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Executive Summary

Power system operations are facing and will face new challenges as the level of variable resources
increases along with higher levels of demand side uncertainty and area interchange. These added
uncertainties make it harder for system operators to obtain robust solutions. Robust optimization
allows for the modeling of an uncertainty set and ensures that the chosen solution can handle any
possible realization based on this uncertainty set. This project has focused on the application of
robust optimization for power system operations and operational planning. Part one of this project
report provides an overview of robust optimization as well as it investigates two applications for
robust optimization: robust unit commitment and robust corrective topology control. The optimal
power flow models used within part one assume a linear approximation of the alternating current
optimal power flow formulation. Therefore, part two is a complement to part one by providing a
mechanism to test and validate the feasibility of the decision support tool solutions on nonlinear
power flows. In summary, this research has developed new power systems decision making tools
that utilize robust optimization as well as extensive analysis on the benefits and challenges to
implement robust optimization within electric power systems.

Part I: Robust Optimization for Corrective Topology Control and Unit Com-
mitment
In standard optimal power flow (OPF) formulations, the system parameters are assumed to be
constant, i.e., they are assumed to be known. However, in real life, system parameters are uncertain,
such as system demand, renewable generation, generator availability, and transmission availability.
To capture the uncertainty in system parameters related to demand and renewable resources, robust
optimization techniques are proposed. The presented report is divided into two parts; the first
part discusses the effect of robust corrective topology control on system reliability and renewable
integration while the second part deals with the application of robust optimization for the day-
ahead security constrained unit commitment problem.

Robust Corrective Topology Control
This research presents three topology control (corrective transmission switching) methodologies
along with the detailed formulation of robust corrective topology control. The robust model can be
solved offline to suggest switching actions that can be used in a dynamic security assessment tool
in real-time. The solution obtained from robust topology control algorithm is guaranteed to be DC
feasible for the entire uncertainty set, i.e., a range of system operating states. The proposed robust
topology control algorithm can also generate multiple corrective switching actions for a particular
contingency, which provides multiple topology control (TC) options to system operators’ to choose
from in real-time application.

Furthermore, this research extends the benefits of robust corrective topology control to renew-
able resource integration. In recent years, the penetration of renewable resources in electrical
power systems has increased. These renewable resources add more complexities to power system
operation, due to their intermittent nature. This research presents robust corrective topology control
as a congestion management tool to manage power flows and the associated renewable uncertainty.
The proposed day-ahead method determines the maximum uncertainty in renewable resources in
terms of do-not-exceed (DNE) limits combined with corrective topology control. Corrective topol-
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ogy control can increase DNE limits, for the renewable resources, by a significant amount. Fur-
thermore, the DNE limit methodology, presented in this research, is capable of modeling different
types of renewable resource, such as wind and solar, uncertainties simultaneously.

The results obtained from topology control algorithm are tested for system stability and AC
feasibility. On IEEE-118 bus test case, significant number of topology control solutions obtained
from robust topology control algorithm have produced AC feasible solution. At the same time, it is
observed that the effect of topology control on bus voltages are localized around the neighborhood
of buses connected by the switched transmission element. In addition to AC feasibility tests, a
number of stability studies are carried out to understand the effect of topology control on system
stability. It is observed that the perturbation caused by robust corrective topology control solution
can be small enough and may not cause any stability issues to system operation; several topology
control solutions have shown benefit to system operation.

The future work will involve testing the robust topology control algorithms on larger test sys-
tems and investigate the benefits of parallel computational of robust topology control algorithm.
The scalability of the robust topology control algorithms, from smaller test systems to realistic
systems, will also be studied. Future work will also involve in investigating effects of topology
control actions on AC feasibility and system stability.

Key Points
• Three topology control methodologies are presented; out of them, the robust corrective topol-

ogy control methodology is developed and tested for different scenarios.

• The robust topology control framework, presented in this research, can be used to analyze
different types of uncertainties: demand uncertainty and renewable resource uncertainty.
The framework can test the impacts of these uncertainties independently as well as simul-
taneously as well as with or without the proposed corrective transmission topology control
actions.

• The methodology to determine the maximum allowable deviation in renewable resources,
in terms of do-not-exceed limits, will help to integrate more renewable resources into the
system without sacrificing system reliability.

Robust Two-Stage Unit Commitment
This research explored the robust two-stage unit commitment problem with polyhedral uncertainty
set. The wind power generation is highly uncertain, which is modeled as a polyhedral uncertainty
set. A two-stage robust optimization framework is proposed to find a robust unit commitment so-
lution at the first stage and the dispatch decision can be adjusted in the second stage. Past work
has modeled the two-stage decision process to minimize the worst-case total cost including the
commitment cost and dispatch cost. In this work, the objective is to minimize the maximum regret
for each scenario in the uncertainty set. The regret for a particular scenario refers to the difference
between the minimal total cost by fixing the first stage unit commitment decision and the cost of
single stage optimal unit commitment solution. Benders’ type decomposition algorithm is pro-
posed to solve the problem. Numerical experiments demonstrate that the solutions obtained from
this alternative objective function are less conservative comparing to traditional robust model. The

iii



solutions has slightly higher expected cost with respected to the stochastic programming solution,
but high reliability.

This research also examined the determination of polyhedral uncertainty sets prior to a robust
formulation. With the increasing adoption of the robust programming formulation, the question
of how to generate or select uncertainty sets remains open. This work studied two-stage robust
unit commitment with polyhedral uncertainty set. With given set of historical data, two types of
uncertainty sets based on statistic moments and empirical data are proposed. The computational
experiments suggest the selection rule of of uncertainty sets for different confidence levels.

The future work will involve testing of robust unit commitment problem on larger test systems,
including developing efficient heuristic and decomposition algorithms which can be implemented
in high performance computing framework. Finally, the further work will consider minimax regret
model with the n-k security criteria to capture the uncertainty in stochastic resources along with
unpredictable contingencies.

Key Points
• The robust unit commitment framework is presented, while considering the uncertainty in

renewable resource generation.

• The proposed two-stage robust unit commitment framework has demonstrated that the ro-
bust solution obtained from this methodology is less conservative compared with traditional
robust model.

• Different types of uncertainty sets generated from historical data that are examined in this
research, suggest that carefully selecting uncertainty sets have impacts on the performance
of the robust solutions.

Part II: A Zonotope-Based Method for Capturing the Effect of Variable Gen-
eration on the Power Flow
In the last decade, there has been an increasing need for developing models to capture the uncer-
tainty associated with electricity generation from renewable resources as they continue to penetrate
into the current power system. Such penetration of renewable resources such as wind and solar in-
troduces uncertainties in the power system static state variables, i.e., bus voltage magnitudes and
angles. This report proposes a set-theoretic method to capture the effects of uncertainty on the gen-
eration side of a power system. Using this method, we can determine whether the power system
state variables are within acceptable ranges as dictated by operational requirements. We bound all
possible values that the uncertain generation can take by a zonotope and propagate it through a lin-
earized power flow model, resulting in another zonotope that captures all possible variations in the
system static state variables. Since the sizes of models of power systems systems have increased
over the years, it is important for the developed method to scale easily and be computationally
tractable. Zonotopes are easily represented by vectors and matrices, making them ideal candidates
for use in large systems. Our method is applicable to both transmission and distribution systems.
For verification, we test our proposed method on the IEEE 34-bus, IEEE 123-bus distribution sys-
tem, and the IEEE 145-bus, 50-machine transmission system. We compare the performance of the
proposed method against earlier results using ellipsoids and those solutions obtained through the
nonlinear power flow and linearized power flow equations.
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N1k Binary parameter that is0 whenkth transmission contingency occurred and1 other-
wise.
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NSPt Minimum non-spinning reserve required for timet.

Pmax
g Maximum capacity of generatorg.

Pmin
g Minimum capacity of generatorg.

P uc
g Real power supplied by generatorg

(solution obtained from the unit commitment problem).

Pmin
k Minimum MVA capacity of transmission linek.

P fix
w Real power supplied by wind generators connected at busw(n)

(solution obtained from the unit commitment problem).

Pdn, d
fix
n Forecasted real part of system demand at busn.

Qmax
g Maximum reactive power supplied by generatorg.

Qmin
g Minimum reactive power supplied by generatorg.

Qdn Reactive part of system demand at busn.

R+c
g Maximum10 minute ramp up rate for generatorg.

R+
g Maximum hourly ramp up rate for generatorg.

R−c
g Maximum10 minute ramp down rate for generatorg.

R−
g Maximum hourly ramp down rate for generatorg.

Rnsp
g Maximum non-spinning reserve supplied by generatorg.

RSD
g Maximum shut down ramp down rate for generatorg.

Rsp
g Maximum spinning reserve supplied by generatorg.

RSU
g Maximum start-up ramp up rate for generatorg.

SPt Minimum spinning reserve required for timet.

ug Unit commitment status of generatorg.

UTg Minimum up time for generatorg.

V max Maximum bus voltage.

V min Minimum bus voltage.

Zk Binary parameter for transmission elementk; 0 if line is open/not in service;1 if line
is closed/in service.
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Variables

λPn Real power LMP at noden.

λQn Reactive power LMP at noden.

θn Voltage angle at noden.

θmn Voltage angle difference:θn − θm.

dn System demand at busn.

dPn Real power demand at busn.

dQn Reactive power demand at busn.

Pg Real power supplied by generatorg.

Pk Real power from nodem to n for line k.

Pgt Real power supplied by generatorg in time t.

Pkn Real power flow along linek at noden.

Qg Reactive power supplied by generatorg.

Qk Reactive power from nodem to n for line k.

Qkn Reactive power flow along linek at noden.

rnspgt Non-spinning reserve supplied by generatorg in time t.

rspgt Spinning reserve supplied by generatorg in time t.

Skn Complex power flow along linek.

ugt Unit commitment status of generatorg in time t; 0 if generator is not in service;1 if
generator is in service.

Vn Voltage at noden.

vgt Start-up status of generatorg in time t; 0 if generator is not tuned on in timet; 1 if
generator is tuned on in timet

wgt Shut down status of generatorg in time t; 0 if generator is not tuned off in timet; 1 if
generator is tuned off in timet

Zk Binary variable for transmission elementk; 0 if line is open/not in service;1 if line is
closed/in service.

viii



1. Introduction

1.1 Motivation
Robust optimization has existing in literature since the 1950s; however, it has not been studied in
connection with electrical power systems until recently. The key feature of robust optimization, to
utilize uncertainty sets to capture uncertain system parameters, is useful to analyze many power
systems operational related studies. The increasing level of intermittent renewable resources in
electrical power systems is adding more complexities to power system operations. The standard
power system operational tools, present today, are not capable of analyzing these uncertainties to
its full extent. As a result, existing power systems optimization packages are either inefficient
by overcommitting generation in an ad-hoc fashion in order to handle the uncertainties or the
solutions may jeopardize reliability by not accounting for such uncertainties. This research focuses
on developing robust optimization based tools and algorithms, which can be used to analyze system
uncertainties in power system operations.

1.2 Robust Corrective Topology Control
The proposed robust corrective topology control methodology utilizes existing assets, circuit break-
ers or electrical switches, to temporarily take high-voltage transmission lines out of service. Typi-
cally, taking an available transmission path out of service reduces the transfer capability of electric
power across the grid and may degrade system reliability. However, it is also possible that tem-
porarily removing a line can improve the transfer capability and reliability of the system. Since
the flow of electric power on one particular transmission path is dependent on the impedances of
alternative paths, it is possible to increase the transfer capability on other paths that are left in
service by taking out other transmission lines. If the path that has its transfer capability increased
is an critical path, e.g., there is excess wind in that region, then taking the line out of service may
improve operations.

In most of the system studies today, the modeling of the transmission network is simplified,
and limited attention is given to the flexibility in the network topology. To overcome this issue,
there is a national push to model the grid by a more sophisticated, smarter way as well as to
introduce advanced technologies and control mechanisms into grid operation. One aspect of smart
grid aims at making better use of the current infrastructure, as well as additions to the grid that
will enable more sophisticated use of the network. This research examines smart grid applications
of harnessing the full control of transmission assets by incorporating their discrete state into the
network optimization problem, and it analyzes the benefits of this concept for system reliability
and renewable resources integration.

1.3 Robust Minimax Regret Unit Commitment
In electric power systems, the unit commitment problem is one of the most complex problems
solved today. In prior literature, robust optimization techniques are used to solve the unit com-
mitment problem. However, the solution obtained for the robust unit commitment problem may
be expensive as robust optimization hedges against the worst-case possible realization. Therefore,
the inclusion of traditional robust optimization into unit commitment is limited, as the theoretical
worst-case situation may not occur and system operators may not prefer to adopt such a conser-
vative solution. To overcome this problem, a robust minmax regret unit commitment approach is
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proposed in this research.

1.4 Summary of Chapters
Chapter 2 gives a literature review, which provides the basic understanding of transmission switch-
ing proposed in literature for various reasons, such as corrective switching, congestion manage-
ment, and the various techniques adopted are listed. It also covers present industrial practices
involving topology control as a corrective mechanism to overcome power systems operational is-
sues.

Chapter 3 provides background information regarding robust optimization. The derivation for
the robust topology control algorithm is presented, which converts a complex three stage opti-
mization problem into a two stage problem. The comparison of robust optimization and stochastic
optimization is also given.

Chapter 4 presents the effect of demand uncertainties on system reliability. In this chapter, three
topology control (corrective transmission switching) methodologies are presented along with the
detailed formulation of robust corrective switching algorithm. The results for N-1 reliability anal-
ysis with robust corrective switching algorithm are also presented. These studies were conducted
on the IEEE 118-bus test case.

Chapter 5 presents the effect of renewable uncertainties on renewable resources integration
and system reliability. In this chapter, a robust methodology to determine the do-not-exceed limits
for renewable resources is presented, along with a detailed analysis of robust corrective switching
algorithm under renewable uncertainties. The simulation results for do-not exceed limits with
robust corrective switching algorithm are also presented. These studies were conducted on the
IEEE 118-bus test case with two different renewable resource forecasts.

Chapter 6 addresses the practical limitations of the topology control algorithm. The issues
associated with the scalability and large computational time of topology control algorithm are
discussed in this chapter.

Chapter 7 provides a methodology to solve unit commitment problem, using robust optimiza-
tion techniques. The objective is to minimize the maximum regret instead of traditional absolute
worst overall cost. The alternative objective function is less conservative, but provides robust so-
lutions. A bender’s type decomposition algorithm is proposed. The numerical experiments were
conducted on the IEEE 118-bust test cases with wind uncertainty.

Chapter 8 discusses and explore the impact of the uncertainty sets to the unit commitment so-
lutions. Two methods to construct uncertainty sets from historical data are proposed and examined
in this chapter.

Chapter 9 concludes this dissertation and discusses potential future research that is connected
with the main theme of this dissertation, developing a more flexible electric grid.
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2. Literature Review

2.1 Introduction
The objective of this research is to study the impact of topology control on system reliability and
renewable integration. Past research has identified topology control as a valuable asset that can
be used to mitigate various power system operational concerns. This chapter presents a thorough
literature review on the motivation for this research, past related research on topology control, and
an overview of present industrial operational procedures where transmission control is employed.

2.2 National Directives
The demand of electrical power has increased considerably during the past few years. This increase
in system demand causes a great amount of stress on transmission infrastructure; to overcome
this issue, there is a national push to create a smarter, more flexible, electrical grid. A smarter
grid not only improves the efficiency of the electric transmission systems, but also ensures secure
and reliable power system operations. This research is in line with several national directives
addressing this need for a smarter and more flexible power grid.

The United States Energy Policy ACT (EPACT) of 2005 calls for advanced transmission tech-
nologies, which includes a directive for federal agencies to “encourage... deployment of advanced
transmission technologies,” including “optimized transmission line configuration.” This research
also follows the Federal Energy Regulatory Commission (FERC) order 890, which encourages
the improvements in economic operations of transmission grid. It also addresses the Energy In-
dependence and Security Act of 2007: (1) “increased use of...controls technology to improve
reliability, stability, and efficiency of the grid” and (2) “dynamic optimization of grid operations
and resources.” The intention of this research is to harness the control of transmission assets by the
dynamic optimization of the transmission grid, and the co-optimization of transmission with gen-
eration, using robust optimization techniques, thereby encouraging a smarter, flexible, and more
efficient electric network.

2.3 Literature Review: Topology Control
Topology control has been in literature since 1980’s and till today it has been used to overcome
power systems related operational issues, ssuch as voltage violations, line overloads [1–4], line
losses and cost reduction [5–7], system security [8], or a combination of these [9, 10]. In this
section, the brief overview of past research related to topology control are presented.

2.3.1 Topology Control as a Congestion Management Tool
Topology control actions are used to manage congestion within the electrical network; [1] proposes
topology control actions as a tool to manage congestion in the electrical grid. It discuss ways to
solve this problem by genetic algorithms, as well as deterministic approaches. This approach
attempt to minimize the amount of overloads in the network since they are not co-optimizing
the generation with the topology. Thus, this is a disconnected approach where generation is first
dispatched optimally and then this method is employed to reduce network congestion. Once again,
the optimal transmission switching concept goes further than this concept since it co-optimizes
the generation with the network topology in order to maximize the market surplus. In [11], the
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topology control actions are proposed to mitigate transmission network congestion due to high
renewable penetration.

In general, it has been assumed that taking transmission elements/lines out of service increases
the congestion in the system. This misconception has been proven wrong in [12]. The main reason
behind this is that as congestion in the network may increases or decreases, it cannot be assumed
that losses must increase with the switching of transmission lines. Network topology optimization
allows for a system re-dispatch, which makes it impossible to state the impact on congestion.

2.3.2 Topology Control as a Corrective Mechanism
Past research has shown topology control as a control method for a variety of power system opera-
tional problems. The primary focus of past research has been on proposing transmission switching
as a corrective mechanism when there are voltage violations, line overloads [1–4], line losses and
cost reduction [5–7], system security [8], or a combination of these [9, 10]. While this past re-
search acknowledges certain benefits of harnessing the control of transmission network for short
term benefits, they do not use the flexibility of the transmission grid to co-optimize the genera-
tion along with the network topology during steady-state operations. In [13], the unit commitment
problem with topology control actions are co-optimized, with N-1 reliability, which has shown
that co-optimization of topology control actions with unit commitment can provide substantial
economic savings, even while maintaining N-1 reliability standards. Furthermore, the use of trans-
mission switching as a corrective mechanism to respond to a contingency has been acknowledged
in some past research to have an impact on the cost of generation rescheduling due to the con-
tingency. However, it has not been acknowledged that such flexibility should be accounted for
while solving for the steady-state optimal dispatch, probably due to computational difficulties and
extended solution time.

In [14], topology control is used as a corrective mechanism in response to a contingency. It
also presents the formulation of such a problem and provides an overview of search techniques
to solve the problem. This idea is further extended to alleviate line overloading due to a contin-
gency by [2] using topology control heuristics. The limitation of this method is that it is based on
topology control heuristics, which does not consider all corrective topology control actions, and
does not co-optimize topology control with the generation. In [15], topology control actions are
used as a corrective mechanism, with linearized approximate optimal power flow formulation and
solved using branch and bound method. The corrective topology control using AC power flow is
studied in [9]; however, in this study, it is assumed that the generator dispatch is fixed thereby not
acknowledging the benefit of co-optimizing the network topology with generation.

The corrective topology control actions provide optimal results when topology control actions
are co-optimized with generation. In [7, 8], a corrective topology control is used to mitigate con-
tingencies, where, a corrective switching algorithm is used to mitigate contingencies, consider the
ability to re-dispatch generation. However, due to computational complexity of this problem, this
method does not search for the actual optimal topology but rather considers limited switching ac-
tions. The review of past research on topology control is provided in [16]. In [3, 10] the topology
control actions are used to relieve line overloads and voltage violations.

The optimal transmission switching for contingencies using DC optimal power flow is pre-
sented in [17], which shows that in power system operations, using topology control actions, con-
siderable cost benefits can be achieved. Furthermore, reference [17] also shows that co-optimizing
topology control with generation can give operational flexibility to system operators’ to respond to
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emergency situations. Furthermore, in [18] this idea is further extended to determine topology con-
trol actions for contingency mitigation in real-time. In this study, the fast DCOPF based heuristic
is used to determine candidate topology control actions.

2.3.3 Optimal Topology Control
The bulk electric transmission network is built with redundant paths to ensure mandatory reliability
standards, such as NERC requirements for N-1 and these standards require protection against pos-
sible worst-case scenarios. However, it is well known that the redundancies in these networks can
cause dispatch inefficiency, due to line congestion, or voltage violations. Furthermore, a network
branch that is required to be built in order to meet reliability standards during specific operational
periods may not be required to be in service during other periods. Consequently, due to the in-
terdependencies between network branches (transmission lines and transformers), it is possible to
temporarily take a branch out of service during certain operating conditions and improve the effi-
ciency of the network while maintaining reliability standards. This corrective switching action is
the basis for the optimal topology control.

Optimal transmission switching includes the control of transmission assets into the optimal
power flow (OPF) formulation in order to co-optimize the network topology simultaneously with
the generation. This added level of control to the traditional OPF problem creates a superior
optimization problem compared with the traditional OPF formulation. Furthermore, by harnessing
the control of transmission and co-optimizing the electrical grid topology with the generation, the
optimal transmission switching problem guarantees a solution that is as good as the one obtained
by the traditional dispatch formulation.

The concept of a dispatchable network was first introduced in [19], which led to the research
work related to optimal transmission switching in [12, 13, 17, 18, 20–23]. This past research
has also shown that substantial economic savings can be obtained even for models that explicitly
incorporate N-1. For example, in [13, 17] it is observed that savings on the order of4−15% can be
achieved even while maintaining N-1. Note that, this past research has been based on the DCOPF
formulation, a linear approximation to the ACOPF problem, which is a lossless model and reactive
power flow are ignored.

2.3.4 Topology Control and Minimize Losses
In [5], the topology control actions are used to minimize system losses, which shows that, contrary
to general belief, it is possible to reduce electrical losses in the network by opening a transmis-
sion line for a short timeframe. Furthermore, in [6], the author proposed a mixed integer linear
programming approach to determine the optimal transmission topology, with the objective to min-
imize electrical transmission losses. Unlike past research, this model searches for an optimal
topology, but does not consider the generator re-dispatch. The ideal way to use topology control
for loss minimization is to consider the topology control along with generator re-dispatch, which
will determine the optimal transmission topology and generator dispatch.

2.3.5 Topology Control for Maintenance Scheduling
Past research focused on the effect of topology control on system reliability. However, topology
control actions not only affect the system reliability, but also help to reduce operational cost of
the electric grid. Nowadays, system operators consider topology control as a controlling tool in
maintenance scheduling of electrical bulk power system. For example, in 2008, the Independent

5



System Operator of New England (ISONE) saved more than$50 million by considering the im-
pact of transmission line maintenance scheduling on the overall operational costs [24]. However,
the study done by ISONE is based on estimating cost instead of employing mathematical opti-
mization tools, which determine the total system cost considering transmission network reliability.
Furthermore, the benefit of this research is that it underlines the need of developing more practical
mathematical models to solve the maintenance scheduling problem.

2.3.6 Topology Control for Transmission Expansion Planning
The bulk power transmission network is built with redundancies to improve system reliability
and/or to improve operational efficiency. Therefore, it is often assumed that topology control ac-
tions will reduce operating costs only for poorly planned transmission networks. However, this
assumption is not true. Optimal transmission switching and transmission planning are two differ-
ent optimization problems with different objectives: transmission planning is a long-term problem,
which determines the line(s) to build over a long time horizon; on the other hand, optimal trans-
mission switching is a short-term problem, which determines the optimal network for short term
benefits, such as reduction in operating cost. The ideal method to obtain better benefits over a long
timescale is to consider the optimal transmission expansion plan. Note that, the optimal plan does
not guarantee benefits to the system during each individual operating period. As a result, a network
can be perfectly planned, but still benefit from short-term network reconfiguration, using optimal
topology control actions.

Transmission expansion planning is a complicated multi-period optimization problem. How-
ever, in literature, topology control actions are not considered in the planning process. In [25], the
methodology for transmission expansion studies with topology control action are presented. The
DCOPF based formulation is used in this analysis, considering higher wind penetration. A more
detailed analysis for transmission planning with topology control is presented in [26].

2.3.7 Topology Control for System Reliability
The electrical transmission network is designed to handle various contingencies and demand lev-
els. However, such deviations do not exist at the same time with the same intensity. Therefore, a
particular line that is required to be in service to meet reliability standards for a specific operating
point may not be required to be in service for other operating conditions. Hence, corrective topol-
ogy control can be used to meet N-1 standards. The NERC policy dictates that after the occurrence
of a contingency, the system must be reconfigured and re-dispatched to handle another contingency
within 30 minutes. However, in real-time the analysis of N-1 reliability is a complex problem. The
real-time dynamic assessment tools used today in power system operation monitor some of these
critical contingencies, as it is not possible to monitor all the N-1 contingencies in real-time.

Furthermore, it is possible to improve system reliability by temporarily taking a line out of
service. System reliability not only depends on the network topology, it also depends on the gen-
eration dispatch solution, e.g., available generation capacity and ramping capabilities of the gener-
ators. Since modifying the topology changes the feasible set of dispatch solutions, it is possible to
obtain a different generation dispatch solution that was infeasible with the original topology, but is
feasible with the modified topology. Even though there may be a line(s) temporarily out of service,
this new generation dispatch solution may make the system more reliable if it has more available
capacity with faster generators. In [18], N-1 and N-2 contingency analysis for IEEE test cases is
presented, which shows that, with topology control actions,12 − 63% more load can be served
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during N-1 contingencies and5− 50% more load can be served with N-2 contingencies.

2.3.8 Special Protection Schemes (SPSs)
Corrective switching is one example of topology control that is implemented today [27]. These
methods are based on operators’ prior knowledge, as specified in [27] on page 107; such actions
may also be based on historical information. Ideally, corrective switching algorithms should be
solved in real-time. Once the disturbance occurs, the switching algorithm is executed to suggest
switching actions to alleviate any constraint violations. This approach is beneficial since the current
operating status is known, which ensures the accuracy of the solution. However, the challenge with
real-time mechanisms is that they must be extremely fast while also ensuring AC feasibility, voltage
stability, and transient stability. Topology control models could be solved offline by estimating the
operating state of the system. However, deterministic offline mechanisms also have limitations
since the operating state must be predicted prior to the disturbance. Thus, the proposed offline
corrective action is, susceptible to problematic reliance on perfect foresight.

Special protection schemes (SPSs), also known as remedial action schemes (RASs) or system
integrity protection schemes (SIPSs), are an important part of grid operations. SPSs are used to
improve the reliability of the grid and improve the operational efficiency. SPSs are primarily iden-
tified and developed based on ad-hoc procedures. The development of such corrective mechanisms
like SPSs reflects a change, a push, by the industry to switch from preventive approaches, to the use
of corrective approaches. The use of transmission switching as a corrective mechanism can be a
powerful tool. For instance, PJM has a number of SPSs that involve post-contingency transmission
switching actions [28]. For example, the following action is listed in [28] on page 221: “The 138
kV tieline L28201 from Zion to Lakeview (WEC) can be opened to relieve contingency overloads
for the loss of either of the following two lines: Zion Station 22 to Pleasant Prairie (WEC) 345 kV
Red (L2221), Zion Station 22 to Arcadian (WEC) 345 kV Blue (L2222).”

In practice, topology control actions are employed during blackouts caused by rare weather
conditions [29]. In 2012, due to Superstorm Sandy, PJM lost about 82 bulk electric facilities,
which caused extremely high voltages on the system during low load levels. To overcome this high
voltage situation, a corrective switching plan was employed, several 500kV lines were switched
out to mitigate over voltage concerns during these low load level periods. Note that, the corrective
switching methodology employed in this particular case is unknown.

Such operational protocols, like SPSs, are often viewed as a necessary protocols to main-
tain system reliability. While these transmission switching SPSs do help maintain system relia-
bility, there are alternatives that the operator can employ instead. Possible alternatives may in-
clude: re-dispatching the system after the contingency occurs; choosing a different steady-state
(no-contingency) dispatch prior to the contingency occurring to ensure there is no overloading; or
upgrading the equipment so that it is able to handle these contingency flows. Re-dispatching the
system is likely to increase the operating costs. Choosing a different dispatch solution for steady-
state operations would increase the operating cost, otherwise, that dispatch solution would have
been initially chosen. Investing in new equipment increases the capital cost of the system.

2.3.9 Seasonal Transmission Switching
Topology control actions are used for short term benefits as well as seasonal benefits. For instance,
in the state of California, the load requirements are lower in the winter and the probability of an
outage is higher due to winter storms. The summer is the exact opposite; during the summer, the
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load is the highest in the year, but the probability of outagesis lower since there are fewer and
less severe storms. As a result, some utilities have determined that it is beneficial to leave certain
transmission lines in service during the winter when there is a greater chance of winter storms for
reliability purposes, but yet these lines are taken out of service during summer periods since the
threat of an outage is lower.

These lines are primarily redundant transmission lines in the lower voltage network. Such re-
dundancies are less important during summer periods when the probability of an outage is lower.
Furthermore, these redundant lines can cause overloading concerns during summer periods since
the load conditions during the summer are higher. For instance, there can be two parallel lines with
different thermal capacity ratings. The lower capacity line, generally a part of the lower voltage
network, may reach its capacity first and, therefore, inhibit the higher voltage network from trans-
ferring as much power as desired. Due to the higher loading conditions, it is, therefore, preferred
to take the redundant, lower capacity line out of service, as long as the line is not necessary to
maintain system reliability. Since the outage rates are lower during the summer periods, the op-
erators are able to take the line out of service without jeopardizing system reliability. In contrast,
having these redundancies in service during the winter is integral to maintaining system reliability
since the probability of an outage is greater. In addition, the redundancies do not cause overloading
concerns during the winter since the winter loading levels are lower.

While this operation is acknowledged by utilities today, the tradeoff between protecting against
potential contingencies versus the potential for overloads is not well understood. Seasonal trans-
mission switching models that are capable of answering these questions do not exist today, thereby
emphasizing the need for further research and development in the area of seasonal transmission
switching.

2.3.10 Summary of Literature Review of Topology Control
Topology control actions have been suggested to mitigate many power systems related problems.
However, most of those studies are either based on DCOPF or assumes fixed generator dispatch,
which has limited the spread of topology control in power system operations. Even though, today,
system operators do change system topologies for short term application, these topology control
actions are based on operators’ prior knowledge or some add-hoc methods. To overcome this
issue research presented in this report introduces a robust optimization based topology control
methodology, which suggests the topology control actions, that are valid for a range of operating
states, are guaranteed DC feasible for the entire uncertainty set.

2.4 Literature Review: Stochastic and Robust Optimization
In the modern decision processes, uncertainty has drawn massive research and practical attention.
Traditionally, an optimization model is built based on the point prediction of the modeling param-
eters. For example, in the electrical power planning problem, an expected load is estimated at a
particular time. It has been shown that, with the estimation errors or the nature of parameters, the
“true” value of the estimated parameter can be deviating from the estimation. The solution from
the deterministic formulation can be suboptimal for the true value of the parameters.

Stochastic programming is proposed to address the uncertainties [30, 31]. In a stochastic pro-
gramming approach, a prior probability distribution is assumed for the uncertain parameters. A
typical objective of stochastic programming formulation is to optimize over the expected value
under the probability distribution. When a probability distribution is hard to estimate or the com-
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putational difficulty of the explicit form of the expectation, sample based formulations are studied
extensive in the recent several decades. Sampling average approximation (SAA) [32, 33] is pro-
posed to model the stochastic programming with a large number of samples, which each sample
is assumed to have equal probability. It has been shown that, when the sample size is sufficiently
large, the sampling average approximation solutions converges to the stochastic programming so-
lution with true probability distribution of the parameters. The advantage of SAA is the minimal
assumptions of the underlining probability distribution. The formulations typically preserve cer-
tain structures of the deterministic models, which enable the insights and algorithms from the
deterministic models to be adopted to the stochastic models. However, with the large sample size,
the stochastic programming formulation grows fast, which can be extremely computational chal-
lenging.

While many applications of stochastic programming are optimizing over expected objective
function, there are problems requiring probability assurance of the constraints satisfaction such as
reliability requirements. Chance constraint programming problem is used to model such problems
[30, 31]. Specifically, a solution is feasible in a chance constraint program if it is feasible with
certain probability. The chance constraint problem is shown in general a hard problem, which is
non-convex even when the deterministic model is a linear program. Risk measures are proposed
to approximate the chance constraints with convex constraints [34]. Sampling average approaches
are also applied to the chance constraint programming problem [35] and modeled as mixed integer
programming problems [36, 37].

Due to the computational challenging of stochastic programming and lack of probability distri-
butional information, robust optimization has been proposed to address uncertainties with limited
assumptions on probability distribution of the parameters. The earlier work of robust optimization
is back to 1950’s [38]. The robust model of a linear program with right hand side uncertainty is a
linear program again. However, the resulting solution is too conservative from a practical point of
view. Kouvelis and Yu [39] summarize the different type of robust optimization formulation with
different objective functions. In recent two decades, the robust optimization is attracting exten-
sive research attention starting from [40–44]. In such prior work, the robust optimization model
is to optimize the worst-case objective value on a pre-defined uncertainty set, where the solution
is guaranteed to be feasible to any realization of the uncertainty parameters in the uncertainty set.
The uncertainty sets are typically parametric closed convex set, such as ellipsoids or polyhedra.
The parameters associated with the uncertainty set are used to adjust the conservative choice from
the decision maker. Furthermore, adaptive robust model are studied [45, 46], where the decisions
are partitioned to two stages. The first stage is to determine partial solution before the observation
of the uncertain parameters and the second stage solution will be adaptively adjusted according to
the updated parameter information.

With the nature of the power industry and electrical power generation, multistage stochastic
programming formulations were proposed and an augmented Lagrangian decomposition frame-
work was studied to solve the problem efficiently (see, e.g., [47], [48], [49], and [50]), targeting
load uncertainty for vertically integrated utility companies. Recently, significant research progress
has been made in the application of stochastic programming approaches to the deregulated elec-
tricity markets (see, e.g., [51], [52] and references therein). Stochastic programming approaches
have been used to combine the slow-start generator commitment in day-ahead and fast-start gen-
erator commitment in real-time operations (see, e.g., [53] and [54]), estimate the contribution of
demand flexibility in replacing operating reserves [55], and solve stochastic security-constrained
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unit commitment models (see, e.g., [56], [57], [58], and [59]). Besides these applications, chance-
constrained two-stage stochastic programming has been studied to ensure high utilization of wind
power output [60], and the parallel computing (see, e.g., [61]) implementation under a cloud com-
puting or high performance computing environment has increased the capacity to solve large-scale
two-stage stochastic power system optimization problems. With these processes in the stochastic
programs, the computational challenges still exist, especially for the unit commitment with risk
measures. Robust optimization is aligned with the high reliability requirements in the power grid.
Two-stage or adaptive robust optimization models are studied in [62] and [63]. One of the con-
cern of the application of robust optimization model in the power system is the possible overly
conservative nature since it optimizes over the worst-case scenario. Alternative objective of robust
optimization can be minimax regret [64], which has been applied in risk-constrained power system
planning problems, to model multiobjective tradeoff (see, e.g., [65], [66], and [67]), to handle the
uncertainty that emerges in market competition [68], to serve as an alternative of the probabilistic
choice approach [69], and to mitigate the vulnerability against intentional attacks while meeting
budgetary limits [70]. In this work, we will adopt the minimax regret as the objective to model the
two-stage robust unit commitment problem under wind uncertainty and demonstrate the tradeoff
between the various objectives and solution qualities.
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3. Robust Optimization

3.1 Introduction
The origin of robust optimization goes back to the early days of modern decision theories in the
1950’s [71], where it was used to analyse the worst-case scenario of several uncertainties. In
the 1970’s, Soyster [38] proposed a worst-case model for linear optimization problem such that
constraints are satisfied under all possible perturbations of the model parameters. Over the years,
robust optimization techniques have been used in many areas, such as operations research [39, 72],
control theory [73], logistics [74], finance [75], medicine [76], and chemical engineering [77].

In recent years, robust optimization has gained a great deal of attention in the electrical power
system sector; for example, in [62] and [63], two-stage robust optimization techniques are used
for unit commitment, which deal with the data uncertainty and attempt to find an optimal solution
considering the worst-case uncertainty realization. The solution of the robust optimization problem
is guaranteed to be feasible and optimal for a defined uncertainty set [78, 79]. Since the optimal
solution is a hedge against the worst-case realization, the solution is often conservative. Robust
optimization may not be preferred for many applications due to its conservative nature; however,
it is in accordance with the power industry in regards to maintaining reliability.

3.1.1 The Need of Robust Optimization
LP is a type of optimization problem with a polynomial algorithm and generally it is in form of
(3.1), where,x is a vector of decision variables such thatx ∈ R

n, cost is represented byc such that
c ∈ R

n, A is anm × n constraint matrix, andb ∈ R
m is the right hand side vector of constraint

matrix.

min
x
{cTx : Ax ≤ b} (3.1)

The structure of the problem, given in (3.1), is such that there arem number of constraints and
n number of variables. The data of the problem are the collection (c, A, b) and are collected in
data matrix,D, as shown in (3.2). The dimension of this matrix is(m+ 1) × (n+ 1).

D =

[

cT 0
A b

]

(3.2)

Note that, inD, all the parameters are fixed and known prior to solving the LP problem. In
most of the real world LP problem all this data is not known; the uncertainty in data is presented
due to many reasons, some of them are listed below [80],

1. Prediction error- In many real-life mathematical problems, some of the data entries are un-
known at the time problem formulation. Therefore, when the problem is solved, those data
entries are estimated by their respective data forecasts. These data forecasts are not exact (by
the definition of forecast), which introduces the prediction error. For instance, in case of day-
ahead unit commitment problem, the system demand for the next day is unknown; therefore,
it is forecasted using system demand forecasting methodologies [81]. It is well understood
in the power industry that day-ahead system demand forecast is not accurate; hence, system
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operators consider operational reserves in day-ahead unit commitment problem to overcome
this inaccuracy and the unpredicted nature of system demand in real-time implementation.

2. Measurement error- In some LP problems, the few parameters in the data matrix,D, are de-
termined based on actual data measurement. Often these measurements are done off-line and
may not be measured accurately. This introduces measurement errors in parameter calcula-
tions and may introduce considerable uncertainty into the LP problem solution. For instance,
the susceptance of transmission lines in power transmission network are determined based
on field measurements. In many cases, these measurements are not accurate or do not reflect
the true value, as susceptance of transmission line depends on weather condition and changes
over time due to operational wear and tear. Therefore, optimal power flow problems solved
based on these susceptance values may results in sub-optimal or even infeasible solutions.

