long duration of the study time (1440 minutes or 24 

hours) one can observe UKF’s tracking of parameters as they gradually change in time. 
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While the actual parameters of the model are unknown and cannot be directly measured, 

total active and reactive power are available as measured values. Thus, performance of 

the UKF in tracking the total active power can be evaluated by observing the measured 

and predicted total active power as shown in Figure 1.16.  
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Figure 1.16  Plot of actual and estimated values for lP . 

In order to quantify the accuracy, the following error metric is used to evaluate the 

performance of the UKF in tracking the real-time model of the active power demand: 

∑
=

−=
k

i
ik zz

k 1

2)(1σ  

∑
=

−
=

k

i k

ii zz
k

MSE
1

2)(1
σ



                                                                                   (1.3.4)       

where  

iz and iz are the measured and estimated values at time i. 

MSE is the mean squared error.  
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Figure 1.17 illustrates how the MSE value is gradually reduced finally settling below an 

acceptable level of 0.25, validating the satisfactory performance of UKF. 
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Figure 1.17  Plot of MSE when tracking total real power. 

A similar study is repeated for the reactive power model of (2.2), where the model 

parameters are estimated and plotted as shown in Figures 1.18 to 1.21. Figures 1.19 to 

1.21 illustrate how the exponential dynamic model parameters are tracked by the UKF.  
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Figure 1.18  Plot of estimated values for rQ . 
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Figure 1.19  Plot of estimated values for sβ . 
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Figure 1.20  Plot of estimated values for sβ . 
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Figure 1.21  Plot of estimated values for qT . 

As in the case of real power model tracking, performance of the UKF is evaluated for 

tracking the model of the total reactive power. This is accomplished by plotting the total 

reactive power that is measured and predicted as shown in Figure 1.22.  
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Figure 1.22  Plot of actual and estimated values for lQ . 
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Figure 1.23  Plot of MSE when tracking total reactive power. 

Figure 1.23 shows the plot of MSE for the total reactive power and as evident from the 

figure MSE gradually reduces to an acceptable level.  

It should be mentioned that the computational burden per time step for the proposed 

dynamic estimator is rather modest due to the small number of state and parameters being 

tracked. So the approach lends itself readily to real-time implementation. 

1.4 Conclusions and Future Work 

This report is concerned about identification of dynamic load models for power grids. It 

is recognized that developing and maintaining models that are based on first principles is 

prohibitively complicated and computationally demanding. Instead, the paper aims to 

develop a measurement based model whose parameters can be tracked in real-time. A 

well-studied and accepted exponential dynamic load model is used as a basis in order to 

develop an UKF to identify and estimate model parameters in real-time. The proposed 

dynamic estimator is first tested using artificially generated measurement data. 

Subsequently, the estimator performance is evaluated using actual recorded utility load 

data captured in 6 second intervals. Both simulation and experimental results indicate that 

such a dynamic estimator can provide an accurate dynamic load model based on real-time 

measurements. Given the recent increase in deployment of phasor measurement units in 
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substations, such measurements are expected to be widely available for implementing the 

proposed application of this work in the near future. 

This study considered development and maintenance of a dynamic load model based on 

real-time measurements. While the captured model may be considered valid for short 

term dynamic studies, there is no guarantee that the model will remain valid as the 

operating conditions change. So, the authors are interested in extending this work to 

develop dynamic models which will remain valid for extended periods of time. 
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Part 2. Exploiting Smart Meter Data for Enhanced Load Modeling 

2.1 Introduction 

2.1.1 Background 

As one of the essential elements toward the future smart grid, smart meters have been 

widely installed in the developed world. It is the first time in history that utilities and 

system planners gain access to measurements for customers at the building level with 

great time resolution and at such a large scale. Compared with conventional meters, smart 

meters generate data that fill the void in the minute-to-hour time scales and couple the 

spatial and temporal scale.  

The massive historical database created by smart meters contains a wealth of information 

which has not been fully explored or exploited. Currently, most studies on smart meter 

data are limited to load forecasting [19, 20] and typical load profile (TLP) identifying 

[21]. However, another critical need for enhanced distribution system operations and 

planning is a better load model. This project explores a new possibility of building an 

enhanced load model by implementing data mining techniques on smart meter historical 

database [22]. 

2.1.2 Overview of the Problem 

From a mathematic point of view, a load model is a formula of the relationship between 

bus voltage and power (real and reactive) [23]. Compared with the modeling of 

generators and transmission systems that have been studied in detail, an accurate time-

variant load model is difficult to achieve due to electricity load uncertainties and data 

insufficiency. Traditionally, there are two popular approaches to build a load model: 

measurement-based approach [24, 25] and component-based approach [26, 27].  

The measurement-based approach determines the load model by recording the load 

responses directly through system voltage stage tests and actual system transients. 

Although accurate, the measurement-based approach is costly: testers need to perform 

specific experiments on real system by deliberately changing transformer tap positions, 
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which may affect energy quality to customers. Moreover, the measurement-based load 

modeling method cannot capture the time-variant properties of the load. In other words, 

the load model built through the measurements only reflects the load’s property at the 

time when those measurements are taken. For example, errors are introduced when a 

daytime load model is used for midnight load analysis.  

The component-based approach estimates the system load’s P-V and Q-V properties by 

aggregating typical load components according to certain ratios, which are also the load’s 

ratios of the typical load components in the system. Instead of taking system 

measurements, this approach builds detailed load model in advance for common load 

components in the system being studied, such as air conditioners in the residential loads 

or the electric machines in the industrial loads. Component-based approach hence avoids 

costly system tests by taking surveys to determine the ratios of typical load components 

and building load profiles for each load component. However, the accuracy of this 

approach strongly depends on the accuracy of the load components ratios and the specific 

models built to represent typical load components. As a result, in most cases, the load 

model built through component-based approach needs verifications using real system 

measurements. Table 2.1 lists the strengths and weaknesses of both the measurement-

based method and component-based method. 

Table 2.1  Comparisons of measurement-based and component-based method 

 Measurement-Based Method Component-Based Method 

 

Manually change the voltage at the 
substation and take measurements. 
Load model is later built through 
parameter identification. 

Model the real load by aggregating 
pre-modeled components through 
some ratios, which are determined 
through large scale surveys. 

Strengths Accurate, no need for verification No costly system tests are needed 

Weaknesses 

• Tests are expensive 
• Tests leads to bad power quality 
• Not available on building level 
• Difficult to get 24 hour model 

• Need pre-modeled models for 
different load components 

• Large surveys to set those ratios 
• Survey results ≠ load in reality 
• Model needs further validation 
• Difficult to get 24 hour model 
• Does not account customer 

behaviors 
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The proposed enhanced load model identifies the load’s P-V and Q-V properties through 

data-mining techniques and is time-variant for enhanced accuracy, see Figure 2.1.  

 
Figure 2.1  Enhanced load modeling method 

The new load modeling method has the following merits: 

• No expensive system tests or large surveys are needed. 

• The load model is available to building level as long as a smart meter is presented. 

• It is a time-variant load model taking the customer behaviors into account. 

• No further validations are needed since the model comes from real system 
measurements. 

Generally, there are two major barriers for a data-mining-based approach. 

