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Executive Summary 
 
 
State estimation, and health monitoring for general situational awareness at a power system 
control center, inevitably employs a mix of a priori information, based on system model and 
parameter data, and observations in the form of measurement data. In traditional power systems 
applications, when SCADA systems provided only low-bandwidth, unsynchronized 
measurement data to a control center, observations and a priori information typically contributed 
on nearly equal footing in applications such as state estimation and topology error identification. 
Today, the availability of high-bandwidth, time-synchronized PMU data shifts this balance, 
creating a much larger role for observations, and reducing the need for full model information, 
thereby opening the door to much faster time-scale estimation. However, rather than replacing 
existing state estimation tools and the applications that depend on them, the techniques   
developed in this project seek to provide much higher bandwidth estimation, to “fill in” 
situational awareness between slower, periodic state estimator updates. The particular algorithms   
developed focus on two applications: (A1) fast time-scale, dynamic detection and identification 
of network topology changes; and (A2) PMU measurement-based, (nearly) “model-free” 
estimation of the power flow Jacobian.  The report is divided into four parts: Parts I-III cover the 
work conducted under Application A1, whereas Part IV covers the work conducted under 
Application A2. 
 
Part I:  Quickest Change Line Outage Detection and Identification 
In this part, we propose a framework for detection and identification of system topological 
changes in near real-time that utilizes the statistical properties of electricity generation and 
demand, which are assumed to be known. Instead of relying on offline models as with traditional 
methods, the proposed method is model-free, and exploits the high-speed synchronized 
measurements provided by phasor measurement units (PMUs). In this framework, a statistical 
quickest change algorithm is applied to the voltage phase angle measurements collected from 
PMUs to detect the change-point that corresponds to the system topology change instant. An 
advantage of this algorithm is that the operator also has full control over the tradeoff between 
detection delay and false alarm rate. In order to lend support for the work conducted, case studies 
are done through simulations on standard IEEE test systems 
 
Part II:  PMU Placement via Multinomial Logistic Regression 
In this part, we also consider the problem of identifying a single line outage in a power grid by 
using data from PMUs. When a line outage occurs, the voltage phasor of each bus node changes 
in response to the change in network topology. Each individual line outage has a distinctive 
“signature,'' and a multinomial logistic regression (MLR) classifier can be trained to distinguish 
between these signatures reliably. We consider first the ideal case in which PMUs are attached to 
every bus. We then describe techniques from regularized optimization for placing PMUs 
selectively on a subset of buses, with the subset being chosen to allow discrimination between as 
many outage events as possible. Experimental results with synthetic 24-hour demand profile data 
generated for several IEEE test systems. 
 



Part III: An Observer-Based Approach of Topology Change Estimation  
In this part, the goal here is identification of topology errors from PMU data, exploiting dynamic 
characteristics of the power systems response, while being able to discriminate topology errors 
from bad data. Types of topology errors common in Power Systems include incorrect status of 
line switches, transformer tap settings, shunt compensation, etc. The focus here is on line 
switching events. In this work, the estimation of line switching events from measured errors is 
sought by concentrating the disturbance input due to the line outage(s) into an invariant subspace 
of the state matrix of the Luenberger observer. This formulation has the advantage of allowing 
operation of multiple observers in parallel, facilitating simultaneous monitoring of multiple line 
switching events. 
 
Part IV:  Measurement-Based Estimation of the Power Flow Jacobian 
In this part, we propose a measurement-based method to compute the power flow Jacobian 
matrix, from which we can infer pertinent information about the system topology in near real-
time.  A salient feature of our approach is that it readily adapts to changes in system operating 
point and topology; this is desirable as it provides power system operators with a way to update, 
as the system evolves, the models used in many reliability analysis tools.  The method uses high-
speed synchronized voltage and current phasor data collected from phasor measurement units to 
estimate entries of the Jacobian matrix through linear total least-squares (TLS) estimation.  In 
addition to centralized TLS-based algorithms, we provide distributed alternatives aimed at 
reducing computational burden. Through numerical case studies involving standard IEEE test 
systems, we illustrate the effectiveness of our proposed Jacobian-matrix estimation approach as 
compared to the conventional model-based one. 
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Chapter 1

Introduction

Timely line outage detection for power systems is crucial for maintaining operational relia-
bility. Currently, many of the methods for online power system monitoring rely on a system
model that is obtained offline, which can be inaccurate due to bad historical or telemetry
data; such inaccuracies have been a contributing factor in many recent blackouts. For ex-
ample, in the 2011 San Diego blackout, operators were unable to determine overloaded lines
because the network model was not up to date [1]. This lack of situational awareness limited
the operators’ ability to identify and prevent the next critical contingency, leading to insta-
bility and cascading failures. Similarly, during the 2003 Northeast blackout, operators failed
to initiate the correct control schemes because they had an inaccurate model of the system,
and could not identify the loss of key transmission elements [2]. These blackouts highlight
the importance of developing online techniques to detect and identify system topological
changes. This work addresses the problems discussed above by establishing a framework for
quickly detecting system topological changes. Specifically, we focus on the problem of line
outage detection in power systems, and exploit fast measurements provided by PMUs to
develop a statistical method that allows for quick detection of changes in the power system
network topology.

Early approaches for topological change detection and identification include algorithms
based on state estimation [3]–[5], and rule-based algorithms that mimic system operator de-
cisions [6]. The issue of external system topology error detection was explored in [7]. More
recent proposed methods exploit the fast sampling of voltage magnitudes and phases pro-
vided by PMUs to detect events in a power system in near real-time [8]–[11]. While these
works allow for improved situational awareness of the power system, they do have shortcom-
ings. Mainly, they do not exploit the fact that the line outage is persistent; i.e., once a line
outage occurs, it persists until it is detected and brought back into service. Instead, only the
most recent PMU measurement is used to determine if an outage has occurred. The authors
of [12] proposed a method to detect line outages using statistical classifiers where a maxi-
mum likelihood estimation is performed on the PMU data. The authors also considered the
transient response of the system after a line outage by comparing synthesized data against
actual data. However, their method requires the exact instant the line outage occurs to be
known before applying the algorithm, whereas the method we propose in this work does not
have this restriction.
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In [13], [14], the authors proposed a statistical method based on the theory of quickest
change detection (QCD) for line outage detection and identification. This method observes
a sequence of measured voltage phase angles provided by PMUs and exploits the fact that
their statistics change following a line outage. The objective is to detect this change in
distribution quickly while subject to a fixed false alarm rate. The statistics of the measured
voltage angles pre- and post line outage are related to the known distributions in the real
power injections through a linear mapping involving a linearized power flow model. For this
method, the incremental changes in real power injections are modeled as independent random
variables. Then, the probability distribution of such incremental changes is mapped to that
of the incremental changes in voltage phase angles via a linear transformation obtained from
the power flow equations. The PMUs provide a random sequence of voltage phase angle
measurements in real-time; when a line outage occurs, the probability distribution of the
incremental changes in the voltage phase angles changes abruptly. The objective is to detect
a change in this probability distribution after the occurrence of a line outage as quickly as
possible while maintaining a desired false alarm rate. In the previous work in [13], [14], the
Cumulative Sum (CuSum) algorithm was proposed to solve this problem. For this algorithm,
a sequence of CuSum statistics is computed, one for each line in the system. An outage is
declared when any one of the statistics crosses a prespecified threshold for the first time.
The performance of this algorithm is characterized by a parameter known as the Kullback-
Leibler (KL) divergence (see, e.g., [15]), which is a distance measure between the pre- and
post-outage voltage phase angle distributions.

The remainder of this document is organized as follows. In Chapter 2, we provide
the preliminary background of this research along with the statement of the problem to
be addressed. Specifically, we introduce the power system model and the assumptions we
adopt, the pre- and post-outage statistical model of the voltage phase angles, and the problem
statement of quickest change detection. Starting from the nonlinear power balance equations,
we derive the linearized incremental model of the system and then apply the DC power flow
assumptions. The resulting proposed model captures the transient dynamics following a
line outage. Finally, the statistical model for the incremental power injections and how
they relate to the voltage phase angle statistics are also introduced. Chapter 3 outlines the
QCD-based line outage identification algorithms, the CuSum algorithm and the Generalized
Likelihood Ratio Test algorithm. Small examples are provided to illustrate this process.
We also introduce the KL divergence, which is an important measure for characterizing the
performance of these detection algorithms. Finally, various other algorithms for line outage
detection that exist in the literature are discussed. These algorithms are “one-shot” detection
schemes that do not exploit the persistence of the line outage. We compare the performance
of our proposed method against those of others and show that the CuSum-based method
is better. Chapter 4 summarizes what has been done as part of this research along with
additional insights and remarks; future research directions are also provided in this chapter.
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Chapter 2

Preliminaries

In this chapter, we present the power system model adopted in this research. A linearized
small-signal power system model is used in conjunction with synchronized voltage phase angle
measurements obtained from phasor measurement units. We provide a general framework
where the system transient dynamics after a line outage are captured in the model. We then
establish a statistical framework for both the pre- and post-outage scenarios that is used in
the line detection algorithm. This chapter concludes with the statement of the line outage
detection problem.

2.1 Power System Model

We represent the power system network by a graph consisting of N nodes and L edges,
corresponding to buses and transmission lines, respectively. The set of buses is denoted by
V = {1, . . . , N}, and the set of transmission lines is denoted by E , where for m,n ∈ V ,
(m,n) ∈ E if there exists a transmission line between buses m and n. At time t, let Vi(t) and
θi(t) denote the voltage magnitude and phase angle at bus i, and let Pi(t) and Qi(t) denote
the net active and reactive power injection at bus i. Then, the quasi-steady-state behavior
of the system can be described by the power flow equations, which for bus i can be written
as:

Pi(t) = pi(θ1(t), . . . , θN(t), V1(t), . . . , VN(t)), (2.1)

Qi(t) = qi(θ1(t), . . . , θN(t), V1(t), . . . , VN(t)),

where the dependence on the system network parameters is implicitly captured by pi(·) and
qi(·) (see e.g., [16]).

2.1.1 Pre-outage Incremental Power Flow Model

Let Pi[k] := Pi(k∆t) and Qi[k] := Qi(k∆t), ∆t > 0, k = 0, 1, 2, . . . , denote the kth mea-
surement sample of active and reactive power injections into bus i. Similarly, let Vi[k] and
θi[k] denote bus i’s kth voltage magnitude and angle measurement sample at t = k∆t,
k = 0, 1, 2, . . . . Furthermore, define variations in voltage magnitudes and phase angles
between consecutive sampling times k∆t and (k + 1)∆t as ∆Vi[k] := Vi[k + 1] − Vi[k]
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and ∆θi[k] := θi[k + 1] − θi[k], respectively. Similarly, variations in the active and re-
active power injections at bus i between two consecutive sampling times are defined as
∆Pi[k] = Pi[k + 1]− Pi[k] and ∆Qi[k] = Qi[k + 1]−Qi[k].

Suppose a solution to the power flow equations exists at
(θi[k], Vi[k], Pi[k], Qi[k]), i = 1, . . . , N , such that pi(·) and qi(·) in (2.1) are continuously
differentiable with respect to all θi and Vi at θi[k] and Vi[k], i = 1, . . . , N . Then, assuming
that ∆θi[k] and ∆Vi[k] are sufficiently small, we can approximate ∆Pi[k] and ∆Qi[k] as

∆Pi[k] ≈
N∑
j=1

aij[k]∆θj +
N∑
j=1

bij[k]∆Vj, (2.2)

∆Qi[k] ≈
N∑
j=1

cij[k]∆θj +
N∑
j=1

dij[k]∆Vj, (2.3)

where

aij[k] =
∂pi
∂θj

, bij[k] =
∂pi
∂Vj

, cij[k] =
∂qi
∂θj

, dij[k] =
∂qi
∂Vj

,

for each bus i = 1, . . . , N , all evaluated at (θi[k], Vi[k], Pi[k], Qi[k]).
Under standard assumptions used in power system analysis, we assume that bij << aij

and cij << dij in (2.2) and (2.3) [16]. This allows for the decoupling of (2.2) and (2.3) as the
variations in the active power injections primarily affect the bus voltage angles; therefore, we
can write ∆Pi[k] ≈

∑N
j=1 aij[k]∆θj[k]. Furthermore, under the so-called DC assumptions,

namely (i) the system is lossless, (ii) Vi[k] = 1 per unit (p.u.) for all i ∈ V , k, and (iii)
θm[k] − θn[k] << 1 for all k and for m,n ∈ V , aij[k] simply becomes the negative of the
imaginary part of the (i, j)th entry of the network admittance matrix and independent of k
[16]. One of the buses must be designated as reference (i.e., θ = 0) for the other buses in the
system. Therefore, since the reference bus angle is assumed to be known, the equation for
the reference bus is omitted from (2.2). We can express the variations in the voltage phase
angles due to the variations in the real power flow in matrix form by

∆P [k] ≈ H0∆θ[k], (2.4)

where ∆P [k], ∆θ[k] ∈ R(N−1) and H0 ∈ R(N−1)×(N−1). Note that the N − 1 dimension of the
vectors is the result of omitting the reference bus equation.

In an actual power system, random fluctuations in the load drive the generator response.
Therefore, in this work, we use the so-called governor power flow model (see e.g., [17]), which
is more realistic than the conventional power flow model, where the slack bus picks up any
changes in the load power demand. In the governor power flow model, at time instant k,
the relation between changes in the load demand vector, ∆P d[k] ∈ RNd , and changes in the
power generation vector, ∆P g[k] ∈ RNg , is described by

∆P g[k] = B[k]∆P d[k], (2.5)

where B[k] is a time dependent matrix of participation factors. We approximate B[k] by
quantizing it to take values Bi, i = 0, 1, . . . , T , where i denotes the time period of interest.
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Let B[k] = B0 and M0 := H−10 during the pre-outage period. Then, we can substitute (2.5)
into (2.4) to obtain a pre-outage relation between the changes in the voltage angles and the
real power demand at the load buses as follows:

∆θ[k] ≈M0∆P [k]

= M0

[
∆P g[k]
∆P d[k]

]
= [M1

0 M
2
0 ]

[
B0∆P

d[k]
∆P d[k]

]
(2.6)

= (M1
0B0 +M2

0 )∆P d[k]

= M̃0∆P
d[k],

where M̃0 = M1
0B0 +M2

0 .

2.1.2 Post-outage Incremental Power Flow Model

Suppose an outage occurs for the line (m,n) at time t = tf , where γ0∆t ≤ tf < (γ0 + 1)∆t.
In addition, assume that the loss of line (m,n) does not cause islands to form in the post-
event system (i.e., the underlying graph representing the internal power system remains
connected).

Following a line outage, the power system undergoes a transient response governed
by Bi, i = 1, 2, . . . , T − 1 until quasi steady state is reached, in which B[k] settles to
a constant BT . For example, immediately after the outage occurs, the power system is
dominated by the inertial response of the generators, which is then followed by the governor
response. As a result of the line outage, the system topology changes, which manifests itself
in the matrix H0. This change in the matrix H0 resulting from the outage can be expressed
as the sum of the pre-outage matrix and a perturbation matrix, ∆H(m,n), i.e., H(m,n) =
H0 + ∆H(m,n). Since H0 has the same sparsity structure as the graph Laplacian of the
internal system network, we conclude that the only non-zero terms in the matrix ∆H(m,n) are
∆H(m,n)[n, n] = −∆H(m,n)[m,n] = −∆H(m,n)[n,m] = ∆H(m,n)[m,m] = −1/X(m,n), where
X(m,n) is the imaginary part of the impedance of the outaged line. Thus, the matrix ∆H(m,n)

is a rank-one matrix and can be expressed as

∆H(m,n) = − 1

X(m,n)

r(m,n)r
T
(m,n), (2.7)

where r(m,n) ∈ RN−1 is a vector with the mth entry equal to 1, the nth entry equal to −1,
and all other entries equal to 0.

We can use the matrix inversion lemma [18] to obtain an expression for M(m,n) := H−1(m,n)

as follows:
M(m,n) = M0 + β(m,n) s(m,n) s

T
(m,n), (2.8)

where β(m,n) = 1/(X(m,n) − rT(m,n)H
−1
0 r(m,n)) and s(m,n) = H−10 r(m,n).
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Then, by letting M(m,n) := H−1(m,n) = [M1
(m,n) M

2
(m,n)], and deriving in the same manner

as the pre-outage model of (2.6), we obtain the post-outage relation between the changes in
the voltage angles and the real power demand as:

∆θ[k] ≈ M̃(m,n),i∆P
d[k], γi−1 ≤ k < γi, (2.9)

where M̃(m,n),i = M1
(m,n)Bi +M2

(m,n), i = 1, 2, . . . , T .

2.1.3 Instantaneous Change During Outage

At the time of outage, t = tf , there is an instantaneous change in the mean of the voltage
phase angle measurements that affects only one incremental sample, namely, ∆θ[γ0] = θ[γ0+
1]−θ[γ0]. The measurement θ[γ0] is taken immediately prior to the outage, whereas θ[γ0 +1]
is the measurement taken immediately after the outage. Then, the effect of an outage in line
(m,n) can be modeled with a power injection of P(m,n)[γ0] at bus m and −P(m,n)[γ0] at bus
n, where P(m,n)[γ0] is the pre-outage line flow across line (m,n) from m to n. Following a
similar approach as the one in [13], the relation between the incremental voltage phase angle
at the instant of outage, ∆θ[γ0], and the variations in the real power flow can be expressed
as:

∆θ[γ0] ≈M0∆P [γ0]− P(m,n)[γ0 + 1]M0r(m,n), (2.10)

where r(m,n) ∈ RN−1 is a vector with the (m − 1)th entry equal to 1, the (n − 1)th entry
equal to −1, and all other entries equal to 0. Furthermore, by using the governor power flow
model of (2.5) and substituting into (2.10), and simplifying, we obtain:

∆θ[γ0] ≈ M̃0∆P
d[γ0]− P(m,n)[γ0 + 1]M0r(m,n). (2.11)

Example 1 (Three-Bus System). Consider the lossless three-bus system shown in Fig. 2.1.
The parameters for this system are listed in Table 2.1 and all quantities are in per unit. The
nonlinear real power balance equations of (2.2) for this system are

P1 =
V1V2
X1,2

sin(θ1 − θ2) +
V1V3
X1,3

sin(θ1 − θ3),

P2 =
V2V1
X1,2

sin(θ2 − θ1) +
V2V3
X2,3

sin(θ2 − θ3),

P3 =
V3V1
X1,3

sin(θ3 − θ1) +
V3V2
X2,3

sin(θ3 − θ2).

(2.12)

The first equation with P1 is removed from (2.12) since bus 1 is the reference bus. Then,
using the DC assumptions, the model of (2.12) can be approximated by a small-signal linear
incremental model of the form in (2.4), where

H0 =

[
1

X1,2
+ 1

X2,3
− 1
X2,3

− 1
X2,3

1
X1,3

+ 1
X2,3

]

=

[
46.72 −26.88
−26.88 42.60

]
.
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Table 2.1: Parameter values for 3-bus system shown in Fig. 2.1.

P2 P3 X1,2 X2,3 X1,3

-1 -0.9 0.0504 0.0372 0.0636

jX12

jX23jX13

P3

P2P1

1∠0◦ V2∠θ2

V3∠θ3

Figure 2.1: Network topology for 3-bus system.

Accordingly, M0 = H−10 is computed as:

M0 =

[
0.033 0.021
0.021 0.037

]
.

Suppose an outage occurs on line (1, 2). Then, according to (2.7) and (2.8),

∆H(1,2) = − 1

0.0504
[−1, 0]T [−1, 0]

=

[
19.84 0

0 0

]
,

and

∆M(1,2) = 59.53[−0.033,−0.021]T [−0.033,−0.021]

=

[
0.067 0.042
0.042 0.026

]
.

2.2 Measurement Model

Since the voltage phase angles, θ[k], are assumed to be measured by PMUs, we allow for
the scenario where the angles are measured at only a subset of the load buses, and denote
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this reduced measurement set by θ̂[k]. Suppose that there are Nd load buses and we select
p ≤ Nd locations to deploy the PMUs. Then, there are

(
Nd

p

)
possible locations to place the

PMUs. Let

M̃ =


M̃0, if 1 ≤ k < γ0,
...