3. Implementation error- Sometimes the decision variables determined in a mathematical prob-
lem cannot be implemented exactly as they are computed. This practical implementation
issue introduces implementation errors in solution. For example, in power system opera-
tions, the generators are scheduled and dispatched based on day-ahead unit commitment
solution. However, sometimes, due to practical issues, generators deviate from the required
set dispatch point; for instance, old generators may not ramp up and ramp down as expected
or gas turbine generators fail to produce required power due to higher temperatures in the
turbine. In these cases, system operators needs to update the generator dispatch based on
present operating conditions.

Traditionally, LP problems are solved by ignoring the data uncertainty. The results obtained
from the LP models are implemented or analyzed with small perturbations via sensitivity analysis.
It has been shown that even with small perturbation of the data, the solutions from the determin-
istic LP models can be suboptimal and even infeasible in many real situations [79]. Therefore,
consideration of uncertainties is critical in many practical applications.

3.2 Robust Optimization
In recent years, robust optimization has gained lot of attention. Robust optimization guarantees
a feasibility, as well as optimality, of a solution for any possible realization in the modeled un-
certainty set. This approach considers the worst-case realization of uncertainty within the pre-
determined uncertainty set. The benefit of robust optimization is that it requires less probability
information about uncertainty compared with the stochastic programming approach; however, the
solution obtained from robust optimization is generally more conservative than the solution ob-
tained from stochastic programming approach. Due to the conservativeness of robust optimization
over stochastic programming, robust optimization has recently become more attractive as a mech-
anism to model uncertainty [80, 82, 83] in applications with high reliability requirements.

In addition, ensuring reliability and obtaining economically robust solutions are the primary
concerns in the power systems sector. Little work has been done to examine the benefits of ro-
bust optimization in the electric power industry. Recently, more attention has been given to the
application of robust optimization in the power systems sector by [62, 63, 84].

The generic form of deterministic MIP problem is presented in (3.3)-(3.7), where,x is a set of
integer variables andy is a set of continuous variables. Other parameters, such asA, a, B, b, c, E, e,
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F, f,H, h, are data or parameters. The solution obtained from this MIP formulation is opti-
mal/feasible only for the fixed values associated with parametersA, a, B, b, c, E, e, F, f,H, h. The
basic topology control model, used in research, is a MIP problem. This can be represented in
generic form as shown in (3.3)-(3.7), where, variablex represents the status of transmission line,
i.e., line in service or line out of service, and variabley represents the set of other continuous
variables, such as generator dispatch, line flows, and bus angles.

min
x,y

cTx+ bTy (3.3)

s.t. Fx ≤ f (3.4)

Hy ≤ h (3.5)

Ax+By ≤ a (3.6)

Ey = e (3.7)

x ∈ {0, 1}

The objective of robust optimization problem is to determine the optimal solution considering
the worst-case outcome under the assumed uncertainty set. The generic form of robust optimization
problem is given in (3.8)-(3.12), which is a two-stage optimization problem. The first stage of the
problem is to determine the solution associated with integer variables which are typically referred
as design decisions ; the second stage is to find the worst-case cost or worst-case realization of
the continuous variable,y, associated with the integer solution obtained in the previous stage.
Traditionally, two-stage robust optimization is actually modeled as a three-stage problem with
a middle stage of uncertainty scenario selection, as shown in (3.8)-(3.12). The formulation is
attempting to determine an optimal solution of the design and operational cost against the worst-
case uncertainty realization. The solution of the robust optimization problem is guaranteed optimal
for a pre-defined uncertainty set [62, 63].

min
x∈X

(

cTx+max
d∈D

min
y

bTy(d)

)

(3.8)

s.t. Fx ≤ f (3.9)

Hy(d) ≤ h (3.10)

Ax+By(d) ≤ a (3.11)

Ey(d) = e (3.12)

x ∈ {0, 1}

In (3.8), the termy(d) is used to emphasize the dependency of continuous variabley on the
uncertainty,d. The first minimization part of (3.8) minimizes the cost associated with the integer
solution. The later part of (3.8), the max-min formulation, known as the evaluation part of robust
structure, determines the worst-case cost of decision taken in first part of minimization problem.
The evaluation part of the robust formulation is divided into two parts, which makes the robust
optimization problem as a three-stage optimization problem as shown in (3.8).

Traditionally, for robust optimization problems, the following assumptions are made prior to
solving the problem, which are cited in [80].

1. All the entries in the first-stage decision variables are “here and now” decisions, which
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should get specific numerical values as a result of solving theproblem, and before the actual
data “reveals itself”. The second-stage variables are “wait and see” decisions, which will be
determined when the data realization is revealed. This assumption indicates that the first-
stage solution of the robust optimization problem should be a fixed number/vector, which
will be optimal and feasible to the entire uncertainty set with the adaptive second-stage so-
lutions.

2. The decision maker is fully responsible for consequences of the decisions to be made when,
and only when, the actual data is within the unspecified uncertainty set. This assumption
indicates that the solution is guaranteed to be “robust” only to the uncertainties modeled
within the uncertainty set.

3. The constraints in robust formulation are “hard”- we cannot tolerate violations of constraints,
even small ones, when the data is within the uncertainty set. This assumption ensures the
robustness property of robust optimization problem by enforcing all the constraints and not
allowing any relaxations on a constraint level.

3.2.1 Uncertainty Modeling
Uncertainty modeling is a key part of robust optimization. In [62], polyhedral uncertainty sets are
used to define demand uncertainties. System demand uncertainty, in [62], is modeled assuming
that the system load has an upper, as well as a lower bound, and that the system-wide aggregate
load has an upper bound, as shown in (3.13). Similar uncertainty set definition is used [63].

D = {d ∈ R
Nd :

∑

i∈Nd

|di − dfixi |

d̂i
≤ ∆, di ∈ [di − d̂i, di + d̂i], ∀i ∈ Nd} (3.13)

In (3.13), the set of nodes with uncertain demand is represented byNd, d
fix
i represents the

estimated or expected demand,di represents the realization in demand, the maximum deviation in
demand at nodei is represented by parameterd̂i The total deviation in demand is also bounded by
parameter∆.

In Chapter 4-5 , a simplified uncertainty model is used to represent demand uncertainty. The
polyhedral uncertainty set is presented in (4.1); if desired, a more complex polyhedral uncertainty
sets can be used instead, as in [63].

D = {d ∈ R
n : dfixn D−

n ≤ dn ≤ dfixn D+
n , ∀n} (3.14)

In this uncertainty set, the system demand is bounded by its pre-determined lower and upper
limits. The uncertainty description used in (3.14) is more conservative than the uncertainty sets
used in [62] and [63]. The size of the uncertainty set is defined by the parametersD+

n andD−
n .

WhenD+
n andD−

n = 1, the uncertainty is zero andD is a singleton, i.e.,dn = dfixn . WhenD−
n ≤ 1

andD+
n ≥ 1, the uncertainty set is a polyhedron and its size is defined by the values ofD+

n and
D−

n .
Similarly, wind uncertainty is modeled as shown in (3.15). Renewable resources (in this case,

wind generation),Pw, are assumed to vary within these pre-determined lower and upper limits, and
the size of uncertainty set depends on the parametersD−

w andD+
w .
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W = {P ∈ R
w : P fix

w D−
w ≤ Pw ≤ P fix

w D+
w , ∀w} (3.15)

3.3 Comparison Between Robust Optimization and Stochastic Optimization
Uncertainty is an important factor to be considered in the decision making processes. In traditional
applications, the uncertainties were ignored or simplified due to computational difficulties. With
the advance of the computational power, there are different ways to incorporate uncertainties in
decision processes.

Stochastic programming has been one common approach to facilitate the decision processes
with uncertainties. It typically assumes probability distributions for uncertain parameters, or in-
corporates a large number of scenarios, which leads to computationally challenging large scale op-
timization problems. In stochastic programming formulations, the objective is typically optimizing
over the expectation over the uncertain parameters. The feasibility of the solutions is modeled ei-
ther to be feasible to all scenarios or with probability guarantees. While it is generally difficult
to know the exact distribution of the random parameters, sample based methods are popular in
the stochastic programming literature. To achieve high probability guarantees, the sample size is
typically large and leads to computational challenges of the stochastic programming approaches.

In (3.16), a generic form of stochastic optimization problem with probability constraints is pre-
sented, where the uncertainty in optimization framework follows the probability distribution, when
ǫ ≪ 1, the distribution of data(c, A, b) is represented byP . In simple cases, these uncertainties
are modeled with known probability distribution functions; however, in more realistic cases, the
probability distribution function is partially know. This may cause a problem in (3.16) such that the
partial distribution ofP is known andP belongs to a given familyP of probability distributions on
the space of the data(c, A, b). In this situations, the accuracy of stochastic optimization problem
depends on the availability of possible scenarios and modeling details. If all the possible scenar-
ios are modeled in stochastic framework, the optimization problem become cumbersome and may
not be solvable. Therefore, there is a tradeoff between the number of scenarios modeled and the
computational time/trackability. Another tradeoff is between the quality of stochastic solution and
number of scenarios under consideration. The solution quality of stochastic optimization problem
is directly related to number of scenarios under consideration. The primary barrier to stochastic
programming is the tradeoff between the computational challenge and the quality of the solution;
to get a more accurate solution, it would be preferable to represent additional uncertainties, but then
this increases the model complexity, which makes it more difficult to obtain a quality solution.

min
x,t
{t : Prob(c,A,b)∼P{c

Tx ≤ t & Ax ≤ b} ≥ 1− ǫ, ∀P ∈ P} (3.16)

The robust optimization has gained substantial attention in recent years [62, 63, 84]. This
approach is attractive in many aspects over stochastic optimization approach for the problems with
high reliability requirements. The main benefit of robust optimization is that it requires moderate
information about underlying uncertainties, such as range of uncertainty, type of uncertainty. The
robust framework is flexible enough to model each type and size of uncertainty independently, as
well as simultaneously. Robust optimization does not requires probabilistic information about the
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uncertainty; the solution obtained from robust formulationis guaranteed to be optimal for the entire
uncertainty set. Therefore, robust optimization modeling approach is favorable for the electric
power sector where ensuring reliability is crucial. Furthermore, robust optimization requires less
knowledge concerning the probability distribution as compared to stochastic programming and
the computational complexity for robust optimization is typically smaller. In robust optimization,
instead of assuming explicitly a probability distribution of uncertainty parameters, an uncertainty
set is predetermined to cover the possible realizations. A solution model is robust if it is feasible
for all the possible scenarios in the uncertainty set and is robust if it is close to the optimal solution
for all the scenarios in the uncertainty set.

Smaller uncertainties can be analyzed by performing a sensitivity analysis [82]. The sensitivity
analysis is a tool to analyze the stability properties of an already found solution; there are many
application, in literature, which are based on sensitivity analysis to determine the solution qual-
ity/robustness. This approach has been used in many system control related problems; however,
sensitivity analysis solution does not give guarantees associated with quality of solution and its ef-
fectiveness; plus, sensitivity analysis does not hold, if the expected uncertainty is relatively large.
Therefore, implementation of solution sensitivity based methods are limited.

3.4 Conclusion
Uncertainty analysis plays an important role in decision making processes. By ignoring the un-
certainty, a decision can be sub-optimal, or even infeasible. Stochastic optimization has been one
common approach to incorporate uncertainties in decision making process.

This research focuses on robust optimization to understand and model the uncertainties in the
decision making process. The solution obtained from robust optimization problem is guaranteed
optimal/feasible for the entire uncertainty set. However, robust optimization problems are compu-
tationally complex and require special solution techniques to solve the problem.

In recent years, robust optimization has gained attention in the electrical power system com-
munity. Robust optimization, would be suitable for power system related problems, as ensuring
reliability and obtaining robust solutions are primary concerns in the power systems sector. How-
ever, little work has been done to examine the benefits of robust optimization in the electric power
industry.
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4. Robust Corrective Topology Control for System Reliability

4.1 Introduction
Even though the bulk power grid is one of the most complex systems to date, in practice, the
modeling of the transmission network is simplified and limited attention is given to the flexibility
in the network topology. Traditionally, transmission lines are treated as static assets, which are
fixed within the network, except during times of forced outages or maintenance. This view does
not describe transmission lines as assets that operators have the ability to control. Transmission
switching has been studied since the 1980s and it was used as a tool to overcome various situa-
tions such as voltage violations, line overloads [1–4], line losses and cost reduction [5–7], system
security [8], or a combination of these [9, 10].

Recent work has demonstrated that topology control can have significant operational as well
as economic impacts on the way electrical power systems are operated today [13, 22, 23, 85].
The concept of a dispatchable network is presented in [19]. Additionally, optimal transmission
switching using a direct current optimal power flow (DCOPF) formulation is presented in [85] and
[20]; however, these models did not implicitly enforce N-1 reliability constraints. In [17], optimal
transmission switching with an N-1 DCOPF formulation was tested on the IEEE 118-bus test case
and on the RTS 96 test case. Reference [17] also indicates that substantial savings can be obtained
by optimal transmission switching while satisfying N-1 reliability constraints.

There has been recent development of a different transmission switching formulation, [86],
which builds on the work of on generalized line outage distribution factors, [87]. With the use of
flow canceling transactions, [86] develops a framework that is able to capture the changes in the
topology and compares it to theB− θ formulation used in many preceding transmission switching
papers as well as in this research. This formulation is likely to outperform theB − θ formulation
when the number of monitored lines is relatively small, something that is common practice within
optimal power flow problems today.

Past literature has shown that topology control can be used to improve system operations and
reliability. Such previous work has led system operators to adopt topology control as a mechanism
to improve voltage profiles, transfer capacity, and even improve system reliability [27, 88, 89].
However, the adoption of topology control is still limited as there is a lack of systematic topology
control tools. Currently, the industry adoption and implementation of topology control is based
on ad-hoc methods or the operator’s past knowledge. Alternatively, transmission switching de-
cisions can be suggested by a mathematical decision support tool. Many factors have prevented
topology control from becoming a more widespread corrective action within system operations.
For instance, there have been misconceptions that more transmission is always better than less,
concerns over the switching actions’ effect on stability, impacts on circuit breakers, computational
complexities of topology control algorithms, as well as additional concerns.

Corrective switching is one example of topology control, which is implemented today [27].
These methods are based on operators’ prior knowledge, as specified in [27] on page 107; such ac-
tions may also be based on historical information. Ideally, corrective switching algorithms should
be solved in real-time. Once the disturbance occurs, the switching algorithm is executed to suggest
switching actions to alleviate any constraint violations. This approach is beneficial since the cur-
rent operating status is known, which ensures the accuracy of the solution. However, the challenge
of real-time mechanisms is that they must be extremely fast while also ensuring AC feasibility,
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voltage stability, and transient stability. Topology control models could be solved offline by es-
timating the operating state of the system. However, deterministic offline mechanisms also have
limitations since the operating state must be predicted prior to the disturbance. The proposed of-
fline corrective action is, thus, susceptible to its problematic reliance on perfect foresight. This
rearch introduces the concept of robust corrective topology control, which presents a solution to
these current challenges.

Robust optimization has gained a great deal of attention in recent years; for example in [62], a
two-stage robust optimization technique is used for unit commitment. It deals with data uncertainty
and attempts to find an optimal solution considering the worst-case uncertainty realization. The
solution of the robust optimization problem is guaranteed optimal for a defined uncertainty set
[78, 79]. Since the optimal solution is a hedge against the worst-case realization, the solution is
often conservative. Robust optimization may not be preferred for many applications due to its
conservative nature; however, it is in accordance with the power industry in regards to maintaining
reliability.

This research proposes the new concept of robust corrective topology control. The main idea
is to use transmission switching as a control tool to mitigate constraint violations with guaranteed
solution feasibility for a defined uncertainty set. The switching solution obtained from the robust
corrective topology control formulation will work for all system states within the defined uncer-
tainty set. The proposed robust corrective topology control tool is tested as a part of contingency
analysis, which is conducted after solving a day-ahead unit commitment problem; however, note
that the concept of robust corrective topology control is not restricted to such applications. The
main concepts discussed in this chapter are summarized below.

1. Three corrective switching methodologies are identified: real-time corrective switching, de-
terministic planning based corrective switching, and robust corrective switching. Real-time
corrective switching is the preferred process for corrective switching, but it requires ex-
tremely fast solution times. Thus, with today’s technology, the implementation of real-time
corrective switching is limited. With today’s technology, deterministic planning based cor-
rective switching can be implemented but it requires perfect foresight regarding future oper-
ating states. Therefore, implementation of deterministic planning based corrective switching
is limited. To fill the technology gap between real-time corrective switching and deter-
ministic planning based corrective switching, a robust corrective switching methodology is
proposed.

2. A robust corrective topology control formulation: the robust corrective switching model is
a three-stage robust optimization problem. With a pre-determined uncertainty set regarding
the nodal injections (or nodal withdrawals), the robust corrective switching model will deter-
mine the corrective switching action that will be feasible for the entire uncertainty set. The
robust optimization model consists of a master problem and two subproblems. The master
problem will determine the corrective switching action and the subproblems will determine
the worst-case realization of demand within the uncertainty set (for the associated correc-
tive switching action). The nodal injection uncertainty can be due to generation uncertainty
(wind/renewables), demand uncertainty, area interchange uncertainty, as well as other causes
of uncertainty. The robust corrective switching framework will work for all these different
types of uncertainties. The detailed vision of the robust corrective switching framework as
an end-to-end process is also presented.
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3. A solution technique for solving the robust corrective switching model is presented: specifi-
cally, an iterative procedure is developed to solve the master problem and the subproblems.
The master problem is a mixed integer programming (MIP) problem and the subproblems
are reformulated into a single subproblem, which is a nonlinear problem. This new sub-
problem is converted from a nonlinear problem into a MIP problem. The proposed solution
technique is tested on the IEEE 118-bus test case.

The chapter is structured as follows: a detailed framework of real-time corrective switching,
deterministic planning based corrective switching, and robust corrective switching are presented in
Section 4.2. The uncertainty modeling used in this chapter is described in Section 4.3. The generic
deterministic corrective switching formulation is given in Section 4.4. The detailed mathematical
model for robust corrective switching is given in Section 4.5. The solution method for the corre-
sponding problem is discussed in Section 4.6. The IEEE 118-bus test case is used for the robust
corrective switching analysis and the results are presented in Section 4.7.

4.2 Corrective Switching Methodologies
Corrective transmission switching can be used as a control action to respond to an event. This
research proposes a robust corrective switching methodology to respond to N-1 contingencies.
This section analyzes two existing methods to determine potential corrective switching actions
and compares them to the proposed robust corrective switching framework. Note that corrective
transmission switching actions may or may not be combined with generation re-dispatch. For the
proposed robust corrective switching procedure, generation re-dispatch is taken into consideration.

4.2.1 Real-time Topology Control
The real-time topology control model determines the corrective action(s) to take as a response to
an event, e.g., a contingency. The skeleton of the real-time topology control scheme is shown in
Fig. 4.1. When a particular contingency occurs, the corrective switching algorithm will determine
the switching action in real-time based on the current system state. The resultant switching scheme
will be tested to determine if the proposed topology is AC feasible and if the switching action
causes instability. If the solution is feasible, it is implemented.

Real-time
system
states

  Compute 
switching 

action

Contingency
occurs

Check
AC

feasibility

Check
system
stability

Implement
switching

Real-time Process

Figure 4.1: Real time topology control scheme.

Ideally, it is preferred to solve for the optimal switching action in real-time because more
information is known about the operating state of the grid. However, during an emergency, it
is paramount that a corrective action be taken as soon as possible in order to avoid a potential
blackout. Real-time corrective switching is a non-convex, nonlinear, MIP problem. Such a problem
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cannot be solved in real-time with available tools today. Therefore, heuristics are necessary to
generate potential solutions. There are many heuristics for transmission switching that have been
previously proposed in literature [90–93]. These heuristics can be used to find decent solutions
faster than solving a MIP. However, there is still the overarching concern that they may not be
fast enough for practical large-scale applications due to the extreme importance of implementing
a solution as fast as possible during an emergency. DCOPF based heuristics would still need to be
checked to see if they are AC feasible and any proposed action would need to be confirmed to not
cause a stability concern. Therefore, it is difficult to establish the success rate of such heuristics
due to the time sensitive nature of real-time corrective actions during emergency conditions. It is
also difficult to predict the solution quality of switching actions proposed by heuristics. In [10], a
real-time application of topology control is proposed for an AC formulation and they have shown
that this can be solved quickly but there is still the issue of transient stability of the switching action
and the approach does not take into consideration generation re-dispatch.

Another drawback of such real-time corrective switching heuristics is that they assume the
operating state will not change. State estimation would be used to estimate the system state when
the algorithm is executed. However, the actual system state when the action is implemented may
be different than the assumed system state due to the time it takes to run the algorithm and check
for AC feasibility and system stability. While such procedures can be adjusted to reflect multiple
operational states, doing so adds additional complexity to the algorithm, which further exposes
the approach to the risk that it may not solve fast enough. Overall, real-time topology control
mechanisms that rely on heuristics may be fast but there are still practical issues that they do
not take into consideration. Thus, there is a need for topology control actions that are robust
against operating states in order to increase the likelihood of obtaining a feasible solution when
implemented.

4.2.2 Deterministic Planning Based Topology Control
Today, there are special protection schemes involving corrective switching that are determined
based on offline analysis, [27]. The main idea of deterministic planning based corrective switching
is to determine the corrective switching action offline, e.g., in a day-ahead or a week-ahead time-
frame, and then feed this information into a real-time dynamic security assessment tool that can
determine if the switching action is feasible. For deterministic planning based corrective switch-
ing, an assumption regarding the system state is made and switching actions will be proposed in
response to selected contingencies. Then, the switching schemes will be tested for AC feasibility
and system stability based on the estimated, assumed system state(s). The benefit of such a proce-
dure is that all of the heavy computational work is done offline. The resultant switching schemes
are then fed into a real-time security assessment tool that functions like a lookup table. When
the particular contingency occurs, a solution from the lookup table will be selected and tested for
system feasibility based on the real-time system states. If a feasible solution is found, it is im-
plemented; if a solution is not found, the operator can resort to traditional corrective means, such
as generation re-dispatch. The schematic of the deterministic planning based topology control
scheme is shown in Fig. 4.2.
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Figure 4.2: Deterministic planning based topology control scheme.

The benefit of a planning based corrective switching approach is that the real-time procedures
are minimal, resulting in a fast implementation of the action. However, the drawback is that a
deterministic planning based corrective switching procedure requires perfect foresight of the sys-
tem states. With a small deviation from the estimated operating state, the switching action may
cause a blackout instead of preventing a blackout. However, most corrective switching schemes
implemented in practice are developed offline [27, 88, 89]. For instance, on Page 8 of [88] it states,
“Open or close circuits ... when previously documented studies have demonstrated that such cir-
cuit openings reliably relieve the specific condition.” As a result, corrective switching is primarily
limited to unique situations where the proper corrective action is obvious or it is already a well-
known action due to the operator’s prior knowledge and experience. In the literature, there are few
mathematical models available that can be used to determine corrective switching schemes with
guaranteed solution feasibility for a range of operating states. In order to respond to this problem,
robust corrective switching is proposed.

4.2.3 Robust Corrective Topology Control
This research proposes the robust corrective switching framework as a response to the limitations
of real-time and deterministic planning based corrective switching. The proposed robust correc-
tive switching methodology shown in Fig. 4.3 is a combination of real-time and planning based
corrective switching methodologies. Due to robust optimization, the proposed robust corrective
switching methodology is superior to deterministic policies with respect to solution reliability. The
technology gap between real-time and deterministic planning based corrective switching scheme
is reduced by doing most of the heavy computational work offline and the guarantee of solution
feasibility for a range of operating states is achieved by developing an uncertainty set over esti-
mated system states. The uncertainty set can be viewed as lower and upper bounds over the system
parameters or a range of operating states. The topology control algorithm will find the candidate
switching actions based on modeled system states (with uncertainty) and a simulated contingency.
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The switching solutions generated by the topology control algorithm will then be tested for AC
feasibility and system stability. The resultant switching solutions will be considered as candidate
switching solutions for the corresponding contingencies and will be used in connection with a
real-time corrective switching algorithm. When a particular contingency occurs, the on-line dy-
namic security assessment tool will test the proposed robust switching actions to determine the
appropriate switching action to take. This process can also be combined with previously proposed
real-time corrective switching heuristics since combining these procedures together will increase
the likelihood of finding a feasible corrective action fast enough.

The primary feature of robust corrective switching is that the solution is guaranteed to be fea-
sible over a wide range of operating states. The uncertainty set may consist of variable resources,
such as generation uncertainty, wind/renewable generation uncertainty, demand uncertainty, and
area interchange uncertainty. Furthermore, the topology control algorithm can be used to generate
multiple switching solutions for a particular contingency. Note that the presented solution method
is designed to determine one topology control solution at a time. However, by updating the so-
lution method termination condition, the presented framework can be used to determine multiple
topology control solutions. Providing multiple potential corrective switching solutions to the op-
erator provides added flexibility. This characteristic of robust corrective switching is critical as not
all of the solutions generated by the topology control algorithm may be AC feasible or pass the
stability check. But due to multiple potential switching actions generated by the topology control
algorithm, it is more likely that at least one of them will produce a feasible operating solution.

Model system
states with

uncertainty set 

Robust  
topology
control

Contingency
simulated

Check
AC

feasibility

Check
system
stability

Report
candidate
switching
actions

Monitor
system
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Offline Process

Failed

Check
AC

feasibility

Implement
switching

Check
system
stability

Show
switching
solution to
operator

Real-time Dynamic Assessment Tool

Figure 4.3: Robust corrective topology control scheme.

The timeline of the robust corrective switching scheme works as follows: after solving the
day-ahead unit commitment problem, the robust corrective switching algorithm will determine the
corrective switching schemes for possible contingencies. This can be seen as a form of contingency
analysis, which has been modified to include robust corrective switching and it checks for a robust
N-1 solution. These switching actions will be tested for AC feasibility and system stability. All
of these calculations will be done offline. Once a particular contingency occurs, the real-time
dynamic security assessment tool will evaluate the switching solution (if any) based on the real-
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time system states. If any feasible solution is obtained, it will pass the possible switching actions
to the operator. Next, the operator will decide whether to implement the switching solution. The
benefit of the proposed procedure is that the robust corrective switching scheme obtained from
this method does not rely on ad-hoc methods, which enables corrective switching to be more
widespread in order to improve operations and reliability.

The robust corrective switching scheme in this research is based on a DCOPF framework and
it guarantees the switching solution will be feasible for any operating state modeled by the un-
certainty set. Since the optimal power flow (OPF) formulation is not an AC optimal power flow
(ACOPF), the proposed solution must also pass an AC feasibility test. As a result, the guarantee
that the solution is robust only holds for a DCOPF problem and is not guaranteed for the ACOPF
problem. However, by developing a robust corrective switching formulation, we are able to im-
prove the chances that the proposed switching action will, indeed, be feasible as compared to
deterministic corrective switching DCOPF schemes. Typically, generation re-dispatch is required
to obtain an AC feasible solution, which is one of the primary reasons why corrective switching
schemes may be feasible for the DCOPF but are not AC feasible. However, the proposed robust
corrective switching scheme is guaranteed to be feasible (for the DCOPF) for a wide range of op-
erating conditions; this substantially increases the chances that the chosen topology solution will
have an AC feasible solution since there are many DC solutions to start with. The proposed robust
corrective switching procedure can be seen as a mathematical program that is equivalent to the
practice used today by operators to identify candidate switching actions based on historical studies
showing the action has worked under a variety of operating conditions. Note that the procedure
presented in Fig. 4.3 is used to determine corrective topology control actions for a single contin-
gency. ForN different contingencies, the procedure described in Fig. 4.3 would be repeatedN
times.

In robust corrective topology control methodology, it is assumed that with today’s technology,
the real-time dynamic assessment tool is fast enough to evaluate the topology control action such
that the topology control solution can be implemented in realistic timescale. However, with larger
test systems, it is possible that the computational time required for topology control solution evalu-
ation, for real-time application, may not be fast enough. To overcome this computational limitation
modification to robust corrective topology control methodology, presented in Fig. 4.4, is proposed.
In this proposed topology control solution evaluation process, after solving the off-line process,
the candidate topology control solutions are made available to real-time applications. In real-time,
the real-time dynamic assessment tool will assess the feasibility of topology control action by con-
tinuously simulating the contingency and its associated corrective topology control action with
real-time system states. When particular contingency occurs, the topology control solution, evalu-
ated in real-time dynamic assessment tool, is made available to operator for implementation. The
benefit of this method is that the time required to implement corrective topology control solution
is minimal. However, evaluating all possible N-1 contingencies with associated topology control
solution, with real-time system states, might be computationally challenging; therefore, to mini-
mize computational burden, only critical contingencies requiring topology control action might be
evaluated with real-time system states. This proposed method is similar to the contingency anal-
ysis tool, used today in industry, which monitors the critical contingencies, in continuous bases,
with real-time system states, to insure N-1 contingency compliance. However, it should be noted
that such an approach would limit the capability of corrective topology control to mitigate con-
tingencies, as not all the possible N-1 contingencies are considered for real-time topology control
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solution evaluation. Another approach, to overcome computational limitation of real-time evalua-
tion process, is to remove the topology control solution evaluation process with real-time system
states. In this approach, the topology control solution will be determined and tested with off-line
process and implemented, in real-time, without any evaluations. The success of such a approach
heavily depends on accuracy of off-line studies, which can be limit the implementation of correc-
tive topology control in power systems operation. Furthermore, in industry, today, most of the
topology control actions are determined and tested in off-line process [94].
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Figure 4.4: Modification to real-time dynamic assessment tool

4.3 Modeling of Demand Uncertainty
Uncertainty modeling is a key part of robust optimization. In [62] and [63], polyhedral uncertainty
sets are used to define demand uncertainties; they assume that each load has an upper and lower
bound and that the system-wide aggregate load has an upper bound. In this research, a simplified
uncertainty model is used to represent demand uncertainty. The polyhedral uncertainty set used in
this chapter is presented in (4.1); if desired, more complex polyhedral uncertainty sets can be used
instead, as in [63].

D = {d ∈ R
n : dfixn D−

n ≤ dn ≤ dfixn D+
n , ∀n} (4.1)

In this uncertainty set, the system demand is bounded by its pre-determined lower and upper
limits. The uncertainty description used in (4.1) is more conservative than the uncertainty sets used
in [62] and [63]. The size of the uncertainty set is defined by the parametersD+

n andD−
n . When

D+
n andD−

n = 1, the uncertainty is zero andD is a singleton, i.e.,dn = dfixn . WhenD−
n ≤ 1 and

D+
n ≥ 1, the uncertainty set is a polyhedron and its size is defined by the values ofD+

n andD−
n .

4.4 Deterministic Topology Control
Equations (4.2)-(4.6) represent the generic form of deterministic topology control, which includes
a DCOPF corrective switching formulation. In this formulation, vectorc andb are cost vectors.
The parametersA, B, E, F, , f, H, h andg represent the system data. The system demand in
this case is the forecasted demand and it is denoted by vectord̄; each entry ind̄ represents the
forecasted demand at each bus,dfixn . Deterministic corrective switching is a MIP problem. The
variablex represents the binary variable associated with the switching action, wherex = 1 if the
line is closed/in service orx = 0 if the line is open/out of service. The continuous variabley
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represents all of the OPF continuous variables, such as line currents, bus angles, and generator
dispatch.

min
x,y

cTx+ bTy (4.2)

s.t. Fx ≤ f, (4.3)

Hy ≤ h, (4.4)

Ax+By ≤ g, (4.5)

Ey = d̄, (4.6)

x ∈ {0, 1}

4.5 Robust Corrective Topology Control Formulation
In the deterministic corrective transmission switching problem, the switching action is based on
a single system state. However, in the robust topology control problem, the switching action is
determined based on a range of operating states. The objective of robust topology control is to find
a robust switching solution in response to a contingency while not allowing any load shedding for
any realizable load within the uncertainty set. It should be noted that demand response can also be
used as a control mechanism in response to a contingency; however, this option is not included in
this research. Furthermore, in this report the topology control problem is modeled as a feasibility
problem; hence, vectorsc andb in (4.2) are equal to zero.

The generic form of robust topology control formulation is given in (4.7)-(4.11), which is a two
part optimization problem. The first part of the problem is to find a transmission switching solution
and the second part is to find the worst-case cost or worst-case realization of demand associated
with the switching solution obtained in the previous stage. Robust optimization is seen as being
more conservative than stochastic optimization since it minimizes the worst-case approach. While
this is often seen as a drawback of robust optimization, this is exactly the motivation: to create a
robust, reliable corrective switching methodology.

min
x∈X

(

cTx+max
d∈D

bT y(d)

)

(4.7)

s.t. Fx ≤ f (4.8)

Hy(d) ≤ h, (4.9)

Ax+By(d) ≤ g, (4.10)

Ey(d) = d, (4.11)

x ∈ {0, 1}

When the system demand uncertainty is zero, the topology control model presented in (4.2)-
(4.6) is the same as the model given in (4.7)-(4.11). In (4.11), the termy(d) is used to emphasize the
dependency of continuous variabley on the demand uncertainty,d. The second part of the robust
formulation is further divided into two parts and results into a three-stage optimization problem as
shown in (4.12). The objective of a three stage robust problem is to find a feasible topology under
the worst-case demand. The first stage will determine the topology or switching action, whereas
stages two and three will determine the feasibility of the switching action for the entire uncertainty
set.
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min
x∈X

(

cTx+max
d∈D

min
y∈Ω(x,d)

bTy

)

(4.12)

s.t. Fx ≤ f, x ∈ {0, 1} (4.13)

The setΩ(x, d) is a set of feasible solutions for a fixed topology and demandd, which is repre-
sented byΩ(x, d) = {y : Hy ≤ h, Ax + By ≤ g, Ey = d}. In (4.12), themax

d∈D
min

y∈Ω(x,d)
bT y part

of the problem determines the worst-case cost or demand associated with the switching solution
(determined in the first stage) and can be combined together into one problem by taking the dual
of min

y∈Ω(x,d)
bT y. The resultant problem is shown in (4.14)-(4.16).

max
d,ϕ,λ,η

λT (Ax− g)− ϕTh + ηTd (4.14)

s.t. − λTB − ϕTH + ηTE = bT , (4.15)

d ∈ D, λ ≥ 0, ϕ ≥ 0, η free (4.16)

ϕ, λ and η are dual variables of constraints (4.4), (4.5), and (4.6) respectively. In (4.14),
the termηTd is nonlinear. In [62], an outer approximation technique is used to solve this bilinear
problem. In [62], the bilinear term,ηTd, is linearized using a first order Taylor series approximation
as shown in (4.17), whereL(d, η) is a linearized approximation that is linearized acrossdj andηj .
Furthermore, the resultant LP problem is solved by employing an iterative process between the
outer approximation and the rest of the evaluation problem. The benefit of this method is that it is
simple and the resultant optimization problem is a simplified LP. However, this method does not
guarantee global optimality; therefore, the solution obtained from this outer approximation method
only guarantees local optimality. Furthermore, this approach assumes that the problem is feasible,
the corrective topology control problem is a feasibility problem and, thus, it requires a global
solution. Therefore, the outer approximation technique is not suitable for the robust corrective
switching problem. Hence, in this report, instead of using an outer approximation method, the
bilinear term is defined by describing the extreme point of the uncertainty set.

L(d, η) = ηTj dj + (η − ηj)
Tdj + (d− dj)

Tηj (4.17)

Since the DCOPF problem is a convex problem, the new subproblem formulation presented
by (4.14)-(4.16) can be reformulated into a MIP problem. By classifying all extreme points of
the polyhedron representing the uncertainty set, we can guarantee a robust solution due to the
convexity of the DCOPF problem, i.e., we can guarantee that all interior points are feasible if the
robust solution is feasible for all extreme points of the polyhedron. This reformulation allows us
to solve the nonlinear problem (4.14)-(4.16) by mixed integer programming while still being able
to guarantee a global optimal solution. This reformulation procedure is also used in [63]. The MIP
reformulation for the polyhedron representing the demand uncertainty is shown by (4.41)-(4.44).