First, the load reading resolution for current smart meters ranges from 15 minutes to an 

hour. Data collected on such a resolution level cannot distinguish the effects from 

instantaneous load changes and system voltage deviations, both of which are responsible 

for real and reactive power consumption changes. Based on a previous research by EPRI, 

this data resolution is not good enough to determine the load composition in detail to 

allow immediate implementation of the component-based load model [25]. As a result, 

instead of seeking the decomposition of the load into specific load components, this 

project introduces the concept of load condition and focuses on modeling the P-V and Q-

V properties of the load without load disaggregation.  

Second, the historical smart meter readings from the massive database need to be 

clustered to prepare data for meaningful and high-quality load model parameter 

identification. As a result, multiple data mining techniques such as Davies-Bouldin Index 

(DBI) and K-subspace method are implemented to facilitate the modeling process. 
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2.1.3 Report Organization  

In the first section, we introduce the smart meter deployment on Georgia Tech main 

campus as the data testbed for the study. We develop an interactive visualization tool, 

“Smart Grid Plotter”, for easier visualization of the cumulative smart meter database. The 

visualization tool allows researchers navigate historical data collected by smart meters for 

all buildings on campus. Users can further configure and save the desired plot through 

various parameters menus. 

In the second section, we propose a novel enhanced load modeling method based on data-

mining and machine learning algorithms. The enhanced load model is a time-variant 

model that allows expressing the load’s active and reactive power usage as a function of 

both time and voltage. The detailed steps for the new load modeling method are further 

discussed in details through three aspects: data aggregation, hour partition and the load 

condition assumption. 

In the third section, we further explore the smart meter data for both off-line and real-

time utility functions. In the report, we show that as a very important information source, 

smart meter data (both real time data and historical data) can be the core of other 18 

potential applications when combined with other data, such as weather data and GIS 

information. Two exemplary applications, refined power flow analysis and dynamic 

distribution network reconfiguration, are studied to show how smart meter data and the 

proposed enhanced load model improve power system analysis results and facilitate 

advanced energy efficiency operations. 

2.2 Data Background and the Visualization Tool 

2.2.1 Data Background and Analysis 

The tested data used in this project come from the smart meters installed in the 

distribution system of the Georgia Tech main campus. Nested in the heart of Midtown 

Atlanta, Georgia Tech is a highly developed and complex university campus with key 

facilities and services. Georgia Tech owns and maintains its own electrical distribution 

system in order to: 
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1) Increase reliability and flexibility, aiming at facilitating maintenance, making the 

system less susceptible to faults, and reducing faults affecting user numbers. 

2) Enjoy benefits such as real time pricing, which are only available to industrial 

customers. 

The Georgia Tech distribution system consists of 15 distribution circuits, all fed from the 

same substation, which serves more than 200 buildings.  

Many of the buildings on campus have extensive instrumentation for control and 

monitoring of electrical and mechanical signals, including approximately 400 revenue 

grade smart meters. Every 15 minutes, the measurements reported by the smart meters 

are recorded and aggregated into a database that allows for comprehensive analyses of 

events. The general scheme is that a building has a main meter and may include sub-

meters, typically for billable tenant load but sometimes applied for specific areas of 

interest such as a chiller or a PV system, or for measurements and verification (M&V) in 

a LEED-certified building. 

 
Figure 2.2  ION webreach main menu (left), list of buildings 101-800 (middle), and an 

example of a building menu 
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Figure 2.3  ION webreach meter interface 

2.2.2 Interactive Visualization Tool 

To understant and explore the smart meter data, we developed an interactive visualization 

tool by the name of “Smart Grid Plotter”. To begin with, the smart meter data need to be 

fetched from the facility’s database. To deal with the information more efficiently, all 

smart meter data have been organized in a SQLite database which is optimized for 

interactive visualization in Java, as shown in Figure 2.4. 

 

Figure 2.4  Structure of “smart grid potter” 

Figure 2.5 shows the interface of the interactive visualization tool. The upper area is the 

plotting area, where various plots are generated according to the user’s specific inputs. 

The lower area is the parameter input area, where user can insert specific requirements to 

obtain the desired plot in the plotting area. 

SQLite 
Data base 

 

Using 
Java Swing  

J Frame 
 

  

Output: 
 
P-V plot 
Q-V plot 
P-Q plot 
…. 

Input: 
Building ID 
Season 
Day type  
Time of the day 
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Figure 2.5  Smart grid plotter 

As shown in Figure 2.5, we can choose the studied building by inserting building name 

and pick the plot type by choosing the “Chat Data” manu, which includes P-Q, P-V and 

Q-V plots. The “Start Time” and “End Time” bar allow users to navigate the data 

between the desired time span of a day. User can set the studied period by editing the 

“Start Date” and “End Date” menus at the bottom.  

 
Figure 2.6  Zoom in/out 
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The interactive visualization tool also allow users to zoom in and out to see the details of 

the plot by left clicking in the plotting area, as shown in Figure 2.6. Users can also save 

the plot or print the results as well. 

 
Figure 2.7  Q-V plot of a student residence hall 

The visualization tool serves to provide the research with intuitive information on the 

load behind each smart meter, which is very important in building different load profiles 

and studying customer behaviors through time. For example, Figure 2.7 shows the annual 

Q-V plot of a student residence hall from 9am to 1pm (Sep. 2012 to Sep. 2013). From 

Figure 2.7, we can observe a linear relationship between reactive power usage and 

voltage. In fact, the reactive power usage is tent to increase as the system voltage 

increases.  

2.3 Enhanced Load Modeling 

In this section, we explain the proposed enhanced load modeling method in detail. To 

counter the barriers mentioned in Section 2.1.2, load condition assumption is introduced. 

Then various machine learning algorithms will be implemented to filter the original 

historical smart meter data. Finally, we build the enhanced load model, which is also a 
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time-variant model through regressions. Figure 2.8 shows the flow chart of the entire load 

modeling method and its associated algorithms. 

Smart Meter Data Manage 
System (Raw Data)

Select a building: Van Leer

Historical Reading for the 
Van Leer Building

Select a season: fall

Readings for Van Leer in 
fall

Select a day type: weekdays

Group the data by hourUsing Davies-Bouldin 
Index (DBI)

Data Filtering

Data Filtering

Data Filtering

Data by hour groups

For each hour group, cluster 
the data into sub-groups

Clustering Method: K-
subspace Method

Subgroup data for each 
hour group

Perform Linear Regression 
for each sub-group data

Cluster Number 
Determination Method:
Silhouette Coefficient

Dynamic Load Model

StepsAlgorithms

 
 

Figure 2.8  The enhanced load modeling method 

2.3.1 Data Aggregation 

In this section, we aggregate the smart meter data according to the data sources and the 

time when the readings are collected.  

To begin with, the wide spread installation of smart meters allows researchers to gain 

access to the loading information on every customer and in great detail. Hence, for the 

first time in history, researchers could look into every load’s behaviors based on the 
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specific building name. In other words, the first step of the data aggregation is to group 

the data according to the specific source where the data are collected.  

Since customer load changes according to time of the day, day of the week and season of 

the year, it is crucial to establish a time-variant load model to describe the load under 

various time frames. In this study, time itself is considered as a very important index to 

aggregate smart meter data. We refer the time-based data aggregation process as time 

filtering or data filtering. In other words, we prepare the data for time-variant load 

modeling by grouping the historical smart meter data according their time labels. 

