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Executive Summary 

The information communication and control layer of the smart grid brings about 
numerous advances, including the empowerment of customers to actively participate in 
the maintenance of the supply-demand balance around the clock and the resulting 
reliability improvement in electricity service. Such customer participation is made 
possible by the Advanced Metering Infrastructure (AMI) which has the capability to 
support many functions beyond billing. The success of this vision depends on the 
effective design and implementation of a reliable and economically sustainable 
information-sharing infrastructure.  

Many AMI deployments by grid operators are emerging around the U.S, Europe, and 
Asia, each of them demonstrating different levels of maturity. These deployments are 
capable of data collection by employing various technologies, but have not been backed 
up by an effective framework to share data and information. The design of an 
information-sharing framework for the AMI and associated home area networks (HANs) 
to meet smart grid requirements is still an open research problem, with both further 
encumbered due to the stringent requirement of ensuring customer privacy. On one hand, 
utilities need to collect low-level customer data to improve operational planning and 
control. On the other hand, customers have privacy preferences which need to be met to 
encourage greater smart meter adoption rates that in turn benefits utilities. An ideal 
information-sharing framework will allow a customizable level of data collection to meet 
specific customer privacy requirements within the context of the AMI. 

In this project we worked on solving some of these challenges towards building such an 
information-sharing framework for the AMI-enabled communication/control/information 
layer with special emphasis on customer privacy and its potential impact on smart meter 
adoption and utility operations. As part of the design of such a privacy-aware 
information-sharing framework, we studied the interactions between the data collection 
needs of the utility and the preservation of privacy.  

The report and its main contributions have four parts. 

Part I:  Scalable Meter Data Collection in Smart Grids through Message 
Concatenation 

This part addresses the looming issue of how to communicate and handle consumer data 
collected by electric utilities and manage limited communication network resources. This 
part of the project studied the smart meter message concatenation (SMMC) problem of 
how to efficiently concatenate multiple small smart metering messages arriving at data 
concentrator units (DCUs) in order to reduce protocol overhead and thus network 
utilization. This work provides hardness results for the SMMC problem, proposes six 
heuristics, and evaluates them to gain a better understanding of the best data volume 
reduction policies that can be applied at data concentrators of AMI infrastructures.  

Our results indicate that the proposed heuristic-based concatenation algorithms can 
reduce data volume in the range of 10-25% for typical backhaul technologies used, with 
greater benefits seen for scenarios with higher data traffic rates. These benefits are 
obtained operating only on packet headers without compressing or aggregating the 
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underlying information in messages. Our results are also shown to hold up well under 
various practical issues such as network and processing delays, tighter application 
deadlines, and lossy backhaul links. 

Part II:  Impacts of Communication and Control on Distribution System 

The purpose of this part of the project was to understand the impacts of aggregation on 
distribution system. The primary focus of this work revolved around two directions. 

a) Impact of control frequency on demand management and consumer comfort 

This work focused on evaluating the impacts of price incentive-based load control on 
distribution level transformers and consumer comfort. The results obtained show that 
both consumer level impacts (e.g., deviation from set temperature) and grid level impacts 
(violation in terms of power and energy) depend on the control interval used.  

b) Estimation error analysis due to aggregation interval 

The focus of this part of the work was in determining the link between the data and 
power network layers. A methodology to quantify the relationship between the data 
aggregation interval and the prediction/estimation accuracy was developed using the 
design of experiments technique. The results showed that for a particular distribution 
system topology, the data aggregation interval has a significant effect on predicting the 
number of tap changes or the power loss. Finally, a polynomial function was developed 
to determine the estimation error.  

Part III:  Preserving Privacy of Advanced Metering Data using Efficient 
Aggregation and Prediction Techniques 

In this part of the project, we propose novel and efficient techniques for privacy-
preserving data aggregation in smart grid communication networks. 

a) AgSec:  Secure and Efficient CDMA-based Aggregation for Smart Metering Systems 

Most existing security mechanisms utilize cryptographic techniques that are 
computationally expensive and bandwidth intensive. However, aggregating the large 
outputs of these cryptographic algorithms has not been considered thoroughly. Smart 
Grid Networks (SGN) generally has limitations on bandwidth, network capacity, and 
energy. Hence, utilizing data aggregation algorithms, the limited bandwidth can be 
efficiently utilized. In this work a CDMA-based data aggregation method is proposed that 
provides access to all the data of all the smart meters in the root node, which in this case 
is the utility control center, while keeping the smart metering data secure. The efficiency 
of the proposed method is confirmed by mathematical analysis. 

b) Seer Grid:  Privacy and Utility Implications of Two-Level Energy Load Prediction in 
Smart Grids 

Energy consumption signatures present in the data reported by smart meters to the control 
center can pose privacy risks for customers. A popular solution in the research and 
academic literature to overcome these privacy threats is to perturb the actual energy 
usage data before sharing it with the control. The degree of correlation between the actual 
energy usage data and the perturbed data produced by the perturbation technique 
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typically characterizes the trade-off between the privacy requirement (of the customer) 
and data utility or data usefulness requirement (of the control center). A larger tradeoff 
implies one requirement (privacy or data-utility) is given more preference over the other. 
The main goal of this research is to propose a mechanism to minimize this trade-off, i.e., 
provide both reasonable levels of privacy protection as well as data-utility. A two-level 
prediction mechanism is proposed to preserve the correlation between the predicted and 
actual energy consumption patterns at the cluster or neighborhood level and removes this 
correlation in the predicted data communicated by each smart meter to the control center. 
The two-level prediction mechanism was evaluated using real smart meter data and 
showed our proposed mechanism to be successful in hiding private consumption patterns 
at the household-level while still being able to accurately predict energy consumption at 
the neighborhood-level. 

Part IV:  Incentivizing Privacy-Guaranteed Data-Sharing by Consumers using AMI  

The goals of this part of the project were three-fold: (a) understanding whether the AMI 
data collected by utility companies or third parties can lead to privacy violations such as 
making inferences about specific consumer behavior; (b) determining incentive strategies 
that utility companies can use to ensure large-scale adoption of AMI technologies (even 
as a large number of end-users in the grid adopt renewable energies, e.g., PV); and 
(c) evaluating the effect of cyber-attacks on data integrated from end-user AMIs into the 
transmission system. The following tasks summarize these efforts. 

a) Incentivizing consumers with access to renewables 

In this task, the objective was to determine incentives that utility companies can use to 
encourage households that have access to renewables to consume a minimal amount of 
energy directly from the grid. The main contribution of this task was to propose a novel 
approach using non-cooperative game theory for N-person strategic games to study the 
tradeoff between privacy and energy cost minimization under the assumption that the 
utility company offers incentives to multiple households to encourage data sharing 
through energy consumption. In this respect, we formulate a non-cooperative game to 
model interactions between households and the utility company. 

b) The tradeoff between privacy leakages due to inferences from AMI data and 
consumer benefits from sharing 

In this task, we asked the question:  can consumers use alternate energy sources to both 
gain in costs and achieve privacy? To be more specific, we studied the tradeoff from 
using battery/PV to achieve energy cost savings versus using them specifically for 
retaining a certain measure of privacy. Based on the meter data, Neyman-Pearson 
hypothesis testing was performed to estimate and provide guarantees against inference 
for the private feature.  

c) Modeling AMI cyber-attacks as restrictions on information access at the transmission 
level 

In addition to privacy, a natural question arises on the security of AMI data. We assume 
that AMI data will be encrypted; however, the sophistication of cyber-attacks suggests 
that the data can be compromised. However, modeling the effect of a large scale man-in-
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the-middle (MitM) attack (changing data en route to the data center) on AMI data is not 
straightforward. To this end, we model this as an MitM attack for transmission network – 
the model assumes that an attacker changes data enough to change topology shared 
between two areas – this is a very coarse abstraction of a possible consequence of a large 
scale attack on AMI data, but it is a start. Our results then looked at the consequences on 
power systems operations. 

Overarching Conclusions 

This project has led to the contribution of effective techniques (as part of a broader 
information-sharing framework) to manage the tradeoffs between (i) data volume and 
communications network capacity, and (ii) data needs of utilities and customer privacy, 
and (iii) application accuracy/quality and data intervals. Utilities can adopt some or all of 
these techniques for their information-sharing framework to manage the tradeoffs they 
encounter.  

Based on our research, we offer several recommendations for electric utilities. 

1) It is best to design and allow for a tunable data collection framework that can adapt to 
communication network constraints dynamically while preserving application quality. 
Current communication networks of utilities are rarely dedicated and well thought out 
in terms of future data carrying capacities. Electric utilities will need to dedicate more 
resources to the planning and design of communication networks in the future. 

2) Any data collection from customers should employ some of the proposed techniques 
in this project to be able to maximize benefits from data collected while alleviating 
customer privacy concerns. Customer privacy does not seem to figure in a lot of the 
design and planning from the electric utility side; however, including it in earlier than 
later will allow greater flexibilities and targeted data collection to meet application 
needs of the future.  

3) Control frequency and aggregation interval need to be carefully thought out in terms 
of their power system impacts as these were shown to impact application quality and 
accuracy. Current intervals do not have a range that can be tuned to adapt to 
application needs or communications network constraints. 

Though this project solves some challenges in the area of data management in smart 
grids, there remain other challenges. One such challenge is that of determining what data 
is needed where, and in what granularity. Solving this challenge will help alleviate some 
data volume concerns within communications networks while ensuring applications at 
various locations have the information they need. The second challenge is that of 
designing more resilient cyber and power networks; this work only looked at the AMI 
scenario and there remain many other areas (such as energy management systems) where 
more work needs to be done especially in determining how AMI data can be integrated to 
make better real-time control and decisions.  
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1 Introduction

The information communication and control layer of the smart grid brings about numerous
advances, including the empowerment of customers to actively participate in the maintenance
of the supply-demand balance around the clock and the resulting reliability improvement in
electricity service. There are many benefits to grid operators, consumers, and society as
a whole from adopting advanced metering infrastructure (AMI) technologies [1]. With the
introduction of AMI technology, two-way communication between a “smart” meter and the
grid operator’s control center, as well as between the smart meter and consumer appliances,
would be facilitated for various applications [2]. Besides AMI, there are many other applica-
tions that will be enabled by information flow across the electric power grid. These include
distributed generation, state estimation of the power distribution system, demand-side man-
agement, to name a few.

A big challenge for smart grid application scenarios, and the information-sharing frame-
work that enables them, will be handling the massive amount of data that is expected to
be collected from data generators and sent through the communication backhaul to the grid
operator. For example, by current standards, each smart meter sends a few kilobytes of data
every 15-60 minutes to grid operators [3, 4]. When this is scaled up to many thousands,
existing communication architectures will find it difficult to handle the data traffic due to
the limited network capacities, especially in limited bandwidth last mile networks [5, 6].
Future applications may require data to be collected at a finer granularity, thus adding to
the challenge [7]. Network capacity is a precious resource for electric utilities because they
are either leasing such networks from third-party providers [8], or building infrastructure
themselves and leasing bandwidth out (especially at the backhaul) to recuperate investment
costs [9]. In either case, it is in the interest of electric utilities to reduce the volume of
information transported through these networks for smart grid applications while ensuring
QoS requirements are met.

One approach to reduce data volume given some application sampling rate is to con-
catenate multiple messages into a larger packet to reduce protocol overhead due to packet
headers. This approach has the potential to reduce network capacity requirements signifi-
cantly (quantified later in this part of of the report) due to the small size of messages sent
in smart metering networks, with packet headers possibly being of a comparable size to
the underlying message to be sent. Such concatenation of messages can be done by each
smart meter itself. However, each meter may not generate messages frequently enough to be
able to have the chance to concatenate enough packets to reduce overheads significantly and
also meet their stated application deadlines. Each meter is also expected to be relatively
constrained (compared to a concentrator) in terms of data storage capabilities to keep a
large window of packets from which to aggregate. Thus, a better approach is to concatenate
messages at an intermediate point upstream from individual meters.
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Such an intermediate point where message concatenation can be done is at data concen-
trator units (DCUs) (or some similar entity, sometimes also called a data aggregator) that
collect data from many smart meters and forward them upstream. Figure 1.1 depicts this
concept and shows the DCU’s role at the power-distribution level of the power grid. Data
concentrators or aggregators can play an important role in reducing network capacity re-
quirements by reducing packet protocol overhead through message concatenation algorithms
applied along the data collection tree. Such algorithms and policies, however, do not exist
currently and need to be developed keeping in mind the unique characteristics of metering
data like variable packet sizes, stochastic arrivals, and the presence of messages with and
without deadlines. Current DCUs on the market lack the ability to reduce the volume of
data flowing through them and real-time aggregation capabilities. They only provide simple
integration of sensing and WAN communications options with the intention to follow the
PRIME standard [10] which gives the utilities the freedom to choose meters from various
vendors and avoid being reliant on proprietary solutions from a single source.

In this part of the report we design and comparatively evaluate a suite of online mes-
sage concatenation algorithms at DCUs in the AMI scenario that minimize usage of net-
work capacity in transporting data through the meter data collection network while meeting
quality-of-service (QoS) constraints imposed by applications on individual messages. The
specific contributions of this work include:

1. A formulation of the message concatenation problem at DCUs in smart metering net-
works to minimize network capacity utilization

2. Hardness results for the formulated message concatenation problem that proves it as
NP-complete

3. Six different heuristic-based algorihms that can be employed at DCUs for the message
concatenation problem

4. A comparative performance evaluation of proposed heuristic-based algorithms for mes-
sage concatenation

5. Exploration of feasibility of message concatenation under practical settings considering
network and processing delays, tighter application deadlines, and lossy backhaul links

Our results indicate that the proposed heuristic-based concatenation algorithms can reduce
data volume in the range of 10-25% for typical backhaul technologies used, with greater ben-
efits seen for scenarios with higher data traffic rates. These benefits are obtained operating
only on packet headers without compressing or aggregating the underlying information in
messages. Our results are also shown to hold up well under various practical issues such as
network and processing delays, tighter application deadlines, and lossy backhaul links.

2



Figure 1.1: Data Concentrator Unit’s envisioned role of message concatenation at the power
distribution level.
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2 Problem Formulation

2.1 Motivation

In most communication protocol suites (e.g. TCP/IP) used for sending smart metering
messages, the small size of packets will result in a high amount of protocol overhead due to
packet headers. For example, for messages of size 100 bytes from the source smart meter,
there may be 40-60 bytes of additional header overheads due to TCP/IP protocols and
specific versions used. If a data concentrator collects multiple packets and strips off all
individual headers and includes only one header for the larger aggregated message, there
could be significant reductions in network capacity utilization. Studying the messaging
format for the ANSI C12 smart meter communications standard in [11] provides an idea
of message sizes involved and the amount of protocol overhead to expect. As shown in
Figure 2.1, each smart meter generated message includes parameters like meter identification
number, equipment status, type of message, among others. This information is enough to
uniquely identify a message source with no additional protocol header information required
for source identification. Thus, source protocol headers can be stripped away to rely only on
a common aggregated packet header to route the packet to the destination.

Figure 2.1: Smart meter datagram structure.

In Table 2.1 (abstracted from [5]) basic message types along with their properties are
listed. It can be seen that messages can be of various sizes (from 20-500 bytes), and can
have loose or strict deadlines (2-5 seconds), or no deadlines at all. Some messages may be
generated randomly at any time to indicate critical events that need to be responded to
immediately. Data concentrators will have the challenge of handling these varying message
sizes that may or may not have deadlines, with possibly stochastic arrivals, at the same time
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guaranteeing that each message meet any specified deadline. Stochastic message generation
and critical events with short deadlines exclude the use of polling based algorithms to collect
data at DCUs.

Table 2.1: Smart meter data message types
Message/ Size Inter-arrival Inter-arrival Delay

Traffic Description (Bytes) interval unit Objective
Meter clock sync. 64 Day 1 2 secs
Interval data read 480 Day 1 Best effort
Firmware patch/

upgrade confirmation/ 20 Year 1 Best effort
acknowledge

Meter ping (on 64 Week 4 2 secs
demand read)
Meter remote 500 Day 4 2 secs
diagnostic

Tamper notification 64 Week 26 5 secs
Meter remote
disconnect/ 500 Day 1 2 secs

reconnect response

2.2 Related Work

There have been much prior work on data aggregation in the field of WSNs [12]. Typical
approaches to WSNs have focused on efficient data gathering and energy-latency tradeoffs
under deadline constraints (e.g. [13, 14, 15, 16, 17, 18]). These schemes propose algorithms
for grouping smaller packets into larger ones by delaying data transmissions at the relaying
nodes whenever slack times are positive with significant reductions in packet transmissions,
congestion, and battery energy use. In this project, our goal is similar in proposing data
concentration at DCUs as relay nodes. However, power or energy consumption of the nodes
employed are not considered because the AMI infrastructure is expected to have access to
electric power at all times with backup batteries. This shifts the focus of the problem from
battery life of nodes involved to the reduction of network capacity utilization. The work in
[6] does look at data volume reduction in smart metering networks, but does not include
aspects such as message concatenation and the application of aggregation functions.

Another direction of related work has been in terms of designing a reliable, flexible,
and cost-effective data concentrator [19, 20]. Many studies have considered the problem of
data concentration for synchrophasors (e.g. [21]). The latest activities in standardization
of Wide Area Monitoring, Protection, And Control (WAMPAC) systems, and design and
implementation issues, such as maintaining time-sync at PMUs, missing phasor data frames,
handling multiple input data rates and latency from PMUs, etc. with data concentrators
are discussed in [22]. This work on the other hand designs data concentration algorithms
specifically for smart metering and reduce information volume through the network.
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Scheduling under deadlines poses well-known challenging problems with many new ap-
plications. It was shown by Karp [23] that optimal offline scheduling for problem of deadline
scheduling is NP-complete. On the other hand, simple online scheduling algorithms that
achieve the best competitive ratio do exist. For example, the earliest deadline first (EDF)
algorithm works on the job with the earliest deadline, and it switches to a newly arrived
job if the new arrival has an earlier deadline. It is known that such a simple scheduling
algorithm is optimal when the traffic load is light. See in particular the seminal work of
Liu and Layland [24], the work of Mok [25] and Locke [26], recent applications in scheduling
jobs for cloud systems [27] and large-scale EV charging [28]. In this work, EDF-based online
algorithms are developed for use at the DCU.

Finally, from an information needs perspective, there has been recent work on a futuristic
approach to information-sharing mechanisms in smart grids, including at the distribution
level [29, 30, 31, 32, 33]. The GridStat effort [34, 35, 36], primarily from Washington State
University, has set about defining communication requirements for power grids for the last 5-
10 years. GridStat has further inspired the NASPINet effort to develop an ”industrial grade,”
secure, standardized, distributed, and expandable data communications infrastructure to
support synchrophasor applications in North America [37]. None of the prior work in the
area has looked at information needs of grid operators from a purely information volume
perspective and its impact on the design of a communications network for the distribution
system.

The topic of information needs also raises the question of information security and con-
sumer privacy, which has been an area of research [38, 39, 40, 41, 42, 43, 44, 45]. Some of
these approaches, although providing strong guarantees of confidentiality, are very taxing
from a communication and computational stand-point and may not be feasible on low-end
smart meters. Given the frequency of the data being sent and possible bandwidth limi-
tations, this can lead to unacceptable delay and network overhead, and needs mitigating
mechanisms. This complementary task of reducing overhead introduced by security and
privacy mechanisms for smart metering is presented as a separate part of this report.

2.3 The Smart Metering Message-Concatenation Problem

The smart metering message concatenation (SMMC) problem considered in this part of the
report is as follows. A DCU receives different types of messages from smart meters with
a stochastic arrival process (we will discuss this arrival process later in Section 4). Each
message can be of a different size and comes with an application specific end-to-end deadline
by which it must reach the common destination that is the utility control center. Each
message has protocol overhead as it is packaged into a packet before being sent to the DCU.
The DCU can either send each packet to the destination as it arrives as a single message
or wait and concatenate multiple messages before sending them out over the backhaul to
the destination. The objective considered is to minimize the number of individual packets
(and hence protocol overhead) sent upstream by the DCU so as to reduce network capacity
requirements of the backhaul. The constraints are that all packets meet their deadline (if
any) and that each concatenated packet generated (including a common packet header) has
a upper size limit, W , governed by the maximum transmission unit (MTU) of the upstream

6



link from the DCU. The objective function chosen helps reduce total overhead required to
send all messages within a given time period T by maximizing the size of each concatenated
packet for a fixed header size H . In this work we assume that messages are not compressed
from their original sizes (zero-compression) and the solution to the SMMC problem at DCUs
would serve as a lower bound for the possible reduction in network utilization by additional
schemes (possibly that compress message sizes themselves) developed in the future for the
smart metering scenario. We focus on only a single DCU and its concatenation operation in
this work; in future work we envision considering a more wider view of the backhaul network
and the use of multi-level DCUs along the communications network.

A formal statement of the SMMC problem is provided in the following definition.

Definition 1. Assume that over some period of time T , all smart meters together generate
n messages M = {m1, · · · , mn}. Each message mi ∈ M has size si and an associated
protocol header hi accompanying it till the DCU with (si, hi, si + hi ∈ [0,W ]), an arrival
time at the DCU of ai (ai ∈ [0, T ]), and a deadline di (di ∈ [ai,∞]) by which it must
leave the DCU, where i = 1 · · ·n. Then, the SMMC problem is to determine an integer
number of packets k(k ≤ n) and a k-partition P1 ∪ P2 ∪ · · · ∪ Pk of the set M such that
(i)

∑

i∈Pj

si + H ≤ W, ∀j = 1 · · ·k, and (ii) each message mi ∈ M meets its deadline with

max
i∈Pj

ai ≤ min
i∈Pj

di. A solution is optimal if it has minimal k.

The SMMC problem can also be stated as a 0 − 1 Integer Linear Program (ILP) as
follows:

minimize k =
n

∑

i=1

yi (2.1)

subject to constraints

n
∑

j=1

sjxij +H ≤ Wyi, ∀i ∈ {1 · · ·n}

max ajxij ≤ min djxij , ∀i ∈ {1 · · ·n}, j ∈ {1 · · ·n}
n

∑

i=1

xij = 1, ∀j ∈ {1 · · ·n}

yi ∈ {0, 1}, ∀i ∈ {1 · · ·n}

xij ∈ {0, 1}, ∀i ∈ {1 · · ·n}, ∀j ∈ {1 · · ·n}

where yi = 1 if packet i is used and xij = 1 if message j is put into packet i.
In the formulations above, the term deadline refers to the local deadline for a message

at the DCU by which a particular message must be picked up for the packet creation and
transmission over the network. This local deadline can be set by subtracting away an estimate
of processing delay at the DCU and the network delay over the backhaul from the end-to-end
deadline specification of an application for messages. We will discuss and incorporate the
impact of processing and network delays later in Section 5. In the problem definition above,
for any set of messages assigned to a packet, none of the messages in the packet will miss
their local deadlines at the DCU if the arrival times of all messages are at least some value
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ǫ before the first expiring deadline value among all messages of that set. This value ǫ could
be set to the maximum processing delay to be encountered at the DCU in forming a packet
and could be an input to the problem; more discussion about estimation of processing delays
will be presented in Section 5.
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3 Algorithms for the SMMC Problem

3.1 SMMC Hardness Result

To prove that the SMMC problem is NP-Complete we first show that SMMC is in NP, or
in other words, has a polynomial time verifier. An instance of a solution to the SMMC
problem is an integer number of packets k and a feasible k-partition P1 ∪ P2 ∪ · · · ∪ Pk of
the set of messages M . Such an instance can be verified in polynomial time in terms of the
input consisting of the following fields <message identifier, arrival time, deadline,

message size, header size, W> for nmessages. Further, in polynomial time (in terms of
input length) we can check that each message falls in exactly one of the k partitions/packets,
and that each packet meets the condition of having its total size less than or equal to W .
We can further check in polynomial time if any message in the packet will miss its local
deadline. Thus, we can verify whether a given instance is a solution to SMMC in polynomial
time, and hence, SMMC ∈ NP.

To prove that the SMMC problem is NP-hard we reduce the known NP-complete Bin
Packing problem [46] to the SMMC problem. These problems have many similarities but
differ in terms of the notion of arrival times and deadlines for the SMMC problem. The
Bin Packing problem takes as input a set of n

′

items I = {it1, · · · , itn′} of sizes S
′

=
{s

′

1
, s

′

2
, · · · , s

′

n
′} and a set of bins B = {b1, · · · , bk′} each of size W

′

. An assignment of items

to bins is sought that minimizes the number of bins k
′

into which all items are packed. That
is we seek a k

′

-partition B1 ∪ B2 ∪ · · · ∪Bk
′ of the set of items I.

We will transform an instance of the Bin Packing problem to that of the SMMC problem
as follows. For each item i in I, add dummy variables A

′

: a
′

i = 0, and D
′

: d
′

i = ∞. This
transformation can be trivially done in polynomial time (in terms of input length) and the
modified instance used as an input to the SMMC problem with M = I, S = S

′

, D = D
′

,
A = A

′

, W = W
′

, and P = B.
Any resulting solution from the SMMC problem can be transformed back to a solution

for the Bin Packing problem as follows. A solution to the SMMC problem gives an integer
k and a k-partition of M that maps individual messages to specific concatenated packets.
We can take this solution and apply the following transformation: k

′

= k and Bi = Pi,
i = 1 · · ·k. This transformation gives the required solution assignment for the Bin Packing
problem and can be easily done in polynomial time again.