The master problem is a MIP problem and represented by (4.18)-(4.19) and the subproblem is
represented by (4.14)-(4.16).
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min
x∈X

cTx (4.18)

s.t. Fx ≤ f, x ∈ {0, 1} (4.19)

The robust corrective switching formulation used in this chapter is presented in (4.21)-(4.33),
with an objective presented by (4.20). The formulation includes generator limit constraints (4.21)-
(4.22), generator contingency ramp up and ramp down constraints (4.23)-(4.24), line limit con-
straints (4.25)-(4.26), transmission switching constraints (4.27)-(4.28), the node balance constraint
(4.29), and demand uncertainty (4.30)-(4.31). The maximum number of line switchings per solu-
tion are limited by parameterM in (4.32). In this research, only one corrective line switching
solution is considered to be implemented in the post-contingency state.

min
ZK∈X

(

0 + max
d∈D

min
Pg,Pk,θn∈Ω(Zk ,d)

0

)

(4.20)

s.t.− Pg ≥ −P
max
g ug, ∀g (4.21)

Pg ≥ Pmin
g ug, ∀g (4.22)

− Pg ≥ (−R+c
g − P uc

g ), ∀g (4.23)

Pg ≥ (−R−c
g + P uc

g ), ∀g (4.24)

− Pk ≥ −P
max
k ZkN1k, ∀k (4.25)

Pk ≥ −P
max
k ZkN1k, ∀k (4.26)

Pk −Bk(θn − θm) + (1− ZkN1k)Mk ≥ 0, ∀k (4.27)

Pk −Bk(θn − θm)− (1− ZkN1k)Mk ≤ 0, ∀k (4.28)
∑

δ(n)+

Pk −
∑

δ(n)−

Pk +
∑

∀g(n)

Pg = dn, ∀n (4.29)

dn ≤ dfixn D+
n , ∀n (4.30)

dn ≥ dfixn D−
n , ∀n (4.31)

∑

∀k

(1− Zk) ≤M (4.32)

Zk ∈ {0, 1}, Pg, Pk, θn free (4.33)

The complete robust corrective switching problem is split into two parts: a master problem, and
a subproblem. The master problem ismin

ZK∈X
0 with constraints represented by (4.32)-(4.33), which

determine the topology. The subproblem is a two part optimization problem, which determines the
worst-case demand for a particular topology. The first part of the subproblem is represented by
an objectivemax

d∈D
with constraints (4.30)-(4.31), which determines the worst-case system demand

within the uncertainty set. The second part of the subproblem is represented by the objective
min

Pg,Pk,θn∈Ω(Zk ,d)
0 with constraints (4.21)-(4.29). This second part of the subproblem is a DCOPF

formulation that evaluates the feasibility of the system demand, which is selected in the first part
of the subproblem.
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The objective of the third stage’s dual is given in (4.34), whereα+
g , α

−
g ,Ω

+
g , Ω

−
g , F

+
k , F−

k , S+
k ,

S−
k , Ln are dual variables associated with constraints (4.21)-(4.29) respectively. When the second

stage and the third stage of the subproblem are combined together, the termdnLn in (4.34) makes
the objective nonlinear. The nonlinearity of the dual objective is removed by restructuring the
nonlinear problem into a MIP problem. The resultant subproblem is given in (4.35)-(4.44), where
the dual formulation of the third stage subproblem is combined with the demand uncertainty.

max −
∑

∀g

Pmax
g ugα

+
g +

∑

∀g

Pmin
g ugα

−
g (4.34)

+
∑

∀g

(−R+c
g − P uc

g )Ω+
g +

∑

∀g

(−R−c
g + P uc

g )Ω−
g

−
∑

∀k

Pmax
k ZkN1k(F

+
k + F−

k ) +
∑

∀n

dnLn

−
∑

∀k

(1− ZkN1k)Mk(S
+
k + S−

k )

A big-M formulation is used to represent the extreme points of the polyhedron representing the
uncertainty set. The drawback of such an approach is that it causes a poor relaxation. To overcome
this problem, CPLEX’s indicator constraint modeling approach is used to model (4.41)-(4.44).

max −
∑

∀g

Pmax
g ugα

+
g +

∑

∀g

Pmin
g ugα

−
g (4.35)

+
∑

∀g

(−R+c
g − P uc

g )Ω+
g +

∑

∀g

(−R−c
g + P uc

g )Ω−
g

−
∑

∀k

Pmax
k ZkN1k(F

+
k + F−

k ) +
∑

∀n

ηn

−
∑

∀k

(1− ZkN1k)Mk(S
+
k + S−

k )

s.t. − α+
g + α−

g − Ω+
g + Ω−

g + Ln = 0, ∀g (4.36)

− F+
k + F−

k + S+
k − S−

k + Ln − Lm = 0, ∀k (4.37)

−
∑

δ(n)+

BkS
+
k +

∑

δ(n)−

BkS
+
k +

∑

δ(n)+

BkS
−
k −

∑

δ(n)−

BkS
−
k = 0, ∀n (4.38)

α+
g , α

−
g ,Ω

+
g ,Ω

−
g ≥ 0, ∀g (4.39)

F+
k , F−

k , S+
k , S

−
k ≥ 0, ∀k (4.40)

ηn − Lnd
fix
n D+

n + (1−Dn)Mn ≥ 0, ∀n (4.41)

ηn − Lnd
fix
n D+

n − (1−Dn)Mn ≤ 0, ∀n (4.42)

ηn − Lnd
fix
n D−

n +DnMn ≥ 0, ∀n (4.43)

ηn − Lnd
fix
n D−

n −DnMn ≤ 0, ∀n (4.44)

Dn ∈ {0, 1}
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4.6 Solution Method for Robust Corrective Topology Control
The robust topology control problem is a three-stage problem with a master problem and two
subproblems. However, it is reformulated into a two-stage problem with a master problem and
a subproblem. The solution method proposed in this research is an iterative process between
the master problem and the subproblem. The master problem is a MIP, which determines the
system topology. The subproblem is a nonlinear problem, which is converted into a MIP and it
searches for the worst-case demand for the particular topology. For the proposed solution method,
it is assumed that the unit commitment problem is solved prior to solving the robust corrective
switching problem.

4.6.1 Initialization
The unit commitment problem is first solved with the fixed, initial topology. The solution of
this unit commitment problem, the unit commitment status, the generators’ scheduled dispatch,
and the acquired reserves, are fed into the robust topology control framework. The first step of
solution method is to solve the dual problem given by (4.45), whereZk represents the initial
topology. The model presented in (4.45) is the dual of the DCOPF problem. The dual variables of
constraints (4.36)-(4.38) arePg, Pk, θn respectively. If the problem is infeasible, then the proposed
unit commitment solution is not N-1 reliable and a cut must be added to the master problem in the
form of (4.47). The proposed approach will then search for a robust corrective switching action
that enables the solution to be N-1 compliant, if such a solution exists.

max −
∑

∀g

Pmax
g ugα

+
g +

∑

∀g

Pmin
g ugα

−
g (4.45)

+
∑

∀g

(−R+c
g − P uc

g )Ω+
g +

∑

∀g

(−R−c
g + P uc

g )Ω−
g

−
∑

∀k

Pmax
k ZkN1k(F

+
k + F−

k ) +
∑

∀n

dnLn

−
∑

∀k

(1− ZkN1k)Mk(S
+
k + S−

k )

s.t. (4.36)− (4.40)

4.6.2 Master Problem: Topology Selection
The master problem is a MIP problem and its objective is to determine the system topology. The
master problem contains a topology selection formulation and combinatorial cuts. The master
problem is represented by (4.46)-(4.48). For iterationj ≥ 1,

min 0 (4.46)

s.t.1 ≤
∑

Zk,l=0

Zk +
∑

Zk,l=1

(1− Zk), ∀l ≤ j (4.47)

∑

∀k

(1− Zk) ≤M (4.48)

Zk ∈ {0, 1}
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At each iteration, the master problem finds a feasible solution and then passesZk to the sub-
problem as an input parameter. The solutionZk will be evaluated for the worst-case scenario in
the subproblem. If the master problem is infeasible, this states that all of the possible topologies
are infeasible and there is no feasible switching action for the defined uncertainty set, as shown in
stage 1 of Fig 4.5.

Initilization,

j=1

Master

Problem
Feasible solution?

SubproblemObjective=0?

Stop

Stop

 Add cut, j=j+1 

Yes

No

Stage 1

Stage 2

No

Yes

Figure 4.5: Flowchart for robust corrective topology control.

4.6.3 Subproblem: Worst-case Evaluation
The objective of the subproblem is to determine the worst-case demand associated with the topol-
ogy (determined in the master problem). The subproblem is a MIP and presented in (4.35)-(4.44).
If the subproblem is feasible and the objective is equal to zero, then it proves that, for a given
topology, there is no system demand within the uncertainty set that will produce an infeasible
OPF solution. In other words, the corresponding topology is feasible for the entire uncertainty set;
hence, a robust solution is obtained. On the other hand, if the subproblem’s objective is non-zero,
then the corresponding topology is infeasible for a particular demand within the uncertainty set.
Hence, that topology is discarded and a feasibility and/or combinatorial cut is applied to the master
problem in form of (4.47). Equation (4.47) is known as a combinatorial cut, which prevents the
master problem from choosing any prior binaryZk solution that is known to be infeasible. The
master problem is solved again and the process continues till the robust solution is found or all
possible topologies are confirmed to be infeasible. The solution method for the robust topology
control problem is summarized in Fig. 4.5.

4.7 Results
The computational study for robust corrective switching is performed on the IEEE 118-bus test
case. The test case consists of54 generators,118 buses, and186 transmission lines. The IEEE
118-bus test case given in [95] does not have generator information. Therefore, generator infor-
mation from the Reliability Test System-1996 [95] is used. The fuel costs given in [22] are used to
calculate generator operating costs. The basic unit commitment model presented in [13] is adopted.
A 24-hour unit commitment problem is solved. The reserve requirement for the unit commitment
problem is the sum of5% of demand supplied by hydro generators and7% of demand supplied by
non-hydro units or the single largest contingency, whichever is greater. It is assumed that at least
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50% of total required reserves will be supplied by spinning reserves and the rest will be supplied
by non-spinning reserves. This assumption is in line with CAISO’s guidelines for spinning reserve
and non-spinning reserve [96]. The hour16 solution of the unit commitment problem is used for
deterministic as well as robust corrective switching analysis. The IEEE 118-bus test case in [95]
does not have emergency transmission rating. Therefore, it is assumed that the emergency thermal
rating for the transmission elements is125% of the steady state operating limits.

4.7.1 Deterministic Corrective Switching
In the deterministic corrective switching analysis, the demand uncertainty is assumed to be zero.
The switching action is determined with the static demand levels used in the unit commitment
problem. It is observed that10 transmission contingencies (out of186) can only be alleviated if
transmission switching is combined with generation re-dispatch, i.e., generation re-dispatch on its
own cannot satisfy these10 transmission contingencies. The generation re-dispatch allows each
unit to change within10 minutes of its ramping capability. This result is important because, tradi-
tionally, such contingencies are mitigated by expensive generation re-dispatch. Moreover, these10
transmission contingencies have multiple corrective switching actions. The ability of the corrective
switching algorithm to generate multiple solutions for a single contingency is critical from a sys-
tem operations point of view. The corrective switching formulation is based on a DC framework.
Therefore, the solution needs to be tested for AC feasibility and system stability requirements.
Hence, the probability of having at least one AC feasible and stable corrective switching solution
is higher if the corrective switching algorithm generates multiple corrective solutions.

It is also observed that the solution for corrective transmission switching will not always be ‘to
open the congested line’, but frequently it will be ‘to open a lightly loaded line’. This demonstrates
that the commonly held assumption that congested lines are the top candidate lines for switching
is not always correct. Furthermore, such examples demonstrate the need for systematic tools for
topology control.

4.7.2 Robust Corrective Switching Analysis
For robust corrective switching analysis,±14.3%, i.e.,±324.5MW , demand uncertainty is as-
sumed. For computational simplicity, the demand uncertainty is assumed only on50% of the
system MW demand involving roughly half of the load buses. It is also assumed that all of the
system reserves are available within10 minutes and the generators are allowed to change their out-
puts within each generators’10 minutes ramp rate. Of the186 transmission contingencies,159 can
be alleviated by dispatching reserves alone. While corrective switching is not required for these
159 contingencies, topology control can still be useful in response to these contingencies because
it can reduce the need for a costly system re-dispatch; furthermore, the topology control algorithm
provides multiple feasible switching solutions for these159 transmission contingencies. The7
transmission contingencies listed in Table 4.1 require corrective transmission switching actions in
order to avoid load shedding, i.e., generation re-dispatch alone was not sufficient to respond to
the contingencies. Note that these robust corrective switching solutions involve both corrective
switching and generation re-dispatch.

The first column of Table 4.1 represents the transmission contingency and the second column
represents the corresponding corrective switching actions. All7 of these transmission switching
contingencies can only be alleviated if corrective transmission switching is employed. For instance,
a contingency on line111 can only be mitigated by switching line108 or 109 combined with
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generation re-dispatch. No feasible solution is available with generation re-dispatch alone due
to network congestion. The switching solutions for the other6 transmission contingencies are
documented in Table 4.1.

Table 4.1: Robust corrective switching solution with demand uncertainty.

Number of
Line Deterministic

Contingency Switching Solution(s) Solutions
63 64 3
111 108, 109 163

115
33, 34, 35, 38, 51, 78,

165
86, 112, 121, 132, 141

116 141 151
120 132 162

148
137, 138, 139, 140, 141, 143, 153,

163157, 158, 159, 160, 161, 162, 163,
165, 166, 167, 168, 169, 173

154
139, 140, 153, 155, 157, 158, 159,

166
160, 161, 163,165, 167, 169, 173

The contingencies of line111, 115, 148, and154 have multiple robust corrective switching
actions. Table 4.1 shows that there can be multiple switching solutions for a single contingency.
Similarly, one switching action may alleviate multiple contingencies. For instance, the robust
switching solution to open line141 mitigated3 transmission contingencies. This result shows the
potential of robust corrective switching to generate multiple candidate switching solutions for a
real-time dynamic security assessment tool to evaluate switching actions for real-time operations.

In the last column of Table 4.1, the number of deterministic corrective switching solutions, for
a particular contingency, is presented. It shows that the number of possible deterministic corrective
switching solutions is much more as compared to the number of robust solutions. However, the
robust solutions guarantee solution feasibility over a wide range of operating states whereas the
deterministic solutions do not guarantee solution feasibility if there is any change in the operating
state. Therefore, the possibility of having a successful corrective action with the deterministic
corrective switching solutions is far less than the potential success rates for the robust corrective
switching solutions.

For a contingency on line63, with the initial topology no feasible solution is obtained with
a fixed demand. Hence, the unit commitment solution is not N-1 compliant. However, with the
robust corrective switching framework, an N-1 feasible solution exists; furthermore, the robust
corrective switching framework is able to produce an N-1 feasible solution that is robust against
the demand uncertainty. This result is extremely important and powerful as we have proven that
topology control can take a solution that is N-1 infeasible for a deterministic fixed demand and
make it N-1 feasible even with a high level of demand uncertainty. Indeed, the assumption that
transmission switching must degrade system reliability is false. Furthermore, in prior research,
topology control has shown considerable operational benefits and cost savings [13]. The detail
analysis for cost savings, obtained from robust corrective topology control methodology, is pre-
sented in Chapter 5.

The computational time for±14.3% uncertainty set is about10 minutes per contingency with
a 2.93 GHz, Intel i-7 processor with8 GB RAM. It is also observed that the computational time
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increases with small increases in the uncertainty set. For instance, a1% decrease in uncertainty
causes a13% drop in computational time.

4.8 Conclusion
In this chapter, three different corrective switching methodologies are presented: real-time, de-
terministic planning based, and robust corrective switching. Real-time corrective switching is
very difficult to implement with today’s technology due to a lack of computational power and
the practical barriers of needing to ensure AC feasibility, voltage stability, and transient stabil-
ity. Deterministic planning based corrective switching can be solved offline, but such an approach
relies on predicting the operating state. Furthermore, the deterministic planning based methods
cannot guarantee solution feasibility over a wide range of system states. The proposed method
of robust corrective switching fills the technology gap between the real-time and the deterministic
planning based corrective switching methodologies. The offline mechanism of robust corrective
switching generates multiple solutions and can be implemented in real-time with the help of a
real-time dynamic security assessment tool. As a result, the proposed robust corrective switching
model provides a mathematical decision support tool that integrates topology control into every
day operations by being able to guarantee robust solutions.

While deterministic corrective switching frameworks may suggest many potential switching
solutions, the empirical results presented in this research show that many of these solutions will
be infeasible for minor changes in the operating state. In contrast, the robust corrective switching
scheme presented in this chapter guarantees solution feasibility for a wide range of system states,
given a DCOPF formulation. In addition, the robust corrective switching formulation demon-
strates the ability of generating multiple corrective switching actions for a particular contingency.
Moreover, a single resulting corrective switching solution is capable of mitigating multiple contin-
gencies.

Day-ahead unit commitment problems with proxy reserve requirements do not guarantee N-1
feasibility. Contingency analysis is used to determine whether there are contingencies that cannot
be satisfied by the unit commitment solution. When this happens, unit commitment must be re-
solved or the operator will employ out-of-market corrections to obtain a feasible N-1 solution. The
results have shown that robust corrective topology control can be used to reduce the occurrence
of contingencies that are not satisfied by the re-dispatch capabilities of the unit commitment so-
lution alone. Furthermore, the numerical results prove that topology control does not necessarily
degrade system reliability; on the contrary, it can help the system to achieve N-1 feasibility even
with uncertainty.

While transmission switching exists today, it is used to a limited extent; historical information
or the operators’ prior knowledge are the primary mechanisms to establish and implement cor-
rective switching as opposed to using a mathematical framework to identify corrective switching
actions. The electric grid is one of the most complex engineered systems to date. Relying on
only prior observations to determine potential corrective switching actions limits our capability to
harness the existing flexibility in the transmission network. Systematic procedures that are capable
of capturing such complexities should be preferred over such limited methods. Furthermore, the
hardware requirements to implement topology control (circuit breakers) already exist, leaving only
the need to develop the appropriate decision support tools, which are low in cost, to obtain such
benefits.
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5. Renewable Integration with Robust Topology Control:
Do-not-exceed Limits

5.1 Introduction
In recent years, the penetration of renewable resources in electrical power systems has increased.
These renewable resources add more complexities to power system operations, due to their inter-
mittent nature. As a result, operators must acquire additional reserves in order to maintain relia-
bility. However, one persistent challenge is determining the optimal location of reserves and this
challenge is exacerbated by the inability to predict key transmission bottlenecks due to this added
uncertainty. This research presents robust corrective topology control as a congestion management
tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead
method determines the maximum uncertainty in renewable resources in terms of do-not-exceed
limits combined with corrective topology control. The day-ahead topology control formulation is
based on the direct current optimal power flow; therefore, switching solutions obtained from these
algorithms need to be tested for AC feasibility and system stability. All numerical results provided
are based on the IEEE-118 bus test case with two different load profiles and wind forecasts.

As the penetration of stochastic resources (e.g., variable wind and solar power) increase, the
challenge to maintain a continuous supply of electrical energy, at minimal cost, will increase in
difficulty due to the increase in amount of semi-dispatchable and non-dispatchable resources. Tra-
ditionally, economic dispatch models, used in system operation, are deterministic and do not opti-
mize system resources while explicitly accounting for the uncertain resources. In order to reduce
operational costs, while maintaining reliability, uncertainty modeling plays an important role in
the decision making process; by ignoring uncertainty, the operational decision can be suboptimal
or even infeasible.

In general, most optimal dispatch models assign to conventional fossil-fuel power plants a fixed
dispatch, i.e., a fixed operating point. While it is known that the plant is unlikely to stay at this fixed
operating point over a long time period due to the changes in load and other resources, the assump-
tion is adequate for the various optimal scheduling problems used at various time intervals (e.g.,
day-ahead, hour-ahead). However, it is problematic to make this assumption for semi-dispatchable
renewable resources due to their inherent intermittent nature. Therefore, grid operators may in-
struct renewable power producers to stay within a desired dispatch range as opposed assuming,
within their optimization problems, that these uncertain resources will be at a fixed operating
point. Within the Independent System Operator of New England (ISONE), this dispatch range
is known as a do-not-exceed (DNE) limit for intermittent renewable power producers. The DNE
limit defines a continuous set of potential dispatch solutions for the renewable resource and the
bounds of the DNE limit are meant to be set such that if the renewable resource stays within the
specified DNE limits (i.e., the upper and lower bound), then the system will remain in a secure
and reliable operating state. Such DNE limits are determined by constructing a robust optimiza-
tion problem; the DNE limits are represented by an uncertainty set, which states that the uncertain
resource can operate at any value within this continuous feasible set. Furthermore, the operator
could also determine the maximum bounds for this uncertainty set by which the system can still
absorb the variable production of the renewable resource without sacrificing system reliability.

The DNE limits will have both upper and lower bounds. Most of the time, a drop in renew-
able production is more critical than an increase in renewable production. However, there have
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been situations where an oversupply of renewable resources can be detrimental to system oper-
ations and reliability as well. If the system operator is expecting a potential surge in renewable
production, then the operator may dispatch additional units only to reduce their output in the ap-
proaching periods. Another way to handle this situation would be to allow for wind spillage. If
wind spillage is possible, then over-generation is generally less of a concern than under-generation.
The sudden decrease in renewable generation can cause serious operational issues and may require
extreme corrective actions to avoid cascading failures or even blackout [97, 98]. Therefore, the re-
sults presented in this research are focused on determining lower bounds on renewable generation.
However, the robust methodology, presented in this research, can be used to determine lower as
well as upper bounds on intermittent resources.

Today, most corrective topology control actions are based on operators’ prior knowledge. In
[23, 99], a detailed review of current industrial practices for topology control actions are presented.
Topology control has also been proposed to mitigate many power system related issues, such as
voltage violations, line overloads [1–4], line losses and cost reduction [5–7], system security [8],
or a combination of these [9, 10]. Topology control has also shown significant improvement in
operational flexibility [99] and cost saving [13, 19, 20, 22, 23, 85].

Stochastic programming has been one common approach to model uncertainties. It typically
assumes probability distributions for uncertain parameters or incorporates a large number of sce-
narios, which leads to computationally challenging optimization problems. The primary barrier to
stochastic programming is the tradeoff between the computational challenge and the quality of the
solution; to get a more accurate solution, it would be preferable to represent additional uncertain-
ties but then this increases the model complexity, which makes it more difficult to obtain a quality
solution.

Robust optimization has shown promising results in recent years to address issued associated
with modeling uncertainty and decision making under uncertainty. In [62], a two-stage robust
optimization technique is used to solve the unit commitment problem. Robust optimization deals
with the data uncertainty and tries to find an optimal solution considering the worst-case uncer-
tainty realization. The solution of the robust optimization problem is guaranteed to be optimal for
a defined uncertainty set [78, 79, 99]. Since the optimal solution is a hedge against the worst-
case realization, the solution is often conservative and probably expensive. For the application of
power system reliability, such a robust policy is preferred due to the enormous costs of a potential
blackout.

Topology control algorithms, presented in literature, are either based on ACOPF or DCOPF
[10, 85, 99]. However, in an optimization framework, there is no systematic way to insure system
stability with topology control. In prior literature, topology control actions combined with stability
constraints are proposed [100, 101], but these methodologies were never tested on realistic test
cases. Therefore, the solution obtained from topology control algorithms must be tested to insure
that the topology control action will not cause cascading events or even a blackout. In [102],
different stability studies are recommended for power system operation; they are classified based
on nature and type of disturbance, and time span under consideration. Typically, stability studies
are classified into three different categories- rotor angle stability, frequency stability, and voltage
stability. In this research, all three stability studies are considered to study the effect of topology
control action on system stability/reliability. The main contributions of this chapter are listed as
follows:
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1. A mathematical framework to determine do-not-exceed limits for renewable power produc-
ers is presented, which is similar to [103]. This mathematical framework utilizes robust
optimization and a search algorithm is used to determine the lower bounds.

2. A robust corrective topology control program is used to determine single transmission switch-
ing actions in response to the renewable intermittency. The corrective transmission topology
control actions essentially improve the deliverability of reserves by changing the network
topology in order to reroute power flows on available branches.

3. A multi-stage (day-ahead and real-time) framework is proposed. At the day-ahead opera-
tional planning stage, DNE limits are determined for the system with and without topology
control. The DNE limits with topology control provide the system operator more flexibil-
ity to manage the uncertain resources and the DNE limits without topology control can be
used to define the trigger as to when it is necessary to implement the corrective topology
control action in order to maintain transmission network limits. These day-ahead decisions
are then passed to real-time tools that evaluate the proposed actions at the earlier time-stage
to determine if they are still valid and, if not, propose updated corrective actions and DNE
limits. This multi-stage approach is used to manage some of the computational complexities
by taking part of the process to the day-ahead time stage and then to reconfirm the accuracy
of the day-ahead time stage in real-time where fast computations are required.

4. A validation process is taken to ensure that the robust corrective topology control actions are
AC feasible since the robust optimization framework is based on a linear approximation of
the AC optimal power flow.

5. The topology control solutions, presented in this research, are studied for its effect on system
stability. Different stability studies are carried out and the effects of the topology control
actions on system stability are presented.

The rest of the chapter is structured as follows: The robust corrective topology control method-
ology to determine DNE limits is described in Section 5.2. The renewable generation uncertainty
set modeling, used in this research, is presented in Section 5.3. The solution method for the nodal
robust topology control (RTC) algorithm, to determine DNE limits, is presented in Section 5.4.
The associated simulation results for the DNE limit algorithm are presented in Section 5.5. The
analysis of robust topology control actions on system reliability, considering wind uncertainty, is
presented in Section 5.6; results are also presented regarding a robust N-1 contingency analysis and
AC feasibility. In Section 5.7, results related to stability studies associated with topology control
actions are presented. Section 5.8 provides the conclusions.

5.2 Do-not-exceed Limits: Robust Corrective Topology Control Methodol-
ogy

In a day-ahead unit commitment problem, conventional generators are dispatched at a fixed level,
known as desired dispatch point (DDP); due to the intermittency in renewable resources, these
resources are dispatched to a range of operating levels, known as a desired dispatch range or a do-
not-exceed limit [103]. The DNE limits can also be viewed as the renewable resources’ maximum
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output range that the system can accommodate without sacrificing system reliability. These limits
can be viewed as a maximum lower and upper bound on renewable generation.

ISONE has proposed to determine the DNE limits for wind resources in real-time and the pro-
posed approach assumes that regulation reserve is used to compensate for the intermittency issues
associated with the renewable resources [103]. In [103], a zonal approximation of the actual system
is used as opposed to using the full network model with all high-voltage buses and transmission
elements. For complex generation scheduling problems, such as security-constrained unit commit-
ment (SCUC) or security-constrained optimal power flow, such approximations, for optimal power
flow, are common. Due to the complexities of robust optimization, a zonal model is proposed by
ISONE, which greatly reduces the complexity of the problem. The computational complexity of
robust optimization for the DCOPF problem grows quickly when there are many individual un-
certain variables; when using a nodal model, the uncertain variables will be the power injections
at the various nodes (buses) where the wind farms are located. With a zonal approach, there is
one uncertain variable for all of the renewable resources within that zone. Such an approach re-
duces the computational complexity but it also reduces the accuracy of the solution. Furthermore,
incorporating more transmission lines and buses will further complicate the robust optimization
framework.

This research proposed a modification to the DNE limit algorithm by incorporating corrective
topology control into the algorithm to determine DNE limits and also extends the work of [99].
As shown by Fig. 5.1, the concept of corrective topology control is embedded within contingency
analysis, as in [99], and this research proposes a new stage that will determine the DNE limits for
uncertain resources at the day-ahead time stage. After solving the day-ahead SCUC problem, the
market solution is checked to see if it is N-1 reliable; this chapter presents results pertaining to
a robust N-1 contingency analysis study that incorporates corrective topology control where net
injections are uncertain (load, renewables).
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Figure 5.1: Process to determine do-not-exceed limits.

Once a robust N-1 solution is determined, the algorithm then solves for the DNE limits for the
renewable power producers. The day-ahead robust DNE limits are determined by using a nodal
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representation of the optimal power flow. The proposed algorithm will also determine the DNE
limits with and without corrective topology control for the specified SCUC solution. The differ-
ence in these DNE limits identifies the situations when reserves are available in the system but they
are not deliverable due to congestion. The differences in the DNE limits also identify the necessary
triggers as to when to implement the corrective topology control action. When the expected uncer-
tainty in renewable resources is more than the determined DNE limits, the operator can rerun the
SCUC model to commit additional units in order to hedge against the resource uncertainty. Note
that this DNE limit tool relies on a DC approximate power flow and, thus, it does not guarantee a
robust AC power flow solution but it substantially improves the reliability of the day-ahead sched-
ule by accounting for renewable uncertainty. This day-ahead tool will provide information for
real-time operations, such as available ramping product and the proposed topology control actions.
At present, there is no such systematic tool available to system operators to integrate renewable
resources.

The final day-ahead schedule, which includes the DNE limits, the topology control actions,
and the associated ramping product, is then passed to a real-time DNE limit tool, e.g., similar
to what is proposed by ISONE [103]. The real-time DNE limit tool will compare and contrast
the proposed schedule and actions against the operating state; since this tool needs to be fast,
a zonal model is preferred. If the day-ahead protocols are not feasible, a new DNE limit will
be determined based on the updated forecasts and the existing operating state. The final DNE
limits and corresponding corrective actions are passed to a security assessment tool as well as to
the renewable power producers. The real-time security assessment tool will pass to the operator
potential corrective actions if a sizeable renewable deviation or contingency were to occur; such
corrective actions may include activating reserves, as well as newly determined corrective topology
control actions in case the previously proposed corrective actions are not sufficient, [18].

For this research, the focus is on the two boxes at the day-ahead time stage in Fig. 5.1 involv-
ing topology control: (a) robust contingency analysis with topology control and (b) robust nodal
DNE limits with topology control. Further information regarding robust contingency analysis with
topology control (TC) can be found in [99]. Fig. 5.2 provides additional information regarding the
robust nodal DNE limits with topology control. The resulting SCUC solution and the renewable
forecasts are fed into the first stage of the overall procedure. Robust optimization is used, with a
DCOPF framework, to determine the DNE limits on a nodal basis for the renewable power pro-
ducers. DNE limits with and without topology control will be determined. The proposed solution
should be tested to ensure it is AC feasible and that the switching action does not cause any stability
issues; for this work, we are only testing for AC feasibility. If the solution is not AC feasible, then
a different topology control action will be determined. When there is no valid topology control
action, either SCUC would be re-solved or the DNE limits would be determined without including
topology control.
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Figure 5.2: Robust do-not-exceed limits with topology control actions.

5.3 Uncertainty Modeling
Polyhedral uncertainty sets are used to capture the intermittency of renewable resources, as shown
in (5.1); which can be divided to two parts,Wlow andWhigh, as shown in (5.2) and (5.3). The re-
newable resources (in this case, wind generation) are assumed to vary within these pre-determined
lower and upper limits and the size of uncertainty set depends on the parametersD−

w andD+
w . Note

that, in the process of determining DNE limits,D−
w andD+

w are variables and determined outside
of the robust framework as described in Section 4.6.

Furthermore, this uncertainty set definition is simple and more conservative than the uncer-
tainty definition used in [62, 63, 78, 79]. The solution method presented here are independent of
the assumed uncertainty definition; therefore, the presented technique can be easily modified for
other uncertainty sets as shown in [62, 63, 78, 79].

W = {P ∈ R
w : P fix

w D−
w ≤ Pw ≤ P fix

w D+
w , ∀w} (5.1)

Wlow = {P ∈ R
w : P fix

w D−
w ≤ Pw ≤ P fix

w , ∀w} (5.2)

Whigh = {P ∈ R
w : P fix

w ≤ Pw ≤ P fix
w D+

w , ∀w} (5.3)

5.4 Solution Method: Nodal RTC Algorithm for DNE Limits
The robust topology control algorithm is a three-stage optimization problem: one master problem
and two sub-problems [99], with an objective to find the optimal solution considering the worst-
case scenario within the uncertainty set. However, it can be reformulated into a two-stage problem,
as shown in (5.4) and (5.5), with a single master problem and a single sub-problem [99]. Note that,
in classical robust optimization problem, as shown in (5.4) and (5.5), the uncertainty set,W , is
fixed and known prior to solving the optimization problem. However, in nodal RTC DNE limit
problem, the uncertainty set is unknown; in fact, it is a solution of DNE limit problem. Therefore,
determining a robust DNE limit with topology control action is much harder problem and needs a
more complex solution method as used in [63, 78, 99].

min
x∈X

(cTx+ min
w∈W

bT y) (5.4)

s.t.Fx ≤ f,Hy(w) ≤ h,Ax+By(y) ≤ a, Ey(w) = e. (5.5)

A detailed formulation of a robust corrective topology control problem is presented in [99];
however, the uncertainty set definition used in [99] has been modified in this research, as shown
in (5.1)-(5.3). The proposed solution method for nodal RTC algorithm to determine DNE limits
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is an iterative process between a master problem and a sub-problem as shown in Fig. 5.3. Note
that, the solution method presented below is to determine the lower bound of DNE limits. Similar
procedure can be used to determine upper bound of DNE limits.

Initialization: It is assumed that the SCUC problem is solved prior to solving the nodal RTC
algorithm. The solution of SCUC problem, such as generator status and associated dispatch, re-
newable generation, system demand, etc., is used as an input parameter to this algorithm.

Stage one:Stage one problem determines the system topology, which will be evaluated in the
stage two of this solution method. In [99], the topology selection problem, a master problem, is
a mixed integer programming (MIP) problem, which is computationally inefficient. Therefore, in
this research, a sensitivity based greedy algorithm [18] is proposed. This algorithm suggests the
topology control actions, in form of a rank list, which will be used as a candidate topology control
action for stage two. If a feasible topology is obtained from the greedy algorithm (rank list), the
resultant topology will be passed to stage two problem. If a rank list is exhausted, which indicates
that there is no feasible topology control action available based on the incumbent SCUC solution
and the chosen uncertainty set; therefore, at the next iteration, the uncertainty set will be updated
by decreasing the parameter in (5.2).

Stage two:The sub-problem determines the worst-case renewable resource realization, for a
chosen topology control action and generation dispatch. The formulation of the sub-problem is
given in [99] with an updated uncertainty set definition presented in (5.1), which is determined
outside of robust framework, as shown in Fig. 5.3. After solving the sub-problem, if a robust
solution is obtained, this indicates that the chosen topology control satisfies the entire uncertainty
set. At the next iteration, the uncertainty set will be updated by increasing the parameter in (5.2).
If the sub-problem failed to obtain a robust solution, the resultant topology control action will be
discarded and the next topology control action listed in the rank list will be tested.
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Figure 5.3: Solution method to determine DNE limits with robust corrective topology control.

The benefit of this solution method is that the stage two problem is independent of the stage
one problem; therefore, it can be parallelize for solution speedup, which helps with scalability.
Furthermore, for simplicity, a simple bisection method is used to update the uncertainty set.
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5.5 Numerical Results: Robust DNE Limits
In this section, the robust nodal DNE limits with topology control algorithm is tested on the IEEE-
118 bus test case. The branch data for the IEEE-118 bus test case is given [95]; however, the
generation information for this test system is not available. Therefore, the generator mix of relia-
bility test system1996 (RTS) is used to create generator information for the IEEE-118 bus test case
[95]. There are total71 conventional generators and9 wind injection locations, with peak demand
of 4004MW . For simulation purposes, two difference load profiles are used in this chapter: (a)
IEEE-118 bust test case using RTS winter load profile given in [95] with wind profile case#12514
for 20th December2005 from NERL western wind resource database [104], which will be noted as
a traditional demand/wind profile and (b) California Independent System Operator (CAISO) duck
chart [105].

A 24 hour SCUC is solved and the SCUC solution is used as a starting point for all the sim-
ulations presented in this research. The basic SCUC model and the fuel costs, given in [13], are
used to calculate generator operating costs. The reserve requirements for the SCUC are modeled
as sum of5% of demand supplied by conventional generators and10% of demand supplied by
wind units or the single largest contingency, whichever is greater. On top of that, at least50%
of total required reserves will be supplied by spinning reserves and the rest will be supplied by
non-spinning reserves. A similar assumption is cited in CAISO’s guidelines for spinning reserve
and non-spinning reserve [96].

The lower bounds of DNE limit for the CAISO’s duck chart, with and without corrective topol-
ogy control actions, are presented in Fig. 5.4. From Fig. 5.4 it is clear that, with corrective
topology control action, during high wind periods, such as hours1-3, 13-15, and22-24, the lower
bound of DNE limit with topology control actions can be increased by200% as compared with
DNE limits without corrective topology control action. In this case, due to higher congestion in
initial topology, the generators ramping capabilities are not utilized to its limit. With topology con-
trol actions, the congestion within the system is reduced, which results in an increase in transfer
capability across the network and subsequent DNE limits. Similarly, for the entire24 hours, the
DNE limits with topology control action can be increase by∼30% from the DNE limits deter-
mined without topology control actions. Note that, in this analysis, the number of topology control
actions per hour are limited to1.

In CAISO’s duck chart, the peak demand occurs during hour18 and hour19, as shown in
Fig. 5.4. In this case, from hour16 to hour18, the system demand increases by29% and wind
generation decreases by22%. Therefore, to meet the system demand in peak hours, the slow start
units will be committed during hour13-14, resulting in the higher amount of operational reserves
available in hours13-14. Due to congestion within the network, this additional available generation
could not be utilized to increase the DNE limits. In these situations, the topology control action
shows great benefit to system operations as it helps to reduce congestion within the network, which
results in increase in DNE limits.
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Figure 5.4: DNE limits with CAISO’s duck chart and utilization of reserves.

In addition, when wind deviations are high, there seems to be less benefits from topology con-
trol. In these hours, the classical generators are forced to use their ramping capability to meet
increased demand; therefore, the binding conditions in these cases are generators’ ramping capa-
bility, not the power transfer limitations such as line congestion. In these cases, the DNE limits
determined with single line switching does not report much benefit to renewable integration.

In the past, with topology control, significant savings were obtained for the IEEE 118-bus test
case [85]. In this research, the cost benefits obtained with topology control actions, on renewable
integration, are estimated. If the DNE limits obtained with topology control action are forced to
be achieved without topology control, the operational cost would be increased by at least6%, con-
sidering all the generators in the system are allowed to respond. To get this estimate, a robust unit
commitment problem is solved with the uncertainty set obtained with topology control. Further-
more, if the original unit commitment status for the committed generator are assumed to be fixed
and only non-committed generators are allowed to change its status, the operational cost increases
by∼14%. This result proves that topology control not only helps to integrate renewable resources,
by increasing the DNE limits, but also provides substantial cost savings in system operations.
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Figure 5.5: DNE limits with IEEE RTS forecasts and utilization of reserves.

The lower bound of DNE limit for the traditional demand/wind profile is presented in Fig.
(5.5). In this case, the DNE limit obtained with topology control action are∼100% more than the
DNE limit obtained without topology control action. In this particular test case, during the peak
hour, without topology control, the DNE limits are close to zero. Furthermore, in these hours, a
marginal change in renewable generation can cause system infeasibility. However, for the same
operating condition, the robust topology control can give DNE limits of∼17%. This results shows
the criticality of topology control for renewable resource integration.

The computational time to determine DNE limits with master problem formulation given in
[99] is about10 min per DNE limit. However, with the topology control heuristics presented in
[18], the number of iterations can be reduced by∼80%, which will further improve the computa-
tional time with great extent.

5.6 Numerical Results: Robust Corrective Topology Control
The robust corrective topology control methodology for system reliability is presented in [99]. In
this section, the detail analyses of this methodology under renewable uncertainties are presented.
The unit commitment solution used in Section 5.5 is also used as an initial operating condition
for all the studies presented in this section. Furthermore, the corrective topology control actions
may or may not be combined with generator re-dispatch. However, for robust corrective topology
control procedure, presented below, generator re-dispatch is taken into consideration.
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5.6.1 Robust N-1 Analysis
To see the effect of higher renewable resource integration on N-1 reliability of the system, in this
chapter, the robust corrective topology control N-1 analysis with wind uncertainty is presented. The
basic model and solution method is the same as [99]. For analysis purposes, the wind uncertainty
is assumed to be20%. The N-1 analysis of the IEEE-118 bus test system with CAISO’s duck chart
demand and wind forecast are presented in Fig. 5.6. In this analysis contingencies, which can be
mitigated by10 minutes generators re-dispatch alone are not considered and are treated as a trivial
case. The contingencies that can only be mitigated by corrective topology control action along
with 10 minutes generator re-dispatch are considered in this analysis and are treated as a nontrivial
cases.