This aggregation procedure has multiple benefits:  

a) It yields organized data, and consequently models, that are easier to interpret. 

b) It increases the volume of data points per static model, allowing for more robust 
modeling. 

Table 2.2 shows how to aggregate smart meter data, and how to label the results of the 

time filtering process by giving each smart meter reading a data label. The labels in Table 

2.2 contain information about the load type, time and load condition. The proposed model 

has a tree structure that branches through three layers: load type layer, time layer and load 

condition layer. All the smart meter readings in the database are aggregated and labeled 

as in Figure 2.9.  

Table 2.2  Time-variant load model and data structure 

Model 
Struc.

Data 
Label

Load Type Season

Commercial,
Residential,
Industrial

Spring,
Summer,

Fall,
Winter

Day

Weekday,
Weekend,
Holiday

Hour
Hr. Group 1,
Hr. Group 2,

...
Hr. Group K

Load Cond.
Condition 1,
Condition 2,

…
Condition K

First Layer Second Layer Third Layer

 

On the first layer, all loads are classified into commercial, residential and industrial loads. 

Ideally, a data-mining-based load modeling method does not require users to specify the 

load type as long as the load is equipped with smart meters. However, marking the data 

with load types can help us better understand the time-variant properties among different 

types of load. 
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On the second layer, for each individual load, all the smart meter readings are marked 

with time labels. Different time labels are good indicators for customer routine behaviors. 

For example, season labels can distinguish the cooling and heating loads; day labels can 

distinguish the loads among different day types, such as weekday and weekends; hour 

labels can distinguish the working hour load and off-working hour load. 

On the third layer, smart meter readings with the same time label will be further clustered 

and marked with different load conditions. The next section will explain the load 

condition assumption in detail. On this layer, the model parameters are identified using 

smart meter data of the same load condition label. 

Building Name/
Smart Meter ID

Spring

Summer

Fall

Winter

Weekdays

Weekends

Holidays

Hour Group 1

Hour Group 2

Hour Group K

SeasonsSeasons Day TypesDay Types Hour GroupsHour Groups

 
Figure 2.9  Tree-structured data labels 

2.3.2 Hour Partition 

From the data aggregation process, we know the load properties vary through time. 

However, it is important to decide to what extent we want to filter the data. In an extreme 

case, the load model definition could go from 15 minutes per model to 24 hours per 

model. On one hand, if we try to establish a time-variant model every 15 minutes, we will 

not have enough data to create a robust model for each model, and there would be 94 

models for just one day, which can result in a complicated and inaccurate model. On the 

other hand, if we try to establish only one load model per 24 hours, we are treating the 

working hours and off working hours with the same model, which loses the key 

advantage for a time-variant load model. Hence, we decided to group the 24 hours into a 

proper number of hour groups according to some machine learning algorithms. The load 

models are assigned to each of those hour groups. For example, mid night hours from 
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1am to 6 am might be grouped a single hour group and be represented using one load 

model, because the activities during the midnight for commercial and residential loads 

are pretty stable. As is shown in Figure 2.10, the variable of time adds to the complexity 

of the load modeling algorithm. 

Line-shaped Clustering instead of center-
shaped clustering

Dynamic Load Model Numbers:
4(Season)*2(Daytypes)*24(hours)*k(Load 

condition numbers)

Complexity of the Cluster Algorithm

 
Figure 2.10  Time index adds to the complexity of the model 

Since our initial exploratory data analysis (namely through Q-V and P-V plots) revealed 

that these data points exhibit significantly different patterns across different hours of the 

day within a given configuration, we would like to build separate models for each group 

of hours with similar data points. Hence, given 24 sets of P-V (or Q-V) data points, each 

corresponding to one hour of data for a given configuration, we seek to group different 

hours exhibiting similar P-V (or Q-V) patterns. The hour partitioning process serves to 

reduce the complexity of the modeling algorithm, shown in Figure 2.11. 

Clustering Evlatution

Davies-Bouldin Index (DBI)

Hour Grouping

P, Q, V Historgram K-means

Line-shaped Clustering

K-subspace Method

Reducing the Complexity of the Algorithm

 
Figure 2.11  Hour partitioning serves to reduce the model complexity 
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The difficulty here lies in that we are not looking to cluster N data points in some d-

dimensional space, as in typical clustering problems; we rather seek to cluster 24 sets of 

data points into K clusters, which we will refer to as “hour groups” (one cluster could be 

sleep hours 12am-8am, another could be working hours 9am-5pm, etc.). To accomplish 

this task, we first bin the P-V data points in B bins along each of the two dimensions (P 

and V), as is typically done for histograms. As a result of these operations, we obtain 2B 

frequencies, corresponding to the fraction of data points falling within a certain bin. 

Applying this procedure to each of the 24 hours, we construct a feature vector of 2B 

features per hour, where each feature is a bin frequency, see Figure 2.12. Now that we 

have mapped the hours into this space, we are able to simply apply classical clustering 

methods, such as k-means, in order to obtain k clusters, i.e. our hour groups. 

 
Figure 2.12  Hour grouping method (clustering vector formulation) 

The last hurdle lies in choosing the best possible number of clusters k. We adopt the 

Davies-Bouldin Index (DBI) measure, typically used for cluster quality evaluation in the 

machine learning literature. In fact, DBI (introduced by David L. Davies and Donald W. 

Bouldin in 1979) is a metric for evaluating clustering algorithms [28] and is an internal 

evaluation scheme, where the validation of how well the clustering has been done is 

made using quantities and features inherent to the dataset. 

Assume k is the number of the clusters which is to be determined, let k ranging from 2 to 

6, we run k-means for each of these values, and score the resulting clustering using DBI. 

Finally, we choose the k value corresponding to the smallest DBI score, and save the 

resulting k hour groups. We will aggregate the data points of a given configuration that 
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belong to the same hour group, and build a model for each such set of data points, see 

Figure 2.13. 

 
Figure 2.13  Hour grouping results for an apartment building (winter,weekdays) 

Various load types are studied to explore their differences in identifying the time label. In 

the study, a student residential hall and a family apartment are chosen as residential 

loads; an office building and a student center are chosen as commercial loads; and a 

chiller plant on campus is chosen as an industrial load. Their time label identification 

results for weekdays in fall are shown in Table 2.3, where hours with consistent load 

behaviors are merged. Moreover, results shown in Table 2.3 also indicate that even under 

the same load type, different customers have their own power consumption patterns, such 

as the peak hours between the student residential hall and the family apartment. These 

customized properties can only be captured by performing smart meter data mining. 
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Table 2.3  Time label identification results (weekdays, fall) 
Commercial Loads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Residential Loads
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Industrial Loads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Office Building
Student Center

Residential Hall
Family Apt.

Chiller Plant
 

Note:    stands for working hours (peak hours);      for off-working hours (night hours);    
for daytime hours specifically found in residential loads;     for hours in between.  