Theorem 1. SMMC is NP-complete.

Proof. By transforming (in polynomial time) any input instance of the Bin Packing problem
to that of an SMMC problem, and the resulting solution of the SMMC problem back to Bin
Packing problem, we have thus reduced Bin Packing to SMMC. Thus, SMMC is an NP-hard
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problem. And since we had proved SMMC ∈ NP earlier, we can conclude that SMMC is
NP-complete.

The problem as stated so far is an offline version where all packet arrival times and
deadlines are known beforehand and the DCU needs to solve the problem looking forward
at the entire window of messages that could arrive over duration T . This problem can
occur in practice when all message types and their arrival times are known deterministically,
for example, when all messages are scheduled deterministically. However, in most cases the
problem will be an online one with stochastic message types and arrivals where the DCU will
only have access to those messages (with their arrival time and deadlines) that have reached
the DCU and are waiting to be concatenated before being sent out over the backhaul. Thus,
any proposed heuristics will need to perform in an online fashion.

3.2 Heuristics

Due to the proven hardness of the SMMC problem, in this work we develop online heuristic-
based algorithms for solving the SMMC problem. Our heuristic solution approach is to rely
on Earliest Deadline First (EDF) scheduling where a concatenated packet is created at the
DCU starting with a message within a specific threshold of its deadline and then filled with
other messages so as to maximize the packet size that can be sent out. Proposed heuristics
differ in terms of what other messages they decide to fill in the concatenated packet in
addition to the message whose deadline is about to expire.

Six different heuristic-based algorithms are proposed for scheduling of messages at a DCU
for the SMMC problem as listed in Table 3.1. All six algorithms initiate creating a packet
when one of the local message deadlines at the DCU is about to expire; they differ in terms of
what other messages (in addition to the message whose deadline is about to expire) are put in
the packet being sent out. In all six schemes, a Classifier module checks the arrived messages
to see whether they are best-effort or have a specific deadline (if the selected heuristic needs
to differentiate between them). Two different queues are formed based on the classification
done. All deadline messages are kept in a priority queue sorted by earliest deadline. It
is assumed there are two queues in the system, one for the messages with specific delay
objective and another for those without a delay objective (the best effort messages). If no
classification is required then all arrived messages will be sorted and placed in a single buffer.
All of the proposed heuristics (except EDF-FCFS) employ the 0-1 knapsack algorithm [46]
to decide which messages to fit into the packet among the various options available. More
details of the implementation of our proposed heuristics and associated pseudocode can be
found in our prior work in [47].

3.3 Reference Algorithms

EDF-based Integer Linear Programming (ILP) Formulation
To get a solution for the SMMC problem one can use mathematical optimization algorithms.
We have formulated the SMMC problem as a mixed-integer linear program which optimally
schedules the remaining messages in addition to the EDF message to begin a packet with
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Table 3.1: The proposed concatenation heuristics

Algorithm Description

EDF-DKB Inserts deadline messages as much as possible inside the packet and the
remaining space will be filled through knapsack selection over best-effort
messages that have been queued.

EDF-SDKB Only a single deadline message sits inside the packet with any available
space filled with non-deadline messages in the non-deadline queue through
knapsack selection.

EDF-FCFS Messages will be placed in the packet according to their arrival sequence
from a common queue of deadline and non-deadline messages on a
first-come first-served basis.

EDF-KN Messages are chosen from a common pool of deadline and best-effort
messages selected through the knapsack algorithm.

EDF-KDKBA sequence of knapsack selections first on all queued deadline messages
and then over the queued best-effort messages if needed to fill the packet.

EDF-KBKDReverse order of knapsack process in EDF-KDKB working first on the
queued best-effort messages and then on the deadline messages if needed.

index. The problem is formulated as follows for a packet with index i:

maximize Pi =

nt
∑

j=1

sjxij (3.1)

subject to constraints

nt
∑

j=1

sjxij +H ≤ W,

xij ∈ {0, 1},

where xij = 1 if message j is put into packet i. In the formulation above, nt (nt ≤ n) is the
set of messages queued at the DCU and available for concatenation at time t (t ≤ T ). Any
messages that are found to not meet deadline constraints are forwarded immediately with no
concatenation process applied. This formulation is different from Equation 2.1 in that it is
EDF-based and message deadlines are not a constraint as messages closest to their deadlines
are selected and sent out before their deadlines occur. This formulation tries to fit in as
many messages as possible (among those available) in a packet to be sent out. The given
constraint specifies the maximum packet size that can be sent over the backhaul technology
with a specific MTU size. The drawback of this approach in practice (as opposed to our
heuristics) is the brute force nature of this integer linear programming solution procedure
which makes it practically infeasible for real-time applications and those that involve large-
scale data.
Theoretical Optimum
This method is theoretically the minimal number of packets that needs to go out of a DCU
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for a given number of messages generated from the smart meters over a period of time. This
value is not constrained by arrival times or deadlines of messages; it is computed through the

equation

⌈

∑n
i=1

si
MTU−H

⌉

where n is the total number of arrived messages during a time interval,

and si is the size of a message i. MTU and header size H are the parameters defined
according to the backhaul technology. Although this solution is not feasible in practice, it
gives a theoretical reference for the performance evaluation of any SMMC algorithms, not
limited to EDF based heuristics.
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4 Evaluation

4.1 Methodology

We outline below more details about the simulation environment, message arrival process,
and distribution of various message types.
Simulation environment
A discrete-event simulator was developed using MATLAB to evaluate the proposed heuristic-
based algorithms and compare to the reference algorithms. The network topology consisted
of a group of smart meters generating messages as a poisson process and sending messages
to the DCU to be routed to the control center.1 Due to the assumption of individual
meter message generation as a poisson process, we can sum the individual average message
generation rates to get an cumulative average arrival rate at the DCU of λ which is used as
a parameter in our simulations. We have considered three different λ values of 0.1, 0.5, and
1 at the DCU which would correspond to 90, 450, and 900 smart meters sending 1 message
on average every 15 minutes. The service capacity of the DCU is considered to be infinite;
however, we do study the impact of processing delays in the following section.
Message types distribution
During a day, different types of the messages may be exchanged between smart meters and
the utility control center through the AMI. In our evaluations we have considered all seven
basic types of messages first reported in [5]. Based on geographic location, power distribution
infrastructure, and utility preferences, the transmission of messages could come from different
distributions of these basic message types which will have an impact on the performance of
our proposed heuristics. In our evaluations we used different Beta distributions across these
message types by varying shape parameters α > 0 and β > 0.

For our experiments we generated five different message type distribution using the shape
parameters mentioned in Table 4.1 to test the performance of our proposed algorithms.

4.2 Simulation Results

Simulations were conducted with 100 runs and the mean value plotted in results shown along
with 95% confidence intervals. Each scheme was evaluated in terms of the overall reduction
in bytes of data transmitted out into the backhaul network by the DCU as compared to the
overall incoming data in bytes from smart meters, including all headers. Each packet header
was assumed to be of a fixed size of 50 bytes corresponding to the 40-60 byte range for TCP
and IP headers. Figure 4.1 displays the output of our proposed algorithms and reference

1Prior work in [48] supports this assumption that smart meters message generation can be modeled as a
poisson process.
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Table 4.1: Pre-defined message arrival distributions

Distribution Description

Uniform The traffic would have almost equal percentage of all message
(α = 1, β = 1) types.

More smaller Most of the arrived messages are of the smaller size of
(α = 2.8, β = 1.9) message types.

More larger There is higher percentage of large message size and very few
(α = 0.18, β = 0.25) numbers of small size messages.

More deadline Most of the times there are incoming messages with deadline
(α = 1, β = 1.8) restriction.

More best-effort There are very few numbers of messages with a deadline and
(α = 2.5, β = 0.5) so many best-effort messages.

algorithms over five message types distributions with 95% confidence intervals. Results are
shown for packet arrival rates at the DCU of λ = 0.1, 0.5, and 1. It can be seen that overall
data volume reduction varies from 5-25% depending on message type distribution, message
arrival rate at DCU, and specific algorithm used. Three questions answered are:
How do the proposed heuristics stack up against each other and reference algo-
rithms?
Taking a look at the bar charts in Figure 4.1 one can observe that the algorithm EDF-KN
has the best performance among all other heuristics and comes very close to the performance
of the EDF-based ILP across all λ and message type distributions. This is due to the fact
that EDF-KN is using a common pool of messages whether they be deadline or best effort,
giving more options to maximize packet size before it is sent out. Since typically there are
enough queued messages before a deadline reaches, the algorithm has a good collection of
options to maximize the packet before sending it out. It can be noticed that in general
EDF-based approaches do well compared to theoretical volume reduction, where the latter
increases with MTU size and decreased with the size of H .
What is the impact of message type distribution?
The uniform distribution of all message types serves as the reference case to compare other
distributions. For the more deadline case with a majority of all messages having deadlines,
overall data volume reduction is smaller for all algorithms. Presence of more messages with
deadlines than best-effort necessitates packets to be sent out of the DCU without having the
luxury of waiting for the right combination to maximize packet size. However, when there
are more best-effort messages present, algorithms can wait longer before being forced to
send out packets; this allows each packet to be larger, and hence reduces packet overheads.
The case for more smaller size messages is similar to the more deadline message case in
that it helps reduce packet overheads significantly through concatenation as header sizes are
comparable to data sizes. Smaller messages are also easier to pack into a packet. Conversely,
the more larger messages case results in greater difficulty to fill messages into a packet; also
larger underlying message sizes already have a reduced overhead making much improvements
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Figure 4.1: Overall data reduction percentage using proposed heuristics over different mes-
sage arrival rate and message type distributions.

through concatenation difficult.
What is the impact of λ?
The value of λ signifies the packet arrival rate at the DCU; hence, larger values indicate
that more messages are arriving at the DCU increasing opportunities for a concatenation
algorithm to find a best fit of messages in an outgoing packet from the DCU to reduce overall
protocol overhead. The EDF-KN data volume reduction approaches very close to that of
even the theoretically optimal solution with increasing λ. Thus, greater the rate of packet
arrivals, the proposed EDF-based concatenation algorithm over a common queue of messages
maximizes the reduction in data volume.
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5 Impact of Network and Processing Delays

Network delays between the DCU and the utility control center, and processing delay at
the DCU itself are two factors we had assumed to be negligible in the results presented so
far. The magnitude of these delays may not be negligible in all practical cases, and can
cut down the amount of time a DCU can wait to maximize the size of outgoing packets
sent out. Thus, there will be a direct correlation between network and processing delays on
the ability of a DCU to reduce protocol overhead. An interesting challenge here is that the
DCU cannot accurately predict these delays beforehand; each concatenated packet will suffer
variable network and processing delays due to many factors related to number of messages
processed and characteristics of the communication backhaul. Thus, the DCU needs to rely
on an estimate of network and processing delays it needs to budget into computing the local
deadline of each message. An overestimate will reduce the amount of time a DCU will have
to wait and concatenate a large packet; an underestimate on the other hand can mean some
messages will miss their deadlines. This section describes how such delays can be estimated
and what what impact it will have on data volume reduction through message concatenation.

5.1 Estimation of Network and Processing Delays

To estimate the processing delay, we need to break it into the major individual components
that cause delay. These components are (i) concatenation delay: the time required to put
all selected messages into a packet and add a common header, (ii) knapsack delay: the time
required by some of the schemes that use a knapsack operation to select messages from a
queue of messages, and (iii) sorting delay: the time required to maintain the queue sorted
in terms of earlier deadlines. These components are present in each heuristic in possibly
different ways based on the nature of the algorithm. Table 5.1 summarizes how each of these
components (CC , CS and CK time costs for concatenation, sorting and selection through
Knapsack respectively) sum up to the total processing delay for each heuristic scheme. These
schemes operate on either a single common queue of n items, or one of two queues (with sizes
n1 and n2) having deadline and non-deadline messages, or both queues one after the other.
The next step was to populate realistic values into the processing delay estimation model.
For this, we measured actual processing delays when executing each of the three operations:
concatenation, knapsack selection, and keeping a sorted queue. These values were computed
on a Dell Optiplex 64-bit PC with a 2-core 2.8GHz CPU and 5GB RAM for a full range of
values of n from 1 to 1000 to study all possible queue sizes we are likely to encounter for
message arrival rates used in the evaluations in Section 4.1 By populating these values for a

1We assume that when our algorithms are deployed, an estimate can be re-calculated for the specific
system employed in the DCU as opposed to using the estimates discussed here. DCUs on the market
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Table 5.1: The heuristics processing time calculations
Heuristic Processing Delay
EDF-FCFS CC + CS

EDF-KN CC + CS + CK(n)
EDF-DKB CC + CS + CK(n1)
EDF-SKB CC + CS + CK(n2)
EDF-KDKB CC + CS + CK(n1) + CK(n2)
EDF-KBKD CC + CS + CK(n2) + CK(n1)

0

5

10

15

20

25

Uniform More smaller size More larger   size More deadline More best-effort

To
ta

l 
D

a
ta

 R
e
d

u
ct

io
n

 (
%

)

Message arrival distribution
Original-Deadline EDF-KN  + Processing Delay + 100ms Network Delay   || 250ms Network Delay

 Half - Deadline EDF-KN    + Processing Delay + 100ms Network Delay   || 250ms Network Delay

Quarter -Deadline EDF-KN  + Processing Delay + 100ms Network Delay   || 250ms Network Delay

Figure 5.1: Data reduction trend vs. Delay addition.

given n in the processing delay model presented in Table 5.1, the DCU could easily construct
an estimate.2

5.2 Evaluation Results

Here we re-evaluate our proposed heuristic-based algorithms with varying values of network
and processing delays, and study the impact on achievable reductions in protocol overhead.
For these evaluations we have chosen the EDF-KN heuristic, one of the better performing
heuristics among those evaluated in section 4.2. Figure 5.1 presents the results for λ = 1
and shows the protocol overhead reduction achieved with varying values of network and
processing delays, including the case where such delays are set to nil. In addition, to further

can have high processing capabilities as described in [49] and we expect the values used in this work to
over-estimate actual processing delays.

2We refer the reader to [50] for a description of how network delays can be predicted with an exponentially
weighted moving average over a sliding window of previously seen delays. We will study the impact of various
possible network delays to assess the impact on benefits of message concatenation in evaluations that follow.
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Figure 5.2: Average buffer size vs. Delay addition

explore the lower limits of possible benefits of message concatenation, we experiment with
deadline values half and quarter the amount of that used in our evaluations in Section 4.
The impact of tighter deadlines will be similar to that of additional network and processing
delays, with both factors essentially reducing the time the DCU has to concatenate messages
into larger packets.

The results in Figure 5.1 show that as processing and network delays increase, the per-
centage overhead reduction decreases. Similarly, as deadlines get tighter, the data volume
reduction achievable reduces. Even for such extreme cases considered, there is at least a 5%
reduction in data volume possible. The biggest impact of network and processing delays, or
tighter deadlines is with the “more deadline” message distribution with a greater fraction of
messages needing to be concatenated and sent out quickly. The smallest impact of delays
or tighter deadlines is seen for the “more best-effort” case where most messages are not
hard-pressed to meet deadlines.

A more accurate depiction of what happens inside the DCU can be seen by studying the
average queue or buffer size for various message type distributions for estimated processing
delays and varying network delay values of 100 ms and 250 ms. A similar trend can be
expected for tighter deadline values. As Figure 5.2 confirms, the “more deadline” message
distribution has the smallest average queue size, implying that messages do not stay in the
buffer for long periods. The “more best-effort” message distribution at the other extreme
results in the largest average queue size implying messages stay in the buffer for a much
longer duration. A large average queue size does add additional processing delay; however,
for the more best-effort case, there are few messages with deadlines that are impacted by
the larger processing delays. For all the other schemes, evident from the results, the average
queue size stays small enough to not adversely impact data volume reduction.
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6 Data Volume with Lossy Links

Another practical aspect that needs to be considered is the impact of lossy backhaul links on
the large concatenated packets expected to be sent out from the DCU by proposed heuristic-
based algorithms. Larger packets will typically suffer more re-transmissions (and thus adding
to data volume transported) when sent through networks with a fixed bit-error rate (BER)
due to their larger size. Thus, it is imperative to explore the impact of various backhaul
technologies, each with different BER characteristics, on benefits of message concatenation1.

6.1 Theory

The most important factor in analyzing the impact of lossy networks is considering the BER
of the technology being used. The transmission BER is the number of detected bits that are
incorrect before error correction, divided by the total number of transferred bits (including
redundant error codes). Different communication technologies have different BER. The goal
here is to translate a given BER for a technology and estimate the corresponding data volume
reduction ratio. Let eb be the BER of a given technology. A packet is declared incorrect
if at least one bit is erroneous. Thus, for a packet of size L bits, the resulting packet error
rate (PER) of the technology, ep, then is ep = 1− (1− eb)

L. Let D be the volume of data in
bytes (including payload and control overhead) that would have been sent over the backhaul
in a time period T when message concatenation is not employed. Let D

′

be the volume of
data sent (again including payload and control overhead) over the backhaul after message
concatenation. With a PER of ep and e

′

p respectively, the corresponding data volume sent

through the backhaul will be (1 + ep)D and (1 + e
′

p)D
′

respectively. Thus, the data volume
reduction ratio ρ with a lossy backhaul can be computed as

ρ =
(1 + ep)D − (1 + e

′

p)D
′

(1 + ep)D
(6.1)

With larger packet sizes e
′

p > ep, thus reducing the data volume reduction ratio as
compared to the case when lossiness of the backhaul network is ignored.

6.2 Numerical Evaluation

The technologies for the backhaul considered are fiber optic, WiMAX, 3G Cellular; these
three technologies are currently commonly used to connect the AMI at the customer to the

1Due to space restrictions, we do not explore the analogous issue of packet loss due to network congestion;
the eventual impact on the benefits of message concatenation is expected to be similar regardless of the
underlying reason for packet loss
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Figure 6.1: Data reduction savings vs. Different backhaul technologies

backbone network and tend to be lossier than the core network. We picked BER values for
these technologies based on known ranges in [51, 52, 53] to study the impact of message
concatenation algorithms. The BER values eb used in the following evaluation were 5E-07,
3.16E-06, and 7.5E-06 for fiber optic, WiMAX, and 3G technologies respectively. For each
technology, we computed PER’s ep using the equation above. For the case with no message
concatenation, we considered an average packet size of 100 bytes (L = 800 bits) in computing
a PER of ep; for the case with concatenation, we used a packet size of 1000 bytes (L = 8000
bits) to compute e

′

p which is roughly the average size of concatenated packet seen in our
simulations from the earlier sections. Finally, using Equation 6.1, we computed ρ for each of
the three technologies with D and D

′

computed based on our simulations earlier in Section
4 for the EDF-KN scheme with a message arrival rate of λ = 1.

It can be seen from Figure 6.1 that for even the most lossy technology considered (3G)
with worst-case BER characteristics chosen, data volume reduction with message concate-
nation only falls by 3-4% compared to the reference ideal BER case. Thus, the benefits of
message concatenation seems to hold up for the most commonly used technologies. These
results are likely to be better with the use of forward error correction (FEC) techniques
employed to minimize packet loss.
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7 A Case Study of Practical Benefits of Proposed Algorithms

With many hundreds of thousands of customers in a geographic location, utilities will be
thus sending data in the order of Mbps to Gbps through their backhaul networks connecting
to control centers. This scale of data flow through AMI networks is also supported by the
literature (e.g. [54, 55, 56]). This section presents a case study of actual data rates flowing
through neighborhood networks of different sizes and how it may impact a given backhaul
communication technology and the applicability of proposed data concentration algorithms.

Assume a power system topology with a feeder connecting to 1350 customers in an area
with 450 distribution transformers, with one transformer connecting to 3 customer smart
meters. This chosen topology is typical of for a suburban area in the U.S (see for e.g. [57]).
A logical communications network overlaid on the physical topology of this distribution
system topology could be as follows. Based on the manner in which the communications
network is organized, its communication range, and the customer meter density, x smart
meters could be connected to a DCU. For the topology assumed, x could take on any values
from 1 to 1350. The total number of DCUs required would depend on the value of x. The
DCUs are then further connected through a backhaul to the communications network. With
x meters each sending a message every y seconds, the average data arrival rate at each DCU
will be x

y
messages per second. For message sizes averaging 350 bytes and a 50 byte header

(typical sizes from [5]), this amounts to a data rate of 3.2x
y

Kbps at each DCU employed. For

x = 450, 900, 1500 and for y = 900 seconds (15 minute intervals), this amounts to data rates
per DCU of 1.6 Kbps, 3.2 Kbps, and 4.8 Kbps. For more fine-grained data collections in the
future for analysis (e.g. as motivated in [58]) or just applications such as EV load control
and appliance-level load monitoring, y could be of the order of few seconds. For 10 second
intervals, this results in data rates of 144 Kbps, 288 Kbps, and 432 Kbps for x = 450, 900,
and 1350 respectively.

A technology like power line communications can only support data rates in the order
of Kbps [59]. Thus for neighborhood deployments of the order of 500-1500 smart meters,
with a low bandwidth technology like PLC, it is imperative that data volume through such
backhaul links be managed carefully. Other higher bandwidth backhaul links such as cellu-
lar, Wi-Fi, WiMax can support higher data rates (at higher costs) and will be less stressed
by smart meter deployments. With electric utilities either leasing communications capacity
from telecom companies, or building their own telecommunications networks and then leas-
ing capacity to recuperate costs, they will benefit from reducing the amount of data sent
through their networks regardless of the scale of a smart meter deployment and bandwidth of
communication links. A 20% reduction in data volume (as can be achieved by the proposed
heuristics in this work) should translate to a similar reduction in network infrastructure costs
under a scenario of per byte capacity costs. Such reduction in costs is expected to also benefit

21



all customers, whether they are equipped with smart meters or not. As the penetration of
smart meters increases, the applicability of this work will keep increasing with more benefits
for greater traffic volumes as found in our results earlier in this report. The FERC survey
in 2012 [60] indicated AMI penetration to be about 23% (a 14% increase over 2010 levels)
and is expected to have increased at a similar rate since then.

A scenario where the applicability of the proposed data concentration approach would
be reduced is if network capacity is not metered per byte of data transported, but instead
is a fixed capacity cost, and if the smart meter deployments are small enough to not stress
deployed networks. The data flow analysis in the previous paragraph shows that in such a
case, for neighborhoods as small as 500-1500 smart meters connected to a single DCU, the
proposed data concentration schemes may be useful only if a low bandwidth technology like
power line communications is used for the backhaul. However, if multiple such neighborhoods
are clustered together behind a single data concentrator (with appropriate network topology
configurations), the data concentration schemes would still be useful for even high bandwidth
technologies. For larger number of meters, such as 3000 and above, data generated at (10
second interval collection) would be of the order of Mbps and can stress higher bandwidth
links and be very useful even for those links.
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8 Conclusion and Future Work

This part of the report demonstrated that message concatenation algorithms can be an im-
portant element of data concentrators deployed in smart grids to solve the looming challenge
of transporting massive data volumes through last mile bandwidth-constrained backhaul
networks. Effective message concatenation algorithms at DCUs (such as the EDF-KN algo-
rithm proposed in this work) were shown to be able to reduce overall data volume by 10-25%
for each DCU. This reduction was achieved just by a reduction in protocol overhead with no
compression of the original data sent by smart meters; this provides enough motivation to
develop additional data concentration mechanisms at DCUs that also act on the payload of
messages. Another direction of future work is to look at how concatenation can be done at
multiple levels of the communications network, not limited to just the first hop from smart
meters.

Some preliminary related work and ongoing work to that presented in this part of the
report can be found in [61, 62, 63, 64].
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1 Introduction 

1.1 Background 

One of the critical components of distribution system advancement is the communication infrastructure. 
Real-time management of distribution system requires improved two-way communication. Due to the types 
of equipment at distribution level, such as voltage regulators, capacitor banks, automated switches etc. the 
requirements distribution level is different, when compared to the transmission level requirements. Any 
distribution level communication infrastructure should incorporate the following to ensure the 
effectiveness.  

• Consumer level benefits: One of the prime modes of real time control of distribution level is 
residential consumer level demand response. The two-way communication infrastructure will 
determine control frequency. This will have an effect on the expected and actual benefits to the 
consumer. 

• System level benefits: Communication infrastructure will determine the level of aggregation 
required. When consumer data is aggregated the demand interval will be modified. Impact of 
demand interval on accuracy predicting the system benefits, is a new concern. An approach to 
estimate the error needs to be developed.  

This work focuses on developing an evaluation approach for consumer and system level impacts. The 
following two approaches were taken in this work.  

1.2 Demand Response Impacts 

Demand side management (DSM) among other smart grid initiatives, has gained increased attention in an 
attempt to defer the investment in upgrading the power grid in terms of more generating units and 
transmission lines [1]. The technologies utilized in smart grid pilot projects include advanced metering 
infrastructure (AMI), automated meter reading (AMR), distributed generation, energy storage, smart 
appliances and dynamic pricing. A well-developed Demand Side Management (DSM) program is expected 
to have impact on several applications such as peak reduction, power factor improvement, equipment life, 
and consumer cost reduction. 
 