The bar chart in Fig. 5.6 shows the number of nontrivial contingencies for a24 hours pe-
riod. During high wind generation and low demand periods, such as hours1-2, 13-15, and23-24,
the numbers of contingencies requiring corrective topology control for N-1 reliability are much
higher. In these hours, the system cannot survive in most of the N-1 contingencies with generator
re-dispatch alone, if the forecasted renewable output deviates by20% from its base value. Further-
more, during these hours of operations, the system has sufficient amount of reserves to overcome
the single largest contingency; however, due to network congestion, these reserves cannot deliv-
ered with the initial topology. The corrective topology control actions essentially alters the power
flow within the network so that the system reserves can be delivered to mitigate contingencies. In
this analysis, only one corrective topology control action per contingency is considered. Similar
conclusions are drawn with the IEEE-118 bus test system with a traditional demand/wind profile.
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Figure 5.6: N-1 analysis with robust corrective topology control.

The computational time for these simulations on a2.93 GHz, Intel i-7 processor with8 GB
RAM computer is about5 seconds per iteration.
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5.6.2 AC Feasibility of Topology Control Solution
The robust corrective topology control formulation used in [99] is based on a DC approximation.
Therefore, a corrective topology control solution obtained from this algorithm must be tested for
AC feasibility. The basic AC optimal power flow (ACOPF) formulation presented in [12] is used
to check AC feasibility of the topology control solutions obtained from the robust topology con-
trol algorithm. The commercially available nonlinear solver KNITRO [106] is used to solve the
AC feasibility problem. The DC solution obtained from a topology control algorithm, such as
generator’s real power output, line flows, etc., are used as a starting point for an AC feasibility
test. Fig. 5.7 shows the base case bus voltages and the bus voltages with topology control ac-
tion for an hour of peak demand (i.e. hour18) with contingency of “loss of line#119”. Fig.5.7
shows that bus voltages do not change much with the corrective topology control action; in fact,
with topology control, bus voltages are closer to unity (the ideal voltage scenario) compared with
its pre-contingency state. The bus angle differences for the same base case condition and post-
contingency simulation are presented in Fig. 5.8, which shows that bus angle differences do not
change much with corrective topology control action. The maximum bus angle difference for this
test case is about±15 degrees, which is less than its approximate stability limit of±30 degrees.
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Figure 5.7: Bus voltages (in pu) with and without topology control action.
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Figure 5.8: Bus angle difference (in degree) for all the transmission elements with and without
topology control action.

To check overall AC feasibility of corrective topology control solutions, for the IEEE-118 bus
test case with CAISO duck chart, more than3000 topology control solutions are tested. Out of
those3000 DC robust solutions,∼90% of the topology control solutions obtained from a robust
corrective switching algorithm produce AC feasible solutions. This result is very critical from sys-
tem operations point of view, as this result fills the gap between the disconnected DC formulation
and an AC operation. Similarly, with the IEEE-118 bus test system using traditional demand/wind
profile,∼85% of robust DC topology control solutions provides an AC feasible corrective topology
control solution on base case operating point.

The computational time for an AC feasibility test on a2.93 GHz, Intel i-7 processor with8 GB
RAM computer is about4 seconds per contingency.

5.7 Stability Study with Robust Corrective Topology Control Actions
In this section, topology control solutions, presented in Section 5.5, are tested for different stability
studies. For discussion purposes, results associated with the peak load hour (hour18) are presented
in this research. The dynamic data for the IEEE-118 bus test case is not available; therefore,
generator information from generators in the eastern interconnection are used to generate dynamic
data. The dynamic data, for1.5MW individual wind generator, given in [107], are used to model
wind injection in this analysis.

Small signal eigenvalue studies are carried out on this test case, with dispatch solution, for hour
18. The real part of the smallest eigenvalue obtained from this study is∼−112 and the real part of
largest eigenvalue is∼−0.01. This study shows that all the eigenvalues are negative and lie on the
left hand side of the s-plain indicating that the given system is stable. This result shows that the
given system is small signal stable and will remain stable for small perturbation in operating state.
This analysis is carried out using SSAT tool [108].

To demonstrate the effect of topology control, on system reliability, scenario described in
Table-5.1 are tested. The presented scenario represents the worst-case wind scenario for the given
operating condition; the loss of wind represented by this scenario is equivalent to loss of∼2% of
total generation. Note that, in the western interconnection, for many stability related studies, the
worst-case scenario is the loss of two Palo Verde nuclear units [109], which is about2% of total
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online generation.

Table 5.1: Scenario to study the effect of topology control on system reliability.

t=10-12 sec. Loss of wind generation (17%)
t=120 sec. Topology control solution implemented

(open line between bus#65-Bus#68)
t=150-750 sec. Generators are dispatch based on

ramping capability

The effect of topology control action on system frequency is presented in Fig. 5.9. Due to
the sudden drop of wind generation, the system frequency drops below59.8Hz and recovers to
∼59.88Hz using system inertia. After implementing the line switching action, the system fre-
quency improves and reaches to∼59.89Hz. This small improvement in frequency happens be-
cause topology control action decrease the losses in the system. Att=150 sec., the generators are
re-dispatched to overcome the loss of generation; in this analysis,10 minutes ramping capability
of generators are considered and it is assumed that the additional generation appears online after
each one minute. After generation re-dispatch, at last, the frequency improves and settle downs to
∼59.97Hz.
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Figure 5.9: Effect of topology control action on system frequency.

The relative rotor angle of generators nearer to topology control action are presented in Fig.
5.10. The effect of loss of wind generation on generator’s rotor angle is relatively smaller than
the implementation of topology control action, as the loss of wind generation is not close of these
buses. On other hand, the topology control action is close to these buses; therefore, the effect of
loss of wind generation, on generators relative rotor angle, is smaller compared to topology control
action. The real power supplied by these generators are also presented in Fig. 5.11.
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Figure 5.10: Generator Relative Rotor Angle - TC solution “Open line from Bus-65 to Bus-68”
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Figure 5.11: Generator Real Power Generation - TC solution “Open line from Bus-65 to Bus-68”

The effect of the topology control action on bus voltage stability is also studied. In the above
scenario, the loss of wind on bus voltages are not significant; however, the topology control action
alters the voltages on buses close to line switching action, as shown in Fig. 5.12. The magnitude
of change in voltage is highest on buses that are connected to the switched line.
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Figure 5.12: Bus Voltage - TC solution “Open line from Bus-65 to Bus-68”

5.8 Conclusion
The penetration of renewable resources in electrical power system is increased in recent years.
This increase in intermittent renewable resources are forcing to alter the way bulk power systems
are operated today. This research shows the usefulness of topology control actions for integration
of renewable resources.

In case of renewable resource integration, the determination of DNE limits is critical; in this
research, a systematic procedure to determine DNE limit is presented. With corrective topology
control actions, the DNE limits can be increased by30-100%, as compared with no topology
control actions. At the same time, topology control actions can lower the operational cost by
at least6%. The robust topology control algorithm is based on a DCOPF; therefore, the topology
control solutions obtained from this algorithm must be checked for AC feasibility; on the IEEE-118
bus test case,∼85-90% of topology control solutions obtained from the robust topology control
algorithm are AC feasible.

The intermittency in renewable resources add more complexity in system reliability. This chap-
ter has demonstrated that topology control can help to achieve N-1 system reliability. Overall, with
higher penetration of renewable resources within electrical power systems, the systematic imple-
mentation of topology control actions can provide significant operational benefits.

The stability studies, presented in this chapter, demonstrated that the solution obtained from the
robust topology control algorithm can pass AC feasibility and stability tests. Furthermore,∼66%
of topology control solutions obtained from robust topology control algorithm pass the stability
check. At the same time, these results show that topology control does not deteriorate the system
stability; on contrary, topology control done properly can help to maintain stable operations.
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6. Scalability of Topology Control Algorithms

6.1 Motivation
Robust topology control methodology, presented in Chapter 3, is tested on an IEEE-118 bus test
case, which consists of54 generators,118 buses, and186 transmission lines. This test system is
much smaller than any realistic test case, for example, the PJM system is consists of1375 gen-
erators,62, 556 miles long transmission network and peak demand of183, 604 megawatts [110].
Therefore, for any practical implementation, the robust topology control methodology must scale
from IEEE-118 bus test case to much larger test system.

The master problem, presented in Chapter 4, Section 4.5, is a MIP problem with a combi-
natorial cut to determine the system topology. However, combinatorial cut is computationally
inefficient, may lead to many iterations between the master problem and the sub-problem, which
will increase the computational time and/or the master problem will become so big that it will be
even infeasible to solve. To overcome this issue, topology control heuristic, presented in [18], is
proposed to replace the master problem. The topology control heuristics is based on a sensitivity
analysis and provides the topology control solutions in terms of a ranking list. This ranking list
will be further used as a chosen topology control action and will be evaluated for its robustness
properties in a sub-problem. The detail analysis of topology control heuristic is presented in Sec-
tion 6.2, where accuracy and effectiveness of heuristic to identify correct topology control action
is tested on2383 bus Polish test system.

6.2 Performance of AC and DC Based Topology Control Heuristics
Traditionally, the transmission network is considered as a passive system and generation was opti-
mized assuming a fixed transmission topology. The concept of dispatchable transmission was in-
troduced in [19], which proposed a paradigm shift in the way the transmission topology is viewed.
As a result, optimal topology control (OTC) was developed to harness the benefits of co-optimizing
generation with transmission topology [20, 85]. Previous research shows that OTS would result
in significant cost savings even under reliability constraints [13, 17]. Transmission switching has
other applications, such as reliability improvement via corrective switching [99].

Binary variables representing the status of transmission lines make OTC a mixed-integer pro-
gram problem. Real world power systems have thousands of transmission lines making the re-
sulting OTC MIP a computationally expensive problem. Since the available computational time
is limited, an MIP based implementation of OTC in day-ahead and real-time procedures is not
practical. An alternative to solving the full MIP is the use of switching heuristics to obtain a
good, suboptimal solution significantly faster. The MIP-heuristic introduced in [22] allows only
one switching at a time, reducing the number of binary variables to one per iteration. This would
significantly reduce the complexity of the problem. However, the formulation still requires mixed
integer programming, which may still be too computationally challenging for certain applications
that require fast solutions. There are other heuristics proposed in the literature, which only need the
results of the original OPF. A DC-based heuristic is introduced in [90, 111], which ranks the lines
based on their economic value. The lines value, or the congestion rent of a single line, is the price
difference at the two ends of the line multiplied by the flow it carries [112]. The calculations are
based on the results of a DCOPF. This will be referred to as the ‘DC heuristic’. A similar heuristic
is derived based on an ACOPF [113], which will be referred to as the ‘AC heuristic’. In addition to
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the real power value of the line, the AC heuristic takes into account the reactive power and losses.
The results obtained from the heuristics in small scale test cases show that they perform relatively
well [112].

In this section, these heuristics are tested to see if they perform well for a large-scale test case,
the Polish system. The mathematical representations of the heuristics are presented briefly in the
next section. The results suggest that the heuristics are not very different and the inclusion of losses
and reactive power does not have a significant impact. This finding is in line with the conclusions
made in [113], stating that the heuristics would be significantly different if the system was voltage
constrained. The results also show that the best solutions are among the top twenty candidates
identified by the heuristics. However, the correlation between the estimated and actual benefits
from switching is not very strong.

6.2.1 Methodology
In this section, MATPOWER, a MATLAB based open sources power system simulation package,
is used to solve the OPF problems [114, 115]. The detailed formulation and solution method
for ACOPF and DCOPF problem is provided in [115]. Here, brief descriptions of AC as well
as DCOPF formulations are presented. The ACOPF problem can be represented as shown in
(6.1)-(6.10), with an objective function presented in (6.1). The upper bound on AC line flow
equations are provided in (6.2), The real and reactive power flow across the transmission linek is
represented by (6.3) and (6.4) respectively, the node balance constraints for real and reactive power
are represented by (6.5) and (6.6). Note that the dual variables for node balance constraints,λPn

andλQn, represent the active and reactive power locational marginal prices (LMP). Constraints
(6.7)-(6.10) represent the lower and upper bounds on variables.

min
∑

∀g

cgPg (6.1)

s.t.P 2
k +Q2

k ≤ S2
k , ∀k (6.2)

Pk = V 2
mGk − VmVn(Gk cos(θm − θn) + Bk sin(θm − θn)), ∀k (6.3)

Qk = −V
2
mBk − VmVn(Gk sin(θm − θn)−Bk cos(θm − θn)), ∀k (6.4)

∑

∀k∈δ(n)+

Pk −
∑

∀k∈δ(n)−

Pk +
∑

∀g(n)

Pg = dn, ∀n (6.5)

∑

∀k∈δ(n)+

Pk −
∑

∀k∈δ(n)−

Pk +
∑

∀g(n)

Pg = dn, ∀n (6.6)

Pmin
g ≤ Pg ≤ Pmax

k , ∀g (6.7)

Qmin
g ≤ Qg ≤ Qmax

k , ∀g (6.8)

V min
n ≤ Vn ≤ V max

n , ∀g (6.9)

θmin ≤ θn − θm ≤ θmax, ∀k (6.10)

Using the ACOPF formulation presented, the sensitivity of the objective function to a marginal
change in the status of a transmission line is calculated in [113]. This metric is used as a heuristic
to estimate the benefits of switching the line. The heuristic is shown in (6.11),

LVAC = PkmλPm − PknλPn +QkmλQm −QknλQn, ∀k (6.11)
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In this research, we refer to the method that ranks lines basedon (6.11) as the AC Heuristic.
The metric represents the economic value of the line, which equals the revenue collected from the
sale of power at the importing end minus the cost of buying power at the exporting end, considering
losses and reactive power. AC heuristic considers the negative of the line value, suggesting that
a line with a larger negative economic value is a potential switching candidate. It is not expected
that the heuristic estimates match the actual benefits accurately, because the change in the status of
the line is not marginal.

With the well-known assumptions of DC power flow, the ACOPF formulated in (6.1)-(6.10)
can be simplified to a DCOPF, in which there is no reactive power or network losses. Moreover,
the power flow constraint can be approximated by a linear equation presented in (6.12). Under this
set of assumptions, and with linear cost functions, the DCOPF becomes a linear program (LP).
Because of the special properties of LP, LP-based DCOPF can be solved much faster than the
original ACOPF.

Pk = Bk(θn − θm), ∀k (6.12)

The same sensitivity is calculated with the DC set of assumptions in [90, 111]. The metric
estimating the DC benefits of the line is presented in (6.13). We refer to the method ranking lines
based on this metric as the DC heuristic. The DC estimation of the lines value is the same as
the AC estimation, ignoring the reactive power and losses. It is concluded in [113] that the two
heuristics may produce significantly different results if the system is voltage constrained.

LVDC = Pk(λPm − λPn), ∀k (6.13)

6.2.2 Simulation Studies
We test the two heuristics on the Polish test case provided by MATPOWER. The system has2383
nodes,327 generators, and2896 transmission lines. We assume that all of the generators are on.
The cost functions included in the dataset are linear, which matches the formulation presented in
the previous section. In order to study the performance of the heuristics, we compare the actual
benefit from the proposed switching action with the estimated benefit calculated by the heuristics.
The actual switching benefit is the total cost difference between the case in which the transmission
line is in the system, and the case in which it is taken out. We simulate the performance of the
heuristics under three different settings:

1. DC Heuristic with DCOPF: a DCOPF is performed and all the primal and dual variables
are taken from the DCOPF solution. The actual benefits are calculated through the total
cost comparison of the two DCOPFs. The switching benefits are also estimated through the
DC heuristic introduced in (6.13). A comparison between the actual and estimated benefits
provides information on the performance of the DC heuristic with a DCOPF. Note that the
solution to a DCOPF may or may not be AC feasible.

2. DC Heuristic with ACOPF: the dual and primal variables as well as the actual benefits are
calculated through an ACOPF. The estimated switching benefits are obtained from the DC
heuristic, which does not include losses or reactive power. Note that under this setting, de-
spite using the DC heuristic, the power flow and active power LMP come from an ACOPF.
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A comparison between the actual and estimated benefits provides information on the perfor-
mance of the DC heuristic with an ACOPF.

3. AC Heuristic with ACOPF: the dual and primal variables are specified through an ACOPF
algorithm. The actual switching benefits are also calculated by comparing the total cost
obtained from the two ACOPFs. Under this setting, the benefits are estimated through the
AC heuristic presented in (6.11). A comparison between the actual and estimated benefits
provides information on the performance of the AC heuristic with an ACOPF.

Fig. 6.1 compares the benefits obtained by a single switching action with the estimated benefits
calculated by the DC heuristic under setting 1. Fig. 6.2 shows the performance of an algorithm
based on the DC heuristic using a DCOPF for the first twenty switching candidates. The dashed
line specifies the maximum possible benefit from the switching identified by an ACOPF while the
dotted line shows the maximum possible benefits of switching using a DCOPF. The results show
that the algorithm is not able to find the best switching action in the first twenty candidates it pro-
poses. Five out of twenty proposed candidates are beneficial actions when tested with a DCOPF.
However, there exist only two candidates that provide ACOPF beneficial switching actions. In
electricity markets today, all the procedures are based on DCOPF due to the computational com-
plexity of ACOPF. However, operators need to make sure that the solution is AC feasible. This
is often done via out of market correction (OMC) mechanisms [116]. Our results suggest that
switching candidates identified by the solution of a DCOPF may not be AC feasible or may not be
beneficial even though DCOPF identifies them to be beneficial.
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Figure 6.1: The benefits identified by DCOPF versus the DC heuristic estimation of the benefits
using DCOPF.
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Figure 6.2: Performance of the DC heuristic for the first twenty lines identified by the heuristic
using DCOPF.

Fig. 6.3 and 6.4 show the same results under setting 2 where ACOPF is used instead of DCOPF.
The results suggest that the algorithm is able to identify the best switching action among its first
twenty proposed candidates. Six out of twenty proposed actions are beneficial. Note that the only
difference between settings 1 and 2 is the fact that ACOPF solution is used under setting 2 for both
actual and estimated benefit calculation. However, under both settings the DC heuristic presented
in (6.13) is employed. The difference between the results comes from the fact that the dispatch and
prices are different when AC power flow constraints are taken into account in the optimal power
flow problem.
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Figure 6.3: The actual benefits obtained by ACOPF versus the DCheuristic estimation of the
benefits using ACOPF.
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Figure 6.4: Performance of the DC heuristic for the first twenty lines identified by the heuristic
using ACOPF.

Fig. 6.5 and 6.6 show the results under setting 3 where the AC heuristic is used with ACOPF
solution. The results are very similar to those of setting 2 with six beneficial solutions among the
first twenty proposed actions.
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Figure 6.5: The actual benefits obtained by ACOPF versus the ACheuristic estimation of the
benefits using ACOPF.
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Figure 6.6: Performance of the AC heuristic for the first twenty lines identified by the heuristic
using ACOPF.

The results obtained under settings 2 and 3 show that AC and DC heuristics produce very
similar results when the ACOPF solution is used. Under both settings, six out of twenty proposed
actions were beneficial and the algorithm was able to identify the best switching action. The only
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difference was a slight change in the candidates order. Such results were expected and are in line
with the conclusions of [113], which suggests the results to be similar when the system is not
heavily voltage constrained. Nevertheless, the results obtained under setting 1, where the DCOPF
solution is used for heuristic calculations, are substantially different from those of settings 2 or 3.
The difference appears both in the suggested switching candidates and the benefits.

As was stated before, in electricity markets today, ACOPF solutions are not generally available
similar to setting 1. Our results show that the studied heuristics do not provide consistent results
when they are based on the DCOPF solution compared to a more realistic ACOPF. The more
realistic benefits, ACOPF based benefits, as well as the proposed candidates are different than
those based on a DCOPF.

6.2.3 Conclusion
Due to the computational complexity of the OTC problem, different heuristics are used to obtain
fast sub-optimal solutions. The heuristics are often tested on small scale systems and the scalability
of their application is not well understood. We studied the performance of two such fast heuristics
on the Polish system. The heuristics were studied under three different settings: DC heuristic
with DCOPF, DC heuristic with ACOPF, and AC heuristic with ACOPF. Our results suggest that
the AC and DC heuristics are not very different when they are based on the solution to ACOPF.
However, the heuristics do produce different results if they are based on DCOPF solutions. Our
results suggest that DCOPF based solutions obtained for OTC may not perform well under realistic
system conditions modeled by an ACOPF. Since the market procedures are based on DCOPF,
not ACOPF, and AC feasibility is achieved via OMC routines, implementation of ACOPF based
heuristics would not be straightforward.
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7. Robust Minimax Regret Unit Commitment

7.1 Introduction
Increasing utilization of intermittent wind power has been a challenging issue for a system operator
in making day-ahead unit commitment decisions. For instance, there does not exist a day-ahead
unit commitment decision that is optimal with regard to every possible outcome of the real-time
wind power generation. Meanwhile, wind power is often considered to be more volatile and harder
to predict than demand or natural water inflows in a power system in the short term. Accordingly,
for daily operations, the system operator faces a high risk (i.e., the loss to which one is exposed
because of uncertainties) of real-time load imbalance. To manage this risk, the system operator
defines different types of reserves. In addition, several electric power markets in the U.S. execute
reliability unit commitment after the closure of the day-ahead market, and evaluate the genera-
tion needs for the next operating day (see, e.g., [117]). Reliability unit commitment ensures that
there is sufficient generation capacity in the proper locations to reliably serve the load. From the
methodology point of view, stochastic and recently introduced robust optimization approaches are
shown to be effective to solve the unit commitment problem with uncertain wind power output
(see, e.g., [52], [118], [119] and [120]).

Stochastic optimization approaches have been studied extensively during the last several years.
In the early 90’s, multistage stochastic programming formulations were proposed and an aug-
mented Lagrangian decomposition framework was studied to solve the problem efficiently (see,
e.g., [47], [48], [49], and [50]), targeting load uncertainty for vertically integrated utility com-
panies. Recently, significant research progress has been made in the application of stochastic
programming approaches to the deregulated electricity markets (see, e.g., [51], [52] and refer-
ences therein). The basic idea of stochastic programming in solving the unit commitment problem
for Independent System Operators (ISOs) is to formulate the day-ahead unit commitment as the
first-stage problem and the real-time economic dispatch as the second-stage problem, with the ob-
jective of minimizing the total expected cost. Stochastic programming can also help consumers
decide optimal bidding strategies. For instance, readers are referred to its application in generat-
ing supply curves [121], and its contribution in hedging strategies in the wholesale market [122].
Most recently, stochastic programming approaches have been used to combine the slow-start gen-
erator commitment in day-ahead and fast-start generator commitment in real-time operations (see,
e.g., [53] and [54]), estimate the contribution of demand flexibility in replacing operating reserves
[55], and solve stochastic security-constrained unit commitment models (see, e.g., [56], [57], [58],
and [59]). Besides these applications, chance-constrained two-stage stochastic programming has
been studied to ensure high utilization of wind power output [60], and the parallel computing (see,
e.g., [61]) implementation under a cloud computing or high performance computing environment
has increased the capacity to solve large-scale two-stage stochastic power system optimization
problems. From all of the above papers, it can be observed that stochastic optimization has been
an effective approach to solve the unit commitment problem with uncertainty, especially with the
objective of minimizing the total expected cost (e.g., using the expected cost as the risk measure).
However, there are still challenges. For instance, for most stochastic optimization approaches, sce-
narios are generated based on a certain probabilistic distribution, and a large sample size is usually
considered to increase the accuracy of the obtained solution. Thus, the challenges include: 1) how
to derive the precise probabilistic distribution of an uncertain parameter that has an intermittent na-
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ture (e.g., wind output) and accordingly generate the scenarios, and 2) how to solve the large-sized
extensive formulation (see, e.g., [123]).

To address the challenges of the stochastic optimization approaches, robust optimization ap-
proaches have been proposed (see, e.g., [41, 124], and [43]). For some instances (see, e.g.,
[125]), robust optimization involves a comparatively low computational burden, as compared to
the stochastic optimization (scenario-based) approach, because it does not need to enumerate a
large number of scenarios. In the robust optimization approach, the worst-case cost is used as
the risk measure. Instead of using a probabilistic distribution, the uncertain factor such as wind
power output is assumed to be within an uncertainty set. This approach searches a solution that
can ensure system robustness under the worst-case scenarios. Recently, a robust optimization ap-
proach has been studied for contingency-constrained unit commitment with n-K security criterion
in [126]. In that study, a robust integer programming formulation is proposed and a corresponding
reformulation approach is developed to solve the problem. Besides [126], robust optimization ap-
proaches have been proposed to solve other related problems, which include a robust optimization
approach for planning the transition to plug-in hybrid electric vehicles for Ontario, Canada [127],
a robust optimization approach to build hourly offering curves for a price-taking producer [125], a
two-stage robust optimization approach to solve the unit commitment problem under wind power
output uncertainty [120], and an adaptive robust optimization approach to solve the unit commit-
ment problem under nodal net injection uncertainty [128].

Robust optimization approaches provide an effective way to improve system robustness be-
cause the minimax criterion for the robust optimization approach aims at optimizing the problem
under the worst-case scenarios. However, the solutions of the robust optimization approaches are
often considered to be very conservative and the total cost tends to be very high. Hence, in this
research, we propose using the minimax regret criterion (e.g., using regret as the risk measure), an
alternative subjective decision rule in decision theory, which is less conservative and meanwhile
can provide the same robustness guarantee, as compared to the minimax criterion. Note here that
recently studies also use other risk measures such as the conditional value at risk (CVaR) (see,
e.g., [129] and [130]), and it is indicated in [125] that managing risk through robust optimization
and through stochastic programming incorporating risk measures (e.g., CVaR) is equivalent under
certain assumptions. In this research, we focus our study on the regret risk measure. In decision
theory, regret is measured by the deviation, in terms of the total costs, between the current solution
without knowing the uncertain parameters and the perfect-information solution, i.e., the action we
would have taken had we known which scenario would occur. By applying the minimax regret
criterion, we aim at obtaining a solution that minimizes the worst-case regret over all possible sce-
narios while ensuring system robustness. In practice, regret is a common subjective decision rule
that is naturally used by many decision makers. As mentioned in [131] and [132] (cf. Section 2.3
in [131]), it has been shown that the behavior of some economic agents could be better predicted
using a minimax regret criterion in the presence of uncertain yields (e.g., uncertain wind power
output in this research).

We now explain the minimax regret, robust optimization, and stochastic optimization ap-
proaches by a simple example shown in Table 7.1. In this example, there are two possible scenarios
(S1 and S2), each with a certain probability (S1 with probability 0.10 and S2 with probability 0.90)
of happening. There are three possible decisions (A, B, and C) before the two possible scenarios
(S1 and S2) are realized with the estimated cost listed. For instance, suppose that we commit to
decision A. If S1 happens (with probability 0.10), then we have to pay $100. Since a smarter deci-
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Table 7.1: An example on decision making under uncertainty

Decision
Scenario Probability A B C

S1 0.10 $100 $50 $60
S2 0.90 $20 $50 $30
Expected Cost $28 $50 $33
Maximum Cost $100 $50 $60

Maximum Regret $50 $30 $10

sion could have been made (by committing to B), in which case the cost is $50, we have a regret of
$100-$50=$50. Instead if S2 happens, since we have made the best decision, we have zero regret
(the cost $20 of decision A is less than those of B and C). Hence, the maximum regret with respect
to decision A ismax{$50, $0}=$50. We list the maximum regrets for all the decisions in Table 7.1,
as well as their maximum (e.g., for A:max{$100, $20} = $100; for B: max{$50, $50} = $50; for
C: max{$60, $30} = $60) and expected costs (e.g., for A:0.10 · $100 + 0.90 · $20 = $28; for B:
0.10 · $50 + 0.90 · $50 = $50; for C: 0.10 · $60 + 0.90 · $30 = $33), corresponding to robust and
stochastic optimization approaches respectively. By comparison, it is clear that we have different
optimal decisions under different criteria: the stochastic optimization approach chooses decision
A, which overlooks the less likely but risky scenario (S1); the robust optimization approach (min-
imax criterion) selects decision B, which picks the lowest maximum cost at a cost of the highest
expected cost; the minimax regret criterion commits to decision C, which performs reasonably
well under the other criteria, and excels in terms of regrets. In previous research, the minimax
regret concepts have been applied in risk-constrained power system planning problems, to model
multiobjective tradeoff (see, e.g., [65], [66], and [67]), to handle the uncertainty that emerges in
market competition [68], to serve as an alternative of the probabilistic choice approach [69], and
to mitigate the vulnerability against intentional attacks while meeting budgetary limits [70]. For
a comprehensive survey and more examples on the minimax regret criterion, readers are referred
to [64] and [131].

In this research, we propose the minimax regret approach to solve the unit commitment prob-
lem under wind power output uncertainty, and compare its performance to the robust optimization
and stochastic optimization approaches. To ensure fairness in the comparison, we compare both
the worst-case regret value and the expected total cost, among the three approaches. Our case stud-
ies under various data settings show that our proposed minimax regret approach can provide robust
and less conservative unit commitment solutions which outperform those obtained from the other
two approaches in terms of regrets. Meanwhile, the total expected cost for our proposed approach
is only sightly greater than the stochastic optimization approach. More specifically, compared to
the robust optimization approach, our proposed approach is less conservative while maintaining
robustness. As compared to the stochastic optimization approach, our proposed approach sac-
rifices a little in terms of the total expected cost, and significantly increases system robustness.
Note here that our proposed minimax regret approach is almost distribution-free, maintaining the
same advantage as the robust optimization approach, as compared to the stochastic optimization
(scenario-based) approach. Therefore, the proposed approach can serve as an alternative to the
commonly accepted stochastic optimization approach for the reliability unit commitment practice
at ISOs to help obtain a unit commitment decision that leads to the minimum regret under the
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worst-case scenario while keeping the system robust under wind power output uncertainty.
The remaining part of this research is organized as follows. Section 7.2 describes the mathemat-

ical formulation of the two-stage minimax regret unit commitment problem. Section 7.3 presents
a Benders’ decomposition framework to solve the problem. In the framework, both feasibility and
optimality cuts are developed. Section 7.4 compares the performances of the minimax regret, the
robust optimization, and the stochastic optimization approaches. Finally, Section 7.5 concludes
our study.

7.2 Mathematical Formulation
For a fixed wind power outputr,Q(r) is the optimal objective value of the following mixed-integer
program:

min
y,o,s,x,v

T
∑

t=1

∑

i∈G

(

SUioit + SDisit + fit(xit)
)

(7.1)

s.t.−yi(t−1) + yit − yik ≤ 0, ∀i ∈ G, ∀t,

k ∈ {t, t+ 1, · · · ,MUi + t− 1} (7.2)

yi(t−1) − yit + yik ≤ 1, ∀i ∈ G, ∀t,

k ∈ {t, t+ 1, · · · ,MDi + t− 1} (7.3)

−yi(t−1) + yit − oit ≤ 0,∀i ∈ G, ∀t (7.4)

yi(t−1) − yit − sit ≤ 0, ∀i ∈ G, ∀t (7.5)

Qiyit ≤ xit ≤ Uiyit, ∀i ∈ G, ∀t (7.6)

xit − xi(t−1) ≤ (2− yi(t−1) − yit)RUi+

(1 + yi(t−1) − yit)RUi, ∀i ∈ G, ∀t (7.7)

xi(t−1) − xit ≤ (2− yi(t−1) − yit)RDi+

(1− yi(t−1) + yit)RDi, ∀i ∈ G, ∀t (7.8)
N
∑

n=1

(

∑

i∈Gn

xit + rnt

)

=
N
∑

n=1

dnt, ∀t (7.9)

−Kij ≤
N
∑

n=1

Ln
ij

(

∑

ℓ∈Gn

xℓt + rnt − dnt

)

≤ Kij ,

∀(i, j) ∈ A, ∀t (7.10)

yit, oit, sit ∈ {0, 1}, ∀i ∈ G, ∀t (7.11)

wherefit(xit) represents the fuel cost function, which is a nondecreasing quadratic function and
expressed asfit(xit) = aiyit + bixit + ci(xit)

2, constraints (7.2) (respectively constraints (7.3))
describe the minimum up (respectively minimum down) time restrictions, constraints (7.4) (re-
spectively constraints (7.5)) describe the start-up (respectively shut-down) operations, constraints
(7.6) describe the upper and lower limits of the power output of generatori if it is on in time period
t, constraints (7.7) (respectively (7.8)) describe the ramping-up and start-up (respectively ramping-
down and shut-down) ramp rate limit restrictions as described in [133], constraints (7.9) ensure the
power grid flow balance, and constraints (7.10) describe the transmission capacity limit restrictions
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as described in [134] and [135]. Note here that the fuel cost functionfit(·) can be approximated
by a piecewise linear function (see, e.g., [120]). Under this approximation, the above program can
be reformulated as a mixed-integer linear program. For notational brevity, we group the binary
decision variables to bey, y ∈ B

q with B = {0, 1}. Moreover, we group the continuous decision
variables to bex, x ∈ R

m
+ . The corresponding abstract unit commitment model for a fixed wind

power outputr is shown as follows:

Q(r) = min
(y,x)∈M(r)

c(y) + f(x), (7.12)

whereM(r) =
{

(y, x) ∈ B
q × R

m
+ : Ay ≤ b, (7.13)

Gx+Dr ≤ d, (7.14)

Wy +Hx ≤ h
}

. (7.15)

In the above formulation,A, G, D, W andH are given matrices, andb, d, andh are given vectors
of parameters. Functionsc(y) and f(x) represent the transition and dispatching costs, respec-
tively. Constraint (7.13) represents the minimum up/down time constraints, and the start-up and
shut-down operations. Constraint (7.14) collects the power flow balance constraints and the trans-
mission capacity limits. Constraint (7.15) describes the upper and lower bounds of power output
of generators, and the ramping-up/-down rate limit restrictions.

In practice, for ISOs, the unit commitment and economic dispatch is a two-stage decision
process. In the first stage (e.g., day-ahead market), the commitment scheduley is determined
without the knowledge of real-time wind power. The dispatching amountx is a recourse in the
second stage (e.g., real-time market) after the wind power is observed.

For the uncertain wind power output parameterr, we assume it is unknown and is within an
uncertainty setR. In this research, we consider a parametric polyhedral uncertainty setR defined
below (cf. [136]):

R =
{

r : Rℓ
nt ≤ rnt ≤ Ru

nt, ∀n ∈ N , ∀t, (7.16)

N
∑

n=1

wntrnt ≥ w̄t, ∀t, (7.17)

N
∑

n=1

T
∑

t=1

wntrnt ≥ w̄0

}

, (7.18)

where the indicesn andt represent buses and discretized time periods. Constraints (7.16) restrict
wind powerrnt for each time periodt at each busn between a lower boundRℓ

nt and an upper
boundRu

nt. Constraints (7.17) describe the lower bound for the total weighted wind power of all
the buses in each single periodt, wherewnt represents the weight ofrnt. Similarly, constraints
(7.18) describe the lower bound for the total weighted wind power of all the buses in the whole
operational time interval. Note that the parameters inR can be easily obtained from historical data.
For instance, we can setRℓ

nt andRu
nt equal to the .05 and .95-quantiles of the wind power forecast,

respectively, and we can similarly obtain the values ofw̄t andw̄0. For example, ifwnt = 1, ∀n, ∀t,
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we can set̄wt equal to the .40-quantile of the total wind power forecast in time periodt, andw̄0

equal to the .20-quantile of the total wind power forecast in the whole operational time interval.
In this research, we study the minimax regret model. For a fixed first-stage decisiony, the

maximum regret Reg(y) is defined as

Reg(y) := max
r∈R

{

min
x∈M(y,r)

{c(y) + f(x)} − Q(r)
}

, (7.19)

whereM(y, r) is the feasible region of economic dispatch amountx given fixed wind power
r and scheduley, i.e.,M(y, r) = {x ∈ R

m
+ : (7.14), (7.15)}. In this definition, the term

min
x∈M(y,r)

{c(y) + f(x)} evaluates the minimum total cost by adjusting the dispatch amount for a

given unit commitment decisiony, andQ(r) represents the minimum perfect-information total
cost by deciding the unit commitment and dispatch amount after the uncertain wind power amount
is realized to ber for this scenario (see (7.12) for comparison). Thus, Reg(y) evaluates the worst-
case regret over all the possible realizations of wind powerr within the uncertainty set. In this
research, we minimize Reg(y) by making the best first-stage decisiony, i.e.,

(MRP) zMRP = min
y

Reg(y) (7.20)

s.t. Ay ≤ b, (7.21)

M(y, r) 6= ∅, ∀r ∈ R (7.22)

y ∈ B
q. (7.23)

We call the above formulation Minimax Regret Problem (MRP). Constraints (7.22) are the feasibil-
ity constraints ofy. Specifically, in the unit commitment problem, they are the security restrictions
that for all realizations of the wind power in the uncertainty set, there are feasible second stage
dispatching solutions.

To illustrate the differences, we present the robust optimization model, denoted as (RO), and
the traditional two-stage stochastic programming formulation (SP) for comparison. (RO) contains
the same constraint set as the one in (MRP) and a different objective function in the formzRO =
miny Val(y), where Val(y) is defined as the worst-case cost, instead of the worst-case regret, i.e.,

Val(y) := max
r∈R

{

min
x∈M(y,r)

{c(y) + f(x)}
}

. The abstract (SP) can be described as follows:

(SP) min
y,x

c(y) +
∑

s∈S

psf(xs)

s.t. Ay ≤ b,

(y, xs) ∈M(rs), ∀s ∈ S (7.24)

y ∈ B
q, xs ∈ R

m
+ , ∀s ∈ S

whereS is the set of scenarios andps is the probability of the scenarios ∈ S. We treat all the
wind power scenarios in the setS equally, i.e., we letps = 1/N if a total ofN random samples are
generated. Decision variablesxs and parametersrs are the dispatching decision and wind power
amount in scenarios, respectively. Constraints (7.24) are the collection of constraints (7.14) and
(7.15) for each scenarios ∈ S. A major difference between (MRP) (i.e., equations (7.20)-(7.23))
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and (SP) is the objective. (MRP) strives to minimize the maximum deviation from the total cost
based on the perfect-information solution whereas (SP) strives to minimize the total expected cost.