M̃(m,n),T , if k ≥ γT .

(2.13)

Then, the absence of a PMU at bus i corresponds to removing the ith row of M̃ . Thus,
let M̂ ∈ Rp×Nd be the matrix obtained by removing N − p− 1 rows from M̃ . Therefore, we
can relate M̂ to M̃ in (2.13) as follows:

M̂ = CM̃, (2.14)

where C ∈ Rp×(N−1) is a matrix of 1’s and 0’s that appropriately selects the rows of M̃ .
Accordingly, the increments in the phase angle can be expressed as follows:

∆θ̂[k] ≈ M̂∆P d[k]. (2.15)

The small variations in the real power injections at the load buses, ∆P d[k], can be
attributed to random fluctuations in electricity consumption. In this regard, we may model
the ∆P d[k]’s as independent and identically distributed (i.i.d.) random vectors. By the
Central Limit Theorem [19], it can be shown that each ∆P d[k] is a Gaussian vector, i.e.,
∆P d[k] ∼ N (0,Λ), where Λ is the covariance matrix. Note that the elements ∆P d[k] need
not be independent. Since ∆θ̂[k] depends on ∆P d[k] through the linear relationship given
in (2.15), we have that:

∆θ̂[k] ∼



f0 := N (0, M̂0ΛM̂
T
0 ), if 1 ≤ k < γ0,

f
(0)
(m,n)

:= N (−P(m,n)[γ0 + 1]CM0r(m,n),

M̂0ΛM̂
T
0 ), if k = γ0,

...

f
(T )
(m,n)

:= N (0, M̂(m,n),TΛM̂T
(m,n),T ), if k ≥ γT ,

(2.16)

It is important to note that for N
(

0, M̂ΛM̂T
)

to be a nondegenerate p.d.f., its co-

variance matrix, M̂ΛM̂T , must be full rank. We enforce this by ensuring that the number
of PMUs allocated, p, is less than or equal to the number of load buses, Nd.

2.3 Problem Statement

Our goal is to detect the change in the probability distribution of the sequence {∆θ̂[k]}k≥1
(that results from the line outage) as quickly as possible while maintaining a certain level of
detection accuracy, which is related to, e.g., the false alarm rate. This problem, referred to
as quickest change detection (QCD), has been well studied in the statistical signal processing
literature. Next, we provide a precise mathematical description of the QCD problem and
an algorithm that we will use to detect a line outage; we refer the reader to [20]-[21] for a
survey of the theory of QCD and algorithms.
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We assume that the sequence {∆θ̂[k]}k≥1 of random vectors is available from PMU

measurements. For the base case where no line outages are present, we have that ∆θ̂[k] ∼
f0. At some random time, tf , an outage occurs on line (m,n). Then, the pdf of the

sequence {∆θ̂[k]} changes from f0 to f
(0)
(m,n). Then, the system undergoes a series of transient

responses which corresponds to the distribution of ∆θ̂[k] evolving from f
(0)
(m,n) to f

(T )
(m,n). First,

a meanshift takes place during the instant of change tf , where the pdf is f
(0)
(m,n). Then, the

statistical behavior of the process is characterized by a series of changes only in the covariance
matrix of the measurements. The objective is to detect this transition in the pdf of {∆θ̂[k]}
as quickly as possible. Mathematically, when a line outage occurs, the objective is to find the
optimal stopping time τ on the sequence of observations for ∆θ̂. In the absence of a change,
the expectation of τ , E[τ ], should be maximized so as to avoid false alarms. On the other
hand, once a line outage occurs, we expect E[τ ] to be as small as possible. A formulation
that captures this trade-off is as follows [22]:

min
τ

sup
γ0≥1

Eγ0 [τ − γ0|τ ≥ γ0]

subject to E∞[τ ] ≥ β,
(2.17)

where Eγ0 denotes the expectation with respect to probability measure when a change occurs
at time sample γ0, E∞ denotes the corresponding expectation when the change never occurs,
and β > 0 is the given constraint on the mean time to false alarm.

2.4 Summary

This chapter set up the framework for the proposed line outage detection and identification
method that is to be developed in this work. An incremental DC-like power flow model was
derived along with the statistical model for the voltage phase angles, the measurements of
which are assumed to be provided by PMUs. In the derivation of the statistical model, we
assumed that the incremental variations in the active power injections at each load bus are
independent random variables and that the generators react to the changes in these load
demands.
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Chapter 3

Line Outage Identification

This chapter begins by introducing the CuSum algorithm for change detection for the case
where only the meanshift and the quasi steady state period following a line outage is con-
sidered. This is followed by the presentation of the Kullback-Leibler (KL) divergence, which
is an important measure characterizing the distance between two probability distributions;
the detection algorithms we present are based on this measure. Then, we introduce the
Generalized Likelihood Ratio Test (GLRT) algorithm, which serves as a basis for our line-
outage detection method. The performance of the proposed algorithm is compared against
other existing line outage detection algorithms in the literature. We show that our algorithm
performs better as it exploits the statistical properties of the measured voltage phase angles
before, during, and after a line outage, whereas other methods in the literature only utilize
the change in statistics that occurs at the instant of outage.

3.1 CuSum Algorithm

Recall the measurement model in (2.16) for the case where T = 1:

∆θ̂[k] ∼


f0 := N (0, M̂0ΛM̂

T
0 ), if 1 ≤ k < γ0,

f
(0)
(m,n)

:= N (−P(m,n)[γ0 + 1]CM0r(m,n),

M̂0ΛM̂
T
0 ), if k = γ0,

f
(1)
(m,n)

:= N (0, M̂(m,n),TΛM̂T
(m,n),T ), if k ≥ γ1.

(3.1)

Suppose that the p.d.f.’s f0, f
(0)
(m,n), and f

(1)
(m,n), are known. Then, one particular algo-

rithm that possesses the optimality properties with respect to the formulation in (2.17) is the
Cumulative Sum (CuSum) algorithm [23]. From the sequence of phase angle measurements,
the CuSum algorithm computes a sequence of statistics recursively so that for k ≥ 0, the
statistic WCU

(m,n)[k + 1] is computed as

10



WCU
(m,n)[k + 1] = max

{
WCU

(m,n)[k] + log
f
(1)
(m,n)(∆θ̂[k + 1])

f0(∆θ̂[k + 1])
,

log
f
(0)
(m,n)(∆θ̂[k + 1])

f0(∆θ̂[k + 1])
, 0

}
,

(3.2)

where WCU
(m,n)[0] = 0 for all (m,n) ∈ E . Denote τC to be the time at which the CuSum

algorithm declares a line outage; then,

τC = inf{k ≥ 1 : WCU
(m,n)[k] > ACU

(m,n)}, (3.3)

where ACU
(m,n) is a threshold selected for the corresponding WCU

(m,n)[k] statistic. An optimal
method to select this threshold will be presented in Section 3.3.

3.2 Generalized Likelihood Ratio Test Algorithm

In the setting we consider in this work, since the line for which an outage occurs is un-
known, the post-change pdf of ∆θ̂ is also unknown. However, since the single-line outage
can occur in at most L ways, the post-change distribution is known to belong to the finite
set {f(m,n), (m,n) ∈ E}. In this context, we can apply the Generalized Likelihood Ratio
Test (GLRT) algorithm where we compute L CuSum statistics in parallel, one for each post-
change scenario, and declare an outage the first time a change is detected in any one of the
parallel CuSum tests. In other words, we compute (3.2) for each line (m,n) in the system,
with WCU

(m,n)[0] = 0, and stop at

τCU = inf

{
k ≥ 1 : max

(m,n)∈E
WCU

(m,n)[k] > ACU
(m,n)

}
. (3.4)

In [13], a single threshold ACU
(m,n) was chosen for all line outage streams WCU

(m,n). However,

faster detection can be achieved by choosing an individual threshold ACU
(m,n) for each WCU

(m,n)

that is proportional to its corresponding KL divergence. The threshold ACU
(m,n) can be chosen

to control the mean time to false alarm; if a larger mean time to false alarm is required, then
ACU

(m,n) is set to a larger value, and vice-versa. Finally, this algorithm also identifies the line

that is outaged at τCU to be

(m̂, n̂) = arg max
(m,n)∈E

WCU
(m,n)[τ

CU]. (3.5)

3.3 Threshold Selection

We now present ways of choosing the thresholds for the CuSum test. It can be shown (see,
e.g., [24]) that by choosing

ACU
(m,n) = log γ − log β(m,n), (3.6)
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with β(m,n) being a positive constant independent of γ, the expected delay for each possible
outage differs from the corresponding minimum delay among the class of stopping times
Cγ = {τ : E0(τ) ≥ γ}, as γ →∞, by a bounded constant.

A choice of thresholds for the CuSum algorithm is obtained by setting β(m,n) = 1
L

for
all (m,n) ∈ E . This way we get a common threshold, i.e., ACU

(m,n) = ACU = log(γL) for all

(m,n) ∈ E . It can be shown (see, e.g., [25]) that by choosing the thresholds this way, we can
guarantee that E0[τ

CU] ≥ γ.
Using the results in [24], another choice of the thresholds could be based on a relative

performance loss criterion, i.e.,

β(m,n) =
1

D(f
(1)
(m,n) ‖ f0)L(ζ(m,n))2)

, (3.7)

where

ζ(m,n) = lim
b→∞

E(1)
(m,n)

[
e{−(S(m,n)[τ

b
(m,n)

]−b)}
]
, (3.8)

with
τb(m,n) = inf{k ≥ 1 : S(m,n)[k] ≥ b}, (3.9)

and

S(m,n)[k] =
k∑
l=1

log
f
(1)
(m,n)(∆θ̂[l])

f0(∆θ̂[l])
. (3.10)

This choice of threshold depends on the asymptotic overshoot of an Sequential Probability
Ratio Test (SPRT)-based test, which is often used in hypothesis testing [15]. As we show
through case studies, these thresholds result in performance gains.

3.4 Intuition Behind the Operation of the GLRT Al-

gorithm

The algorithm we presented in (3.2) for line outage detection is based on the Kullback-Leibler
(KL) divergence, which for any two probability densities f and g is defined as follows:

D(f ‖ g) :=

∫
f(x) log

f(x)

g(x)
dx ≥ 0, (3.11)

with equality if and only if f = g almost surely. In the context of the line outage detection
problem, for an outage of line (m,n), the KL divergence is

D(f
(1)
(m,n) ‖ f0) = E

[
log

(
f
(1)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

)∣∣∣∣∣ (m,n) outage

]
, (3.12)

which provides a bound on the delay for detecting an outage in line (m,n); a larger KL
divergence results in lower detection delay and vice versa. Prior to any changes, the mean
of the log likelihood ratio is negative due to (3.11). Therefore, WCU

(m,n)[k] would remain close
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to or at 0 prior to a line outage. On the other hand, after an outage occurs, the mean of the
log-likelihood ratio is positive. As a result, WCU

(m,n)[k] increases unboundedly after the outage

in line (m,n), and the CuSum algorithm in (3.2) declares the occurrence of an outage in line
(m,n) the first time that WCU

(m,n)[k] reaches ACU
(m,n).

In addition, We can use (3.11) to obtain bounds on the false isolation rates. Consider

an outage of line (m,n); if E
[
log

(
f
(1)
(k,l)

f0

)]
is positive, then WCU

(k,l)[k] would increase despite

no outage in line (k, l). Hence, we would like E
[
log

(
f
(1)
(m,n)

f
(1)
(k,l)

)]
to be maximized so that

the false isolation rate for line (m,n) outage is minimized. For example, we can compute

D(f
(1)
(m,n) ‖ f

(1)
(k,l)) to estimate a bound on the false isolation rate, where a small value in-

dicates that an outage in line (k, l) causes a statistical change in the voltage phase angles
that is very similar to that corresponding to an outage in line (m,n). An extreme case of

D(f
(1)
(m,n) ‖ f

(1)
(k,l)) = 0 occurs when lines (k, l) and (m,n) have the same impedance and share

the same terminal buses, i.e., k = m, l = n. In this case, our algorithm cannot distinguish
between the occurrence of an outage on either of the two lines. Next, we illustrate these
ideas in a small power system example.

Example 2 (Three-Bus System). Consider the 3-bus system shown in Fig. 2.1. We apply
the GLRT algorithm to detect and identify a line (2, 3) outage at γ0 = 1. The PMU
measurements are simulated by creating an active power injection time-series data for each
load bus i with

Pi[k] = Pi[k − 1] + vi, (3.13)

where Pi[0] is the nominal power injection at load bus i at instant k, and vi ∼ N (0, 0.5) is a
pseudorandom value representing random fluctuations in electricity consumption. For each
set of bus injection data, we solve the nonlinear power flow equations in (2.1) to obtain the
sequence of phase angle “measurements” {θ̂[k]}. In this example, we assume that bus 1 is
the reference bus and the random fluctuations at buses 2 and 3 are uncorrelated, so Λ is a
diagonal matrix.

Using the GLRT-based algorithm, we execute three CuSum tests in parallel and com-
pute each WCU

(m,n)[k] defined in (3.2), one for each line of the system. Figure 3.1 shows the

typical progressions of WCU
(m,n)[k] for each line outage of the 3-bus system. In Fig. 3.1(a),

WCU
(1,2)[k] crosses the threshold of A = 100 first, while WCU

(1,3)[k] and WCU
(2,3)[k] remain close to

0. Therefore, the algorithm was able to correctly detect and identify the line outage after
k = 25 samples. Similar behavior was observed for outages of line (1,3) and (2,3). In addition
to the plots, Table 3.1 shows the computed KL divergences of all line outages according to

(3.11). For example, a positive E
[

log
(
f(1,2)
f0

)∣∣∣ (1, 2) outage
]

value of 3.69 means that in the

long run, if the outage were indeed on line (1, 2), WCU
(1,2)[k] will increase; the rate of this in-

crease depends on the magnitude of the KL divergence. Since E
[

log
(
f(1,2)
f0

)∣∣∣ (1, 2) outage
]
>

E
[
log
(
f(1,3)
f0

)∣∣∣ (1, 3) outage
]
, on average, WCU

(1,2)[k] reaches the threshold A in less samples

than WCU
(1,3)[k] for an outage of their respective lines. On the other hand, the negative value of

E
[

log
(
f(1,2)
f0

)∣∣∣ (1, 3) outage
]

means that WCU
(1,2)[k] tends to stay near 0 for a line (1, 3) outage,
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(a) Line (1, 2) outage.
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(b) Line (1, 3) outage.
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(c) Line (2, 3) outage.

Figure 3.1: Realizations of WCU
(m,n)[k] for each line outage of 3-bus system with PMU at

buses 2 and 3.

which is observed in Fig. 3.1(b).

3.5 Other Statistical Algorithms for Power System Line

Outage Detection

This section introduces some of the other algorithms that are used for change detection.
Specifically, we introduce the meanshift and Shewhart tests, which only consider the latest
sample of the voltage phase angles instead of using all of the samples. For example, the line
outage detection algorithm proposed in [8] can be shown to be equivalent to a log-likelihood
ratio test that only uses the most recent measurements.

3.5.1 Meanshift Test

The meanshift test is a “one-shot” detection scheme in that the algorithm uses only the most
recent observation to decide whether a change in the mean has occurred and ignores all past
observations. The meanshift statistic corresponding to line (m,n) is defined as follows:
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Table 3.1: 3-bus system KL Div.

KL Div.
Line Outage (m,n)

(1, 2) (1, 3) (2, 3)

E
[

log
(
f(1,2)
f0

)∣∣∣ (m,n) outage
]

3.69 -1.09 0.75

E
[

log
(
f(1,3)
f0

)∣∣∣ (m,n) outage
]

-0.86 1.77 1.34

E
[

log
(
f(2,3)
f0

)∣∣∣ (m,n) outage
]

0.59 -0.02 6.42

WMS
(m,n)[k] = log

f
(1)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])
. (3.14)

The decision maker declares a change when one of the |E| statistics crosses a corresponding
threshold, AMS

(m,n). The stopping time for this algorithm is defined as:

τMS = inf
(m,n)∈E

{
inf{k ≥ 1 : WMS

(m,n)[k] > AMS
(m,n)}

}
. (3.15)

The meanshift test ignores the persistent covariance change that occurs after the out-
age. In particular, note that the meanshift test is using the likelihood ratio between the
distribution of the observations before and at the changepoint. More specifically, assuming
that an outage occurs in line (m,n), the expected value of the statistic at the changepoint
is given by

E(0)
(m,n)

[
log

f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(0)
(m,n) ‖ f0) > 0. (3.16)

On the other hand, after the changepoint (k > λ0), the expected value of the statistic
is given by

E(1)
(m,n)

[
log

f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

]
=

= D(f
(1)
(m,n) ‖ f0)−D(f

(1)
(m,n) ‖ f

(0)
(m,n)),

(3.17)

which could be either positive or negative.

3.5.2 Shewhart Test

Similar to the meanshift test, the Shewhart test is also a “one-shot” detection scheme. This
test attempts to detect a change on the observation sequence through the meanshift and the
change in the covariance matrix of ∆θ̂[k]. The Shewhart test statistic for line (m,n) outage
is defined as:
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W SH
(m,n)[k] = max

{
log

f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])
, log

f
(1)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

}
, (3.18)

where the first log-likelihood ratio is used to detect the meanshift, while the second log-
likelihood ratio is used to detect the persistent change in the covariance. The stopping time
is:

τSH = inf
(m,n)∈E

{
inf{k ≥ 1 : W SH

(m,n)[k] > ASH
(m,n)}

}
. (3.19)

Since the Shewhart test exploits the covariance change in addition to the meanshift statistic,
it should perform better than the meanshift test, at least as the meantime to false alarm
goes to infinity, which is verified in the case studies.

3.6 Case Studies

This section provides a case study of the concepts introduced in this chapter on the IEEE
14-bus and 118-bus systems [26]. The importance sampling technique for rare events is also
presented. An outage is simulated and the proposed algorithm is used to detect this outage.
In addition, we demonstrate the effectiveness of our proposed line outage detection algorithm
by comparing against other line outage detection algorithms on the IEEE 14-bus system.

3.6.1 Importance Sampling

Since the meanshift in the voltage phase angles occurs between the sample immediately prior
to and after the line outage, it is not persistent. If the meanshift test presented in Section
3.5.1 does not capture the outage exactly when it occurs, then the likelihood of correctly
identifying the outage would be a rare event. This is because the log-likelihood ratio used
in the meanshift statistic of (3.14) matches only the meanshift but not the covariance shift
that is persistent after a line outage. Therefore, in order to simulate detection delays of the
meanshift test, the technique of importance sampling is used.

The usual Monte Carlo method of estimating the average detection delay of the mean-
shift test is

τ̂MS := E[τMS] ≈ 1

N

N∑
i=1

τMS
i , (3.20)

where N is a large sample size and τMS
i is the detection delay for the ith sample run. For line

(m,n) outage simulation, starting with the second sample after the line outage, the voltage

phase angles samples are generated from the probability distribution f
(1)
(m,n). Therefore, the

numerator of (3.14) does not match the distribution from which the samples are generated,
making the crossing of threshold rare. In order to use importance sampling, we sample from
the distribution f

(0)
(m,n) instead of f

(1)
(m,n) for all samples after the outage. We use the fact that

E
f
(1)
(m,n)

[
log

f
(0)
(m,n)

f0

]
= E

f
(0)
(m,n)

[
log

(
f
(0)
(m,n)

f0

)
f
(1)
(m,n)

f
(0)
(m,n)

]
. (3.21)
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Figure 3.2: Network topology for 14-bus system.

We modify the meanshift statistic of (3.14) to

WMS
(m,n)[k] = log

(
f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

)
f
(1)
(m,n)(∆θ̂[k])

f
(0)
(m,n)(∆θ̂[k])

(3.22)

but with sampling of ∆θ̂[k] from the distribution f
(0)
(m,n) after the line outage instead of f

(1)
(m,n).

We declare the detection of line outage when the statistic crosses the threshold. This method
greatly reduces the number of sample paths that must be simulated to estimate the detection
delay, resulting in greater efficiency.

