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Executive Summary 
 
A Modern Energy Management System (EMS) provides sophisticated online security analysis 
applications to assist operators in ensuring that the power system can survive credible 
contingencies. Still in current practice, system operators generally refer to written operating 
procedures to establish system constraints, particularly in regards to transfer limits across major 
interties. The limits are based on numerous power system studies that represent the stressed 
system and satisfy specific performance criteria following select contingencies. The relations 
between these critical paths and operating conditions are tabulated and often plotted as 
nomograms. With such a simplified view of system conditions, the operator is unable to have a 
complete understanding of operational limits. Thus, transfer ratings are typically conservative, as 
studies are based on highly stressed system conditions, and incomplete, as studies cannot analyze 
all combinations of equipment out-of-service. This study investigates some approaches to 
improving such operator procedures. 
 
Ensuring system security usually means operating so as to maintain a specified margin, for 
example, real power reserve within a particular area. The required margins are generally 
mandated by the regional reliability organizations. Unfortunately, it is time-consuming to 
compute such limits and thus, the margins are primarily determined off-line. The operators then 
use the conservatively tabulated values to operate the system within limits. Ideally, as the system 
operating conditions change, the margins would be recomputed to precisely verify security. 
Since this is computationally infeasible, an alternative approach is to employ pattern matching 
methods. That is, by using the detailed off-line studies to interpolate between unstudied 
operating conditions, one can estimate the margins from the present operating point without 
employing detailed calculations. This project looked at general ways to improve the operator 
procedures with particular emphasis on estimating the margin based on such pattern matching 
schemes. As voltage security is an increasingly important issue as systems are operating under 
greater stress, this study focused on voltage issues.  
 
Specific contributions from this study were: 
 

• A typical set of operating procedures was tabulated into an on-line database. 
Conceptually, these margins can be easily modified on-line to reflect changing system 
conditions. 

• Several pattern matching type approaches were investigated using a modified New 
England 39 bus system. Based on these results, a system based on feedforward artificial 
neural networks (ANN) was designed.  

• A modified ANN system, employing multiple networks and a voting system, was applied 
to the Western System Coordinating Council (WSCC) system. The analysis was based on 
a WSCC 5000 bus model over a large range of loading conditions considering all major 
contingencies. 

• Results on P margin estimations for the California Oregon Intertie showed no 
misclassifications of security and an average error of 1.2%. 

• Results on P margin estimations for the California area showed no misclassifications of 
security and average error of 3.7%. 
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• A single estimator covering select multiple contingencies raised margin errors on the 
California Oregon Intertie to 5.8% but again there were no misclassifications of security. 
Conceptually, this situation represents a flexible multivariate nomogram. 

 
The test results shown here establish that using a system of feedforward ANNs, one can 
accurately estimate security margins for on-line application. In practice, the operating schedules 
face the possibility of numerous combinations of operating conditions and equipment outages. 
To avoid a proliferation of estimators, it is important that a single network can perform well 
under some multiple contingencies. The results show that some such combinations can be solved 
using only one set of neural networks. Thus, one may be able to provide a complete system 
assessment with a manageably small number of networks, each trained for a limited set of 
multiple outages.  
 
The overall effectiveness of the developed method depends largely on the credibility of the data. 
That is, to what extent does the data used for training represent the unstudied cases? For the 
voltage security assessment problem studied here, this condition appears to be satisfied. There is 
a trade-off between accuracy of the approach, number of networks and number of off-line studies. 
For practical implementation, this approach requires operation planners to increase somewhat the 
number of off-line studies, as well as systematically record data, so as to improve the estimates 
and where possible automate the analysis. Subsequent research efforts should investigate other 
security criteria that may be less amenable to interpolation. While estimating margins is useful, a 
broader objective is to use the system to not only calculate the margin but also to estimate 
transfer limits based on all security limits. 
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1. Introduction 
 

1.1 Background 
 
A Modern Energy Management System (EMS) provides sophisticated online security analysis 
applications to assist operators in ensuring that the power system can survive credible 
contingencies. Still in current practice, system operators generally refer to written operating 
procedures to establish system constraints, particularly in regards to transfer limits across major 
interties. The limits are based on numerous power system studies that represent the stressed 
system and satisfy specific performance criteria following select contingencies. For example in 
the Western US, the determination of limits follows the guidelines of the Western System 
Coordinating Council (WSCC) as detailed in the “Procedures for Regional Planning Project 
Review and Rating Transmission Facilities” and WSCC’s “Minimum Operating Reliability 
Criteria” [1]. These criteria include both dynamic and static performance measures. Under this 
approach, transfer ratings are typically conservative, as the off-line studies are based on highly 
stressed system conditions and incomplete, as these studies cannot analyze all combinations of 
equipment out-of-service.  
 
In the Path 15 procedures (formerly referred to as S-5 procedures [2]), which were extensively 
studied here, outages and curtailment studies are performed to determine the maximum COI 
(California Oregon Intertie) and NOB (Nevada Oregon Border) limits. The procedures tabulate 
predetermined limits for specified contingencies on the 235kV and 500KV systems. For our 
studies, emphasis was placed on just two WSCC stability criteria relating to voltage security: real 
power and reactive power margin. Voltage security means the ability of a system, not only to 
operate stably, but also to remain stable following credible contingencies or load increases [3]. It 
often means the existence of considerable margin from an operating point to the voltage 
instability point following contingencies. The margin could be the real power transfer on a 
specific line, loading within an area, or reactive power margin at some buses in a studied area. 
Industry experience has shown that voltage stability analysis is often amenable to static analysis 
[3, 4]. Those static procedures were followed here.  
 
1.2 Security margins 
 
In general, VS margins are defined as the difference between the value of a Key System 
Parameter (KSP) at the current operating condition and at the voltage stability critical point. 
Different utilities use different KSPs that stem from two main categories: 

 
a) PV-based KSPs, such as, an area load or power transfer across an interface, and 
b) VQ-based KSPs, such as, reactive power injection at a bus or group of buses 

 
The procedures and comparison of PV and VQ methodology are detailed in section 3.4. The 
voltage stability criterion defines a margin so that subsequent to contingencies the system can 
maintain voltage stability. In general, these margins need to be conservative to allow for 
approximations in analysis and to provide some leeway to operators as they respond to 
disturbances.  
 



1.3 Literature review 
 
The fundamentals of modeling power systems, specifically concentrating on voltage and reactive 
power topics, are covered well in [5, 6]. In [7], issues on power system static security analysis 
are introduced. This gives the background on the significant roles played by security analysis in 
modern bulk power system operation and control. The voltage stability problems have attracted 
numerous research efforts during the last decade and many voltage stability margins and indices 
have been proposed and used throughout the world for voltage security analysis (VSA). One 
category of voltage stability indices is based on eigenvalue and singular value analysis of the 
system Jacobian matrix [e.g., 8-10]. The idea is to detect the collapse point by monitoring the 
minimum eigenvalue or singular value of the system Jacobian, which becomes zero at the 
collapse point. With the analysis of the associated eigenvectors or singular vectors, one can 
determine the critical buses in the system by the right vector, and the most sensitive direction for 
changes of power injections by the left vector. However, the behavior of these indices is highly 
nonlinear; i.e., they are rather insensitive to system parameter variations. For large systems, this 
is also computationally expensive. 
 
The more prominently applied methods in voltage stability analysis are those that try to define an 
index using the system load margin. The two most widely used are the real power margin, P, 
associated with the PV curve, and the reactive power margin, Q, associated with the VQ curve. 
The P margin can be calculated using the point of collapse method [11] or the power flow 
continuation method [12]. In [13], it is formulated as an optimization problem. For fast 
calculation of the P margin, Ejebe et al. [14] and Chiang et al. [15] proposed curve fitting 
methods to calculate the limit of the nose curve. Similarly, Greene et al. [16] proposed a 
sensitivity based linear/quadratic estimation method. While the Q margin is the most commonly 
used index in practice, there is limited literature on the fast calculation of Q margins. The 
traditional method to obtain the Q margin is the VQ curve stress test.  
 
Alternatively, one can consider artificial intelligence methodologies applied to VSA to overcome 
the burden of computation. VSA using Artificial Neural Networks (ANNs) have been discussed 
in [17] demonstrating the ability to approximate a PV curve. In [18], the energy margin is used 
as an index for voltage stability assessment via ANNs and the energy margin sensitivities have 
been used to determine the candidate input variables for training an ANN. In [19], various 
parameters are studied as the candidates for input features. Critical branch flows and reactive 
reserve are indicated to be the key variables.  
 
ANN design and determination of parameters is also of interest. A fast learning strategy that 
allows the optimal number of hidden neurons to be easily determined is proposed in [20]. Self-
organizing networks have also been applied to VSA. In [21], a Kohonen neural network is used 
for on-line voltage collapse margin estimation. Margin to voltage collapse is in terms of the 
system loading distance of the operating point from the critical point. In [22], a Kohonen 
network is used as a front end of a combined network. The Kohonen network is used to extract 
the relevant features, and supervised learning identifies the features appropriate for voltage 
stability margin. In [23], self-organized ANNs are used for reduction of the system model and as 
an input set for multilayered ANN learning, while multilayered ANNs are used for detecting 
topology, and for monitoring and assessment of voltage stability. Section 3.3 details these 
developments further. 
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1.4 Organization of this study 
 
This report first overviews neural network methodology, placing emphasis on network design. 
Of particular importance are the network parameters and selection of features. VSA is reviewed 
in section 3. The specific detailed steps in computing the P and Q margins are provided. These 
are used in the subsequent development. The New England 39 bus system is used to select the 
most promising approaches and to demonstrate the inability of simple regression methods to 
provide adequate estimates. Subsequently, the method is applied to the WSCC system. The 
results show the credibility of the method in estimating security margin and thus, to identify 
transfer limit on key interties.  
 