7.3 Solution Methodology
In this section, we develop a Benders’ decomposition framework to solve the minimax regret
problem (MRP) (i.e., equations (7.20)-(7.23)). First, we describe how to obtain a reformulation of
(MRP), upon which we can apply a Benders’ decomposition framework. We also formulate the
master problem and subproblem in this framework. Second, we describe the detailed algorithm by
deriving both feasibility and optimality cuts in the Benders’ decomposition framework. Third, we
describe lower and statistical upper bounds that can be generated by our proposed algorithm.

7.3.1 Reformulation of the objective function
To solve the minimax regret problem (MRP), we first reformulate the objective function Reg(y)
(i.e., equation (7.19)) by combining the inner optimization problems as follows:

Reg(y) = c(y) + max
r∈R

{

min
x∈M(y,r)

{f(x)} − Q(r)
}

(7.25)

= c(y) + max
r∈R

{

min
x∈M(y,r)

{f(x)}−

min
(x̄r ,ȳr)∈M(r)

{c(ȳr) + f(x̄r)}
}

(7.26)

= c(y) + max
r∈R

{

max
(λ,µ)∈H(y,r)

{µ⊤(h−Wy)+

λ⊤(d−Dr)} − min
(x̄r ,ȳr)∈M(r)

{c(ȳr) + f(x̄r)}
}

(7.27)

= c(y) + max
(r,λ,µ,x̄r,ȳr)∈R×H(y,r)×M(r)

{

µ⊤(h−Wy)+

λ⊤(d−Dr)− c(ȳr)− f(x̄r)
}

, (7.28)

where (7.25) takes the constantc(y) out of the inner problem, (7.26) follows the definition ofQ(r),
(7.27) takes the Lagrangian dual (whereλ andµ are dual variables for constraints (7.14) and (7.15)
respectively, andH(y, r) represents the feasible region of the dual problem), and (7.28) combines
all the maximization operators. Note here thatr is a decision variable in (7.26), and(x̄r, ȳr)
represents the perfect information solution corresponding tor. Note also we have taken advantage
of strong duality of linear programs in (7.27), as we model the fuel costf(x) as a convex piecewise
linear function. We let (SUB) represent the embedded maximization problem in equation (7.28),

(SUB) max
µ,λ,r,x̄r,ȳr

µ⊤(h−Wy) + λ⊤(d−Dr)

− c(ȳr)− f(x̄r) (7.29)

s.t. r ∈ R, (7.30)

(λ, µ) ∈ H(y, r), (7.31)

(x̄r, ȳr) ∈M(r). (7.32)
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We notice that the optimal objective value of (SUB) is a function ofy, and we denote it aszSUB(y).
Furthermore, we can observe thatzSUB(y) is a convex function of variabley, because it can be
represented as the maximum of linear functions of variabley as shown in equation (7.29).

Based on the above explanation, we can rewrite (MRP) (i.e., equations (7.20)-(7.23)) as fol-
lows, denoted as (MMR).

(MMR) min
y,θ

c(y) + θ (7.33)

s.t. Ay ≤ b, (7.34)

M(y, r) 6= ∅, ∀r ∈ R, (7.35)

θ ≥ µ⊤(h−Wy) + λ⊤(d−Dr)

− c(ȳr)− f(x̄r),

∀(r, λ, µ, x̄r, ȳr) ∈ R×H(y, r)×M(r), (7.36)

y ∈ B
q, (7.37)

whereθ is an auxiliary variable representingzSUB(y). Accordingly, to solve (MRP), we can solve
the equivalent formulation (MMR). To solve (MMR), we can apply the Benders’ decomposition
framework, where we first solve a relaxation of (MMR) by relaxing all the constraints (7.35) and
(7.36), and then gradually adding them back if they are violated by the solution obtained in the
current iteration. Therefore, the initial master problem before we add in any cuts in the Benders’
decomposition framework is (MMR) without constraints (7.35) and (7.36). In the algorithm frame-
work, we denote this initial master program as (MMR)0. Note here that one way of finding vio-
lated constraints (7.36) in the traditional Benders’ decomposition is to solve (SUB) (i.e., equations
(7.29)-(7.32)) to global optimality. However, in this research (SUB) is a bilinear mixed integer
program because of the termλ⊤r and the binary decision variablēyr. Therefore, the convexity for
the subproblem in the traditional Benders’ decomposition does not hold here. Meanwhile, noting
that (SUB) is typically very hard to solve, we do not solve it to optimality like in the traditional
Benders’ decomposition. Instead, we build Benders’ cuts by utilizing feasible solutions to (SUB),
as introduced in detail in Section 7.3.2.

7.3.2 Algorithm framework
We consider both feasibility and optimality cuts in our Benders’ decomposition framework as
described in [137] (cf. pages 412-414). In this subsection, we first describe how to obtain the
feasibility and optimality cuts for the Benders’ decomposition framework. Then, we derive lower
and statistical upper bounds for the problem and summarize the algorithm.

Feasibility cuts. We cally ∈ B
n feasible ifM(y, r) 6= ∅ for eachr ∈ R. We now develop a

cutting plane to cut off the infeasible solutions. First, we construct, for givenŷ ∈ B
n andr̂ ∈ R,

the following feasibility check problem, based on constraints (7.14) and (7.15):

(FC) θFC = min
x,w,z≥0

e⊤w + e⊤z

s.t. Gx− w ≤ d−Dr̂, (λFC)

Hx− z ≤ h−Wŷ, (µFC)

where the vectore represents the vector with all components1 in appropriate dimensions, andλFC
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andµFC are the corresponding dual variables. It is clear thatθFC > 0 if and only ifM(ŷ, r̂) = ∅.
Using the strong duality of linear programming problems, we know that these conditions are further
equivalent tôλ⊤

FC(d−Dr̂)+ µ̂⊤
FC

(

h−Wŷ
)

> 0, whereµ̂FC andλ̂FC are the optimal dual variables to

(FC). Hence, for a given(ŷ, θ̂) obtained from (MMR), ifθFC > 0, the cutting plane

(

µ̂⊤
FCW

)

y ≥ λ̂⊤
FC(d−Dr̂) + µ̂⊤

FCh (7.38)

can be added into (MMR) to cut off the infeasibleŷ.
Optimality cuts. We develop optimality cuts to cut off the current master program solution

(ŷ, θ̂) by solving the corresponding subproblem (SUB) (i.e., equations (7.29)-(7.32)) to local opti-
mality. Suppose that we have obtained a feasible solution(λ̂, µ̂, r̂, x̄′

r, ȳ
′
r) to (SUB) with objective

valueθ̂′. If θ̂′ > θ̂, then we can simply add the following constraint into (MMR) to cut off solution
(ŷ, θ̂):

θ ≥ −
(

µ̂⊤W
)

y +
(

µ̂⊤h+ λ̂⊤(d−Dr̂)− c(ȳ′r)− f(x̄′
r)
)

. (7.39)

Separation procedure (finding violated cuts). Given (ŷ, θ̂), we now discuss how to find
violated feasibility/optimality cuts, which we call the separation procedure:

1. Initialize r̂ equal to its mean valuēR ∈ R and(x̄′
r, ȳ

′
r) ∈M(r̂).

2. Define the value functions

θ1(r̂, x̄
′
r, ȳ

′
r) = max

(λ,µ)∈H(y,r)

{

(h−Wŷ)⊤µ+ (d−Dr̂)⊤λ
}

− c(ȳ′r)− f(x̄′
r), (7.40)

θ2(λ̂, µ̂) = max
(r,x̄r,ȳr)∈R×M(r)

{

−(λ̂⊤D)r − c(ȳr)− f(x̄r)
}

+ µ̂⊤(h−Wŷ) + λ̂⊤d. (7.41)

3. Initializeθ1 ← 0 andθ2 ← 1.
While (θ1 6= θ2) Do

(i) Solve (FC) and obtain aθFC. If θFC > 0, we have found a violated feasibility cut in the
form of (7.38) and stop; otherwise, go to (ii).

(ii) Solve (7.40) to optimality. Letθ1 = θ1(r̂, x̄
′
r, ȳ

′
r), and denote the optimal solution to beλ∗

andµ∗. Updatêλ← λ∗ andµ̂← µ∗.

(iii) Solve (7.41) to optimality. Letθ2 = θ2(λ̂, µ̂), and denote the optimal solution to ber∗, x̄∗
r

andȳ∗r . Updater̂ ← r∗, x̄′
r ← x̄∗

r andȳ′r ← ȳ∗r .

End While

4. If θ1 > θ̂, we have found a violated optimality cut in the form of (7.39).

Note that in the separation procedure, we are applying a bilinear heuristic (cf. [138]) to obtain
a local optimal solution to (SUB) (i.e., equations (7.29)-(7.32)), which is a bilinear integer pro-
gram and can stop in finite steps. Hence, the while loop in Step 3 takes at most finite steps (for
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a formal proof, see Proposition 2.3 in [138]). Therefore, we can find a violated cut or decide that
no feasibility/optimality cuts can be added in finite steps. Note also that the proposed Benders’
decomposition framework terminates in a finite number of steps, i.e., it calls the separation pro-
cedure for finite times. This is because variabley admits a finite set of values and from (7.39) it
follows that differentθ requires differenty, soθ can only admit a finite number of values during
the progress of the algorithm.

Lower and statistical upper bounds. Since the bilinear programming heuristics cannot guar-
antee an optimal objective value for the subproblem, accordingly our Benders’ decomposition
algorithm cannot be guaranteed to converge to the optimal solution of the original minimax regret
problem. Instead, what we obtained by employing the separation procedure, is a lower bound (LB)
for the original problem. The reason is that by not solving the subproblem to optimality, we might
not be able to add all constraints (7.36) in the master program when needed. Thus, we might finally
solve a relaxation of (MMR), which provides us a lower bound due to the minimization objective.
Now we describe how we can obtain a statistical upper bound (UB) (i.e., UB is a statistical es-
timate of the worst-case regret) for the original problem by Monte Carlo simulation. To obtain
UB, we first fix the unit commitment decisiony to be the optimal solution to a relaxed (MMR) in
the Benders’ decomposition algorithm, and then generate a large number of random wind power
output scenarios to evaluate the regrets for the given commitment decisiony under different wind
power output scenarios. For each wind power sampler, to find the worst-case regret for a given
UC solution, we go through the separation procedure displayed in Fig. 7.2 (except for the last step,
i.e., comparing the valuesθ1 with θ̂K and building optimality/feasibility cuts). That is, we generate
the random scenarior as the starting point of the separation procedure, and look for the worst-
case regret by solving the bilinear subproblem (SUB) to local optimality. Then we update UB by
max{UB, θ1}, whereθ1 is obtained from the separation procedure. Note here that this requires
solving a collection of linear programs and mixed-integer programs. Finally, we assign the largest
regret to UB. Hence, UB also serves as a real-time test of worst-case regret for the UC decision
we have made. In addition, in this research, we use the Weibull distribution to help generate the
random wind power output. We assume thatrnt is within the interval[Rℓ

nt, R
u
nt] with the mean

R̄nt and the standard deviation(Ru
nt − Rℓ

nt)/4. Also, we require the generated wind power output
r ∈ R, as defined in (7.16)-(7.18). In case that the generated sampler does not satisfy equations
(7.17)-(7.18), we randomly choose indicesn andt to increase thernt value toRu

nt until equations
(7.17)-(7.18) are satisfied. Note here that it is also possible to incorporate the actual wind time
series (e.g., real wind power data in the past weeks) in the set of wind power scenarios. We sum-
marize the Benders’ decomposition algorithm and statistical upper bound calculation in Algorithm
BD and Figs. 7.1 and 7.2. In every step of Algorithm BD,(MMR)K represents (MMR) with the
first K Benders’ cuts. Finally, we remark that Algorithm BD can provide exact lower bounds and
statistical upper bounds for (MMR). Our statistical upper bounds do not guarantee theoretical ex-
actness but can converge to exact upper bounds as the sample size increases in the Monte Carlo
simulation.

7.4 Computational Results
In this section, we present numerical experiments of Algorithm BD on a modified IEEE 118-
bus power system. Specifically, we apply three methodologies on this system, namely (a) minimax
regret, (b) robust, and (c) stochastic optimization approaches. For the minimax regret approach, we
employ Algorithm BD. For the robust optimization approach, we implement the methods proposed
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Algorithm BD
1. Initialization. Set the iteration numberK ← 0. Model (MMR)0 is assigned with only constraints
(7.34) and (7.37).
2. Solve the current model (MMR)K and obtain the optimal solution(ŷK, θ̂K).
3. Employ separation procedure to find a violated feasibility/optimality cut and add the cut to
(MMR)K . Denote the updated formulation as (MMR)K+1 and updateK ← K + 1. Go to 2. If no
cuts found, go to 4.
4. Return the optimal solution(ŷK , θ̂K) and the optimal value LB.
5. Obtain UB by Monte Carlo simulation witĥyK .

Initialization

Solve (MMR)K

Separation procedure

(see Fig. 7.2 for framework) 

Opt./Feas. Cuts found?

Obtain an upper bound by 

Monte Carlo simulation

Output the solution plus 

lower and upper bounds

Yes

No

UC decision 

Value estimation 

+1

Figure 7.1: Framework of Benders’ decomposition algorithm

in [136] for comparison. For the stochastic optimization approach, among algorithms to solve
two-stage stochastic UC problems (e.g., see [139] and [53], among others), we apply the sample
average approximation (SAA) algorithm proposed in [140] for comparison. All the experiments
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Initialization

1 = 2?

Solve (FC)

FC
 > 0?

1 >    ?

Solve (7.40) and 

(7.41) for 1 and 2

Feas. Cut 

found

No Cut 

found

Opt. Cut 

found

End

No

Yes

No

Yes

No

Yes

Figure 7.2: Framework of the separation procedure

were implemented by using CPLEX 12.1, at Intel Quad Core 2.40GHz with 8GB memory. We set
the time limit to be one hour and the unit penalty cost to be $7947/MWh (cf. [120]) in the Monte
Carlo simulation.

The IEEE 118-bus system consists of 118 buses, 33 thermal generators, and 186 transmis-
sion lines. The operational time interval is 24 hours. In order to construct the uncertainty set,
we let R̄nt denote the forecasted wind power, and letRu

nt = 1.2R̄nt, Rℓ
nt = (1 − Lower%)R̄nt,

w̄t = (1−Budget%)
∑N

n=1 R̄nt, andw̄0 = (1−Overall%)
∑T

t=1

∑N
n=1 R̄nt. In this experiment, we

first compare the optimal solutions obtained from different approaches under a given data setting
to explore the insights of different approaches. Then we run numerical experiments to compare the
worst-case regret and the expected total cost of the optimal solutions obtained by different method-
ologies under various data settings by adjusting the values of Lower%, Budget%, and Overall%. To
verify the effectiveness of the proposed algorithm, we provide the following lower and statistical
upper bounds on regrets:

(1) Lower bound LB of the minimax regret problem: The objective value obtained from Algorithm
BD, i.e., by using the bilinear heuristics to solve the minimax regret UC problem.

(2) Statistical upper bound UB of the minimax regret problem: As shown in Section 7.3.2, we
provide a statistical bound derived by Monte Carlo simulation. Besides, UB also serves as
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a real-time economic dispatch with known wind power output information to calculate the
worst-case regret.

(3) Statistical upper bound Rrob of the maximum regret obtained by the robust optimization ap-
proach: For this case, Rrob represents the worst-case regret incurred by the robust optimal
solution. To obtain Rrob, we first fix y to be the robust optimal solution, and then generate a
large number of random scenarios to estimate the worst-case regret as we did in obtaining UB.

(4) Statistical upper bound Rsto of the maximum regret obtained by the stochastic optimization
approach: In this case, Rsto evaluates the worst-case regret incurred by the stochastic optimal
solution. To obtain Rsto, we first fixy to be the stochastic optimal solution, and then generate a
large number of random scenarios to estimate the worst-case regret as we did in obtaining UB
and Rrob.

(5) The expected total cost Areg obtained by the minimax regret approach: In this case, Areg eval-
uates the average performance of the minimax regret optimal solution. To obtain Areg, we first
fix y to be the minimax regret optimal solution, and then generate a large number of random
scenarios to estimate the total costs incurred by the given solutiony under different wind power
output scenarios. Finally, we assign the average of the total costs to Areg.

(6) The expected total cost Arob obtained by the robust optimization approach: In this case, Arob

evaluates the average performance of the robust optimal solution. To obtain Arob, we first fix
y to be the robust optimal solution, and then generate a large number of random scenarios to
estimate the expected total costs as we did in obtaining Areg.

(7) The expected total cost Asto obtained by the stochastic optimization approach: In this case,
Asto evaluates the average performance of the stochastic optimal solution. To obtain Asto, we
first fix y to be the stochastic optimal solution, and then generate a large number of random
scenarios to estimate the expected total costs as we did in obtaining Areg.

Along with the computational results, we verify the effectiveness of the proposed algorithm and
compare the worst-case regrets and the expected total cost of the solutions obtained from different
methodologies by evaluating the following gaps:

(1) Opt. Gap= (UB − LB)/LB × 100%. It estimates the optimality gap of the minimax regret
solution obtained from Algorithm BD.

(2) Rob. Gap= (Rrob−UB)/UB×100%. It estimates the difference of worst-case regrets between
the robust optimal solution and the minimax regret solution.

(3) Sto. Gap= (Rsto− UB)/UB × 100%. It estimates the difference of the worst-case regrets
between the stochastic optimal solution and the minimax regret solution.

(4) Reg. Inc.= (Areg− Asto)/Asto× 100%. It estimates the increase of the expected total cost in-
curred by the minimax regret optimal solution, as compared to the stochastic optimal solution.

(5) Rob. Inc.= (Arob − Asto)/Asto× 100%. It estimates the increase of the expected total cost
incurred by the robust optimal solution, as compared to the stochastic optimal solution.
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The computational results and the gap estimates are presented in Tables 7.2-7.5 and Fig. 7.3.
In these experiments, we first compare the optimal solutions obtained from the three different
approaches under the data setting Lower%=20%, Budget%=4% and Overall%=36% (see Table
7.2 and Fig. 7.3). Then, we run a group of sensitivity analyses by adjusting Lower% within the
range[10%, 40%] and Budget% within the range[4%, 40%], while Overall% is fixed at 36% (see
Tables 7.3 and 7.4). In another group of sensitivity analysis, we fix Lower% at 40% and allow
Budget% and Overall% to vary within the intervals[10%, 40%] and[4%, 40%], respectively. We
obtain similar results which are therefore not reported for brevity.

Table 7.2: Optimal solutions obtained from the three different approaches, with Lower%=20%,
Budget%=4%, and Overall%=36%

Time # Online Generators Total Capacity (MW) Nominal
Period Sto Reg Rob Sto Reg Rob Load (MW)

1 14 14 14 4290 4290 4290 2246.03
2 14 14 14 4290 4290 4290 2117.69
3 14 14 14 4290 4290 4290 1861.00
4 14 14 14 4290 4290 4290 1283.45
5 14 14 14 4290 4290 4290 1604.31
6 14 14 15 4290 4290 4390 1925.17
7 16 16 16 4590 4590 4590 2246.03
8 16 16 18 4590 4590 4790 2502.72
9 17 17 19 4690 4690 4890 2631.07
10 17 17 19 4690 4690 4890 2823.59
11 17 17 19 4690 4690 4890 2855.67
12 17 17 19 4690 4690 4890 2695.24
13 17 17 19 4690 4690 4890 2566.90
14 17 17 19 4690 4690 4890 2438.55
15 17 18 19 4690 4790 4890 2823.59
16 17 18 19 4690 4790 4890 2887.76
17 17 18 19 4690 4790 4890 2727.33
18 18 19 19 4790 4890 4890 2855.67
19 18 19 19 4790 4890 4890 3016.10
20 18 19 19 4790 4890 4890 3144.45
21 18 19 19 4790 4890 4890 3208.62
22 18 19 19 4790 4890 4890 2887.76
23 18 18 19 4790 4790 4890 2791.50
24 17 17 19 4690 4690 4890 2631.07
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Figure 7.3: Comparison of the total capacity of the online generators

From Table 7.2 and Fig. 7.3, we observe that the robust optimal solution is the most conser-
vative and the stochastic optimal solution is the least conservative in terms of both the number
of online generators and the total generation capacity. The optimal solution obtained from the
minimax regret approach lands somewhere in between the robust and stochastic optimal solutions.
For example, when the net forecast load (difference of the forecasted load and the forecasted wind
power) peaks in time periods 18-22, the minimax regret optimal solution agrees with the robust
one, while in the remaining time periods, it runs in between the robust and stochastic optimal solu-
tions (e.g., in time periods 15-17) or even equal to the stochastic one. Note here that in time periods
18-22, the stochastic optimal solution is infeasible for some Monte Carlo simulation scenarios due
to lack of generation capacity.

From Table 7.3, we first observe that statistically our algorithm can provide a feasible solution
in all the instances, inferred from the fact that both LB and UB values are significantly lower than
the surging Rsto values in Table 7.4. Second, we notice that in most instances, Algorithm BD
solves the UC problem to within a 1% optimality gap before touching the one-hour time limit.
This indicates that the proposed algorithm can provide a solution that is very close to the optimal
one within a reasonable amount of time. Hence, our algorithm suffices to solve reasonable size
problems and find near-optimal solutions. Besides, the small optimality gaps confirm that the UB
listed in Table 7.3 is a reasonable estimate of the worst-case regret of the minimax regret solution.
Noting that UB is a statistical upper bound of the worst-case regret for a given UC solution, in the
following, we use UB as a benchmark to compare the worst-case regrets obtained from different
approaches.

The worst-case regrets obtained from the three different approaches are listed and compared in
Table 7.4. From this table, we observe that UB is strictly less than Rrob and Rsto in all the instances.
For the robust optimization approach, we find that it provides feasible solutions in all the instances
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Table 7.3: Computational results for an IEEE 118-bus system with various Lower% and Budget%
- minimax regret approach

Budget
4 16 28 40

Lo
w

er
10

LB 1275 1267 1267 1267
UB 1275 1278 1278 1278

Opt. Gap (%) 0.01 0.86 0.86 0.86
Time (s) 3468.16 3068.14 3068.14 3068.14

20

LB 2102 3055 3377 3377
UB 2117 3083 3386 3386

Opt. Gap (%) 0.73 0.93 0.26 0.26
Time (s) 3353.83 3173.75 3599.13 3599.13

30

LB 2878 4441 4435 5386
UB 2893 4445 4459 5530

Opt. Gap (%) 0.52 0.11 0.54 2.68
Time (s) 3396.56 3069.52 3489.92 3599.89

40

LB 3030 5446 5458 6687
UB 3030 5530 5496 6738

Opt. Gap (%) 0.00 1.54 0.70 0.75
Time (s) 2119.85 3082.97 3045.23 2921.33

while the robust gaps are not negligible. For the stochastic optimization approach, we see that
it provides feasible solutions to the UC problem when the wind power uncertainty is restricted
(e.g., when Lower%≤ 30% or Budget%≤ 4% in Table 7.4), while the stochastic optimal solu-
tions become infeasible when the wind power uncertainty gets larger (e.g., when Lower%= 40%
in Table 7.4), which contributes to the surging worst-case regrets. By comparing UB with Rrob

and Rsto, we observe that the regrets can stem from both over-conservatism and infeasibility. On
one hand, the robust optimization approach can provide robust UC solutions, but might be over-
conservative in that it underlines the scenarios with large absolute costs (but not those with high
regrets), and so implicitly commits more units. In contrast, the minimax regret approach avoids be-
ing overly pessimistic on the extreme cases by addressing the regrets explicitly, and thus performs
less conservatively. On the other hand, the UC solutions provided by the stochastic optimization
approach might become unreliable as the wind power uncertainty becomes significant. A possible
explanation for this observation is that it is not easy for the stochastic UC to accommodate the
“ramp events”, which refer to dramatic changes in wind plant power output in a short period of
time caused by big shifts in wind speed, due to, e.g., a fast-moving weather front [141]. Under
this case, the wind power can drop from a very high value to near zero and vice versa and it can
cause severe impacts to the power system. The reasons are as follows: (a) the “ramp events” are
hard to predict since they might come from complicated weather conditions; (b) the “ramp events”
are usually unlikely to happen, and hence less possible to be picked out through typical sampling
algorithms for stochastic UC. Consequently, as the magnitude of the “ramp events” increases,
stochastic UC provides less robust solutions. On the contrary, minimax regret and robust optimiza-
tion approaches provide robust UC solutions, because those “ramp events” can be conveniently
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Table 7.4: Computational results for an IEEE 118-bus system with various Lower% and Budget%
- worst-case regrets comparison

Budget
4 16 28 40

Lo
w

er
10

UB 1275 1278 1278 1278
Rrob 2244 1509 1509 1509
Rsto 1336 1340 1340 1340

Rob. Gap (%)76.00 18.09 18.09 18.09
Sto. Gap (%) 4.82 4.83 4.83 4.83

20

UB 2117 3083 3386 3386
Rrob 2517 3582 4764 4764
Rsto 2533 235690 270362 270362

Rob. Gap (%)18.90 16.19 40.71 40.71
Sto. Gap (%) 19.61 7544.24 7885.42 7885.42

30

UB 2893 4445 4459 5530
Rrob 3255 4948 5627 5898
Rsto 3491 727549 1374106 1664217

Rob. Gap (%)12.49 11.31 26.20 6.66
Sto. Gap (%) 20.66 16266.96 30715.99 29992.67

40

UB 3030 5530 5496 6738
Rrob 4195 6410 7418 9386
Rsto 5619 1100992 1973001 4005551

Rob. Gap (%)38.44 15.91 34.96 39.30
Sto. Gap (%) 85.45 19808.89 35797.98 59350.88

captured by defining appropriate uncertainty sets. To sum up,the robust optimization approach is
over-conservative and hence sacrifices the regret for system robustness; the stochastic optimiza-
tion approach can provide satisfactory solutions under restricted uncertainty scenarios, but might
become vulnerable in face of the “ramp events”. Finally, the minimax regret approach can provide
robust UC solutions in various uncertainty scenarios, and meanwhile prevent over-conservatism.

The expected total costs obtained from the three different approaches are listed and compared
in Table 7.5. From this table, we first observe that Asto is strictly less than Areg and Arob in all
the instances, which confirms that the stochastic optimization approaches can provide the best
UC solution in terms of the expected total cost. Second, we can observe that the increase of the
expected total cost, if we employ the minimax regret approach, is not large. Indeed, the increased
values by the minimax regret approach (denoted by Reg. Inc.) shown in Table 7.5 is less than
1% for all the instances. The robust optimization approach performs the worst (denoted by Rob.
Inc.). However, it is still less than 2% in all the instances. Hence, we can conclude that the price
of robustness is limited in this experiment. That is, we can increase system robustness, with a
reasonable increase of the expected total cost, by employing the alternative approach such as the
minimax regret approach. Finally, due to the observation that the increased value by the minimax
regret approach is less than that by the robust optimization approach in most instances, the minimax
regret approach is less conservative than the robust optimization approach, and can be applied to
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increase system robustness with a smaller increase of the expected total cost.

Table 7.5: Computational results for an IEEE 118-bus system with various Lower% and Budget%
- expected total cost comparison

Budget
4 16 28 40

Lo
w

er

10

Areg 1210397 1210520 1210520 1210520
Arob 1210501 1201278 1201278 1201278
Asto 1208485 1198661 1198661 1198661

Reg. Inc. (%) 0.16 0.99 0.99 0.99
Rob. Inc. (%) 0.17 0.22 0.22 0.22

20

Areg 1211643 1211725 1212986 1212986
Arob 1215168 1215260 1216236 1216236
Asto 1210934 1210944 1210949 1210949

Reg. Inc. (%) 0.06 0.06 0.17 0.17
Rob. Inc. (%) 0.35 0.36 0.44 0.44

30

Areg 1211954 1220400 1220318 1221371
Arob 1218692 1222001 1228323 1228500
Asto 1211079 1212817 1218103 1218621

Reg. Inc. (%) 0.07 0.63 0.18 0.23
Rob. Inc. (%) 0.63 0.76 0.84 0.81

40

Areg 1222215 1225807 1224903 1226850
Arob 1232798 1228238 1241572 1246943
Asto 1211166 1221040 1222750 1226766

Reg. Inc. (%) 0.91 0.39 0.18 0.01
Rob. Inc. (%) 1.79 0.59 1.54 1.64

7.5 Conclusion and Future Research
In this research, we proposed an innovative approach to solve unit commitment problems under
uncertainty. First, we provided an uncertainty set description that can capture the “ramp events”
in wind power output randomness, and our proposed minimax regret approach can provide robust
while less conservative UC solutions. Second, with the consideration of regret under each sce-
nario, our proposed approach avoids over-conservatism by minimizing the worst-case regret value.
Third, we developed an iterative algorithmic framework which can derive tight lower and statisti-
cal upper bounds of the minimax regret. The statistical upper bounds do not guarantee theoretical
exactness, but can converge to exact upper bounds as the sample size increases in the Monte Carlo
simulation. Finally, our computational results verified the effectiveness of our proposed approach.
In future research, we will study large-scale problems involving hundreds of generators and thou-
sands of transmission lines when such data are available. Accordingly, we will develop efficient
heuristic and decomposition algorithms and implement the algorithms in high performance com-
puting facilities. Finally, we will extend our minimax regret model to incorporate the n-k security
criteria.
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8. Data Driven Two-Stage Robust Unit Commitment

8.1 Introduction
Increasing uncertainties in the power grid are continuously challenging the current procedure of the
power production scheduling due to the high penetration of intermittent renewable resources in the
grid and increasing uncertainty from price response demands. The electric power, as a special type
of commodity, requires high reliability to guarantee the delivery. Independent System Operators
(ISO) traditionally solve a unit commitment (UC) problem to determine the production schedule
of the thermal generators for the next 24 hours with minimal total cost, which is referred as day-
ahead UC problem. In practice, when the real situation, including load and supply of intermittent
resources, is deviating from the expectation as well as generator and transmission outages, the
dispatch quantities of the generators are adjusted accordingly by system operators in real time.
Such corrective actions may result in significant cost increases as well as unmet demand referred
as load shedding. Therefore, a “robust” UC solution is highly desired to be able to efficiently
adaptive to different scenarios.

Traditional methods of addressing uncertainty within the UC problem involve committing sub-
stantial amounts of spinning and non-spinning reserves to meet any deviations from the expected
forecasts. The requirements for spinning reserve are frequently set by deterministic criteria. For
example, reserve requirements may be given by: a multiple (usually 1.5 to 2 times) of the largest
active generator capacity; a percentage of the peak forecasted load; as well as the 3+5 rule (3% of
hourly forecasted load + 5% of hourly forecasted wind power). Much research has been performed
in determining appropriate levels of spinning reserves based on various deterministic criteria, [142–
144], as well as by incorporating various probabilistic information [145, 146]. These approaches
are not guaranteed to maintain system feasibility or to provide system feasibility in a cost efficient
manner.

Stochastic programming programming has been introduced to solve the UC problem with a set
of scenarios . In stochastic formulations, a set of scenarios are identified. Two stage or multi-stage
stochastic programs were studied to adaptively adjust the dispatch solutions when the reality re-
veals, while determining the unit commitment solutions before the realization of the uncertainties.
In a stochastic programming formulation, the corrective solutions for all the scenarios are explic-
itly modeled and the objective is to minimize the expected cost over all the scenarios. Due to the
difficulty of determining exact probability distribution of uncertainty parameters or the complexity
of the explicit representation, the sampling average approximation (SAA) method has been widely
adapted. The SAA method guarantees the convergence of the optimal solution while the sam-
ple size is large enough. However, the large number of samples impose additional computational
challenges of the stochastic programming formulations.

Robust optimization is an alternative model to determine the solution under uncertainties. Un-
like stochastic programming, robust optimization typically model the uncertainty parameters in a
predefined uncertainty set. The objective of robust optimization formulation is to ensure that the
solution will be feasible for all possible realization in the uncertainty set and to minimize the worst
case commitment and operational cost. The high feasibility requirements in the robust optimization
align with the high reliability standard of the power system. Therefore, there are a lot of practice of
implementing robust models in the power systems, including unit commitment problem, capacity
expansion, and optimal power flow. These work have shown the potential of robust optimization
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approaches in the power system application. Most of the work focus on the algorithm develop-
ments of the robust formulations for particular problems with a given uncertainty set. Since many
of the deterministic formulations of the power system problems are linear or mixed integer linear
formulation, polyhedral uncertainty sets are the popular ones to be adopted. The determination
of the uncertainty sets is not commonly discussed in the literature. In the robust optimization lit-
erature, there are works shown that there are connections with the risk measures with probability
constraints. However, there are no much of the guidelines of how these uncertainty sets should
be constructed unless from the computational point of view. Recently, A note by Guan and Wang
[147] described genetic rules of selecting uncertainty set. Again, these are from statistic study to
ensure of the feasibility without consideration of optimality.

One close related discussion is from probability constraints in stochastic programming litera-
ture. The probability constraints ensure that the solution will be feasible with a given probability
threshold. It has been shown that even for a single linear constraint, the feasible region of prob-
ability constraints is not convex. Convex approximation of the uncertainty sets are examined and
coherent risk measures are used to approximate the feasible set. One may consider that the feasible
solution of robust optimization solution is a solution that satisfies the probability constraints. The
corresponding uncertainty set is a set that describes the confidence set of the uncertain parameters.
In this chapter, we study two types of polyhedral uncertainty sets that are constructed from his-
torical or simulated data. We propose two types methods to estimate the parameters used in the
uncertainty sets based on historical data.

The remainder of this chapter is organized as follows. Section 8.2 provides a description of
the nominal and robust UC formulations and a structural description of the uncertainty sets used
to represent the demand and wind uncertainties. Section III describes our solution methodology
where we adopt a heuristic benders decomposition algorithm described in [136]. In Section IV
we give two data-driven uncertainty set formulations for providing probabilistic guarantees on the
feasibility of the commitment schedule under demand and wind generator capacity uncertainty. In
Section V we provide test results to demonstrate the performance of each uncertainty set. Finally,
Section VI concludes our study.

8.2 Mathematical Formulation
A typically formulation of the nominal UC problem is given below. The objective function, given
by equation (8.1), is to minimize the sum of the commitment and dispatch costs necessary to satisfy
the expected demand forecast. Equation(8.2) represents the startup/shutdown relationships while
equations (8.3) and (8.4) represent the generator minimum up/down time requirements. Equations
(8.6)-(8.7) give the bounds for the generator startup, shutdown, and commitment status variables.
The node balance constraints are given by equations (8.8)-(8.9) and line flow constraints are given
by equation (8.10). Equations (8.11) and (8.12) represent the minimum/maximum generation ca-
pacity for standard generators and wind generators respectively. The ramp rate constraints are
given by equations (8.13) and (8.14). Equations (8.15) and (8.16) describe the limits of genera-
tors to provide spinning reserve while equation (8.17) provides the total system requirements for
spinning reserve. Equations (8.18) and (8.19) simply fix the demand and wind capacity variables
to their expected forecast levels. In this formulation, the wind power is considered dispatchable,
which is limited by the available capacity. In certain situation, it can be treated as non-dispatchable,
which is commonly model as negative load.
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Nominal UC Model
Objective function:

zN := min
∑

t∈T

∑

g∈G

(cSUg vg,t + cNL
g ug,t + cvgpg,t) (8.1)

Constraints:

vg,t − wg,t = ug,t − ug,t−1, ∀g, t; (8.2)
t

∑

s=t−UTg+1

vg,s ≤ ug,t, ∀g, t ∈ {UTg, ..., T}, (8.3)

t
∑

s=t−DTg+1

wg,s ≤ 1− ug,t, ∀g, t ∈ {DTg, ..., T}, (8.4)

0 ≤ vg,t ≤ 1, ∀g, t, (8.5)

0 ≤ ug,t ≤ 1, ∀g, t, (8.6)

ug,t ∈ {0, 1}, ∀g, t, (8.7)
∑

g∈G(n)

pg,t +
∑

w∈W (n)

pw,t − dn,t = pNet
n,t , ∀n, t, (8.8)

∑

n∈N

pNet
n,t = 0, ∀t, (8.9)

−FMax
k ≤

∑

n∈N

PTDF n
k p

Net
n,t ≤ FMax

k , ∀k, t, (8.10)

PMin
g ug,t ≤ pg,t ≤ PMax

g ug,t, ∀g, t, (8.11)

0 ≤ pw,t ≤ PCap
w,t , ∀w, t, (8.12)

pg,t − pg,t−1 ≤ (2− ug,t−1 − ug,t)R
SU
g + (1 + ug,t−1 − ug, t)R+

g , ∀g, t (8.13)

pg,t−1 − pg,t ≤ (2− ug,t−1 − ug,t)R
SD
g + (1− ug,t−1 + ug, t)R−

g , ∀g, t (8.14)

pg,t + rg,t ≤ PMax
g ug,t ∀g, t (8.15)

0 ≤ rg,t ≤ RE
g ∀g, t (8.16)

∑

g∈G

rg,t ≥ rt ∀t, (8.17)

dn,t = d̄n,t, ∀n, t, (8.18)

PCap
w,t = P̄Cap

w,t , ∀w, t, (8.19)

In this chapter, we use a three-stage robust UC model to describe the system. The model
formulation is given below. The objective function, given by equation (20), is to minimize the
sum of the commitment costs and the worst-case dispatch costs over the uncertainty setsD and
WCap. The constraints inχ(u, d, PCap) describe the third stage dispatch problem for commitment
decisionu, demandd, and wind generator capacityPCap

w .
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Robust UC Model
Objective function:

zR = min
u,v,w

{

∑

t∈T

∑

g∈G

(cSUg vg,t ++cNL
g ug,t) + max

d,PCap
min

p∈χ(u,d,PCap)

∑

t∈T

∑

g∈G

cvgpg,t

}

(8.20)

Constraints: (8.2)-(8.7),

d ∈ D,

PCap
w ∈ WCap

whereχ(u, d, PCap) = {p : (8.8)− (8.14). Note here we omit the reserve constraints in the robust
formulation since the uncertain load and wind supply are modeled explicitly using the uncertainty
sets.

In this work, we adopt a polyhedral uncertainty set description of the form presented in [136].
To describe the demand uncertainty set we useD̄nt, Dl

nt, andDu
nt to denote the nominal values,

lower bounds, and upper bounds for the demand at noden and timet. Correspondingly we use
P̄wt, P l

wt, andP u
wt to denote the nominal values, lower bounds, and upper bounds for the wind

generation capacity for wind generatorw at timet. We also apply budgetary constraints restricting
the maximum total demand and the minimum total wind generator capacity for each time periodt
as well as across the entire planning horizon to control the conservativeness of the uncertainty set,
which will be determined in the later sections from historical data. The uncertainty set formulations
for the demand,D, and wind generator capacity,WCap, are given as follows.