3.6.2 14-Bus System

The one-line diagram of the IEEE 14-bus test system is shown in Fig. 3.2. We simulate
a line (2, 5) outage at k = 10 and apply the CuSum tests of (3.2) to the voltage phase
angle measurements. The random fluctuations in the active power injections are considered
independent Gaussian random variables with a variance of 0.03. Therefore, Λ is a diagonal
matrix. Figure 3.3 shows that the W(2,5)[k] stream crosses the threshold of 100 before all the
other streams at k = 48, resulting in a detection delay of 38 samples. Assuming that the
PMUs sample voltage angles at a rate of 30 samples per second, the detection delay in this
case is about 2 seconds. Again, we see that the streams for the other lines either remain
close to 0 or grow at a slower rate than W(2,5)[k].

Next, we perform Monte Carlo simulations for the Shewhart, meanshift, and CuSum
algorithms to obtain plots of average detection delay versus mean time to false alarm. The
values for the average detection delay are obtained by simulating an outage in line (4, 5) and
running the corresponding detection algorithms for different thresholds until a detection of
the outaged line is declared. For computing the mean time to false alarm, the detection
algorithms are executed for the power system under normal operation until a false alarm
occurs. Since false alarm events are in general rare, averaging many sample runs would
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Figure 3.3: Sample run for 14-bus system.

incur significant computation time. In order to reduce the simulation time, importance
sampling is used for the meanshift and Shewhart tests. For our simulations, we found that
the error bounds for all the simulated values are within 5% of the means. Figure 3.4 shows
the average detection delay versus mean time to false alarm for all of the detection methods
mentioned in this paper. As evidenced by the crossing of the Shewhart and meanshift
plots, for small values of mean time to false alarm, the meanshift test performs better than
the Shewhart test. It can be verified from QCD theory that the slope of Delay versus
log(mean time to false alarm) for the Shewhart and CuSum tests is given by 1

D(f
(1)
(m,n)

‖ f0)
for

large mean time to false alarm [20].
From the plots, we conclude that for the same value of mean time to false alarm,

both CuSum-based algorithms have a much lower average detection delay compared to the
Shewhart and meanshift algorithms. In addition, the figure shows that when we use varied
thresholds for the CuSum test as opposed to a fixed threshold, even lower detection delay
can be achieved for the same mean time to false alarm. This illustrates that our algorithm is
an improvement over that of [13]. Lastly, simulation results demonstrate that the detection
delay scales exponentially with the selected thresholds for both the meanshift and Shewhart
tests, and linearly for the CuSum-based tests.
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Figure 3.4: Detection delay vs. mean time to false alarm.
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3.6.3 118-Bus System

Next, we illustrate the scalability of the proposed line outage detection algorithm on the
IEEE 118-bus test system. The simulation tool MATPOWER [27] is used to compute the
voltage angles by repeatedly solving AC power flow solutions of the system. The real power
injection is generated using (3.13) with σ = 0.03. We also assume these random fluctuations
are uncorrelated; thus, Λ is a diagonal matrix.

An outage in line (34, 37) starting at k = 1 is simulated and the algorithm of (3.2) is
applied. Some sample test statistics are shown in Fig. 3.5. With a threshold of 40, the line
outage is declared 53 samples after the outage.
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Chapter 4

Conclusions

This work provided a framework for line outage detection in power systems, which is crucial
for maintaining operational reliability. Many of the current methods for online power system
monitoring rely on a system model that can be inaccurate due to bad historical or telemetry
data. These inaccuracies were a major factor in many blackouts. Therefore, there is a
significant need for developing online techniques to detect and identify system topological
changes. The algorithm proposed in this work exploits fast measurements provided by PMUs
and uses a statistical method to quickly detect network topological changes. The results of
the proposed method are compared against the other line outage detection algorithms in
literature.

There are several extensions to this current work that are left for future work. The
current method is not capable of detecting double line outage; new techniques that allow
for quick detection of double line outages would be beneficial. Additionally, the algorithms
presented in this work could be applied to other event detection problems in power systems
such as switching of capacitors and transformers.
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Chapter 1

Introduction

In recent years, phasor measurement units (PMUs) have been introduced as a way to monitor
power system networks. Unlike the more conventional Supervisory Control and Data Acqui-
sitions (SCADA) system, whose measurements include active and reactive power and voltage
magnitude, PMUs can provide accurate, high-sampling-rate, synchronized measurements of
voltage phasor. There has been much recent research on how the real-time measurement
information gathered from PMUs can be exploited in many areas of power system studies,
including system control and state estimation.

In this work, we study the use of PMU data in detecting topological network changes
caused by single-line outages, and propose techniques for determining optimal placement of
a limited number of PMU devices in a grid, so as to maximize the capability for detecting
such outages. Our PMU placement approach can also be used as a tie-breaker for the other
types of strategies that have multiple optimal solutions (for example, maximum observability
problems). It can also be used to enhance a PMU placement scheme that satisfies a property
such as topological observability, by identifying PMU locations that can be added to the basic
placement in a way that optimizes outage detection capabilities.

We note that modern power grids contain intelligent electronic devices (IEDs) that can
identify outages directly. In this context, PMUs can provide a backup detection capability
that is based on an alternative set of observations of the state of the grid.

Knowledge of topological changes as a result of line failure (outage) can be critical in
deciding how to respond to a blackout. Rapid detection of such changes can enable actions
to be taken that reduce risks of cascading failures that lead to large-scale blackouts. One
of the main causes of the catastrophic Northeast blackout of 2003 was faulty topological
information about the grid following the initial failures; see [1].

Numerous approaches have been proposed for identifying line outages using PMU de-
vice measurements. In [2, 3], phasor angle changes are measured and compared with ex-
pected phasor angle variations for all single- or double-line outage scenarios. Support vector
machines (SVM) were proposed for identification of single-line outages in [4]. A compressed-
sensing approach was applied to DC power balance equations to find sparse topological
changes in [5], while a cross-entropy optimization technique was considered in [6]. Since the
approaches in [5] or [6] use the linearized DC power flow models to represent a power sys-
tem, their line outage identification strategies rely only on changes to phase angles, ignoring
the voltage magnitude measurements from PMUs. Our use of the AC power flow model
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allow phase angles and voltage magnitudes to be used in outage detection, leading to more
complete exploitation of the available data. In [7], a distributed framework is proposed to
avoid privacy issues which can be caused by sharing raw measurement data. In the model,
each phasor data concentrator (PDC) performs line outage identification locally, then the
processed data (instead of the raw measurement data) is collected at a central system to
identify line outage in the entire system. The alternating direction method of multipliers is
used to resolve the solution mismatches at shared resources between PDCs.

The key feature that makes line outage identification possible is that voltage pha-
sor measurements reported by PMUs are different for different line-outage scenarios. Our
approach aims to distinguish between these different “signatures” by using a multinomial
logistic regression (MLR) model [8]. The model can be trained by a convex optimization
approach, using standard techniques. The coefficients learned during training can be ap-
plied during grid operation to detect outage scenarios. Our approach could in principle be
applied to multiline outages too. One practical way to extend our approach to multiline
outages without exploding the number of scenarios is to include only those multiline outages
that could plausibly occur, that is, sets of lines that are geographically close or are strongly
coupled and that could thus fail simultaneously. We note too that our single-line outage
classifier could be useful in multiline outage situations when the coupling between the lines
is weak (as discussed in [9, Section 2.2]). In other words, some multiline outage cases can
be decomposed into single-line outage events on different parts of the grid.

Our approach has several advantages over the other methods that have been proposed
previously. First, training of the MLR model, which is the most compute-intensive part
of the approach, can be done offline; it is not a time-critical task. The online portion of
the line outage identification process requires only a number of vector-vector inner products
(one for each possible outage), so it can be done in real-time. This situation contrasts
with alternative approaches for which the “online” computational requirements can be quite
heavy. Second, the use of a fairly standard data analysis approach—the MLR classifier—
allows integration of full modeling and engineering information, in the form of AC power
flow modeling, measurements of phase angle and voltage magnitude changes, knowledge of
changes to the voltage phasors under a variety of demand conditions. The generic nature
of the MLR framework makes it flexible and extendable to detection of other kinds of fault
conditions, provided that these conditions yield distinctive signatures. Moreover, the model
can be retrained and tuned to changes in demand conditions at different times of the day,
or for unusual demand situations.

Because of the expense of installation and maintenance, PMUs are usually installed on
just a subset of buses in a grid. We therefore need to formulate an optimal placement problem
to determine the choice of PMU locations that gives the best information about system state.
Several different criteria have been proposed to measure quality of a given choice of PMU
locations. We mention below the approaches that use line outage identification as a criterion
for PMU placement.

In [10], the authors use pre-computed phase angles as outage signatures and attempt
to find the optimal PMU locations by identifying a projection (by setting to zero the en-
tries which are not selected as PMU locations) that maximizes the minimum distance in
the `p-norm of the projected signatures. The problem is formulated as an integer program
(IP) and a greedy heuristic and branch-and-bound approaches are proposed. These algo-
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rithms are used again in [11] to seek optimal PMU location for line outage identification
with uncertain states. In the model, the power injections are considered as network states
and provided as a form of prior distribution. Three metrics are proposed to evaluate the
PMU locations and the effect of prior accuracy for line outage identification is also studied.
PMU placement for the line outage identification method discussed in [5] is studied in [9].
A non-convex mixed-integer nonlinear program (MINLP) is formulated, leading to a linear
programming convex relaxation. Again, a greedy heuristic and a branch-and-bound algo-
rithm are suggested as a solution methodology. In [12], the PMU placement is optimized
to maximize the average identification capability (AIC) of multiple line outages. The AIC
is defined using the dissimilarity distance, which is inspired by Kullback-Leibler distance,
between the probability densities of pre-outage and post-outage measurements from PMU
locations. Exhaustive search optimal method is proposed as a solution methodology.

We build our optimal PMU placement formulation on our MLR model for single-line
outage detection, by adding nonsmooth “Group LASSO” regularizers to the MLR objective
and “greedy” heuristics. Our approach is flexible, and can also be used to decide additional
PMU locations to maximize detection performance for given existing PMU locations. More-
over, we aim directly to optimize detection performance in our choice of PMU locations, not
a surrogate objective such as observability.

The rest of this document is organized as follows: In Chapter 2, the line outage iden-
tification problem is described along with the multinomial logistic regression (MLR) formu-
lation. The problem of PMU placement to identify a line outage is described in Chapter 3:
We describe a group-sparse heuristic and its greedy variant used to formulate and solve this
problem. Numerical results on synthetically generated data are presented in Chapter 4 and
a conclusion appears in Chapter 5.
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Chapter 2

Line Outage Identification

We describe an approach that uses changes in voltage phasor measurements at PMUs to
detect single-line outages in the power grid. As in [2, 5], we assume that the fast dynamics
of the system are well damped and voltage measurements reflect the quasi-static equilibrium
that is reached after the disruption. We use a quasi-steady state AC power flow model
(see, for example, [13, Chapter 10]) as a mapping from time varying load variation (and line
outage events) to the polar coordinate “outputs” of voltage magnitude and angle.

PMUs report phasor measurements with high frequency, and changes in voltage due
to topology changes of the power grid tend to be larger than the variation of voltage phasor
during normal operation (for example, demand fluctuation that occurs during the sampling
time period). We construct signature vectors from these voltage changes, under the various
single-line outage situations, and use them to train a classifier for line outage identifica-
tion. We now describe the multinomial logistic regression model for determining the outage
scenario.

2.1 Multinomial Logistic Regression Model

Multinomial logistic regression (MLR) is a machine-learning approach for classifying a vector
of features as belonging to one of several possible classes. A set of functions is constructed
from the feature vector, each function giving the odds of a feature vector belonging to a
particular class. The parameters that define these functions are obtained from a “training”
process, in which a large collection of feature vectors are presented along with their known
classes. The parameters are adjusted so that when presented with a new feature vector that
is similar to several others that have been encountered in training, the MLR classifier will
output a high probability that the new vector has the same class as the training vectors that
are similar to it.

MLR generalizes the well-known two-class logistic regression procedure (see [8]) to
multiple classes. Each class has its own vector of parameters, which is applied to the feature
vector to determine the odds of the feature vector belonging to that class. In our application,
the feature vectors consist of voltage phasor changes at the PMUs, differences of the complex
voltage measurements before and after an outage event.

The training process consists of choosing the parameters that define the function so as
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to maximize an a posteriori likelihood function. Suppose that there are K possible outcomes
(classes) labeled as k ∈ {1, 2, . . . , K}, and let X denote a feature vector of length n. In
the MLR model, the probability that X belongs to class Y (which is one of the K possible
classes) is given by the following formula:

Pr(Y = k|X) :=
e〈βk,X〉∑K
i=1 e

〈βi,X〉
for k = 1, 2, . . . , K, (2.1)

where 〈·, ·〉 is the inner product of vectors and β1, β2, . . . , βK are regression coefficients—
the parameter vectors that define each odds function. Once values of the coefficients βk,
k ∈ {1, 2, . . . , K} have been obtained from the training process, we can predict the outcome
associated with a given feature vector X by evaluating

k∗ ∈ arg max
k∈{1,2,...,K}

Pr(Y = k|X), (2.2)

or equivalently,
k∗ ∈ arg max

k∈{1,2,...,K}
〈βk, X〉 . (2.3)

From the engineering perspective, a more useful form of output would be to report all
outcomes k that are assigned by the model a probability above a certain threshold (say .05
or .1) and/or to report the top-2 or top-3 most likely outcomes. The results described in
Chapter 4 are based on this more nuanced interpretation of the output.

Training of the regression coefficients β1, β2, . . . , βK can be performed by maximum
likelihood estimation. The training data consists of M pairs (X1, Y1), (X2, Y2), . . . , (XM , YM),
each consisting of a feature vector Xm and its corresponding outcome Ym for a line outage
scenario, that is, Xm represents the shift of voltage phasors when line Ym is removed from
the system for m = 1, 2, · · · ,M . Note that M ≥ K since we need at least one training
sample for each line outage scenario. Given formula (2.1), a posteriori likelihood of observing
Y1, Y2, . . . , YM given the events X1, X2, . . . , XM is

M∏
m=1

P (Y = Ym|Xm) =
M∏
m=1

(
e〈βYm ,Xm〉∑K
k=1 e

〈βk,Xm〉

)
. (2.4)

By taking log of (2.4), we have log-likelihood function

f(β) :=
M∑
m=1

(
〈βYm , Xm〉 − log

K∑
k=1

e〈βk,Xm〉

)
, (2.5)

where the matrix β (of dimensions n ×K) is obtained by arranging the coefficient vectors

as
[
β1 β2 . . . βK

]
. Note that f(β) ≤ 0 for all β, since the value of (2.4) is in (0, 1]. The

maximum likelihood estimate β∗ of regression coefficients is obtained by solving the following
optimization problem:

β∗ = arg max
β

f(β). (2.6)
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This is a smooth convex problem [8, Section 4.3.4] that can be solved by fairly standard
techniques for smooth nonlinear optimization, such as limited-memory BFGS (L-BFGS)
algorithm [14].

If the training data is separable (that is, there exists β such that 〈βk, Xm〉 ≥ 0 for
Ym = k and 〈βk, Xm〉 ≤ 0 for Ym 6= k for all k = 1, 2, · · · , K), the value of f(β) can be made
to approach zero arbitrarily closely by multiplying β by a large positive value (see [15]). To
maintain finiteness of the recovered solution β, we can solve instead the following regularized
form of (2.6):

β∗ = arg max
β

f(β)− τw(β) (2.7)

where τ > 0 is a penalty parameter and the penalty function w(β) is typically convex and
nonsmooth. The penalized form can also be used to promote structure in the solution β∗,
such as sparsity or group-sparsity. This property is key to our PMU placement formulation,
and we discuss it further in Chapter 3.

Training of the MLR model, via solution of (2.6) or (2.7), can be done offline, as
described in the next section. Once the model is trained (that is, the coefficients βk,
k = 1, 2, . . . , K have been calculated), classification can be done via (2.3), at the cost of
multiplying the matrix β by the observed feature vector X, an operation that can be done
in real time.

2.2 Training Data: Observation Vectors and Outcomes

In our MLR model for line outage identification problems, the observation vector Xm is
constructed from the change of voltage phasor at each bus, under a particular outage scenario.
The corresponding outcome is the index of the failed line.

Suppose that a power system consists of N buses, all equipped with PMUs that report
the voltage values periodically. Let (Vi, θi) and (V ′i , θ

′
i), i = 1, 2, . . . , N , be two phasor

measurements obtained from PMU devices, one taken before a possible failure scenario and
one afterward. The observation vector X which describes the voltage phasor difference is
defined to be

X =
[
∆V1 . . . ∆VN ∆θ1 . . . ∆θN

]T
(2.8)

where ∆Vi = V ′i −Vi and ∆θi = θ′i−θi, for i = 1, 2, . . . , N . If we assume that the measurement
interval is small enough that loads and demands on the grid do not change significantly
between measurements, we would expect the entries of X to be small, unless an outage
scenario (leading to a topological change to the grid) occurred. Some such outages would
lead to failure of the grid. More often, feasible operation can continue, but with significant
changes in the voltage phasors, indicated by large components of X.

The training data (Xm, Ym) can be assembled by considering a variety of realistic
demand scenarios for the grid, solving the AC power flow equations for each possible outage
scenario (setting the value of Ym according to the index of that failure), then setting Xm

to be the shift in voltage phasor that corresponds to that scenario. The phasor shifts for a
particular scenario change somewhat as the pattern of loads and generations changes, so it
is important to train the model using a sample of phasor changes under different realistic
patterns of supply and demand.
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The observation vector can be extended to include additional information beyond the
voltage phasor information from the PMUs, if such information can be gathered easily and
exploited to improve the performance of the MLR approach. For example, the system
operator may be able to monitor the power generation level G (expressed as a fraction of
the long-term average generation) that is injected to the system at the same time points at
which the voltage phasor measurements are reported. If included in the observation vector,
this quantity might need to be scaled so that it does not dominate the phasor difference
information. Also, a constant entry can be added to the observation vector to allow for an
“intercept” term (as is usually done in all forms of regression). The extended observation
vector thus has the form

X =
[
∆V1 . . . ∆VN ∆θ1 . . . ∆θN ρG ρ

]T
(2.9)

where ρ is a scaling factor that approximately balances the magnitudes of all entries in the
vector. (Note that since G is not too far from 1, it is appropriate to use the same scaling
factor for the last two terms.) The numerical experiments in Chapter 4 make use of this
extended observation vector.
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Chapter 3

PMU Placement

As we mentioned in Chapter 1, installation of PMUs at all buses is impractical. Indeed, if
it were possible to do so, single-line outage detection would become a trivial problem, as
each outage could be observed directly by PMU measurements of line current flows in or
out of a bus; there would be no need to use the “indirect” evidence provided by voltage
phasor changes. In this Chapter we address the problem of placing a limited number of
PMUs around the grid, with the locations chosen in a fashion that maximizes the system’s
ability to detect single-line outages. This PMU placement problem selects a subset of buses
for PMU placement, and assumes that PMUs are placed to monitor voltage phasors at the
selected buses.

A naive approach is simply to declare a “budget” of the number of buses at which PMU
placement can take place, and consider all possible choices that satisfy this budget. This
approach is of course computationally intractable, except when the budget is very small (at
most two or three locations). Another approach is a mixed-integer nonlinear programming
formulation [10, 9], but this formulation is also quite difficult to solve since its computational
complexity is generally quite high. In this work, we use a regularizer function w(β) in (2.7)
to promote a particular kind of sparsity structure in the coefficient matrix β. Specifically,
a group `1-regularizer (GroupLASSO [16]) is used to impose a common sparsity pattern
on the rows of the coefficient matrix β, allowing nonzero in β to occur only those rows
corresponding to the voltage magnitude and phase angle changes at a particular subset of
buses. The numerical results show that approaches based on this regularizer give good results
in selection of PMU placements.