2.3.3 Load Condition Assumption 

2.3.3.1 Load Condition Assumption 

For the purpose of this project, a load composition is defined as the state of the total 

aggregated load, including total real/reactive power and the precise connected individual 

loads that represent this aggregate load value. Technically, each load composition can be 

modeled by a set of static model parameters. However, due to the number of individual 

load components in a large building, the number of possible load compositions of which 

devices are connected is significantly large. In practice, a fixed and rigid static model for 

a building is not accurate enough to model the dynamically changing nature of the load, 

because the load composition changes over seasons of the year, days of the week, and 

hours of the day.  

Voltage Deviation

Customer Behaviors

Δ P and ΔQ in 
smart Meter 

Reading

Noise needs 
filtering

Useful in Enhanced Load Modeling

Both contribute to

 
Figure 2.14  Voltage deviations vs. customer behaviors 

In traditional measurement-based load modeling, data is collected at a very high 

frequency (1000Hz) before and after the voltage deviation [31]. As a result, the load 

composition is assumed to be fixed, and only voltage is responsible for the load’s real and 

reactive power changes. However, for most smart meter databases, the data is logged at a 
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resolution of several minutes or hourly, and load composition is subject to changes 

between different readings. In other words, voltage is no longer the only factor that 

influences the power consumption of the load, as shown in Figure 2.14. Hence, an 

assumption about the load condition is made to justify that it is possible to filter out the 

instantaneous load changes, and build the P-V and Q-V model through data mining 

techniques, shown in Figure 2.15. 

Customer Behaviors

Turn on/off a light
Making a cup of coffee

...

Random Behaviors:

Eating Breakfast
Go to work

...

Routine Behaviors:

Assume to be 
Gaussian distributed

Filtered by Time

Load Condition Assumption

Under each load condition:

P and Q are the function of V

 
Figure 2.15  Load condition assumption 

To begin with, by definition, the number of load compositions is 2n, where n is the 

number of appliances. Every smart meter reading for the load is measured under one of 

those load compositions. In this paper, load condition is defined as a group of load 

compositions sharing the similar P-V and Q-V properties. As a result, the smart meter 

readings can be clustered accordingly into several load conditions. 

The energy consumption of customers can be separated into random behaviors (such as 

turning on a light or making a cup of tea) and routine behaviors (such as eating breakfast 

in the morning or turning on the heater in winter). It is assumed that routine-behavior 

loads are usually the dominant factor in energy consumption and are strongly correlated 

to time, such as seasons and working hours. In contrast, random-behavior loads can be 

interpreted as additional small loads on top of the energy consumption of routine 

behaviors. Compared with routine behaviors, random behaviors change more frequently 

and are responsible for the frequent instantaneous load changes. Figure 2.16 shows the 
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night time Q-V plot of a commercial building during the summer season, from which we 

can observe two distinct load conditions. 
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Figure 2.16  P-V and Q-V plot for a commercial building in summer night 

Under this assumption, all load compositions within a load condition are considered to be 

different random behaviors on top of the same routine behavior. As the result, data 

mining techniques can be implemented to identify different load conditions by clustering 

all smart meter readings. When all data is clustered, a static model is built for every load 

condition using. 

2.3.3.2 K-Subspace Method 

Now, given a set of data points belonging to an hour group of a certain configuration, our 

goal is to cluster these data points into cohesive groups, and find the parameters (slope 

and intercept) of the line that best fits those points; these lines will be our Q-V or P-V 

load models. 

Given the assumption that Q and V follow an almost linear relationship, our exploratory 

data analysis had revealed that the data points tend to be organized in a few separate line-

shaped clusters, as shown in Figure 2.16. As a result, traditional clustering algorithms 

such as k-means fail to capture the correct clusters, shown in Figure 2.17.  

Two basic load 
conditions 
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To overcome this difficulty, we resort to the K-Subspace clustering algorithm, which is 

able to discover k line-shaped clusters, via minimization of the orthogonal distance from 

each point to the nearest such line. 

  
Figure 2.17  Comparisons between K-subspace method and K-means method 

In practice, multiple load conditions can exist under the hour group. As a result, on the 

third layer of the model, smart meter readings are clustered into several load conditions 

so that each of the load conditions can be modeled by a static model, shown in Figure 

2.18.  

Building Name/
Smart Meter ID

Spring

Summer

Fall

Winter

Weekdays

Weekends

Holidays

Hour Group 1

Hour Group 2

Hour Group K

Load Condition 1

Load Condition 2
Load Model 1

Load Model 2

SeasonsSeasons Day TypesDay Types Hour GroupsHour Groups Load ConditionsLoad Conditions Load ModelsLoad Models

 

Figure 2.18  The load condition clustering based on hour partition results 
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Traditional K-means algorithm [29] clusters data based on their relative Euclidean 

distance to the nearest cluster center with an iterative process to adjust the centroid. The 

clusters’ shapes are determined by the perpendicular lines between centroids. However, 

the smart meter readings of different load conditions are distributed in a very specific 

line-shaped pattern close to each other.  

K-subspace method [30] allows the detection and clustering of line-shaped data by 

assigning each cluster Ck with a unit direction vector ak and a center ck. The entire 

algorithm seeks to minimize the perpendicular distance of all the data points xk,i to the 

line defined by ak and  ck within each cluster, as shown in Equation 3.1. 

 , 3.1 

where . 

Figure 2.17 shows the Q-V and P-V plot of a commercial building during off-working 

hours on weekdays in the fall 2012. Comparing Q-V plot with P-V plot, it can be seen 

that reactive power are more sensitive to voltage deviations than active power. As a 

result, the load conditions are clustered using Q-V plot. In Figure 2.17 the clustering 

results are marked with different colors, where the cluster number K is set to be 3. 

2.3.3.3 Silhouette Coefficient 

Similarly to the case of hour partitioning, we propose to automatically detect the number 

of clusters k. We achieve that goal by adapting the Silhouette Coefficient, another 

common cluster evaluation method for machine learning, to our line-shaped clusters. 

Equation 3.2 defines the Silhouette Coefficient. 

 , 3.2 

where  stands for the Silhouette coefficient;  and  stand for the dissimilarity 

of all data within the same cluster  and . 
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Figure 2.19  Silhouette coefficients for K-subspace method 

Figure 2.19 shows how to determine the cluster number by comparing Silhouette 

coefficient. The upper figure comes from an office building and the lower figure comes 

from a chiller plant. In both cases, the cluster number with the highest Silhouette 

coefficient gives the best cluster number estimation. The right side figures are the K-

subspace clustering results based on the optimal cluster number determined by Silhouette 

coefficients. 

2.4 Exploiting Smart Meter Data for Utility Functions 

An inventory of 18 major potential operational and economic applications of Smart-

Meters at the distribution level has been developed. Figure 2.20 shows a brief view of the 

relationship among those applications.  
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Figure 2.20  Model for advanced smart meter applications 

2.4.1 Smart Meter Data Application for Online and Offline Operations 

From Figure 2, we can see that the installation of smart meter provides utilities with both 

real-time data and historical data, both of which are of great importance in both real-time 

and off-line distribution network analysis. 

To begin with, the historical data collected by smart meters is a valuable resource for the 

enhanced load model. The enhanced load model is superior to the traditional load model 

in many ways: First, the enhanced load model is built on the building level instead of the 

substation level, as long as the building has a smart meter installed. Second, the enhanced 

load model is a dynamic model which varies according to seasons, day types or even 

hours. Third, the enhanced load model is self-validated because the model is built upon 

real measurements collected by smart meter, which avoids costly experiments for model 

verification.  