D =















d : Dl
nt ≤ d ≤ Du

nt, ∀n ∈ N, t ∈ T,
∑

n∈N

πτ
ntdnt ≤ π̄D

t , ∀t ∈ T,
∑

t∈T

∑

n∈N

π0
ntdnt ≤ π̄D

0















, (8.21)

WCap =















PCap : P l
wt ≤ PCap

wt ≤ P u
wt, ∀w ∈ W, t ∈ T,

∑

w∈W

πτ
wtP

Cap
wt ≥ π̄W

t , ∀t ∈ T,
∑

t∈T

∑

w∈W

π0
wtP

Cap
wt ≥ π̄W

0 .















. (8.22)

To solve the Robust UC model, we first analyze the solution to the second-stage problem for
a given commitment decision. Given a specified UC decision,u, we define the objective function
value of the second-stage problem to bez(u), which is the worst case dispatch cost over the uncer-
tainty set. To determine the value ofz(u) we dualize the constraints inχ(u, d, PCap) to obtain a
single-stage representation of the maximum dispatch cost of the UC decisionu over the uncertainty
setsD andWCap.The resulting dispatch cost formulation is given below.
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Dispatch Cost Model
Objective function:

z(u) = max
∑

t∈T

∑

g∈G

fg(ug, γ
+
g,t, γ

−
g,t, ξg,t, ζg,t)+

∑

k∈K

FMax
k (τ−k,t−τ

+
k,t)+

∑

n∈N

dn,tηn,t−
∑

w∈W

PCap
w,t αw,t

(8.23)
Constraints:

γ+
g,t − γ−

g,t + ξg,t+1 − ξg,t + ζg,t − ζg,t+1 + ηnt, = cg, ∀g, t, (8.24)

−αw,t + ηn,t ≤ 0, ∀w, t (8.25)

βt + ηn,t +
∑

k∈K

PTDF
n(g)
k (τ+k,t − τ−k,t) = 0, ∀g, t (8.26)

γ+
g,t, γ

−
g,t, ξg,t, ζg,t ≥ 0, ∀g ∈ G, t ∈ T (8.27)

τ+k,t, τ
−
k,t ≥ 0 ∀k ∈ K, t ∈ T (8.28)

αw,t ≥ 0, ∀w ∈ W, t ∈ T, (8.29)

d ∈ D, PCap ∈ WCap (8.30)

where

fg(ug, γ+
g,t, γ

−
g,t, ξg,t, ζg,t) = PMin

g ug,tγ
+
g,t − PMax

g ug,tγ
−
g,t −

[

(1 + ug,t−1 − ug,t)R
+
g

+(2− ug,t−1 − ug,t)R
SU
g

]

ξg,t −
[

(1− ug,t−1 + ug,t)R
−
g + (2− ug,t−1 − ug,t)R

SD
g

]

ζg,t.

The decision variablesηn,t, βt, τ
±
k,t, γ

±
g , αw,t, ξg,t, andζg,t are the dual variables corresponding to

constraints (8.8) - (8.14). The objective function is given by equation (8.23) and the dual constraints
for the traditional generator variables, wind generator variables, and the nodal net injection,pg,t,
pw,t, andpNet

n,t , are given by equations (8.24)-(8.26). Note that the objective function of the dispatch
cost formulation is a bilinear function due to the product of the dispatch dual variables(η, α, τ),
with the demand, wind generator capacity, and nodal net injection variables(d, PCap

w ). Thus, the
dispatch cost problem is NP-hard in general. Algorithms providing exact and near-optimal solu-
tions are discussed in [136]. In this chapter, we adopt the heuristic Benders decomposition frame-
work as given by [136] for the tractable application to large-scale systems. A detailed description
of the algorithm is presented in Section 8.3.

8.3 Solution Methodology
Due to the bilinear form of the objective function in the dispatch cost problem it can be very
computationally intensive to obtain an exact solution to the Robust UC model. This difficulty
increases dramatically when the Robust UC model is applied to large-scale systems which form
the core of electrical energy systems in the United States.

To maintain applicability of the Robust UC model to large-scale systems we adopt a heuris-
tic Benders decomposition framework from [136] which consists of a master UC problem that
iteratively adds feasibility and optimality cuts to obtain a near-optimal solution to the Robust UC
model.

The remainder of this section is organized as follows. In Subsection 8.3.1, we discuss the
representation of the Robust UC model within the Benders decomposition framework. In Sub-
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sections 8.3.2 and 8.3.3 we address the feasibility and optimality of the UC decision respectively.
Subsection 8.3.4 outlines the Benders decomposition algorithm that we employ in this paper.

8.3.1 Decomposition of the Robust UC Model
The Robust UC model is decomposed into three components: a master UC problem, and two
dispatch cost subproblems, subproblem 1 and subproblem 2.

The master problem is a UC problem that characterizes the commitment stage of the Robust
UC model. The master problem formulation is given below.

Master Problem
Objective function:

zM = min
u,v,w

{

∑

t∈T

∑

g∈G

(cSUg vg,t ++cNL
g ug,t) + z(u)

}

(8.31)

Constraints:
(8.2)-(8.7),

∑

t∈T

∑

g∈G

σrf
gt ug,t ≤ σ̄f

r , ∀r = 1, .., R (8.32)

z(u)−
∑

t∈T

∑

g∈G

σso
gtug,t ≥ σ̄o

s , ∀s = 1, .., S (8.33)

The objective function of the master problem, given by equation (8.31), is to minimize the
sum of the commitment cost and the estimate for the worst-case dispatch cost corresponding to
the UC decision u, given by the variablez(u). Specifically,z(u) represents a lower bound on
the worst-case dispatch cost corresponding to the UC decisionu. Equations (8.32) and (8.33)
represent the feasibility and optimality cuts that are added to the master problem respectively. We
describe the procedure for generating the feasibility and optimality cuts in Subsections 8.3.2 and
8.3.3 respectively.

As stated in the last section, it is difficult to determine exact feasibility and optimality of a given
UC decision due to the bilinear terms in objective function of the dispatch cost problem. To remove
these bilinearities, we decompose the dispatch cost problem into two subproblems: Subproblem
1 and Subproblem 2, in which the dispatch dual variables(γ, ξ, ζ, τ, η, α, β), and the demand and
wind generator capacity(d, PCap

w ), are fixed respectively. The formulations are given below.

Subproblem 1
Objective:

z1(u, d, P
Cap
w ) = max

∑

t∈T

∑

g∈G

fg(ug, γ
+
g,t, γ

−
g,t, ξg,t, ζg,t) +

∑

k∈K

FMax
k (τ−k,t − τ+k,t)

+
∑

n∈N

dn,tηn,t −
∑

w∈W

PCap
w,t αw,t

(8.34)
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Constraints: (8.24)-(8.26),

γ+
g,t, γ

−
g,t, ξg,t, ζg,t ≥ 0, ∀g ∈ G, t ∈ T

τ+k,t, τ
−
k,t ≥ 0 ∀k ∈ K, t ∈ T

αw,t ≥ 0, ∀w ∈ W, t ∈ T.

Subproblem 2
Objective:

z2(u, γ, ξ, ζ, τ, η, α, β) = max
∑

t∈T

∑

g∈G

fg(ug, γ
+
g,t, γ

−
g,t, ξg,t, ζg,t) +

∑

k∈K

FMax
k (τ−k,t − τ+k,t)

+
∑

n∈N

dn,tηn,t −
∑

w∈W

PCap
w,t αw,t

(8.35)
Constraints: (8.24)-(8.26),

d ∈ D, PCap ∈ WCap

8.3.2 Feasibility of the UC Decision
We now address the feasibility of the third-stage problemmin

p∈χ(u,d,PCap)

∑

t∈T

∑

g∈G

cvgpg,t with respect to

given values for the UC decision,u, demandd, and wind generator capacityPCap. The solution
space for subproblem 1, given by equations (8.24)-(8.26), defines a non-empty feasible region.
For example, a solution withγg,t = cg and all other variables are zeros is a feasible solution.
Additionally,since the objective function of the third-stage problem is linear and equations (21)-
(26) defining the uncertainty setsD andWCap define bounded regions, from duality theory, the
infeasibility condition of the third-stage problem is equivalent to the unboundedness of subproblem
1.

We thus determine the feasibility of the third-stage problem by determining whether the optimal
solution to subproblem one is finite, i.e. whetherz1(u, d, p

Cap
w ) <∞. Subproblem 1 is unbounded

if and only if there exists an extreme ray solution(γ, ξ, ζ, τ, η, α, β) such that

∑

t∈T

∑

g∈G

fg(ug, γ
+
g,t, γ

−
g,t, ξg,t, ζg,t) +

∑

k∈K

FMax
k (τ−k,t − τ+k,t) +

∑

n∈N

dn,tηn,t −
∑

w∈W

PCap
w,t αw,t > 0.

We determine the existence of such extreme ray solutions through the optimal solution of the
feasibility subproblem given below.

Feasibility Subproblem
Objective function:

zf (u, d, p
Cap
w ) = max

γ,ξ,ζ,τ,η,α,β

∑

t∈T

(
∑

t∈T

∑

g∈G

fg(ug, γ
+
g,t, γ

−
g,t, ξg,t, ζg,t) +

∑

k∈K

FMax
k (τ−k,t − τ+k,t)

+
∑

n∈N

dn,tηn,t −
∑

w∈W

PCap
w,t αw,t)

(8.36)
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Constraints:

γ+
g,t − γ−

g,t + ξg,t+1 − ξg,t + ζg,t − ζg,t+1 + ηnt, = 0, ∀g, t (8.37)

(8.25)-(8.30),

γ+
g,t, γ

−
g,t, ξg,t+1, ξg,t ≤ 1,∀g, t (8.38)

τ+k,t, τ
−
k,t ≤ 1,∀k, t (8.39)

αw,t ≤ 1,∀w, t (8.40)

−1 ≤ ηn,t ≤ 1∀n, t (8.41)

−1 ≤ βt ≤ 1∀t. (8.42)

Note that in this model, we restricted the feasible region in a unit box to avoid unboundedness.
Specifically, a given UC decision u is feasible with respect to demand d and wind generator capac-
ity PCap if zf (u, d, pCap

w ) = 0. Otherwise, ifzf (u, d, pCap
w ) > 0, we add the feasibility cut

∑

t∈T

∑

g∈G

fg(ug, γ
+
g,t, γ

−
g,t, ξg,t, ζg,t)+

∑

k∈K

FMax
k (τ−k,t−τ

+
k,t)+

∑

n∈N

dn,tηn,t−
∑

w∈W

PCap
w,t αw,t ≤ 0 (8.43)

to the master problem, where(γ, ξ, ζ, τ, η, α, β) is the optimal solution to the feasibility subprob-
lem corresponding to the demandd and wind generator capacityPCap. We outline the feasibility
cutting-plane sub-algorithm below.

Feasibility Cutting-Plane Subalgorithm
1. Initialization. Given UC solutionu, demandd, and wind generator capacityPCap

w

2. Solve the feasibility subproblem and store the solutionzf (u, d, p
Cap
w );

3. If zf(u, d, pCap
w ) = 0: Then the commitment scheduleu is feasible with respect to demand d and

wind generator capacityPCap;
Else if zf (u, d, pCap

w ) > 0: Then add the feasibility cut (8.43) to the master problem.

8.3.3 Optimality of the UC decision
As stated in section 8.3 an exact solution to the dispatch cost problem is very computationally inten-
sive to obtain. However, from (27) we know that for all feasible solutions(γ, ξ, ζ, τ, η, α, β, pCap

w )
of the dispatch cost problem we have

z(u) ≥
∑

t∈T

(
∑

t∈T

∑

g∈G

fg(ug, γ
+
g,t, γ

−
g,t, ξg,t, ζg,t)+

∑

k∈K

FMax
k (τ−k,t−τ

+
k,t)+

∑

n∈N

dn,tηn,t−
∑

w∈W

PCap
w,t αw,t)

(8.44)
Thus, adding constraints of this form constitute valid inequalities for the master problem. How-

ever, there are exponential number of feasible extreme point solutions to the dispatch cost problem
and constraints of this form are not guaranteed to provide tight bounds on the value of the dispatch
cost functionz(u), i.e. for many feasible solutions(γ, ξ, ζ, τ, η, α, β, pCap

w ) the inequality in (8.44)
are not strict. We adopt the following cutting-plane heuristic from [136] to selectively generate
valid inequalities to be added to the master problem.
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Optimality Cutting-Plane Subalgorithm
1. Initialization. Given a feasible UC solutionu, demandd, and wind generator capacityPCap

w

2. Solve subproblem 1 and store the solutionz1(u, d, p
Cap
w ).

3. Solve subproblem 2 and store the solutionz2(u, γ, ξ, ζ, τ, η, α, β).
4. If z1(u, d, pCap

w ) 6= z2(u, γ, ξ, ζ, τ, η, α, β): Go to step 2. Else: Go to step 5.
5. If z(u) < z1(u, d, p

Cap
w ) = z2(u, γ, ξ, ζ, τ, η, α, β), generate the valid optimality cut (8.44) and

add the cut to the master problem.

8.3.4 Outline of the Benders Decomposition Algorithm
The heuristic Benders decomposition algorithm used in this paper is outlined below. A flowchart
depiction of the algorithm is given by Figure 8.1.

Benders Decomposition Heuristic Algorithm
1. Solve the master problem and store the solutionzM and the dispatch cost estimatez(u).
2. Call the feasibility cutting-plane subalgorithm for UC decisionu.
3. If a feasibility cut was generated then go to step 1; else: Go to step 4.
4. Call the optimality cutting-plane subalgorithm for UC decisionu.
5. If an optimality cut was generated: go to step 1; Else: End with UC decisionu.

Figure 8.1: Flowchart representation for the Benders Decomposition Heuristic Algorithm.

8.4 Construction of Uncertainty Sets
We now present two polyhedral uncertainty set formulations for providing probabilistic guaran-
tees on the feasibility of the commitment schedule under demand and wind generator capacity
uncertainty. Both uncertainty set formulations make use of historical data for demand and wind
generator capacity and are of the form given by equations (8.21) and (8.22).
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In Subsection 8.4.1 we present an uncertainty set formulation that takes advantage of asymp-
totic results of random variable summations derived from the central limit theorem (CLT). In
Subsection 8.4.2 we present a new method for determining optimal hyperplanes to describe the
uncertainty set.

8.4.1 Central Limit Theorem Uncertainty Set Formulation
From probability theory we know that the sum of random variables converges in distribution to a
normally distributed random variable according to the central limit theorem. Additionally, for a
normally distributed random variableX with meanµ and standard deviationρ, we haveP{(X −
µ)/ρzα} = α, wherezα is the standardized score for the standard normal distribution.

Using these results we can determine theπ̄ values contained in equations (8.21) and (8.22),
such that the probability of violation is within a specified value. Specifically, we determine theπ̄
coefficients as follows:

π̄D
t = D̄t + sdt zα,

π̄W
t = p̄wt + swt zα,

π̄D
0 = D̄0 + sd0zα,

π̄W
0 = p̄w0 + sw0 zα.

Theπ coefficients contained are given by the inverse of the standard deviation estimate:

πτ
nt = π0

nt =
1

sdnt
,

πτ
wt = π0

wt =
1

swwt

.

We now discuss two methods for determining the upper and lower limits of the demand and
wind generator capacity variables. Under assumptions of normality we can determine the bounds
through the use of the relevantz-score values as follows:

Dl
nt = D̄nt − sdntzα/2,

plwt = p̄wt − swwtzα/2,

Du
nt = D̄nt + sdntzα/2,

puwt = p̄wt + swwtzα/2.

If large deviations from normality are present within the data, we can let the upper and lower
bounds be given by theα/2,(1− α/2) percentile values from the historical data.

8.4.2 Percentile Uncertainty set Formulation
We now present a method for generating optimal hyperplane coefficients such that(1 − α)% of
the historical data is contained in the uncertainty set. LetH represent the set of historical data.
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For each data pointh ∈ H we represent the overall percentiles sums byǫ0h and the percentile sums
for time periodt by ǫth. The lower and upper bounds for the uncertainty set variables are given
by theα/2 and(1 − α/2) percentiles of the historical data for the variable. The formulation for
the demand hyperplane coefficients is given below. The formulation for the wind uncertainty set is
determined similarly.

Percentile Uncertainty Set Formulation
Objective function:

min
∑

h∈H

[(ǫ0h − (1− α))+ +
∑

t

(ǫth − (1− α))+]yh (8.45)

Constraints:

∑

n

πτ
ntd

h
nt ≤ π̄d

t ,∀t, h, such thatǫth ≤ 1− α (8.46)

∑

n

πτ
ntd

h
nt − zh ≤ π̄d

t ,∀t, h, such thatǫth ≤ 1− α (8.47)

∑

t

∑

n

πτ
ntd

h
nt ≤ π̄D

0 ,∀h, such thatǫ0h ≤ 1− α (8.48)

∑

t

∑

n

πτ
ntd

h
nt − zh ≤ π̄D

0 ,∀h, such thatǫ0h ≤ 1− α (8.49)

The objective function for the percentile uncertainty set, given by equation (8.45), is to min-
imize the inclusion of historical data points with either overall or time period percentile values
larger than(1 − α). Equations (8.46) and (8.48) require that the historical data with time period
and overall percentile values smaller than(1 − α) are contained in the uncertainty set respec-
tively. Equations (8.47) and (8.49) provide indicators for data points with time period and overall
percentile values larger than(1− α) that are contained in the uncertainty set respectively.

8.5 Numerical Experiments
In this section we test the performance of three methods for generating UC decisions: (i) the
CLT uncertainty set, (ii) the percentile uncertainty set, and (iii) a deterministic reserve method.
The deterministic reserve method, with total reserve requirements equal to twice the output of the
largest generator, serves as a baseline for comparing the CLT and percentile uncertainty sets with
respect to managing the effects of uncertainty. All tests are performed on the IEEE RTS96 model,
which consists of 73 buses, 99 generators, and 117 lines; the problem is formulated as a day-ahead
UC problem with 24 periods. The optimization is performed using IBM ILOG CPLEX version
12.5.

The simulated historical data consists of100, 000 demand and wind capacity data points that
are generated from a normal distribution. The standard deviation of the demand is equal to10% of
the expected value of the demand while the wind standard deviation is equal to the expected value.
The demand and wind data are correlated both spatially and temporally. The spatial correlation for
the demand and wind is0.9 while the time correlation for the demand and wind is0.99 and0.7
respectively.
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We test four uncertainty set types over three levels of probabilistic constraint and a deterministic
reserve method to serve as a baseline for comparison. For each method the average cost and
number of infeasibilities is determined using a sample of500 scenarios generated from the same
distribution as the historical data. We test the effectiveness of CLT and percentile uncertainty sets
with (0 + t) and without(0) the inclusion of the knapsack constraints over each time period. The
results forp = 0.9, p = 0.95, andp = 0.99 are given in tables I,II, and III respectively.

Table 8.1: Computational performance forp = 0.9

Worst case Average cost Number of Time to obtain
bound (M$) (M$) infeasible cases UC solutions (s)

CLT 0 4.40 3.23 50 408
CLT 0+t 3.91 2.96 0 721

Percentile 0 4.26 3.00 1 686
Percentile 0+t 3.67 2.98 71 911

Reserve N/A 3.44 102 8

Table 8.2: Computational performance forp = 0.95

Worst case Average cost Number of Time to obtain
bound (M$) (M$) infeasible cases UC solutions (s)

CLT 0 4.39 3.26 60 430
CLT 0+t 3.93 2.92 0 703

Percentile 0 4.30 3.01 13 694
Percentile 0+t 3.71 2.95 28 611

Reserve N/A 3.44 102 8

Table 8.3: Computational performance forp = 0.99

Worst case Average cost Number of Time to obtain
bound (M$) (M$) infeasible cases UC solutions (s)

CLT 0 4.47 3.25 11 324
CLT 0+t 4.19 3.05 2 478

Percentile 0 4.71 3.22 0 362
Percentile 0+t 3.85 3.07 2 665

Reserve N/A 3.44 102 8

In this experiment, we observe that the performance of the CLTand percentile uncertainty sets
were superior to the deterministic reserve method with respect to managing the effects of uncer-
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tainty at the expense of increased time requirements to obtain the UC solution. The CLT uncer-
tainty set was found to have scenario cost savings averaging 10.03% over the reserve method with
an average of a 79.9% percent decrease in the number of infeasible scenarios. The percentile un-
certainty set exhibited similar performance benefits over the reserve method. The average scenario
cost savings improved by 11.67% with an 81.21% decrease in the number of infeasible scenarios.
Additionally, the time required to obtain the UC solution was increased by an average of 32.27%
for the percentile uncertainty set compared to the CLT uncertainty set.

The inclusion of knapsack constraints on each time period was found to be beneficial to both
the CLT and percentile uncertainty sets while increasing the time required to obtain the UC solu-
tion. Both uncertainty sets exhibited reductions in the worst case and average scenario costs. The
knapsack constraints on each time period improved the worst case bound by an average of 8.53%
for the CLT uncertainty set and 15.30% for the percentile uncertainty set. The average scenario
cost was reduced by an average of 7.38% for the CLT uncertainty set and 2.39% for the percentile
uncertainty set. The effect of the inclusion of knapsack constraints on each time period on the
number of infeasible scenarios differed between the CLT uncertainty set and the percentile uncer-
tainty set: substantially reducing the number of infeasible instances for the CLT uncertainty set
but increasing the number of infeasibilities for the percentile uncertainty set. The average percent
increase in the time required to obtain the UC solution was 62.58% for the CLT uncertainty set and
34.85% for the percentile uncertainty set.

8.6 Conclusion
In this chapter, two methods for generating uncertainty sets, the CLT uncertainty set and the per-
centile uncertainty set, are analyzed using two polyhedral uncertainty set structures. The perfor-
mance of each uncertainty set was compared against a deterministic reserve method with respect
to managing the effects of uncertainty. Both the CLT uncertainty set and the percentile uncertainty
set demonstrated superior performance over the deterministic reserve method with respect to the
average scenario cost and the number of infeasible scenarios. The time required to obtain the UC
solutions was significantly larger compared to the deterministic reserve method however. The in-
clusion of knapsack constraints on each time period was found to be beneficial to both the CLT and
percentile uncertainty sets however the CLT uncertainty set benefitted more than the percentile un-
certainty set. Further studies are required to determine the effectiveness of the CLT and percentile
uncertainty sets using correlated data for load and wind uncertainties.
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9. Conclusion

9.1 Conclusion
In the report, robust optimization techniques are applied to two power grid problems: topology
control and unit commitment.

First, topology control is an integral part of power system operations. Today, most of the topol-
ogy control actions are determined based on operators’ past knowledge about the system or other
ad-hoc methods. Relying on only prior observations to determine potential corrective topology
control action limits the capability to harness the existing flexibility in the transmission network.
Systematic procedures that are capable of capturing such complexities should be preferred over
these limited methods. Furthermore, the hardware requirements to implement topology control
(circuit breakers) already exist, leaving only the need to develop the appropriate decision support
tools, which are low in cost, to obtain such benefits.

In this research, three different corrective topology control methodologies are presented: real-
time, deterministic planning based, and robust corrective topology control. Real-time corrective
topology control is very difficult to implement with today’s technology due to a lack of com-
putational power and the practical barriers of needing to ensure AC feasibility, voltage stability,
and transient stability. Deterministic planning based corrective topology control can be solved of-
fline, but such an approach relies on predicting the operating state. Furthermore, the deterministic
planning based methods cannot guarantee solution feasibility over a wide range of system states.
The proposed method of robust corrective topology control fills the technology gap between the
real-time and the deterministic planning based corrective topology control methodologies. The
offline mechanism of robust corrective topology control algorithm generates solutions, which can
be implemented in real-time with the help of a real-time dynamic security assessment tool. As
a result, the proposed robust corrective topology control model provides a mathematical decision
support tool that integrates topology control into every day operations by being able to guarantee
the robustness of solutions.

While deterministic corrective topology control frameworks may suggest many potential switch-
ing solutions, the empirical results presented in this research show that many of these solutions will
be infeasible for minor changes in the operating state. In contrast, the robust corrective switching
scheme guarantees solution feasibility for a wide range of system states, given a DCOPF formu-
lation. In addition, the robust corrective topology control formulation demonstrates the ability of
generating multiple corrective switching actions for a particular contingency. Moreover, a single
resulting corrective switching solution is capable of mitigating multiple contingencies.

Day-ahead unit commitment problems with proxy reserve requirements do not guarantee N-1
feasibility. Contingency analysis is used to determine whether there are contingencies that cannot
be satisfied by the unit commitment solution. When this happens, unit commitment must be re-
solved or the operator will employ out-of-market corrections to obtain a feasible N-1 solution. The
results have shown that robust corrective topology control can be used to reduce the occurrence of
contingencies that are not satisfied by the re-dispatch capabilities of the unit commitment solution
alone. Furthermore, the numerical results proved that the topology control does not necessarily
degrade system reliability; on the contrary, it can help the system to achieve N-1 feasibility even
with uncertainty.

The penetration of renewable resources in electrical power system is increased in recent years.
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This increase in intermittent renewable resources are forcing to alter the way bulk power systems
are operated today. This research shows the usefulness of topology control actions for integration
of renewable resources, in terms of determining DNE limits. For renewable resource integration
the determination of DNE limits is critical; in this research, a systematic procedure to determine
DNE limit is presented. With corrective topology control actions, the DNE limits can be increased
by 30-100%, as compared with no topology control actions. At the same time, topology control
actions can lower the operational cost by at least6%. The robust topology control algorithm
is based on a DCOPF; therefore, the topology control solutions obtained from robust algorithm
must be checked for AC feasibility. On the IEEE-118 bus test case,∼85-90% of topology control
solutions obtained from the robust topology control algorithm are AC feasible.

The stability studies, presented in this research, demonstrated that the solution obtained from
the robust topology control algorithm can pass AC feasibility and stability tests. Furthermore,30
topology control solutions, obtained from robust topology control algorithm, are tested for stability
check and out it∼66% of topology control solutions passes the stability check.

The robust topology control algorithm, presented in this report, is tested on small test case. To
scale this algorithm, from a smaller test case to a real life test system, the sensitivity analysis bases
topology control heuristic is proposed. The proposed heuristic has shown adequate ability to create
a rank list to determine the potential topology control solution, which can be tested for robustness
properties.

Second, the two-stage robust formulation is applied to the unit commitment problem with al-
ternative objective function, maximum regret. The motivation of such objective is to avoid overly
conservative solutions from traditional absolute worst-case robust objective. Wind uncertainty is
modeled in this application since it is aligned with the motivation of utilizing as much wind as
possible while ensuring the reliability of the power system. Bender’s decomposition is proposed
to solve the robust model. In this work, an uncertainty set description capturing the ramp events in
wind power output randomness. With the consideration of regret under each scenario, the proposed
approach avoids over-conservatism by minimizing the worst-case regret value. The iterative algo-
rithmic framework developed can derive tight lower and statistical upper bounds of the minimax
regret. The statistical upper bounds do not guarantee theoretical exactness, but can converge to
exact upper bounds as the sample size increases in the Monte Carlo simulation. The computational
results verified the effectiveness of the proposed approach.

With the more adoption of robust optimization in the power grid problems, a key question of
how to construct the uncertainty set as an input of the robust models needs an answer. This work
uses the two-stage unit commitment problem as an example to study the impacts of different types
of uncertainty sets constructed from historical data and given confidence level. The uncertainty set
construction is closely related to chance constraint programming problems. In this work, simulated
historical data are used to construct the uncertainty sets with different predetermined confidence
levels. The computational results suggest that more detailed uncertainty sets by including facets
describing individual time periods provide better solution in robustness and cost effectiveness.
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9.2 Proposed Future Research

9.2.1 Scalability of Robust Topology Control Problem - Zonal vs. Nodal Ap-
proach

Robust topology control methodology, presented in Chapter 3, is tested on an IEEE-118 bus test
case, which consists of54 generators,118 buses, and186 transmission lines. This test system is
much smaller than any realistic test case, for example, the PJM system is consists of1, 375 gen-
erators,62, 556 miles long transmission network and peak demand of183, 604 megawatts [110].
Therefore, for any practical implementation, the robust topology control methodology must be
scaled from the smaller test case, such as a IEEE-118 bus test case, to a much larger test system.

To overcome this scalability issue, in literature, a zonal approach is used over the nodal ap-
proach. With a zonal approach, instead of modeling details of each node within the zone, all the
nodes (within the zone) are represented by a single node/zone. For instance, in [62], the entire
ISONE system is presented into a 4 zone system with transmission lines connecting between these
zones. The benefit of zonal approach over the nodal approach is that it simplifies the problem to
a great extent. Instead of solving a system consisting of a few thousand buses and a few thousand
lines, the problem is simplified to a few buses and a few branches. This simplification reduces the
computational complexities and improves the computational time. However, a zonal approach is
based on the following critical assumptions.

With the zonal approach, each zone is considered as a single node; it is assumed that in each
zone there is no congestion within the zone and any contingency within the zone can be mitigated
by using the resources within the zone. Furthermore, it is assumed that a contingency within the
zone will not affect the flows on line connecting between the two zones. This assumption indicates
that within each zone there is sufficient reserves, which can be delivered, upon need, to mitigate
contingency. However, in [148], the authors show that intra zonal congestion can be critical. If
there is a congestion within the zone, it is possible that for a particular contingency, reserves are
not delivered, and may lead to system failure. Therefore, determining system zones are critical for
reliable system operations.

For DNE limits, the choice of modeling approach affects the quality of solution. With a nodal
approach, more accurate results can be obtained, compared with the zonal approach; however,
solving the nodal model can be computationally cumbersome and may have longer computational
time. On the contrary, zonal approach can be computationally efficient; however, the solution
obtained from the zonal approach can be less accurate, or even infeasible, due to over model
simplification. Furthermore, the DNE limits, the maximum uncertainty in renewable resources,
determined based on the zonal approach and the nodal approach may not be the same. There is still
an open question about how to determine nodal uncertainty (uncertainty in renewable resources at
each renewable injection node) from the DNE limits determined using zonal approach. Therefore,
the future work will involve investigation in zonal DNE limits compared with nodal DNE limits.

9.2.2 Stability Studies
In Chapter 5, the effect of topology control on system stability under deviation of renewable re-
sources are studied. This analysis is performed at peak demand levels with relatively low wind
generation. However, there are many other operating conditions, which require stability studies
to understand the effect of topology control on renewable integration. For instance, in general,
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during nights, the system demand is lower and wind generationis higher; in these hours, the ef-
fect of topology control on system stability might be different from the peak loading condition.
During the low demand and high wind generation periods, only the base load units are committed
along with low inertia wind generation; hence, during these hours the system inertia is much lower
than the peak loading hour. Therefore, in this case, the effect of loss of renewable resources with
topology control action on system stability must be studied.
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Chapter 1

Introduction

The integration of renewable resources such as wind and solar introduces additional uncer-
tainty on the generation side of a power system since these power sources are intermittent
and difficult to forecast. Such uncertainty invariably affects the system operation across
all time scales, from day-ahead scheduling to automatic generation control, and across all
subsystems, including transmission and generation. Our work focuses on capturing the ef-
fect of this uncertainty in electricity generation using a set-theoretic approach. Given the
uncertainty in renewable-based electricity generation, it is possible to determine whether
the system static state variables, i.e., bus voltage magnitudes and angles, are within their
acceptable ranges using the proposed method.

Deterministic power flow analysis does not capture the uncertainty associated with
renewable-based electricity generation as it only provides a snapshot of the system states at
a particular time for a specific generation and load profile. In order to assess the effects of
uncertain generation on the power flow solution, two main approaches have been developed;
they include probabilistic and set-theoretic methods. In probabilistic power flow analysis
(see, e.g., [1]), uncertainty in load and generation is modeled as a random vector, which
results in the power flow solution also being described by a random vector. Both numerical
and analytical methods have been proposed to address the probabilistic power flow problem
[2]–[5]. Other researchers have addressed the issues of efficiency and accuracy in calculating
the probability density functions of the bus voltages and line flows [6]–[10]. In set-theoretic
methods, some of the system parameters and variables are assumed to be unknown, but
constrained to lie within a bounded set [11]. For example, in interval analysis [12]–[15], it
is assumed that some line parameters and loads take values within a symmetric polytope.
This uncertainty is propagated through the power system model, resulting in a solution that
is also constrained within some symmetric polytope. A disadvantage of this method is that
the polytope, which contains the set of all possible solutions, may be overly conservative
and contains non-solutions as well. In our previous work, we used ellipsoids to capture the
uncertainty in renewable-based electricity generation [16]; however, that method becomes
progressively less efficient when applied to larger systems.

In the analysis method proposed in this report, we capture the uncertain variations in
renewable-based generation with a zonotope where its center is the nominal forecast value.
As an example, the power produced by a rooftop solar installation can be assumed to lie
within some interval around a nominal power output value, which may be based on the
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forecasted solar insolation level. Using set operations, we propogate this zonotope through
a linearized model of the power system. The result is a zonotope which bounds the bus
voltage magnitudes and angles. To determine whether renewable-based power generation
variability has a significant impact on power system static performance, we verify that this
zonotope is contained within the region of the static state space defined by system oper-
ational requirements, such as minimum and maximum bus voltage values. Zonotopes are
ideal candidates for uncertainty analysis because they can be efficiently encoded, are com-
putationally tractable, and are closed under linear transformations [17]. Additionally, our
method is equally applicable to both distribution and transmission systems and scales with
the size of the system.

Zonotopes have been used in several power and energy system applications to capture
the impact of uncertainty on dynamic performance [18, 19, 20, 21]. Specifically, in [18], [19],
zonotopes are used to address the general problem of quantifying the impact of uncertainty
in initial states and inputs on power system dynamics. Similarly, [20] proposes the use of
zonotopes to study the impact of high-capacity transmission on power system frequency
dynamics. In the context of wind-energy conversion systems, zonotopes have also been used
in design verification problems pertaining to voltage ride-through capabilities of the system’s
power electronics converter [21].

It is important to note that in relation to the works in [18, 19, 20], while we also use
zonotopes for uncertainty modeling, our setting is very different in the sense that we are
interested in capturing the impact of uncertainty in variable generation on the power flow.
In other words, instead of dealing with a dynamic problem as in [18, 19, 20], we solve a
static problem similar to the one we worked on in our earlier papers [22], [16], where we
used ellipsoids instead of zonotopes; however, ellipsoids bounding the system uncertainty
become more difficult to compute as its size increases. In this report, we show that the use
of zonotopes complements the ellipsoidal methods we proposed in [22], [16], as they fill in
many of the shortcomings associated with ellipsoids.

The remainder of this report is organized as follows. In Chapter 2, we introduce
the fundamental ideas behind uncertainty modeling using zonotopes and apply them to
study the impact of uncertain renewable-based electricity generation in power systems. We
illustrate these ideas through a simple 4-bus example. Chapter 3 presents the results of the
proposed methodology applied to the IEEE 34-bus and 123-bus distribution systems, and
the IEEE 145-bus transmission system. We compare the performance of our method against
the linearized and the nonlinear power flow computations and present the results in Chapter
4. Concluding remarks are made in Chapter 5.
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Chapter 2

Uncertainty in Power Systems

In this chapter, we introduce a set-theoretic method for capturing the effect of uncertainty
in renewable-based electricity generation on the power system state variables, i.e., voltage
magnitudes and angles. The unknown-but-bounded uncertainty in the renewable-based gen-
eration is upper-bounded with a zonotope. We linearize the power flow equations around a
nominal operating point (based on the nominal forecast of renewable-based power genera-
tion profile), and propagate the zonotope through the linearized system to obtain another
zonotope that bounds the power system static states.

2.1 Power System Model Fundamentals

In order to capture the impact of uncertainty in renewable-based electricity generation con-
nected to the power system network, we first present the conventional power flow equations.
Let Vi and θi denote the voltage magnitude and angle of bus i and P g

i (P d
i ) and Qg

i (Qd
i )

denote the generation (demand) of real and reactive power at bus i. Then, the power balance
equations for real and reactive power at bus i can be written as,

P = Vi

n∑
k=1

Vk [Gik cos(θi − θk) +Bik sin(θi − θk)] ,

Q = Vi

n∑
k=1

Vk [Gik sin(θi − θk)−Bik cos(θi − θk)] ,
(2.1)

where P = P g
i −P d

i , Q = Qg
i −Qd

i ; Gik and Bik are the real and imaginary parts of the (i, k)
entry in the network admittance matrix, respectively. For an n bus system, let m denote the
number of PQ buses. Then, after removing the slack bus active and reactive power balance
equations (assumed to be bus 1), and the reactive power balance equations for the PV buses,
we can write the remaining equations of (2.1) as

u+ w = f(x), (2.2)

where the nonlinear vector function f : Rn+m−1 7→ Rn+m−1 denotes the mapping between
the system states and the power injections; x ∈ Rn+m−1 represents unknown quantities to be
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Figure 2.1: Construction of a zonotope.

solved for, which includes Vi and θi for PQ buses and θi for PV buses; u ∈ Rn+m−1 contains
active power injections in PV buses arising from conventional sources and the demands of
active power in PV buses and the demand of both active and reactive power in PQ buses;
w ∈ Rn+m−1 contains renewable-based active power generation in the PV and PQ buses, and
the reactive power injections in PQ buses. Note that in (2.2), the entries of u corresponding
to reactive power balance equations in PQ buses and the entries of w corresponding to buses
without renewable-based generation and load are all zero.

2.2 Zonotopes

Zonotopes are a special instance of polytopes which can be defined as the Minkowski sum
of a finite number of line segments. Formally, a zonotope is defined as

W = {w : w = w0 +
s∑
j=1

αjgj, −1 ≤ αj ≤ 1}. (2.3)

where w0 ∈ Rn+m−1 is the center of the zonotope and g1, g2, . . . , gs ∈ Rn+m−1 form the set
of linearly independent generators [17]. Figure 2.1 illustrates how a zonotope is constructed
from the Minkowski sum of its generators.

Zonotopes also have the useful property of being closed under linear transformations.
Thus, given a zonotope W and a linear transformation matrix H ∈ R(n+m−1)×(n+m−1), we
can obtain another zonotope X after applying the linear transformation as follows:

X = HW

= {x : x = Hw0 +H

s∑
j=1

αjgj, −1 ≤ αj ≤ 1}. (2.4)

2.3 Problem Statement: Unknown-but-bounded Model

In general, load forecasts are more accurate than renewable-generation forecast [23]. There-
fore, we assume that uncertainty in the power injections only appear in w (although we
can easily extend our formulation to include uncertainty in the load). The vector w can be
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Figure 2.2: Four-bus system with renewable power injection.

expressed as w = w0 + ∆w where w0 denotes the vector of nominal values that w takes from
the generation forecast. Assuming the values that w can take are unknown-but-bounded, we
can capture the uncertainty in w with a zonotope W according to (2.3). The magnitudes of
the generators correspond to the amount of uncertainty in the values of w. In addition, the
angles between each pair of generator vectors provide a measure of correlation between the
variables of w.