3.1 Group-Sparse Heuristic

Let P be the set of indices in the vector of features X ∈ Rn, that is P = {1, 2, . . . , n} where
n = 2N (or n = 2(N + 1) for X. See (2.8) and (2.9).) Consider S mutually disjoint subsets
of P , denoted by P1,P2, . . . ,PS. For each s ∈ S := {1, 2, . . . , S}, define qs([β]Ps) as follows:

qs([β]Ps) = ‖[β]Ps‖F , (3.1)
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Figure 3.1: Generating Synthetic Demand Data by A Stochastic Process

where [β]Ps is the submatrix of β constructed by choosing the rows whose indices are in Ps,
‖·‖F is the Frobenius norm1, and βik is the (i, k) entry of matrix β. (Thus, βik is the ith
entry of the coefficient vector βk in (2.3) and (2.4).) The value of qs([β]Ps) is the `2-norm
over the entries of matrix β which are involved in group s. For our observation vectors X
(2.8) and X (2.9), we can choose the number of groups |S| equal to the number of buses N ,
and set

Ps = {s, s+N}, s = 1, 2, . . . , N. (3.2)

Thus, if bus s is “selected” in the placement problem, the components of β that are associated
with phasor changes (∆Vs and ∆θs) on bus s are allowed to be nonzeros. Buses that are not
selected need not be instrumented with PMUs, because the components of β that correspond
to these buses are all zero. Note that for the extended vector X, we do not place the last
two entries (the constant and the total generation quantities) into any group, as we assume
that these are always “selected” for use in the classification process.

For any subsetR of S, we define a group-`1-regularizer wR(β) to be the sum of qs([β]Ps)
for s ∈ R, that is,

wR(β) =
∑
s∈R

qs([β]Ps). (3.3)

SettingR = S, the penalized form (2.7) with w = wS can be solved to identify a group-sparse
solution:

max
β

f(β)− τwS(β). (3.4)

With an appropriate choice of the parameter τ , the solution β∗ of (3.4) will be group-row-
sparse, that is, the set {s ∈ S | qs([β∗]Ps) 6= 0} will have significantly fewer than S elements.
Given a solution β∗ of (3.4) for some value of τ , we could define the r-sparse solution as
follows (for a given value of r, and assuming that the solution of (3.4) has at least r nonzero
values of qs([β

∗]Ps)):
R∗ := arg max

R:|R|=r,R⊂S
wR(β∗). (3.5)

Since the minimizer β∗ of (3.4) is biased due to the presence of the penalty term, we should
not use the submatrix extracted from β∗ according to the selected group R∗ as the regression

1The Frobenius norm of a matrix A is the square root of the sum of squares of the elements of A.
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Algorithm 1 Group-Sparse Heuristic

Input:
Parameter τ , r.

Output:
Rr: Set of groups after selecting r groups.
β̃r: Maximum likelihood estimate for r-group observation.

1: β∗ ← arg maxβ f(β)− τwS(β)
2: Rr ← arg maxR:|R|=r,R⊆S

∑
s∈S qs(β

∗)

3: Solve (3.6) with R∗ = Rr to obtain β̃r. (.) debiasing

coefficients for purposes of multinomial classification. Rather, we should solve a reduced,
unpenalized version of the problem in which the coefficients from sets Ps that were not
selected are fixed at zero. That is, we define a debiased solution β̃∗ corresponding to R∗ as
follows:

max
β

f(β) subject to βik = 0 for all (i, k) with (3.6)

k = 1, 2, . . . , K and i ∈ Ps for each s /∈ R∗.

The GroupLASSO approach is shown in Algorithm 1.

3.2 Greedy Heuristic

The regularization approach can be combined with a greedy strategy, in which groups are
selected one at a time, with each selection made by solving a regularized problem. Suppose
thatRl−1 is set of selected groups after l−1 iterations of the selection heuristic. The problem
solved at iteration l of the heuristic to choose the next group is

β̂l = arg max
β

f(β)− τwS\Rl−1(β). (3.7)

The next group sl is obtained from β̂l as follows:

sl = arg max
s∈S\Rl−1

qs([β̂
l]Ps), (3.8)

and we set Rl = Rl−1 ∪
{
sl
}

. Note that we do not penalize groups in Rl−1 that have been
selected already, in deciding on the next group sl. After choosing r groups by this process,
the debiasing step is performed to find the best maximum likelihood estimate for the sparse
observation. Algorithm 2 describes this greedy approach. Note that the initial set of groups
R0 might not be empty since we can use additional information that is independent from
the PMU measurement. The initial set R0 may also contain the locations of PMUs that are
already installed in the grid; our problem in this case is to decide locations for additional
PMUs to improve the outage detection performance of the PMU network.

The major advantage of this approach is that redundant observations are suppressed
by already-selected, non-penalized observations at each iteration. We give more details in
Chapter 4.
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Algorithm 2 Greedy Heuristic

Input:
Choose an initial set of groups: R0.
Parameter τ , r.

Output:
Rr: Set of groups after selecting r groups.
β̃r: Maximum likelihood estimate for r-group observation.

1: for l = 1, 2, · · · , r do
2: Solve (3.7) with Rl−1 for β̂l.
3: sl ← arg maxs∈S\Rl−1 qs([β

l]Ps)

4: Rl ← Rl−1 ∪
{
sl
}

5: end for
6: Solve (3.6) with R∗ = Rr to obtain β̃r. (.) debiasing

11



Chapter 4

Numerical Experiments

Here we present experimental results for the approaches proposed above. The test sets
considered here are based on the power system test cases from MATPOWER [17] (originally
from [18]), with demands altered to generate training and test sets for the MLR approach.

4.1 Synthetic Data Generation

Since the data provided from IEEE test case archive [18] is a single snapshot of the states
of power systems, we extend them to a synthetic 24-hour demand data cycle by using a
stochastic process, as follows.

a. Take the demand values given by the IEEE test case archive as the average load demand
over 24-hours.

b. Generate the demand variation profile by using an additive Ornstein-Uhlenbeck process
as described in [19], separately and independently on each demand bus.

c. Combine the average demand and the variation ratio to obtain the 24-hour load demand
profile for the system.

Figure 3.1 shows demand data generated by this procedure at three demand buses in the
9-Bus system (case9.m) from MATPOWER. Figure a shows the data drawn from the data
file, now taken to be a 24-hour average. Figure b shows the ratio generated by the additive

Table 4.1: Test Cases.

System
Filename in # of Lines Train Test

MATPOWER Feas. Infeas./Dup. (5) (50)

14-Bus case14.m 18 2 90 900

30-Bus case ieee30.m 37 4 185 1850

57-Bus case57.m 67 13 335 3350

118-Bus case118.m 170 16 850 8500
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Table 4.2: Line Outage Detection Error Rates on Test Set with PMUs on All Buses.

System

Probability Ranking Using

Using X Using X Using X Using X DC Model

≥ 0.9 ≥ 0.7 ≥ 0.5 ≥ 0.9 ≥ 0.7 ≥ 0.5 1 ≤ 2 ≤ 3 1 ≤ 2 ≤ 3 (NAD)

14-Bus 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

30-Bus 0.32% 0.32% 0.32% 0% 0% 0% 0.32% 0% 0% 0% 0% 0% 1.30%

57-Bus 0.48% 0.27% 0.18% 0.48% 0.33% 0.21% 0.18% 0.06% 0.06% 0.21% 0.03% 0% 4.42%

118-Bus 0.53% 0.51% 0.47% 0.24% 0.21% 0.19% 0.47% 0.32% 0.31% 0.19% 0.08% 0.02% 3.11%

• The values in each cell are the percentage of incorrectly predicted line outages among
the test instances.

• “Probability” measure indicates statistics for the probability assigned by the MLR
classifier to the actual outage event.

• “Ranking” measure indicates whether the actual event was ranked in the top 1, 2, or
3 of probable outage events by the MLR classifier.

• Normalized angle distances (NAD) [2] are obtained by solving DC power flow models
for test instances using MATPOWER [17].

Ornstein-Uhlenbeck process, and Figure c shows the products of the average and ratio. Since
the power injected to the system needs to increase proportionally to the total demands, all
power generation is multiplied by the average of the demand ratios. This average of ratios
is used as the generation level G for the observation vector X defined by (2.9). The data
assumes a 10-second interval between the measurements, so the total number of time points
in the generated data is 24× 60× 6 = 8640.

Once the 24-hour load demand profile is obtained, the AC-power equations are solved
using MATPOWER to calculate the voltage phasor values at each time point. These phasor
values are taken to be the PMU measurements for a normal operation cycle over a 24-hour
period. MATPOWER’s AC power flow equations solver is also used to evaluate voltage pha-
sors for each single-line outage scenario that does not lead to an infeasible system. (During
this process, if there exist duplicated lines that connect the same pair of buses, they are con-
sidered as a single line, that is, we do not allow only a fraction of multiple lines that connect
the same set of buses to be failed.) Simulation of single-line failures to generate training
data is necessary because there are typically few instances of actual outages available for
study. The voltage variation for each line outage at time t is calculated by subtracting these
normal-operation voltages at timepoint t− 1 from line outage voltages at time point t. (The
10-second interval between measurements is usually sufficient time to allow transient fluctu-
ations in phasor values to settle down; see [2].) This process leads to a number of labeled
data pairs (X, Y ) (or (X,Y )) which we can use to train or tune the MLR classifier.

Table 4.1 provides basic information on the power systems used for the experiments.
The number of lines whose removal does not prevent feasible operation of the grid is given
in the column “Feas.,”, while the number of lines that are duplicated or whose removal leads
to an infeasible power flow problem is shown in the column “Infeas./Dup.”. For each feasible
line outage, five equally spaced samples are selected from the first half (that is, the first
12-hour period) of voltage variation data as training instances. Fifty samples are selected
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Figure 4.1: Accuracy on Test Set of IEEE 57-Bus System for different values of τ : Group-
Sparse Heuristic
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Figure 4.2: Accuracy on Test Set of IEEE 57-Bus System for different values of τ : Greedy
Heuristic

randomly from the second half of voltage variation data as test instances. The numbers of
training and test instances are shown in the last two columns of the table. We note that
the number of training instances is quite modest; just five samples per outage scenario are
needed to yield reliable identification, as we show next.

4.2 PMUs on All Buses

We present results for line outage detection when phasor measurement data from all buses
is used. The maximum likelihood estimation problem (2.4) with these observation vectors
is solved by L-BFGS algorithm [14], coded in Matlab. The training time to obtain the
coefficient β for 118-Bus system is about 9 seconds on a personal laptop computer (2 GHz
Intel Core i7 processor with 8GB RAM), with an additional 6 seconds required to solve AC
power flow problems for 5 × (170 + 1) = 855 instances for training set generation.1 We
measure performance of the identification procedure in two ways. The first measure is based

1We need to solve one AC power flow problem to obtain the pre-outage base state, and one additional
AC power flow problem for each of the 170 possible outages. This entire process is carried out once at each
of the five training times, each of which has a different pattern of demands.
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Table 4.3: Error Rates on Test Set for GroupLASSO and Greedy Heuristic Selections on the
57-Bus System.

# of
Strategy τ PMU Locations

Probability Ranking

PMUs ≥ 0.9 ≥ 0.7 ≥ 0.5 1 ≤ 2 ≤ 3

10
GroupLASSO 1.1 1∗ 8 17 27 28 51 52 53 54 55 27.2% 26.9% 21.2% 21.1% 7.3% 4.3%

Greedy 1.2 × 10−1 1∗ 2 17 19 26 39 40 45 46 57 7.4% 7.3% 5.7% 5.7% 0.3% 0.1%

15
GroupLASSO 8.0 × 10−1 1∗ 2 4 17 23 27 28 43 46 47 51 52 53 54 55 17.2% 17.2% 11.7% 11.7% 4.3% 4.2%

Greedy 1.7 × 10−3 1∗ 2 5 12 17 20 21 26 39 40 43 45 46 54 57 1.7% 1.7% 1.7% 1.7% 0% 0%
∗ indicates the reference bus.

Table 4.4: Line Outage Detection Error Rates on Test Set with PMUs on About 25% of
Buses.

System τ
# of

PMU Locations
Probability Ranking DC Model

PMUs ≥ 0.9 ≥ 0.7 ≥ 0.5 1 ≤ 2 ≤ 3 (NAD)

14-Bus
5 × 10−2 3 1∗ 7 12 0.4% 0.3% 0.2% 0.2% 0% 0% 30.9%

5 × 10−3 3 1∗ 11 12 0% 0% 0% 0% 0% 0% 43.0%

30-Bus
5 × 10−2 4 1∗ 3 23 30 0.4% 0.4% 0.4% 0.4% 0% 0% 57.9%

5 × 10−3 5 1∗ 3 14 22 29 0% 0% 0% 0% 0% 0% 45.9%

57-Bus
5 × 10−2 12 1∗ 2 5 17 21 26 39 40 45 46 54 57 2.9% 2.9% 2.9% 2.9% 0.2% 0.2% 28.0%

5 × 10−3 14 1∗ 2 5 17 20 21 26 39 40 41 45 46 54 57 1.5% 1.5% 1.5% 1.5% 0.1% 0.1% 25.0%

118-Bus

5 × 10−2 15 2 22 29 36 48 58 62 63 69∗ 81 91 95 106 108 115 5.8% 5.8% 5.8% 5.8% 3.8% 3.8% 30.3%

5 × 10−3 21
3 13 29 35 43 47 55 58 62 63 69∗

75 81 82 91 93 104 106 107 113 115
0.7% 0.5% 0.4% 0.4% 0.1% 0.1% 28.2%

∗ indicates the reference bus.

on the probability assigned by the MLR model to the actual line outage. The “probability”
column on Table 4.2 shows failure rates for the classifiers according to this measure, for both
the original phasor difference vector X (2.8) and the extended vector X (2.9). Each column
shows the percentage of testing samples for which the probability assigned to the correct
outage does not exceed 0.9, 0.7, and 0.5, respectively. The result shows that the performance
of line outage identification is very good, even for the original observation vector X. For
both X and X, the actual line outage is assigned a probability of greater than 0.5 in at least
99% of test cases.

The second measure is obtained by ranking the probabilities assigned to each line
outage on the test datum, and score a positive mark if the correct outage is one of the top
one, two, or three cases in the ranking. We see in the “ranking” column on Table 4.2 that
the actual case appears in the top two in almost every case.

For comparison, the last column of Table 4.2 shows the error rates of line outage iden-
tification which uses only phase angles from a DC model. The pre-outage phase angles and
post-outage phase angles are computed using MATPOWER’s DC power flow problem solver,
and the line whose pre- and post-outage angle difference is the closest to the observed an-
gle difference (obtained from AC power flow equations) using the normalized-angle-distance
(NAD) metric [2] is identified as the failed line. The identification performance is still good,
but the error rates (as high as 4.4%) are significantly higher than our MLR approach. Even
in the case in which PMUs are installed on all buses, there seems to be a significant price to
pay in terms of degraded identification performance, when only phase angle data is used.
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4.3 PMU Placement

In this section we only consider the extended observation vector X defined by (2.9). We
assume too that a PMU is installed on the reference bus, for purposes of maintaining con-
sistency in phase angle measurement. We describe in some detail the performance of the
proposed algorithm on the IEEE 57-Bus system, showing that line-outage identification
performance when PMUs are placed judiciously almost matches performance in the fully-
instrumented case. We then summarize our computational experience on IEEE 14-, 30-, 57-,
and 118-Bus systems.

For our regularization schemes, we used groups Ps, s = 1, 2, . . . , N , defined as in
(3.2). The final two entries in the extended observation vectors (the average-generation and
constant terms) are not included in any group, so there two features are used by all classifiers.

4.3.1 IEEE 57-Bus System

We describe here results obtained on the IEEE 57-Bus system with two heuristics discussed
in Chapter 3: The GroupLASSO and Greedy Heuristics.

In Figure 4.1, results for the GroupLASSO heuristic are displayed for different values
of τ . The horizontal axis indicates the number of PMUs selected by this heuristic. The
vertical axis indicates the number of test cases for which the true outage was classified by
the heuristic. Each bar is divided into sections according to the probability assigned to the
true outage by the MLR classifier. The top partitions indicate cases in which high probability
is assigned (that is, the outage was identified correctly) while the bottom section of each
column indicates cases in which the probability assigned to the true outage scenario is less
than 0.5. For example, the second bar from the left in Figure c, which corresponds to two
installed PMUs, corresponds to the following distribution of probabilities assigned to the
correct outage scenario, among the 3350 test instances.

Probability [.9, 1] [.8, .9] [.7, .8] [.6, .7] [.5, .6] [0, .5]

# of Instances 963 144 135 161 206 1741

Note that the area for probability [.9, 1] (top-most area) occupies a fraction 963/3350 of the
bar, the area for probability [.8, .9] (second from top) occupies 144/3350, and so on.

When only one PMU is installed, that bus naturally serves as the angle reference, so
no phase angle difference information is available, and identification cannot be performed.
As expected, identification becomes more reliable as PMUs are installed on more buses.
The value τ = 0.1 (Figure c) appears to select locations better than the smaller choices of
regularization parameter. For this value, about 10 buses are sufficient to assign a probability
of greater than 90% to the correct outage event for more than 90% of the test cases, while
near-perfect identification occurs when 30 PMUs are installed. Note that for τ = .1, there
is only slow marginal improvement after 10 buses; we see a similar pattern for the other
values of τ . The locations added after the initial selection are being chosen on the basis
of information from the single regularized problem (3.4), so locations added later may be
providing only redundant information over locations selected earlier.

Figure 4.2 shows performance of the Greedy Heuristic, plotted in the same fashion as
in Figure 4.1. For each value of τ , Algorithm 2 is performed with R0 = ∅, with iterations
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continuing until there is no group s ∈ S \Rl−1 such that qs([β
l]Ps) > 0. Termination occurs

at 24, 16, and 11 PMU locations for the values τ = 10−5, 10−3, and 10−1, respectively. As the
value of τ increases, the number of PMUs which are selected for line outage identification
decreases. We can see by comparing Figures 4.1 and 4.2 that classification performance
improves more rapidly as new locations are added for the Greedy Heuristic than for the
GroupLASSO Heuristic. Larger values of τ give slightly better results. We note Figure c
that almost perfect identification occurs with only 11 PMU locations, while only 6 locations
suffice to identify 90% of outage events with high confidence.

Although we can manipulate the GroupLASSO technique to achieve sparsity equivalent
to the Greedy Heuristic (by choosing a larger value of τ), the PMUs selected by the latter
give much better identification performance on this test set. In Table 4.3, the parameter
τ in the GroupLASSO heuristic is chosen manually, to find the solutions with 10 PMUs
and 15 PMUs for the 57-Bus system. Performance is compared to that obtained from the
Greedy Heuristic, with a much smaller value of τ . Results for the Greedy Heuristic are
clearly superior.

4.3.2 Greedy Heuristic on 14-, 30-, 57- and 118-Bus System

We applied the Greedy Heuristic to 14-, 30-, 57-, and 118-Bus Systems with two values of
τ = 5 × 10−2 and τ = 5 × 10−3, and found that the phasor measurements from the small
set of buses are enough to have the similar line outage identification performance to the
full measurement cases. Table 4.4 shows the PMU locations selected for each case, and line
outage identification performance. Identification performance is hardly degraded from the
fully instrumented case, even when phasor measurements are available from only about 25%
of buses. The location of PMUs for IEEE 30-Bus and IEEE 57-Bus systems are displayed
in Figure 4.3, with instrumented buses indicated by circles.

If, however, only phase angles are used for outage identification, the error rates increase
dramatically; see the column “DC Model (NAD)” in Table 4.4. These results show that the
advantages of using full phasor measurements (voltage magnitudes as well as phase angles)
are significant when PMU measurements are available from limited number of buses. We note
that the PMU locations were chosen optimally for our MLR classifier, and that the optimal
locations may be different for the NAD metric. However, we expect that the chosen PMU
locations would be broadly similar, so we believe that the comparison is worth reporting.

4.3.3 Combining PMU Placement with Retraining

The optimal placement of PMUs in a network will depend on network conditions, including
typical demand and generation profiles. However, PMU placement is a design decision
made for the medium-long term, and this decision should take account of a wide variety of
demand profiles that may be encountered during the decision period. When the grid contains
renewable energy sources, PMU placement decisions should also account for the wide range
of output from these sources.