Even though significant number of work has been done to develop demand management schemes, this work 
differs from the literature, as it compares the impact of control interval (demand interval) on the actual 
benefits to the distribution grid. The control parameters are based on different control sampling rate 
selection and represent the impact on both the user and the utility. The motivation is to develop a framework 
to analyze the tradeoffs when choosing different sampling rates; based on the ASHRAE 55 [2] standard for 
thermal comfort.  
 
Two key demand response resources are (i) thermostatically controlled loads (TCLs) and (ii) 
electrochemical batteries used in plug-in electric vehicles. This is due to the fact that both of them are 
capable of storing energy in some form and release when it is needed with minimum interaction with the 
consumers and their comfort level. Scheduling either of them is that they are not only good at reducing 
peak demand, but also are good candidates for load shifting or valley filling. Among other benefits, HVAC 
systems are able to store energy i.e. cooling in off peak hours and coasting during peak hours. Moreover, 
the user comfort level violations can be reduced by raising or dropping the thermostat to levels that does 
not cause much thermal discomfort as long as it’s within the limits defined by ASHRAE 55 standard for 
thermal comfort.  
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On the other hand, other controllable appliances may impose some time delay in operation, thus create more 
discomfort. For example, a clothes dryer cannot be used before clothes washer, so the consumer will have 
to wait to operate the dryer once the washer cycle is complete. Also, the availability of programmable 
thermostats may help avoiding the investments in developing advanced equipment as is the case with other 
appliances that may require special circuits to be able to communicate with the network and control those 
complicated appliances like dish washer, washer-dryer etc. 

1.3 Feeder Level Impacts 

Current advancements in the power system have focused on developing solutions and technical frameworks 
for the next generation distribution system in order to make it more flexible, robust and cost effective [1] and 
to allow more participation of residential customers. Advanced metering infrastructure and distributed 
intelligent devices allows better monitoring and controlling but data storage is a concern using smart 
metering. Data storage requirements along with bandwidth limitation of communication network leads to 
use of different demand interval using information engineering concepts [1]. Aggregating data from high 
resolution to low resolution and time period over which aggregation is done is known as aggregation interval. 
Aggregating demand data from the consumer end at a certain sampling interval could be linked to demand 
interval [3].  
 
Depending on the type of signal to be measured the data aggregation interval is of great importance. 
Important details are lost due to averaging if long aggregation interval is used and on the other hand short 
interval leads to copious amounts of data that is difficult to assess. This excessive information may not be 
meaningful and leads to storage problem if the data is to be retained [4]. Thus the accuracy of the information 
obtained at different intervals is analyzed in this paper. Nine different aggregation intervals are used for the 
analysis. 
 
An algorithm to determine the importance of aggregation interval needs to be evaluated using an appropriate 
statistical tool. This must guarantee to improve the consumer side and system side benefits. For example: in 
case of voltage transformer with tap changer as the main tool [4]. If the tap of transformer and capacitor 
regulators were frequently changed, these devices would be easily damaged [2]. This is due to the repeated 
switching operation of the tap changer which results in wearing down the metal contacts. It has been observed 
that failure in the population of power transformers is mainly due to ageing and the tap changer is the 
component with highest contribution of failures [5]. Thus accurate predictions of tap changing operations 
are necessary to improve the failure prediction in advance, which if accurately predicted could reduce the 
downtime. Furthermore, one of the objectives of the smart grid is to reduce the cost of operations. Reducing 
distribution level losses could reduce the cost of operation. However, it is vital to determine actual reduction 
in losses in the presence of communication and load control. 

1.4 Organization of the Report 

The this work has two parts and the report is organized as follows, Chapter 2 provides the state of the 
literature, Literature Review, Chapter 3 presents the consumer impact modeling and analysis part, Chapter 
4 presents the system side impact modeling in the presence of data aggregation and conclusion is provided 
in Chapter 6. 
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2 Literature Review 

Dislike the traditional grid, which relies more on human interaction, the smart grid is however expected to 
have lesser human interaction. For instance, in case of a power outage in a traditional system, the consumer 
has to complain about the outage and bear the delays; meter reading and billing requires more man power; 
these tasks can be taken care of with some form of communication with the grid. One of the objectives of 
smart-grid is to increase the consumer response through active residential consumer participation (demand 
response).  
 
The demand response requires certain residential appliance to respond to the control signals sent to them 
by the distribution system operator. The sensors and processors should work closely to respond to different 
types of disturbances. Traditionally the grid’s flow was bottom up, i.e. the generation units used to respond 
to the demand. Demand response enables top to bottom approach in which the appliances/loads respond in 
accordance with the available resources.  

2.1 Feeder Level Impacts 

Appliance’s usage profiling can be very helpful for the smart grids and can support DSM programs since it 
enables the system to understand the user activities and thus better forecast the load profiles. Appliance 
identification strategies were developed in [3], [6]-[8]. In [3], a V-I trajectory based taxonomy was 
presented. The appliances, based on their trajectories are then divided into groups representing similar 
appliances. In [6], a load monitoring system is presented based on S-Transform. However, the 
methodologies require load monitoring at appliance level and not the aggregation point, i.e. the main meter. 
This problem was targeted in [7] and [8] where the appliances are identified at the aggregation point and 
thus the need of individual monitoring was suppressed. Usage profiling will also help in developing load 
specific models and better forecast each appliance’s demand and will ultimately supplement the 
development of controlling algorithms. 
 
In terms of controllability, household load can be classified as controllable loads (CL) and non-controllable 
loads (NCL). CLs can be further categorized as thermostatically controllable loads (TCL) and non-
thermostatically controllable loads (NTCL). Examples of TCLs are HVAC systems, refrigerator, freezer 
etc. Appliances that can be switched on/off directly or can be programmed for their operation fall in the 
other category. 
 
Work done in [9] and [10] is primarily focused on the controlling of Non-thermostatically Controllable 
Loads (NTCLs) responding to DSM signal. However a direct control method as proposed in [9] and [10] is 
not feasible for Thermostatically Controllable Loads (TCLs) due to the constraints like acceptable thermal 
range and minimum compressor on/off time. Controlling appliances locally, i.e. for each individual 
household separately brings another concern that there remains no coordination at the community level. 
Moreover, expanding them to multiple households require information about the usage patterns of other 
appliances. In [11] an energy consumption scheduling model is presented in the presence of local micro 
generation which can be expanded from household to the community level. The test cases used for 
simulations are with arbitrary load profiles of some appliances, unable to control TCLs, and does not 
represent an actual system. The goal, similar to most of the work available, is to save energy usage cost to 
the consumer. Furthermore, the algorithm is unable to handle large number of appliances and demands high 
computational power. Similarly, in [12] a power consumption scheduling scheme, using arbitrary load 
profiles of NTCLs, handles multiple tasks to schedule. The analysis of algorithm is based upon the impact 
of number of tasks on the execution time for a constrained environment, which actually did far better than 
a non-constrained environment.  
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Significant work is done to manage the demand of multiple customers. For example, in [13]-[16] game 
theory is utilized to schedule loads at a community level with minimum information exchange. The 
algorithm proposed in [13] was able to reduce Peak to Average Ratio (PAR) and the total cost in the system. 
Basically, the game among the consumers is to schedule appliances so that the overall cost of supplying the 
energy demand is reduced, and ultimately reduce the cost to each consumer. Real time pricing is utilized in 
[14] to optimally schedule household loads in an attempt to reduce cost and waiting time to the consumer. 
The automated system is proposed so that the consumer does not have to respond manually to continuously 
changing prices as it requires training and understanding of the system as well as constant and careful input 
from the consumer. The work was extended in [15] to realize PAR reduction when compared to percentage 
of schedulable loads available. The work was further extended in [16] to utilize battery storage system for 
balancing the supply and demand by charging the batteries at low demand periods and discharging when 
the demand is high. Finally, the effect of battery capacity and number of users equipped with battery storage 
system was analyzed. However, throughout the work related to game theory was mostly based on reduction 
in cost and PAR, and not the user discomfort. 
 
In [17]-[23], TCLs are the main focus. A real time scheduling of deferrable load such as electric vehicles 
and TCLs is presented in [17] and performance of three scheduling algorithms is compared. The analysis 
was done from the grid point of view i.e. the impact of scheduling appliances on the reserve capacity. In 
[18], an algorithm to schedule water heater based on different cost and comfort settings is presented; 
utilizing the forecasted temperature and price data. However, the model is local to the each house and the 
idea of immediately turning off an appliance when the cost is high is not implementable to HVAC units as 
HVACs pose constraints such as minimum off time for compressor (which is usually 5 minutes) hence 
cannot be switch ON/OFF frequently. The HVAC units have some operating constraints that restrict the 
way they need to be controlled. For instance, when the compressor of an HVAC system is turned “off”, the 
air pressure in the chamber is high and a certain amount of time is needed for the pressure to even out. 
Restarting the compressor under pressure may cause physical damage [19]. The aggregated models and 
control strategy proposed in [20] explicitly takes into account the lockout effect of HVAC units which 
prohibits the unit from turning back “ON” before a certain time. Also this constraint is incorporated in the 
work done in [19], which demonstrates a comparison of varying the temperature upper and lower bounds. 
Temperature readings from an office building were used to model this system in order to maintain thermal 
comfort and power consumption, where multiple units are working in coordination to maintain temperature 
in a facility. This is very helpful when there is a system available to identify appliances, learn the usage 
pattern and tune the respective models to help the scheduling algorithms schedule. Then a comparison of 
different algorithms is compared for the performance metrics such as time to reach comfort band, number 
of switching i.e. ON/OFF and discomfort duration. Although comparing different comfort bands for the 
user, it is not giving the control to the user, thus forcing the consumer to stay at higher temperatures for a 
while. 
 
The aggregated models and control strategy proposed in [20] also explicitly takes into account the lockout 
effect of HVAC units which prohibits the unit from turning back “ON” before a certain time. Notice that 
this is a concern when the control signal frequency is very high, hence an algorithm with low frequency for 
control signal can also help avoid this concern. The implementation of such a system is however, does not 
seem practical as first, it requires high computational power at the aggregation point to schedule 5000 
HVAC units and secondly, the benefits cannot be seen at the distribution transformer as the main idea is to 
reduce peak on system wide level. Then in case a lockout of majority of the HVAC’s population, the 
algorithm will not be able to perform well. Lastly, the communication requirements for the data and control 
signals will increase in order to serve a large number of HVAC units at once. A day-ahead scheduler is 
presented in [21] promising savings in consumer cost, but the user is not given flexibility of choosing 
temperature set points and deviation from the set point. In [22], a low computational cost scheme using 
look ahead control approach is proposed, however the controller requires more than one day data.  
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In majority of the work mentioned above, the main goal remained the reduction in cost. Those who did 
something about user comfort, has either a high computation resource consuming algorithms or have not 
given any control to the consumer. Moreover, none has actually discussed the interdisciplinary goals such 
as the tradeoffs among the power system and the communication system. Improving power system may 
need some compromising in communication system and vice versa. This work deals in analyzing the trade 
that can be seen while trying to improve either of the systems so that they can work together in the most 
efficient manner and the system designers can have improved view before making decisions. To this, a 
comparison of control signal frequencies is presented. A higher control frequency could be better for the 
power system as it gives more information of the system and thus better control but at the same time is a 
burden from the communication and computation point of view. 

2.2 System Level Impacts 

2.2.1 Importance of Aggregation Interval 

End use load shape provides detailed time-of-use information and for evaluating the impact of various types 
of utility demand side programs. End-use forecasting requires description of the load shape in terms of 
economic data, customer demographics, dwelling characteristics (i.e. the characteristics of the equipment 
which causes the demand and weather).The introduction of smart grid helps electric utilities to enable 
greater monitoring and control of their distribution system. A consequence is more data and data flow over 
communication network and hence storage and management of data become a big issue. Data collected 
from each smart meter is approximately of five bytes. So for feeder system with 50,000 meters will have 
250,000 bytes of information for every meter read every time [24]. The amount data for different periods 
of time is shown in Table 1. 

Table 1:  Data at different time intervals [24] 

Time Interval Number of Meters Data Amount of 
Data 

1 Day 50K 5 Bytes 24 MB 
1 Month 50K 5 Bytes 720 MB 
1 Year 50K 5 Bytes  

 
Smart meters alone are not sufficient to measure all the parameters to maintain power quality standards. 
Hence distribution system operators are installing power quality monitoring system (PQMS) based on fixed 
power quality monitors [25], thus increasing the size of the data to be analyzed. Due to this instrumentation 
limitations and memory restrictions, non-standard data aggregation intervals are used [26]. 

 
Figure 1:  Principle architecture of the smart distribution grid [25] 
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Other than power quality monitoring, utilities use aggregation intervals to maintain customer privacy. From 
daily energy consumption data, information such as household occupancy and occupant activities can be 
derived, hence short intervals can compromise customer privacy, thus leads to use longer aggregation 
intervals [27]. 

 
Figure 2:  Hourly energy consumption plots showing occupancy status [27] 

2.2.2 Voltage Regulation 

In a feeder system the voltage drop along the line is calculated as a product of line impedance and total 
line current. Figure 3 shows the voltage ranges for primary feeder and secondary customer service points 
for a feeder system. Voltage regulation under ANSI C84.1 standard and the unidirectional nature of power 
flow can be performed using an on-load tap changing transformer or by using capacitor banks. 
 
Tap changer varies the number of turns in one side of the transformer and thereby, change the transformer 
ratio. Normally, this can vary between 10-15% in steps of 0.6-2.1%. There are several options to design the 
control of the voltage. One of them is to set a nominal value of the voltage with a dead band in a point of the 
line, and to control it with an integral controller [28]. Figure 3 show the working principle of a tap changer 
incorporated with a line drop compensator circuit which is used to compensate for the voltage drop between 
the regulator and the load center. In order to prevent excessive operation of tap changer, a time delay is 
used in order to keep the voltage fluctuation within a desired or predetermined bandwidth [29]. 
 

 
Figure 3:  Line-Drop Compensator Circuit [30] 

In order to introduce reactive power to system capacitor banks can be used and can be fitted anywhere in 
the feeder. The line current is reduced if the capacitor is closer to the load center and hence improves the 
feeder voltage profile. In order match the supplied reactive power to the load, capacitor banks can be fixed 
permanently or switched in order to prevent overcompensation of reactive power which might lead to 
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increase feeder level voltage [29].  

2.2.3 Voltage Quality Requirement 

In order to unify values for the different electrical parameters there are standards to preserve acceptable 
voltage quality for customers. EN 50160 is presented which gives the main voltage parameters and their 
permissible deviation in public low voltage (LV) and medium voltage (MV) electricity distribution systems. 
The technical and economical possibilities needed for the supplier to maintain public distribution systems 
are provided in EN 50160 [31]. Since we are not considering abnormal operating conditions, EN 50160 is 
best suited.  
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3 Residential Level Demand Response Impacts 

3.1 Household Load Modeling 

The first step of this work is to determine the load shapes of different appliances used at the residential 
level. At the beginning of this work, limited appliance level data was available for modeling purpose. 
Therefore this work recorded at developed load models for different residential level appliances. The 
available residential level load curves that are available in the literature were used to validate the aggregated 
individual house load shape. The following subsections details the modeling of individual residential loads. 

3.1.1 Data Recording 

Power profile of few appliances was recorded using Eagle 120 power monitor to analyze their operating 
behavior which helped in generating the base load profile for different houses. Figure 4(a) represents 
electric load profile for a household refrigerator. It was noticed that the changes in compressor on-time for 
a refrigerator is due to the following three reasons: (a) door opening (b) High room temperature and (c) 
high cooling load. 

 
Figure 4:  Recorded individual load data (a) Refrigerator, (b) Electric iron with minimum setting,  

(c) Electric iron with medium setting, (d) Electric iron with maximum setting 

It should be noted in the Figure 4(a) the small spikes recorded between actual ON cycles are due to the door 
opening event which causes the internal bulb to turn on and changes the ON time of the immediately 
following cycle. The compressor usually remains on for 40 to 80 minutes depending upon the usage. 
Different selector settings were not analyzed for refrigerator as the same ETP model as that of air 
conditioning is used to model this load, as explained later.  
 
Figure 4(b) represents an electric iron’s load profile with the selector knob set to minimum. Notice that the 
cycles are very less frequent and consequently the average load contribution for this case is insignificant.  
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The selector knob was then set to midpoint as shown in Figure 4(c). Again, the on cycles are very less 
frequent i.e. only 3 cycles of maximum 20 seconds duration, within the 4 minutes of recording. Finally, 
Figure 4(d) represents the load profile with selector set to maximum setting. Notice the difference in 
frequency of ON cycles which will have significant impact on the average demand posed by this appliance. 
It was noticed that the average ON duration in a minute remains 10 to 20 seconds. Lower selector settings 
also keep the iron on for approximately the same duration, as it has to just maintain the iron plate’s 
temperature, however, the cycles become less frequent. The electric iron remains on for 25% to 40% of the 
time during the operation, and consequently consumes from 25% to 60% of the max rating per minute when 
the selector is set to max. The different ON-times during the operation are due to pick up from cold iron, 
pressing/ironing and on stand events. 
 
The rest of the electrical appliances selected for this work i.e. microwave oven, fans, lights and laptops are 
all non-cyclic loads and remain at their rated power level when ON and zero when OFF. Some sample 
recordings are given in Figure 5. 
 

           
 (a) Vacuum cleaner (b) A fan load profile 

           
 (c) A laptop charging and using (d) Fluorescent light 

          
 (e) Microwave oven (f) A blender, turned on/off during operation 

Figure 5:  Load profile 
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3.1.2 Base Load 

A base load profile was needed for each house in order to imitate a real system. Base load is defined as all 
load types except air conditioning and, which remains there most part of the day. Some of the appliances 
such as electric iron, laptops and microwave oven are included due to their high power demand or usage 
frequency. Since household load modelling is not the main focus of this work, a simple, intuition based 
scheme was developed. More sophisticated techniques including probabilistic methods and Markov chain 
based models can be found in [32]-[34]. 

3.1.3 Load Classification 

Household appliances can be classified as cyclic (CYC) and non-cyclic (NCYC) based on their demand 
profile pattern. Cyclic loads change states during their operation e.g. HVAC, refrigerator, and freezer, 
electric iron etc., whereas non-cyclic loads remain at a certain power level while operating e.g. space 
lighting, fans, laptops, microwave ovens, LCDs etc. 

3.1.3.1 Cyclic Loads 

Air Conditioner 
The modeling approach that is used to estimate thermal loads is called an equivalent thermal parameter 
(ETP) modeling approach. This modeling approach has been chosen for the current work because it has 
been proven to reasonably model residential (and small commercial building) loads and energy 
consumption and also because it is based on first principles [34]. 
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where, Cair is air heat capacity (Btu/0F), Cmass is mass (of the building and its content) heat capacity (Btu/0F), 
Tout is ambient temperature (0F), Tair is air temperature inside the house (0F), Tmass is mass temperature inside 
the house (0F), Qh is heat rate for HVAC (Btu/hr.), Qi is heat rate from other appliance, lights, people etc. 
in the residence (Btu/hr.), Qs = heat gain from solar (Btu/hr. or watts), R1 = 1/UAinsulation, UAinsulation is heat 
gain/loss coefficient (Btu/0F.hr) to the ambient, R2 = 1/UAmass, UAmass is heat gain/loss coefficient 
(Btu/0F.hr) between air and mass, Q = Qi+Qs+u*Qh and u is on/off control variable. 
 
Therefore the Euler’s equivalent of the model is, 
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where, h is sample height in hours i.e. the step size, in our case is 1/60 hour or 1 minute. 
 
The relay in TCLs needs to be molded when a controller is developed. The output frequently changes 
according to minute temperature changes (temperature does not remain constantly at a particular level due 
to various changes in the environment and can force the relay to respond to those changes), and shortens 
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the life of the output relay or unfavorably affects some devices connected to the temperature controller. To 
prevent this from happening, a temperature band called hysteresis is created between the ON and OFF 
operations [35] as shown in Figure 6. 

 
Figure 6:  Hysteresis loop for the thermostat relay 

The demand profile can be generated thus, 
 
 n

ratedacac
n
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The thermal parameters for each house can be different and demand a survey or knowledge of typical ranges 
for them to be used. This is where appliance identification techniques could help in a real system by learning 
about appliance specific demand and behavior and then utilize the information to tune the respective 
model’s parameters. Therefore, in an attempt to avoid the mentioned demands, i.e. doing surveys or having 
an appliance level identification system, we chose to tune the ETP model parameters to represent the most 
favorable conditions.  
 
Based on the ASHRARE 55 [2], Table 2 shows limits on temperature drifts. Using this information, we 
tweaked the parameters to match the requirements for each house with 98 0F as the design day outdoor 
temperature for Wichita, KS and 74 0F as the desired set point [36]. Figure 7 shows sample internal 
temperature variation with respect to the outdoor temperature. 

Table 2:  Limits on temperature drifts 

 
 

 
Figure 7:  Indoor temperature profile against outdoor temperature for thermostat set to 770F 

Refrigerator 
The same model as that of air-conditioning is used for refrigerator, but with different thermostat settings 
and thermal parameters. Power profile of few refrigerators was recorded using Eagle 120 [37] power 

Time Period (hrs.) 0.25 0.5 1 2 4
Max Operating temperature change allowed (Degree F) 2 3 4 5 6
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monitor to analyze their operating behavior. The door opening event plays a critical role in defining the 
load profile for refrigerators. Based on this observation, in order to imitate random door opening events, 
the outdoor temperature (i.e. indoor house temperature) during those events was changed. To imitate 
different durations of door opening events, the range of outdoor temperature was randomly selected 
between 120 0F – 130 0F. For normal operations, the outdoor temperature is randomly selected between to 
74 0F – 79 0F for all houses. The events are induced for morning between 5:00 a.m. to 7:00 a.m., afternoon 
between 12:00 p.m. to 1:30 p.m. and evening between 7:00 p.m. to 8:00 p.m. The demand profile is then 
generated using, 

 n
ratedrefrirefri

n
refri PkukP _)()( ⋅=  (6) 

The range and power level for refrigerator’s thermostat setting is selected randomly for each unit between 
35 to 39 0F and 0.160 to 0.240 kW respectively. Figure 8 represents a sample demand profile for household 
refrigerator. Notice the change in cycle width around 6:00 a.m., 12:00 p.m. and 8:00 p.m. 

 
Figure 8:  Demand profile for household refrigerator 

Electric Iron 
Electric iron is a short duration load, typically 15 to 30 minute, with high demand requirement. Although 
cyclic in nature, the load profile as mentioned in previously, cycles very frequently between ON and OFF 
state and thus does not require finer scale (per second) modelling. The cycles can start any time during each 
minute and thus on average can demand 25% to 60% of the rated value. It was assumed that electric iron is 
used more on weekends than it is used on weekdays.  
 
First of all, total number of electric irons was chosen randomly between 1 and 2 for each house. Then the 
number of events for the whole day was chosen for each appliance with 1 being mean and 0.3 being the 
standard deviation. This means that the majority of the time, number of events for the appliance will remain 
between 0 and 2. Then the time of event is chosen from: 

wd ϵ {7, 21} and, we ϵ {11, 17, 21} 

where, wd and we represent weekday and weekend respectively. The standard deviation of 10 minutes is 
chosen for each event. And finally, the mean and standard deviation for the duration of usage were chosen 
as 10 minute and 2 minute respectively. Using these daily event occurrence times, the per minute load 
profile for electric iron is generated from the range mentioned in equation (7). Notice that the electric iron’s 
rated power is never achieved. This due to the fact that we are averaging the demand on per minute basis 
and our analysis on electric iron’s load profiles showed that it remains below 60% of the rated power. We 
chose the mean value of 42% of Prated with the standard deviation of 6% of the rated power to generate 
electric irons load profile. 
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 rate
eiei

rate
ei EPE *6.0*25.0 ≤≤  (7.b) 

where, Pei is electric iron’s demand in kW for the interval k, and Prated is 1 kW. Normal distribution is used 
for each appliance with the mean and standard deviations mentioned in Table 3, representing the parameters 
for appliances including NCLs discussed later. 

Table 3:  Parameters used for household appliances for load generation  

 

3.1.3.2 Non-Cyclic Loads 

Lighting Load 
Using the parameters mentioned in Table II above, with an increment of 0.005 kW, the power ratings in 
kW, used for lighting load when ON are in the range, 

 060.0010.0 ≤≤ rated
lightsP  (8) 

To imitate different usage patterns, lighting load is divided into two groups. More frequent, i.e. for rest 
rooms etc. and less frequent, i.e. for rooms etc. That is why the mean duration and standard deviations 
mentioned in the table for lighting load have varied range. Since the load profile was generated for 
multiple days, the status of lighting load was carried to the next day to keep it more realistic. 
 