 
2. Neural Network Overview 
 
2.1 Introduction 
 
2.1.1 Neural networks 
 
The neural network was inspired from its inception by the recognition that the human brain 
computes differently than that of a conventional digital computer. The brain acts as a highly 
complex, nonlinear, and parallel computer. A neural network is a massively parallel distributed 
processor made up of simple processing units, known as neurons, which has a propensity for 
storing, and making easily available, experiential knowledge. It resembles the brain in two 
respects:  
 

1. Knowledge is acquired by the network from its environment through learning processes. 
2. Inter-neuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 
 
The procedure used to set the connection strengths is called learning, the function of which is to 
modify the synaptic weights of the network in an orderly fashion to attain a desired design 
objective. A neural network derives its computing power through its massively parallel-
distributed structure and its ability to learn and therefore generalize. Generalization refers to the 
neural network producing reasonable outputs for inputs not encountered during training 
(learning). These two information-processing capabilities make it possible for neural networks to 
solve complex problems. In practice, neural networks often cannot provide adequate solutions by 
working individually. Rather, they need to be integrated into a consistent system engineering 
approach. Specifically, a complex problem of interest is decomposed into a number of relatively 
simple tasks, and neural networks are assigned to a subset of the tasks that match their inherent 
capabilities. In this work, the neural networks method is integrated into a system approach for 
power system voltage security analysis. 
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2.1.2 Properties of neural networks 
 
The use of neural networks offers the following useful properties and capabilities:  
 

1. Nonlinearity. A neural network, made up of an interconnection of nonlinear neurons, is 
itself nonlinear. Moreover, the nonlinearity is of a special kind in the sense that it is 
distributed throughout the network. Most real systems, including power systems are 
nonlinear, so this property is very desirable for its applications in power systems.  

2. Input-Output Mapping. A popular paradigm of learning called learning with a teacher or 
supervised learning involves modification of the synaptic weights of a neural network by 
applying a set of labeled training samples or task examples. Each example consists of a 
unique input signal and a corresponding desired response. The network learns from the 
examples by constructing an input-output mapping for the problem. In power system 
voltage security analysis, the traditional approaches which are widely used can be used to 
generate those training samples. 

3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic weights to 
changes in the surrounding environment. In particular, a neural network trained to operate 
in a specific environment can be easily retrained to deal with minor changes in the 
operating environmental conditions. Moreover, when it is operating in a nonstationary 
environment, a neural network can be designed to change its synaptic weights in real 
time.  

4. Fault tolerance. A neural network has the potential to be inherently fault tolerant in the 
sense that its performance degrades gracefully under missing or erroneous data. The 
reason is that the information is distributed in the network, the errors must be extensive 
before catastrophic failure occurs. 

 
These are the properties that are most desirable for solving the problems at hand. See [24] for a 
discussion of other useful properties. 
 
2.1.3 The model of a neuron 
 
A neuron is an information-processing unit that is fundamental to the operation of a neural 
network. Figure 2.1 shows a model of neuron. There are three basic elements: 
 

1. A set of synapses or connecting links, each of which is characterized by a weight or 
strength of its own.  

...

x1

vk

wk1

xm 

Input 
signals 

x2 
Σ ϕ(.)

Activation 
function 

Summing 
function 

wk2

wkm

Figure 2.1: Model of a neuron

Bias 
bk 

Output 
yk 

4 



2. An adder for summing the input signals, weighted by the respective synapses of the 
neuron; the operations by the adder constitute a linear combiner.  

3. An activation function for limiting the amplitude of the output of a neuron. Typically, it 
constrains the amplitude of the output signals to lie within the intervals [0, 1] or [-1,1]. 

 
The neuron in Figure 2.1 also includes an externally applied bias, denoted by bk. The bias bk has 
the effect of increasing, or lowering, the net input of the activation function, depending on 
whether it is positive, or negative. The activation function, denoted by ϕ(v), defines the output of 
a neuron in terms of the induced local field v. There are basically three different kinds of 
activation functions:  

1. Threshold function. ϕ  




<
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 = 
0if0
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vvv
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== ϕ , as shown in Figure 2.2 (a) and 

(b). 
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Figure 2.2 (a): Logistic function
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-1

-0.5

0

0.5

1

Figure 2.2 (b): Hyperbolic tangent function 
 
2.2 Learning processes 
 
Learning is a process by which the free parameters of a neural network are adapted through 
stimulation by the environment in which the network is embedded. The type of learning is 
determined by the manner in which the parameter changes take place. The property that is of 
primary significance for a neural network is the ability of the network to learn from its 
environment, and to improve its performance through learning. A neural network learns about its 
environment through an interactive process of adjustments applied to its synaptic weights and 
bias levels. Ideally, the network becomes more knowledgeable about the environment after each 
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iteration of the learning process. There are five basic learning rules: error-correction learning, 
memory-based learning, Hebbian learning, competitive learning, and Boltzmann learning.  
 
2.2.1 Error-correction learning 
 
Error-correction learning is based on optimum filtering and is used in feedforward networks, 
which are employed by this study. To illustrate the learning rule, consider the simple case of a 
neuron k constituting the only computational node in the output layer of a feed forward neural 
network, as depicted in Figure 2.3. 
 
The output signal yk(n), representing the only output of the neural network, is compared to a 
desired response or target output, dk(n). Consequently, an error signal, ek(n), is produced, where 
ek(n) = dk(n) - yk(n). The error signal ek(n) actuates a control mechanism, the purpose of which is 
to apply a sequence of corrective adjustments to the synaptic weights of neuron k. The corrective 
adjustments are designed to make the output signal yk(n) approach the desired response dk(n) in a 
step-by-step manner. This objective is achieved by minimizing a cost function or index of 
performance, ε(n) = 0.5 e2

k(n). That is, ε(n) is the instantaneous value of the error energy. The 
step-by-step adjustments to the synaptic weights of neuron k are continued until the system 
reaches steady state (i.e., the synaptic weights are essentially stabilized). Minimization of the 
cost function ε(n) leads to a learning rule commonly referred to as the delta rule or Widrow-Hoff 
rule:  

∆wkj(n) = ηek(n) xj(n)       (2.1) 
 
where wkj(n) is the weight of neuron k excited by xj(n) of the signal vector x(n) at time step n. η 
is a positive constant that determines the rate of learning.  
 
2.2.2 Memory-based learning 
 
Memory-based learning operates by memorizing the training data explicitly. All (or most) of the 
past experiences are explicitly stored in a large memory of correctly classified input-output 
examples as { , where x}N

iii d 1),( =x i denotes an input vector and di denotes the corresponding 
desired response. All memory-based learning algorithms involve two essential ingredients:  
 

(1) a criterion for defining the local neighborhood of the test vector xtest, and, 
(2) a learning rule applied to the training examples in the local neighborhood of xtest. 

 
In a simple, yet effective type of memory-based learning, known as the nearest neighbor rule, the 
local neighborhood is defined as the training example that lies in the immediate neighborhood of 

- + 

ek(n) 

Input vector Hidden 
neurons Σ

x(n) yk(n)Output 
neuron k

dk(n) 

Figure 2.3: Feedback in network
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the test vector xtest. In particular, the vector { }NN xxx ,...,, 21
' ∈x  is said to be the nearest neighbor 

of xtest if min where d(x),(),( '
testNtestii

dd xxxx = i, xtest) is the Euclidean distance between the 

vectors xi and xtest. The class associated with the minimum distance, that is, vector xN
’ , is 

reported as the classification of xtest.  
 
2.2.3 Hebbian learning 
 
Hebb’s postulate learning is the oldest and most famous of all learning rules; it is named in honor 
of the neuropsychologist Hebb. It has two parts  [25]:  
 

(1) If two neurons on either side of a synapse (connection) are activated simultaneously, then 
the strength of that synapse is increased.  

(2) If two neurons on either side of a synapse are activated asynchronously, then that synapse 
is weakened or eliminated.  

 
One form of Hebbian learning is using covariance hypothesis:  

 
))(( yyxxw kikj −−=∆ η      (2.2) 

 
where η is the learning-rate parameter. x and y  are the time-averaged values of the presynaptic 
signal, xi, and postsynaptic, yk, respectively. One can see from (2.2) that synaptic weight wij is 
enhanced if there are sufficient levels of presynaptic and postsynaptic activities. Synaptic weight 
wij is depressed if there is either a presynaptic activation in the absence of sufficient postsynaptic 
activation or a postsynaptic activation in the absence of sufficient presynaptic activation. There is 
strong physiological evidence for Hebbian learning in the area of the brain called the 
hippocampus. This physiological evidence provides Hebbian learning with significant 
justification. 
 
2.2.4 Competitive learning 
 
Competitive learning is also inspired by neurobiological considerations. The output neurons of a 
neural network compete among themselves to become active (fired). Whereas in a neural 
network based on Hebbian learning several output neurons may be active simultaneously, in 
competitive learning only a single output neuron is active at any one time. It is this feature that 
makes competitive learning highly suited to discover statistically salient features that may be 
used to classify a set of input patterns. The individual neurons of the network learn to specialize 
on ensembles of similar patterns; in doing so they become feature detectors for different classes 
of input patterns. The standard competitive learning rule defines change of weight by 
 



 −

=∆
else0

  winsneuron  if)( kwx
w kjj

kj

η
    (2.3) 

 
This rule has the overall effect of moving the synaptic weight vector wk of winning neuron k 
toward the input pattern x. This kind of learning is used in Kohonen maps which are briefly 
investigated in this work. 
 

7 



2.2.5 B
 
The Bol
algorithm
basis of
characte

The mac
flipping

1
P

+
=

applied 

where  
in its cl
environm

ρ

 

  
x1   

y1 

Win ner   

1 3 

4 5 6 

9 8 7 

2 

y2 
 
y3 

y4 

x2   

x3   

x4   

Input vector   Neighbourhood Classes  

Input   Feature map Output 
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olzmann learning 

tzmann learning rule, named in honor of Ludwig Boltzmann, is a stochastic learning 
 derived from ideas rooted in statistical mechanics. A neural network designed on the 

 the Boltzmann learning rule is called a Boltzmann machine. The machine is 
rized by an energy function:  

kjxxwE
j k

jkkj ≠−= ∑∑2
1      (2.4) 

hine operates by choosing a neuron at random at some step of the learning process, then 
 the state of neuron from state xk to - xk at some temperature T with probability 

)/exp(
1

TEk∆−
  , where Ek is the energy change resulting from such a flip. If this rule is 

repeatedly, the machine will reach thermal equilibrium. The learning rule is defined by 

kjw kjkjkj ≠−=∆ −+ ),( ρρη      (2.5) 

 and  denote the correlation between the states of neurons k and j with the network 
amped condition (visible neurons are all fixed into specific states determined by the 

ent)  and free-running condition, respectively. 