Having decided on PMU placement, however, we have the flexibility to retrain our
identification algorithm periodically, determining each time a new value of the coefficients β
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Table 4.5: Error Rates Obtained for General PMU Placement plus Retraining.

PMU Placement Performance Test on Different Load Profiles

# of PMUs PMU Locations
Load Profile (κ)

for Testing

Probability Ranking

≥ 0.9 ≥ 0.7 ≥ 0.5 1 ≤ 2 ≤ 3

15

(τ = 2.8 × 10−1)

2 22 29 36 48 58 63 67

69∗ 81 84 95 102 107 108

0.85 5.6% 5.5% 5.4% 5.4% 2.5% 1.8%

1.00 6.2% 6.2% 6.2% 6.2% 4.8% 4.7%

1.15 11.4% 11.1% 11.0% 11.0% 3.6% 2.1%

21

(τ = 2.25 × 10−2)

2 13 14 27 35 43 47 55 58 62 63

69∗ 75 81 86 91 95 104 106 108 114

0.85 1.9% 1.8% 1.8% 1.8% 0.1% 0.1%

1.00 0.4% 0.3% 0.2% 0.2% 0.1% 0%

1.15 1.1% 1.0% 1.0% 1.0% 0.2% 0.1%

∗ indicates the reference bus.

that is customized to prevailing grid conditions but that makes use only of the selected PMU
locations.

We demonstrate the effects of this procedure on out 118-Bus test set as follows. First,
we took the standard demand profiles used as the basis for our experiments above, and
added extra training points to the data set in which (a) all demands were scaled by .85
and (b) all demands were scaled by 1.15. The set of training data used to select the PMUs
was thus tripled in size. Second, we obtained optimal PMU locations, for varying numbers
of PMUs, using the greedy heuristic described above. Third, we retraining the classifier to
obtain a different set of coefficients β for each of the three scenarios — standard demand
data, demands scaled by .85, and demands scaled by 1.15 — requiring the classifier to use
only data from the selected PMU locations. (That is, the coefficients of β at non-selected
locations was fixed at zero.) We then tested the performance of these three classifiers on
test data for each of the three scenarios.

Results are shown in Table 4.5. To allow direct comparison with Table 4.4, we chose
two values for the number of PMUs: 15 and 21. (Note that the values of τ used in the
greedy heuristic in Table 4.5 differ from the values used in Table 4.4. This is in part because
the number of terms in the f(β) term in the objective (3.7) is tripled, so that τ should be
approximately tripled to compensate.) Table 4.5 shows locations for the PMUs using the
unified data set, with the final columns showing results on the test data for each of the three
scaling factors, which are represented by the parameter κ. In comparing the results for 15
PMU locations with those chosen for the single value κ = 1 in Table 4.4, we see that 4 out
of 15 PMUs were placed in different locations. A comparison of identification performance
shows that the error rates go up slightly for κ = 1 (the “top-3” error rate increases from
3.8% to 4.7%), while the error rates for the new values of κ (.85 and 1.15) are good (top-3
rates of 1.8% and 2.1%, respectively). For the 21-location results, 7 PMUs are placed in
different locations from Table 4.4. Identification performance is strong, with top-2 and top-3
error rates near zero, essentially matching the results of Table 4.4.
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Figure 1. Topology of the IEEE 30-bus 

 
Table 1 show the coefficients of the quadratic functions of cost and the limits min and 

max of the actives powers, the technical and economic parameters of the six generators of the 

IEEE 30-bus electrical network. 

Table 1. Generators parameters of the IEEE 30-bus Electrical Network 

Bus Number 
min
iPg  

[MW] 

max
iPg  

[MW]
a 

[$/hr] 
b 

[$/MWhr] 
c  

[$/MW2hr] 
Bus 1 50 200 0 2.00 37.5·10-4 
Bus 2 20 80 0 1.75 175·10-4 
Bus 5 15 50 0 1.00 625·10-4 
Bus 8 10 35 0 3.25 83·10-4 
Bus 11 10 30 0 3.00 250·10-4 
Bus 13 12 40 0 3.00 250·10-4 

Does have end to prove that the set of the three parameters of the colony of ants ȕ, ȡ 

and q0 is extensively independent of the problem of optimization to solve, we applied ACO-

OPF on the network IEEE test 30 buses while using the 10 better combinations of the three 

parameters ȕ, ȡ and q0 and that give the best results for commercial traveler problem for the 

case of 30 cities [28]. The (Table 2) shows the values of actives powers, the losses of powers 

and the cost of fuel for the 10 ensemble wholes of parameters. We observe that all results are 

very near of the optimum. The average value of the cost for the 10 cases is the order of 

804.087 $/h. The value min of the cost is 803.123$/h corresponds a (ȕ = 12, ȡ = 0.5 and        

q0 = 0.3) with losses of powers 9.4616 MWS, while the bad value is 805.082 $/h correspond 

a (ȕ = 10, ȡ = 0.6 and q0 = 0.3) with losses of powers 9.1472 MWS.  
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Figure 1. Topology of the IEEE 57-bus 

 

Does have end to prove that the set of the three parameters of the colony of ants β, ρ 

and q0 is extensively independent of the problem of optimization to solve, we applied ACO-

OPF on the network IEEE test 57 buses while using the 10 better combinations of the three 

parameters β, ρ and q0 and that give the best results for commercial traveler problem for the 

case of 30 cities [28]. The (Table 2) shows the values of actives powers, the losses of powers 

and the cost of fuel for the 10 ensemble wholes of parameters. We observe that all results are 

very near of the optimum. The average value of the cost for the 10 cases is the order of 

3173.3126 $/h. The value min of the cost is 3172.202 $/h corresponds a (β = 10, ρ = 0.6 and        

q0 = 0.3) with losses of powers 17.04 MWS. Therefore we remark that even the most distant 

cost value is acceptable since it is on the one hand moves away of the value min with only 

0.056% and on the other hand the value of the losses corresponds has this value that is 17.04 

MWS is better than the one corresponds at the value min with a report of 5.399%. 
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∗ System diagrams are taken from [20, 21].

Figure 4.3: PMU Placement for IEEE 30-Bus and IEEE 57-Bus Systems.
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Chapter 5

Conclusions

We have presented a novel approach for identifying single-line outages in a power grid from
data supplied from PMUs, using a multinomial regression classifier. The model employs
historical load demand data and simulated output of an AC power-flow model to train the
classifier, then uses the trained classifier to identify outages in real time from streaming PMU
data. Numerical results obtained on IEEE 14-, 30-, 57-, and 118-Bus systems prove that the
approach can identify outages reliably.

Building on this line outage identification framework, we study the problem of placing
PMUs devices so as to optimize performance of the classification framework. Heuristics are
proposed to decide which buses should be instrumented with PMUs. In our test cases, the
performance of the classifier when PMUs are installed on just 25% of the buses is almost as
good as when PMUs are attached to all buses.

Several extensions to this work are possible. We have found that detection performance
becomes even better if we take account of the fact that line outages can be detected directly
for lines to which a PMU is attached; there is no need to rely on the indirect evidence of
voltage phasor changes, for these lines. We have also found that multiple-line outages can
be detected reliably (at least for a small grid), despite the much greater number of classes
in the MLR classifier.
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Chapter 1

Introduction

1.1 Introduction

Identification of power line outages and, generally, changes in the open/close status of trans-
mission line breakers is particularly critical for a number of tasks, including state estimation,
optimal power flow, real-time contingency analysis, and thus, security assessment of power
systems.

Phasor measurement units (PMUs) provide voltage and power data per local system
in real time. Likewise, real-time data are telemetered internally to offer topology-bearing
information on the connectivity status of local circuit breakers and switches. Although PMUs
have become increasingly widespread throughout power networks, the buses monitored by
PMUs still constitute a very small percentage of the total number of system buses. Thus,
useful phasor measurement data is available only at a subset of buses. The system data
exchange (SDX) module of the North American Electric Reliability Corporation (NERC)
can provide grid-wide interarea (i.e. basecase) topology information on an hourly basis [7],
but this may prove inadequate in near real-time monitoring of transmission lines. Following
a line switching event, evaluation of the power system uses real time data from PMUs, but
may mistakenly continue using the original basecase topology information. This may lead
to incorrect values for the power flows on lines and voltages, which in turn could lead to risk
of voltage collapse and blackouts if left unchecked.

In a nutshell, the need arises for each internal system to identify, in a computationally
efficient manner, line outages (and, generally, line status changes) in its external counterpart
relying only on basecase topology information and local PMU data. The aim of this research
is to derive useful information from PMU data in spite of its limited coverage, and use it to
detect system line outages using known system basecase topology information.

1.2 Literature Review

Existing approaches are either challenged by the combinatorial complexity issues involved
and are thus computationally tractable for identifying single and double line-outages or
they require less pragmatic assumptions such as conditionally independent phasor angle
measurements available across the grid.
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The work on detection of topology errors by state estimation in [5] involves using
measurement data collected by the Supervisory Control and Data Acquisition (SCADA)
system, namely, status data of breakers and switches, and analog data of real and reactive
power flows, injections, and bus voltages to determine real-time topology of the network.
State estimation is used to process this data globally, and certain conditions for detectability
of topology errors are presented. Apart from line outages, this paper also considers detection
of bus splits and shunt capacitor/reactor switching. The residual-based rN - test for bad data
in state estimation is used for the detection of topology errors from the measurement data
of the status. However, this approach may fail to detect the location of the topology error,
as well as multiple line outages. Another major disadvantage is that the error is detectable
only if true state of the system is known.

The problem addressed in [2] is the detection of single line outages using only PMU
data, transmission line and transformer parameter data, and system topology information.
Following a system event, the phasor angle differences at buses with PMUs (measured buses)
in the system with respect to their pre-event values can be determined as ∆θobserved. Once
the changes in angles at each bus have been determined (denoted as a K -dimensional vector,
where K is the number of phasor angles measured using PMUs), the following optimization
problem is solved:

E∗ = arg min
E∈ε
||∆θobserved − f(E)||

where ε is the set of events to be checked for occurrence, and f(E) is a function which
relates an event E to the changes in angles caused by the event. Although it is not feasible to
include every possible event on the system, one useful application of the algorithm developed
in this paper would be the extension of the event set to include a wider array of potential
events such as multiple line outages and single generator outages. The results shown in
[3] indicate that the methods used to detect single line outages [2] can be extended to
detect double line outages on the system. However, defining the external line identification
problem in this fashion, as a combinatorially complex (integer programming) problem, would
be computationally demanding.

One of the recent papers published on power systems topology error estimation, per-
haps closest to the work to be presented here, is by Zhu and Giannakis entitled ‘Sparse
Overcomplete Representation for Efficient Identification of Power Line Outages’ [4]. This
paper develops a near-real time algorithm for identifying multiple line outages by solving a
sparse signal reconstruction problem via

(a) Greedy Orthogonal Matching Pursuit;

(b) Lasso Technique using coordinate descent (CD) iterations;

using only a subset of voltage phasor angle data from PMUs and hourly basecase topology
information. Representing the power system in a linear DC power flow model, the paper
constructs the pre- and post-event phase differences of the internal system’s PMU data as a
sparse overcomplete representation:

θ̃I = [B−1]I(
∑
l∈ε̃

slml) + [B−1]Iη

2



where B is the admittance matrix used to represent the DC power flow model, ml’s are
columns of the incidence matrix, η accounts for small perturbations between the pre- and
post- power injections (which is independent of the line outage event), and the subscript I
represents the measured subset of buses in the system. The outaged lines are collected in
the subset ε̃, and the sl’s are the coefficients of this sparse overcomplete representation.

In order to overcome the combinatorial complexity of previous exhaustive search algo-
rithms, this work reformulates the problem into a sparse linear regression model capturing
all possible line outages. Using the Singular Value Decomposition (SVD) of the fat matrix
[B−1]I = UIΣIV

T
I , and transforming θ̃I to y = Σ−1

I UT
I θ̃I :

y = V T
I (
∑
l∈ε̃

slml) + V T
I η

= V T
I Ms+ V T

I η

= As+ V T
I η

This is a sparse linear regression model with A as the transformed incidence matrix
(or regression matrix) and unknown regression coefficients in the sparse L× 1 vector s with
non-zero entries only in the places corresponding to line outages i.e. whose lth entry is non-
zero if l ∈ ε̃ and 0 otherwise. The problem now involves estimating the sparse vector s to
recover the line outage set ε̃. The line outage set ε̃ is no longer present in the model which
eliminates the need for exhaustive search.

This sparse signal reconstruction is approached in two ways. Using the Greedy Orthog-
onal Matching Pursuit (OMP) algorithm, a least squares fit to y is found using the columns
of the regression matrix A. If the number of line outages Lo is known, the OMP algorithm
is shown to find the solution in a single step. If only the maximum number of line outages
prescribed is given, say kmax, the OMP algorithm outputs a string of greedy solutions for
different number of possible line outages. One can adopt the Minimum Description Length
(MDL) type test to find the optimum of these solutions. The signal reconstruction could
also be carried out by the method of Lassoing Line Outages via CD iterations. Here, the
most sparse solution of the over-determined system y = As+ η is found by formulating the
problem as optimizing the l0 norm of the sparse vector s:

min ||s||0 s.t. ||y − As||22 ≤ δ (1.1)

This non-convex problem, being NP-hard, is relaxed to a related convex optimization
problem instead, where the l1 norm is used instead of the l0 norm (known as convex re-
laxation). The convex quadratic program can be solved to find the global minimizer, using
a CD iterative solver. Tests run on the IEEE 118- and 300- bus systems show that both
algorithms perform well for upto double line outages.

The premise of the work to follow here is that greater information content for topology
estimation is present in power system models that represents dynamic evolution of system
states (i.e. an ODE or DAE model), as opposed to the steady-state, purely algebraic repre-
sentations that dominate current literature.
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Chapter 2

Luenberger Observers and the
Structure of State Matrix

2.1 Review of Luenberger State Observer Theory

State feedback and many other situations rely on the availability of the internal states.
However, accessibility to the internal states is often impractical, or even impossible. An
alternate approach is to develop a replica of the dynamic system that provides an “estimate”
of the system states based on the measured input and output of the physical system [1].
Assume that the linearized steady state system model is of the form:

ẋ = Aactualx(t) +Bu(t) ; x(0) = x0 (2.1)

y(t) = Cx(t)

where x ∈ Rn×1 are the state variables, y ∈ Rr×1 are the measured outputs with r ≤ n,
and u ∈ Rm×1 are the inputs to the system. The system state matrix A0 ∈ Rn×n, the input
matrix B ∈ Rn×m and the output matrix C ∈ Rr×n are known. In the application here, the
state variables x would be the generator angles and frequencies at the buses of the system,
the inputs u would predominantly be load demands, generator active power set points, and
the measured outputs y will be primarily the PMU measurements from a small subset of
buses in the system.

The observer then creates a parallel simulation of the system in a model:

˙̂x = Amodelx̂(t) +Bmodelu(t) ; x̂(0) = x̂0 (2.2)

ŷ(t) = Cmodelx̂(t)

The Luenberger observer attempts to use the output error :

y(t)− ŷ(t)

as a weighted input to the model to try to correct the estimated states and cause x̂(t)→ x(t)
The observer model with the output error feedback can be expressed as:

˙̂x = Amodelx̂(t) +Bu(t)− L(y(t)− Cx̂(t)) (2.3)

= (Amodel + LC)x̂(t) +Bu(t)− Ly(t) (2.4)

4



Figure 2.1: Closed Loop State Estimator

where L ∈ Rn×r is the observer gain matrix.
The estimation error dynamics of the system can be defined as the difference in the

actual state variables and the estimate variables, i.e. e(t) = x(t) − x̂(t). Hence, from (2.1)
and (2.4) :

ė = ẋ(t)− ˙̂x(t)

= Aactualx(t)− (Amodel + LC)x̂(t) + Ly(t)

Defining the difference between the actual system matrix Aactual and the estimator
model Amodel as :

Aactual = Amodel + ∆A (2.5)

the error dynamics can be simplified as:

ė(t) = (Amodel + LC) e(t) + ∆A · x̂(t) (2.6)

If the model is accurate, i.e. Amodel = Aactual, the disturbance term ∆A·x̂(t) disappears,
and the Luenberger observer theory shows that for an appropriate choice of the gain matrix
L, the error will asymptotically approach zero regardless of the initial conditions. Choosing
the gain matrix L such that (Amodel +LC) has stable eigenvalues faster than the eigenvalues
of the physical system ensures rapid conversion of the estimates x̂(t) to the actual states
x(t).

2.2 Line Outage Problem

In this paper, considering topology errors in the system (for e.g. lines switching out, etc.),
the model system matrix Amodel (or A0) may not be true to the actual system matrix Aactual
leading to a non-zero difference matrix ∆A defined above in (2.5). The error dynamics (2.6)
is no longer guaranteed to asymptotically converge to zero by assigning the appropriate
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eigenvalues to the feedback system (A0 +LC) due to the additional term ∆A · x̂(t), that can
be thought of as a disturbance input.

As explained later in this chapter in section 2.2.1, due to the structure of the system
matrix A0 in a power system, a system line outage creates a ∆A that would be a low rank
matrix. The hypothesis in this research is that if one picks an appropriate gain matrix L to
assign a subset of desired eigenvalues and eigenvectors to the feedback system (A0 + LC),
the estimate variables could be made to align with the low-dimensional range space of this
difference matrix ∆A and thus lead to a way to “concentrate” the error in a particular,
known subspace when a line outage occurs.

2.2.1 State Matrix Formation

Consider an n bus system with m ≤ n generators and l transmission lines. Without loss of
generality, assume the m generator buses are the first m buses, and the remaining n − m
buses are load buses. Select one bus, say bus 1, as the reference or slack bus that is assumed
to have a generator phase angle equal to zero (δ1 = 0), and the phase angles at all the other
buses are measured relative to this. The state variables are the generator phase angles and
generator frequencies:

x =



δ2

δ3
...
δm
−−−
ω2

ω3
...
ωm


Writing the swing equations for the generator buses:

δ̇ = ω(t)− ωsyn

Mω̇ = Pm − Pe −
D

ωsyn
(ω(t)− ωsyn)

where ωsyn is the generator synchronous frequency, Pm is the mechanical input and Pe is the
electrical output to the generator, M ∈ Rm×m and D ∈ Rm×m are diagonal matrices with
diagonal entries corresponding to the generator inertias and damping coefficients respectively.

Assuming an unforced system and linearizing about the steady state operating point,
we get

∆δ̇ = Im×m∆ω (2.7)

∆ω̇ = −M−1D ·∆ω −M−1{ ∂
∂δg

(Pg − PD) ·∆δ}

= −M−1D ·∆ω −M−1{∂Pg
∂δg
−
[
∂Pg

∂δl

∂Pg

∂V

] [ ∂Pl

∂δl

∂Pl

∂V
∂Ql

∂δl

∂Ql

∂V

]−1 [ ∂Pl

∂δg
∂Ql

∂δg

]
}
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In matrix form:



∆δ̇2
...

∆δ̇m
−−−
∆ω̇2

...
∆ω̇m


=

 0m−1×m−1 | Im−1×m−1

−−−−−−−−−−−− −−− −−−−
−M−1{ ∂

∂δg
(Pg − PD) ·∆δ} | −M−1D

 ·



∆δ2
...

∆δm
−−−
∆ω2

...
∆ωm


(2.8)

Further simplifying the network model by assuming all buses to have generators attached,
we recall the DC power flow approximation. The

∂P e

∂δ
is a symmetric, positive semi-definite

matrix with the form of a weigthed Laplacian matrix:

∂P e

∂δ
∼= Z · diag{bk|V 0

i ||V 0
j | cos(δ0

i − δ0
j )}ZT

where Z is the incidence matrix defined in section 2.2.2, bk’s are the imaginary part of the
admittance of the lines, V 0 and δ0 are the steady state operating points of the system.