Fans 
This load type is more consistent and can remain there for longer duration especially at night time and mid-
day. Again, using the parameters mentioned earlier in Table II the load profile for fan load is generated. 
Similar to lighting load, the status was carried to the next day. The power rating of fan load in kW is chosen 
from the range, 

 




≥
≤

=
τ
τ

)(
)(0

)(
swpifP
swpif

kP
k

fan  (9.a) 

 090.0060.0 ≤≤ rated
fanP  (9.b) 

Laptops 
Laptops can take anywhere between 60 to 120 minutes to completely charge. Although, compared to the 
rest of the load, the demand is very low, 0.060 to 0.070 kW in most cases, we added this load as there can 
be multiple number of this load type in a house, charging at different times. Again, using the parameters 
mentioned in Table II, the load profile was generated with the power ratings in kW chosen from, 

 070.0060.0 ≤≤ rated
laptopP  (10) 

Microwave Oven 
Similar to electric iron it can create short duration peaks mostly during early morning, afternoon and 
evening. It is modelled to have duration of anywhere between 1 minutes to 9 minutes in most cases, multiple 
times during mornings, afternoons and evenings and its power rating is represented mathematically by, 

 100.1900.0 ≤≤ rated
mwP  (11) 

wd we wd we wd we wd we wd we
Event Mean {7, 21} {11, 17, 21} {19, 22} {13, 19, 22} {7, 19} {7, 13, 19} 19 {11, 16, 19, 22} {6, 19-22} {6-7, 13, 15, 18-22} 
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3.1.4 Load Profile Generation 

Each load I and its demand Pi(k) for kth interval is then used to first generate the per minute base load profile 
for each appliance. To simulate the fact that an event could occur any time within a minute, Pi(k) is divided 
by a random number (rnd) for the first and last interval of operation, where rnd ϵ {1, 2, …, 60}. 


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endkforrnd
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endkstartforP

startkforrnd
P

P

i

i

i

i 11  (12) 

This is done for all loads other than air conditioner and refrigerator as these two are modelled differently. 
The aggregated load AL profile for N houses at any instant k is thus, 
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A sample aggregated load profile of 5 houses for the duration of 4 months, excluding air conditioning load 
is shown in Figure 9 Notice some part of the demand is increased in the midsection between 12:00 p.m. to 
4:00 p.m. This represents weekend load and is meant to imitate that more people are at home during 
weekends. The low maximum demand for 5 houses is due to very small number of appliance used for each 
house. Inclusion of more appliances like electric stove, electric water heater, kettle, television, freezer etc. 
would help; however, the main interest was just to get a typical load profile. 

 
Figure 9:  Aggregated load profile of 5 houses for 123 days 

3.2 Algorithm and Simulation 

The objective function is to minimize the variation in user’s preferred thermostat setting for the air 
conditioning load respecting the power and thermal constraints, in other words, minimizing the user 
discomfort while attempting to reduce the peak demand at the aggregation point i.e. the transformer. The 
objective function is therefore,  

 { }∑∑
= =

−
K

k

N

n

nn kk
1 1

2
)(~)(min θθ  (14) 

where, N is the number of air conditioning units, nθ~ is the user’s preferred thermostat setting and, nθ is 
optimized temperature setting for interval k. Preferred temperature range provided by the user is considered 
constant for the whole day. Thus the optimization problem is subject to, 
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 nnn
maxmin θθθ ≤≤  (15) 

And the Pmax constraint is, 

 )()( max_
1

kPkP ac

N

n
ac ≤∑

=
 (16) 

where, Pmax_ac is the maximum power constraint at kth interval provided by the utility for the aggregation 
point i.e. the transformer serving N houses. 
 
An algorithm using forward dynamic programming to find the optimum solution to the problem is written 
based on day-ahead data of temperature and price signal. The motivation behind using forward dynamic 
programming is that the appliance commitment problem is similar to unit commitment problem on 
generation side. In power plant unit commitment problem, there are a number of generating units available 
with their operating constraints and cost of operation known ahead of time. To serve the expected demand, 
combinations of units with minimum cost, respecting all the constraints are saved for the whole day initially 
with multiple routes. Then in the backward direction, the total minimum cost route is selected. 
 
In appliance commitment problem, the same can be applied to TCLs units. With day-ahead information 
about the constraint signals and the expected demand from each appliance, to make decisions based on the 
deviation from thermostat settings as the cost and available combinations for the number of units to be 
served, the problem can be solved. 
 
To determine number of maximum possible states per interval for each control frequency, the information 
from Table I is used. Figure 10 demonstrate the steps that can be taken per interval for 15, 30 and 60 minute 
control, respectively. 

 
Figure 10:  Possible steps for (a) 15 minute control, (b) 30 minute control, (c) 60 minute control 

For instance Figure 10(c) shows that in one hour, there are 7 possible (steps) for the Ө to choose from i.e. 
it can choose to directly set the temperature 1, 2 or 3 degrees up or down. However, as can be seen in 
Figure 10(a) which is representing 15 minute control, the ASHRAE standard limits the range to only 1 
degree up or down. The maximum possible states per stage based on the steps can therefore be calculated 
as, 

 
Nstepsstates =  (17) 

In order to avoid new peaks that usually show up when DSM programs are utilized, the power constraint 
signal was generated based on the price signal. The motivation behind using the price signal to determine 
the constraint signal at transformer level is that, firstly, the utility is able to determine the power constraint 
for each transformer at distribution level. Secondly, the price signal indicates the system operating 
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conditions incorporating both wholesale and retail markets. This can be used as an indicator to determine 
the load that can be connected. When the load is shifted in peak hours, the difference between the desired 
demand based on the price signal and the expected demand after the demand response is minimized. This 
will result in the actual price signal deviating less from the forecasted signal thus enabling the wholesale 
market to plan in advance and reduce the reserves. Moreover, managing load at the transformer level will 
also help in maintaining the desired load on each distribution transformer and thus will support equipment 
live improvement programs. Figure 11 represents the flow chart of the algorithm developed to solve the 
problem. 
 

 
Figure 11:  Algorithm using forward dynamic programming 

3.2.1 Simulation Procedure 

For simulation purpose, the residential load profiles were generated for five houses. Each house is assumed 
to have best insulation and same HVAC units as the all houses are considered of same size. The transformer 
is assumed to serve only these five houses. Since the HVAC parameters were tuned to perform as design 
day, choosing a house size is not significant. 
 
The per hour price signal for May 1st to August 31st, 2012 from ComEd Illinois [38] was used in this work. 
Figure 12 represents daily price signal averaged for the entire 123 days. Notice that the maximum average 
value is approximately 5.5 cents. 
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Figure 12:  Average price signal for 123 days 

Figure 13 represents histogram of the price signal and it is obvious from the histogram that very rarely the 
cost goes beyond 4 cents. This information was utilized to set inequality p>4 for the power constraint 
signal function. The different colors represent days. 

 
Figure 13:  Histogram of the price signal 

A simple function for constraint signal is then written as follows, 
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where, PT = 15 kVA is Transformer’s rating, p is cost in cents. 
 
As only air conditioning load is being controlled, therefore, the power constraint Pmax_ac for air conditioning 
load can be calculated by, 

 )()()( maxmax_ kALkPkP ac −=  (19) 
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Since we have tuned our ETP model parameters for Wichita-KS, weather data for the same location was 
downloaded for the same summer duration as that for the price signal, from [39]. Average temperature with 
standard deviations is shown in Figure 14. 

 
Figure 14:  Average outdoor temperature of 123 days with standard deviation bars 

Another challenge was to choose number of states to be saved per stage (succeeding interval) for the 
program. Table 4 represents the effect of number of users and steps on the possible combinations of states 
for 60 minute control rate. 

Table 4:  Effect of number of users and steps on computation requirements 

 
 
Notice the significance of increasing the number of houses (equal to number of HVAC units) N or number 
of steps; increasing either of them will increase the amount of computation required to solve the problem 
and will ultimately require more sophisticated system. Fortunately, in dynamic programming a constrained 
system can help avoid some portion of states. However, that portion can or cannot be significant help, thus 
requires some basic analysis to find out enough number of states to be saved for each control rate and its 
respective possible steps. 
 
An initial test with the design outdoor temperature of 98 0F and 74 0F thermostat setting was run to target 
this problem. All the HVAC units were allowed full deviation range i.e. 69-79 0F, and were assumed to be 
having same power rating i.e. 3kW as well as the starting point temperature. We chose 3kW power rating 
for each HVAC unit so that the maximum coincident demand matches 15kW which is the power rating of 
the transformer supplying these loads. With only HVAC load in system, the simulation was run for each 
control frequency to acquire maximum achievable peak reduction and PAR reduction with all states saved 
per stage of the forward dynamic algorithm. Table 5 presents the results of the initial test. 
 

N 1 2 3 4 5 6 7 8 9 10
3 3 9 27 81 243 729 2187 6561 19683 59049
5 5 25 125 625 3125 15625 78125 390625 1953125 9765625
7 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249

Steps
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Table 5:  Initial analysis results to see the effect of reducing the number of saved states 

 
 
From the table, using the percentage of steps that give closest results to the column for 100% states saved, 
the number of states to be saved to get reasonable results can be calculated using, 

 
100

* Nstepspssts =  (20) 

where, sts is states to save and ps is percentage of states chosen from the Table IV. Since number of states 
cannot be in fractions, sts is rounded to the nearest integer. With the respective sts, the algorithm is then 
run for 500 iterations, for N=5 users. The results are discussed in next chapter. 

3.2.2 Results 

All the results are within 95% confidence interval. In Figure 15, a comparison of different steps for the 30 
minute control signal is shown representing benefits to the utility. Figure 15(a) and (b) represent percentage 
reduction in total number of Pmax violations and the violation energy, before and after sccheduling. It should 
be noted that the higher steps did not imprive the performance. 
 

 
Figure 15:  Percentage reduction in (a) per minute violation count, (b) violation energy 

Similar is the case with Figure 16(a) which shows peak reduction, infact notice that the maximum duration 
of sustained violation was degraded as can be seen in Figure 16(b).  
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Figure 16:  Percentage reduction in (a) peak demand, (b) maximum duration of sustained violation 

From consumer point of view, the average total deviation from the setpoint (Figure 17(a)) throughout the 
day was not much improved, however the maximum duration of deviation from preferred thermostat 
settings is reduced as is reflected by the mean and standard deviation values in Figure 17(b). 
 

 
Figure 17:  (a) Total deviation from preferred thermostat settings in minutes, (b) Maximum continuous 

deviation from preferred thermostat settings in minutes 

Figures 18, 19 and 20 represent similar plots for the 60 minute control with 3, 5 and 7 steps possible, as 
discussed earlier. Although there can be seen some benefit in chosing more steps per stage, the overall 
reduction achieved in terms of the violation energy is very small, as shown in Figure 18(b). Also, the 
violations in any form that can be seen by the constraint signal naturally reduced due to the averaging for a 
much wider time slot. The standard deviation bars below zero represent that in some cases the violations 
were actually increased after scheduling. This is due to the lost of finer control when 60 minute control 
signal is chosen. Also, there wasn’t much achieved in peak reduction, neither in suststained violation 
reduction when more steps were chosen, in fact the performance was actually degraded. Finally, nothing 
significant was achieved from the consumer point of view as well as can be seen from Figure 20(a) and (b). 
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Figure 18:  (a) Percentage reduction in per minute violation count, (b) Percentage reduction in violation 

energy 

 

 
Figure 19:  (a) Percentage reduction in peak demand, (b) Percentage reduction in maximum duration of 

sustained violation 

 

 
Figure 20:  (a) Total deviation from preferred thermostat settings, (b) Maximum continuous deviation 

from preferred thermostat settings 
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Since the 15 minute control can not take more than 3 steps, Figures 21, 22 and 23 compares all three control 
sampling rates with 3 steps. It is very obvious from Figure 21(a) and 21(b) that 15 minute control did best, 
however, things changed when reduction in peak demand and maximum sustained violations were 
compared. Notice in Figure 22(a) and (b) that the percentage peak reduction achieved for each control signal 
is very similar and may not help much as a decision making factor but the maximum duration of sustained 
violation is improved a little bit. This is due to the control available for wider time slot in case of 30 and 60 
minutes sampling i.e. once a decission is made about the entire time slot, it is for the entire duration of that 
wider slot, hence on average it performs better. The benefits to the consumer are sorted in Figure 23. As 
can be seen in Figure 23(a), 60 minute control did best in terms of deviation from preferred thermostat 
settings with mean value of 10 minutes lower than 15 minute control, however, the maximum continuous 
deviation from the preferred setting did not change significantly. 
 

 
Figure 21:  Percentage reduction in (a) per minute violation count, (b) violation energy 

 

 
Figure 22:  Percentage reduction in (a) peak demand, (b) maximum duration of sustained violation 
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Figure 23:  (a) Total deviation from preferred thermostat settings, (b) Maximum continuous deviation 

from preferred thermostat settings 
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4 Communication Impacts on the Grid 

4.1 Data Aggregation 

The focus of this work is to determine the link between the data and power network layers. Once the 
relationship between the power network and data layers are determined then similar analysis could be done 
to determine the relationship between the data and cyber network layers. Once the data is aggregated and the 
demand is computed for a particular aggregation interval, this demand data would be used for forecasting 
the performance of the system. Since the average demand is used, the spikes and dips within that period are 
masked as shown in Figure 24. This masking would create an error in the performance estimation. 
 

 
Figure 24:  Loss of information due to aggregation 

The following steps were taken to determine the relationship between data aggregation interval and 
forecasting error for tap-change estimation and power loss estimation.  

Step 1: One minute demand for each consumer needs to be determined or generated.  

Step 2: Determine the points of data aggregation. The data aggregation is geographical location dependent. 
Typically based on available bandwidth and packet size, optimal consumers within one aggregation node 
need to be determined. Furthermore, based on the total number of consumers, required levels of aggregation 
needs to be determined. Since focus of this work is limited to aggregation data interval and power system 
performance estimation, one level aggregation with different intervals is sufficient.  

Step 3: Run time sequential voltage drop analysis and power flow analysis for the given time interval. 

Step 4: Repeat step 3 for multiple time intervals. 

Step 5: Determine the difference between the estimated values for both number of tap changes and power 
loss for each time interval and the reference time interval. The total prediction error is computed as 

 ref

ref

τ
τ

κ κ
δ

κ
−

=  (21) 

where κτ  is the measurement of the performance parameter (in this work it is either the total number of tap 
changes in a given month or total line-loss in a month) for the given aggregation interval τ, and κref  is the 
same for the reference aggregation interval. For accuracy the reference time interval will be the smallest 
time interval. 
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Step 6:  Statistically determine the significance of different contributing factors for the model development. 
In this work the following are considered as contributing factors. 
 

• Size and type of the distribution system.  
• Season or month of the year. This is included to ensure any changes due to month are 

incorporated. 
• Aggregation interval. 
• Combination of these factors. 

 
Step 7:  Once the significant contributing factors are determined a relationship between the contributing 
factors and the prediction error will be determined. 

4.2 Model Development 

In this work IEEE 13 and 34 node test feeders were used [40]. The short and relatively highly loaded IEEE 
13 node test feeder consist of unbalanced spot and distributed loads while one substation voltage regulator 
and two shunt capacitor banks regulates the feeder voltage. The very long IEEE 34-node test feeder consists 
of two-step-type voltage regulators and capacitor banks to satisfy the ANSI voltage standards. 
 
Since both these feeders have limited information for time sequential analysis, appropriate one minute load 
shape needs to be modeled. Load profiles for this study were developed using available data [41]. The data 
were separated into three types of houses: i) Detached; ii) Semi-detached; and iii) Terraced. The proprietary 
data were statistically analyzed and a model was developed to extend the number of houses to the required 
level for IEEE 13 and 34 bus systems. It was determined that lognormal distribution (shown in Figures 25, 
26, and 27) could be used to extend the load curve by changing the number of houses. Thus individual mean 
and standard deviation of each day of the three type of houses available were generated for a period of one 
year and were used to randomly generate more number of houses to create the load shape for different node 
of the feeder system. 
 

 
Figure 25:  Lognormal plot for Detached houses 
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Figure 26:  Lognormal plot for Semi-Detached houses 

 

 
Figure 27:  Lognormal plot for Terraced houses 

It is assumed the system consists of residential customers and commercial load shown in Figure 28. Nodes 
with balanced three phase loads were considered as commercial loads. Total number of homes for each 
node was calculated using 0.55 coincidence factor [42]. 
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Figure 28:  Time-series load profiles (one-minute interval) 

4.3 Estimation Error Analysis 

4.3.1 Tap Changer Modeling 

The estimated number of tap changes and total power loss at different demand interval was monitored and 
compared with one minute values, which were considered as reference values. Due to the regulator delay 
settings one minute demand was considered as the real time demand. If needed, the same procedure could 
be repeated with smaller reference demand intervals. Initially the estimation error in the total number of tap 
changes for a year is determined for all the three contributing factors defined in the previous section, 
assuming all of them contribute to the prediction error. When more than one input / contributing factor is 
suspected to influence a relationship, Design of Experiments (DoE) can be used to determine the 
significance of each factor and to develop a predictive equation [43]. This work uses DoE to determine the 
significance of each contributing factor towards the prediction error. As the initial step, prediction errors δκ 
for 13 node and 34 node systems were used to determine the influence of each contributing factor. The 
following aggregation intervals were used: 1, 5, 15, 20, 30, 40, 45 minutes and 1 hour. Each month of the 
year is considered as the contribution factor. Half normal plot for this experiment is given in Figure 29. 
Factor A is the aggregation interval, factor B is the month of the year, and factor C is the type of the system 
(13 bus or 34 bus). 
 

  
Figure 29:  Half-normal plot for the combined 13 node & 34 node feeder analysis 
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Unimportant factors are those close to the indicated fitted line. If a factor is close to the fitted line, then it 
has an effect modeled by a normal distribution with near zero mean. The unimportant factors can be 
eliminated in the modeling [44]. From Figure 29 it can be seen that the type of feeder has the most influence 
on the prediction error and the aggregation interval is the next most influential factor. Therefore it is 
determined that each feeder needs its own model for error prediction. The following two sections describe 
the tap change and power loss modeling for 13 node and 34 node feeders separately. 

4.3.1.1 IEEE 13 Node Feeder 

The number of tap changes in the on load tap changer for each day was simulated for a whole year. Table 
6 shows the percentage prediction error with respect to one minute aggregation interval. 

Table 6:  Percentage difference from one minute data 

Sample Rate(min) Average No. of Tap 
Changes per Month 

% diff from 1min 

1 1438.3  
5 1126.9 -21.65 
10 1006.7 -30.01 
15 959.1 -33.32 
20 950.6 -33.91 
30 896.7 -37.66 
40 858.7 -40.30 
45 826.4 -42.54 
60 739.2 -48.61 

 
This results were analyzed using Design of Experiment (DoE) with two factors at multilevel. Factor A 
represents the sample rate (SR) or demand interval and factor B represents individual month of a year. 
Figure 30 shows the Half-Normal probability plot. 
 

 
Figure 30:  Half-normal plot for tap change analysis for 13 node feeder 

From Figure 30 it can be inferred that months of a year (factor B) have negligible effect on number of tap 
changes whereas the demand interval (factor A) has a significant effect on number of tap changing. The 
results can be further analyzed using ANOVA table (Table 7). 
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Table 7:  ANOVA table for whole year (13 bus voltage drop model) 

Source Sum of 
Squares df Mean 

Square 
F 

Value 
p-value 

Prob > F  

Model 1.189E+006 9 1.321E+005 17.37 < 0.0001 significant 
A-SR 9.998E+005 4 2.499E+005 32.88 < 0.0001  

B-Month 1.889E+005 5 37778.43 4.97 0.0041  
Residual 1.520E+005 20 7601.58    
Cor Total 1.341E+006 29     

 
From the Table 7, since the p-value is less than 0.05, the model is significant. F value associated with the model 
is the ratio of the Model MS / Residual MS and shows the relative contribution of the model variance to the 
residual variance. A large number indicates more of the variance being explained by the model; a small number 
says the variance may be more due to noise. Hence from Table 7 it can be inferred that both aggregation interval 
and months of a year contributed to the model but the demand interval has much larger F value than individual 
months of a year. Hence months of a year have negligible effect on the experimented response (i.e. predicted 
error in tap change). The following relationship is developed using demand interval only. The estimation error 
in tap changes in terms of the demand interval is modeled as 
 

 ( )13 10.9 ln 2.094N
VDε τ= − −  (22) 

The error in estimation is plotted against the data aggregation interval in Figure 31. 
 

 
Figure 31:  Voltage drop model for the 13 node system 

4.3.1.2 IEEE 34 Node Feeder 

Similar analysis was performed in IEEE 34 test feeder system. The number of tap changes in the on load 
tap changer for each day was monitored for a whole year. Half-normal plot for the 34 node system is given 
in Figure. 32. 
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Figure 32:  Half-normal plot for tap change analysis for 34 node feeder 

ANOVA table for the 34 bus voltage drop analysis is shown in Table 8. 

Table 8:  ANOVA Table for whole year (34 bus voltage drop model) 

Source Sum of 
Squares 

df Mean 
Square 

F 
Value 

p-value 
Prob > F 

 

Model 2.454E+007 9 2.727E+006 187.21 < 0.0001 significant 
A-SR 2.417E+007 4 6.042E+006 414.89 < 0.0001  

B-Month 3.688E+005 5 73756.21 5.06 0.0037  
Residual 2.913E+005 20 14564.01    
Cor Total 2.483E+007 29     

 
Both Half-Normal plot and ANOVA table shows months of a year (factor B) has negligible effect on the 
response signal. The estimation error in tap changes in terms of the demand interval is modeled as 
 

 ( )34 14.3ln  6.253N
VDε τ= − −  (23) 

 
The error in estimation is plotted against the data aggregation interval in Figure 33. 
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Figure 33:  Voltage drop model for the 34 node system 

4.3.2 Line-loss Analysis 

Similar to voltage drop analysis DoE was used to determine the line-loss predicted error modeling. Half 
normal plot for 13 and 34 node systems are given in Figure 34 and 35. From Figure 34 and 35 and Table 9, 
10 it can be inferred that the month of the year has higher contribution to the model than the aggregation 
interval when a model is developed for the year. 
 

 
Figure 34:  Half-normal plot for line loss analysis for 13 node feeder 
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Figure 35:  Half-normal plot for line loss analysis for 34 node feeder 

 

Table 9:  ANOVA table for whole year (13 node line-loss model) 

Source Sum of 
Squares 

df Mean  
Square 

F 
Value 

p-value 
Prob > F 

 

Model 954.23 9 106.03 9.89 < 0.0001 significant 
A-DI 139.29 4 34.82 3.25 0.0331  

B-Month 814.94 5 162.99 15.20 < 0.0001  
Residual 214.47 20 10.72    
Cor Total 1168.69 29     

 

Table 10:  ANOVA table for whole year (34 node line-loss model) 

Source Sum of 
Squares 

df Mean 
Square 

F 
Value 

p-value 
Prob > F 

 

Model 395.28 9 43.92 11.00 < 0.0001 significant 
A-DI 114.52 4 28.63 7.17 0.0009  

B-Month 280.76 5 56.15 14.07 < 0.0001  
Residual 79.84 20 3.99    
Cor Total 475.12 29     

 

4.3.2.1 IEEE 13 Node Feeder 

Half-normal plot of power-loss prediction error for each season for 13 node system is shown in Figure 36. 
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(a) Spring (b) Summer 

 
(c) Fall (d) Winter 

Figure 36:  Half-normal plot for line loss analysis for 13 node feeder for four season 

Based on the half normal plot for the four seasons in Figure 36, the individual month in a season has 
negligible effect on the response signal, therefore estimates of power loss error for demand intervals were 
developed and shown in the following equations. 
 
 13 3 2

,Spring :  0.722 10.56 53.77 42.18N
PL Spε τ τ τ= − + −  (24) 

 
13 3 2

,Summer :  0.063 1  .610  20.64  20.50N
PL Fε τ τ τ= − + −  (25) 

 313 2
,Fall :    0.302  4.471  8.417  5.287N

PL Su τε τ τ= − + − +  (26) 

 13 3 2
,Winter :  0.453 5.138 24.9 18.58N

PL Wε τ τ τ= − + −  (27) 
 
The error estimates for the different seasons are plotted in Figure. 37. 



 

34 

 
Figure 37:  Line-loss error estimation for 13 node system for individual seasons 

4.3.2.2 IEEE 34 Node Feeder 

Half-normal plot of power-loss prediction error for each season for 34 node system is shown in Figure 38. 

 
(a) Spring (b) Summer 

 
(c) Fall (d) Winter 

Figure 38:  Half-normal plot for line loss analysis for 34 node feeder for four season 
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Based on the half normal plot for the four seasons in Figure 38, the individual month in a season has 
negligible effect on the response signal, therefore estimations of power loss error for demand intervals were 
developed and shown in the following equations. 

 
34 2

,Spring :  0.004 0.143 0.909N
PL Spε τ τ= + +  (28) 

 
34 2

,Summer :  0.004 1.120 0.434N
PL Fε τ τ= + +

 (29) 

 
34 2

,Fall :   0.001 0.444 2.083N
PL Suε τ τ= + −

 (30) 

 
34 2

,Winter :  0.004 0.198 0.195N
PL Wε τ τ= + +

 (31) 
 
The error is estimation for the different seasons are plotted in Figure 39. 
 