+
kj

−
kjρ
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2.3 Kohonen self-organizing networks 
 
Kohonen self-organizing networks [26, 27] are competitive-based network paradigm for data 
clustering. Networks of this type impose a neighborhood constraint on the output units, such that 
a certain topological property in the input data is reflected in the output units’ weights. Figure 2.4 
shows a Kohonen network. Based on competitive learning, Kohonen networks use a similarity 
measure. The winning unit is considered to be the one with the largest activation. For Kohonen 
feature maps, however, one updates not only the winning unit’s weights but also all of the 
weights in a neighborhood around the winning units. The neighborhood’s size generally 
decreases slowly with each iteration. A sequential description of how to train a Kohonen self-
organizing network is as follows: 
 

(1) Select the winning output unit as the one with the largest similarity measure between all 
weight vectors wi and the input vector x. If the Euclidean distance is chosen as the 
dissimilarity measure, then the winning unit c satisfies the following equation: 

 
iic xx ww −=− min      (2.6) 

 
(2) Let NBc denote a set of indices corresponding to a neighborhood around winner c. The 

weights of the winner and its neighboring units are then updated by: 
 

cii NBiw ∈−=∆ )( wxη     (2.7) 
 

Instead of defining the neighborhood of a winning unit, one can also use a neighborhood 
function Ωc(i) around a winning unit c. For instance, the Gaussian function can be used as 
the neighborhood function: 
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where pi and pc are the positions of the output units i and c, respectively, and σ reflects 
the scope of the neighborhood. By using the neighborhood function, the update formula 
can be rewritten as: 
 

))(( ici iw wx −Ω=∆ η      (2.9) 
 

where i is the index for all output units.  
 

To achieve better convergence, the learning rate and the size of neighborhood should be 
decreased gradually with each iteration. 
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2.4 Multilayer perceptron 
 
2.4.1 Introduction 
 
Multilayer perceptron network consists of a set of sensory units (source nodes) that constitute the 
input layer, one or more hidden layers of computation nodes, and an output layer of computation 
nodes. The input signal propagates through the network in a forward direction, on a layer-by-
layer basis. Figure 2.5 shows a multilayer perceptron. Multilayer perceptrons have been applied 
successfully to solve a number of diverse and difficult problems by training them in a supervised 
manner with a highly popular algorithm known as the back-propagation algorithm. This 
algorithm is based on the error-correction learning rule. Error back-propagation learning consists 
of two passes through the different layers of the network: a forward pass and a backward pass. In 
the forward pass, an activity pattern (input vector) is applied to the sensory nodes of the network, 
and its effect propagates through the network layer by layer. Next, a set of outputs is produced as 
the actual response of the network.  During the forward pass the synaptic weights of the 
networks are all fixed. During the backward pass, on the other hand, the synaptic weights are all 
adjusted in accordance with an error-correction rule. Specifically, the actual response of the 
network is subtracted from a desired response to produce an error signal. This error signal is then 
propagated backward through the network against the direction of synaptic connections-hence 
the name “error back-propagation.” The synaptic weights are adjusted to make the actual 
response of the network move closer to the desired response in a statistical sense. 
 
2.4.2 Error back-propagation algorithm 
 
The backpropagation algorithm is defined using delta rule: 
 

)()()( nynnw ijji ηδ=∆     (2.10) 
 
where yi(n) is the input signal of neuron j from neuron i and δj(n) is the local gradient. If neuron j 
is an output node, δi(n) equals the product of the derivative ϕj’(vj(n)) and the error signal ej(n), 
both of which are associated with neuron j, i.e., . If neuron j is a hidden 

node, , i.e., δ

))(()()( ' nvnen jjjj ϕδ =

∑=
k

kjkjji nwnnvn )()())(()( ' δϕδ i(n) equals the product of the associative derivative 

ϕj’(vj(n)) and the weighted sum of the δ’s computed for the neurons in the next hidden or output 
layer that are connected to neuron j. The factor ϕj’(vj(n)) depends solely on the activation 
function associated with hidden neuron j. Figure 2.6 shows the signal-flow graph of the error 

δj(n) wkj(n) 

δL(n)      ϕL’(vL(n))

δk(n)      ϕk’(vk(n))

...
 w1j(n) 

...
 ek(n) 

eL(n) wLj(n) 

Figure 2.6 Signal-flow graph of the error back-propagation algorithm 

e1(n) 
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back-propagation algorithm.  
 
2.4.3 Achieving better performance 
 
There are many methods that will significantly improve the back-propagation algorithm 
performance. A few are briefly described here: 
 

(1) The sequential mode of back-propagation learning is computationally faster than the 
batch mode. This is especially true when the training data set is large and highly 
redundant.  

(2) The use of an example that results in the largest training error or an example that is 
radically different from all those previously used. This will maximize information 
content. These two heuristics are motivated by a desire to search more of the weight 
space. 

(3) Generally, using an antisymmetric activation function is faster than using nonsymmetric 
functions in back-propagation.  

(4) Normalizing the inputs and target values will keep the back-propagation algorithm away 
from the limiting value of the sigmoid activation function. Otherwise, the back-
propagation algorithm tends to drive the free parameters of the network to infinity, and 
thereby slow down the learning process by forcing the hidden neurons into saturation. 
The input should be uncorrelated; this can be done using principal component analysis. 
The decorrelated input should be scaled so that their covariances are approximately 
equal, thereby ensuring that the different synaptic weights in the network learn at 
approximately the same speed. 

(5) A good choice of initialization is important so that too large a value will not drive the 
network to saturation nor too small a value will cause the network to operate on a very 
flat area around the origin of the error surface.  

(6) A high learning rate will speed up the rate of learning, but the network may become 
unstable. A simple way of increasing the rate of learning yet avoiding the danger of 
instability is to modify the delta rule by including a momentum term: 

 
)()()1()( nynnwnw ijjiji ηδα +−∆=∆     (2.11) 

 
where α is usually a positive number called the momentum constant. 

 
2.4.4 Improving generalization 
 
The essence of back-propagation learning is to encode an input-output mapping into the synaptic 
weights and thresholds of a multilayer perceptron. The hope is that the network becomes well 
trained so that it learns enough about the past to generalize to the future. One problem that occurs 
during training is called overfitting. The error on the training set is driven to a very small value, 
but when new data is presented to the network the error is large. The network has memorized the 
training examples, but it has not learned to generalize to new situations. Use a network that is 
just large enough to provide an adequate fit will improve network generalization. The larger a 
network is used the more complex the functions that the network can create. If a small enough 
network is used, it will not have enough power to overfit the data. The problem is that it is 
difficult to know beforehand how large a network should be for a specific application.  
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There are two other methods for improving generalization. The first is modifying the 
performance function, which is normally chosen to be the sum of squares of the network errors 
on the training set:  
 

∑
=

==
N

i
ie

N
mseF

1

2)(1     (2.12)  

 
The modified performance function is then: 
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Using such a performance function will cause the network to have smaller weights and biases, 
and this will force the network response to be smoother and less likely to overfit. Another 
method for improving generalization is early stopping. In this technique, the available data is 
divided into three subsets: training set, validation set and test set. The training set is used for 
computing the gradient and updating the network weights and biases. The error on the validation 
set is monitored during the training process to guard against overfit. The validation error will 
normally decrease during the initial phase of training, as does the training set error. When the 
network begins to overfit the data, the error on the validation set will typically begin to rise and 
learning can be stopped. Both methods are used in this work to guard against overfitting. 
 
2.4.5 Principal component analysis 
 
In some situations, the dimension of the input vector is large, but the components of the vectors 
are highly correlated (redundant). It is useful in this situation to reduce the dimension of the 
input vectors. An effective procedure for performing this operation is principal component 
analysis. This technique has three effects: it orthogonalizes the components of the input vectors 
so that they are uncorrelated with each other; it orders the resulting orthogonal components so 
that those with the largest variation come first; and it eliminates those components which 
contribute the least to the variation in the data set. In the study, this technique is used along with 
engineering knowledge to assist in the feature selection. 

 
3. Voltage Security Analysis (VSA) 
 
3.1 Introduction 
 
3.1.1 Voltage collapse 
 
Voltage collapse is a system instability that involves several power system components 
simultaneously. It typically occurs on power systems that are heavily loaded, faulted and/or have 
reactive power shortages. This occurs since voltage collapse is associated with the reactive 
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power demands of loads not being met due to limitations on the production and transmission of 
reactive power. The production limitations include generator and SVC reactive power limits and 
the reduced reactive power produced by capacitors at low voltages. The primary limitations in 
transmission are high reactive power losses on heavily loaded lines and line outages. Reactive 
power demands may also increase due to changes in the load such as, motor stalling or increased 
proportion of compressor load. 
 
Voltage collapse takes place on the different timescales ranging from seconds to hours, 
specifically: 
 

(1) Electromechanical transient (e.g., generators, regulators, induction machines) and power 
electronic (e.g. SVC, HVDC) phenomena in the time range of seconds.  

(2) Discrete switching devices, such as, load tapchangers and excitation limiters acting at 
intervals of tens of seconds.  

(3) Load recovery processes spanning several minutes. 
 
In this study, we analyze (2) and (3) which are so called “long term” time scale events. There are 
numerous power system events known to contribute to voltage collapse. 
 