 45 



 

Along with load type data and typical load profile (TLP) information, the enhanced load 

model can be used to form a new customer information system (CIS), where every 

customer has its own profile. The new CIS allows utilities to watch out for potential 

harmful behaviors and to negotiate for better contracts with customers. Moreover, the 

CIS contains the customer’s power energy consumption pattern which facilitates other 

system functions such as load forecast and demand response. 

Since, the enhanced load model writes the real and reactive power usage of a customer as 

a function of time and system voltage, it enables a refined dynamic power flow analysis. 

Compared with the traditional fixed-P and fixed-Q model, the enhanced load model 

provides more accurate power flow results for system operators to understand the system 

responses to voltage perturbations. These voltage perturbations may be introduced by 

system faults or some control actions such as LTC taps or shunt capacitors. 

The historical smart meter data also make the time-series simulation possible for 

distribution systems, which is a powerful tool when it comes to power system planning 

and simulation. Traditionally, there is no way for system operators to perform true time-

series simulation since there is no time series data collected by smart meters. Instead of 

time-series simulation, system planners try to adopt several synthetic scenarios to 

represent different operation states of the power system. However, these synthetic 

scenarios will lead to inaccurate conclusions especially in economic related decision 

makings, which are not based on several synthetic scenarios but true time-series data 

from the real system. It is known that most of the advanced distribution control functions 

require various upgrades based on the original distribution system configuration, such as 

circuit breakers, shunt capacitors, dispatch-able distributed generators and so on. These 

advanced functions include conservation voltage reduction (VCR), voltage-var control 

and optimization (VVC&O), and distribution network reconfiguration (DNR). Time-

series simulation data provided by smart meter historical database serve well to justify 

the economic benefits of those system upgrades. 

Statistics and data-mining techniques are powerful tools to analyze the smart meter 

historical data. In many cases, the distribution system is subject to topological errors as 
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the voltage level gets lower, and many components are packed in a very small area. By 

studying the time-series voltage correlations, the historical database can provide 

convincing information to identify system topology errors. Moreover, proper data mining 

techniques also enable utilities to better manage their customers. Since misbehaviors such 

as energy theft and unnoticed PV installation result in huge profit losses for utilities 

throughout the country, it is crucial for utilities to take advantages for the CIS and 

historical smart meter data to detect those misbehaviors in time and take necessary 

actions accordingly. 

The real-time feedbacks or near real-time data from smart meters can be used as inputs 

for real time functions such as CVR (Conservative Voltage Reduction), SE (State 

Estimation), DNR (Distribution Network Reconfiguration) and VVC&O (voltage-var 

control and optimization). The real-time feedbacks from smart meters are also of great 

value when it comes to Fault Detection Isolation and Service Restoration (FDIR). This is 

especially true in the legacy system where system failures can only reported by customer 

feedbacks and excessive man forces are standby to locate the fault and restore services. 

The introduction of the smart meter and corresponding advanced metering infrastructure 

(AMI) will take advantages of various sensors’ feedbacks such as the last gasp reading 

from smart meter and zero voltage distribution to fast identify system failures and 

accurately locate the fault to save man force. 

By analyzing the real time data from smart meter, utilities will be able to play a more 

active role in the energy market by adopting a highly reliable load forecasting results and 

managing the controllable loads and distributed energy resources (DERs) through virtual 

power plant (VPP) technologies. 

Finally, equipped with proper visualization tools, smart meter data can benefit both 

customers and utilities as a win-win business. While the system operators gain an 

enhanced situational awareness, customers will also be notified of their energy usage 

patterns and help them saving energy and reshaping their energy consumption patterns. 
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2.4.2 Application Examples 

In this section, two applications are explored to explain the advantages of the enhanced 

load model in power system control and operations.  

2.4.2.1 Refined Power Flow Analysis 

Once we established the enhanced load model, we can update the original load model in 

power flow calculation software to get refined power flow analysis results. In fact, 

currently, most power flow analysis software use constant P and constant Q model for the 

system load. The enhanced load model will replace the constant P and constant Q load 

model with a voltage related PQ model, where P and Q are both functions of voltage. 

Moreover, the time-variant load model enables time series simulation with load’s P and Q 

as functions of both time and voltage. 

 
Figure 2.21  Baran & Wu 33-bus test system 
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To show the differences between the constant P constant Q model and the enhanced load 

model in power flow analysis, we introduce a 33-bus test system (Baran & Wu test 

system), which consists of 33 buses and 32 branches, shown in Figure 2.21. The test 

system information is shown in Table 2.4 and Table 2.5. 

Table 2.4  Test system bus data 
Bus Data (S_Base = 10MVAR) 

Bus Num. Real Power (pu) Reactive Power (pu) 
0 0 0 
1 0.01 0.006 
3 0.009 0.004 
4 0.012 0.008 
5 0.006 0.003 
6 0.006 0.002 
7 0.02 0.01 
8 0.02 0.01 
9 0.006 0.002 

10 0.006 0.002 
11 0.0045 0.003 
12 0.006 0.0035 
13 0.006 0.0035 
14 0.012 0.008 
15 0.006 0.001 
16 0.006 0.002 
17 0.006 0.002 
18 0.009 0.004 
19 0.009 0.004 
20 0.009 0.004 
21 0.009 0.004 
22 0.009 0.004 
23 0.009 0.005 
24 0.042 0.02 
25 0.042 0.02 
26 0.006 0.0025 
27 0.006 0.0025 
28 0.006 0.002 
29 0.012 0.007 
30 0.02 0.06 
31 0.015 0.007 
32 0.021 0.01 
33 0.006 0.004 

Table 2.5  Test system line data 
Line Data 

In Bus Out Bus Resistence(Ohm) Reactence(Ohm) 
0 1 0.0922 0.047 
1 2 0.493 0.2511 
2 3 0.366 0.1864 
3 4 0.3811 0.1941 
4 5 0.819 0.707 
5 6 0.1872 0.6188 
6 7 0.7114 0.2351 
7 8 1.03 0.74 
8 9 1.044 0.74 
9 10 0.1966 0.065 

10 11 0.3744 0.1238 
11 12 1.468 1.155 
12 13 0.5416 0.7129 
13 14 0.591 0.526 
14 15 0.7463 0.545 
15 16 1.289 1.721 
16 17 0.732 0.574 
1 18 0.164 0.1565 

18 19 1.5042 1.3554 
19 20 0.4095 0.4784 
20 21 0.7089 0.9373 
2 22 0.4512 0.3083 

22 23 0.898 0.7091 
23 24 0.896 0.7011 
5 25 0.203 0.1034 

25 26 0.2842 0.1447 
26 27 1.059 0.9337 
27 28 0.8042 0.7006 
28 29 0.5075 0.2585 
29 30 0.9744 0.963 
30 31 0.3105 0.3619 
31 32 0.341 0.5302 

 

Two scenarios are created to ensure a fair comparison between the two models, and the 

simulation results show that the new model is more accurate and shows improvements on 

the power flow analysis results. It is assumed that in the base case, the voltage level at 

substation level is 1.05 times of the nominal voltage value. Then a disturbance is 

introduced by changing the voltage from 1.05 times the nominal voltage to nominal 

voltage at substation (bus No.0). 
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In Scenario 1, the real power and reactive power usage of each bus are fixed when the 

disturbance is introduced. However, in Scenario 2, the reactive power of each bus is a 

function of bus voltage, and the real power usage is still fixed due to the poor correlation 

between real power usage and voltage deviation. As a result, to get the updated load after 

a disturbance, several iterations of power flow analysis is needed. The load is updated 

every iteration according to the voltage deviation, until the voltage stabilizes, as is shown 

in Figure 2.22. 