 
Figure 39:  Line-loss error estimation for 34 node system for individual seasons 
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5 Conclusion and Future Work 

A forward dynamic programming based algorithm is developed in order to analyze the impact of different 
control frequencies i.e. 15, 30 and 60 minute on both the consumer and the utility. The three control 
frequencies were compared to summarize tradeoffs when moving from one control frequency to the other. 
Each control frequency was also analyzed for its limits in terms of number of steps that can be taken while 
changing the thermostat settings. 
 
Although the benefits of choosing more steps for the respective control frequency were there, the specific 
cases where 30 and 60 minute control did better than 15 minute control frequency (like percentage reduction 
in sustained violation and total duration of violation), there wasn’t any benefit in choosing higher number 
of steps. Thus, it can be concluded that it is always feasible to choose lower number of steps and lower 
control frequency as long as one is dealing with the analyzed parameters. 
 
A major factor that comes in the way of day-ahead scheduling is the price variations. However, if the 
constraint signal from the utility is sent in order to match a certain profile and thus promising the price 
signal, the variations in price signal can be reduced as is obvious from the peak reduction and violation 
energy reduction results. This will also help in forecasting the price signal more accurately. Moreover, 
while the reduction in peak demand would help in increasing life expectancy of transformers, the reduction 
in energy usage at the time of violation will help in reducing reserve capacity requirements. 
 
One major concern while using dynamic programing is the number of possible combinations (states) per 
stage which increases with the number of users as was shown in Table III. For instance, for 10 units to be 
scheduled in a system there are 59,000 states. In worst case, where all the consumers are willing to let the 
thermostat deviate at maximum from the preferred thermostat settings, the system will have to solve the 
scheduling problem with most number of states. Thus a more constrained system poses computationally 
less burden on the system. Also, the number of states to be saved per stage gives reasonable results even 
when a small portion of maximum possible states is saved. 
 
Active consumer participation through the smart grid initiative requires more demand information from the 
consumers. Requirement of large data creates additional burden in terms of larger bandwidth requirement 
for communication and data storage. One of the solutions to this problem is aggregating the data at the 
consumer level and forwarding the aggregated data. This is further expected to reduce the privacy concerns 
from residential consumers. However the aggregated data loses the granule information which is vital for 
accurate load forecasting and managing. This work analyzed the impact of data aggregation interval on the 
error of parameter prediction. Load tap changer operation estimation and line-loss estimation were used as 
two example applications in this work. Designs of Experiments were used in this work to determine the 
significance of contributing factors for a particular application or output. This analysis was performed with 
different houses generated with different load shapes (using statistical modeling) for each day for a year in 
order to simulate the actual feeder behavior. Based on the results, it is evident that prediction error can’t be 
generalized for any distribution network, but could be useful for given distribution network. For each 
network such a model needs to be developed. The results for different bus systems shows that change in 
voltage in the distribution system is less prone to the individual month, while total power loss of the circuit 
is prone to individual months of a year but less prone within months of a season. This work presented the 
initial bench mark for quantifying the loss of important detail when a longer aggregation interval is used. 
The outcomes could be used for evaluating the impact of a certain aggregation interval on the distribution 
system parameters. 
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5.1 Future Work 

As a future work, the demand level impact algorithm can be improved to serve as an on demand scheduler 
i.e. responding to instantaneous needs in order to achieve peak reduction. Currently, the algorithm is only 
able solve in one go; by going back and choosing different paths when the solution is not found can help in 
finding better solution. Furthermore, analyses of a complete system, i.e. with heating system as well as 
electric vehicles can be done as well, to realize the impact throughout the year for an entire feeder serving 
many transformers. The impact on transformer and other equipment’s life expectancy can also be analyzed. 
 
One of the limitations of this work is that the Pmax constraint signal chosen for each control signal is same 
and naturally, unable to see majority of the violations for higher control frequencies. This can be taken as 
a future work to enforce different constraint signals for each control frequency and then analyze the system 
again. Also, the analysis can be further improved by choosing respective range parameters for the ETP 
model which would definitely require a faster algorithm as the range for each parameter will be varied and 
will need more iteration to conclude the results statistically. 
 
As a future direction a more general relationship of demand interval for combined applications should be 
modeled. An optimal aggregation interval needs to be evaluated to support active consumer participation. 
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1. Introduction 

1.1 AgSec: Secure and Efficient CDMA-based Aggregation for Smart Metering 
Systems 

Millions of people suffered from the biggest blackout in North American history in 2003. 
Investigations showed that the outage was because of lack of real-time monitoring and 
diagnosis and failure in proper load balancing [1]. Recently smart grid has been proposed 
as the next generation power grid. A smart grid is an electrical grid that utilizes 
communication technologies and information processing to collect process and act on 
gathered information in order to improve reliability, efficiency, economics and 
sustainability of the power grid [2]. This will help the utility companies to act on 
consumer information gathered from smart meters (SM) at the user’s premises. The two-
way communication capability will enable functions such as demand-response, demand-
dispatch, self-monitoring, and self-diagnosis for the existing power grid [3]. It also 
promises reduced prices through dynamic pricing schemes, wide penetration of 
renewable resources such as wind and solar, and fewer power outages [4]. 

Smart grid researchers have been studying miscellaneous problems such as 
communication technologies and infrastructure [5]-[9], legal and policy concerns [10], 
[11], reliability, failure diagnosis and recovery [12]-[14], demand-response, load-shaping 
and peak-shaving [15]-[17], data aggregation [5], [18]-[20] and, last but not the least, 
security and privacy [3]-[5], [21]-[23]. Having access to fine-grained usage data reveals 
serious potential security and privacy threats to the users. For instance, it can be easily 
determined if a residential house is vacant or not by observing the fine-grained energy 
consumption patterns [24]. It is also possible to track the location of the residents of a 
house based on the appliance they are using [25]. Insurance companies can monitor and 
track eating, sleeping and possibly exercise habits of a household [26], [27]. In 2009, the 
Dutch Parliament prohibited the utilization of smart meters because of privacy issues. 
There are also many cyber security related challenges for the deployment of the smart 
grid [5]. The concept of smart grid is about “moving from a relatively small number of 
carefully controlled devices to an Internet-like distributed environment”. This “Internet-
like distributed environment” is vulnerable to many known and unknown cyber security 
attacks [28]. The security threats to the smart grid can target the confidentiality and the 
integrity of the gathered fine-grained user data. They can also threaten the availability of 
the power grid. Computerworld [29] reports more than 170 outages caused by cyber-
security attacks. It goes without saying that without proper security and privacy-
preserving mechanisms, large scale deployment and proliferation of the smart grid is 
difficult. Earlier security approaches have primarily used cryptographic techniques such 
as homomorphic encryption and secure multiparty computation in order to preserve user 
privacy while aggregating usage data [30]. These approaches, although providing strong 



 

 2 

guarantees of confidentiality, are very heavy from a computational and communicational 
stand-point and may not be feasible on low-end smart meters with limited computation 
capabilities. Homomorphic cryptosystems usually generate an output of a huge fixed-
length compared with the data generated by smart meters. This ciphertext can be up to 
one hundred times larger than the actual smart metering data [5]. Given the frequency of 
the data being sent and possible bandwidth limitations, this can lead to unacceptable 
delay and network overhead. 

In this part of the project, we investigate the feasibility and efficiency of existing 
privacy-preserving data aggregation approaches. We devise a new efficient and 
computationally feasible secure data aggregation technique for smart meters using 
properties of spread spectrum communication technology. Details for this part of the 
project are organized as follows: Background and Related work on existing secure 
aggregation schemes for smart grid is outlined in Chapter 2. The network and adversary 
model assumed in this work is presented in Chapter 3. The proposed AgSec secure 
aggregation protocol is outlined in Chapter 4, and mathematical evaluation and results are 
discussed in Chapter 5.  

1.2 Seer Grid: Privacy and Utility Implications of Two-Level Energy Load 
Prediction in Smart Grids 

As part of the future smart electricity grid initiative, a smart grid communication network 
(SGN) is a large-scale integration of information and communication technologies within 
the electricity generation, transmission, and distribution systems of the traditional 
electricity grid. A combination of various smart technologies at different levels of the 
SGN promotes efficiency, reliability and stability in operations of the smart grid. One 
indispensable piece of technology in a SGN is a smart meter (SM) which collects and 
periodically reports the energy usage or consumption information of the customers to the 
electric (a.k.a. utility) company (EC), which in turn facilitates highly efficient energy 
generation and distribution and helps the EC to cope with changes in energy demand and 
supply. The monetary and natural resource savings due to the improved efficiency is a 
major factor in the fast growing adoption of SMs, with predictions that 800 million SMs 
will be in use globally by 2020 [48]. Despite their tremendous importance in a SGN, SMs 
can also be easily exploited by malicious adversaries (including the EC) who may attempt 
to infer private customer information from reported energy consumption patterns, such as 
occupancy of the house [49], specific appliances being used [50], and even daily routine 
of the residents [51] [52]. 

Various techniques for overcoming privacy issues due to the energy usage information 
generated and shared by SMs have been proposed in the research literature, and these 
solutions have primarily followed one of the following two approaches: (i) completely 
obscure the individual SM data from the perceived adversary, or (ii) hide privacy-sensitive 
signatures or patterns from the individual SM data by perturbation or down-sampling. In 
the first direction, protocols that take advantage of the homomorphic properties of public-
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key cryptographic algorithms to perform neighborhood-level aggregation of SM data have 
been proposed in the literature [53]–[54]. These protocols enable the EC to learn the actual 
aggregated energy consumption information (at a neighborhood level) without leaking 
individual customer-specific information to the aggregator. In the second direction, many 
approaches have been proposed to efficiently perturb energy consumption data in order to 
meet certain privacy requirements. In-residence storage batteries have been employed to 
flatten or mask variances in the load or electricity usage information [56], [57]. Similarly, 
controlled perturbation [58]–[60] and down-sampling [61] of the energy consumption data 
to mask specific signal or appliance signatures have also been attempted. But as pointed 
out by [60], [61], the degree of correlation between the actual energy consumption and the 
data output by a privacy-preserving technique typically characterizes a tradeoff between 
privacy and utility (or usefulness). Higher correlation with the actual ground-truth makes 
the perturbed data more useful but reveals private information, whereas lower correlation 
(or increased perturbation) is good for privacy but reduces data usefulness or utility. As 
protocols following the first approach do not really perturb the electricity consumption 
data, the utility of the data (or any function computed from the data) is high. Also, as this 
data is cryptographically obscured from the aggregator, there is no leakage of private 
customer information. However, protocols using public-key cryptography are non-trivial 
to implement in practice and have very high computation and communication overhead 
[62]. Perturbation mechanisms, such as the ones using storage batteries [56], [57], are 
effective in masking private usage patterns but at the cost of drastically reducing the utility 
of the data. Moreover, installing and maintaining large capacity batteries in every 
household have also shown to be economically non-viable [63]. Similarly, [61] show that 
performance of smart grid operations can degrade due to reduction in sampling 
frequency. 

Other perturbation mechanisms, such as, [60], that attempt to strike a good balance 
between privacy and data-utility by masking or suppressing specific appliance signatures 
assume that individual appliance electricity consumption information is readily available 
(or can be easily separated from the overall data) which may not always be feasible. 
Given the above state of- the-art, we feel that both data hiding and data perturbation 
approaches have inherent limitations, which motivates us to explore alternate paradigms 
(beyond hiding and perturbation). 

Our goal in this part of the project is to explore alternate practical designs for privacy-
sensitive generation and sharing of energy consumption information from the SMs to the 
EC which enables effective operation of the EC in terms of accurately predicting future 
demand and electricity generation and distribution. In order to achieve this goal, we move 
away from the classical perturbation/data-hiding techniques and use learning-based 
prediction mechanisms to generate (or predict) energy consumption patterns shared by 
SMs. Our prediction mechanism will replace variances in the individual household-level 
actual energy consumption patterns (which is typically indicative of loads) with relatively 
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smoother patterns that are free of load signatures but accurate enough to be useful in 
predicting energy consumption at the neighborhood level (which is the one that is 
actually used by the EC). 

Due to this privacy-sensitive inference attacks will be much harder on the household-
level data shared by the SM without significantly impacting the demand-response and 
electricity generation/distribution calculations at the EC. With Seer Grid, as our future 
work, we are going to propose a household-level prediction scheme comprising of a 
statistical learning algorithm (trained using past consumption pattern of the household) 
which predicts an entire day’s electricity consumption pattern a day in advance. This 
prediction can be performed locally on the SM, on a local energy management unit or on 
a computing device that connects to such a unit. The household electricity consumption 
pattern predicted locally at the SM, with the load or appliance signatures masked or 
flattened, is then reported to an aggregator or data concentrator (referred here as a cluster 
head or CH) at the beginning of each day. All SMs within a neighborhood or cluster 
report their energy consumption predictions to their respective CH who in turn forwards 
an aggregated prediction (as described below) to the EC. As our localized prediction 
flattens or eliminates sharp variations (which may indicate load signatures) in the 
predicted consumption at the SM or household level, this difference can add up 
significantly while aggregating predictions for multiple households in a neighborhood or 
a cluster. This can reduce the accuracy of the aggregated prediction, thereby adversely 
impacting its utility or usefulness to the EC. In order to restore this utility lost due to 
prediction at the SM level, we introduce a second level of energy load prediction at the 
CH for compensating the difference in the aggregate of predicted and actual energy usage 
of individual SMs in the cluster. CH performs the load prediction based on past energy 
consumption pattern of the entire neighborhood or cluster, and reports the result of the 
second level prediction to EC just before beginning of each day. EC can then use this 
cluster or neighborhood wide load prediction to efficiently control electricity generation 
and distribution. To further improve efficiency and ensure fail proof operation of the 
SGN, we also incorporate real-time and privacy-preserving reporting of the aggregated 
variance between actual and predicted energy consumption of all SMs in the cluster. 

We would like readers to note that, the Seer Grid’s two level prediction mechanism 
offers several advantages over traditional privacy-preserving energy data reporting 
schemes in the literature. Unlike data hiding schemes that require multiple (one per each 
generated data value) encryption operations at the SM or household level, our prediction 
and reporting operation is performed just once (per day). Moreover, Seer Grid is 
communication-efficient (as no additional data or overhead needs to be communicated), 
does not require any specialized hardware (e.g., storage batteries) and does not need 
access to appliance-level consumption patterns. The contributions for this part of the 
project are organized as follows: In Chapter 6, we discuss the selection of statistical 
learning algorithms suitable for prediction in our SGN, followed by details of our SGN 
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architecture and its operation in Chapter 7. In Chapter 8, we evaluate the proposed Seer 
Grid architecture using real smart meter data by performing extensive experimental 
simulations. We empirically measure the correlation between predicted and actual 
consumption patterns at each level, using standardized metrics. Evaluation results 
strongly support our proposition of a practical SGN architecture which maximizes both 
privacy and utility of smart meters. Concluding remarks for both part of the projects are 
outlined in Chapter 9. 
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2. Background and Related Work 

Below we outline existing cryptographic approaches to private data aggregation in Smart 
Grid Networks (SGN) and also study some data aggregation methods in other networking 
infrastructures with similar constraints such as WSNs.  

2.1 Related Work on Secure Data Aggregation Mechanisms 
Cryptographic schemes, especially encryption algorithms with homomorphic properties, 
have been adopted as a popular tool to achieve secure data aggregation in a variety of 
networking and communication systems. A public-key cryptosystem is known to have 
homomorphic properties if )()()( 2121 mEmEmmE ∆=◊ , where E is the encryption function, 
and ◊ and △ are two different mathematical operations. Based on the supported operations, 
homomorphic cryptosystems fall into two broad categories: partially homomorphic and 
fully homomorphic. Partially homomorphic cryptosystems only support either addition or 
multiplication or in some cases polynomials up to certain degrees, whereas fully 
homomorphic cryptosystems support both addition and multiplication [5], [23]. We refer 
the readers to [31]-[34] for more details on homomorphic cryptosystems. 

In SGNs, the utility companies are interested in statistics such as total consumption for 
billing in a specific time period [5]. Given that sum of consumed electricity of all smart 
meters in a residential neighborhood is of interest to the UC, homomorphic properties of 
the Paillier [34] encryption can be useful. Rather than adding the consumption data in 
plaintext, one can multiply the encrypted values and then decrypt the result to get the 
addition of plaintext data. 

He et al. [23] present a secure data exchange scheme for the smart grid based on 
homomorphic properties of Goh cryptosystem [35]. Goh supports an arbitrary number of 
additions and a single multiplication on the ciphertext. It is worth noting that the 
aforementioned protocol is only a secure data communication scheme without any 
aggregation capabilities.  Li et al. [18] utilize the homomorphic properties of Paillier to 
propose an incremental data aggregation scheme. In [18] every node passes its encrypted 
consumption data to its parent node on the aggregation tree. The parent node multiplies 
the received value into its own encrypted consumption data and passes the total result to 
the next parent node.  Therefore, all the meters participate in the aggregation, without 
seeing any intermediate or final result. Garcia and Jacobs [36] present a privacy-
preserving protocol using Paillier based on secret sharing. Their proposal hides 
consumption data from the electricity or utility company (UC) as it receives random 
shares of data which it cannot decrypt. The other nodes cannot retrieve meaningful 
information either since they only receive random shares. Kursawe et al. [37] propose two 
approaches to calculate total consumption in SGN. In their first approach, called 
aggregation protocols, smart metering data are masked in such a way that after summing 
the data from all smart meters masking values cancel each other out and the UC gets the 
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total consumption information. In their second approach, named comparison protocols, 
they consider that the UC roughly knows the total consumption. Erkin and Tsudik [38] 
propose a cryptographic protocol based on a modified version of the Paillier cryptosystem 
to calculate the total consumption of all the SMs in a given neighborhood as well as a 
single SM in an Advanced Metering Infrastructure (AMI). Acs and Castelluccia [39] 
suggest a solution using masking and differential privacy and utilizing the homomorphic 
properties of a computationally-cheap cryptosystem for private data aggregation. Lu et al. 
[40] propose an Efficient and Privacy-Preserving Aggregation (EPPA) for smart grid 
communications by structuring multidimensional data and encrypting them with the 
Paillier cryptosystem. Erkin et al. [5] study different existing secure signal processing 
mechanisms in SGNs and compare different existing cryptographic methods in terms of 
computational complexity, efficiency and imposed overhead. 

He et al. [41] and Li et al. [42] propose similar integrity preserving data aggregation 
schemes, iPDA and EEHA respectively, for wireless sensor networks using the concept of 
data slicing and assembling. The authors propose three steps: i) constructing an 
aggregation tree using the well-known LEACH algorithm [43]. ii) Segmenting or slicing 
the data, and iii) merging the pieces of data at the aggregator and sending the merged data 
to the sink node.  iPDA uses multiple aggregation trees, hence providing better integrity, 
by sending more than one copy of the data to the destination. However, transmitting more 
than one copy of the same data can cause extra communication overhead. Zanjani et al. 
[44], [45] propose a new energy-efficient aggregation mechanism for WSNs using the 
concepts of coding theory. The sensor nodes are assigned unique Orthogonal Chip 
Sequences (OCS) that are used to code and send their data on the CDMA channel. The 
authors claim that, utilizing ESTOC, data integrity can be protected while aggregating. 
Also, ESTOC reduces Bit Error Rate (BER) and interference caused by simultaneous 
transmission of nodes. Yan et al. [19] propose a secure in-network data aggregation 
scheme to aggregate the data from smart appliances inside a Home Area Network (HAN). 
Similar to ESTOC [44], the authors in this scheme utilize the properties of spread 
spectrum communications for efficient aggregation.  

2.2 Main Motivation for AgSec 
In the cryptographic approaches discussed in [5], [18], [23], [36]-[38], we observe that 
the power-usage information is generally of small size (e.g. 20 bits) [40], [3]. However, 
the plaintext input size of most existing homomorphic cryptosystems is huge [5], [40], 
for example 2048 bits for the widely-used Paillier cryptosystem [34], [36], [38], [40]. As 
a result, the input data has to be padded before encryption. Given the high frequency of 
data collection and the number of deployed smart meters, this will result in unacceptable 
communication overhead on the network, and also high processing burden on the smart 
meters with limited computational capabilities [40]. Aggregation schemes that construct 
and utilize the spanning-tree, for instance by Li et al. [18], also do not consider 
performance issues. The processing and communication overhead makes the protocol 
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less suitable in practical implementations. Moreover, depending on the depth of the 
spanning tree of the network, there can be large delays between the time power 
consumption data is reported by the meters and the time the aggregated data is received 
at the UC. 

The aggregation schemes proposed in [41]-[45] do not consider any security issues. 
The main focus of the authors is increasing data integrity and energy efficiency in 
WSNs. Phulpin et al. [47] study the efficiency and benefits of network coding in both 
PLC and wireless SGNs. The authors also show that using coding theory in SGN 
reduces the delay by decreasing the number of time slots and saves energy through 
reducing the number of transmission.  

We are proposing a secure aggregation scheme by using properties of spread spectrum 
communications and utilizing the slicing and assembling technique [41], [42] to 
efficiently aggregate energy usage while improving network performance and 
decreasing unnecessary computation load on smart meters. Our contention-free scheme 
will also decrease the delay, BER, and interference. 

2.3 Related Work on Prediction Mechanisms 
There have been multiple proposed schemes for load prediction at cluster level for short 
term [65]-[67] and long term [68]. Sevlian and Rajagopal [69] proposed short term 
electricity load forecasting on varying levels of aggregation, and concluded that 
aggregating more customers improves the relative forecasting performance only up to 
specific point. Recently, smart meter based short-term load forecasting was proposed [70] 
[71], as a household’s historic energy consumption pattern is a better predictor of peak 
load than any other observable variables. In contrast, Seer Grid uses two level of 
prediction to retain the privacy benefits of aggregation, and utility benefits of individual 
household prediction.  

There also have been extensive research efforts attempting to address SM privacy 
issues. Li et al. [53] proposed using Paillier’s homomorphic encryption for distributed 
energy consumption data aggregation from SMs, where EC is able to know only the 
aggregated data upon decryption of the aggregated cipher. Garcia and Jacob [54] 
combined a secret sharing algorithm with Paillier’s homomorphic cryptosystem to 
compute the aggregated energy consumption of a given set of users (for example, in a 
cluster), in a privacy preserving fashion. However, homomorphic cryptosystems induce a 
large computational overhead on the SMs, and real-time reporting in short time interval is 
impractical [62]. Alternatively, McLaughlin et al. [57] proposed a non-intrusive load 
leveling model using large capacity batteries. Large batteries smoothen the energy 
consumption pattern and effectively help in hiding signal signatures contained in actual 
consumption pattern. However, large batteries are economically inconvenient [63] due to 
their high capital cost and low energy efficiency. 

Privacy through anonymization tries to unlink the energy usage data from individual 
SMs [72]. However, anonymization may turn out to be ineffective, as it is possible to 
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infer the data origin [73]. With the limited computational capabilities and practicality in 
mind, researchers suggested the use of perturbation techniques for hiding signal 
signatures. Consumer privacy can be preserved by deliberately introducing error into 
energy usage data [58] [59], and such perturbation techniques often try to achieve 
differential privacy in order to minimize the privacy-utility trade-off [60].  
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3. AgSec: Network Architecture 

3.1 Network and Communication Model 
We consider the widely-used wireless-wired architecture for the deployment of SGN. The 
wireless communication between smart meters, which are organized into clusters, and the 
aggregator or Cluster Head (CH) uses 802.15.4 or Zigbee due to characteristics such as 
low power, short delay, self-organization, scalability, and high security [8]. The 
aggregated data will be forwarded from the CH to the UC using a dedicated point-to-point 
wired link. 
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Figure 1. Network Architecture for SGN  

Figure 1 depicts a three-level hierarchical network architecture. The communication 
between the UC and the ith aggregator is denoted as UAi. Similarly ASi,j represents the 
communication between the ith aggregator and the jth smart meter in the ith cluster. The 
control and signaling messages between the UC and the jth smart meter in the ith cluster are 
exchanged on a channel referred to as USi,j. The signaling messages, which are used in the 
initialization phase, are discussed in details in chapter 4. The Zigbee medium access 
protocol on all AS channels is CDMA. Also all UA communications are on a dedicated 
wired channel. Finally, our signaling channel is a high-range wireless WAN technology, 
such as GPRS, UMTS or LTE. Figure 2 illustrates the components implemented in 
different network entities. 
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Figure 2. Participating Entities in Secure Aggregation 

3.2 Communications on the CDMA Channel 
All communication takes place over three separate channels as discussed in section 3.1. 
All smart meter data from the smart meter to the aggregator are sent over the CDMA-
based data channel, represented as the AS channel (in Figure 1). The OCSs for encoding 
data transmission on the AS channel are generated using the Golay code generation 
algorithm [46]. The most important characteristics of OCSs that should be considered 
before choosing an algorithm are auto/cross correlation, length of the generated OCSs 
versus the number of possible OCSs, and fault tolerance capabilities. Golay OCSs can be 
generated recursively, as shown in Eqn. 1. 
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In Eqn. 1, L = 2M is the total number of available OCSs, where M 1≥ is the number of 

bits in each OCS. AL and BL are L × L/2 sub-matrices. 
Let us assume that time is divided into periods of random length denoted by a random 

variable ψ . During each period, each smart meter is assigned a subset of OCSs for use in 
that period by the UC. The assignment happens over the US signaling channel. The 
communications over the US channels are secured using symmetric key cryptography and 
shared keys between the smart meter and UC based on what has been proposed in [18], 
[31], [36]. The OCSs for each smart meter are randomly selected by the UC from a large 
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pool of available OCSs. Each smart meter will use the OCSs uniquely assigned to it in the 
time frame ψ .  In order to spread data bits on the AS data channel, the smart meter 
calculates the inner-product of every data-bit with appropriate OCS. Every single bit of 
data is coded independently with an OCS different from the previous and next data bit. 
This will build the foundation of our secure scheme as described in section 4.2. It should 
be noted that it is possible for multiple smart meters to use the same OCS for data 
transmission in different parts of the network as long as they are not in the same cluster. 