• Increase in loading 
• Generators or SVC reactive power limits 
• Action of tap changing transformers 
• Load recovery dynamics 
• Line tripping or generator outages 

 
Most of these changes have a large effect on reactive power production or transmission. Control 
actions such as switching in shunt capacitors, blocking tap changing transformers, redispatch of 
generation, rescheduling of generator and pilot bus voltages, secondary voltage regulation, load 
shedding and temporary reactive power overload of generators are countermeasures against 
voltage collapse. Machine angles are typically also involved in the voltage collapse. Thus, there 
is no sharp distinction between voltage collapse and classical transient instability. The 
differences between voltage collapse and classical transient instability are those of emphasis: 
voltage collapse focuses on loads and voltage magnitudes whereas transient instability focuses 
on generators and angles. Also, voltage collapse often includes longer time scale dynamics and 
includes the effects of continuous changes such as load increases in addition to discrete events 
such as line outages. 
 
Increasing voltage levels by supplying more reactive power generally improves the margin to 
voltage collapse. In particular, shunt capacitors become more effective at supplying reactive 
power at higher voltages. Increasing voltage levels by tap changing transformer action can 
decrease the margin to voltage collapse by in effect increasing the reactive power demand. Still, 
voltage levels are a poor indicator of the margin to voltage collapse. While there are some 
relations between the problems of maintaining voltage levels and voltage collapse, they are best 
regarded as distinct problems since their analysis is different and there is only partial overlap in 
the control actions used to solve both problems. 
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3.1.2 Voltage collapse indices 
 
There are numerous indices to indicate proximity to voltage collapse that have been  studied. The 
following is a brief introduction to these indices: 
 
(1) Sensitivity factors 
Sensitivity factors are indices used in several utilities throughout the world to detect voltage 
stability problems and to decide corrective measures [28, 29]. These indices were first used to 
predict voltage control problems in generator QV curves, and may be defined as 
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VSF max      (3.1) 

 
where VSF stands for Voltage Sensitivity Factor. As generator i approaches the bottom of its QV 
curve, the value of VSFi becomes large and eventually changes sign, indicating an unstable 
voltage control condition. 
 
(2) Singular values  
Singular values of a reduced matrix can be used to determine proximity to voltage collapse. Let 
 

VJQ QV ∆=∆       (3.2) 
with 
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where J is the Jacobian in power flow equations and J1 is the real power sensitivities to angle 

deviations, i.e.,  


∂
∂
δ
P


 . The singular values of this reduced matrix can be used to determine 

proximity to voltage collapse. 
 
(3) Second order performance indices 
Indices based on first order information (linearizations), such as singular values and eigenvalues 
and several other indices presented in this document, may be inadequate to predict proximity to 
collapse as they neglect large discontinuities in the presence of system control limits like 
generator capability or transformer tap limits, as previously discussed. Conversely, it is possible 
to calculate a second order index that exploits additional information embedded in these indices 
to overcome some of these discontinuities [30]. 
 
(4) Energy function 
Energy function, a technique based on Lyapunov stability theory, is used for both transient 
stability and voltage stability analysis. In this approach, power system stability is like a ball, 
which lies at the bottom of a valley. The stability can be understood as the ball settling to the 
bottom of a uneven surface when there is a disturbance. As the power system changes, the 
landscape of this surface and the ridges surrounding the indentations change. A voltage collapse 
corresponds to a ridge being sufficiently lowered so that with a small perturbation the ball can 
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roll from the bottom of one indentation to a neighboring area. The height of the lowest ridge can 
be computed and used as an index to monitor the proximity to voltage collapse [31].  
 
(5) Loading margin 
For a particular operating point, the amount of additional load in a specific pattern of load 
increase that would cause a voltage collapse is called the loading margin to voltage collapse. 
Loading margin is the most basic and widely accepted index of voltage collapse. If system load 
is chosen to be the parameter, which varies, then a system PV curve can be drawn. In this case, 
the loading margin to voltage collapse is the change in loading between the operating point and 
the nose of the curve. The advantages of the loading margin as a voltage collapse index are  [32]: 

• The loading margin is straightforward, well accepted and easily understood. 
• The loading margin is not based on a particular system model; it only requires a static 

power system model and can be supplemented with dynamic system models. 
• The loading margin is an accurate index that takes full account of the power system 

nonlinearity and limits such as reactive power control limits encountered as the loading is 
increased. Limits are not directly reflected as sudden changes on the loading margin. 

• Once the loading margin is computed, it is easy and quick to compute its sensitivity with 
respect to any power system parameters or controls. 

 
The computational costs are the most serious disadvantage of the loading margin and make it 
unsuitable for on-line use. This work applies neural networks to overcome this drawback to 
estimate margin in order to be used on-line. There are numerous other indices for voltage 
security. The reader is referred to [31] for more details. 
 
3.1.3 Assessing voltage stability 
 
Voltage stability is a serious concern, which must be examined during planning and operational 
studies. Voltage stability margin is a measure of how close the system is to voltage instability. 
The approach need to assess margin will differ slightly between off-line studies (such as 
operation planning) and on-line studies (such as application of on-line voltage stability 
assessment tools in the EMS environment). In the off-line environment, such as operation 
planning, it is necessary to determine the margin for all design contingencies (such as single 
element outages, double outages of lines on the same corridor) for system conditions with all 
elements in service and for conditions with one or more elements out-of-service. Studying 
conditions with one component out-of-service is necessary to provide margin for the uncertainty 
of operating conditions. Often, for study purposes, each out-of-service element is combined with 
each design contingency, to form a set of double contingencies [2]. 
 
For on-line studies, the system state and topology is known (or at least approximately known) 
through system measurements and state estimation. Therefore, it is necessary to study only the 
criteria contingencies for all elements in service. As a result, fewer scenarios need to be 
examined and less margin may be required than for off-line studies in which the system 
uncertainty is greater. One important aspect of practical VS assessment is the consistency 
between on-line and off-line assessment methods. 
 
In theory, either power flow based (static) tools, such as the Voltage STABility program 
(VSTAB) [33], or time-domain simulation (dynamic) tools, such as the Extended 
Transient/Midterm Stability Program (ETMSP) [34], or the so-called Quasi-Dynamic (or Fast 
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Time-Domain) simulation programs [35], can be used to calculate system VS margins. The 
dynamic tools must have appropriate models for the study of voltage stability, such as 
overexcitation limiters, thermostatically controlled loads and timing of ULTC tap movements. 
 
The VS margins calculated using different tools should be very close, provided that consistent 
device models are used in the two programs and that voltage instability does not occur during the 
transient period. Unfortunately, because of the high CPU time requirements for time-domain 
simulation, it is impractical to calculate VS margins for all the contingency cases in this manner. 
A practical approach is to use a power flow based tool to calculate VS margins for the base case 
and all contingency cases, and use time-domain simulation only to bench mark the power flow 
results, and to determine the chronology of voltage instability, following a few selected critical 
contingencies. 
 
3.2 Traditional VSA methods 
 
Historically, power system engineers have used two main classes of programs for analysis of 
bulk power system performance: power flow and transient stability. Typically, voltage, active 
power and reactive power flow problems have been analyzed using static power flow programs. 
This approach was satisfactory since these problems have been governed by essentially static or 
time-independent factors. Power flow analysis allows simulation of a snapshot in time, such as, 
after automatic device actions but before operator intervention. Static analysis involves only the 
solution of algebraic equations and therefore is computationally much more efficient than 
dynamic analysis. Static analysis is preferred for the bulk of studies in which voltage stability 
limits for many pre-contingency and post-contingency cases must be determined. 
 
Dynamic issues, such as first swing transient stability problems, have normally been addressed 
using a transient stability program. These programs ordinarily include dynamic models of the 
synchronous machines with models of the excitation systems, power system stabilizers (PSS), 
turbines and governors, as well as other dynamic models, such as loads, High Voltage Direct 
(HVDC) Current transmission, Static Var Compensators (SVC) and other fast acting devices. 
These component models and the accompanying solution algorithm are suitable for analysis of 
phenomena from tens of milliseconds (e.g., machine subtransient dynamics) up to several 
seconds or tens of seconds. Dynamic analysis provides the most accurate replication of the time 
responses of the power system. Accurate determination of the time sequence of the different 
events leading to system voltage instability is essential for post-mortem analysis and the 
coordination of protection and control. However, time-domain simulations are time consuming 
both in terms of CPU time and engineering effort required for analysis of results. Also, dynamic 
analysis does not readily provide information regarding the sensitivity or degree of instability. 
These may make dynamic analysis impractical for examination of a wide range of system 
conditions or for determining stability limits unless combined with other techniques. New 
computer programs and algorithms are constantly under development in order to relieve such 
limitations. For example, there are commercially available software packages that combine 
advance time-domain simulation techniques (e.g., those with variable step size) and other (e.g., 
eigenvalue analysis) techniques. 
 
There is also the recent emergence of a new class of computer simulation software that provides 
utility engineers with powerful new tools for analysis of long-term dynamic phenomena. The 
ability to perform long-term dynamic simulations either with detailed dynamic modeling or 
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simplified quasi-steady-state modeling permits more accurate assessment of critical power 
system problems over longer time frames than is possible with conventional techniques. 
 
3.3 Artificial intelligence methods in VSA 
 
Numerous applications of artificial intelligence methods to power system security have been 
reported. A review of some recent examples with an emphasis on VSA is detailed in the 
following. For contingency studies, a combined fuzzy logic and probability based approach is 
suggested for ranking of contingencies for power system real time steady-state security 
evaluation [36]. An expert system has been developed to apply operational planning knowledge 
to the static security assessment problem. The expert system performs the contingency selection 
and remedial action tasks usually conducted off-line by an operational planner. Rule based 
techniques are used to select contingencies expected to cause steady state bus voltage violations 
[37].  
 
In VSA, a neuro-fuzzy network is proposed for voltage security monitoring (VSM) using 
synchronized phasor measurements as input patterns [38]. A decision tree methodology is 
proposed in [39] to tackle voltage security concerns under two distinct situations, namely 
preventive and emergency. An expert system for enhancing both the voltage security and the 
voltage stability in power systems is presented in [40]. The expert system is implemented to 
improve the voltage profile when contingencies are less severe and to adopt appropriate control 
actions to prevent the system from collapsing when severe contingencies are encountered. A 
proposed fuzzy linear programming method employed various membership functions pertaining 
to constraints and cost functions of system models for voltage/reactive power control in [41].  
 