Initialize Voltage: V0
Initialize Load: P0, Q0=Q(V0)

Start

Run Power Flow with Qi
(forward backward sweep method)

Update Voltage: Vi
Update Load: Qi=Q(Vi)

Delta Voltage < theshold?No

End

Yes

 
Figure 2.22  Refined power flow analysis flow chart 

Figure 2.23 shows the power flow voltage differences between the constant PQ model 

and the enhanced load model. The results show that the new load model can effectively 

capture the reactive power consumption changes of the loads at the presence of voltage 

perturbation. In Scenario 2, the reactive power usage of consumer is a function of system 

voltage. When the voltage at substation decreases, the voltage at the consumer end will 

also decrease, which leads to a decreased reactive power consumption. Although the 

decreased reactive power consumption in return pushes the system voltage up, it cannot 

completely compensate the voltage drop at the substation, shown in Figure 2.23. 
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Figure 2.23  Refined power flow results comparison 

2.4.2.2 Dynamic Distribution Network Reconfiguration 

Distribution network reconfiguration (DNR) is an advanced distribution network 

application which seeks to minimizing the system operation losses by changing the 

topology of the tree structured network. Traditionally, the configuration of the 

distribution network topology is fixed or pre-optimized based on the power consumption 

condition on each bus. However, it is also known that the load on each bus is not fixed, 

and varies according to seasons, day types and different hours of the day. As a result, the 

time-variant load model built through the smart meter database can be used to refine the 

distribution network configuration, which allows system operators to change the system 

topology dynamically to reduce system losses over time. 

For example, most distribution networks experience load migrations among residential 

loads and commercial & industrial loads between working hours and off-working hours. 

Let’s assume Figure 2.24 and Figure 2.25 give the load information for both working 

hours and off-working hours for the abovementioned 33-bus test system. 
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Figure 2.24  System loads during working hours 

 
Figure 2.25  System loads during off-working hours 

During the working hours, most industrial and commercial loads are at their peak hours 

which lead to the optimal system configuration, where branch 7, 9, 14, 31 and 37 are 

opened with the total system losses of 128.72kW. However, during the off-working 

hours, the load shifts from industrial and commercial load to residential load. This leads 

to the optimal system configuration, where branch 7, 9, 14, 28 and 31 are opened with the 

total system losses of 82.45kW. The topologies for the optimal network configurations of 

the two cases are shown in Figure 2.26 and Figure 2.27. 
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Figure 2.26  Working hours 

configuration 

 
Figure 2.27  Off-working hour 

configuration 

 

2.5 Conclusions 

One of the critical needs for distribution system operations and planning applications is 

enhanced modeling of the load. In this study, we explore a novel load modeling method 

for enhanced load models. The new method differentiates itself from traditional 

measurement-based method and component-based method by taking advantages of the 

emerging data collected through the widely spread smart meters. Various data-mining 

algorithms and machine learning techniques are introduced to build the time-variant 

enhanced load model, which writes the real and reactive power usage of the load as a 

function of both time and voltage. 
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In this project, we study the load’s time-variant properties by aggregating smart meter 

historical data through various time labels and hour partitioning processes. We further 

verify the data-mining-based model by the load condition assumption, which classifies 

the customer behaviors into routine behaviors and random behaviors. Meanwhile, various 

data-mining and machine learning algorithms are introduced such as K-subspace method, 

Davies-Bouldin Index (DBI) and Silhouette Coefficients. 

In the first section, we introduce the smart meter deployment on Georgia Tech main 

campus as the data background of the study. We developed an interactive visualization 

tool, “Smart Grid Plotter”, for easier visualization of the cumulative smart meter 

database. The visualization tool allows researchers navigate historical data collected by 

smart meters for all buildings on campus. Users can further configure and save the 

desired plot through various parameters menus. 

In the second section, we propose a novel enhanced load modeling method based on data-

mining and machine learning algorithms. The enhanced load model is a time-variant 

model that writes the load’s active and reactive power usage as a function of both time 

and voltage. The detailed steps for the new load modeling method are further discussed in 

details through three aspects: data aggregation, hour partition and the load condition 

assumption. 

In the third section, we further explore the smart meter data for both off-line and real-

time utility functions. In the report, we show that as a very important information source, 

smart meter data (both real time data and historical data) can be the core of other 18 

potential applications when combined with other data, such as weather data and GIS 

information. Two exemplary applications, refined power flow analysis and dynamic 

distribution network reconfiguration, are studied to show how smart meter data and the 

proposed enhanced load model improve power system analysis results and facilitate 

advanced energy efficiency operations. 

In the future, the smart meter data will be more tightly integrated into vast majority of 

utility applications for both energy efficiency and reliability improvements.  
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Part 3. Exploiting Weather and Load Recording Data to Enhance 
Load Modeling 

3.1 Research Objective 

The goal of this research is to make a significant contribution toward an accurate 

dynamic model for the study of fault induced delayed voltage recovery (FIDVR) or other 

system disturbances of concern. That being the case, the overall goal is to populate the 

load model shown in Figure 3.1. The load model contains several elements, such as the 

substation transformer, feeder impedance, electronic load, and motor load. The particular 

goal of this research is to accurately specify the air-conditioning motor load. This will be 

done by identifying the temperature dependent and temperature independent load 

fractions. The basic premise is that the temperature dependent load in the summer season 

is due to air conditioning. The data required for this analysis is weather station data and 

power recording data of any kind. The weather station data is now freely available from 

the internet on sites such as www.noaa.gov. The power recording data may be Advanced 

Metering Infrastructure (AMI) data from a single customer, substation recording data for 

a feeder or substation, or system load data from an independent system operator such as 

PJM. 

 
Figure 3.1  Load model for system simulation. All elements need to be specified but this 

research aims to specify air conditioning motor load. 
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3.2 Load and Temperature Relationships 

Some, but not all, load is temperature dependent. This statement is somewhat intuitive, 

but we will use an example to illustrate the point. Figure 3.2 shows the normalized load 

and normalized temperature for a whole year for a power company on the east coast for 

the U.S.A (Maryland area). The load is highest when the temperature is highest in the 

summer due to the demand for air conditioning. However, load also increases slightly in 

the fall and winter when the temperature dips down toward its low extreme and electricity 

is used for heat. 

Another way to view the load and temperature relationship is by plotting the real power 

load against the outdoor ambient temperature, as illustrated in Figure 3.3. Again, it is 

obvious that load is highest at the highest temperatures and that load increases as the 

temperature moves toward its negative extreme. However, Figure 3.3 also illustrates that 

a portion of the load is independent of temperature. The independent portion can be seen 

during mild temperatures that typically occur in the spring and fall. At these mild 

temperatures (around 15°C (59°F) in Figure 3.3), load does not vary with temperature. 