3.3 Adversary Model  
In any networking scenario, all individuals in the network can fall into three broad 
categories based on their behavior. (i) Honest entities that fully follow the rules of the 
established protocol. (ii) Malicious or cheating nodes that not only do not follow the 
protocol but also try to manipulate, forge or deny access to possible resources. (iii) Semi-
honest or honest-but-curious nodes follow the defined protocols but they will, or they 
can, infer privacy-sensitive data. In our proposed scheme we consider the UC as the only 
honest party. The aggregators are assumed to follow the semi-honest model. The 
neighboring SMs are, generally, semi-honest; however there can be some malicious 
nodes in the vicinity. Our objective in this part of the project is to secure all the SM 
communications against possible eavesdropping, spoofing (or integrity), and inference 
attacks by the malicious and/or semi-honest nodes. 
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4. AgSec: Secure Aggregation Technique 

4.1 Initialization Phase  
Upon initial deployment, the UC communicates control information to each smart meter 
through the WAN interface on the US channel. For each time duration iψ , the UC assigns 
each smart meter, SMj, a set of attributes including, a temporary eight-bit identifier (IDi,j) 
and a group of valid OCSs, denoted by j j j j

O,i 1 2 gG ={ OCS ,OCS ,...,OCS } . The integrity, 

authenticity and confidentiality of the communication between the UC and the SMs are 
ensured using appropriate symmetric or public-key cryptographic techniques (say, using 
pre-shared keys). In this phase every smart meter gets the information required for data 
transmission on the CDMA channel in the next t time-slots, as illustrated in Figure 3. It 
should be noted that, as this is a one-time process in every t time slots and it ψψ >> , the 
imposed overhead due to it is fairly small. Also, we are not including any frame-level 
error checking mechanisms such as CRC because spread spectrum, by nature, can tolerate 
a certain amount of fault. 

4.2 Secure Aggregation Protocol (AgSec) 
After all smart meters are configured with appropriate OCS and ID information; they start 
to transmit their readings every τ seconds [3]. Different time intervals, ranging from 30 
seconds to a few hours, could be found in the literature [3]. Each node j is assigned a 
group of OCSs ( j

O,iG ) for each time interval iψ . The kth bit of the data stream generated by 

SMj will be coded with j
( k mod g )O , where g is the total number of OCSs assigned to SMj in a 

given timeslot iψ . The OCS Oi(t) assigned to any SMi at any instant in time t can be 
represented as shown in Eqn. 2. 
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In Eqn. 2, p(t) is a rectangular pulse which is equal to 1 for c0 t<T≤  and zero otherwise. 

Tc is the chip duration of the OCS and O(j,i) is the jth bit of the OCS assigned to SMi (from 
the set of all OCSs CL). The signal generated after encoding a data symbol of SMi with the 
corresponding OCS is given by 
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where, fi is the data symbol of SMi that needs to be encoded and Tf = L.Tc is the duration 
of the encoded data symbol or data bit. The inner product of the sent bit with the OCS is 
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done bit-synchronously. Then, the overall transmitted signal x(t) of all n smart meters in a 
cluster can be given by Eqn. 4 [46]. 
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Figure 3. Initialization Parameters for AgSec 
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CH will receive a signal including all the bits transmitted by all the smart meters. The 

received signal will be decoded by CH using all valid OCSs generated by the same 
algorithm with which they were initially produced by the UC. Given that SMs code their 
bits with different OCSs at every transmission it is difficult for the CH to decode and 
extract the actual data from the incoming signal. It should be noted that CH does not know 
the OCSs assigned to every single SM in the time period iψ , all it knows is a list of all 
possible OCSs in the network. Hence, after decoding the received signal it only has a bit-
stream in which neither the IDs, nor the actual data, can be interpreted. After the decoding 
phase, CH has an L bit data stream for every available OCS. All corresponding bits of the 
decoded data with all possible OCSs will be added and placed in an L-element array. Each 
element of the array is between –L and +L. The produced array will be sent to the UC as a 
whole piece of data on the dedicated point-to-point UA link.  

After the array is received at the UC it is easily decoded and interpreted into actual data 
transmitted by smart meters. Since UC maintains a table of assigned OCSs (in the same 
order that was agreed in the initialization phase) and IDs to every single SM in the 
network, it is able to retrieve the actual data by using appropriate OCS for every bit. We 
would like to note that the mentioned process is performed on the actual received data in 
upper layers rather than the physical layer. 

Also, we would like to argue that the possible malicious nodes in the network are not 
able to eavesdrop any information. Given that every single bit of the data is coded with a 
different OCS, even if packets are captured, they cannot be decoded. The only entity in 
the network that knows about the set of assigned OCSs to the smart meters is the UC. 
Hence, all communications are secured against eavesdropping. Our proposed secure 
aggregation technique is outlined in protocols 1, 2 and 3. 
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1: Function (US operation) 
2:    For each period ψk do 
3:         Generate OCS table with Golay algorithm; 
4:         Function (Initialization); 
5:         Function (UA data channel); 
6:    End For 
7: End Function 
8: Function (initialization) 
9:      Establish a safe communication with each SM; 
10:      Generate random SM ID; 
11:     OCS dedicator unit grant some OCSs to each SM; 
12:End function; 
13:Function (UA data transmission) 
14:      While data on UA channel do 
15:           For (all valid OCS) 
16:                Decode each received bit stream on a particular OCS by inverse inner product; 
17:           End for 
18:           Collect all data bits; 
19:           Assemble bits based on ID & OCS; 
20:      End while; 
21:      Controller check decrypted data for being in thresholds; 
22:      Utilize the aggregated data; 
23:End function; 

Protocol 1. UC functions 
 

1: While data on CDMA data channel do 
2: Receive all signals from different carriers; 
3: Calculate the SUM of each corresponding bits’ column of OCSs; 
4: Send calculated SUM values to UC on point-to-point channel; 
5: End while 

Protocol 2: CH functions 
 

1: Function (SM operation) 
2:    While network is ON do 
3:         Function(US data) 
4:         Function (Metering Engine); 
5:    End While 
6: End Function 
7: Function (US data) 
8:      While data on US control channel do 
9:            If (receive signal come from UC) then 
10:                 Update OCSs’ table and their orders; 
11:          End if 
12:     End while 
13:End Function 
14:Function (Metering Engine) 
15:    While (Metering Engine produce value) do 
16:           Get a OCS from OCS changer ; 
17:           ADD, D random value to data frame; 
18:           Encode kth bit of data frame by (k mod g)th OCS; 
19:           Spread encoded bit stream on AS CDMA carrier; 
20:     End while 
21: End Function 

Protocol 3: SM functions 



 

 16 

5. AgSec: Evaluation and Numerical Results 

As discussed in section 2.1, existing secure aggregation schemes impose a significant 
communication and computation overhead on SGNs with limited capabilities. 
Aggregation schemes that take advantage of the homomorphic properties of cryptosystems 
require fixed large size input blocks which is not ideal for small-sized data generated by 
SMs. The 20 to 30 bit [5] output data generated by SMs has to be padded, e.g., to 2048 
bits for Paillier [34], before encryption. In our approach, by choosing OCSs with 
appropriate length, this overhead can be significantly reduced. Readers should note that in 
our scheme each bit will be spread to L bits after encoding.  

We are evaluating our results with clusters of ten and also twenty smart meters and 
assuming that each smart meter is assigned three OCSs to use in every given time slot. 
Hence, using an OCS with L=32 and L=64 will be ideal for each scenario, respectively. 

The OCS length L limits the maximum number of users per cluster to 
|| ,

j
iOG

L . The number 

of total users in the network is independent from the OCS structure used. 
 

ID
T

(F+H ) LD =
R

×
                                                             (5) 

 
Where, F is the frame length, HID is the ID header, L is the OCS length and R is the link 
bit-rate. Given Eqn. 5, the transmission delay using L=32 and L=64, assuming a 200 kbps 
ZigBee link, is 4.8 ms and 9.6 ms, respectively. However, using traditional homomorphic 
cryptosystems as proposed by [18], we have: 

ID C CRC
T

(H +D +T )D =
R

                                                       (6) 

Where, HID is the identifier header, DC is the encrypted data (payload) and TCRC is the 
error-checking trailer. Given the values used in [3], the transmission delay will be 10.44 
ms. Hence, using an OCS with appropriate length we were able to decrease the overhead 
significantly, as seen in Table I. It should be noted that we are only considering the 
transmission delay. Moreover, given the high processing load and queuing delays due to 
the non-simultaneous transmission and high BER and retransmissions, the overall delay of 
the homomorphic approaches are too high compared with AgSec. Table 1 summarizes the 

transmission delay and total communication overhead  )(
DataActual

DatadTransmitte
=   for one 

smart meter. 
Another shortcoming of the secure aggregation schemes based on homomorphic 

properties of well-known cryptosystems, such as [18], is that every node’s data should be 
passed hierarchically to the upper level node in the aggregation tree. This process 
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continues until all the data is aggregated at the UC. However, this can increase the total 
delay which depends on the height of the aggregation tree. Our approach overcomes this 
issue as all nodes are able to transmit their data simultaneously and independently.  

Table 1. Transmission Delay and Communication Overhead for AgSec 
 AgSec L=32 bits AgSec L=64 bits Homomorphic (Paillier) 

Transmission Delay (ms) 4.8 9.6 10.44 
Communication Overhead  43.63 87.26 94.91 

Moreover, cryptographic solutions usually require heavy processing and computational 
operations, which is not suitable for smart meters with resource constrained processors. 
However, our secure aggregation protocol does not put extra processing burden on the 
smart meters, as it only requires basic addition and multiplication which can also be 
efficiently accomplished at the circuit level.  
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6. Seer Grid: Assumed SGN Architecture 

For this part of the project, we assume a similar hierarchical three-level SGN architecture 
(Figure 4).  
 

 
Figure 4. Traditional SGN architecture on the left, and our proposed SGN architecture 

on the right 

At the lower level are the smart meters or SMs, physically located in households of end 
users or customers. At the middle level, each neighborhood has a cluster head or CH, and 
SMs report predicted energy consumption patterns to CH. At the higher level is the 
electric company or EC (also referred as UC in the previous part), to which all CHs 
report aggregated load of their respective neighborhood. The load reporting from all CHs 
aids EC in optimizing generation and distribution of electricity. Further, we assume that 
the CH is capable of measuring the actual electricity usage of the whole cluster for a 
given time interval. We also consider billing once as a month event, which can be done 
separately. 
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Figure 6. The abstract structure of the MLP used of learning and prediction. 
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We assume a passive adversary who tries to infer personal information of customers 
based on accessible energy consumption data. If given access to actual energy 
consumption data, the adversary is computationally capable of carrying out inference 
attacks by analyzing the data. We also assume that the adversary can access energy 
consumption data reported to CH and/or EC. However, CH and EC must be honest and 
cooperate with each other for the protocol to function properly. Thus, CH and EC can be 
considered as honest but curious. All SMs are assumed to be honest. As a result, we do 
not scrutinize collusion attacks between SMs and CH, or between SMs and EC. 
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7. Seer Grid: Technical Background and Prediction Mechanism 

We carefully analyzed various statistical learning algorithms for predicting energy 
consumption patterns, in order to identify the algorithm apposite for preserving only the 
desired characteristics of the consumption pattern data. In this chapter, we first detail the 
constituents and properties of the consumption pattern data, followed by a discussion on 
how we select prediction algorithms for SM and CH. 

7.1 Prediction at SM 
Traditional SMs report energy usage data to EC in short time intervals, where each 
reporting conveys the energy used since last reporting. Let us denote the actual daily SM 
energy consumption pattern of a household hk as },...,{ )()()( 21 nk aaaAh τττ= , where )( ia τ  is 

the energy consumed since )1( −ia τ . The goal of using a prediction model at the SM is to 
predict a pattern },...,{ )()()( 21 nk

j
ppph

day
τττφ = , such that there occurs high overlapping 

between k

j

h
dayφ  and k

j

h
dayA , but k

j

h
dayφ is free of specific load signatures (such as spikes and 

plateaus). Predictive modeling leverages statistics to predict outcomes, i.e., the forecast of 
a day’s consumption pattern is based on collection of past khA  (let’s say for m days). 

After extensive analysis we identified the input variables critical to the outcome of the 
prediction model as (i) power usage history in each time interval )( ia τ , (ii) outdoor 
temperature in each interval (

i
OTτ ), and (iii) day and time of the week (

i
DTWτ ). Each day 

of the week is considered differently so as to improve prediction based on weekly 
routines. All interactions present between these three variables are represented in Figure 
5. Popular time series forecasting uses a statistical model for predicting future values 
based on previously observed values. However, basic time series forecasting does not 
capture the complex interaction between different input variables, resulting in inferior 
forecasting. Due to the highly complex interactions and some dependencies between 
input variables, multi-class classification and regression analysis will also result in non-
optimal prediction. To achieve best prediction results, we use structured prediction using 
supervised machine learning techniques. Among candidate machine learning techniques 
for structured prediction, we decided to use multi-layered perceptron (MLP) because it is 
specifically designed to discover the complex interactions among input variables. MLP is 
a feed forward artificial neural network (ANN) model that uses a nonlinear activation 
function to map sets of input data onto a set of appropriate outputs. MLPs consisting of 
three or more layers (input, output, and one or more hidden layers) is called a deep neural 
network, where each node in one layer connects with a certain weight pqw  to every node 

in the following layer. The error in output of a node q in the nth training data point is 
represented as )()()( nyndne qqq −= , where d is the target value and y is the value 
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produced by the perceptron. The calculated error for each training data point is used to 

make corrections to the weights of the node as ∑=
q

q nen )(
2
1)( 2ξ , which in turn 

minimizes the error in the entire output of the ANN. Change in each weight during an 

epoch is calculated as )(
)(
)()( ny

nv
nnw p

q
qp ∂

∂
−=∆

εη , where yp is the output of the previous 

neuron and η  is the learning rate. 
In the learning phase of our MLP execution, for each epoch we input power usage 

history of last three weeks recorded in 5 minute intervals. Outdoor temperature for the 
corresponding interval and day of the week is also fed in each epoch (Figure 6). The 
output of the ANN is a structured object (Y) containing multiple possible k

j

h
dayφ  for next 

day. Given the next day’s temperature forecast and day of the week is known, the 
structure object is parsed for the matching k

j

h
dayφ . More details about the MLP 

specifications used in our simulation experiments can be found in chapter 8. 

7.2 Prediction at CH 
The purpose of using prediction at SM is to remove specific load signatures (such as 
spikes and plateaus) form k

j

h
dayA . Although the missing spikes and plateaus from the SM of 

one household represent a minuscule amount of energy for the grid, spikes and plateaus 
from multiple households in a cluster can add up to a significant amount of unpredicted 
energy, which can endanger proper functioning of the electricity grid. Thus, we introduce 
another level of statistical prediction at the CH based on historical load profile of the 
cluster, while also factoring in individual predictions from all SMs in the 
cluster ,...},,{ 321 h

day
h
day

h
day jjj

φφφ . The algorithm (Protocol 4) uses average of difference 

between past load predictions and actual loads of the entire 
cluster }),...,,{( )()()( 21 n

dday
τττ λλλ=Λ , in order to complement missing loads. The output of 

the algorithm },...,,{ )()()( 21 n

jday
τττ yyy=Ψ  is the prediction for the whole cluster reported 

to CH, where ∑+=
k

iii p )()()( τττ δψ  and
m

p
jd

mjd k
dayday

i

d

i

j

i

∑ ∑
−=

−=

−
=

1
)()(

)(

}{ ττ

τ

λ
d . Although trivial, the 

algorithm can achieve high accuracy. 
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1: Prediction Function (for day j) 
2: 
3: Define new },...,,{ )()()( 28821 τττ ψψψ=Ψ

jdaψ  

4: 
5: for k=1 to K (K households in the cluster) do 
6: ∑

k
day

i

j
p )(τ  

7: end for 
8: for i = 1 to 288 (5 minutes time intervals for 24 hours) do 
9:    for d = 1 to m (m days to historical data) do 
10:       ∑−=

k
dayday

i

d

i

d

i p )()()( τττ λd  

11:    end for 

12: 
m

i
i

)(
)(

τ
τ δδ =  

13: ∑−=
k

iii p )()()( τττ δψ  

14: end for 
15: Report 

jdayΨ  to CH 
Protocol 4: Prediction Algorithm Executed by CH. 

7.3 Seer Grid Prediction Mechanism 
Similar to the traditional SGN architecture, Seer Grid also consists of a hierarchical three-
level network (Figure 4). At the lowest level are the SMs, physically located in 
households. At the middle level, each neighborhood has a CH, and SMs reports predicted 
energy consumption patterns to CH. At the higher level is the EC, to which all CHs report 
aggregated and re-predicted energy load forecast of their respective neighborhood. The 
predicted load forecast from all CHs aids EC in optimizing generation and distribution of 
electricity.  

A distributed model of SMs is used in our SGN model, where the first level prediction 
is performed independently on all SMs belonging to the SGN. The prediction algorithm 
running at the SM of a household hk locally stores a small database (Figure 7), containing 
actual consumption patterns khA  and outdoor temperature measurements OTi from last m 
days. Each day, the khA and OTi values are used to train the MLP and predict the k

j

h
dayΦ for 

next (j-th) day. Also, at the end of a day, the day’s actual consumption pattern k

j

h
dayA

1−
is 

inserted in to the queue of the database and the oldest actual consumption pattern k

mj

h
dayA

1+−
 

is removed. As mentioned before, k

j

h
dayΦ is computed and reported only once (before 

beginning of) each day. All communications for reporting k

j

h
dayΦ are assumed to be point-

to- point and symmetrically encrypted, for example, using AES. CH accumulates all 
k

j

h
dayΦ in the cluster, adds the calculated )( iτδ to ∑

k
p )(τ for each time interval )(τ , and 
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reports the resulted pattern 
jdayΨ  to the EC. CH also stores a database of past Λ  and 

∑
k

p )(τ  values from last m days, which is updated at the end of each day (Figure 8). 

 

 
Figure 7. Proposed Smart Meter Data Flow. 

 
Figure 8. Proposed Cluster Head Data Flow. 

The cluster level predicted pattern 
jdayΨ is a refined estimate of next day’s energy 

consumption compared to individual SM predictions k

j

h
dayΦ , but it is still not a definite 

future. There may occur unexpected events which are not captured by the input variable 
of our prediction system. To ensure proper functioning of SGN in such case of an 
unexpected power demand, we incorporate a real-time reporting system in our 
architecture to measure the difference in actual and predicted energy consumption of all 
households. But, directly reporting difference in actual and predicted energy consumption 
pattern to CH defeats our goal of privacy, because CH can add back the difference to 
predicted pattern to obtain the actual pattern of individual SMs. So, the real-time 
reporting system uses a token ring mechanism to aggregate the difference in actual and 
predicted energy consumption pattern for all SMs in the cluster. The token ring calculates 
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the difference in actual and predicted energy consumption ∑ −=
k

t ap )( )()()( ttθ  in each 

time intervalτ . The final token value containing the aggregated difference in actual and 
predicted energy consumption of the cluster is reported to EC (via CH) for regulating 
generation and distribution, if necessary. Figure 7 illustrates how each SM adds their 
difference in actual and predicted energy consumption to the token, and Figure 4 show 
how the token ring is circulated across all SMs in the cluster for aggregation of difference 
in actual and predicted energy consumption. To protect the token ring against 
eavesdropping attacks, all SMs symmetrically encrypt (and decrypt for addition) the 
token using a shared secret, obtained using, say a, authenticated Diffie-Hellman key 
exchange protocol. 
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8. Seer Grid: Empirical Evaluation 

In order to validate the benefits of our Seer Grid architecture, we conduct extensive 
simulation experiments using real SM data. In this chapter, we present our experimental 
setup followed by an overview of the simulation results.  

8.1 Experimental Setup 
We use real SM data from East Midlands, UK from the year 2008. The data is collected 
from residences equipped with BS EN62053-21002003 smart meter, which measures true 
active power in five-minute time intervals. The fabricated cluster we consider for 
evaluation consists of 5 household, each having one smart meter. Due to limited memory 
of SMs, we limit the use of historical data in our experiments to last three weeks, i.e, m = 
21. Longer training period not only takes more storage space, but also makes less 
significant contribution in the prediction because of changing temperature conditions 
throughout the year. The ANN prediction algorithm is trained with data from past 21 
days to predict the energy consumption for 3 test days. The training data consists of nine 
variables: interval number and target date as indexing variable, 3 power usage 
measurements in the interval from last three weeks, and 3 outdoor temperature 
measurements in the interval from last three weeks. More specific details of the 
parameters applied to train the ANN can be found in Table 2. We interpret our results by 
using the classical squared correlation coefficient (R2) to measure the strength of 
relationship between predicted and actual energy consumption patterns at each level of 
Seer Grid. Lower R2 implies more privacy, whereas higher R2 implies more utility. We 
also calculate the normalized relative entropy between the actual energy consumption of 
a test day and the mean of actual energy consumption during training days of 
corresponding test day. This information will help us understand how training data with 
properties different from the test data affect the prediction. 

8.2 Results and Observations 
The experiments (with 21 training and 3 test days) were performed over four seasons: 
winter (January 1 to 24), spring (April 1 to 24), summer (July 1 to 24), and fall (October 
1 to 24). The results, averaged over the 3 test days, are presented in Table 3. The squared 
correlation between actual and predicted energy consumption patterns of SM vary 
between 51.07% and 80.09%, and averages at 62.10% across all 5 SMs. As an example, 
Figure 9(a) shows the actual and predicted energy consumption pattern for SM3 on 22nd 
January, and Figure 9(b) shows the squared correlation between them. The squared 
correlation between actual and predicted energy consumption pattern for CH vary 
between 89.95% and 91.15%, and averages at 90.60%. Figure 9(c) shows the actual and 
predicted energy consumption pattern for CH on 22nd January, and Figure 9(d) shows the 
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squared correlation between them. Evidently, SM prediction is less correlated than CH 
prediction by a clear margin, as seen in Figure 10. 
 

Table 2. Neural Network Training Parameters 
Parameter Value 

Number of SMs in cluster (assumed neighborhood) 5 
Training period 3 weeks (21 days) 
Testing period 3 days 
Number of predicted data point a day 288 
Number of ANN Inputs 9 
ANN Proto 50 
Number of ANN hidden layers 3 
Number of nodes in each hidden layer 10 
Number of ANN output 1 
ANN Learn Rule Ext DBD 
ANN transfer mode Sigmoid 
Epoch 288*21=6048 
Number of iterations 106 

 
Another interesting observation is about how difference between training and test data 

affects the SM prediction. Intuitively, having an approximately fixed daily schedule 
should ease predicting energy load for test day, and high uncertainty in daily schedule 
should make prediction harder. However, our experimental results show that higher 
relative entropy between test data and mean of training data leads to more accurate 
prediction, and thus less privacy. This observation can be associated with the fact that 
ANN models converge at a faster rate when there is higher variation in the training data. 
In case we have longer training period, the convergence in learning may be more uniform 
for all SMs. But we decided to restrain ourselves to only 3 weeks because of reasons 
discussed before. We also discuss in the following section how the convergence in 
learning can be made more uniform across SMs by utilizing training data characteristics 
in regulating the learning rate. 

8.3 Discussion 
Prediction Parameters: In our experiments, we took a heuristic approach for 
determining the prediction parameters for the ANN used by the SMs. The parameters 
were chosen in such way that it satisfies our goal of optimizing both privacy and utility of 
SM data. From the experiment results we observe that the correlation between actual and 
predicted energy consumption pattern varies moderately across households and seasons. 
This is primarily because of different characteristics of the training data (actual energy 
consumption for last 21 days) leading to differently converged prediction model in each 
SM. In future, we plan to develop a unified prediction framework for the SMs which will 
analyze characteristics of the training data, and accordingly govern learning rate such that 
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prediction accuracy remains below a privacy preserving threshold with high likelihood. 
Unlike this work, where all SMs use the same prediction parameters, the unified 
framework will adapt to the characteristics of local training data of individual SMs. 

Larger Cluster: We consider a very small scale cluster in our experiments, and yet 
achieve considerably high prediction accuracy at the cluster level. As evident form 
previous cluster level prediction schemes [64], accuracy tend to dramatically improve 
with increasing number of customers in the cluster. Thus, we think our results are highly 
encouraging for large scale implementation. 