Example 1 (Four-bus system) Consider the four-bus system shown in Fig. 2.2 with renewable-
based resources connected to buses 2, 3, and 4. Suppose the nominal forecast for renewable
generation is w0 = [P 0

g2 P 0
g3 P 0

g4]
T = [0.4 0.3 0.5]T p.u. with an uncertainty of ±50%

of the nominal forecast. Then, following the notation of (2.3), the generator vectors are
g1 = [0.2 0 0]T , g2 = [0 0.15 0]T , and g3 = [0 0 0.25]T . For this particular example, the
zonotope W capturing the uncertainty in w is a rectangular prism with sides having lengths
of 0.4, 0.3, and 0.5, centered at [0.4 0.3 0.5]T . �

We are interested in propagating this uncertainty set W through the power system
model of (2.1) to obtain a set X that bounds all possible values that the system state x can
take. To do this, we first linearize the nonlinear mapping f(·) about its nominal solution x0
corresponding to w = w0 and u = u0. Let ∆w := w−w0 where w ∈ W . Then for sufficiently
small w,

∆w ≈ J∆x, (2.5)

where J = ∂f
∂x

∣∣∣
x0

is the power flow Jacobian evaluated at x0. Thus, inverting the Jacobian,

we can express the sensitivity of the state variable x to w as

∆x ≈M∆w, (2.6)

where M = J−1.
Zonotopes have the useful property of being closed under linear transformations. Thus,

given the input uncertainty set W defined in (2.3), we can propagate the zonotope through
(2.6) to obtain a set X that contains all possible values that x can attain as follows:

X = HW

= {x : x = Hw0 +H
s∑
j=1

αjgj, −1 ≤ αj ≤ 1}. (2.7)
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Figure 2.3: Four-bus test system’s input and state bounding zonotopes.

Example 2 (Four-bus system) Continuing with the four-bus system of Example 1, we
compute the zonotope X that bounds the possible values of the state vector x resulting from
uncertainty in the active power injections in w using (2.7). The center of zonotope X , x0,
is computed from w0 using the nonlinear power flow equations of (2.1). Table 2.1 shows the
nominal power flow solutions of this system. The zonotope W capturing the uncertainty in
w is projected onto the Pg3−Pg4 axis and shown in Fig. 2.3(a) and the resulting zonotope X
bounding the system states V2 and V3 is shown in Fig. 2.3(b). In addition, we sampled the
input space W and calculated the corresponding exact solutions to the power flow equations
of (2.1). In Fig. 2.3(b), we see that one of the solutions points lie on the outside of the
zonotope X , which can be attributed to error from linearization. �

2.3.1 Performance Requirements Verification

In a power system, static performance requirements include constraints in the form of interval
ranges on i) the values that system states can take, and/or ii) the values that functions of
these states can take. For example, bus voltage magnitudes are generally required to remain
within ±5% of its nominal value. Also, transmission line flows, which can be obtained as
a function of the states, are constrained by maximum capacity limits. Thus, once X ≈
{x0} ⊕ ∆X is obtained, we can verify whether a system meets all its performance criteria
for the renewable-based generation scenario described by W .

Table 2.1: Four-bus system nominal power flow solution.

w0
P 0
g2

Q0
g2

P 0
g3

Q0
g3

P 0
g4

Q0
g4

0.4 0 0.3 0 0.5 0

u0
P 0
l2

Q0
l2

P 0
l3

Q0
l3

P 0
l4

Q0
l4

0.8 0.25 0.5 0.1 0.9 0.5

x0
V 0
2 θ02 V 0

3 θ03 V 0
4 θ04

0.987 −0.124◦ 0.972 −0.273◦ 0.965 −0.302◦
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Figure 2.4: Input uncertainty set partition.

Let z = h(x) define some performance metric of interest, where h : Rn+m−1 7→ Rp,
and let Φ denote a set in Rp defined by performance requirements. Then, for the system
to meet all its performance criteria, the set Z that results from X and the mapping h(·),
i.e., Z = {z : z = h(x), x ∈ X}, must be contained in Φ. As already mentioned, unless
h(·) is linear, mapping a set through a nonlinear function is not an easy task. Therefore,
as before, we resort to linearization to obtain Z ≈ {z0} ⊕∆Z, where z0 = h(x0), and then
check whether or not {z0} ⊕∆Z ⊆ Φ.

Requirements on the values that system states can take

In this case z = x, thus performance requirements constrain the values that the state x can
take to some region of the state space Φ defined by the symmetric polytope

Φ = {x : |πTi (x− x0)| ≤ 1 ∀i = 1, . . . , n+m− 1}. (2.8)

where πi ∈ Rn is a unitary vector parallel to the ith axis. Since z = x, then Z = X ; thus in
order to verify that the system meets performance requirements for any w ∈ W , we need to
verify whether or not {x0}+ ∆X ⊆ Φ.

2.3.2 Very Large Variations in Renewable-Based Power

The linearization in (2.5) is justified for a small change in w around w0. If the uncertainty
in w is large, then the accuracy of the linearization degrades and the exact solutions may lie
outside of the zonotope bound X , which was exemplified in Example 2. However, for large
variability, we can improve the accuracy of X by subdividingW into a partition of l disjoint
subsets {W̃1, W̃2, . . . , W̃l}, i.e.,W =

⋃l
i=1 W̃i, where W̃i

⋂ W̃j = ∅, ∀i 6= j. While the shape
of the W̃i’s could be arbitrary as long as they form a partition of W , we choose them to
also be zonotopes with the same shape and orientation as W and all of equal size; the idea
is graphically depicted in Fig. 2.4 for a two-dimensional set. The centers of all the W̃i’s can
be obtained from (2.3) and are given by

C = {w : w =w0 +
s∑
j=1

αjgj, αj = ±(1 + 2k)/(2nj),

k = 0, 1, ..., nj − 1}, (2.9)
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where 2nj is the number of segments into which the segment that spans the set W in the
direction of the jth axis is divided. Then, W̃i, which corresponds to w0i ∈ C, is described by

W̃i = {w : w = w0i +
s∑
j=1

αjgj, −1/(2nj) ≤ αj ≤ 1/(2nj)}

Each W̃i is constructed, via appropriate choice of nj, so that the variations in w around
w0i are sufficiently small such that ∆w ≈ Ji∆x, where Ji is the power flow Jacobian evaluated
at x = x0i , i.e., the power flow solution that corresponds to w0i . In this way, the problem
is divided into several subproblems. By applying the same ideas as previously mentioned to
each zonotope W̃i, we obtain X̃i, the set that bounds all bus voltage magnitudes and angles
corresponding to variations in W̃i. Finally, the set X that bounds all possible values that
bus voltage magnitudes and angles can take as a result of W is given by

X =
l⋃

i=1

X̃i. (2.10)
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Chapter 3

Case Studies

In this chapter, we validate the framework developed in Chapter 2 by comparing the results
obtained using the proposed analysis method against the exact solutions computed from the
power flow equations (2.1). The case studies are performed on the IEEE 34-bus and 123-bus
test systems taken from the IEEE PES Distribution System Analysis Subcommittee and
have a power base of 100 kVA and a voltage base of 4.16 kV [24]. To show the applicability
of this method to large transmission systems, we apply the method to the IEEE 145-bus, 50-
machine transmission system [25, 26]. These systems are modified to include power injection
resulting from renewable resources at a subset of buses. For each case study we linearize
the system before propagating the uncertainty in renewable-based generation through the
model. Then we examine the impact of uncertainty on bus voltage magnitudes. The MatLab
code for simulating the case studies are provided in Appendix B.

3.1 34-bus System

The one-line diagram and complete description for this system can be found in [24]. Suppose
that for this system, renewable-based electricity resources are installed at buses 3, 7, 10, 15,
18, 23, 27, 29, 30, and 34, with nominal real power injection of 1 p.u. and an uncertainty
of ±50% (±0.5 p.u.) around the nominal value. In order to determine whether the system
states will remain within bounds dictated by performance requirements, we first we bound
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V
3
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.u
.]

 

 

X
Exact Solution
Linear Approx.
Voltage Constraints

(a) Renewable-based power injections with variabil-
ity of ±50% around each nominal value of 1 p.u.

1.0488 1.0489 1.049 1.0491 1.0492
0.97

0.98
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1

1.01
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V
3
4
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.u
.]

 

 

X
Linear Approx.
Exact Solution

(b) Renewable-based power injections with variabil-
ity around each nominal value of 0.4 p.u.

Figure 3.1: 34-bus system: power flow solutions and state-bounding zonotope projections.
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the power injection space with zonotope W . Then we compute the corresponding state-
bounding zonotope X using (2.7). The resulting zonotope is projected onto the subspace
defined by the V2-V34 axis and shown in Fig. 3.1(a). Additionally, we also sampled the input
power injection space and obtained the corresponding solutions of the linearized power flow
as well as the exact solutions of the nonlinear power flow and depicted them with squares and
circles, respectively. The resulting projection of the zonotope X contained all the linearized
power flow solutions and all but the extrema of the nonlinear power flow solution. Thus,
we can conclude that the linearization is fairly accurante. In fact, for this case study, we
computed the percent error between the voltage magnitudes obtained through linearized
power flow and nonlinear power flow for each sample point and found the maximum to be
only 3.14%. From the figure, we can also conclude that for the uncertainty levels selected,
a portion of the input space maps to a region in the solution state space that violates the
voltage constraints of 1.05 p.u., which are depicted with dashed lines. This conclusion is also
verified by the linearized and exact nonlinear power flow solutions. Therefore, we cannot
conclude that the system states will remain within the performance requirements if this
system is subjected to this level of uncertainty in power injection arising from renewable
resources.

Now suppose the nominal real power injection is 0.4 p.u. (instead of 1 p.u.) at the
same buses and that the uncertainty of the power injections at the affected buses remains at
±50% (±0.5 p.u.) around the nominal value. The result is shown in Fig. 3.1(b) along with
the linearized and exact nonlinear power flow solutions. We conclude that for the the power
injection and uncertainty levels chosen, no voltage magnitude violations for buses 2 and 34
are detected.

The one-line diagram and complete description for this system can be found in [24].
Suppose that for this system, renewable-based electricity generation resources are installed
at buses 80, 95, 96, 103, 108, 110, 115, 121, 122, and 123, with nominal real power injection
of 1 p.u. and an uncertainty of ±50% (±0.5 p.u.) around the nominal value. In order to
determine whether the system states will remain within bounds dictated by performance
requirements, we first bound the power injection space with zonotopeW . Then we compute
the corresponding state-bounding zonotope X using (2.7). The resulting zonotope is pro-
jected onto the subspace defined by the V110-V123 axis and shown in Fig. 4.1(a). Additionally,
we sampled the input power injection space and obtained the corresponding solutions of the
linearized power flow as well as the exact solutions of the nonlinear power flow and depicted
them with squares and circles, respectively. The resulting projection of the zonotope X
contained all the linearized power flow solutions and all but the extrema of the nonlinear
power flow solution. Thus, we can conclude that the linearization is fairly accurate. In fact,
for this case study, we computed the percent error between the voltage magnitudes obtained
through the linearized power flow and the nonlinear power flow for each sample point and
found the maximum to be only 2.5%.
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3.2 123-bus Distribution System

From Fig. 4.1(a), we can also conclude that for the uncertainty levels selected, a portion
of the input space maps to a region in the solution state space that violates the voltage
constraints of 1.05 p.u., which are depicted with dashed lines. This conclusion is also verified
by the linearized and exact nonlinear power flow solutions. Therefore, we cannot conclude
that the system states will remain within the performance requirements if this system were
subjected to this level of uncertainty in power injection arising from renewable resources.

Now suppose the nominal real power injection is 0.8 p.u. (instead of 1 p.u.) at the
same buses and that the uncertainty of the power injections at the affected buses remains at
±50% (±0.4 p.u.) around the nominal value. The result is shown in Fig. 4.1(b) along with
the linearized and exact nonlinear power flow solutions. We conclude that for the the power
injection and uncertainty levels chosen, no voltage magnitude violations for buses 110 and
123 are detected.

Next, we show how the proposed method can be used to assess whether or not the
active power flow through Lines 2 and 100 violate corresponding requirements. In Fig. 3.3,
we plot the line flow bounding zonotope Z computed from a corresponding X bounding the
state variable uncertainty. We also plot several exact line flow solution points obtained from
the nonlinear power flow equations by sampling the input space; note that all these points
are contained in Z.
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Figure 3.2: 123-bus system: nonlinear and linearized power flow solutions, and state-
bounding zonotope projections.

3.3 145-bus Transmission System

A full description of the IEEE 145-bus transmission system can be found in [25]. Suppose
renewable-based electricity resources are installed at the buses listed in Table 3.1, which
also specifies their respective nominal power outputs and uncertainty in power injection.
We capture this uncertainty with a zonotope W , and use it to compute the state-bounding
zonotope X that contains all possible values of x. The projection of X onto the V100-V133
axes is shown in Fig. 3.4 along with the exact power flow solutions. As in the 123-bus case,
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Figure 3.3: 123-bus power system.

all of the solution points lie within X except for one lower extreme point, which can be
attributed to the error resulting from linearization. Again, we computed the maximum error
of the voltage magnitudes between the linearized power flow and nonlinear power flow to be
only 1.13%. Therefore, with this particular level of uncertainty in the power injection, the
linearization provides an accurate estimate for the nonlinear power flow solutions.
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Figure 3.4: 145-bus power system.

Table 3.1: 145-bus system: data for renewable-based power injection variations.
Bus 70 85 96 110 112 120 125 128 130 133

Nominal Value [p.u.] 1 1.5 1 1 1 1.5 1 1.5 1 1
Variation [p.u.] 0.3 0.4 0.2 0.3 0.6 0.7 0.4 0.4 0.5 0.4
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Chapter 4

Performance Evaluation

In this chapter, the computation time of our method is evaluated against those of solving the
linearized and nonlinear power flows in MATLAB. We also compare the computation time
of zonotopes against those of using ellipsoids (see Appendix A for a review of elliposoids).
Our code is run on a computer equipped with Intel Core 2 Quad 8400 processor running
at 2.66 GHz. For our method, we provide the time required to compute X from the input
uncertainty space W along with the time required to compute the linearized and nonlinear
power flow solutions by sampling the extremas ofW . For the ellipsoidal method, we provide
the overall amount of time required to obtain the minimum-volume ellipsoid enclosing the
system state variables. For the ellipsoidal method, the majority of the time is spent on
computing the ellipsoid bounding the input uncertainty.

The computation times required for each of the test cases in Chapter 3 and the 4-bus
example are shown in Table 4.1. As the number of buses with renewable-based generation
increase, the time required to compute the nonlinear power flow solutions corresponding to
the extremas ofW grows much more quickly than that required for the linearized power flow,
zonotope, and ellipsoidal methods. In fact, obtaining the exact power flow solutions required
more than 12 hours to solve when there are more than 12 buses with renewable-based gener-
ation, while the computation time for the zonotope and ellispoidal method remained nearly
constant. Lastly, if interior points of the input space were also sampled in addition to the
extremas of W , then significantly longer times are required for obtaining the corresponding
nonlinear and linearized power flow solution points, rendering the computations intractable.
On the other hand, our proposed method does not exhibit any significant increase in com-
putation time when used on a larger system. Although the computational times for both
ellipsoids and zonotopes seem low, zonotopes do have the extra flexibility of being able to

Table 4.1: Comparison of overall computation times [s] for for 4-,34-, 123-, and 145-bus
systems.

4-bus 34-bus 123-bus 145-bus
Ellipsoid 1.29 2.96 2.62 2.55
Zonotope 0.00037 0.012 0.038 0.15

Linear Approx. 0.00002 0.007 0.046 0.057
Nonlinear PF 0.011 13.45 173.55 219.15
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handle asymmetrical power injections. If ellipsoids were used to capture asymmetrical power
injections, then the optimization used to compute the minimum-volume input ellipsoids does
not scale well to the size of the system.

For comparison, we computed the state bounding ellipsoid, E , for the same 123-bus
example shown in Fig. 3.2 and show the results in Fig. 4.1. For this example, we conclude
that the ellipsoids captured additional points that are extraneous to the zonotopes; that is,
the zonotopes provide a better bound to the uncertainty in power system state variables
than ellipsoids.
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Figure 4.1: 123-bus system: zonotopes and ellipsoids.
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Chapter 5

Conclusion

This report proposes a set-theoretic method to assess the impact of unknown-but-bounded
power injections resulting from renewable resources. The unknown-but-bounded uncertainty
in the power injections are captured using a zonotope which is subsequently propagated
through the linearized power-flow model of the system to obtain another zonotope that
bounds the worst-case deviation of the system state variables. From this method, we can
determine whether the system state variables will remain within the ranges specified by
operational requirements when subjected to the uncertainty in renewable generation. This
proposed method can be combined with other set-theoretic methods such as using ellipsoids
to provide a more comprehensive tool set for uncertainty analysis.

The validity of this method is verified on three test systems. From the test cases,
we have shown that the results using our method matches closely to those obtained from
repeatedly solving the nonlinear power flow for different power injections associated with
various levels of uncertainty. We have also shown that our method is highly scalable with
the dimensionality and the size of the system. The performance of the method is compared
against those of ellipsoids and power flow equations.

Future work may include an analysis of the limits of the small-signal approximation to
the power flow model. In this regard, we may wish to bound the higher-order Taylor series
terms to obtain more accurate bounds for the variations in systems states caused by even
deeper penetration levels than those considered in the case studies of this report. An error
analysis on the linear approximation can be conducted by bounding the higher-order terms
of a Taylor series expansion with the Lagrange remainder. By including the higher-order
terms, we might be able to capture solution points that may lie outside of the set obtained
from the linearized model.
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Appendix A

Ellipsoids

In this appendix, we review a method to obtain a family of ellipsoids whose intersection
provides a tight over-approximation of the input uncertainty set. Consider a static linear
system described by

x = Hw, (A.1)

where x ∈ Rr are the system states, w ∈ Rs are the system inputs, and H ∈ Rr×s. Assume
that the values w can take are unknown but bounded, i.e., the possible values of w are
contained in some closed and bounded zonotope set W ⊆ Rs. The objective is to obtain
a set X ⊆ Rr that contains all possible values that x can attain. In order to achieve
this, we first approximate the zonotope W by the intersection of a family of ellipsoids E =
{E1, E2, . . . , Ej, . . . }, each of which upper bounds W , i.e.,

w ∈ W ⊆
⋂
i

Ei, (A.2)

with

Ei = {w : (w − w0)
TΨ−1i (w − w0) ≤ 1}, (A.3)

where Ψi is a positive definite matrix known as the shape matrix and w0 is the center of
the ellipsoid Ei. Now, we propagate each ellipsoid Ei through (A.1) with the objective of
obtaining a set Fi that contains all possible values of x that results from all possible values
that w ∈ Ei can take. Since w ∈ W ⊆ Ei, ∀i, it immediately follows that x ∈ X ⊆ Fi, ∀i,
and hence,

x ∈ X ⊆
⋂
i

Fi. (A.4)

Furthermore, it turns out that ellipsoids are closed under linear transformations; therefore
the set Fi is also an ellipsoid and thus can be defined as

Fi = {x : (x− x0)TΓ−1i (x− x0) ≤ 1}, (A.5)

where x0 = Hw0 and Γi = HΨiH
T (see, e.g., [27]). The ideas introduced above are graphi-

cally depicted by Fig. A.1 for a two-dimensional system with an input setW upper bounded
by the intersection of two ellipsoids, E1 and E2, which map to F1 and F2 respectively. As
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Uncertain Inputs System States

Figure A.1: Ellipsoids E1 and E2 boundingW (the set of all possible values that w can take),
and corresponding ellipsoids F1 and F2 bounding X .

shown in the figure, the intersection of F1 and F2 contains the set X . The accuracy of
the upper-bounding approximation of X provided by (A.4) depends on the choice of the
ellipsoids in the family E = {E1, E2, . . . , Ej, . . . } upper bounding the set W .

The approach to obtaining a family of ellipsoids E = {E1, E2, . . . , Ej, . . . } whose in-
tersection tightly upper bounds W is to choose each Ei to contain W while minimizing its
projection onto some direction defined by a unitary vector ηi normal to the hyperplanes
of W , H+

i and H−i . Thus, by minimizing the projection of the ellipsoid onto the direction
defined by ηi we obtain an ellipsoid that is tight to the hyper-faces H+

i and H−i of W . This
is graphically represented in Fig. A.2.

The hyperplanes H+
i and H−i are defined by

H+
i = {w : ηTi [w − (w0 + gi)] = 0},
H−i = {w : ηTi [w − (w0 − gi)] = 0},

(A.6)

and ηi is the unitary vector defining the hyperplane H+
i , such that ηTi (w+ gi) > 0, ∀w /∈ W .

Then, ηi is the vector normal to the hyperplane H+
i that contains the corresponding hyper-

face of the zonotopeW . The projection of the ellipsoid Ei = {w : (w−w0)
TΨ−1i (w−w0) ≤ 1}

onto the direction defined by ηi is given by πEi(ηi) = 2
√
ηTi Ψiηi [28]. Thus, the problem of

obtaining Ei can be cast into an optimization program as follows:

minimize

subject to

√
ηTi Ψiηi

vTΨ−1i v ≤ 1; ∀v ∈ V ,√
ηTj Ψiηj ≤ kj; ∀j 6= i,

(A.7)

where V is the set of vertices of W , and kj is the maximum length of the semi-major axis in
the ηj direction. The first inequality enforces that the resulting Ei contains W . The second

Figure A.2: Hyperplanes (H+
i , H−i ) and directions of minimum span (ηi),
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set of inequalities constrains the projection of Ei onto the directions defined by the vectors
normal to all other hyperplanes H+

j , j 6= i and are included for solvability.
While the method described in (A.7) provides in general an accurate approximation of

the input setW by obtaining a family of ellipsoids E = {Ei, i = 1, . . . , s}, it requires solving
the optimization program in (A.7) for each of input-bounding ellipsoids, up to the dimension
of the input set, s; this computation can be parallelized using, e.g., the MATLAB parallel
toolbox. In this regard, tightly upper bounding W results in a very accurate upper-bound
on the set X .

In certain cases, it may be convenient to obtain a single bounding ellipsoid for W
and conduct the analysis for just this ellipsoid. While any of the ellipsoids in the family
E = {Ei, i = 1, . . . , s} would serve this purpose, recall that each Ei ∈ E is tight to W in
a particular direction defined by ηl in the sense that projection of of the ellipsoid onto the
direction defined by ηl is minimal, but its projection onto other directions ηi, i 6= l might be
much larger than the actual projection ofW onto that direction. Thus, an alternative to this
problem is to obtain an ellipsoid E0 = {w : (w − w0)

TΨ−10 (w − w0) ≤ 1} that minimizes the
sum of the projections onto all directions defining the semi-axes of E0, which is equivalent to
minimizing the sum of the squared semi-axes of E0 [28]. The sum of the squared semi-axis
of E0 is given by the τE0 = trace(Ψ0). Thus, the problem of obtaining E0 can be casted into
an optimization program:

minimize

subject to

trace(Ψ0)

vTΨ−10 v ≤ 1, ∀v ∈ V . (A.8)
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Appendix B

MATLAB Simulation Code

B.1 Four-Bus System

1 clear a l l ;
2 close a l l ;
3 clc ;
4

5 load Node4 . mat ;
6 bus (2 , 4 ) = 0 . 4 ;
7 bus (3 , 4 ) = 0 . 3 ;
8 bus (4 , 4 ) = 0 . 5 ;
9

10 [ s o ln ybus L J ] = g e t p f ( bus , l ine ) ;
11

12 H = inv ( J ) ;
13 S=g e t p f v 3 ( so ln , l ine ) ;
14 P=real (S) ;
15 Q=imag(S) ;
16

17 [ row c o l ] = s ize (H) ;
18

19 Ps i g1 = 1e−9 ∗ eye ( s ize (H) ) ;
20 Psi output = Ps i g1 ;
21 Ps i output c i r cum = Ps i g1 ;
22 Ps i g2 = Ps i g1 ;
23 Ps i g3 = Ps i g1 ;
24 Ps i g4 = Ps i g1 ;
25

26 %Circumscribed E l l i p s o i d , 0 .4 0 .3 0 .5
27 Ps i g1 (1 , 1 ) =0.019200359813707;
28 Ps i g1 (2 , 2 ) =0.010800200973839;
29 Ps i g1 (3 , 3 ) =0.029998879653079;
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30

31 %Rectangular Bounds , Tight , 0 .4 0 .3 , 0 .5
32 Ps i g2 (1 , 1 ) =1.166400001020240;
33 Ps i g2 (2 , 2 ) =0.007239848297445;
34 Ps i g2 (3 , 3 ) =0.020109999995486;
35

36 Ps i g3 (1 , 1 ) =0.012841364416638;
37 Ps i g3 (2 , 2 ) =1.123600000627010;
38 Ps i g3 (3 , 3 ) =0.020063939576689;
39

40

41 %Generate Max i n s c r i b e d e l l i p a t output bounds
42 n=3;
43

44 V max=zeros (n ,2ˆn) ;
45 d V=0.05∗ ones (1 , n ) ;
46

47 m = 2∗n ;
48

49 A = zeros (m, n) ; b = zeros (m, 1 ) ;
50

51 for i =1:m
52 A( i , ce i l ( i /2) ) = (−1) ˆ( i −1) ;
53 b( i ) = d V( ce i l ( i /2) ) ;
54

55 end
56

57 cvx beg in
58 v a r i a b l e B(n , n) symmetric
59 v a r i a b l e d(n)
60 maximize ( de t roo tn ( B ) )
61 sub j e c t to
62 for i = 1 :m
63 norm( B∗A( i , : ) ’ , 2 ) + A( i , : ) ∗d <= b( i ) ;
64 end
65 cvx end
66 Ps i out = B’∗B;
67 Psi output ( 4 : 6 , 4 : 6 )=Ps i out ;
68 d=ones (1 , n ) ;
69

70 R squared =3∗0.05ˆ2
71 Ps i out c i r cum=diag ( ones (3 , 1 ) ∗R squared )
72 Ps i output c i r cum ( 4 : 6 , 4 : 6 )=Ps i out c i r cum ;
73

74 %genera te zonotope

20



75 g=[0 0 0 0 .05 0 0 ; 0 0 0 0 0 .05 0 ; 0 0 0 0 0 0 . 0 5 ] ’ ;
76 c =[0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ; %c e n t e r o f zonotope
77 Z out = [ ] ;
78 for i =1:2
79 for j =1:2
80 for k=1:2
81

82 Z out =[ Z out c+(−1)ˆ i ∗g ( : , 1 ) +(−1)ˆ j ∗g ( : , 2 ) +(−1)ˆk∗g
( : , 3 ) ] ; %V e r t i c e s o f zonotope

83 end
84 end
85 end
86 [ a , b]= s ize ( Z out )
87

88

89 numout=zeros ( a , b ) ;
90 for numin=0:b−1
91 numout ( : , numin+1)=de2bi ( b i t xo r (numin , b i t s h i f t (numin ,−1) ) , a ) ’ ;
92 end
93

94 for i =1:b
95 Z out ( : , i )=c+(−1)ˆnumout (1 , i )∗g ( : , 1 ) +(−1)ˆnumout (2 , i )∗g ( : , 2 )

+(−1)ˆnumout (3 , i )∗g ( : , 3 ) ;
96 end
97

98

99 %Maximum Output E l l i p s o i d Bound
100 f igure
101 hold on
102 pro j = zeros (2 , row ) ;
103 x = 2 ; % v o l t a g e at bus x
104 y = 3 ; % v o l t a g e at bus y
105 v o l t x = 1 ;
106 v o l t y = 1 ;
107 pro j (1 , x−1+row /2) = 1 ;
108 pro j (2 , y−1+row /2) = 1 ;
109 P s i p r o j 1 = pro j ∗ Psi output ∗ proj ’ ;
110 Ps i p ro j 1 c i r cum = pro j ∗ Ps i output c i r cum ∗ proj ’ ;
111

112

113 ang l e s = 200 ;
114 theta = linspace ( 0 , 2 ∗ pi , ang l e s ) ;
115 e l l i p s o i d 1= sqrtm( P s i p r o j 1 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
116 e l l i p s o i d 1 c i r c u m= sqrtm( Ps i p ro j 1 c i r cum ) ∗ [ cos ( theta ) ;

sin ( theta ) ] ;
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117

118

119 p1=plot ( e l l i p s o i d 1 ( 1 , : ) , e l l i p s o i d 1 ( 2 , : ) , . . .
120 ’−k ’ , ’ LineWidth ’ , 3 ) ;
121 p2=plot ( e l l i p s o i d 1 c i r c u m ( 1 , : ) , e l l i p s o i d 1 c i r c u m ( 2 , : ) , . . .
122 ’−r ’ , ’ LineWidth ’ , 3 ) ;
123

124 axis ( [−0.09 0 .09 −0.09 0 . 0 9 ] )
125 grid on ;
126

127 pro j zonotope=zeros ( a /2 ,2) ;
128 pro j zonotope (x−1 ,1)=1; pro j zonotope (y−1 ,2)=1;
129 g i n=g∗ pro j zonotope ;
130 Z in = [ ] ;
131 for i =1:2
132 for j =1:2
133

134 Z in =[ Z in c+(−1)ˆ i ∗ g i n ( : , 1 ) +(−1)ˆ j ∗ g i n ( : , 2 ) ] ; %
V e r t i c e s o f zonotope

135 end
136 end
137 [ a , b]= s ize ( Z in )
138

139 numout=zeros ( a , b ) ;
140 for numin=0:b−1
141 numout ( : , numin+1)=de2bi ( b i t xo r (numin , b i t s h i f t (numin ,−1) ) , a ) ’ ;
142 end
143

144 for i =1:b
145 Z in ( : , i )=c+(−1)ˆnumout (1 , i )∗ g i n ( : , 1 ) +(−1)ˆnumout (2 , i )∗ g i n

( : , 2 ) ;
146 end
147

148 k=convhul l ( Z out (x−1+row / 2 , : ) , Z out (y−1+row / 2 , : ) ) %p r o j e c t the
zonotope and g e t convex h u l l

149 p2=plot ( Z out (x−1+row /2 , k ) , Z out (y−1+row /2 , k ) , ’b ’ , ’ LineWidth ’ ,
4) ; %p l o t the zonotope

150 set (gca , ’ f o n t s i z e ’ ,36 , ’ fontname ’ , ’ t imes new roman ’ ) ; . . .
151 x l=xlabel ( ’ $ V 2 $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,38 , ’ fontname ’ , ’ t imes new

roman ’ ) ;
152 set ( xl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
153 y l=ylabel ( ’ $ V 3 $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,38 , ’ fontname ’ , ’ t imes new

roman ’ ) ;
154 set ( yl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
155 l 1=legend ( [ p1 ] , ’ $\Delta\mathcal{E} 0$ ’ , ’ l o c a t i o n ’ , ’ SouthEast
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’ ) ;
156 set ( l1 , ’ FontSize ’ ,37 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
157

158

159 x = 2 ; % v o l t a g e at bus x
160 y = 3 ; % v o l t a g e at bus y
161 v o l t x = so ln (x , 2 ) ;
162 v o l t y = so ln (y , 2 ) ;
163

164

165 %Monte Carlo f o r Finding e x a c t Reach s e t
166 Percent1 =0.2 ;
167 Percent2 =0.2 ;
168 Percent3 =0.2 ;
169 Rating1 =0.4; %rated output
170 Rating2 =0.3;
171 Rating3 =0.5;
172 i=−Percent1∗Rating1 : 0 . 0 4 : Percent1∗Rating1 ;
173 j=−Percent2∗Rating2 : 0 . 0 4 : Percent2∗Rating2 ;
174 k=−Percent3∗Rating3 : 0 . 0 4 : Percent3∗Rating3 ;
175 f igure
176 hold on
177 Out = [ ] ;
178 Out nonl inear = [ ] ;
179 draw = 1 ;
180 for count i =1: length ( i )
181 for count j =1: length ( j )
182 for countk =1: length ( k )
183 bus loop = bus ;
184 bus loop (2 , 4 ) = bus (2 , 4 ) + i ( count i ) ;
185 bus loop (3 , 4 ) = bus (3 , 4 ) + j ( count j ) ;
186 bus loop (4 , 4 ) = bus (4 , 4 ) + k ( countk ) ;
187 [ s o ln ybus L J ] = g e t p f ( bus loop , l ine ) ;
188 Out nonl inear = [ so ln ( 2 : 4 , 3 ) ; s o ln ( 2 : 4 , 2 ) ] ;
189

190 i f draw == 1
191 p3=plot ( Out nonl inear (x−1+row /2) , Out nonl inear (y−1+row /2) , ’ o ’

, ’ MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ r ’ ) ;
192 draw = 1 ;
193 else
194 draw = 1 ;
195 end
196 end
197 end
198 end
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199

200 x p = 3 ; % power at bus x p
201 y p = 4 ; % power at bus y p
202

203

204 Gamma1 = H ∗ Ps i g1 ∗ H’ ;
205 Gamma2 = H ∗ Ps i g2 ∗ H’ ;
206 Gamma3 = H ∗ Ps i g3 ∗ H’ ;
207 Gamma input=J∗Psi output ∗J ’ ;
208 Gamma input circum=J∗Ps i output c i r cum ∗J ’ ;
209 p r o j i n p u t=zeros (2 , row ) ;
210

211 p r o j i n p u t (1 , x p−1) = 1 ;
212 p r o j i n p u t (2 , y p−1) = 1 ;
213 pro j = zeros (2 , row ) ;
214 pro j (1 , x−1+row /2) = 1 ;
215 pro j (2 , y−1+row /2) = 1 ;
216

217 Gamma proj input = p r o j i n p u t ∗ Gamma input ∗ pro j input ’ ;
218 Gamma proj input circum = p r o j i n p u t ∗ Gamma input circum ∗

pro j input ’ ;
219 Gamma proj1 = pro j ∗ Gamma1 ∗ proj ’ ;
220 Gamma proj2 = pro j ∗ Gamma2 ∗ proj ’ ;
221 Gamma proj3 = pro j ∗ Gamma3 ∗ proj ’ ;
222

223 ang l e s = 200 ;
224 theta = linspace ( 0 , 2 ∗ pi , ang l e s ) ;
225 e l l i p s o i d i n p u t=sqrtm( Gamma proj input ) ∗ [ cos ( theta ) ; sin (

theta ) ] ;
226 e l l i p s o i d i n p u t c i r c u m=sqrtm( Gamma proj input circum ) ∗ [ cos (

theta ) ; sin ( theta ) ] ;
227 e l l i p s o i d 1= sqrtm( Gamma proj1 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
228 e l l i p s o i d 2= sqrtm( Gamma proj2 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
229 e l l i p s o i d 3= sqrtm( Gamma proj3 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
230 p1=plot ( e l l i p s o i d 1 ( 1 , : )+vo l t x , e l l i p s o i d 1 ( 2 , : )+vo l t y , . . .
231 ’−k ’ , ’ LineWidth ’ , 3 ) ;
232 p2=plot ( e l l i p s o i d 2 ( 1 , : )+vo l t x , e l l i p s o i d 2 ( 2 , : )+vo l t y , . . .
233 ’−−k ’ , ’ LineWidth ’ , 2 ) ;
234 plot ( e l l i p s o i d 3 ( 1 , : )+vo l t x , e l l i p s o i d 3 ( 2 , : )+vo l t y , . . .
235 ’−−k ’ , ’ LineWidth ’ , 2 ) ;
236

237 %p l o t the zonotope bounding power i n j e c t i n o s
238 g i n=J∗g ;
239 Z in = [ ] ;
240 for i =1:2
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241 for j =1:2
242 for k=1:2
243

244 Z in =[ Z in c+(−1)ˆ i ∗ g i n ( : , 1 ) +(−1)ˆ j ∗ g i n ( : , 2 ) +(−1)ˆk∗ g i n
( : , 3 ) ] ; %V e r t i c e s o f zonotope

245 end
246 end
247 end
248 k=convhul l ( Z in ( x p −1 , : ) , Z in ( y p −1 , : ) ) ; %p r o j e c t the zonotope and

g e t convex h u l l
249

250

251 f igure ( ) ;
252 hold on ;
253 grid on ;
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B.2 34-Bus System

1 clear a l l ;
2 close a l l ;
3 clc ;
4 load Node34 . mat ;
5

6 %Power I n j e c t i o n s , A l l symmetric
7 Rating =0.8 ;
8 Percentage =0.5 ;
9 num gen=10;

10

11 changed bus = [ 3 7 10 15 18 23 27 29 30 3 4 ] ;
12

13 for i = 1 : numel ( changed bus )
14 bus ( changed bus ( i ) , 4 ) = Rating ;
15 end
16

17 [ s o ln ybus L J ] = g e t p f ( bus , l ine ) ;
18 H = inv ( J ) ;
19 [ row c o l ] = s ize (H) ;
20

21 % Zonotopes
22 g i n=zeros ( row /2 , numel ( changed bus ) ) ;
23 for i =1:numel ( changed bus )
24 g i n ( changed bus ( i )−1, i )=Rating∗Percentage ;
25 end
26 Ps i g1 = 1e−7 ∗ eye ( s ize (H) ) ;
27

28 %Circumscribed E l l i p s o i d
29 R squared=num gen∗( Rating∗Percentage ) ˆ2 ;
30 for i = 1 : numel ( changed bus )
31 Ps i g1 ( changed bus ( i )−1, changed bus ( i )−1) = R squared ;
32 end
33

34 %v o l t a g e
35 x=28;
36 y=11;
37 v o l t x = so ln (x , 2 ) ;
38 v o l t y = so ln (y , 2 ) ;
39

40 c=so ln ( : , 2 ) ; %c e n t e r o f zonotope
41

42 %Monte Carlo f o r Finding e x a c t Reach s e t
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43

44 num step = 2 ;
45 i 1 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
46 i 2 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
47 i 3 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
48 i 4 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
49 i 5 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
50 i 6 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
51 i 7 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
52 i 8 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
53 i 9 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
54 i 10 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
55

56 f igure ( ’ p o s i t i o n ’ , [ 20 80 1300 80 0 ] ) ;
57 axes ( ’ p o s i t i o n ’ , [ 0 . 1 4 0 .14 0 .8 0 . 8 ] ) ;
58 hold on ; box on ; grid on ;
59

60 Out=zeros (1 , 66 ) ’ ;
61 draw = 1 ;
62 t o g g l e =1;
63 for count i1 =1: length ( i 1 )
64 for count i2 =1: length ( i 2 )
65 for count i3 =1: length ( i 3 )
66 for count i4 =1: length ( i 4 )
67 for count i5 =1: length ( i 5 )
68 for count i6 =1: length ( i 6 )
69 for count i7 =1: length ( i 7 )
70 for count i8 =1: length ( i 8 )
71 for count i9 =1: length ( i 9 )
72 for count i10 =1: length ( i 10 )
73

74 Out( changed bus−1)=[ i 1 ( count i1 ) i 2 ( count i2 ) i 3 ( count i3 ) i 4 (
count i4 ) i 5 ( count i5 ) i 6 ( count i6 ) i 7 ( count i7 ) i 8 ( count i8 ) i 9 (
count i9 ) i 10 ( count i10 ) ] ;

75 Out l inea r=H∗Out ;
76

77 bus loop = bus ;
78 bus loop (3 , 4 ) = bus (3 , 4 ) + i 1 ( count i1 ) ;
79 bus loop (7 , 4 ) = bus (7 , 4 ) + i 2 ( count i2 ) ;
80 bus loop (10 ,4 ) = bus (10 ,4 ) + i 3 ( count i3 ) ;
81 bus loop (15 ,4 ) = bus (15 ,4 ) + i 4 ( count i4 ) ;
82 bus loop (18 ,4 ) = bus (18 ,4 ) + i 5 ( count i5 ) ;
83 bus loop (23 ,4 ) = bus (23 ,4 ) + i 6 ( count i6 ) ;
84 bus loop (27 ,4 ) = bus (27 ,4 ) + i 7 ( count i7 ) ;
85 bus loop (29 ,4 ) = bus (29 ,4 ) + i 8 ( count i8 ) ;
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86 bus loop (30 ,4 ) = bus (30 ,4 ) + i 9 ( count i9 ) ;
87 bus loop (34 ,4 ) = bus (34 ,4 ) + i10 ( count i10 ) ;
88 [ s o ln ybus L J ] = g e t p f ( bus loop , l ine ) ;
89 Out nonl inear = [ so ln ( 2 : 3 4 , 3 ) ; s o ln ( 2 : 3 4 , 2 ) ] ;
90

91 i f draw == 1
92 i f t o g g l e==1
93 p3=plot ( Out nonl inear (x−1+row /2) ,

Out nonl inear (y−1+row /2) , ’ o ’ , ’ MarkerSize
’ , 8 , ’ MarkerFaceColor ’ , ’ r ’ ) ;

94 p2=plot ( Out l i n ea r (x−1+row /2)+vo l t x ,
Out l i n ea r (y−1+row /2)+vo l t y , ’ s ’ , ’
MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ y ’ ) ;

95 t o g g l e =0;
96 else
97 p2=plot ( Out l i n ea r (x−1+row /2)+vo l t x ,

Out l i n ea r (y−1+row /2)+vo l t y , ’ s ’ , ’
MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ y ’ ) ;

98 p3=plot ( Out nonl inear (x−1+row /2) ,
Out nonl inear (y−1+row /2) , ’ o ’ , ’ MarkerSize
’ , 8 , ’ MarkerFaceColor ’ , ’ r ’ ) ;

99 t o g g l e =1;
100 end
101 draw = 0 ;
102 else
103 draw = draw + 1 ;
104 end
105 end
106 end
107 end
108 end
109 end
110 end
111 end
112 end
113 end
114 end
115

116 plot ( Out nonl inear (x−1+row /2) , Out nonl inear (y−1+row /2) , ’ o ’ , ’
MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ r ’ ) ;

117 plot ( Out l i n ea r (x−1+row /2)+vo l t x , Out l i n ea r (y−1+row /2)+vo l t y , ’
s ’ , ’ MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ y ’ ) ;

118

119

120 Gamma1 = H ∗ Ps i g1 ∗ H’ ;
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121 pro j = zeros (2 , row ) ;
122 pro j (1 , x−1+row /2) = 1 ;
123 pro j (2 , y−1+row /2) = 1 ;
124 Gamma proj1 = pro j ∗ Gamma1 ∗ proj ’ ;
125

126 ang l e s = 200 ;
127 theta = linspace ( 0 , 2 ∗ pi , ang l e s ) ;
128 e l l i p s o i d 1= sqrtm( Gamma proj1 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
129

130 g out=H∗ [ g i n ; zeros ( row /2 , numel ( changed bus ) ) ] ;
131 Z out = [ ] ;
132 for k1=1:2
133 for k2=1:2
134 for k3=1:2
135 for k4=1:2
136 for k5=1:2
137 for k6=1:2
138 for k7=1:2
139 for k8=1:2
140 for k9=1:2
141 for k10=1:2
142

143 Z out =[ Z out c ( 2 : 3 4 , : ) +(−1)ˆk1∗ g out ( 3 4 : 6 6 , 1 ) +(−1)ˆk2∗ g out
( 3 4 : 6 6 , 2 ) +(−1)ˆk3∗ g out ( 3 4 : 6 6 , 3 ) +(−1)ˆk4∗ g out ( 3 4 : 6 6 , 4 ) +(−1)ˆk5
∗ g out ( 3 4 : 6 6 , 5 ) + . . .