For volt/var control in distribution systems, an adaptive neuro-fuzzy inference system (ANFIS) 
was presented [42]. The control objectives are minimization of system losses without violating 
the voltage security of the system. Power loss and voltage sensitivities obtained for the base case 
load flow are used to determine the dominant inputs to the fuzzy expert system. The rules are 
adapted using a neural network. A new approach using fuzzy set theory for voltage and reactive 
power control of power systems is presented in [43]. The purpose is to enhance voltage security 
of an electric power system. The violation bus voltage and the controlling variables are translated 
into fuzzy set notations to formulate the relation between voltage violation level and controlling 
ability of controlling devices. A knowledge-based fuzzy approach is proposed to evaluate the 
dynamic voltage security including both voltage collapse and unacceptable voltage profiles 
following disturbances. The dynamic voltage-stability behavior of the power system, however 
complex and nonlinear in nature, is mapped into a fuzzy severity index by means of approximate 
fuzzy reasoning and a series of fuzzy calculus [44]. An architecture based on a suite of AI 
technologies and three-dimensional PQV surfaces, which provides prediction of local voltage 
collapse and indices of system voltage security, is presented in [45]. 
 
For improving voltage security, [46] uses fuzzy logic to model the operator's decision-making 
process while using sensitivity analysis to derive the necessary movements in control settings 
within an expert system that seeks a low cost, low number-of-controllers solution. In [47], the 
optimal reactive power compensation problem is considered as combinatorial optimization 
problem and a genetic algorithm (GA) is used for its solution. By combining three classes of 
learning methods, namely machine learning, artificial neural networks and statistical patter 
recognition, in a tool box, the large statistical data bases of voltage security information was 

17 



exploit optimally [48]. In [49], a neural network-based tool is proposed to provide on-line 
preventive control strategies capable to restore a multi-area power system to a secure operating 
point when a voltage instability condition is going to be reached. These strategies are, 
respectively, based on reactive power control actions, generating nodes voltage-magnitude 
control actions and load curtailment actions. In [50], simulated annealing (SA) is applied to 
search for the final global optimal solution for appropriate reactive power planning in order to 
enhance security of an electric power systems. The control strategy is expressed by simple rules, 
which measure the proximity of system state to certain operating conditions, and utilize linear 
equations to obtain the effective control models [51].  In order to minimize the fuel costs and to 
maximize the security measure of power systems in terms of limits on active and reactive power 
outputs of compensating devices, transformer tap setting, and bus voltage levels, a genetic 
algorithm (GA) based approach was proposed to solve the combined active and reactive power 
dispatch problem [52].  
 
3.4 PV-based and VQ-based margin computation 
 
The PV-based and VQ-based margins are the two most widely used static methods for VS 
assessment [6]. The methodology that should be followed for development of a full P-V curve 
for studies involving load areas is described below [4]. 
 

1. Choose a region as the study area wherein load will be incrementally increased. This 
could be a region that is suspected or known to be susceptible to voltage collapse. The 
quantities that will be varied are internal load and external generation.  

2. Model the loads in the study area initially at a level of approximately 20% of the 
expected peak load. Generation external to the study area should be reduced to match the 
scaled down load levels in the study area. As loads are scaled up in the study area, the 
effects of increased load requirements on the study region’s voltage profile will be 
captured.  

3. Set the internal study area generation to a constant level of the on-line units. The real 
power output of the internal generators should remain unchanged during the P-V 
analysis. The reactive power capability of each of the generating units should represent 
the unit’s capability, and the reactive power output of each unit should be allowed to 
adjust as the P-V analysis progresses. Voltage collapse will occur in the study region 
after the VAR capability in the study region is depleted.  

4. Choose the bus or buses in the study area at which the voltages will be monitored as the 
power transfers into the study area are increased. As an initial investigation of a region 
for voltage instability, the engineer should select several buses to monitor. The monitored 
voltages are the y-axis data of a P-V curve. See VQ method step 2 regarding methods of 
identifying buses to monitor. 

5. Determine (a) if the x-axis data will be load or interface flows, and (b) if the units will be 
MW or MVA. If an interface path is used, it should be defined in a manner that measures 
all imports to the receiving region.  

6. Choose the system condition to be simulated. The system condition should be represented 
before internal loads and external generation are scaled up to develop the P-V data. A 
pre-contingency P-V analysis of the system provides an indication of the maximum 
capability of the study region to serve load. Simulating contingencies based on the 
stability criteria are required to assure compliance with the voltage stability margins and 
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provide information regarding the steady-state operating point that will occur after the 
contingency. 

7. Solve the initial power flow case representing a low receiving area using the post-
transient methodology.  

8. Record the bus voltages at the monitored buses, and the load level or interface transfer 
level at which the power flow case was solved.  

9. Scale loads and external generation up to match the load increase. The load increases can 
be larger at lower load levels than at higher load levels, which are near the point of 
collapse. Ensure that loads are scaled up in the neighboring systems if they have similar 
climatic or geographic characteristics to the system under study.  

10. The results of the P-V analysis may indicate that the voltage profile of a region is 
significantly lower than acceptable operating conditions at the point-of-collapse. In such 
cases, the limit of the system could be determined by other voltage criteria, such as post-
transient voltage deviation or the lower limit of acceptable operating voltage. However, 
in some receiving regions, typically regions with a high degree of shunt compensation, 
the point-of-collapse will occur at or near bus voltages that appear acceptable. For these 
cases, the system should be designed with some operating margin from the point of 
collapse. 

 
The standard procedure for conducting voltage collapse analysis based on V-Q curves is as 
follows [4]: 
 

1. Establish a power flow case representing the system’s post-disturbance condition.  
2. Identify the critical bus (also referred to as the weakest bus) in the system for this 

contingency. This is usually the most reactive deficient bus and typically, depends on the 
contingency. The weakest bus is the one that exhibits one of the following conditions 
under the worst single or multiple contingency: (a) has the highest voltage collapse point 
on the V-Q curve, (b) has the lowest reactive power margin, or (c) has the highest 
percentage change in voltage. It can be found using V-Q curve or the dV/dQ from the 
Jacobian  (the bus that has the largest value for dV/dQ before collapse is the weakest 
bus).  In this study, both methods are used. 

3. Apply a fictitious synchronous condenser at the weakest bus.  
4. Vary the condenser scheduled output voltage in small steps (say, 0.01pu). 
5. Re-solve the power flow.  
6. Record the bus voltage (V) and the reactive output of the condenser (Q).  
7. Repeat steps 4 to 6 until sufficient points have been collected. 
8. Use the V-Q curve to determine if there is sufficient margin. 

 
The minimum point of this curve (where dQ/dV = 0) is the critical point; i.e., all points of the 
curve to the left of the minimum are assumed to be unstable, and those to the right to be stable. 
 
Since voltage instability is due to a shortage of reactive supply to a bus or coherent bus group, 
the structural stress test used must assess when and why a shortage of reactive supply exists. A 
V-Q curve, being a reactive power voltage relationship, stresses the system in a manner similar 
to how the voltage instability occurs. Thus, a V-Q curve is better suited for this purpose since it 
directly assesses shortage of reactive supply. A P-V curve, however, is quite useful in assessing 
transfer or loading limits, thus is also used as a supplement. Using both methods is a requirement 
of WSCC. 
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3.5 Proposed pattern matching approaches to VSA 
 
In this section, three different pattern matching approaches for estimating the MVAr margin are 
compared: linear regression, a Kohonen network and a feedforward ANN. For the following 
study, the New England 39 bus system has been modified to represent a system with different 
zones and critical interfaces. The system is divided into two zones, one load center with only 
load buses, and the other includes both load and generation buses. Figure 3.1 shows that the load 
center includes buses 17,18 and 27. The three tie lines are 3-18, 16-17 and 26-27. The focus of 
our study here is the buses within this load center. The training and testing data comes from the 
traditional V-Q method result. There are six data sets for training and testing: base case data and 
then five different loadings that represent increased load over the base case. For each data set 
there are 49 cases which represent one base case and all 48 n-1 contingencies.  The total load for 
the base case is 6000 MW. The five different loadings are given by increasing load in steps of 
400 MW with the most constrained case loaded at 8000 MW. For all these cases, weakest bus 
and reactive power margin are computed and the operating data for the selected features are 
recorded. 
 
3.5.1 Regression method  
 
Perhaps the most straightforward pattern matching method is to use a simple regression model. 
Standard statistical methods are used to select features from the study data and to best fit a curve 
to that data. Table 3.1 lists the correlation coefficients between line flows and MVAr margin. 
The first column shows the line flows of interest. This includes tie lines, lines connecting 
weakest buses, some lines near the load center and total tie line flow. The second column is the 
correlation coefficients between listed line flows and MVAr margin. 

Figure 3.1 New England 39 bus system 
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Line Original Modified 

tie lines* -0.6386 -0.4468 
03-18* -0.4356 -0.4331 
16-17* -0.1031 -0.2035 
17-18* 0.0766 -0.0889 
17-27* -0.0781 -0.1915 
26-27* -0.2250 -0.3444 
25-26 0.0271 0.0689 
02-03 -0.0554 -0.0029 
14-15 0.0472 0.0523 
15-16 -0.0123 -0.0266 
16-19 -0.0195 0.0151 
16-21 -0.1020 -0.0459 

* selected feature set 
Table 3.1 Correlation coefficients between line flows and MVAr margin 

 
As can be seen from the table, the correlation coefficient between lines 17-18 or 17-27 and the 
margin are very small. Yet, we find that outage of 17-18 or 17-27 are among the worst of the 
contingencies (in the sense of MVAr margin loss). Such outages must be accounted for in the 
feature set. Most simply one could add a feature indicating various outages. For the purposes of 
training simplicity, we instead modified the line flow data by replacing all line outage flows (i.e., 
0) with a large number (say, 500 MW). The correlation coefficients after this modification are 
listed in the third column of Table 1. The first six rows have the highest correlation coefficients 
and are our selected feature set (critical paths). A second order regression model is then used. 
Specifically, let the reactive margin, Qm, be modeled by the polynomial 
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Figure 3.2 MVAr margin assessment using regression method 



 
where A, B and c are model parameters, and }{ ijPP = , with Pij, the power flow on critical paths.  
 