 

 
(a) Actual and predicted energy consumption pattern 

for SM3. 

 
(b) Correlation between actual and predicted 

energy consumption pattern for SM3. 

 
(c) Actual and predicted energy consumption pattern 

for CH. 

 
(d) Correlation between actual and predicted 

energy consumption pattern for CH. 

Figure 9. Exemplary results from 22nd January 2008, showing the correlation between 
actual and predicted energy consumption patterns at different levels of Seer Grid. 
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Table 3. Squared correlation coefficient (R2) between predicted and actual energy 
consumption patterns for each SM and CH, and normalized relative entropy between the 
actual energy consumption of a test day and the mean of actual energy consumption 
during training days of corresponding test day. All values are average of the 3 test days. 

 

 

 
Figure 10. Correlation between actual and predicted energy consumption patterns for 
SMs and CH over four seasons (data from Table II). The correlation at CH level is 
clearly higher than all SMs.  
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9. Conclusion  

In Chapters 3-5, we presented a new approach for securing data aggregation in smart 
metering systems. Our proposed approach uses a coding theory approach by utilizing 
salient properties of spread spectrum communications on a CDMA channel to securely 
aggregate sensitive power consumption data from smart meters. Our analysis showed 
that, provided appropriate parameters are chosen, our proposed technique imposes lesser 
delay and overhead on SGNs as compared to cryptographic approaches. The proposed 
method uses code division multiplexing to enable simultaneous transmissions, and also 
results in a reduced bit error rate and interference. As part of future work, we are 
planning to implement the proposed scheme in a real test-bed of SMs to analyze its 
security and efficiency in practice. 

We introduce Seer Grid method in Chapters 6-8, an alternate SGN architecture aimed 
to minimize the privacy-utility trade-off faced by SMs. As a result of two-level energy 
load prediction in Seer Grid, there exists high correlation between predicted and actual 
energy consumption patterns at cluster level, which indicates excellent utility 
preservation. However, the correlation between predicted and actual energy consumption 
patterns of individual SM is weak, which indicates strong privacy preservation. 
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1.1 Introduction

Renewable energy resources, especially roof top PV systems, are getting more and
more prevalent in the distribution level of the grid. As a result, there is a need to mon-
itor energy consumption patterns at the distribution level for more efficient dispatch
and better system operation. This means the utility has to incentivize households
to use smart meters. However, the installment of smart meter may create poten-
tial threats to households privacy since it has much higher sampling rate and data
processing capability than traditional meter.

Privacy and security, especially in power system, have become challenging issues
with the development of advanced metering infrastructure and communication tech-
nology. The ability to share data has many benefits, for example, improving load
forecasting and system dispatch efficiency. However, the collected information may
be used by malicious users or innocent-but-curious utility companies to analyze house-
holds electricity consumption behavior and make inferences about personal habits of
consumers. Thus, privacy aware households may try to mask their actual energy
consumption profile, or even refuse to use smart meters so that they can have some
privacy. Therefore, we study the problem of how utility companies can incentivize
households to share their consumption profile through smart meter; while offering
households guaranteed levels of privacy.
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1.2 Background and Related Work

The increasing number of smart meters deployed in business and residential build-
ings has raised concerns about privacy. The adversary can monitor households’s
energy consumption behavior by using data collected from smart meters [1–3]. Re-
cent work [4] provides an overview of privacy protecting technologies in smart meter.
Multiple methods and metrics have been proposed to quantify and protect smart me-
ter privacy. One common approach is to develop control policies by using battery to
hide actual electricity consumption behavior [5–7]. Another approach of interest is
distorting the metering data from the smart meter to preserve user privacy [8]. More-
over, the privacy of households can be protected by using anonymization of smart
meter data [9]. all of these approaches can effectively provide consumers a certain
level of privacy. However, none of them considers the set of all potential tradeoff
between privacy and utility.

In [10], Denic et.al. showed that privacy preserving algorithms which use battery
to mask load behavior can affect the consumer electricity demand from the grid, and
thus affect electricity prices. In [11], Tan et.al. proposed a model which protects the
smart meter privacy from an information theoretic perspective via battery and energy
harvesting unit coordination. Ratliff et.al. [12] studied a contract based mechanism
to protect consumer provacu as well as maximizing the social welfare of electric util-
ity companies and consumers. Recent work by Yao and Venkitasubramaniam [13]
proposed a MDP based model to analyze the tradeoff between privacy and energy
saving when smart meters are deployed in households. They used information the-
oretic metric to quantify the privacy leakage when meters share consumption data
with utility companies. Our work differs in that we capture privacy by the response of
households to incentives offered by the utility company in order to encourage them to
share some information about their electricity consumption profile. A closely related
work is the utility and privacy tradeoff problem studied by Dong et.al. [14], in which
they proposed a privacy metric based on hypothesis testing. They assumed an adver-
sary can infer private information via sampling data from smart meters and analyzed
the tradeoff between smart meter operation and household privacy by changing the
sampling rate of the smart meter. However, their privacy model has limited capabil-
ity to capture data privacy when there are batteries and PVs in the system. This is
because even if the sampling rate is very high, the user behavior still can be masked
by controlling battery and PV generation.
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1.3 Contibution

In this report, we seek to address households responses to incentives from the utility
company in order to encourage households to share more data. In particular, we
assume that the households privacy is protected by masking the actual consumption
via controlling the operation of battery and PV. Theoretically, all usage patterns can
be masked by charging and discharging the battery to maintain a constant consump-
tion profile. However, this mechanism requires the battery to have sufficiently large
storage capability and charging/discharging rate; furthermore, it is very challenging
to control the operation of battery to achieve perfectly constant energy consump-
tion over all time. The utility company requires certain amount of energy consumed
by households in order to perform load forecasting and maintain efficient electricity
dispatch. Thus, it may offer some incentives to households to encourage them to
consume energy from the grid. Each household faces the tradeoff between reducing
consumption from the utility company for privacy reasons and revealing consumption
patterns to the utility company to reduce the energy cost.

The main contribution of this report is to propose a novel approach to study the
tradeoff between privacy and energy cost minimization under the assumption that
the utility company offers incentives to households to encourage data sharing through
energy consumption. In this respect, we formulate a non-cooperative game to model
interactions between households and the utility company. In this game, the strategy
of a household is to select the proportion of electricity it consumes from the grid to
maximize its reward from the grid while maintaining certain privacy; the strategy
of the utility company is the incentive price it offers to encourage consumption so
that it can maximize its profit. The final incentive price results from matching the
valuation of privacy from each household with the incentive price announced by the
utility company. To solve the game, we propose an algorithm based on iterative best
response dynamics that enables the households and the utility company to reach a
Nash equilibrium.
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1.4 System Model

Below we present our system model as well as optimization problems for households
and the utility company.

1.4.1 Household Model

We assume that there are M households in the system denoted by the set H =
{1, 2, ...,M}. Each household has installed smart meter and renewable energy gen-
eration (PV) and energy storage device (battery). For household i, let Di,t be the
actual consumption at time t, i.e., it is the demand of household i at time t. By
using PVs and Batteries, household i can control its energy consumption from the
grid. We denote αi,t ∈ Ai to be the consumption coefficient, where Ai is the support
set of αi,t. It indicates the proportion of the total amount of energy that household
i consumes from the grid. Thus, at time t, household i only consumes αi,tDi,t from
the grid for economic and privacy reasons.

1.4.2 Utility Company Model

The smart meter installed by the utility company samples the energy consumption at
a fixed rate. It transmits the actual consumption data back to the utility company
instantly. We assume that the utility company requires at least Xt amount of energy
to maintain base load and perform load forecasting. If the consumption is lower than
Xt, it suffers a loss L(Xt −

∑

i∈H

αi,tDi,t) where L(·) is assumed to be a continuous,

convex and increasing function.
In order to incentivize households to use the energy from the grid and share their

actual consumption with the utility companies, the utility company can offer a price
to compensate for the privacy loss of the consumer in the household. We first assume
that there is no price differentiation between each household. To be more specific, the
utility company offers an incentive rate of βt ∈ B for each KW of electricity consumed
by a household, where B is the support set of βt. Each household has a valuation of
privacy si,t , which denotes how much of its consumption profile it wishes to share
with the grid, and is given by an arbitrary function si,t = fi,t(αi,tDi,t). We assume
that fi,t(αi,tDi,t) is an invertible, continuous, and increasing function.

1.4.3 The Optimization Problem

Since the consumer wishes to be compensated for sharing data with the utility com-
pany, it is intuitive to expect that the consumer will try to match its valuations to the
incentive it receives from the utility. Thus, the household consumes a fraction αi,tDi,t

from the utility company such that βt = si,t = fi,t(αi,tDi,t), where si,t is defined to
be the clearing price. We denote αt = {α1,t, α2,t, ..., αM,t} and βt to be the strategy
profile of all households and incentive price offered by the utility company at time t,
respectively. The reward function of household i for consuming electricity from the
utility is given by:

Ui(αi,t) = βtαi,tDi,t. (1.1)
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Figure 1.1: Household-utility company interaction diagram

The profit of the utility company when supplying
∑

i∈H

αi,tDi,t amount of energy to

households is given by g(
∑

i∈H

αi,tDi,t). We assume that g(
∑

i∈H

αi,tDi,t) is an increasing,

continuous and concave function. Thus, the reward of the utility company can be
expressed by:

Vt(βt) = g(βt

∑

i∈H

αi,tDi,t)− β
∑

i∈H

αi,tDi,t − L(Xt −
∑

i∈H

αi,tDi,t). (1.2)

To maximize its return from sharing consumption data with the utility company,
household i solves the following optimization problem:

max
α∈At

Ui,t(αi,t) = βtαi,tDi,t (1.3)

s.t. βt = fi,t(αi,tDi,t). (1.4)

The objective of the utility company is to choose the price βt such that it will max-
imize its reward from incentivizing households to share at least a minimal amount of
their energy consumption profile data. Thus, the utility company solves the following
optimization problem:

max
βt∈B

Vt(βt) = g(βt

∑

i∈H

αi,tDi,t)− β
∑

i∈H

αi,tDi,t − L(Xt −
∑

i∈H

αi,tDi,t). (1.5)
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1.5 The Household-Utility Company Game

For a given set of energy demand (D1,t, D2,t, ..., DM,t) at time t, the amount of energy
αi,tDi,t that each household i decides to consume from the grid and the incentive
price βt strongly impact both the clearing price as well as the rewards for both house-
holds and the utility company. Moreover, the strategy for each household also affect
other households’ strategies indirectly via influencing the strategy of the utility com-
pany. To model this privacy-energy cost tradeoff, we develop a scheme based on
non-cooperative game theory. The household chooses the amount of energy to con-
sume from the grid (its strategy) at time t; on the other hand, the strategy for the
utility company is to determine the incentive price to compensate for the privacy loss
of the consumer. We assume that the strategies αi,t and βt are selected from convex,
closed, and bounded sets supported on R. Thus, this problem can be modeled as an
N -player strategic game (N = M + 1) with components given as follows:

• Set of players: {(H, C)} is the set of players in which households belong to set
H and the utility company is denoted by C.

• Set of strategies: {({Ai}i∈H,B)} is the tuple of strategy sets for households and
the utility company, where the strategy for households i (consumption coefficient
αi,t) is given in Ai and the strategy of the utility company C (incentive price βt)
belongs to B.

• Payoff functions: {({Ui,t(·)}i∈H, Vt(·))} is the tuple of payoff functions in which
we denote Ui,t(·) to be the reward for household i and V (·) to be the reward for
the utility company C.

The resulting strategic game is written as {(H, C), ({αi,t}i∈H, βt), ({Ui,t}i∈H, Vt)}.
Such a game has one well-studied solution which is called the Nash equilibrium (NE).
The NE is a strategy tuple in which none of the players can be more profitable by
unilaterally deviating from this equilibrium strategy. Formally, it is defined as follows:

Definition 1. Consider the N-player strategic game {(H, C), ({αi,t}i∈H, βt), ({Ui,t}i∈H, Vt)},
a strategy tuple ({α∗

i,t}i∈H, β
∗
t ) is an NE if and only if

Ui,t(α
∗
i,t,α

∗
−i,t, β

∗
t ) ≥ Ui,t(αi,t,α

∗
−i,t, β

∗
t ) ∀αi,t ∈ Ai, i ∈ H

and

Vt(α
∗
i,t,α

∗
−i,t, β

∗
t ) ≥ Vt(α

∗
i,t,α

∗
−i,t, βt) ∀βt ∈ B.

where the vector α−i,t denotes the strategies of all other households.

The NE in our context defines a strategy tuple in which neither the households
nor the utility company can be more profitable by unilaterally deviating from the
equilibrium choice of other households and the utility company. It presents a stable
outcome of the interaction between households and the utility company.

Theorem 1. There exists at least one Nash equilibrium for the above household-utility
company game.
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Proof. The reward function is continuous and concave for both households and utility
company. Also, the strategy set is convex, closed and bounded. Thus, the above
household-utility company game is a concave N-person game, where N = M + 1 in
our context. Therefore, the existence of Nash equilibrium is guaranteed by continuous
and concave reward functions and convex feasible set for each player [15].

To find the NE for our household-utility company game, we first introduce the
notion of best response. The best response is a function which captures the behavior
of each player by making other players strategies fixed. By Definition 1, in every NE,
each player plays the best response with respect to other players strategies.

Definition 2. The best response Ri,t(α−i,t, βt) of a household i to all the other players
strategies is a set of strategy such that Ri,t(α−i,t, βt) = {αi,t ∈ Ai|Ui,t(αi,t,α−i,t, β

∗
t ) ≥

Ui,t(α
′
i,t,α−i,t, βt), ∀α

′
i,t ∈ Ai}. Similarly, we define the best response of the utility

company to be a set of price βt which is given by RC,t(αi,t) = {βt ∈ B|Vt(αi,t, βt) ≥
Vt(αi,t, β

′
t), ∀β

′
t ∈ B}.

Given above assumptions on payoff functions, the reward of household i is increas-
ing with respect to αi,t . Thus, the best response of household i given other players
strategies fixed can be expressed as

αi,tDi,t = f−1
i,t (si,t) = f−1

i,t (βt). (1.6)

The objective of the utility company is to maximize its reward from incentivizing
households to share their consumption profile data. Thus, its best response is given
as

βt = argmax
βt∈B

Vt(βt) (1.7)

= argmax
β∈B

g(β
∑

i∈H

αi,tDi,t)− β
∑

i∈H

αi,tDi,t − L(Xt −
∑

i∈H

αi,tDi,t). (1.8)

Since the existence of NE in the household-utility company game mentioned above is
guaranteed by Theorem 1, the strategies of the utility company and households reach
an NE if and only if all of their best responses intersect at the same strategy (α∗

t , β
∗
t ).

Assume that the first order derivatives for g(
∑

i∈H

αi,tDi,t), L(Xt −
∑

i∈H

αi,tDi,t), and

f−1
i,t (βt) exists. The NE is given by solving the following equations:

{

αi,t =
f−1(βt)
Di,t

∂V (βt)
∂βt

= 0
, (1.9)

where Vt(βt) is defined in (1.2).
Next, we propose an iterative algorithm to compute the NE. During the nth iter-

ation, household i selects its best response with respect to the strategy of the utility
company. Meanwhile, the utility company chooses its incentive βn

t to maximize its
reward function given the response of all households. This iterative process contin-
ues until βn

t converges. In general, best response dynamics-based algorithms have
been proven to converge to an NE for many classes of non-cooperative games [16].
However, for general non-cooperative games, the existence of an NE is not always
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Figure 1.2: Best response of the utility company and household 1

guaranteed. In the proposed household-utility company game, the privacy valuation
function fi,t(αi,tDi,t), which is based on households subjective behavior, might not
be continuous. Thus, it can introduce a discontinuity. As a result, it is difficult to
prove the existence of the NE analytically [15]. In cases of non-existence, the utility
company announce a final clearing price βt based on the observed best responses.
Also, in general, there may be multiple NE solutions; however, we only focus on one
of the NE since it is a practical outcome of the interaction between households and
the utility company.

Algorithm 1 Iterative process to find Nash equilibrium

Begin

Initialization : Set β0

t = β0 > 0.
Do

αn
i,tDi,t = f−1

i,t (β
n−1

t )
βn
t = argmax

β∈B
g(β

∑

i∈H

αn
i,tDi,t)− β

∑

i∈H

αn
i,tDi,t − L(Xt −

∑

i∈H

αn
i,tDi,t)

Until

βn
t − βn−1

t < ǫ for ǫ > 0 and sufficiently small.
Set

βt = βn
t

αi,t =
f
−1

i,t
(βt)

Di,t

The NE is given by (αt, βt).
End

To illustrate the performance of the proposed threshold policy, we assume the
average roof top PV size in each household is 35m2 with 12% conversion efficiency
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Figure 1.3: Proportion of total energy demand consumed from the grid at a Nash
equilibrium

and 1, 800kWh/m2 per year of available sunlight energy [17]. The average house-
hold energy in US is 909KWh/month [18]. Therefore, the PV system can provide
approximately 70% of total energy consumption of a household. Furthermore, we
assume

Vt(βt) = δ

√

βt

∑

i∈H

αi,tDi,t + γ − θ ∗ (Xt −
∑

i∈H

αi,tDi,t)
2 − βt

∑

i∈H

αi,tDi,t (1.10)

and

f−1
i,t (βt) = ηi

√

βt ∀i ∈ H (1.11)

, where δ, γ, η and, θ are system parameters determined by the utility company and
households. The demand Di,t from each household is uniformly drawn from [2, 4]
and Xt ∈ N (2M,M)The best response dynamics of household 1 and the retailer is
depicted in Figure 1.2. The households and the utility company reaches the NE after
13 iterations. We assume that the size of the battery is large enough. Thus, the pri-
vacy preserving algorithm [7] can achieve perfect privacy by making the consumption
profile flat. Since the PV system can only supply 70% of total energy consumption,
the household have to consume the other 30% from the grid. Thus, αi,t = 0.3 if
βt = 0. Figure 1.3 shows the strategies of different households at a Nash equilibrium.
One can observe that for the same incentive price offered by the utility company,
households with low valuation on privacy (Household 2 and 4) tend to increase their
consumption more than household with high valuation on privacy.
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1.6 Conclusion and Future Work

In this project, we introduced a novel approach to study the tradeoff between privacy
and energy cost minimization under the assumption that the utility company offers
incentives to households to encourage data sharing through energy consumption. We
formulated a non-cooperative game to model interactions between households and the
utility company. We proved that the existence of a Nash equilibrium is guaranteed if
the strategy sets and payoff functions satisfy certain concavity properties. To solve
the household-utility company game, we have proposed an iterative best response
algorithm that leads to a Nash equilibrium. Our simulation results have shown that
the consumption of each household increases when the utility company offers an in-
centive price to households. Our work suggests several interesting future directions:
one straightfoward extension of this work is to develop dynamic game models to cap-
ture the interaction between households and the utility company over a certain time
period. Another interesting problem is to study how will this game theoretic model
work when households can implement privacy preserving control policies.
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Chapter 2

Sharing AMI Data with Limited

Statistical Inferences
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2.1 Introduction

Smart meters have been used in both homes and enterprises for energy usage collec-
tion and monitoring. Both utility company and households benefit from smart meter.
However, the data collected from smart meter may give rise to serious privacy con-
cerns since an adversary can make inference on user behavior. For instance, to decide
the best time for burglary, a burglar has to monitor activities in the target household
for a long time to obtain living pattern of people in that house. However, by moni-
toring the energy consumption from the target household, the burglar can easily infer
living patterns. The data collected by the utility also may be more than they needed
for system monitoring.

In this project, we seek to model behavior of consumers with privacy concerns in
the smart grid and study the tradeoff between cost saving and privacy. To be more
specific, we study the tradeoff from using battery/PV to achieve energy cost savings
versus using them specifically for retaining a certain measure of privacy. We assume
the privacy feature that the consumer wants to hide from the utility company to be a
binary variable, i.e., a yes/no inference on a certain feature (e.g., consumer at home
or not). We use information theory as a privacy metric that captures consumer’s
concerns, e.g., can the data collector infer specific personal habits? Furthermore, we
try to develop optimal policy for consumers to minimize cost while retaining a certain
measure of privacy.

Figure 2.1: System diagram
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2.2 System model

As shown in Figure 2.1, the electricity of a household is supplied by coordination
of energy from the power grid, alternative energy sources and the battery. Appliances
reveal user activity by coming ON or going OFF. User activity can then be correlated
with specific appliance detected (from signature) and personal habits/preferences. We
assume Y to be the private feature that the consumer wants to hide, e.g., appliance
ON and OFF state. The actual electricity that the household consumes at time t is
given by an i.i.d. random variable Xt. The energy provided by an alternative energy
resource (PV) and the power grid is denoted by i.i.d. random variables Ht and Dt,
respectively. We assume that the capacity of the battery is large enough to serve the
load. Thus, the energy provided by the battery is given by Dt+Ht−Xt. The energy
consumption from the grid can be written as follows:

Dt = F (Xt, y,Ht) (2.1)

Since the battery size is large enough, asymptotically, for any battery control policy,
the demand must satisfy:

E(Dt|Y ) + E(Ht) = E(Xt|Y ). (2.2)

We assume a strong adversary who has knowledge of PX|Y (Xt|Y ), PH(Ht) and
PX,H|Y (Xt, Ht|Y ) but only have access to Dt in real time. Let y0 and y1 denote that
the privacy feature is on or off, respectively. The adversary can infer the private action
Y by making a guess Ŷ based on the Neyman-Pearson hypothesis testing approach
(Figure 2.2). For a group of sampled smart meter data dN = (d1, ..., dN) with length
N , the optimal region of making a guess Y = y0 is given by

Ay0 = {d
N :

PDN |Y (d
N |Y = y0)

PDN |Y (dN |Y = y1)
≥ T}, (2.3)

where T is the threshold set by the adversary. By asymmetrical equipartition property
of relative entropy, the above region is equivalent to

Ay0 = {d
N :

PDN |Y (d
N |Y = y0)

PDN |Y (dN |Y = y1)
→ 2ND(P

DN
|Y

(dN |Y=y0)||PDN
|Y

(dN |Y=y1)) ≥ T} (2.4)

If Y = y1, the consumer wants to use Dt to make the adversary thinks Y = y0.
Therefore, the privacy of the consumer is preserved if the decision of the adversary
falls into ”Not detected” in Figure 2.2. Thus, the probability that the consumer’s
privacy has been preserved can be written as:

pud =
∑

dt∈Ay0

PDN |Y (d
N |Y = y1), (2.5)

where Ay0 is the set of demand in which the adversary’s estimation of Y is y0. Define
the false alarm probability to be

pfa =
∑

dt∈AC
y0

PDN |Y (d
N |Y = y0), (2.6)

14



Figure 2.2: Neyman-Pearson hypothesis testing

where AC
y0

denotes the region of dt in which the adversary makes a guess that Y = y1.

By Chernoff-Stein Lemma, for 0 < ǫ < 1
2
, define

β = min
dt∈AC

y0
,pfa<ǫ

pud. (2.7)

Then, lim
N→∞

1
N
logβ = −D(PDN |Y (d

N |Y = y0)||PDN |Y (d
N |Y = y1)). Therefore, as

N →∞, we have β → 2−N(D(P
DN

|Y
(dN |Y=y0)||PDN

|Y
(dN |Y=y1))).

We assume the energy cost C(dN) is a convex function. The consumer’s objective
is to minimize its expected energy consumption cost, while retain certain level of
privacy. Thus, the optimization problem is formulated as follows:

min
pD|Y

E(C(dN)) (2.8)

s.t. pD|Y ∈ ΠD|Y

ΠD|Y = {pD|Y : E(Dt|Y ) + E(Ht) = E(Xt|Y )}

V 2−ND(P
DN

|Y
(dN |Y=y0)||PDN

|Y
(dN |Y=y1) ≥ R,

where D(·) is the Kullback-Leibler distance, V is the loss incurred by privacy leakage
(adversary successfully infer the private feature), and R is the level of privacy that the

consumer wants to retain. Since {pD|Y : V 2−N(D(P
DN

|Y
(dN |Y=y0)||PDN

|Y
(dN |Y=y1)) ≥ R}

and ΠD|Y are convex sets, the above problem is a convex optimization problem.
This problem can be interpreted as a cost minimization problem given the minimum
expected privacy utility is guaranteed to be above some value R.
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2.3 Expected Results

The solution of the above optimization problem will give the consumer a random-
ized control policy of the energy needed from the grid. The proposed control policy
assigns probabilities to each action based on energy from PV, consumer consumption
and private feature. The resulted demand profile guarantees the consumer certain
level of privacy while minimizing the energy cost to the consumer. Meanwhile, the
utility company gets precise knowledge of the amount of energy needed from the
power grid (Good for monitoring and pricing). However, based on the smart meter
readings, the adversary has limited capability to infer the private feature.
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Chapter 3

Effect of AMI Cyber-Attacks at

the Transmission Level
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3.1 Introduction

The electric grid is a complex physically distributed and inter-connected network man-
aged by a large number of agents/entities (e.g., systems operators, utilities, transmis-
sion operators) to ensure reliable transmission, generation, and distribution of power.
Sustained and reliable operation with dynamic situational awareness in the grid re-
quires continued interactions and data sharing amongst the grid entities. In fact,
it has been noted that while a number of physical factors are responsible for local
outages, lack of automated communications and coordination between distributed op-
erators in the grid contributes significantly to the lack of global situational awareness
leading to runaway cascading failures [19, 20]. The grid is fast converging towards a
Smart Grid characterized by (a) vastly expanded data acquisition, (b) highly variable
environments due to integration of renewables, and (c) distributed processing and
control. In this new paradigm, timely and controlled information exchange is critical
not only to ensure reliability and stability but also to thwart cyber attacks that could
potentially bring down the entire grid with one or more local outages.