Examples of temperature-independent load would be lighting, office equipment and 

manufacturing equipment. Temperature-independent load is always present, whether the 

temperature is hot, cold, or mild, but it becomes apparent at mild temperatures. 
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Figure 3.2  Normalized load and temperature for a single company for a full year. Load is 
highest during the highest temperature but it also rises when the temperature moves to the 

cold extremes. 

 
Figure 3.3  Real power versus the outdoor ambient temperature. Temperature-dependent 

load appears at high or low temperatures and temperature-independent load becomes 
apparent at mild temperatures (around 15°C (59°F) in this case). 

Still further insight about the load-temperature relationship can be gleaned from looking 

at their variation with time, as shown in Figure 3.4 below. Here we see that load and 
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temperature both have a daily peak, but the peak in load occurs before the peak in 

temperature. Thus, the peaks in load and temperature do not occur at the same time. On 

the other hand, the graph shows that load generally increases when the temperature 

increases. 

 
Figure 3.4  Approximately six days of normalized load and normalized temperature 

plotted against time. 

In Figure 3.4, it is very interesting that the peak in temperature occurs after the peak in 

load. We would think that the peak in temperature would come first because high 

temperature causes high load. However, the outdoor ambient temperature may be acting 

as a surrogate for the factor that is really causing the rise in load; solar irradiance. We 

speculate that the sunlight first hits the building and street surfaces and causes them to 

warm up. This warming increases the demand for air conditioning and also increases the 

outdoor ambient temperature. Thus, irradiance may be a very useful variable for 

describing load variations, but solar irradiance data is not widely available like 

temperature data is. 

The magnitude and timing of the peaks in load and temperature are a function of many 

factors, such as the dynamics of the overall thermal system. As a simple way to 

compensate for these dynamics, we calculate the cross-correlation between temperature 
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and power as shown in Figure 3.5. In this case, the highest cross-correlation is at a time 

lag of approximately 5 hours, indicating that temperature lags behind power by 

approximately 5 hours. As a simple way to compensate for these dynamics, we can shift 

the temperature data back in time by 5 hours. After making this shift, it is interesting to 

re-examine the power-temperature relationship by again plotting load versus temperature. 

This is shown in Figure 3.6. 

 
Figure 3.5  Cross-correlation of (real power) load and temperature. 

 
Figure 3.6  Load versus outdoor ambient temperature before (left) and after (right) a shift 

of the temperature data. 
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As shown in Figure 3.6, there is a stark change in the shape of the load versus 

temperature curve after the temperature data is shifted. Namely, the cloud of points 

becomes more tightly gathered after the time shift. 

3.3 Segmented Regression to Create the Change-Point Curve 

Ultimately, we intend to use the load versus temperature relationship to estimate the 

amount of air-conditioning load. In order to do this, we need to fit the data using some 

form of regression. For this, we chose segmented three line regression because it has 

physical meaning. This is commonly called a change-point curve in energy efficiency 

literature [32]. An example of these change-point curves is shown in Figure 3.7. The 

vertical scale of both graphs is the same so that a visual comparison of the results can be 

made. It is evident that the fit of the change-point curve is better for the graph on the 

right, after a shift in temperature has been made. However the improvement can be 

quantified by calculating the root mean square error (RMSE) of the curve fit. In doing so, 

we will confine the RMSE calculation to the high temperature portion of the curve 

because we are most interested in calculating the air-conditioning fraction of the load.  

 
Figure 3.7  Segmented regression with (right) and without (left) shifting the temperature 

data. The resulting 3 segment line is referred to as a change-point curve. 

Figure 3.8 shows the high-temperature portion of the data, which will be used for RMSE 

calculations. Again, it is apparent by visual inspection that the error is smaller after the 

temperature has been shifted by the optimal lag distance. However, the RMSE calculation 
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allows quantification of the difference. Figure 3.9 shows a bar plot comparing the RMSE 

before and after the temperature shift for 2012 data from five different companies in the 

PJM interconnection. In all cases, the error is lower after the shift in temperature data. 

This demonstrates the effectiveness of shifting the temperature data before performing 

the regression. 

 
Figure 3.8  The high temperature portion of the data, which is used for RMSE 

calculations. 

 
Figure 3.9  Root mean squared error (RMSE) of linear fit before and after shifting 

temperature data. 
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3.4 Calculation of Air Conditioning (AC) Load Fraction 

The previous sections showed how to create an accurate segmented regression model to 

describe the relationship between active power load and outdoor ambient temperature. 

We refer to this model as the change-point curve. The center segment of the change-point 

curve is (intentionally) flat, indicating the range of temperature where power 

consumption is independent of temperature. Once the temperature reaches the upper 

“change-point”, power consumption increases linearly with temperature, generally due to 

cooling demands. At this point, we make the assumption that this increase with 

temperature is due to cooling and that the majority of cooling load is motor load. As 

illustrated in Figure 3.10, the change-point curve allows us to divide the load into 

temperature-independent and temperature-dependent fractions. Since cooling load is of 

interest to us, the heating load (winter load) is not taken into consideration for this 

calculation. Once these fractions have been identified, we can calculate the temperature-

dependent fraction, which we will refer to as the AC fraction, as follows: 

 

 
Figure 3.10  Illustration of the temperature-independent and temperature-dependent 

fractions of load. 

Two notes can be made here about refinements that could be made to this calculation. 

First, air conditioning load generally consists of compressors, fans, and pumps; all 

devices that are run by motors. Thus, air conditioning load is motor load. Secondly, more 
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research should be done to make sure that non-motor loads are not contributing to the 

temperature dependent fraction. For example, we may find that the hotter the weather is, 

the more people stay indoors and watch television. Thus, it may be discovered that 

television load is temperature dependent. If that were found, a simple factor can be 

applied to the calculation to indicate how much of the temperature-dependent load is air-

conditioning load. Thus, we introduce a factor γ into the foregoing equation to indicate 

how much of the temperature-dependent load is air conditioning load: 

 

3.5 Temperature-Humidity Index as a Potential Weather Variable 

Many of the example data sets used in this research are from PJM because the hourly 

historical load data is publically available. However, for load forecasting purposes, PJM 

recommends the usage of a temperature-humidity index (THI) instead of temperature 

alone [33]. That being the case, the natural question is whether THI is a better weather 

variable than temperature for calculating the AC fraction of load. In order to answer this 

question, we repeated our analysis using THI instead of temperature. An example of the 

results are shown in Figure 3.11 below. 

 
Figure 3.11  Examples of two different weather variables for estimating the AC fraction. 

Temperature is on the left, and temperature-humidity index (THI) is on the right. 
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In order to determine which of these weather variables is most descriptive, we repeated 

the earlier calculations of RMSE for the upper part of the change point curve and 

compared the error to that we obtained using temperature as the weather variable. The 

results of this comparison are shown in Figure 3.12. In all cases, temperature actually 

provides the lowest error in the linear fit and is therefore the more descriptive variable for 

estimating the AC fraction of the load. Thus, we will continue to use temperature for the 

independent weather variable in this analysis. 

 
Figure 3.12  Comparison of weather variables by calculation of the RMSE in the cooling 

portion of the change point curve. 

3.6 What Causes Separation in the Data Cloud? 

We now turn our attention to refinements in the estimation of the AC fraction of the load. 