The training and testing data comes from the power flow of the different cases. For each test, 
margins for all contingencies are precisely computed and compared to the estimate. The average 
error in margin estimate is 90.34 MVAr with a maximum error of 192.59 MVAr among the 20 
tests.  The standard deviation is 83.71 MVAr. Figure 3.2 shows one such test result. For large 
margins, the result is reasonable, but for small margins, the assessment is not satisfying. In the 
worst case, the error is more than 500 MVAr.  
 
3.5.2 Kohonen network method 
 
The Kohonen network looks for clusters in the data in order to develop an ordered mapping that 
reveals existing similarities in the inputs. In this work, two Kohonen maps were used to assess 
the reactive power margin of the 39 bus system. The two maps have the same size (10x10). The 
nodes in the first map have six fields, which are the real power flows of the critical lines. The 
nodes in the second map are the reactive power margins. In this way, the first map acts as the 
clustering mapping, and the second map act as an associative memory, which contains the 
margin information. 
 
Again, the system is analyzed using 20 random tests. The average error is 103.71 MVAr and the 
maximum error is 145.85 MVAr. The standard deviation is 101.06 MVAr. The results are 
slightly worse than that of the regression method. The training speed is also much slower than 
that of the regression method. As we know, Kohonen map is mainly for unsupervised learning, 
where other methods such as regression method cannot be implemented. Results are illustrated in 
Figure 3.3. 
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Figure 3.3 MVAr margin assessment using Kohonen maps 
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3.5.3 Feedforward ANN method 
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Figure 3.4 MVAr assessment using feedforward network(modified data) 

 
In this section, a feedforward ANN with backpropagation method employing the Levenberg-
Marquardt algorithm is investigated. General discussion of the backpropagation network is 
referred to the literature [24] and to the earlier discussion in section 2 and for the Levenberg-
Marquardt algorithm to [53]. Two different sets of features are studied and results are compared. 
These two different sets are 6 original line flows and modified ones (see Figure 3.1). The 
selection is based on the contingency study and correlation coefficients. The worst n-1 
contingency (in the reactive power margin sense) is the best candidate for the line flow feature. 
(e.g., if line 17-27 outage is the worst contingency, the flow of that line is chosen as the feature). 
Modification of line flows (see 3.1) is made in the second feature set. 
 
The data set is divided into a training, validating and testing set. The training takes 80% of the 
data, 20% of which are for validation. The remaining 20% are for testing. Since the smaller the 
margin, then the worse the contingency, accurate estimation on small margins is most important. 
Using the modified data as discussed in 3.5.1, the result shown in Figure 3.4 is obtained. The 
largest error in the test case is 70MVAr. The average error is 23.89 MVAr and the maximum 
error is 35.03 MVAr. The standard deviation is 22.76 MVAr Besides the reactive margin, the 
ANN was also used to predict the weakest bus within the load center. The correct prediction rate 
in preliminary tests lay between 87% and 98%. Such information is useful for scheduling 
applications and will be the basis for further investigations.  
 

3.6 Remarks 
 
The test results show that using feedforward ANN network in reactive power margin assessment 
is promising. For the problem at hand, it appears that without introducing additional 
complications neither the Linear regression method nor the Kohonen map is capable of accurate 
estimates for the low margin cases.  
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4. Estimating Margins on the WSCC System 
 
4.1 Large system considerations 
 
An important aspect of any new approach to security is to validate the methodology on practical 
large systems. This section investigates the margin estimation on the WSCC system. The WSCC 
provides the coordination of power system for the western part of the continental United States, 
Canada, and Mexico. The WSCC region encompasses approximately 1.8 million square miles, 
representing a service area equivalent to more than one-half of the contiguous area of the United 
States. The WSCC system contains more than 5000 buses in the standard operations model used 
here. For a system of this size and complexity, there are a few assumptions needed to facilitate 
the study. Primarily, the studies have assumed typical generation patterns during peak and off-
peak load conditions. Further, only major contingencies are analyzed and the overall system 
topology does not vary greatly as it does from season to season as units undergo maintenance. 
 
Due to the vastness and diverse characteristics of the region, WSCC's members face unique 
challenges in coordinating the day-to-day interconnected system operation and the long-range 
planning needed to provide reliable and affordable electric service to more than 65 million 
people in WSCC's service territory. COI (California Oregon Intertie) and PDCI (Pacific Direct 
Circuit Intertie) are the key transfer paths between Pacific Northwest and California & Nevada. 
In winter, power transfers from south to north, in summer, power goes from north to south. The 
impact of various transfers and the COI on margins is studied since transfer on key paths is 
known to impact margins significantly. Some insight to the critical paths can be gleaned from 
[54, 55] that serves as a useful guide for our approach. The relations between these critical paths 
and the COI/PDCI are usually plotted as nomograms but nomograms are limited to a one-to-one 
relationship. With such a simplified view of system conditions, the operator is unable to have a 
complete understanding of operational limits. Conceptually, the pattern matching approach 
factors in different operating conditions into the nomogram approach so operators have a more 
complete system view.  
 
4.2 Modified neural network approach 
 
In this section, the neural network approach developed in section 3 is refined as appropriate for 
the WSCC. There are five main considerations: 
 
(1) Feature selection 
There are three kinds of input features: real power flow, reactive power loss and reactive power 
reserve. This information is needed to consider both kinds of voltage instability: “loss of voltage 
control” voltage instability and “clogging voltage instability”. The first kind of instability is 
caused by exhaustion of reactive supply with resultant loss of voltage control on a particular set 
of generators, synchronous condensers, or SVC’s. The loss of voltage control not only cuts off 
the reactive supply to a subregion requiring reactive power, but also increases reactive network 
losses that prevent sufficient reactive supply from reaching the subregion needing reactive 
power. The second kind instability occurs due to I2X series reactive losses, tap changers reaching 
tap limits, switchable shunt capacitors reaching susceptance limits, and shunt capacitive 
withdrawal due to decreasing voltage. The network reactive losses that result from the above 
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possibilities can choke off the reactive flow to a subregion needing reactive supply without any 
exhaustion of reactive reserves and loss of voltage control on generators, synchronous 
condensers, or SVC’s. For WSCC system, we select features based on engineering knowledge 
and correlation coefficients from security studies. Again, [54, 55] provide a good source for real 
power flow selections. Correlation information is used for all three kinds of features. 
 
(2) Principal component analysis 
Principal component analysis provides a mapping from data space to feature space. The first step 
provided 43 variables as likely inputs to the neural network for P margin estimation on 
California and Nevada area load. Using principal component analysis, these inputs can be 
trimmed to 19, which greatly reduces the size of network and the time for training. In the COI 
transfer P margin estimation, the number of input is reduced from 106 to 46. The accuracy is also 
improved due to the orthogonality of the data; i.e., the elimination of unnecessary data. 
 
(3) Two hidden layers 
With only one hidden layer, the neurons tend to interact with each other globally. In complex 
situations, these interactions make it difficult to improve the approximation at one point without 
worsening it at some other points. On the other hand, with two hidden layers the approximation 
process becomes more manageable. The local features are extracted in the first hidden layer, and 
global features are extracted in the second hidden layer. The results also show that it reduces the 
training time while increasing the accuracy. 
 
(4) Determination of network size 
It is desirable to determine the optimal regularization parameters in an automated fashion. One 
approach to this process is the Bayesian framework of David MacKay [56]. In this framework, 
the weights and biases of the network are assumed to be random variables with specified 
distributions. The regularization parameters are related to the unknown variances associated with 
these distributions. The parameters are then estimated using statistical techniques. Bayesian 
regularization is implemented in Matlab. For the developed network, Bayesian regularization is 
used first, then the neural networks with the optimum parameters are trained using the 
Levenberg-Marquardt algorithm. 
 
(5) Splitting training data for estimation and validation 
A statistical theory of the overfitting phenomenon is presented in [57]. In nonasymptotic mode, 
for which N<W, where N is the size of the training set and W is the number of free parameters in 
the network, there is practical merit in the use of cross-validation to stop training. The optimum 
value of parameter r that determines the split of the training data between estimation and 
validation subsets is defined by  
 

)1(2
1121

−
−−

−=
w

wropt      (4.1) 

 
In the developed network, W is around 200, so ropt=0.95, that is, 5% of the training data is used 
for validation. 
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4.3 Comprehensive method for VSA 
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Figure 4.1 System diagram using neural network margin estimators 

 
The overall approach to determining the voltage security is depicted in Figure 4.1. The input of 
the neural network voltage stability margin comes from the state estimator. After preprocessing, 
(extracting critical paths, zone reactive power reserve and reactive power losses), the data would 
be fed into the neural network. Then principal component analysis is used to further process the 
data. This data will be presented to pre-trained neural networks specific to different security 
indicators. Different neural networks are introduced to improve overall robustness of the 
approach and act as form of fault tolerance. As depicted in Figure 4.2, each of the different 
margin estimators is independent. These networks may have entirely different structures and may 
be trained on different sets of data. The lowest and highest estimates are disregarded and the 
remaining estimates are averages. Limit checks are applied to the outputs to ensure security 
margins are maintained. 
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4.4 Numerical results 
 
4.4.1 System description 
 
The training and testing data comes from the traditional PV method computations. WSCC 
system model has more than 5000 buses, 22 areas, 96 zones and more than 1000 generating 
units. In the first set of the test, our focus is on the following areas: BC Hydro, Pacific 
Northwest, Montana, PG&E, LADWP, Nevada, San Diego, and Southern California. In the next, 
our focus is on the COI transfer. 
 