144 +(−1)ˆk6∗ g out ( 3 4 : 6 6 , 6 ) +(−1)ˆk7∗ g out ( 3 4 : 6 6 , 7 ) +(−1)ˆk8∗ g out
( 3 4 : 6 6 , 8 ) +(−1)ˆk9∗ g out ( 3 4 : 6 6 , 9 ) +(−1)ˆk10∗ g out ( 34 : 66 , 10 ) ] ; %
V e r t i c e s o f zonotope

145 end
146 end
147 end
148 end
149 end
150 end
151 end
152 end
153 end
154 end
155

156 k=convhul l ( Z out (x−1 , : ) , Z out (y−1 , : ) ) ; %p r o j e c t the zonotope and
g e t convex h u l l

157 p5=plot ( Z out (x−1,k ) , Z out (y−1,k ) , ’ r ’ , ’ LineWidth ’ , 3) ;
158 %%%
159 l i n e 1 x = [ 1 . 0 5 1 . 0 5 ] ;
160 l i n e 1 y = [ 1 . 0 5 0 . 9 5 ] ;
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161 l i n e 2 x = [ 0 . 9 5 0 . 9 5 ] ;
162 l i n e 2 y = [ 0 . 9 5 1 . 0 5 ] ;
163 l i n e 3 x = [ 0 . 9 5 1 . 0 5 ] ;
164 l i n e 3 y = [ 0 . 9 5 0 . 9 5 ] ;
165 l i n e 4 x = [ 0 . 9 5 1 . 0 5 ] ;
166 l i n e 4 y = [ 1 . 0 5 1 . 0 5 ] ;
167 p4=plot ( l ine1x , l ine1y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’

L ineSty l e ’ , ’−− ’ ) ;
168 plot ( l ine2x , l ine2y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
169 plot ( l ine3x , l ine3y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
170 plot ( l ine4x , l ine4y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
171

172 axis ( [ 0 . 9 4 5 1 .055 0 .945 1 . 0 5 5 ] ) ;
173

174 for i = 1 : numel (gamma)
175

176 Gamma = H∗ ((1−gamma( i ) ) ˆ(−1)∗Ps i g + 1/gamma( i )∗ P s i l ) ∗H’ ;
177

178 pro j = zeros (2 , row ) ;
179 pro j (1 , x−1+row /2) = 1 ;
180 pro j (2 , y−1+row /2) = 1 ;
181 Gamma proj = pro j ∗ Gamma ∗ proj ’ ;
182

183 ang l e s = 200 ;
184 theta = linspace ( 0 , 2 ∗ pi , ang l e s ) ;
185 e l l i p s o i d= sqrtm( Gamma proj ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
186 plot ( e l l i p s o i d ( 1 , : )+vo l t x , e l l i p s o i d ( 2 , : )+vo l t y , . . .
187 ’ c ’ , ’ LineWidth ’ , 1 ) ;
188 grid on ; hold on ;
189

190 end
191

192 set (gca , ’ f o n t s i z e ’ ,36 , ’ fontname ’ , ’ t imes new roman ’ ) ; . . .
193 x l=xlabel ( ’ $ V {110} $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,40 , ’ fontname ’ , ’ t imes

new roman ’ ) ;
194 set ( xl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
195 y l=ylabel ( ’ $ V {123} $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,40 , ’ fontname ’ , ’ t imes

new roman ’ ) ;
196 set ( yl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
197 l 1=legend ( [ p5 , p2 , p3 , p4 ] , ’ $\mathcal{X}$ ’ , ’ L inear Approx . ’ ,

’ Exact So lu t i on ’ , ’ Voltage Const ra in t s ’ , ’ l o c a t i o n ’ , ’
SouthEast ’ ) ;

30



198 set ( l1 , ’ FontSize ’ ,37 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
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B.3 123-Bus System

1 clear a l l ;
2 close a l l ;
3 clc ;
4 load Node123 . mat ;
5 %Power I n j e c t i o n s , Asymmetric
6 Rating =[1.5 1 1 .5 1 1 1 .5 1 1 1 1 . 5 ] ; %Per u n i t r a t i n g s 100kVA

base ?
7 Percentage =[0.4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 . 4 ] ; %percentage

o f v a r i a t i o n
8 num gen=10;
9

10 changed bus = [80 95 96 103 108 110 115 121 122 1 2 3 ] ; %123 bus
system

11

12 for i = 1 : numel ( changed bus )
13 bus ( changed bus ( i ) , 4 ) = Rating ( i ) ; %Asymmetrical Power

I n j e c t i o n
14 end
15 [ s o ln ybus L J ] = g e t p f ( bus , l ine ) ;
16 H = inv ( J ) ;
17

18 [ row c o l ] = s ize (H) ;
19 num bus=row/2+1;
20 Ps i g = 1e−7 ∗ eye ( s ize (H) ) ;
21

22 % Zonotopes
23 g i n=zeros ( row /2 , numel ( changed bus ) ) ;
24 for i =1:numel ( changed bus )
25 g i n ( changed bus ( i )−1, i )=Rating ( i )∗Percentage ( i ) ;
26 end
27

28 %t i g h t bounding in t h r e e d i r e c t i o n s
29 Ps i g1 = Ps i g ;
30 Ps i g2 = Ps i g ;
31 Ps i g3 = Ps i g ;
32

33 %Compute shape matrix , Asymmetrical I n j e c t i o n s
34 gen=Rating .∗ Percentage ;
35 V= [ ] ;
36 for i 1 =1:2
37 for i 2 =1:2
38 for i 3 =1:2
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39 for i 4 =1:2
40 for i 5 =1:2
41 for i 6 =1:2
42 for i 7 =1:2
43 for i 8 =1:2
44 for i 9 =1:2
45 for i 10 =1:2
46 V=[V; gen (1 ) ∗(−1)ˆ i 1 gen (2 ) ∗(−1)ˆ i 2 gen (3 ) ∗(−1)ˆ i 3 gen (4 ) ∗(−1)

ˆ i 4 gen (5 ) ∗(−1)ˆ i 5 gen (6 ) ∗(−1)ˆ i 6 gen (7 ) ∗(−1)ˆ i 7 gen (8 )
∗(−1)ˆ i 8 gen (9 ) ∗(−1)ˆ i 9 gen (10) ∗(−1)ˆ i10 ] ;

47

48 end
49 end
50 end
51 end
52 end
53 end
54 end
55 end
56 end
57 end
58 V=V’ ;
59

60 %%
61 e = e l l e n c l o s e (V)
62 x = V;
63 [ n ,m] = s ize ( x ) ;
64 % Find the shape matrix o f input bound , minimum volume
65 cvx beg in
66 v a r i a b l e A(n , n) symmetric
67 v a r i a b l e b(n)
68 maximize ( de t roo tn ( A ) )
69 sub j e c t to
70 norms ( A ∗ x + b ∗ ones ( 1 , m ) , 2 ) <= 1 ;
71 cvx end
72 P=inv (A’∗A)
73

74

75 %Elongated / t i g h t in o ther d i r e c t i o n s
76 e l ongate =3;
77 d i r 1 =3;
78 d i r 2 =6;
79 d i r 3 =10;
80 changed bus ( [ d i r1 , d ir2 , d i r 3 ] )
81 a d d i t i o n a l p o i n t s 1=zeros (1 , numel ( changed bus ) ) ;
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82 a d d i t i o n a l p o i n t s 2=zeros (1 , numel ( changed bus ) ) ;
83 a d d i t i o n a l p o i n t s 3=zeros (1 , numel ( changed bus ) ) ;
84 a d d i t i o n a l p o i n t s 1 ( d i r 1 )=gen ( d i r 1 )+e longate ;
85 a d d i t i o n a l p o i n t s 2 ( d i r 2 )=gen ( d i r 2 )+e longate ;
86 a d d i t i o n a l p o i n t s 3 ( d i r 3 )=gen ( d i r 3 )+e longate ;
87

88 V 1=[V a d d i t i o n a l p o i n t s 1 ’ −a d d i t i o n a l p o i n t s 1 ’ ] ;
89 V 2=[V a d d i t i o n a l p o i n t s 2 ’ −a d d i t i o n a l p o i n t s 2 ’ ] ;
90 V 3=[V a d d i t i o n a l p o i n t s 3 ’ −a d d i t i o n a l p o i n t s 3 ’ ] ;
91

92 e1 = e l l e n c l o s e ( V 1 )
93 x=V 1 ;
94 [ n ,m] = s ize ( x ) ;
95 % Find the shape matrix o f input bound , minimum volume
96 cvx beg in
97 v a r i a b l e A(n , n) symmetric
98 v a r i a b l e b(n)
99 maximize ( de t roo tn ( A ) )

100 sub j e c t to
101 norms ( A ∗ x + b ∗ ones ( 1 , m ) , 2 ) <= 1 ;
102 cvx end
103 P1=inv (A’∗A)
104

105 e2 = e l l e n c l o s e ( V 2 )
106 x=V 2 ;
107 [ n ,m] = s ize ( x ) ;
108 % Find the shape matrix o f input bound , minimum volume
109 cvx beg in
110 v a r i a b l e A(n , n) symmetric
111 v a r i a b l e b(n)
112 maximize ( de t roo tn ( A ) )
113 sub j e c t to
114 norms ( A ∗ x + b ∗ ones ( 1 , m ) , 2 ) <= 1 ;
115 cvx end
116 P2=inv (A’∗A)
117

118 e3 = e l l e n c l o s e ( V 3 )
119 x=V 3 ;
120 [ n ,m] = s ize ( x ) ;
121 % Find the shape matrix o f input bound , minimum volume
122 cvx beg in
123 v a r i a b l e A(n , n) symmetric
124 v a r i a b l e b(n)
125 maximize ( de t roo tn ( A ) )
126 sub j e c t to
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127 norms ( A ∗ x + b ∗ ones ( 1 , m ) , 2 ) <= 1 ;
128 cvx end
129 P3=inv (A’∗A)
130

131

132

133

134 for i = 1 : numel ( changed bus )
135 %minimum volume
136 Ps i g ( changed bus ( i )−1, changed bus ( i )−1) = P( i , i ) ;
137

138 %t i g h t in d i r e c t i o n s
139 Ps i g1 ( changed bus ( i )−1, changed bus ( i )−1) = P1( i , i ) ;
140 Ps i g2 ( changed bus ( i )−1, changed bus ( i )−1) = P2( i , i ) ;
141 Ps i g3 ( changed bus ( i )−1, changed bus ( i )−1) = P3( i , i ) ;
142 end
143

144 %bus v o l t a g e o f i n t e r e s t
145 x=103;
146 y=123;
147 v o l t x = so ln (x , 2 ) ;
148 v o l t y = so ln (y , 2 ) ;
149

150 c=so ln ( : , 2 ) ; %c e n t e r o f zonotope
151 num step = 2 ;
152

153 %Aymmetrical Power I n j e c t i o n
154 i 1 = linspace(−Percentage (1 ) ∗Rating (1 ) , Percentage (1 ) ∗Rating (1 ) ,

num step ) ;
155 i 2 = linspace(−Percentage (2 ) ∗Rating (2 ) , Percentage (2 ) ∗Rating (2 ) ,

num step ) ;
156 i 3 = linspace(−Percentage (3 ) ∗Rating (3 ) , Percentage (3 ) ∗Rating (3 ) ,

num step ) ;
157 i 4 = linspace(−Percentage (4 ) ∗Rating (4 ) , Percentage (4 ) ∗Rating (4 ) ,

num step ) ;
158 i 5 = linspace(−Percentage (5 ) ∗Rating (5 ) , Percentage (5 ) ∗Rating (5 ) ,

num step ) ;
159 i 6 = linspace(−Percentage (6 ) ∗Rating (6 ) , Percentage (6 ) ∗Rating (6 ) ,

num step ) ;
160 i 7 = linspace(−Percentage (7 ) ∗Rating (7 ) , Percentage (7 ) ∗Rating (7 ) ,

num step ) ;
161 i 8 = linspace(−Percentage (8 ) ∗Rating (8 ) , Percentage (8 ) ∗Rating (8 ) ,

num step ) ;
162 i 9 = linspace(−Percentage (9 ) ∗Rating (9 ) , Percentage (9 ) ∗Rating (9 ) ,

num step ) ;
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163 i 10 = linspace(−Percentage (10) ∗Rating (10) , Percentage (10) ∗Rating
(10) , num step ) ;

164

165 f igure
166 axes ( ’ p o s i t i o n ’ , [ 0 . 1 4 0 .14 0 .8 0 . 8 ] ) ;
167 hold on ; grid on ; box on ;
168 Out=zeros (1 ,2∗ ( num bus−1) ) ’ ;
169 draw = 1 ;
170 for count i1 =1: length ( i 1 )
171 for count i2 =1: length ( i 2 )
172 for count i3 =1: length ( i 3 )
173 for count i4 =1: length ( i 4 )
174 for count i5 =1: length ( i 5 )
175 for count i6 =1: length ( i 6 )
176 for count i7 =1: length ( i 7 )
177 for count i8 =1: length ( i 8 )
178 for count i9 =1: length ( i 9 )
179 for count i10 =1: length ( i 10 )
180 l i n e a r
181 Out( changed bus−1)=[ i 1 (

count i1 ) i 2 ( count i2 ) i 3
( count i3 ) i 4 ( count i4 )
i 5 ( count i5 ) i 6 ( count i6 )

i 7 ( count i7 ) i 8 ( count i8
) i 9 ( count i9 ) i 10 (
count i10 ) ] ;

182 Out l inea r=H∗Out ;
183

184 %non l inear
185 bus loop = bus ;
186 bus loop ( changed bus (1 ) ,4 )

= bus ( changed bus (1 )
,4 ) + i 1 ( count i1 ) ;

187 bus loop ( changed bus (2 ) ,4 )
= bus ( changed bus (2 )
,4 ) + i 2 ( count i2 ) ;

188 bus loop ( changed bus (3 ) ,4 )
= bus ( changed bus (3 )
,4 ) + i 3 ( count i3 ) ;

189 bus loop ( changed bus (4 ) ,4 )
= bus ( changed bus (4 )
,4 ) + i 4 ( count i4 ) ;

190 bus loop ( changed bus (5 ) ,4 )
= bus ( changed bus (5 )
,4 ) + i 5 ( count i5 ) ;
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191 bus loop ( changed bus (6 ) ,4 )
= bus ( changed bus (6 )
,4 ) + i 6 ( count i6 ) ;

192 bus loop ( changed bus (7 ) ,4 )
= bus ( changed bus (7 )
,4 ) + i 7 ( count i7 ) ;

193 bus loop ( changed bus (8 ) ,4 )
= bus ( changed bus (8 )
,4 ) + i 8 ( count i8 ) ;

194 bus loop ( changed bus (9 ) ,4 )
= bus ( changed bus (9 )
,4 ) + i 9 ( count i9 ) ;

195 bus loop ( changed bus (10)
,4 ) = bus ( changed bus
(10) ,4 ) + i10 ( count i10 )
;

196 [ s o ln ybus L J ] = g e t p f (
bus loop , l ine ) ;

197 Out nonl inear = [ so ln ( 2 :
num bus , 3 ) ; s o ln ( 2 :
num bus , 2 ) ] ;

198

199 i f draw == 1
200 p2=plot ( Out l i n ea r (x

−1+row /2)+vo l t x ,
Out l i n ea r (y−1+row
/2)+vo l t y , ’ s ’ , ’
MarkerFaceColor ’ , ’
y ’ ) ; %v o l t a g e

201 p3=plot ( Out nonl inear (
x−1+row /2) ,
Out nonl inear (y−1+
row /2) , ’ o ’ , ’
MarkerSize ’ , 8 , ’
MarkerFaceColor ’ , ’
r ’ ) ; %v o l t a g e

202 draw = 0 ;
203 else
204 draw = draw + 1 ;
205 end
206 end
207 end
208 end
209 end
210 end
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211 end
212 end
213 end
214 end
215 end
216

217 plot ( Out nonl inear (x−1+row /2) , Out nonl inear (y−1+row /2) , ’ o ’ , ’
MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ r ’ ) ; %v o l t a g e

218 %minimum volume
219 Gamma = H ∗ Ps i g ∗ H’ ;
220 %Tight in s p e c i f i c d i r e c t i o n s
221 Gamma1 = H ∗ Ps i g1 ∗ H’ ;
222 Gamma2 = H ∗ Ps i g2 ∗ H’ ;
223 Gamma3 = H ∗ Ps i g3 ∗ H’ ;
224

225 pro j = zeros (2 , row ) ;
226 p r o j a n g l e s = pro j ;
227 pro j (1 , x−1+row /2) = 1 ;
228 pro j (2 , y−1+row /2) = 1 ;
229

230 %minimum volumne
231 Gamma proj = pro j ∗ Gamma ∗ proj ’ ; %v o l t a g e
232

233 %Tight in s p e c i f i c d i r e c t i o n s
234 Gamma proj1 = pro j ∗ Gamma1 ∗ proj ’ ;
235 Gamma proj2 = pro j ∗ Gamma2 ∗ proj ’ ;
236 Gamma proj3 = pro j ∗ Gamma3 ∗ proj ’ ;
237

238 ang l e s = 200 ;
239 theta = linspace ( 0 , 2 ∗ pi , ang l e s ) ;
240 %minimum volumne
241 e l l i p s o i d= sqrtm( Gamma proj ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
242 e l l i p s o i d 1= sqrtm( Gamma proj1 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
243 e l l i p s o i d 2= sqrtm( Gamma proj2 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
244 e l l i p s o i d 3= sqrtm( Gamma proj3 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
245

246 %%% zonotopes
247 g out=H∗ [ g i n ; zeros ( row /2 , numel ( changed bus ) ) ] ;
248 Z out = [ ] ;
249 for k1=1:2
250 for k2=1:2
251 for k3=1:2
252 for k4=1:2
253 for k5=1:2
254 for k6=1:2
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255 for k7=1:2
256 for k8=1:2
257 for k9=1:2
258 for k10=1:2
259 Z out =[ Z out c ( 2 : 1 2 3 , : ) +(−1)ˆk1∗ g out (123 : 244 , 1 ) +(−1)ˆk2∗ g out

(123 : 244 , 2 ) +(−1)ˆk3∗ g out (123 : 244 , 3 ) +(−1)ˆk4∗ g out (123 : 244 , 4 )
+(−1)ˆk5∗ g out (123 : 244 , 5 ) + . . .

260 +(−1)ˆk6∗ g out (123 : 244 , 6 ) +(−1)ˆk7∗ g out (123 : 244 , 7 ) +(−1)ˆk8∗ g out
(123 : 244 , 8 ) +(−1)ˆk9∗ g out (123 : 244 , 9 ) +(−1)ˆk10∗ g out (123 : 244 , 10 )
] ; %V e r t i c e s o f zonotope

261 end
262 end
263 end
264 end
265 end
266 end
267 end
268 end
269 end
270 end
271 k=convhul l ( Z out (x−1 , : ) , Z out (y−1 , : ) ) ; %p r o j e c t the zonotope and

g e t convex h u l l
272 p5=plot ( Z out (x−1,k ) , Z out (y−1,k ) , ’ r ’ , ’ LineWidth ’ , 3) ; %p l o t

the zonotope , which shou ld be i n s i d e c i rcumscr i bed e l l i p s o i d
273

274 %%
275 l i n e 1 x = [ 1 . 0 5 1 . 0 5 ] ;
276 l i n e 1 y = [ 1 . 0 5 0 . 9 5 ] ;
277 l i n e 2 x = [ 0 . 9 5 0 . 9 5 ] ;
278 l i n e 2 y = [ 0 . 9 5 1 . 0 5 ] ;
279 l i n e 3 x = [ 0 . 9 5 1 . 0 5 ] ;
280 l i n e 3 y = [ 0 . 9 5 0 . 9 5 ] ;
281 l i n e 4 x = [ 0 . 9 5 1 . 0 5 ] ;
282 l i n e 4 y = [ 1 . 0 5 1 . 0 5 ] ;
283 p4=plot ( l ine1x , l ine1y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’

L ineSty l e ’ , ’−− ’ ) ;
284 plot ( l ine2x , l ine2y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
285 plot ( l ine3x , l ine3y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
286 plot ( l ine4x , l ine4y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
287 axis ( [ 0 . 9 7 4 1 .02 0 .945 1 . 0 4 5 ] ) ;
288

289 set (gca , ’ f o n t s i z e ’ ,36 , ’ fontname ’ , ’ t imes new roman ’ ) ; . . .
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290 x l=xlabel ( ’ $ V {103} $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,38 , ’ fontname ’ , ’ t imes
new roman ’ ) ;

291 set ( xl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
292 y l=ylabel ( ’ $ V {123} $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,38 , ’ fontname ’ , ’ t imes

new roman ’ ) ;
293 set ( yl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
294 l 1=legend ( [ p5 , p3 , p4 ] , ’ $\mathcal{X}$ ’ , ’ Exact So lu t i on ’ , ’

Voltage Const ra in t s ’ , ’ l o c a t i o n ’ , ’ SouthEast ’ ) ;
295 set ( l1 , ’ FontSize ’ ,37 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
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B.4 145-Bus System

1 clear a l l ;
2 close a l l ;
3 clc ;
4 load data50m . mat ;
5

6 x=6;
7 y=34;
8 x PQ=length ( find ( bus ( 1 : x−1 ,10)==3)) ;
9 y PQ=length ( find ( bus ( 1 : y−1 ,10)==3)) ;

10 x PV=length ( find ( bus ( 1 : x−1 ,10)==2)) ;
11 y PV=length ( find ( bus ( 1 : y−1 ,10)==2)) ;
12 s l a c k=find ( bus ( : , 1 0 ) ==1) ; %the s l a c k bus
13

14 %i n j e c t power 10 buses
15 Rating =1; %nominal P i n j e c t i o n
16 Percentage =0.50;
17 num gen=10;
18 num bus=length ( bus ( : , 1 ) ) ; %number o f buses in t h i s system
19 PQ=find ( bus ( 1 : end , 1 0 )==3) ;
20 num PQ=length (PQ) ; %number o f PQ buses in t h i s system
21

22 changed bus = [ 3 7 10 15 18 23 27 29 30 3 4 ] ;
23 num changed bus=numel ( changed bus ) ;
24

25 i f any( bus ( changed bus , 1 0 )==2)
26 disp ( ’ i n j e c t i o n at PV bus ’ )
27 end
28 i f any( bus ( changed bus , 1 0 )==1)
29 error ( ’ s l a c k bus cannot have unce r ta in power i n j e c t i o n ’ )
30 end
31

32 for i = 1 : num changed bus
33 bus ( changed bus ( i ) , 4 ) = Rating ;
34 end
35

36 [ s o ln ybus dVdQ H K N L ] = g e t p f v 4 ( bus , l ine ) ;
37 s o ln ( : , [ 1 2 1 0 ] ) ;
38 J = [H N; K L ] ;
39

40 M = inv ( J ) ;
41

42 [ row c o l ] = s ize (M) ;
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43

44 % Zonotopes
45 g i n=zeros ( row , num changed bus ) ;
46 s h i f t l o g i c=l t ( s lack , changed bus ) ;
47 for i =1: num changed bus
48 i f ( s h i f t l o g i c ( i )==1)
49 g i n ( changed bus ( i )−1, i )=Rating∗Percentage ;
50 else
51 g i n ( changed bus ( i ) , i )=Rating∗Percentage ;
52 end
53 end
54 Ps i g1 = 1e−7 ∗ eye ( s ize (M) ) ;
55

56 %Circumscribed E l l i p s o i d
57 R squared=num gen∗( Rating∗Percentage ) ˆ2 ;
58 for i = 1 : num changed bus
59 i f ( s h i f t l o g i c ( i )==1)
60 Ps i g1 ( changed bus ( i )−1, changed bus ( i )−1)=R squared ;
61 else
62 Ps i g1 ( changed bus ( i ) , changed bus ( i ) )=R squared ;
63 end
64 end
65

66 %v o l t a g e
67 v o l t x = so ln (x , 2 ) ;
68 v o l t y = so ln (y , 2 ) ;
69 i f ( bus (x , 1 0 )==2 | | bus (y , 1 0 )==2)
70 error ( ’ vo l t age unce r ta in ty at i n c o r r e c t bus ’ )
71 end
72 c=so ln ( : , 2 ) ; %c e n t e r o f zonotope
73

74 %Monte Carlo f o r Finding e x a c t Reach s e t
75 num step = 2 ;
76

77 i 1 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
78 i 2 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
79 i 3 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
80 i 4 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
81 i 5 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
82 i 6 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
83 i 7 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
84 i 8 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
85 i 9 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
86 i 10 = linspace(−Percentage ∗Rating , Percentage ∗Rating , num step ) ;
87
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88 f igure
89 axes ( ’ p o s i t i o n ’ , [ 0 . 1 4 0 .14 0 .8 0 . 8 ] ) ;
90 hold on ; grid on ; box on ;
91 Out=zeros (1 , c o l ) ’ ; %[P, Q] ’
92

93 draw = 0 ;
94 for count i1 =1: length ( i 1 )
95 for count i2 =1: length ( i 2 )
96 for count i3 =1: length ( i 3 )
97 for count i4 =1: length ( i 4 )
98 for count i5 =1: length ( i 5 )
99 for count i6 =1: length ( i 6 )

100 for count i7 =1: length ( i 7 )
101 for count i8 =1: length ( i 8 )
102 for count i9 =1: length ( i 9 )
103 for count i10 =1: length ( i 10 )
104

105 Out( changed bus−s h i f t l o g i c )
=[ i 1 ( count i1 ) i 2 ( count i2 )

i 3 ( count i3 ) i 4 ( count i4 )
i 5 ( count i5 ) i 6 ( count i6 )
i 7 ( count i7 ) i 8 ( count i8 )
i 9 ( count i9 ) i 10 ( count i10 )
] ;

106 Out l inea r=J\Out ; %[ the ta , V
] ’

107

108 bus loop = bus ;
109 bus loop ( changed bus , 4 ) = bus ( changed bus , 4 )+ [ i 1 (

count i1 ) i 2 ( count i2 ) i 3 ( count i3 ) i 4 ( count i4 ) i 5 (
count i5 ) i 6 ( count i6 ) i 7 ( count i7 ) i 8 ( count i8 ) i 9 (
count i9 ) i 10 ( count i10 ) ] ’ ;

110 bus loop (3 , 4 ) = bus (3 , 4 ) + i 1 ( count i1 ) ;
111 bus loop (7 , 4 ) = bus (7 , 4 ) + i 2 ( count i2 ) ;
112 bus loop (10 ,4 ) = bus (10 ,4 ) + i 3 ( count i3 ) ;
113 bus loop (15 ,4 ) = bus (15 ,4 ) + i 4 ( count i4 ) ;
114 bus loop (18 ,4 ) = bus (18 ,4 ) + i 5 ( count i5 ) ;
115 bus loop (23 ,4 ) = bus (23 ,4 ) + i 6 ( count i6 ) ;
116 bus loop (27 ,4 ) = bus (27 ,4 ) + i 7 ( count i7 ) ;
117 bus loop (29 ,4 ) = bus (29 ,4 ) + i 8 ( count i8 ) ;
118 bus loop (30 ,4 ) = bus (30 ,4 ) + i 9 ( count i9 ) ;
119 bus loop (34 ,4 ) = bus (34 ,4 ) + i10 ( count i10 ) ;
120 [ s o ln ybus dVdQ H K N L ] = g e t p f v 4 ( bus loop , l ine ) ;
121

122 Out nonl inear = [ so ln ( : , 3 ) ; s o ln ( : , 2 ) ] ; %[ the ta , V] ’
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123

124 i f ˜mod( draw , 1 )
125 p2=plot ( Out nonl inear ( x+num bus ) ,

Out nonl inear ( y+num bus ) , ’ o ’ , ’ MarkerSize
’ , 8 , ’ MarkerFaceColor ’ , ’ r ’ ) ;

126 p3=plot ( Out l i n ea r (x PQ+num bus )+vo l t x ,
Out l i n ea r (y PQ+num bus )+vo l t y , ’ s ’ , ’
MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ y ’ ) ;

127 end
128 draw=draw+1;
129 end
130 end
131 end
132 end
133 end
134 end
135 end
136 end
137 end
138 end
139 plot ( Out nonl inear ( x+num bus ) , Out nonl inear ( y+num bus ) , ’ o ’ , ’

MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ r ’ ) ;
140 plot ( Out l i n ea r (x PQ+num bus )+vo l t x , Out l i n ea r (y PQ+num bus )+

vo l t y , ’ s ’ , ’ MarkerSize ’ , 8 , ’ MarkerFaceColor ’ , ’ y ’ ) ;
141

142 Gamma1 = M ∗ Ps i g1 ∗ M’ ;
143 pro j = zeros (2 , row ) ;
144

145

146 pro j (1 , x PQ+num bus ) = 1 ; %%% make sure i n d i c e s are c o r r e c t
147 pro j (2 , y PQ+num bus ) = 1 ;
148

149 Gamma proj1 = pro j ∗ Gamma1 ∗ proj ’ ;
150

151 ang l e s = 200 ;
152 theta = linspace ( 0 , 2 ∗ pi , ang l e s ) ;
153 e l l i p s o i d 1= sqrtm( Gamma proj1 ) ∗ [ cos ( theta ) ; sin ( theta ) ] ;
154 p1=plot ( e l l i p s o i d 1 ( 1 , : )+vo l t x , e l l i p s o i d 1 ( 2 , : )+vo l t y , . . .
155 ’ k ’ , ’ LineWidth ’ , 3 ) ;
156

157 l i n e 1 x = [ 1 . 0 5 1 . 0 5 ] ;
158 l i n e 1 y = [ 1 . 0 5 0 . 9 5 ] ;
159 l i n e 2 x = [ 0 . 9 5 0 . 9 5 ] ;
160 l i n e 2 y = [ 0 . 9 5 1 . 0 5 ] ;
161 l i n e 3 x = [ 0 . 9 5 1 . 0 5 ] ;
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162 l i n e 3 y = [ 0 . 9 5 0 . 9 5 ] ;
163 l i n e 4 x = [ 0 . 9 5 1 . 0 5 ] ;
164 l i n e 4 y = [ 1 . 0 5 1 . 0 5 ] ;
165 p4=plot ( l ine1x , l ine1y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’

L ineSty l e ’ , ’−− ’ ) ;
166 plot ( l ine2x , l ine2y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
167 plot ( l ine3x , l ine3y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
168 plot ( l ine4x , l ine4y , ’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 3 , ’ L ineSty l e ’

, ’−− ’ ) ;
169

170 %%% zonotopes
171 disp ( ’ zonotope t iming ’ )
172 t ic
173 g out=M∗ g i n ;
174 [ row c o l ]= s ize ( g i n ) ;
175 Z out=zeros (num PQ,2ˆ c o l ) ;
176 count =0;
177 for k1=1:2
178 for k2=1:2
179 for k3=1:2
180 for k4=1:2
181 for k5=1:2
182 for k6=1:2
183 for k7=1:2
184 for k8=1:2
185 for k9=1:2
186 for k10=1:2
187 count=count +1;
188 Z out ( : , count )=c (PQ)+(−1)ˆ

k1∗ g out ( num bus : end , 1 )
+(−1)ˆk2∗ g out ( num bus :
end , 2 ) +(−1)ˆk3∗ g out (
num bus : end , 3 ) +(−1)ˆk4∗
g out ( num bus : end , 4 )
+(−1)ˆk5∗ g out ( num bus :
end , 5 ) + . . .

+(−1)ˆk6∗ g out ( num bus :
end , 6 ) +(−1)ˆk7∗ g out (
num bus : end , 7 ) +(−1)ˆk8∗
g out ( num bus : end , 8 )
+(−1)ˆk9∗ g out ( num bus :
end , 9 ) +(−1)ˆk10∗ g out (
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num bus : end , 1 0 ) ; %
V e r t i c e s o f zonotope

189 end
190 end
191 end
192 end
193 end
194 end
195 end
196 end
197 end
198 end
199 k=convhul l ( Z out (x PQ+1 , :) , Z out (y PQ+1 , :) ) ; %p r o j e c t the zonotope

and g e t convex h u l l
200 toc
201 p5=plot ( Z out (x PQ+1,k ) , Z out (y PQ+1,k ) , ’ r ’ , ’ LineWidth ’ , 4) ;
202

203 set (gca , ’ f o n t s i z e ’ ,36 , ’ fontname ’ , ’ t imes new roman ’ ) ; . . .
204 x l=xlabel ( ’ $ V {2} $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,38 , ’ fontname ’ , ’ t imes

new roman ’ ) ;
205 set ( xl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
206 y l=ylabel ( ’ $ V {34} $ [ p . u . ] ’ , ’ f o n t s i z e ’ ,38 , ’ fontname ’ , ’ t imes

new roman ’ ) ;
207 set ( yl , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
208 l 1=legend ( [ p5 , p2 , p3 , p4 ] , ’ $\mathcal{X}$ ’ , ’ Exact So lu t i on ’ ,

’ L inear Approx . ’ , ’ Voltage Const ra in t s ’ , ’ l o c a t i o n ’ , ’
SouthEast ’ ) ;

209 set ( l1 , ’ FontSize ’ ,37 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
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