A major refinement came about by investigation of the load versus temperature data 

cloud. As shown in Figure 3.13, the data points seem to separate into two or more distinct 

clouds of data at medium to low temperatures. At first, it was not apparent what factor 

was causing this separation. We tried to divide the data into weekdays, weekends, and 

holidays, as shown in Figure 3.14. This showed that the weekend power consumption 

was generally lower, but the difference did not align with the cloud separation. Next, we 

investigated the difference in load between day and night. Figure 3.15 shows the average 

daily load profile for the whole year of data. The profile shows that the load is lowest 

64 
 



 

from 12am - 6am. Thus, we divided the data points in to two sets; the daytime set from 

6am-midnight (18 hours), and the nighttime set from midnight to 6am (6 hours). These 

two sets are graphed in Figure 3.16, where we see that the nighttime load accounts for the 

lower cloud of data and the daytime load accounts for the upper cloud of data. 

 
Figure 3.13  An example showing separation of the data cloud at medium to low 

temperatures. 

 
Figure 3.14  Separation of the data points into weekdays (blue), weekends (red), and 

holidays (black). 
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Figure 3.15  Average daily load profile (time in in ½ hour increments). 

 
Figure 3.16  Data points separated into daytime load (blue) and nighttime load (red). 

3.7 Change-point Curves for Four Different System States 

In the previous section we showed that weekend load is lower than weekday load and that 

nighttime load is lower than daytime load. Next, we combine these variables to define 

four different system states; weekday daytime, weekday nighttime, weekend daytime, 
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and weekend nighttime. Data points from each of these system states are shown in Figure 

3.17 below. This graph fits with our intuition that load is highest during the weekday 

daytime and lowest during the weekend nighttime. We also see that weekend daytime is 

the second highest loading state and weekday nighttime is the third highest (slightly 

higher than weekend nighttime). 

 
Figure 3.17  Load divided into four different system states; weekday daytime (blue), 
weekend daytime (green), weekday nighttime (red), and weekend nighttime (black). 

Now that these four loading states for the system have been defined, we can go a step 

further and create a change-point curve for each different system state. This set of curves 

is shown in Figure 3.18, where we see that the data for each system state is well-behaved. 

Furthermore, as shown in Figure 3.19, we can overlay these change-point curves on a 

single graph to compare the behavior of each loading state. Once overlaid, we can clearly 

see the differences in loading states. We clearly see that the highest loading occurs during 

the weekday daytime and the lowest load occurs during the weekend nighttime. We also 

see that each system state has a different temperature independent load, which is the flat 

portion of the change-point curve. This is important for estimating the AC fraction of 

load because the temperature-independent load (PTI) is in the denominator of the 

equation. 

67 
 



 

 
Figure 3.18  A change-point curve created for each different loading state. 

 
Figure 3.19  Change point curves for all data (red - bolded & w/squares)and the four 

different states of system loading; weekday daytime (blue), weekend daytime (green), 
weekday night (red), weekend night (black). 

Each different change-point curve shown in Figure 3.19 will provide a different AC 

fraction of load because the temperature-independent power (PTI) and the high 

temperature slope are different for each curve. For the sake of comparison, we calculated 

the AC fraction for the highest temperature encountered in this data set, which is 

approximately 40°C (104°F). The results are shown in Table 1 below, where we see that 

the AC fraction is higher for the nighttime loading states than for the daytime loading 
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states, assuming we calculate all AC fractions at the same temperature. This is because 

the temperature-independent load is lower for the nighttime states. We present these 

results only for the sake of comparison, recognizing that the maximum temperature 

during the night will not be as high as the maximum temperature during the daytime. The 

key point here is that when we estimate the AC fraction of load, the correct change-point 

curve should be used.  For example, if we want to study an event that occurred in the 

daytime during the week, we should use the change-point curve corresponding to the 

weekday daytime as the basis for our calculations. 

Table 3.1  AC fraction of load calculated at 40°C (104°F) for each system loading state 

Data Plot AC Fraction at 40°C 
All Data RED (Bolded & W/Squares) 54.36% 

Weekday Daytime BLUE 51.64% 
Weekend Daytime GREEN 50.83% 

Weekday Nighttime RED 57.21% 
Weekend Nighttime BLACK 56.09% 

 

3.8 Application to System Studies 

The forgoing discussion has demonstrated how the AC fraction of load can be estimated 

based on historical load and temperature data. Now we turn our attention to how these 

concepts can be applied for the purposes of a system study. We assume that we wish to 

simulate a past event, so we will need to determine the AC fraction of load at the time of 

the event. The steps that must be taken to estimate the AC fraction are: 

1) Specify the time of the event, tE. 
2) Calculate the offset time for the corresponding temperature: tE’ = tE + Δt, where 

Δt is the lag time for optimal cross-correlation, as illustrated in Figure 3.5. 
3) Obtain the temperature at the offset time calculated in step 2 above: T(tE’). 
4) Calculate the temperature dependent fraction of the power using the upper portion 

of the change-point curve (see Figure 3.20):  PTD = mT(tE’) + b. 
5) Calculate the AC fraction: 
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These steps can easily be programmed and that is what we would suggest in order to 

make the concepts presented here practical and useful. 

 
Figure 3.20  Application for system studies. The slope intercept equation for the high 

temperature portion of the change-point curve is used. 

3.9 Conclusions 

This work has shown a method for calculating the AC motor load using historical load 

and temperature data. Historical temperature data is now readily available from internet 

sources, and historical load data is more and more available through various recording 

means. The concepts have been illustrated using the load for various companies in the 

PJM interconnection, but the same concepts can be applied at the feeder level or even at 

the individual customer level. 

Estimation of the AC fraction of load was performed using change-point curves and it 

was shown that separate change-point curves should be constructed for each different 

system loading state: weekday daytime, weekday nighttime, weekend daytime, and 

weekend nighttime. Of course, construction of these curves has been programmed so that 

the process is automated. Furthermore, a straightforward program can be written to 
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estimate the AC fraction of load at any particular time of interest. The steps for this 

application were shown. 

Naturally, the amount of motor load will depend on the outdoor ambient temperature at 

the time of the event. The higher the temperature, the higher the AC motor load will be. 

These results use historical load and temperature data to take the guess work out of 

estimating the AC motor fraction of load. 

3.10 Future Work 

The foregoing results are meant to inform the load modeling process but they do not 

comprise a complete load modeling system. Some additional steps that will promote a 

complete load modeling process are: 

1) Apply the foregoing analysis to some particular events and compare the derived 

motor load with that required to re-create the event.  

2) Break the air-conditioning motor load into two basic fractions; a compressor 

fraction and a pump/fan fraction. This is important because compressors tend to 

have a linear torque-speed curve but fans and centrifugal pumps have a torque 

that varies with the square of the speed. Consequently, when a fan or centrifugal 

pump slows down, a great deal of load relief is obtained. On the other hand, when 

a compressor slows down, much less reduction is load torque is seen. Thus, these 

two loads should be modeled as separate motor loads. 

3) Apply this analysis to a single customer where the size of the air-conditioning 

load is known (or at least the upper bound is known). This would allow 

quantification of how much of the temperature-dependent load is actually air-

conditioning load. 
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