In this report, we focus on a class of topology-targeted man-in-the-middle (MitM)
communication attacks aimed at limiting information sharing between adjacent areas,
particularly when one or both areas experience topology changes (e.g., line outages).
While wide-area monitoring and information sharing has been proposed by the Federal
Energy Regulatory Commission based on observations that lack of seamless data
sharing is an important factor in cascading failures, real-time data sharing in the
grid is still done in an ad hoc manner between connected areas. For example, in the
Northeast blackout of 2003 [19], [20], a line out in one area (Ohio) was not conveyed for
a sufficient period of time to neighboring regions leading to convergence failure of the
state estimator and other cascading problems. Furthermore, the mode, amount, and
granularity of data shared is not standardized; for example, two connected areas may
only share limited topology information such as low granularity network equivalent
models which in turn are insufficient to capture the complexity of the electric grid and
ensure wide-area reliability (e.g., the Yuma-Southern California outage of 2011 [21]).
In fact, changes in the grid topology are often communicated via human operators
and not in an automated manner which adds to communication delays and errors.
In the light of such limitations, a smart adversary can limit information sharing in
a number of ways. We seek to understand the effects of such limited data sharing
scenarios (both adversarial and otherwise) on the electric power system real-time
operations.

We introduce a class of distributed communication attacks wherein an attack on
the Energy Management System (EMS) of one area prevents the sharing of topology
changing information with the other area (in automated systems where topology may
be shared real-time or frequently, this can be achieved via MitM attacks). We assume
that the attacker is either involved in bringing down a line remotely (breakers can be
remotely tripped in some cases) or is aware of a line out (again possible via presence
of software trojans in the EMS). The attacker, therefore, is assumed to have some
knowledge of the network topology.

There has been much recent interest on cyber attacks on the grid, in particular
false data injection (or integrity) attacks, where as the name suggest false data is
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introduced in specific measurement and computing units of the EMS such as state
estimation (SE) (e.g., [22, 23]), automatic generation control (e.g., [24]), generator
frequency control (e.g., [25]), topology processing (e.g., [26]), as well as attack con-
sequences on markets (e.g., [27, 28]). However, the consequences of such attacks on
the system are yet to be demonstrated. While changes in locational marginal prices
could demonstrate the effect on prices of unobservable attacks, an important question
that remains to be addressed is whether serious damage such as instability, cascading
failures, and potential blackouts, which can cripple society and the economy, can be
caused by cyber attacks on the grid.

To understand the broader consequences of MitM attacks on measurements or
shared data, we develop a layered systems model that enables the modeling of the
time progression of attacks. In [29], Liang et al. introduced a time progression
based modeling to demonstrate how an unobservable false data injection attack on
AC SE, by a sophisticated attacker who is assumed to be capable of performing AC
SE in a small subgraph of the network, can lead to a physical generation dispatch
when none was needed. In this report, we focus on a distributed two-area (managed
by two operators and EMSs) setting to demonstrate the consequences of limited
information sharing. Specifically, we focus on attacks that create or exploit outages in
one area and limit information sharing via a communication attack thereby affecting
the power flow solutions and dispatch in a connected area that has incorrect topology
information. Specifically, we modeled the tie-lines connected the two areas under
two conditions: (a) in normal operation, the tie-line interchange is fixed according
to the day-ahead contract between areas, we simulate with only 10% variation on
tie-line power flow interchange; and (b) under contingencies, the tie-line power flow
can vary any values under the tie-line capacity, we then simulate with no tie-line
interchange variation limitation. Our results demonstrate that such an attack in
a distributed power network leads to a range of possibilities; these include actual
physical line overloads that are not observable from the cyber measurements but can
eventually cause line overheating and cascading outages; false overload alert in cyber
layer while the physical system operates in normal condition; progressively severe lack
of convergence of OPF in both areas; relatively benign oscillations in the power flow
solutions between the two areas that eventually fix themselves; and line overloads in
both physical can cyber layers. Our time progression based attack model allows us
to capture the major computational components of EMSs including AC SE, optimal
power flow (OPF) including generation dispatch, and power flow calculation unit
which adjusting dispatch mismatch between areas. Based on our observations, we
also present countermeasures for such attacks.
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3.2 System Model

We consider a two-area network model in which each area uses its measurements to
evaluate the state of the system, compute the optimal power flow, and determine
generation dispatch. It is worth noting that there are many control and actuation
functions that operate at multiple timescales in the EMS and not all of them are
captured by our model. Our choice of functions is driven by a specific time-scale that
focuses on topology processing and state estimation, power flow computation, and
generation dispatch. It is assumed that the computations are performed at a local
control center as shown in Figure 3.1, and henceforth, when we refer to the two areas
sharing information, it implies that information is exchanged between the control
centers. We make the following assumptions about the information shared between
the two areas.

Figure 3.1: Computational Units and Data Interactions between the Two Areas of
the Network.
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3.2.1 Information Sharing Model

To illustrate the distributed effects of a communication attack, we assume that the
two areas share as much information as relevant and based on current practices. The
primary assumption is that each area performs its own computations with some data
(depending on the computation block) obtained from the other side. Our assumptions
are as follows:

• Static topology information: The static topology information is shared among
all areas of the interconnected power system.

• Dynamic topology information: Each area is assumed to communicate the topol-
ogy changing information among the whole system in real-time. Thus, once a
topology error is found, the local operator should send this information to other
areas immediately, which allows them to update the whole system topology in-
formation in time.

• Generation: The generation schedule of each unit is shared among areas in real-
time.

• Measurements: The tie-line measurements are shared between adjacent areas in
real-time. In general, more measurements can be shared but we assume that
each area does its own local SE (as is often the case in practice).

• Estimated load: The estimated load data is shared among areas in real-time.

• Network models for power flow: Each area computes its own AC OPF. In prac-
tice, each area uses a network equivalent model of its connected areas to simplify
the OPF computation. However, since we seek to understand the effect of a
communication cyber-attack on dispatch and power flows (line overloads often
contribute to outages), we choose the best case network model, i.e., we assume
each area uses the complete network model of the other side in computing its
OPF. However, each area can only dispatch its own generators, and thus, com-
putes the OPF while keeping the dispatch for the other area fixed according to
the generation data sharing model.

3.2.2 Computational Models

We briefly outline the mathematical model for each of the computational units we
consider here. The different computational units and their interactions across the two
areas is illustrated in Figure 3.1.

State Estimation

Each area estimates its system state (complex voltages) using the measurements from
meters in its area as well as tie-line measurements. As is the norm, we assume the
use of a weighted least-squares (WLS) AC state estimation to calculate the voltage
angles and magnitudes (assuming a voltage angle reference). The objective of the
estimation process is to minimize the sum of the squares of the weighted deviations of

21



the estimated variables from the actual measurements. The non-linear measurement
model is given by

z = h(x) + e (3.1)

where z, e and x are M × 1 measurement, M × 1 noise, and N × 1 state vectors
with entries zi, ei and xk, respectively, for i ∈ {1, ...,M} and k ∈ {1, ..., N}. The
function h(.) is a vector of nonlinear functions describe the relationship between states
and measurements, and ei is assumed to be independent and Gaussian distributed
with 0 mean and σ2

i covariance such that the measurement error covariance matrix

is given by R = diag({σ2
i }

M

i=1). The commonly obtained measurements in the grid
are the active and reactive power flows and node injections. In AC state estimation,
the state variables are solved as a least square problem with the following objective
function [30]:

min J(x) = (h(x)− z)TR−1(h(x)− z), (3.2)

the solution to which satisfies

g(x̂) =
∂J(x̂)

∂x
= HT (x̂) ·R−1 · (h(x̂)− z) = 0 (3.3)

where H = ∂h(x)
∂x

|x=x̂. The WLS solution for this non-linear optimization problem
can be solved iteratively.

Power Flow Calculation

Each area uses Newton’s method to solve the power flow (PF) problem which involves
solving for the set of voltages and flows in a network corresponding to the estimated
loads and generation schedule obtained from OPF in previous time period. This unit
is to adjust the overall load and generation mismatch caused by joint dispatch of two
areas.

Optimal Power Flow

Assuming perfect network equivalent models (i.e., complete sharing of neighboring
network graphs for OPF), area i, i = 1, 2, runs its OPF with the dispatch for area j,
fixed around values that were shared from the previous time period that area j ran
its own OPF. The resulting OPF problem can be viewed as each area performing a
centralized power flow problem but with the capability to only dispatch local units.

Let B and Br denote the set of buses and branches in the entire two-area network,
and Bi and Bj denote the set of buses in area i, i = 1, 2, and area j, j = 1, 2, j 6= i,
respectively. Futhermore, let Gn denotes the set of generators at bus n, {Gn}n∈Bi

denotes the set of generators in area i, i = 1, 2. Let cg (·) to denote the generation cost
function for generator g. The OPF for each area can be formulated as the following
optimization problem for area i, i = 1, 2:

min
∑

g∈{Gn}n∈Bi

cg (Pg) (3.4)
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s.t.
∑

Pg +
∑

Pk−
∀k(n,;)

∑

Pk

∀k(;,n)

= Pdn, ∀n ∈ B, (3.5)
∑

Qg
g∈Gn

+
∑

Qk−
∀k(n,;)

∑

Qk

∀k(;,n)

= Qdn, ∀n ∈ B, (3.6)

Pk = V 2
n (gsn + gnm)− VnVm(gnmcos(θn − θm) (3.7)

+bnmsin(θn − θm)), k ∈ Br

Qk = −V
2
n (bsn + bnm)− VnVm(gnmsin(θn − θm) (3.8)

−bnmcos(θn − θm)), k ∈ Br

P 2
k +Q2

k ≤ (Smax
k )2 ∀k ∈ Br (3.9)

Pmin
g ≤ Pg ≤ Pmax

g ∀g ∈ {Gn}n∈Bi
(3.10)

Qmin
g ≤ Qg ≤ Qmax

g ∀g ∈ {Gn}n∈Bi
(3.11)

V min
n ≤ Vn ≤ V max

n x ∈ {θ, V } , ∀n ∈ B (3.12)

P̂g −△P̄g 6 Pg 6 P̂g +△P̄g ∀g ∈ {Gn}n∈Bj
(3.13)

Q̂g −△Q̄g 6 Qg 6 Q̂g +△Q̄g∀g ∈ {Gn}n∈Bj
(3.14)

where cg(.) is the cost function for generator g, bnm and gnm are the susceptance and
conductance, respectively, of line k from bus n to bus m, bsn and gsn are the shunt
branch susceptance and conductance, respectively, of bus n, k(n, ; ) is the set of lines
k with bus n as its receiving bus, and k(; , n) is the set of lines k with bus n as its
sending bus, Gn is the set of generators at bus n, Pg is the active power output of
generator g with maximum and minimum limit Pmax

g and Pmin
g , Qg is the reactive

power output of generator g with maximum and minimum limit Qmax
g and Qmin

g , P̂gj

and Q̂gj are the fixed active and reactive power outputs with△P̄g and△Q̄g deviations
of generator g in area j, respectively, Pk and Qk are the active and reactive power
flows, respectively, on line k with line capacity limit Smax

k , Pdn and Qdn are the active
and reactive power demands, respectively, at bus n, θn is the voltage angle for bus n,
and Vn is the voltage magnitude for bus n with maximum and minimum limits V max

n

and V min
n , respectively.

The objective in (3.4) is to minimize the total active power generation cost of
the whole interconnected power system. Constraints (3.5) and (3.6) represent the
active and reactive power balance for each bus in the centralized system (two-area
network). The constraints in (3.7) and (3.8) are the active and reactive transmission
line power flow constraints for the whole system while (3.9) is the thermal limit
for each transmission line. Constraints (3.10) and (3.11) are the local (for area i
only) unit active and reactive power output limits while (3.12) defines the complex
voltage stability limits for each bus in the whole system. Finally, (3.13) and (3.14)
incorporate the unit active and reactive power output limits for area j, j 6= i, i.e.,
the power output of generation units external to area i are fixed around the values
shared by the other areas.

When no feasible solution (i.e., a solution which satisfies (3.5)-(3.14)) can be found,
the distributed OPF program fails to converge. In practice, to find a feasible solution,
system operators often relax the constraints. In this report, the thermal limit con-
straint on the congested line is the first constraint to be relaxed. Multiple iterations
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of relaxing the line limits may be needed to obtain a feasible solution; to this end, we
model the relaxed limits as follows:

P 2
k +Q2

k ≤ (Smax
k + u△S̄k)

2

where line k is the congested line, △S̄k is the incremental value by which the line
limit is relaxed in each iteration, and u 6 umax is the iteration number. In each
iteration, the thermal limit is relaxed by increasing the rating of line k by, and the
OPF program is executed to check whether it converges. This process is repeated
until the OPF program converges or the relaxation time reaches its maximum value.
Following this, other important lines (such as those with high reactive power flow)
will be relaxed using the same procedure. If both methods fail to work, then we
consider the test case as a not converge case.
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3.3 Attacker Model

3.3.1 Time Progression Model of Attack

We assume that the attacker has access to the data being shared between areas and
can corrupt the data. Examples abound of such data corruption attacks including
the oft cited Stuxnet virus attack. The attacker is assumed to either participate
in creating a line outage in one area or be aware of such an outage and then act
to corrupt the topology information shared with the other area. Our attack model
also captures simple human errors in information sharing between connected areas,
including delays and mis-communications. In the interest of understanding worst-case
attacks and data sharing limitations, the area with the outage is assumed to be aware
of the outage shortly after. This assumption is based on frequently seen patterns of
limited data sharing that precede (and are a cause of) large blackouts.

In order to understand the effect of such an attack, we study the time progression
of the attack. We consider the following time-progression of the attack and system
behavior includes the following steps:

1. Event 0: Area i: Outage occurs in Area i, i = 1, 2. Area i becomes aware of
outage and updates its topology and shares with Area j. Area i then performs
SE, PF, and OPF.

2. Event 0: Attack : Attacker replaces updated topology information shared with
area j, j 6= i, j = 1, 2, with the previous static topology information.

3. Event 0: Area j : Area j uses measurements with updated topology (which has
been changed by attacker) to compute SE, PF, and OPF.

4. Event 1: System: Area i and Area j jointly dispatch according to their own OPF
results.

5. Event 1: Area i: Area i uses measurements with updated topology to compute
SE, PF, and OPF. Shares dispatch status with Area j. Attacker sustains attack.

6. Event 1: Area j: Area j uses measurements with updated topology (which has
been changed by attacker) to compute SE, PF, and OPF. Shares dispatch status
with Area i.

7. Events repeat until alarms are set off either due to repeated lack of convergence
or physical line overloads. All the while it is assumed that the attacker sustains
the attack.

We illustrate this time sequence in Fig 3.2 for the case in which Area 1 experiences a
line outage while Area 2 does not have the real-time topology information following
the outage due to a communication attack.

3.3.2 Tie-line Agreement Assumption

In real-time operation, the tie-line interchange is fixed according to the day-ahead
contract between areas. Therefore, under normal operation condition, the tie-line
interchange should be fixed with only a small variation. However, under contingencies,
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Figure 3.2: Time Sequence of Events at the Two Areas at the Time of and Following
An Attack in One Area.

the highest priority is to fix the violation. Therefore, the tie-line power flow can
vary up to the tie-line capacity. In this report, we model the system under both
normal and contingency conditions. We first assume the attack is launched under
normal condition. Under this condition, there are interchange agreement values on
the tie-lines that are generally smaller than the tie-line capacities. In this model,
the tie-line interchange values are allowed to vary only 10% variation of the original
interchange agreement values. We then model the system under contingency with
tie-line interchange varying up to the tie-line capacity. The simulation results for
both system models are demonstrated in Section 3.4.
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3.4 Illustration of Results

In this section, we illustrate our distributed communication attack and its conse-
quences. We consider an IEEE 24-bus reliable test system (RTS) and decompose it
into two areas (henceforth referred to as Areas 1 and 2) as shown in Figure 3.3 (the
dashed red line separates the two areas) such that Area 1 and Area 2 are connected by
four tie lines. Each area is assumed to have its own local control center that performs
local SE with local measurements and tie-line power flow measurements shared from
adjacent areas, following which it shares its estimated load information with the other
area. This is followed by a PF calculation unit to make up for the load and gener-
ation mismatch caused by joint dispatch and then an OPF re-dispatch keeping the
generator outputs external of the other area fixed. This process alternates between
the two areas every t time units (see Figure 3.2).

Figure 3.3: An IEEE RTS 24-bus Divided into Two Areas (Separated by Red Dashed
Line).

The attack is modeled as a line outage in one area (e.g., line 6 in Area 1). In order
to understand the worst-case effect of the attack, the area without knowledge of the
outage is assumed to have a congested line prior to the attack. The attacker, aware of
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this outage in one area, compromises the topology changing communication signals
such that the same static topology prior to the attack is shared. All possible choices of
line outages in one area and congested lines in the other are considered exhaustively
to demonstrate the effect of the possible attack cases. The system behavior is followed
over 20t time units following the outage and over this time the two areas perform SE,
PF, OPF, and dispatch. The events sequence when Area 1 has an outage and Area 2
is affected by the communication attack is shown in Figure 3.2. The time immediately
after topology changing is assumed as Event 0. The attacker launches a MitM attack
to block the topology changing data sharing between Area 1 and Area 2 at Event
0 and sustains such an attack during the following events. Therefore, the two areas
continue re-dispatching together in the simulation time period with one area (Area
1) using correct topology to obtain optimal dispatch plan while the other (Area 2)
using false topology to do so.

In this report, we focus on worst-case attacks. We assume that the area without
real-time topology information has some lines at capacity, i.e., congested. This is
achieved in simulation by reducing the line rating to 90% of the base case power flow
to create congestion. We first model the system under tight tie-line agreement, in
which only 10% variation on tie-line power flow interchange is allowed, then we model
the system under contingencies, in which no tie-line interchange limit is modeled. To
demonstrate our simulation, we first document our results in tables and then provide
the detailed analysis and plots for both tie-line agreement cases.

Table 3.1: System Behavior with Sustained Attack for IEEE 24-bus System When
Tie-line Interchange Is Fixed with 10% Variation.

Feasible
Case

Physical PF
Overload

Cyber PF
Overload

Not
Converge

No Violation
Case

Cyber-Physical
PF Overload

540 24.82% 14.26% 30.00% 23.33% 7.59%

*PF: Power flow

Table 3.1 shows the numbers in percentage of the five possible long term (20 or more
events) outcomes of an attack after Event 0 with tie-line interchange fixed. These
attack consequences are quantified by comparing the cyber power flow and physical
power flow in the area without the real-time topology (say Area 2) over the entire
attack time duration. The cyber power flow is the OPF solution calculated by the
control center in Area 2 with fixed external generation. The physical power flow, on
the other hand, is the real power flow values of the system after dispatching with the
most recent OPF dispatch solution with the true topology information. Therefore, for
the area with false topology information, the cyber power flow values will be different
from the physical power flow values. Five kinds of disparities are observed between
the cyber and physical power flows following Event 0; we name them physical PF
Overload, cyber PF overload, Not converge, No violation case, and cyber-physical PF
overload case. We describe these disparities in detail below.

Physical PF (power flow) Overload cases: For area with false topology in these
cases, there is a mismatch between the cyber and physical power flows due to the
false topology. Monitoring the cyber power flow cannot reflect the severity of the
physical overload. The physical power flow on the previous congested line overloads
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Figure 3.4: Physical PF Overload Case: Power Flow on Prior Congested Line 24
(Area 2) When Line 3 (Area 1) Is Outaged.

during the simulation time period. However, such overload problem is not shown or
attenuated in cyber layer. A typical physical PF overload case (Line 3 connecting
Bus 1 to Bus 5 is outaged with Line 24 connecting Bus 15 to Bus 16 congested) plot
is shown in Figure 3.4. For these cases, the prior congested lines can get heated due
to the dispatch of the area with false topology information. The heat accumulation
may eventually cause the line to overheat and trip offline. Therefore, these cases can
be viewed as successful attack outcomes.

Cyber PF Overload cases: For area with false topology in these cases, the cyber
power flow is shown as overload during the simulation time period while in the physical
layer, there is no overload happened. A typical cyber PF overload case (Line 18
connecting Bus 11 to Bus 14 is outaged with Line 29 connecting Bus 16 to Bus 19
congested) plot is shown in Figure 3.5. For these cases, the incorrect cyber overload
alert can lead to wrong contingency behaviors such as throttling up other nearby
sources, load shedding, or even worse, tripping transmission line or generators. We
hence, view such cases as successful attack outcomes.

Not Converge cases: In these cases, the physical power flow overload happens in
the first few events but eventually the OPF program fails obtain a dispatch plan
for one or both areas. This is because for a fixed power generation from one area,
there is no local dispatch plan that can satisfy all the constraints of the system even
with thermal limit relaxation. In some cases, to clear the contingencies require more
interchange between areas. Without the generator output changing jointly on both
sides, the local center cannot find a feasible solution to solve the existing overload
or stability problem. The worse operation states will continue until more serious
consequences happened. Therefore, such cases can also be viewed as successful attack
outcomes.

No violation case: For these cases, there is no overload immediately after Event 0
or a line overloaded after Event 0 can finally reduce below 100% of the rating in the
simulation time period. Though the re-dispatch plan of the area with false topology

29



0 2 4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

Event Number

Po
w

er
 F

lo
w

 P
er

ce
nt

ag
e

Cyber Power Flow Percentage
Physical Power Flow Percentage

Figure 3.5: Cyber PF Overload Violation Case: Power Flow on Prior Congested Line
29 (Area 2) When Line 18 (Area 1) Is Outaged.

still give a wrong calculation values of the system, no further problem caused by the
wrong plan. We, therefore, view the attacks leading to such cases as unsuccessful
attacks.

Cyber-physical PF Overload cases: In these cases, despite there are overloads
in physical layer, there is no mismatch between the physical and cyber power flow.
Therefore, the control center can be aware of the overload problems and fix such
problems in time. This class of cases is then viewed as unsuccessful attack outcomes.

We observe a total of 373 successful attack cases, i.e., 69.08% of the total attack
cases. We define the subclass of successful attacks for which the power flow of 105%
relative to the flow following Event 0 as critical (successful) attacks, and note that
the total number of critical attacks for the RTS system is 60, which is 11.11% of
the total attack cases. These results demonstrate the potential vulnerability of a
topology-based communication attack.

The statisics results of the long term outcomes of an attack after Event 0 without
tie-line interchange limit is demonstrated in Table 3.2. Under such tie-line interchange
model, we also observe the five disparities which are physical PF Overload, cyber PF
overload, Not converge, No violation case, and cyber-physical PF overload case as
introduced above. The proportion of successful attack cases is 65% of the total attack
cases and that of the critical attack cases is 9.81% of the total attack cases. We can
observe that with no tie-line interchange limitation, the number of not converge cases
are largely reduced. However, such converged cases become physical PF overload
cases or cyber overload cases. Hence, the proportion of the total successful attack
cases are not changed too much.

Comparing the simulation results in Table 3.1 and Table 3.2, we can see that even
under no tie-line interchange limitation, the MitM attacks can still lead to systematic
problems and failures. Thus, the system is vulnerable to a topology-based com-
munication attack under both tie-line interchange fixed condition and contingency
condition. System operator should pay attention to such class of attacks.
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Table 3.2: System Behavior with Sustained Attack for IEEE 24-bus System without
Tie-line Interchange Limitation.

Feasible
Case

Physical PF
Overload

Cyber PF
Overload

Not
Converge

No Violation
Case

Cyber-Physical
PF Overload

540 35.74% 23.15% 6.11% 26.48% 8.52%

*PF: Power flow

3.5 Countermeasures and Concluding Remarks

In this report, we introduce a new class of distributed MitM attacks specifically tar-
geting the topology sharing data between connected areas in the electric grid. We
have demonstrated the time consequences of such attacks and have shown that such
attacks can often lead to serious consequences if active intervention is not present. In
this context, we observe that in addition to the traditional countermeasure of human
operator-based data sharing (which have been shown to be error-prone and delayed
too), it is essential to have more resiliency via automated data sharing mechanisms.
Our attack is successful because the two areas process data largely independently
except for data sharing and do not employ sanity checks for data from the other
side or a more interactive distributed processing platform. This could help both ar-
eas become aware of inconsistencies over faster time-scales including: (a) create and
share a list of external contingencies caused to other areas by an internal component
outage; (b) identify the anormalies of such attacks and enable machine learning in
EMS to detect such attacks. It is worth noting that, while some of these mechanisms
are being considered or even used currently in the grid, it is not done in a uniform
manner and this work highlights the limitations of not doing so.
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