4.4.2 P margin estimation in California and Nevada area 
 
The networks are first applied to the P margin estimation of California and Nevada area load. 
The study scenario begins with the winter flows, where the flow on COI is from south to north, 
load is then gradually increased in the PG&E, LADWP, Nevada, San Diego and Southern 
California areas, which have similar weather patterns. The increased load will be served by 
dispatching the generation units in BC Hydro, Northwest and Montana, thus, incrementally 
reaching the typical summer flows from North to South. The security margin will decrease 
gradually as this transfer increases. The total load in South in the base case is 35,489 MW. The 
step size is around 1200 MW. There are totally five cases. The maximum load is 40,289 MW. 
For each load level, all n-1 contingencies of lines above 345 KV and some 230 KV are studied 
(354 different contingencies) so the number of studies is 1775. For all these cases, power 
margins are computed and the operating data for the selected features are recorded. 
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Engineering knowledge is first used to select feature candidates. Then correlation coefficients are 
computed to get better information about feature selection. The correlations between the 175 
inputs and P margin are listed in Table 4.1. The features are selected from this sorted table based 
on correlation coefficient and some engineering judgement. There are 32 features come from real 
power flows and 9 from reactive power losses (the selected features are denoted by *). These 
features include power flows on significant paths such as Canadian Intertie between BCHA and 
BPA, COI, Midpoint-Summer lake, and so on. These selected features are the inputs to neural 
networks. Next, several neural networks with different sizes (near to the optimum size as 
computed by Bayesian regularization) are investigated. The results are listed in Table 4.2 where 
numbers are in MW. The P margin is the total of areas including PG&E, LADWP, Nevada, San 
Diego and Southern California. The statistical data of the performance of the neural networks is 
listed in Table 4.3. 
 

 
Table 4.1 Correlation coefficients between line flow information and P margin 

(only the largest and smallest correlations are shown here) 
Real power 
flow index 

Correlation 
coefficient 

Reactive 
power flow

index 

Correlation 
coefficient 

Reactive 
power loss 

index 

Correlation 
coefficient 

42* -0.9544 91 -0.9127 1* -0.9255
95* -0.9517 10 -0.886 64* -0.9071
12* -0.949 11 -0.8573 65* -0.9071
27* -0.9483 93 -0.844 33* -0.8937
21* -0.9422 94 -0.844 31* -0.8333
35* -0.942 19 -0.8063 135 -0.7481
26* -0.9415 20 -0.8049 136 -0.7191
25* -0.9409 43 -0.7997 8 -0.7126
9* -0.9378 80 -0.798 79 -0.6674

39* -0.9351 6 -0.7615 17 -0.6217
40* -0.9351 135 -0.7068 18 -0.6214
41* -0.9321 136 -0.6358 16 -0.6059
72* -0.9153 121 -0.6149 71 -0.5583
48* -0.9099 49 -0.5838 83 -0.5362
5* -0.9014 3 -0.5712 48 -0.4871
97 -0.8868 71 -0.538 157 -0.4836
38 -0.8836 34 -0.5297 156 -0.4836
16 -0.8821 7 -0.5241 130 -0.4669
32 -0.8769 139 -0.4821 3 -0.4482

33* -0.8759 134 -0.4792 86 -0.4423
37 -0.8703 4 -0.4721 32 -0.4217
36 -0.8691 64 -0.419 4 -0.4057

153 -0.8293 65 -0.419 144 -0.4049
86 -0.8284 78 -0.404 138 -0.3952

152 -0.8279 24 -0.4037 67 -0.3812
67 -0.8252 149 -0.3842 49 -0.2706

91* -0.814 102 -0.3798 127 -0.2678
7* -0.8081 22 -0.3656 145 -0.2623
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Table 4.1 Correlation coefficients between line flow information and P margin (cont.) 
103 -0.7764 57 -0.3603 112 -0.2612
46 -0.7737 56 -0.3603 134 -0.2398
47 -0.7677 53 -0.3314 160 -0.1549

127 -0.7409 69 -0.3123 26 -0.1409
49 -0.732 147 -0.3005 25 -0.1402
… … … … … …
6 0.7969 86 0.4356 24 0.405

24 0.7973 157 0.4358 139 0.4056
80 0.8171 156 0.4358 12 0.4183
79 0.8336 8 0.4435 154 0.5052
77 0.8587 9 0.474 97 0.5407

156 0.8691 21 0.4849 53 0.5439
157 0.8691 54 0.4909 61 0.544
43 0.8881 62 0.5046 99 0.5752
20 0.8892 79 0.5495 35 0.5916
19 0.8894 99 0.5523 6 0.6337
70 0.8964 92 0.5576 142 0.6391
10 0.8968 35 0.5865 149 0.6467

11* 0.9011 63 0.601 42 0.7185
1* 0.9012 39 0.6034 121 0.7283

34* 0.9194 40 0.6034 72 0.7283
123* 0.9229 77 0.6111 41 0.7696
136* 0.9259 25 0.6421 2 0.7955
129* 0.9308 67 0.6511 22 0.7956
112* 0.9336 103 0.6531 129 0.8417
135* 0.938 26 0.6656 21 0.8429
99* 0.9525 138 0.7094 11 0.861
31* 0.955 142 0.7388 77 0.8621
83* 0.9578 5 0.7806 20 0.8777
63* 0.9652 33 0.7906 19 0.8779
64* 0.9652 83 0.8073 91* 0.9065
65* 0.9652 16 0.8192 7* 0.9174
93* 0.9653 95 0.8193 93* 0.9564
94* 0.9653 27 0.8454 94* 0.9564