In the DC power flow, one further simplifies to

∂P e

∂δ
∼= [B]

where B is the imaginary part of the admittance matrix Ybus of the system. The simplified
unforced electromechanical state equations for the power system are then:

[
∆δ̇
∆ω̇

]
=

 0 I

−M−1 ∂Pe
∂δ︸︷︷︸ −M−1D

 · [∆δ
∆ω

]
(2.9)

=

[
0 I

−M−1B −M−1D

]
︸ ︷︷ ︸
system state matrixA0

·
[

∆δ
∆ω

]
(2.10)

2.2.2 Low rank change due to loss of line

Given the node vs. branch incidence matrix of the system represented as a graph: Z =
[z1 z2 . . . zl] ∈ Rn×l where a column zk represents the line k, from say bus p to q, has zeroes
in all the rows except a 1 in the pth row and a -1 in the qth row. The Ybus of the system can
be represented as:

Ybus = Z · diag{y1 y2 . . . yl} · ZT

where yi’s are the series admittance of each line with shunt effects neglected. Switching out
one line, say the kth line, we have the new Ybus expressed as:

Y new
bus = Y old

bus + Z · diag{0 0 . . . − yk . . . 0} · ZT︸ ︷︷ ︸
∆Y→rank1
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Thus, a line outage shows up as only a rank 1 change in the admittance matrix of the system.
Similarly, in the DC Power Flow approximation,

∂P e

∂δ
∼= Z · diag{b} · ZT

where b’s are the imaginary part of the admittance of a line. Translating it into the system
matrix (2.10), it follows that the difference in the post-event and pre-event state matrices
∆A in (2.5) would also be only a rank 1 matrix.

2.2.3 Change of Coordinates

In an attempt to get a block symmetrical system state matrix, we propose a change of
coordinates.

Let
∆δ̃ = M1/2∆δ (2.11)

∆ω̃ = M1/2∆ω

then, from (2.10) and (2.11),[
∆ ˙̃δ

∆ ˙̃ω

]
=

 0 | I
−−−− −−− −−−−

−M−1/2[B]M−1/2 | −M−1/2[D]M−1/2

 · [∆δ̃
∆ω̃

]
i.e. [

∆ ˙̃δ

∆ ˙̃ω

]
=

 0 | I
−−−− −−− −−−−
−B̃ | −D̃


︸ ︷︷ ︸

Ã

·
[

∆δ̃
∆ω̃

]
(2.12)

where B̃ = −M−1/2[B]M−1/2 and D̃ = −M−1/2[D]M−1/2 are symmetric positive semi-
definite matrices and Ã is block symmetrical.

The system dynamics can now be expressed as:

Physical System:
˙̃x = (Ã0 + Ã)x̃ ; x̃(t = 0) = x̃0

Observer:
˙̃̂x = Ã0

ˆ̃x+ L(Cx̃− C ˆ̃x) ; ˆ̃x(t = 0) = ˆ̃x0

and the error dynamics given as:

˙̃e = (Ã0 + LC)ẽ+ ∆Ãx̃(t)

For ease of notation, we drop the tildes from now on.
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Chapter 3

Eigenvector-Eigenvalue Placement

Consider the case of a single perturbation of the state matrix (e.g. line failure event(s))
characterized by

Aactual = A0 + ∆A (3.1)

where Aactual ∈ Rn×n is the actual linearized state matrix, A0 ∈ Rn×n is the state matrix
employed by the observer (base case state matrix) and ∆A is the error.

Let the range space of ∆A be spanned by the vectors w1, w2 . . . ws where n > s ≥ 1
and W = [w1w2 . . . ws]

The error dynamics of the Luenberger observer will take the form

ė = (A0 + LC) · e(t) + ∆A · x(t) (3.2)

Then ∃d : R→ Rs such that ∆A · x(t) = W · d(t); hence we treat d(t) as an unknown
disturbance input in

ė = (A0 + LC) · e+W · d (3.3)

Our goal is to concentrate the effect of the disturbance input into a small number (here
illustrated as just one) of invariant subspaces of (A0 + LC), and minimize its effect in all
other invariant subspaces.

Based on the classic work of [10], [11] investigated eigenvector-eigenvalue placement
for power system controller design. However, adapting these results to observer design re-
quires more degrees of freedom than available. We consider solving an optimization problem
instead.

3.1 The Optimization Problem

To quantify the goal of minimizing the impact of disturbances in directions spanned by
columns of W on the invariant subspace determined by an eigenvector vk of (A0 + LC), we
seek to minimize vTkWW Tvk, with normalization ||vk|| = 1.

So we consider framing our problem of selecting L ∈ Rn×r (where r is the number of
measurements) as:

9



Given : A0 ∈ Rn×n, C ∈ Rr×n,W ∈ Rn×s

Find : L ∈ Rn×r to

minimize
n−1∑
k=1

vTkWW Tvk (3.4)

subject to (A0 + LC)V − V Λ = 0n×n

with V = [v1 v2 . . . vn], ||vk|| = 1 and Λ = diag{λ1, λ2, . . . λn} where λi < 0 for all i =
1, 2, . . . , n
Additionally, we include a constraint that ensures that the set of eigenvectors V spans the
whole of Rn. This can be done by adding a constraint to make sure that the matrix composed
of eigenvectors V is full rank, here n. A constraint such as det(V ) ≥ ε or the smallest singlular
value of the the matrix V from the singular value decomposition of the matrix σmin ≥ ε,
where ε is a sufficiently small positive number, would serve the purpose.

For the structure of the system matrix in power systems, it is natural to get complex
conjugate eigenvalue pairs along with real eigenvalues. We consider a transformation to
avoid working in the complex plane [12]. Each complex conjugate pair of eigenvalues are
represented by a 2× 2 block as: [

µ1 ω1

−ω1 µ1

]
where λ1 = µ1 + jω1 and λ2 = λ∗1 = µ1 − jω1.

Thus, the diagonal matrix of eigenvalues, i.e.
λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

. . .
...

0 0 · · · λn


is transformed into the block diagonal form:

Λblock =



µ1 ω1 |
−ω1 µ1 |
− − − − − −

| µ3 ω3 |
| −ω3 µ3 |
− − − −

. . .

− − −
| µn−1 ωn−1

| −ωn−1 µn−1


(3.5)

The corresponding transformation matrix for the eigenvectors picks out the real and
imaginary parts of the complex conjugate pair of eigenvectors corresponding to these complex
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conjugate pair of eigenvalues. That is, the pair of eigenvectors v1 and v2 = v∗1 would be
expressed as [

w1 w1

]
where w1 = Re(v1) and w2 = Im(v1).

The matrix composed of complex eigenvectors

V =


...

...
...

v1 v2 · · · vn
...

...
...


is then transformed to the real matrix

Vblock =


...

...
...

Re(v1) Im(v1) · · · Im(vn−1)
...

...
...

 =


...

...
...

w1 w2 · · · wn
...

...
...

 (3.6)

The transformed eigenvalue-eigenvector equation

(A0 + LC) · Vblock = Vblock · Λblock (3.7)

from (3.4), (3.5) and (3.6) is then completely real.
Finally, the constraints to the optimization problem are :

a. (A0 + LC) · Vblock = Vblock · Λblock, i.e. eigenvalue-eigenvector relation,

b. ||vk|| = 1, i.e. typical normalization,

c. rank(V ) = rank(Vblock) = n, ensuring non-trivial Jordon blocks,

d. Re(λk) < 0, alternatively µk < 0,

e. Im(λk) 6= 0, alternatively ωk > 0

While the first three constraints are nonlinear, the rest of the constraints are linear
constraints. The last constraint is an optional constraint included initially for ease to have
all complex conjugate pairs of eigenvalues.

The above nonlinear optimization problem can be solved by various algorithms includ-
ing the interior-point method, which is used in this work.

3.2 5-bus test case

Considering a 5-bus test case, with generators assumed to be connected at every bus, and
line data as shown below. Bus 1 is selected as the reference bus. The state variables are the
generator phase angles and frequencies, and PMU measurement data is available from bus
2 and 3. At time t0, line 4 between bus 4 and bus 5 is assumed to go out of service.
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Figure 3.1: 5-bus test case

Line ‘from’ bus ‘to’ bus susceptence bl

1 2 1 2
2 2 3 3
3 1 4 5
4 4 5 4
5 5 2 9
6 3 5 2

Table 3.1: Line Data for 5-bus test case

The complex conjugate eigenvalue pairs of the original basecase matrix turn out to be:

Choosing a gain matrix L to ensure that the disturbance input is concentrated mostly
in one of the invariant subspaces of the observer error system matrix (A0 + LC) :

L =



2.0326 −13.5736
22.0239 −2.6280
98.5044 56.9155
21.9845 −16.3897
−135.6580 −22.8317

83.1067 6.4995
20.2698 −5.5386
187.4140 61.5838


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Eigenvalues of A0

−2.0220± j19.6301
−1.1912± j12.6861
−1.3237± j9.5855
−1.5401± j3.6459

Table 3.2: Eigenvalues of the basecase system matrix

The eigenvalues of the observer control system are then:

Eigenvalues of A0 + LC

−1.7323± j22.7467
−1.7283± j22.7434
−2.5905± j6.3219
−0.3236± j1.6028

Table 3.3: Eigenvalues of the observer control system matrix

Running the composite dynamics of the system given by:[
ẋ
˙̂x

]
=

[
(A0 + ∆A) 0
−LC (A0 + LC)

]
·
[
x
x̂

]
(3.8)

from the initial conditions
x 6= 0

x̂ = 0

we see that the error dynamics of the system asymptotically converge to zero even with
initial conditions of the estimates removed away from that of the actual states.
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Figure 3.2: Error dynamics of the system

Figure 3.3: States of the system
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Figure 3.4: Estimates of the states of the system

3.3 Projection of the state estimates on the subspace

spanned by eigenvectors

In order to observe the projection of the state estimates x̂ onto the subspace spanned by the
eignvectors of the observer state matrix A0 + LC, it is required to obtain an orthonormal
basis of this subspace. Consider the eigenvector vi = vRi

+jvIi where vRi
and vIi are the real

and imaginary parts of the complex eigenvector. The subspace spanned by this eigenvector
is the same as the subspace spanned by the vectors vRi

and vIi . To get an orthonormal basis
for this subspace, the Gram-Schmidt orthogonalization algorithm is used

vR⊥i
= vIi −

vTIi
vRi

||vRi
||2 giving the normalized basis vectors to be v̂Ri

and v̂R⊥i
.

Observing the projection of x̂ onto the eigenvectors of A0 + LC, one can see that the
estimates x̂ tends to align with the subspace spanned by the eigenvector corresponding to
the smallest magnitude eigenvalue even though this may not be the last eigenvalue (recall
optimization problem is set up to try to ensure x̂ aligns with the space spanned by eigenvector
corresponding to the last eigenvalue).

Consider additional constraints to ensure that the smallest (i.e. slowest) eigenvalue is
sufficiently removed away from all other eigenvalues. That is,

|λn−1| < 2|λi| for i = 1, 3, 5, ..n− 3

with λi+1 = λ∗i for DC power flow assumption. Alternately, constraints to impose a de-
scending order to the set of eigenvalues could be introduced, but its immediate benefits are
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minimal. One can now observe that, when the algorithm converges, the estimates x̂ tend to
align with the subspace associated with the eigenvector corresponding to the last complex
conjugate eigenvalue pair (which also turns out to be the smallest magnitude eigenvalue pair
removed away from other eigenvalue pairs).

Testing the algorithm with 10 random initial conditions, the percentage of times the
algorithm converged and gave the desired results for different line outage locations is dis-
played below. For the initial condition on the L matrix, picking the r columns to be normally
distributed random numbers:

Location of line outage % of success

line 5 100%
line 6 80%

Table 3.4: % of success of optimization algorithm for 5-bus 6-line test case with 10 trials
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Chapter 4

Conclusions

This section has presented a method for line outage identification in a power system using the
basecase topology information and PMU measurement data from a limited number of buses
in the system, in which the disturbance input to the Luenberger observer is concentrated into
an invariant subspace of the observer error system matrix. Further, a test of the projection of
the estimated states on this invariant subspace would lead to identification of lines switched
out of service.

Part 1 contains an overview of the line outage estimation problem and the motivation
behind addressing this issue. Previous works in this area have been presented, highlighting
the combinatorial complexity issues and limitations to single or at most double line outage
identification.

Part 2 reviews the Luenberger Observer Control Theory including the conditions for
appropriate choice of the gain matrix to guarantee a stable system with the error asymp-
totically approaching zero. The line outage identification problem is defined in terms of the
Luenberger observer, and the structure of the state matrix of the power system is described.
As a preliminary work, the linear DC approximation is used, and all buses are assumed to
have generators connected. Some properties of the basecase state matrix are detailed as well
as some useful transformations. It is important to note that a line switching event leads to
a low rank change difference matrix between the pre and post event state matrices.

Part 3 outlines the method used in this work for the eigenvector-eigenvalue placement
of the state feedback matrix in order to get the desired gain matrix that ensures that the
disturbance input concentrates in a single subspace of the feedback matrix. Transforma-
tions to the eigenvector and eigenvalue matrices are considered while working with complex
conjugate pairs of eigenvalues. The method is tested initially on a 5 bus test case, and the
composite system simulation with the choice of gain matrix from the optimization problem
defined is shown to stabilize. A further test would be a check of the estimate variables
projecting mainly onto the chosen invariant subspace of the feedback system matrix.

Future work in this area will involve testing the method on larger systems, and then
relaxing the assumptions made on the power system. Much greater information could be
got out of the system by representing it as a ODE or a DAE model instead of DC power
flow assumption. It is also hoped to achieve multiple line outage identifications by possibly
running multiple observers in parallel checking for errors in all or a clever subset of lines.
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Chapter 1

Introduction

Our approach to online Jacobian matrix estimation builds upon our previous work in [1, 2].
In [1], by relying on active power bus injection and line flow data obtained from PMUs, linear
sensitivity distribution factors are computed via the solution of a linear least-squares errors
(LSE) estimation problem. In this work, by exploiting slight fluctuations in measurements
of bus voltage magnitudes and phase angles, as well as those of net active and reactive power
injections obtained from PMUs, we construct an overdetermined set of linear equations, and
solve it via total least-squares (TLS) estimation; the solution to the problem provides the
entries of the Jacobian matrix. In this regard, in [1], even though the regressor matrix
is constructed from PMU measurements, it is assumed to be error-free as per the LSE
estimation framework. In contrast, the TLS-based estimation method proposed here to
compute the Jacobian matrix accounts for errors present in both the regressor matrix and
the observation vector. Furthermore, we improve the adaptability of the proposed method by
formulating a weighted TLS (WTLS) problem, in which recent measurements are weighted
more favorably than past ones.

We illustrate the effectiveness of the proposed measurement-based Jacobian estimation
method by comparing its results to benchmark values obtained via direct linearization of
the power flow equations at a particular operating point. The estimated Jacobian matrix
is quite accurate and can therefore be used in studies that rely on the power flow model.
Moreover, the network topology can be inferred in order to facilitate standard power system
analyses that are heavily dependent upon an accurate system model.

The remainder of this document is organized as follows. In Chapter 2, we define
the elements of the power flow Jacobian matrix as partial derivatives of the power flow
equations, describe the conventional model-based approach to compute them, and formulate
the measurement-based counterpart proposed in this chapter. In Chapter 3, we formulate two
algorithms to solve the Jacobian matrix estimation problem via TLS and WTLS estimation.
Chapter 4 modifies the centralized problem formulation in Chapter 2 and offers a distributed
scheme to estimate the Jacobian matrix. Finally, in Chapter 5, we illustrate the proposed
ideas via case studies involving the IEEE 118-bus system.
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Chapter 2

Preliminaries

Let V denote the set of N buses in the system. Let Vi and θi, respectively, denote the voltage
magnitude and phase angle at bus i; additionally, let Pi and Qi, respectively, denote the net
active and reactive power injections at bus i. The entries of the power flow Jacobian matrix
are composed of partial derivatives of Pi with respect to θj and Vj, which we denote by Ψj

i

and Φj
i , respectively, and partial derivatives of Qi with respect to θj and Vj, which we denote

by Γji and Λj
i , respectively. Suppose θj varies by a small amount, denoted by ∆θj. Also

denote by ∆P
θj
i the change in active power injection at bus i, resulting from ∆θj, with all

other system quantities held constant. Then, it follows that

Ψj
i :=

∂Pi
∂θj
≈ ∆P

θj
i

∆θj
. (2.1)

On the other hand, suppose Vj varies by a small amount, denoted by ∆Vj. Also denote by

∆P
Vj
i the change in active power injection at bus i, resulting from ∆Vj, with all other system

quantities held constant. Then, it follows that

Φj
i :=

∂Pi
∂Vj
≈ ∆P

Vj
i

∆Vj
. (2.2)

Similarly, we define the analogue of (2.1)–(2.2) for reactive power as follows:

Γji :=
∂Qi

∂θj
≈ ∆Q

θj
i

∆θj
, (2.3)

where ∆Q
θj
i denotes the change in reactive power injection at bus i, resulting from ∆θj, with

all other quantities held constant; and

Λj
i :=

∂Qi

∂Vj
≈ ∆Q

Vj
i

∆Vj
, (2.4)

where ∆Q
Vj
i denotes the change in reactive power injection at bus i, resulting from ∆Vj.

Traditionally, the sensitivity factors in (2.1)–(2.4) have been computed offline based on a
model of the power system, including its topology and pertinent parameters. Next, we
describe this traditional model-based approach.
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2.1 Model-Based Approach to Jacobian Computation

Consider a power system with N buses, each of which is categorized into one of the following:
(i) slack bus, for which the voltage magnitude is fixed and with respect to which the phase
angles of all other buses are measured, (ii) voltage-controlled bus, for which the voltage
magnitude is fixed, or (iii) load bus, for which neither voltage magnitude nor phase angle are
fixed (see, e.g., [?]). Let VL (VG) denote the set of NL load (NG voltage-controlled) buses.
Furthermore, without loss of generality, in subsequent developments, we assume that bus 1 is
designated as the slack bus. Then, the static behavior of the power system can be described
by the power flow equations:

Pi = pi(θ1, . . . , θN , V1, . . . , VN), i ∈ VG ∪ VL, (2.5)

and
Qi = qi(θ1, . . . , θN , V1, . . . , VN), i ∈ VL. (2.6)

In (2.5)–(2.6), the dependence on network parameters is implicitly considered in pi(·) and
qi(·). Suppose a solution to (2.5)–(2.6) exists at (θ0

i , V
0
i , P

0
i , Q

0
i ), i = 1, . . . , N . Further,

assume pi(·), for all i ∈ VG∪VL, and qi(·), for all i ∈ VL, are continuously differentiable with
respect to θi and Vi, for all i = 1, . . . , N , at (θ0

i , V
0
i , P

0
i , Q

0
i ), i = 1, . . . , N . For each i, let

θi = θ0
i + ∆θi, Vi = V 0

i + ∆Vi, Pi = P 0
i + ∆Pi, and Qi = Q0

i + ∆Qi. Then, assuming ∆θi,
∆Vi, ∆Pi, and ∆Qi are sufficiently small, we can approximate (2.5) as

P 0
i + ∆Pi ≈ pi(θ

0
1, . . . , θ

0
N , V

0
1 , . . . , V

0
N)

+
∑

j∈VG∪VL

Ψj
i∆θj +

∑
j∈VL

Φj
i∆Vj, (2.7)

for each i ∈ VG ∪ VL, and (2.6) as

Q0
i + ∆Qi ≈ qi(θ

0
1, . . . , θ

0
N , V

0
1 , . . . , V

0
N)

+
∑

j∈VG∪VL

Γji∆θj +
∑
j∈VL

Λj
i∆Vj, (2.8)

for each i ∈ VL, where

Ψj
i =

∂pi
∂θj

, Φj
i =

∂pi
∂Vj

, Γji =
∂qi
∂θj

, and Λj
i =

∂qi
∂Vj

,

all of which are evaluated at the nominal operating point (θ0
i , V

0
i , P

0
i , Q

0
i ), i = 1, . . . , N . Note

that in (2.7)–(2.8), we have accounted for the fact that the voltages at the slack bus and
the voltage-controlled buses are fixed. Next, we illustrate the ideas presented above with an
example.

Example 1 (3-Machine 9-Bus System) Here, we consider the WECC 3-machine, 9-bus
system model (see, e.g., [3]), the topology of which is shown in Fig. 2.1. In this system,
bus 1 is designated as the slack bus; there are NG = 2 voltage-controlled buses, consisting
of VG = {2, 3}; and there are NL = 6 load buses, consisting of VL = {4, 5, . . . , 9}. In this
example, we compute model-based sensitivity factors by linearizing the power flow equations
in (2.7)–(2.8). In Table 2.1, we report the sensitivities of the active and reactive power
injections at bus 4 with respect to voltage magnitudes and phase angles at all other buses. �
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Figure 2.1: Network topology for WECC 3-machine 9-bus system.

Table 2.1: WECC 3-machine 9-bus systems—model-based sensitivity factors obtained in
Examples 1.

Ψ2
5 Ψ3

5 Ψ4
5 Ψ5

5 Ψ6
5 Ψ7

5 Ψ8
5

0 0 -10.86 0 16.54 0 0

Ψ9
5 Φ4

5 Φ5
5 Φ6

5 Φ7
5 Φ8

5 Φ9
5

-5.6816 -2.239 0 2.3762 0 0 -1.8495

Γ2
5 Γ3

5 Γ4
5 Γ5

5 Γ6
5 Γ7

5 Γ8
5

0 0 0 0 0 2.4279 -3.861

Γ9
5 Λ4

5 Λ5
5 Λ6

5 Λ7
5 Λ8

5 Λ9
5

1.433 0 0 0 -13.81 23.33 -9.912

The traditional model-based approach described above is not ideal since accurate and
up-to-date network topology, parameters, and operating point are required. In this work, we
aim to eradicate the reliance on system models in the computation of the sensitivities defined
in (2.1)–(2.4), and improve adaptability to changes occurring in the system. With regard
to this, we propose a method to estimate these sensitivities using only PMU measurements
obtained in near real-time without relying on the full nonlinear power flow model of the
system.

2.2 Measurement-Based Approach to Jacobian Com-

putation

Denote the voltage phase angle at bus j at times t and t + ∆t, ∆t > 0 and small, as
θj(t) and θj(t + ∆t), respectively. Also denote the voltage magnitude at bus j at times t
and t + ∆t, as Vj(t) and Vj(t + ∆t), respectively. Define ∆θj(t) = θj(t + ∆t) − θj(t) and
∆Vj(t) = Vj(t + ∆t) − Vj(t); then, according to the approximations of Ψj

i , Φj
i , Γji , and Λj

i

4



in (2.1)–(2.4), we have that, at time t,

Ψj
i ≈

∆P
θj
i (t)

∆θj(t)
, Φj

i ≈
∆P

Vj
i (t)

∆Vj(t)
, (2.9)

Γji ≈
∆Q

θj
i (t)

∆θj(t)
, and Λj

i ≈
∆Q

Vj
i (t)

∆Vj(t)
. (2.10)

We assume θj(t), Vj(t), θj(t+ ∆t), and Vj(t+ ∆t) are measurements available from PMUs.

As evidenced in (2.9), in order to compute Ψj
i and Φj

i , we also need ∆P
θj
i (t) and ∆P

Vj
i (t),

which are not readily available from PMU measurements. However, we assume that the net
variation in net active power injection at bus i is available from PMU measurements. We
express this net variation at the sum of active power injection variations at bus i ∈ VG ∪ VL
due to variations in voltage phase angle j ∈ VG ∪ VL and magnitude at each bus j ∈ VL:

∆Pi(t) ≈
∑

j∈VG∪VL

∆P
θj
i (t) +

∑
j∈VL

∆P
Vj
i (t). (2.11)

Similarly, from (2.10), we note that in order to compute Γji and Λj
i , we need ∆Q

θj
i (t) and

∆Q
Vj
i (t), which are not readily available from PMU measurements. By making similar

assumptions to the ones used in the derivation of (2.11), we express the net variation in net
reactive power injection at bus i as

∆Qi(t) ≈
∑

j∈VG∪VL

∆Q
θj
i (t) +

∑
j∈VL

∆Q
Vj
i (t). (2.12)

Now, by substituting (2.9) into (2.11), we can express (2.11) as

∆Pi(t) ≈
∑

j∈VG∪VL

∆θj(t)Ψ
j
i +

∑
j∈VL

∆Vj(t)Φ
j
i ,

where Ψj
i ≈

∆P
θj
i

∆θj
and Φj

i ≈
∆P

Vj
i

∆Vj
. Analogously, by substituting (2.10) into (2.12), we can

express (2.12) as

∆Qi(t) ≈
∑

j∈VG∪VL

∆θj(t)Γ
j
i +

∑
j∈VL

∆Vj(t)Λ
j
i ,

where Γji ≈
∆Q

θj
i

∆θj
and Λj

i ≈
∆Q

Vj
i

∆Vj
.

Suppose M + 1 sets of synchronized measurements are available. Let

∆Pi[k] = Pi((k + 1)∆t)− Pi(k∆t),

∆Qi[k] = Qi((k + 1)∆t)−Qi(k∆t),

∆θi[k] = θi((k + 1)∆t)− θi(k∆t),

∆Vi[k] = Vi((k + 1)∆t)− Vi(k∆t),

5



k = 1, . . . ,M . Next, define ∆Pi = [∆Pi[1], . . . ,∆Pi[M ]]T and ∆Qi = [∆Qi[1], . . . ,∆Qi[M ]]T ;
similarly, define ∆θi = [∆θi[1], . . . ,∆θi[M ]]T and ∆Vi = [∆Vi[1], . . . ,∆Vi[M ]]T . Then, we
obtain the following systems of equations:

∆Pi ≈
[
(∆θj)j∈VG∪VL (∆Vj)j∈VL

] [Ψi

Φi

]
, (2.13)

where
Ψi =

[(
Ψj
i

)
j∈VG∪VL

]
and Φi =

[(
Φj
i

)
j∈VL

]
,

and

∆Qi ≈
[
(∆θj)j∈VG∪VL (∆Vj)j∈VL

] [Γi
Λi

]
, (2.14)

where
Γi =

[(
Γji
)
j∈VG∪VL

]
and Λi =

[(
Λj
i

)
j∈VL

]
.

In (2.13)–(2.14), we assume that the relationship between ∆Pi and [ΨT
i ,Φ

T
i ]T and the

one between ∆Qi and [ΓTi ,Λ
T
i ]T are approximately linear. Under this assumption, we seek

the best estimate for [ΨT
i ,Φ

T
i ]T and [ΓTi ,Λ

T
i ]T given the measured observations.

2.3 Problem Statement

Suppose the systems in (2.13)–(2.14) are overdetermined, i.e., M > N̄ = NG + 2NL. Then,
a natural solution approach is to obtain Ψi, Φi, Γi, and Λi via LSE estimation. In ordinary
LSE estimation, the regressor matrix is assumed to be free of error; hence all errors are
confined to the observation vector (in our setting, ∆Pi or ∆Qi). This assumption, however,
is not entirely appropriate in our problem setting, since ∆Pi, ∆Qi, ∆θj, and ∆Vj are all
constructed from PMU measurements obtained in real-time. In such a case where modeling
and measurement errors are associated with both the observation vectors and the regressor
matrix, total least-squares (TLS) estimation is one appropriate method for fitting [4]. Next,
we describe a TLS-based estimation algorithm as it applies to the solution of (2.13)–(2.14).
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Chapter 3

Total Least-Squares Approach to
Jacobian Estimation

In our setting, as described in Section 2.2, measurement and modeling errors enter into
both the regressor matrix and the observation vectors in (2.13)–(2.14). In this section, we
formulate the TLS estimation problem and its solution with respect to the system in (2.13)
(the formulation with respect to the system in (2.14) is analogous). Further, for ease of
notation, let

A =
[
(∆θj)j∈VG∪VL (∆Vj)j∈VL

]
,

and also let bi = ∆Pi. Based on the expression above, we can rewrite (2.13) as

bi ≈ A
[
ΨT
i ΦT

i

]T
. (3.1)

Since (3.1) is an overdetermined system of equations, in the remainder of this section, we
formulate the problem of computing [ΨT

i ,Φ
T
i ]T in (3.1) as a TLS estimation problem. We

note, however, that the ideas presented in this section are immediately applicable to estimate
the unknown vectors in both systems described in (2.13)–(2.14).

3.1 Basic Total Least-Squares Approach

Before delving into the TLS estimation problem formulation and associated solution, we
briefly describe the ordinary LSE problem formulation and its solution, as it applies to our
setting. In ordinary LSE, since the regressor matrix is assumed to be error free, the rationale
behind this estimation method is to correct the observations bi as little as possible under the
Euclidean norm metric; this can be formulated as an optimization program as follows (see,
e.g., [4]):

min
b̂i∈RM

||∆bi||2 ,

s.t. b̂i = A
[
ΨT
i ΦT

i

]T
,

(3.2)

where ∆bi = bi − b̂i. Once a minimizer, b̂i, is found, then any [Ψ̂T
i , Φ̂

T
i ]T satisfying b̂i =

A[Ψ̂T
i , Φ̂

T
i ]T is a LSE solution to (3.1). We assume A has full column rank; under this
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Algorithm 1

Input: bi ∈ RM , A ∈ RM×N̄ .
Output: A vector x ∈ RN̄

1: Compute the SVD.
[A bi] = [u1, . . . , uM ]Σ[v1, . . . , vN̄+1]T

2: if vN̄+1
N̄+1
6= 0 then

3: Set. x = − 1

vN̄+1
N̄+1

[v1
N̄+1

, . . . , vN̄
N̄+1

]T

4: else
5: Output. Problem in (3.4) has no solution.
6: Stop.
7: end if

condition, the closed-form unique solution to (3.2) is (see, e.g., [5])[
Ψ̂i

Φ̂i

]
=
(
ATA

)−1
AT bi. (3.3)

In contrast to the LSE problem formulation in (3.2), since TLS estimation accounts for
errors in A as well, analogous to the vector Euclidean norm, its problem formulation seeks
to minimize the matrix Frobenius norm, as follows:

min
[Â b̂i]∈RM×(N̄+1)

||[∆A ∆bi]||F ,

s.t. b̂i = Â
[
ΨT
i ΦT

i

]T
,

(3.4)

where ∆A = A− Â, ∆bi = bi − b̂i, and N̄ = NG + 2NL [4]. Then, once a minimizing [Â b̂i]
is found, then any [Ψ̂T

i , Φ̂
T
i ]T satisfying b̂i = Â[Ψ̂T

i , Φ̂
T
i ]T is a TLS solution to (3.1).

The solution to the TLS estimation problem in (3.4) relies heavily on the singular
value decomposition (SVD) (see, e.g., [6]); below, we describe the procedure (its pseudocode
is provided in Algorithm 1 (see, e.g., [7])). To obtain the solution to (3.4), we rewrite (3.1)
as (see, e.g., [4]) [

A bi
] [

ΨT
i ΦT

i −1
]T ≈ 0. (3.5)

By using the SVD, we can write [
A bi

]
= UΣV T , (3.6)

where U = [u1, . . . , uM ] and V = [v1, . . . , vN̄+1] are unitary matrices, Σ is a diagonal matrix
in which the diagonal elements σi are the singular values of [A bi] (see, e.g., [6]). If σN̄+1 6= 0,
then [A bi] has rank N̄ + 1 and the unique solution to (3.5) is the zero vector. In order to
obtain a nonzero solution to (3.5), the rank of [A bi] must be reduced to N̄ . According to the
Eckart-Young-Mirsky low-rank matrix approximation theorem [8], the rank N̄ approximation
of [A bi], which minimizes the objective function in (3.4), is[

Â b̂i
]

= UΣ̂V T , (3.7)
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Table 3.1: WECC 3-machine 9-bus systems—measurement-based sensitivity factors obtained
in Examples 2.

Ψ̂2
5 Ψ̂3

5 Ψ̂4
5 Ψ̂5

5 Ψ̂6
5 Ψ̂7

5 Ψ̂8
5

0.07631 0.05691 -11.03 0.03587 16.64 -0.06743 -0.02094

Ψ̂9
5 Φ̂4

5 Φ̂5
5 Φ̂6

5 Φ̂7
5 Φ̂8

5 Φ̂9
5

-5.7703 -2.236 -0.02054 2.557 -0.08047 0.03681 -2.017

Γ̂2
5 Γ̂3

5 Γ̂4
5 Γ̂5

5 Γ̂6
5 Γ̂7

5 Γ̂8
5

-0.05818 0.02315 -0.1354 0.02593 0.06445 2.519 -3.855

Γ̂9
5 Λ̂4

5 Λ̂5
5 Λ̂6

5 Λ̂7
5 Λ̂8

5 Λ̂9
5

1.363 -0.04853 -0.006372 0.02142 -13.75 23.33 -9.890

where Σ̂ is a diagonal matrix in which the diagonal elements σ̂i = σi, if i < N̄ + 1, and
σ̂i = 0, otherwise. Since the approximate matrix [Â b̂i] has rank N̄ , (3.5) has a nonzero
solution. Based on properties of the SVD, vN̄+1 is the only vector that belongs to the null

space of [Â b̂i]. Then, the TLS solution is obtained by scaling the vector vN̄+1 until its last
component is equal to −1, namely,[

Ψ̂T
i Φ̂T

i −1
]T

= − 1

vN̄+1
N̄+1

vN̄+1,

where vN̄+1
N̄+1

denotes the (N̄ + 1)th element of vN̄+1. Thus, the unique TLS solution to (3.1)
is [

Ψ̂T
i Φ̂T

i

]T
= − 1

vN̄+1
N̄+1

[
v1
N̄+1

· · · vN̄
N̄+1

]T
. (3.8)

Next, we illustrate the concepts introduced above.

Example 2 (3-Machine 9-Bus System) In this example, we consider the same system
as in Example 1. Here, we use Algorithm 1 to estimate the entries in each row of the power
flow Jacobian matrix and compare the results to the benchmark values recorded in Table 2.1.
In order to simulate PMU measurements of slight fluctuations in active and reactive power
generated and consumed at each bus, we generate power injection (positive or negative) time-
series data. To this end, we assume the active power injection at bus i at time instant k,
denoted by Pi[k], can be modeled as

Pi[k] = P 0
i [k] + P 0

i [k]νP1 + νP2 , (3.9)

where P 0
i [k] is the nominal active power injection at time instant k, and νP1 and νP2 are

pseudorandom values drawn from standard normal distributions with zero mean and standard
deviations σP1 = 0.1 and σP2 = 0.1, respectively. Similarly, we assume the reactive power
injection at bus i at time instant k, denoted by Qi[k], can be modeled as

Qi[k] = Q0
i [k] +Q0

i [k]νQ1 + νQ2 , (3.10)

where Q0
i [k] is the nominal reactive power injection, and νQ1 and νQ2 are pseudorandom values

drawn from standard normal distributions with zero mean and standard deviations σQ1 = 0.1
and σQ2 = 0.1, respectively. In both (3.9) and (3.10), there are two random components added
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Table 3.2: WECC 3-machine 9-bus systems—MSE of sensitivity factors obtained via Algo-
rithm 1 compared to corresponding model-based benchmark.

Ψ̂2 Ψ̂3 Ψ̂4 Ψ̂5

9.289× 10−5 1.357× 10−4 0.01373 8.616× 10−3

Ψ̂6 Ψ̂7 Ψ̂8 Ψ̂9

7.446× 10−3 2.792× 10−3 0.01026 2.987× 10−3

Φ̂2 Φ̂3 Φ̂4 Φ̂5

6.921× 10−4 9.754× 10−4 0.02228 0.04182

Φ̂6 Φ̂7 Φ̂8 Φ̂9

0.01153 6.452× 10−3 1.054× 10−3 7.142× 10−3

Γ̂4 Γ̂5 Γ̂6 Γ̂7

0.04260 0.01655 4.911× 10−3 1.857× 10−3

Γ̂8 Γ̂9

5.044× 10−3 3.730× 10−3

Λ̂4 Λ̂5 Λ̂6 Λ̂7

0.05839 5.933× 10−3 0.02212 0.01184

Λ̂8 Λ̂9

1.219× 10−3 2.831× 10−3

to the deterministic nominal quantities. The first component, P 0
i [k]νP1 in (3.9) (Q0

i [k]νQ1
in (3.10)), represents the inherent fluctuations in active (reactive) power generation and
load. The second component, νP2 in (3.9) (νQ2 in (3.10)), represents random measurement
noise, which is independent of the nominal active (reactive) power injection values. For each
set of bus injection data, we solve the power flow equations, with the slack bus absorbing all
power imbalances, to obtain the voltage magnitude and phase “measurements”.

In this example, we simulate 100 sets of power injection and voltage measurements
with the same network topology and operating point. In Table 3.1, we report TLS estimates
corresponding to the entries in Table 2.1. By visually comparing the model-based sensitivities
and measurement-based estimates in Tables 2.1 and 3.1, we note that the measurement-based
TLS estimation achieves values that are very close to the model-based benchmark values
obtained by directly linearizing the power flow equations. Furthermore, we compute the mean-
squared error (MSE) of each sensitivity vector and report them in Table 3.2; in this case, the
average MSE is 0.01169. �

3.2 Weighted Total Least-Squares Approach

One of the assumptions we make in (3.4) is that the Jacobian matrix sensitivity factors
are approximately constant across the estimation time window. One way to eliminate this
restriction and to obtain an estimator that is more adaptive to changes in operating point is
to place more importance on recent measurements and less on earlier ones, which may be out
of date. Again, before we delve into the WTLS estimation problem formulation, we briefly
describe the ordinary weighted least-squares (WLS) estimation problem setting in which the
objective function in (3.2) becomes

min
b̂i∈RM

∣∣∣∣∣∣√W∆bi

∣∣∣∣∣∣
2
, (3.11)
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where W is a positive definite symmetric matrix. The solution to (3.11) is given by (see,
e.g., [5]) [

Ψ̂i

Φ̂i

]
=
(
ATWA

)−1
ATWbi. (3.12)

The idea is to choose appropriate values for W so that more recent measurements are
weighted preferentially over past ones. If the elements of the error vector ∆bi are uncor-
related, then W is a diagonal matrix. The WLS estimation problem is often formulated
using an exponential forgetting factor [9], in which the more recent measurements are pref-
erentially weighted by setting W [i, i] = fM−i for some fixed f ∈ (0, 1], where f is called a
“forgetting” factor.

In the WTLS estimation problem setting, the optimization in (3.4) becomes

min
[Â b̂i]∈RM×(N̄+1)

F0 (∆A,∆bi) ,

s.t. b̂i = Â
[
ΨT
i ΦT

i

]T
,

(3.13)

with

F0(·) =
M∑
k=1

∆a[k]Wk∆a[k]T + wk∆bi[k]2, (3.14)

where ∆a[k] denotes the kth row of ∆A, ∆bi[k] is the kth element of ∆bi, and matrix Wk and
scalar wk represent weighting factors for elements in ∆a[k] and ∆bi[k], respectively. Next,
we discuss the selection of these weighting factors.

Choice of Weighting Factors. Inspired by ordinary WLS estimation, we set wk = fM−k,
so as to weigh the more recent elements in the observation vector, bi, more heavily. With
regard to the choice of Wk’s, first, we assume that the elements of the error vector ∆a[k] are
uncorrelated; therefore the matrix Wk is diagonal. Furthermore, if measurements obtained
at each bus are equally reliable, then the elements of ∆a[k] are equally weighted. Then,
by employing the exponential forgetting factor, we set Wk[i, i] = wk, for all i. With the
above choices for wk and Wk, if f = 1, then all measurements are given equal weighting,
and the WTLS formulation in (3.13) is equivalent to the TLS one in (3.4). On the other
hand, if f < 1, then earlier measurements would not contribute as much to the final estimate
[Ψ̂T

i , Φ̂
T
i ]T as more recent ones. In this way, the WTLS formulation is useful if the system

experiences a change in operating point during the measurement acquisition time window.
With the weighting factors chosen as described above, we next describe the solution to the
optimization problem in (3.13).

WTLS Problem Solution. Note that if Wk = IN̄ , where IN̄ denotes an N̄ × N̄ identity
matrix, and wk = 1, for all k = 1, . . . ,M , then the formulation in (3.13) is equivalent to that
in (3.4). Unlike the basic TLS problem, however, the WTLS problem does not have a SVD-
based closed-form solution. In order to solve (3.13), we follow the development described
in [10], which is summarized below. We first note that the equality constraint in (3.13) is
equivalent to bi −∆bi = (A−∆A)[Ψ̂T

i , Φ̂
T
i ]T , i.e.,

∆bi[k] =
[
ΨT
i ΦT

i

] (
∆a[k]T − a[k]T

)
+ bi[k], (3.15)
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Algorithm 2

Input: bi ∈ RM , A ∈ RM×N̄ ; Wk ∈ RN̄×N̄ , wk ∈ R, k = 1, . . . ,M .
Output: A vector x ∈ RN̄

1: Initialize. Set x0 to previously known value, tolerance ε, and counter p = 1
2: while F (xp) > ε do
3: Iterate. Compute new iterate xp based on xp−1

4: Update. x = xp
5: Set. p← p+ 1
6: end while

for each k = 1, . . . ,M , where a[k] denotes the kth row of A. Substituting (3.15) into (3.14),
we obtain the following unconstrained optimization problem:

min
Â,[ΨTi ,Φ

T
i ]T

Fu

([
ΨT
i ΦT

i

]T
,∆A

)
, (3.16)

where

Fu(·) =
M∑
k=1

∆a[k]Wk∆a[k]T + wk
([

ΨT
i ΦT

i

]
∆a[k]T

−
[
ΨT
i ΦT

i

]
a[k]T + bi[k]

)2
. (3.17)

We note that Fu(·) is differentiable with respect to ∆a[k], for each k = 1, . . . ,M . Suppose
∆A∗ is a local minimizer of (3.16). Then, according to first-order necessary conditions of
optimality, at ∆A∗ (see, e.g., [11, Chap. 11]), we have that

0 =
dFu

d∆a[k]

∣∣∣∣
∆a[k]=∆a∗[k]

, k = 1, . . . ,M,

from which we obtain

∆a∗[k]T =

[
Wk +

[
Ψi

Φi

] [
ΨT
i ΦT

i

]
wk

]−1

× wk
([

ΨT
i ΦT

i

]
a[k]T − bi[k]

) [Ψi

Φi

]
, (3.18)

for each k = 1, . . . ,M . By invoking the matrix inversion lemma (see, e.g., [6]), (3.18)
simplifies to

∆a∗[k]T =

[
ΨT
i ΦT

i

]
a[k]T − bi[k]

w−1
k +

[
ΨT
i ΦT

i

]
W−1
k

[
Ψi

Φi

]W−1
k

[
Ψi

Φi

]
. (3.19)

Finally, we substitute each optimal ∆a∗[k] as given in (3.19) into (3.17), from which we
reformulate the optimization problem in (3.16) as

min
[ΨTi ,Φ

T
i ]T

F
([

ΨT
i ΦT

i

]T)
, (3.20)
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where

F (·) =
M∑
k=1

([
ΨT
i ΦT

i

]
a[k]T − bi[k]

)2

w−1
k +

[
ΨT
i ΦT

i

]
W−1
k

[
Ψi

Φi

] . (3.21)

Through the development above (readers may refer to Appendix A for a full derivation),
we convert the original constrained WTLS problem in (3.13) into the less troublesome uncon-
strained minimization problem in (3.20). The optimization problem in (3.13) (or (3.20)) is
nonconvex; therefore, numerical solution methods do not guarantee convergence to a global
minimum. Many numerical algorithms, most of which are iterative, have been proposed to
solve (3.13) or (3.20) (see, e.g., [7], for an overview). For our case studies, we find that
built-in optimization routines in Matlab are sufficient as proof-of-concept to demonstrate
the feasibility of the proposed power flow Jacobian estimation framework. In a commercial
implementation of the proposed framework, it may be prudent to investigate convergence
properties of various solution methods. We refrain from further discussion on this topic here
as it is beyond the scope of the present work. The WTLS solution algorithm is summarized
in Algorithm 2 for a generic iterative optimization scheme. Next, we illustrate the ideas
presented above with an example.

Example 3 (3-Machine 9-Bus System) We consider the same system as in Example 1
and simulate 200 sets of PMU measurements of slight fluctuations. In order to simulate an
undetected change in operating point, without updating the model, the active load at bus 6
linearly increases by 1.6 p.u. over the span of 20 measurements beginning at k = 80, with
the generation at bus 2 also increasing commensurately at each time step.

As in Example 2, we compute the power flow, with the slack bus absorbing all power
imbalances for each particular time k. Table 3.3 shows a comparison between benchmark
sensitivity factors obtained via direct linearization of the power flow equations around the
operating point (both before and after the change), and those obtained via the proposed WTLS
framework with forgetting factors f = 0.96 and f = 1. Both measurement-based estimations
are executed at k = 200 with the previous M = 200 measurements. Since the operating point
is undetected by operators, under the pre-change system model, the power flow Jacobian
matrix (some entries of which are shown in column 3 of Table 3.3) results in an average
MSE of 0.2956. In column 5 of Table 3.3, we record results for WTLS with f = 1 (or,

Table 3.3: WECC 3-machine 9-bus systems—model- and measurement-based sensitivity
factors obtained in Example 3.

Model-based Measurement-based
Post-change Pre-change f = 0.96 f = 1

Ψ2
5 0 0 -0.5254 -0.2637

Ψ3
5 0 0 0.08467 0.9688

Ψ4
5 -9.685 -10.86 -9.599 -10.66

Ψ5
5 0 0 -0.2559 0.1843

Ψ6
5 14.60 16.54 14.97 15.52

Ψ7
5 0 0 0.6563 0.2575

Ψ8
5 0 0 -0.1905 0.4154

Ψ9
5 -4.911 -5.6816 -5.137 -6.780

...
...

...
...

...
Average MSE 0.2956 0.1979 0.4501
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equivalently, TLS). From the average MSE metric, as well as a survey of the individual
values, reported in this column, we note that the basic TLS scheme is unable to estimate the
updated Jacobian matrix elements. On the other hand, the WTLS method with f = 0.96 is
able to track elements in the Jacobian matrix, as shown in column 4 of Table 3.3. However,
compared to the SVD computation in basic TLS, the WTLS optimization incurs much higher
computational burden; thus, the cost of better tracking is longer computation time and lack
of optimality guarantee.

By observing estimation results in both Tables 2.1 and 3.3, we note that while the
TLS-based schemes are able to track the nonzero terms with sufficient accuracy, the resulting
estimated signal is quite noisy, with many near-zero terms. �
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Chapter 4

Estimation with a Subset of
Measurements

In the proposed Jacobian matrix estimation framework presented thus far, to estimate the
unknown sensitivity factors, with respect to bus i, voltage magnitude and phase angle mea-
surements are required from all buses. In other words, the framework necessitates a central
data collector to whom all measurements are passed. Moreover, it requires at least as many
time-sampled sets of measurements as the number of columns of the Jacobian matrix. Both
of these restrictions become unwieldy for large-scale power systems. First, since power sys-
tems are constantly undergoing changes and operators often need to quickly determine the
current system state, it would be ideal to obtain accurate estimates using fewer data sets.
Furthermore, in a practical setting, the entire set of measurements may not be available for
transmission to a central data collector.

In order to relax the restrictions described above, we note that, due to the structure of
the power flow equations, the sensitivity factors Ψj

i , Φj
i , Γji , and Λj

i are only nonzero if i = j,
or if there exists a transmission line connecting buses i and j. With this in mind, we define
Ni as the set of buses that are connected to bus i, including bus i itself. Then, based on
the full systems of equations in (2.13)–(2.14), we can obtain the following reduced systems
of equations:

∆Pi ≈
[
(∆θj)j∈(VG∪VL)∩Ni (∆Vj)j∈VL∩Ni

] [ΨNii
ΦNii

]
, (4.1)

where
ΨNii =

[(
Ψj
i

)
j∈(VG∪VL)∩Ni

]
and ΦNii =

[(
Φj
i

)
j∈VL∩Ni

]
are reduced sensitivity vectors that contain only the nonzero entries of Ψi and Φi, respec-
tively; and

∆Qi ≈
[
(∆θj)j∈(VG∪VL)∩Ni (∆Vj)j∈VL∩Ni

] [ΓNii
ΛNii

]
, (4.2)

where
ΓNii =

[(
Γji
)
j∈(VG∪VL)∩Ni

]
and ΛNii =

[(
Λj
i

)
j∈VL∩Ni

]
contain only the nonzero entries of Γi and Λi, respectively.
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Similar to the full formulation in (2.13)–(2.14), we can obtain estimates of the reduced
sensitivity vectors in (4.1)–(4.2) via Algorithms 1 and 2. Unlike the full formulation, however,
to obtain estimates of these reduced sensitivity factors with respect to bus i, it suffices to
acquire M > 2(#Ni) sets of synchronized measurements,1 thus reducing the computational
burden involved. As a direct consequence of conducting computations at each bus, parallel
processing can be utilized so that the full system topology and relevant parameters can be
obtained quickly. The local topology information can be transmitted to a central controller
periodically, or when the resulting estimates indicate an update is required.

1#A denotes the cardinality of set A.
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Chapter 5

Case Studies

We use the proposed measurement-based approach to estimate the Jacobian matrix in the
IEEE 118-bus system. The simulation tool MATPOWER [3] is used throughout to solve
the power flow and generate voltage magnitude and phase angle measurements from pseudo-
random bus injections generated using (3.9) and (3.10).

5.1 Base Case

We consider the base case model for the IEEE 118-bus system and assess the effectiveness
of the proposed measurement-based method to estimate the power flow Jacobian matrix
under constant nominal operating point. As in Example 2, we simulate bus injection data
by adding noise to the nominal injections, as given in (3.9)–(3.10), with σP1 = σQ1 = 0.03
and σP2 = σQ2 = 0.01. For comparison, we obtain benchmark values by linearizing the power
flow equations around the nominal operating point.

Measurements from All Buses. We utilize data from all buses and compute estimates
for the elements of the power flow Jacobian by solving the full problems in (2.13)–(2.14).
We assume the time window under consideration contains M = 1000 sets of synchronized
measurements. Using Algorithm 1, in conjunction with simulated measurements from all
buses, we obtain estimates of Ψi and Φi, for i ∈ VG ∪ VL, as well as Γi and Λi, for i ∈ VL.
When comparing these estimated vectors to their corresponding model-based benchmark
values, we find that the mean MSE for all estimated vectors is 0.00497, with the maximum
being 0.5090.

Measurements from a Subset of Buses. Suppose each bus is equipped with the com-
putational capability required to conduct its own sensitivity estimation. Then, as described
in Section 4, each estimation problem solves fewer unknown sensitivity factors and requires
fewer sets of synchronized measurements. Therefore, we use the first M = 40 sets of mea-
surements from the full-system Jacobian matrix estimation from above. We assume that
each bus is able to attain voltage magnitude and phase measurements from its immediate
neighbors. Using Algorithm 1, we solve for the unknown vectors in (4.1)–(4.2) for each
i = 1, . . . , N , and further compare them to corresponding model-based benchmark values.
We find the mean MSE to be 0.001523, with the maximum being 0.1936.
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5.2 Change in Topology

Under the reduced formulation presented in Section 4, we assess the performance of the
proposed WTLS framework, as described in Section 3.2, to update the entries of the Jaco-
bian matrix after a topology change. With respect to this, we simulate M = 100 sets of
synchronous measurements by computing the power flow solution using power injection data
generated via (3.9)–(3.10) with σP1 = σQ1 = σP2 = σQ2 = 0.1. To simulate a topology change,
we introduce a credible line outage (i.e., one that does not island the system) at time step
k = 30. As in Example 3, we use a forgetting factor of f = 0.96. We repeatedly simulate
random sample paths with random line outages.

Overall, the proposed WTLS estimation method is able to adapt and obtain accurate
estimates for 63.84% of the affected Jacobian matrix entries. Since the optimization prob-
lem in WTLS is nonconvex, iterative numerical solution methods may only attain a local
minimum, as evidenced by the low estimation accuracy. In contrast, for the same random
sample paths and forgetting factor, the WLS estimates, obtained via (3.12), are accurate for
84.72% of the affected entries.
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Chapter 6

Conclusions

In this work, we presented a measurement-based method to estimate the power flow Jacobian
matrix without relying on the system power flow model. The proposed method relies on the
solution of an overdetermined set of linear equations constructed from real-time measure-
ments obtained with PMUs installed throughout the system.

Via TLS estimation, we account for measurement errors in both the observation vector
as well as the regressor matrix. We showed that the proposed method provides accurate
estimates of the Jacobian matrix entries. Furthermore, we improve the adaptability of the
proposed method by employing WTLS and WLS estimation.
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Appendix A

Weighted Total Least-Squares
Estimation

Consider an overdetermined system
y ≈ Ax, (A.1)

where x ∈ RN is a vector of unknowns to be estimated, y ∈ RM is a vector of measurements.
In the classical least-squares estimation approach, the entries of the regressor matrix A are
assumed to be free of error, i.e., all errors are confined to the observation vector y. This
assumption, however, is frequently inaccurate. In Chapter 3, both the regressor matrix and
observation vector are constructed from real-time measurements. Hence, we would like to
account for sampling and modeling errors in both A and y. One way to do so is via the total
least-squares (TLS) estimation framework, in which the following optimization problem is
solved:

min
[Â ŷ]∈RM×(N+1)

∣∣∣∣[∆A ∆y
]∣∣∣∣

F
,

s.t. ŷ = Âx,
(A.2)

where
∆A = A− Â, ∆y = y − ŷ. (A.3)

Using the definition of the Frobenius norm, we can rewrite (A.2) as

min
[Â ŷ]∈RM×(N+1)

M∑
k=1

∆a[k]∆a[k]T + ∆y[k]2,

s.t. ŷ = Âx,

(A.4)

where ∆a[k] denotes the kth row of ∆A, ∆y[k] is the kth element of ∆y. In (A.4), each set
of measurement errors, which consists of ∆a[k] and ∆y[k], is weighted equally and assumed
to be uncorrelated. This assumption may not be valid in all circumstances: sensor errors
may be correlated, some sensors may be more accurate, and past measurements may be less
reliable. One way to account for this is via a weighted total least-squares (WTLS) estima-
tion framework. In this appendix, we derive the WTLS estimation optimization problem
in (3.20)–(3.21).
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In the WTLS estimation problem setting, the optimization in (A.4) becomes

min
[Â ŷ]∈RM×(N+1)

F0 (∆A,∆y) =
M∑
k=1

∆a[k]Wk∆a[k]T + wk∆y[k]2, (A.5)

s.t. ŷ = Âx, (A.6)

where matrix Wk and scalar wk represent weighting factors for elements in ∆a[k] and ∆y[k],
respectively.

Substituting (A.3) into the equality constraint in (A.6), we obtain

y −∆y = (A−∆A)x,

∆y = −(A−∆A)x+ y,

which leads to
∆y[k] = −(a[k]−∆a[k])x+ y[k], (A.7)

for each k = 1, . . . ,M , and where a[k] denotes the kth row of A. Rewriting (A.7), we obtain

∆y[k] = xT∆a[k]T − xTa[k]T + y[k]. (A.8)

Next, we substitute (A.8) into (A.5) to obtain the following unconstrained optimization
problem:

min
Â,x

Fu (x,∆A) =
M∑
k=1

∆a[k]Wk∆a[k]T + wk
(
xT∆a[k]T − xTa[k]T + y[k]

)2
. (A.9)

We note that Fu(·) is differentiable with respect to ∆a[k], for each k = 1, . . . ,M . Suppose
∆A∗ is a local minimizer of (A.9). Then, according to first-order necessary conditions, at
∆A∗,

0 =
dFu

d∆a[k]

∣∣∣∣
∆a[k]=∆a∗[k]

, k = 1, . . . ,M,

from which we obtain, for each k = 1, . . . ,M ,

0 = 2
[
Wk∆a

∗[k]T +
(
xT∆a∗[k]T − xTa[k]T + y[k]

)
wkx

]
,

= Wk∆a
∗[k]T + wk

(
xT∆a∗[k]T

)
x− wk

(
xTa[k]T − y[k]

)
x,

=
(
Wk + xwkx

T
)

∆a∗[k]T − wk
(
xTa[k]T − y[k]

)
x.

Finally, after rearranging, we obtain

∆a∗[k]T =
[
Wk + xwkx

T
]−1

wk
(
xTa[k]T − y[k]

)
x, (A.10)
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for each k = 1, . . . ,M . By invoking the matrix inversion lemma, (A.10) becomes

∆a∗[k]T =

(
W−1
k −

W−1
k xxTW−1

k

w−1
k + xTW−1

k x

)
wk
(
xTa[k]T − y[k]

)
x,

=
1

w−1
k + xTW−1

k x

[
W−1
k

(
w−1
k + xTW−1

k x
)
−W−1

k xxTW−1
k

]
wk
(
xTa[k]T − y[k]

)
x

=
1

w−1
k + xTW−1

k x

[
W−1
k

(
w−1
k + xTW−1

k x
)
wk
(
xTa[k]T − y[k]

)
x

−W−1
k xxTW−1

k wk
(
xTa[k]T − y[k]

)
x
]

=
1

w−1
k + xTW−1

k x

{
W−1
k

(
xTa[k]T − y[k]

)
x

+
[
W−1
k

(
xTW−1

k x
)
−W−1

k xxTW−1
k

]
wk
(
xTa[k]T − y[k]

)
x
}
.

=
1

w−1
k + xTW−1

k x

{
W−1
k

(
xTa[k]T − y[k]

)
x

+ wk
(
xTa[k]T − y[k]

) [
W−1
k

(
xTW−1

k x
)
x−W−1

k x
(
xTW−1

k x
)]}

.

Noting that xTW−1
k x is a scalar and therefore W−1

k x
(
xTW−1

k x
)

= W−1
k

(
xTW−1

k x
)
x, we

obtain

∆a∗[k]T =
xTa[k]T − y[k]

w−1
k + xTW−1

k x
W−1
k x. (A.11)

Evaluating Fu(·) in (A.9) at ∆a[k] = ∆a∗[k], we obtain the following optimization
problem:

min
x
F (x) =

M∑
k=1

∆a∗[k]Wk∆a
∗[k]T + wk

(
xT∆a∗[k]T − xTa[k]T + y[k]

)2
. (A.12)
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Substituting (A.11) into (A.12), we simplify F (x) as follows:

F (x) =
M∑
k=1

(
xTa[k]T − y[k]

w−1
k + xTW−1

k x

)2

(W−1
k x)TWkW

−1
k x

+ wk

[
xT
(
xTa[k]T − y[k]

w−1
k + xTW−1

k x

)
W−1
k x− xTa[k]T + y[k]

]2

,

=
M∑
k=1

(
xTa[k]T − y[k]

w−1
k + xTW−1

k x

)2

xTW−1
k x

+
wk(

w−1
k + xTW−1

k x
)2

[(
xTa[k]T − y[k]

)
xTW−1

k x

−
(
xTa[k]T − y[k]

) (
w−1
k + xTW−1

k x
)]2

,

=
M∑
k=1

(
xTa[k]T − y[k]

w−1
k + xTW−1

k x

)2

xTW−1
k x

+
wk(

w−1
k + xTW−1

k x
)2

[
−
(
xTa[k]T − y[k]

)
w−1
k

]2
,

=
M∑
k=1

(
xTa[k]T − y[k]

w−1
k + xTW−1

k x

)2

xTW−1
k x+

(
xTa[k]T − y[k]

w−1
k + xTW−1

k x

)2

w−1
k ,

=
M∑
k=1

(
xTa[k]T − y[k]

w−1
k + xTW−1

k x

)2 (
w−1
k + xTW−1

k x
)
,

F (x) =
M∑
k=1

(
xTa[k]T − y[k]

)2

w−1
k + xTW−1

k x
. (A.13)

Finally, replacing F (x) in (A.12) with (A.13), the WTLS optimization problem reduces to
the following unconstrained minimization:

min
x
F (x) =

M∑
k=1

(
xTa[k]T − y[k]

)2

w−1
k + xTW−1

k x
. (A.14)
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