 
Table 4.2 The estimation of P margin of California using 5 different networks 

Network 1 Network 2 Network 3 Network 4 Network 5 
  label  estimation label   estimation label    estimation label   estimation label  estimation
 3.3000 3.2896  7.8000 7.7830   3.3000  3.3433   3.3000  3.3086   5.7000  5.6506 
  7.8000  8.0476   8.1000  8.0686   6.9000  6.8787   8.1000  8.0868   3.3000  3.2899 
  8.1000  8.0745   8.1000  8.0732   4.8000  4.8263   4.5000  4.4431   3.3000  3.2998 
  8.1000  8.0777   8.1000  8.0509   4.5000  4.4840   4.2000  4.0566   6.9000  6.8609 
  5.7000  5.6629   4.5000  4.5180   6.9000  6.8815   6.9000  6.9186   5.7000  5.7022 
  8.1000  8.0694   5.7000  5.5236   6.9000  6.8766   8.1000  8.0693   6.9000  6.8898 
  8.1000  8.0647   3.3000  3.3058   3.3000  3.3019   4.5000  4.4650   3.3000  3.2976 
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Table 4.2 The estimation of P margin of California using 5 different networks (cont.) 
  6.9000  6.9180   3.3000  3.2093   4.2000  4.2035   8.1000  8.1039   4.5000  4.4774 
  5.7000  5.7083   6.9000  7.0097   8.1000  8.0567   5.7000  5.7063   3.3000  3.2410 
  3.3000  3.3496   5.7000  5.7068   8.1000  8.0618   5.4000  4.7745   6.9000  6.9484 
  6.9000  6.8633   8.1000  8.1277   6.6000  6.5680   8.1000  8.0790   4.5000  4.4324 
  8.1000  8.0830   4.5000  4.4709   6.9000  6.8737   4.5000  4.4068   4.5000  4.5155 
  5.7000  5.6565   8.1000  8.0709   5.7000  5.6950   5.7000  5.5936   6.9000  6.7056 
  3.3000  3.2722   6.9000  6.8656   3.3000  3.3955   5.7000  5.6970   4.5000  4.4815 
  6.9000  6.8819   3.3000  3.2764   5.7000  5.6725   3.3000  3.2936   5.7000  5.7030 
  5.4000  5.3988   4.5000  4.4859   4.5000  4.4668   8.1000  8.0853   8.1000  8.0970 
  8.1000  8.0764   5.7000  5.7183   8.1000  8.0766   5.7000  5.7015   3.3000  3.3052 
  4.5000  4.5205   6.6000  6.6760   4.5000  4.4522   5.4000  5.2171   4.5000  4.4469 
  7.8000  8.1550   5.7000  5.7009   3.3000  3.2817   7.8000  8.0427   3.3000  3.2886 
  5.7000  5.7386   6.9000  6.8941   4.5000  4.4517   6.9000  6.9318   3.3000  3.3024 
  3.3000  3.2626   4.2000  4.0576   3.3000  3.3041   8.1000  8.0922   3.3000  3.1240 
  6.9000  6.8821   6.9000  6.8815   6.9000  6.8864   5.7000  5.6283   4.5000  4.4801 
  5.7000  5.6353   7.8000  7.8667   3.3000  3.2844   4.5000  4.4402   3.3000  3.2735 
  6.9000  6.8850   6.9000  6.8555   6.9000  6.8813   4.5000  4.3933   5.7000  5.6863 
  5.7000  5.7295   3.0000  2.8914   6.9000  6.9399   5.7000  5.6195   3.0000  2.7980 
  6.9000  6.9121   3.3000  3.3374   6.9000  7.0383   8.1000  8.0911   2.7000  3.0453 
  8.1000  8.0756   4.4036  4.5033   3.3000  3.2907   5.7000  5.6975   3.3000  3.3018 
  8.1000  8.0847   5.7000  5.7222   8.1000  8.0672   3.3000  3.3069   3.3000  3.4093 
  3.3000  3.2382   6.9000  6.9160   4.5000  4.4686   8.1000  8.0933   4.5000  4.5652 
  3.3000  3.2400   4.5000  4.4648   5.7000  5.7034   7.5000  7.4946   8.1000  8.0949 
  3.3000  3.2933   4.5000  4.4742   8.1000  8.0397   3.3000  3.2914   5.7000  5.6924 
  4.5000  4.4692   6.9000  6.8910   5.7000  5.6951   8.1000  8.0898   5.7000  5.7678 
  8.1000  8.0953   3.0000  2.9714   4.5000  4.4694   8.1000  8.1182   6.9000  6.8650 
  3.0000  3.1153   5.7000  5.7071   5.7000  5.6749   8.1000  8.0849   4.5000  4.4962 
  6.9000  6.8738   6.6000  6.7604   8.1000  8.0609   5.7000  5.7130   6.9000  6.8439 
  5.7000  5.6676   8.1000  8.0746   3.3000  3.2412   6.9000  6.8920   5.7000  5.6941 
  8.1000  8.1036   6.9000  6.8038   6.9000  6.8808   8.1000  8.1071   5.7000  5.6990 
  6.9000  6.8680   5.7000  5.7154   4.5000  4.4397   5.7000  5.7137   3.9000  4.4707 
  6.9000  6.7659   8.1000  8.0733   6.9000  6.8783   5.7000  5.6991   3.3000  3.2964 
  2.7000  2.8769   6.9000  6.8795   4.5000  4.4781   3.3000  3.0640   4.5000  4.5044 
  8.1000  8.0666   4.5000  4.4733   6.9000  6.8671   6.9000  6.8966   8.1000  8.1269 
  4.5000  4.5671   3.3000  3.3046   8.1000  7.7916   3.3000  3.2913   4.5000  4.5032 
  6.9000  6.8318   3.3000  3.3248   6.9000  6.9348   3.3000  3.2933   3.3000  3.3034 
  4.5000  4.4763   4.5000  4.4752   5.7000  5.6859   8.1000  8.0868   8.1000  7.8859 
  7.8000  8.2037   4.5000  4.4637   8.1000  8.0603   6.9000  6.7912   8.1000  8.0963 
  3.3000  3.2981   3.3000  3.3426   3.3000  3.2804   4.5000  4.4820   4.5000  4.4885 
  6.9000  6.9181   5.7000  5.7298   3.3000  3.2932   6.9000  6.8966   6.9000  6.8835 
  6.9000  6.8588   6.9000  6.8834   5.7000  5.6938   4.5000  4.4950   4.5000  4.4959 
  3.3000  3.3162   5.1000  4.9011   4.5000  4.4720   3.0000  3.1084   6.9000  6.8038 
  5.7000  5.7007   6.9000  6.8791   8.1000  8.0613   5.7000  5.7153   6.6000  7.0033 
  8.1000  8.0832   5.4000  5.2948   8.1000  8.0577   8.1000  8.0885   5.7000  5.7032 
  3.3000  3.3056   6.9000  6.8665   4.5000  4.4501   6.9000  6.8772   6.9000  6.8802 
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Table 4.2 The estimation of P margin of California using 5 different networks (cont.) 
  5.4000  5.5130   8.1000  8.0754   3.3000  3.5320   4.5000  4.5012   5.7000  5.6929 
  6.9000  6.8595   4.5000  4.4746   4.5000  4.4840   4.5000  4.4964   3.3000  3.2978 
  6.9000  6.8410   5.7000  5.7000   3.3000  3.2902   7.8000  8.0002   5.7000  5.6868 
  6.9000  6.8669   5.7000  5.7250   5.4000  5.3202   4.5000  4.4918   4.5000  4.2688 
  8.1000  8.0732   3.3000  3.3246   8.1000  8.0686   4.5000  4.4873   8.1000  8.1049 
  3.3000  3.2909   8.1000  8.0716   4.5000  4.4659   6.9000  6.9632   6.9000  6.9124 
  5.1000  5.1168   4.2000  4.4371   6.6000  6.8631   4.5000  4.5484   5.7000  5.6963 
  6.9000  6.8721   5.7000  5.7049   5.7000  5.6342   3.3000  3.3087   6.9000  6.8999 
  8.1000  8.0700   5.7000  5.7248   8.1000  8.0581   4.5000  4.4951   8.1000  8.0979 
  3.3000  3.2918   8.1000  8.2023   6.9000  6.8892   8.1000  8.0702   3.3000  3.2961 
  5.7000  5.6858   3.0000  3.2634   5.7000  5.6752   7.5000  8.0724   4.5000  4.5074 
  4.5000  4.5148   4.5000  4.4409   4.5000  4.4658   5.7000  5.7069   4.5000  4.5050 
  4.5000  4.4857   8.1000  7.9974   6.9000  6.9298   8.1000  8.1000   3.3000  3.3325 
  4.5000  4.4851   3.3000  3.3842   6.9000  6.8717   4.2000  4.3022   4.5000  4.4187 
  3.3000  3.3097   8.1000  8.0738   8.1000  8.0584   6.9000  6.8882   6.9000  6.8765 
  3.3000  3.3694   6.9000  6.8691   6.9000  6.8514   4.5000  4.4964   5.7000  5.7018 
  4.5000  4.4719   8.1000  8.0721   4.5000  4.4500   3.3000  3.3001   3.3000  3.2982 
  3.3000  3.2755   8.1000  7.9415   4.5000  4.4737   3.3000  3.0790   6.9000  6.8779 
  4.5000  4.4749   5.4000  5.3120   7.8000  7.7290   6.9000  6.9088   5.7000  5.6976 
  4.5000  4.4625   5.7000  5.7097   5.7000  5.6799   8.1000  8.0872   3.3000  3.2394 
  4.5000  4.4758   4.5000  4.4923   4.8000  5.4833   3.3000  3.2937   5.7000  5.6986 
  3.3000  3.1904   4.2000  3.6133   8.1000  8.1366   3.3000  3.2905   8.1000  8.0632 
  6.9000  6.8943   4.5000  4.4361   5.7000  5.7030   8.1000  8.3106   3.6000  3.4757 
  6.9000  6.8617   4.5000  4.4362   8.1000  8.0251   4.2000  4.0067   5.7000  5.6936 
  8.1000  8.1039   5.7000  5.7224   6.9000  6.8345   3.3000  3.2949   4.5000  4.4979 
  3.3000  3.2872   5.7000  5.8284   4.2000  4.4552   5.7000  5.6989   6.9000  6.8901 
  3.3000  3.2925   3.3000  3.3868   4.5000  4.4433   4.5000  4.4919   4.5000  4.4878 
  6.6000  6.6950   3.3000  3.3354   4.5000  4.4653   5.7000  5.5978   6.9000  6.8773 
  6.9000  6.9348   6.9000  6.8824   5.7000  5.6813   6.9000  6.8815   5.7000  5.7021 
  8.1000  8.1025   5.7000  5.6746   7.5000  8.0479   3.3000  3.3111   6.9000  6.9868 
  3.3000  3.2917   8.1000  8.0278   3.0000  2.9252   3.3000  3.3742   4.5000  4.5487 
  4.2000  4.1375   5.7000  5.7075   5.7000  5.6691   6.9000  6.9181   3.3000  3.2763 
  8.1000  8.0668   4.5000  4.4359   5.7000  5.7200   8.1000  8.0763   8.1000  8.0784 
  5.7000  5.6399   8.1000  8.0729   6.9000  6.8644   5.7000  5.6437   8.1000  7.9819 
  4.5000  4.4851   5.7000  5.7142   8.1000  8.0593   5.7000  5.6921   6.9000  6.8683 
  8.1000  8.0787   3.3000  3.3033   8.1000  8.0611   5.7000  5.6020   5.7000  5.6977 
  8.1000  8.0830   6.9000  6.7279   8.1000  8.0088   6.9000  6.9095   4.5000  4.4749 
  6.9000  6.8586   6.9000  6.8654   6.9000  6.8748   8.1000  8.0777   4.5000  4.4655 
  3.3000  3.2919   4.5000  4.4815   8.1000  8.0611   3.0000  3.2896   6.9000  6.8668 
  6.6000  6.5865   5.7000  5.7099   4.5000  4.4707   6.9000  6.8814   8.1000  8.0617 
  5.7000  5.6945   5.7000  5.7132   4.5000  4.4811   8.1000  8.0677   3.3000  3.3145 
  3.3000  3.2956   4.5000  4.4736   4.5000  4.4531   3.0000  2.9163   3.3000  3.2913 
  4.5000  4.4835   2.7000  2.6228   6.9000  6.9518   4.2000  4.0912   3.3000  3.2993 
  3.0000  3.1464   5.7000  5.7746   3.2036  3.3198   8.1000  8.0937   6.9000  6.8828 
  4.5000  4.4629   3.3000  3.3108   3.3000  3.2773   5.7000  5.6565   4.2000  4.1804 
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Table 4.2 The estimation of P margin of California using 5 different networks (cont.) 
  8.1000  8.0688   4.5000  4.5018   4.5000  4.4735   8.1000  7.8278   5.7000  5.6826 
  8.1000  8.0854   1.2000  1.0488   8.1000  8.0617   5.4000  5.3513   5.7000  5.6832 
  8.1000  8.0926   6.9000  6.8327   6.9000  6.8707   3.0000  3.0432   4.5000  4.5060 
  4.5000  4.4988   4.5000  4.4866   6.9000  6.9622   4.5000  4.4832   5.7000  5.7031 
  6.6000  6.6960   6.9000  6.8756   6.9000  6.8850   3.3000  3.2920   3.3000  3.3012 
  6.9000  7.0576   6.9000  6.8764   6.9000  6.8706   3.3000  3.2782   3.9000  4.1020 
  7.2000  6.7310   5.7000  5.7274   6.9000  6.8844   5.4000  5.3628   5.7000  5.6224 
  6.9000  6.8527   4.2000  4.2373   4.5000  4.5055   4.5000  4.4695   6.9000  6.8909 
  3.3000  3.2909   5.7000  5.7090   7.8000  7.4447   6.6000  6.7304   6.9000  6.8809 
  4.5000  4.4858   4.5000  4.4963   6.9000  6.8713   3.3000  3.3514   1.2000  1.1562 
  6.9000  6.8721   3.3000  3.3038   4.5000  4.4600   3.3000  3.3381   5.7000  5.6392 
  5.7000  5.6791   5.7000  5.5647   3.3000  3.2793   8.1000  8.0770   4.5000  4.5049 
  6.6000  6.6185   5.7000  5.7040   6.9000  6.8988   4.5000  4.4810   6.6000  6.6995 
  8.1000  8.0680   8.1000  8.0855   6.9000  6.8720   3.3000  3.3012   4.5000  4.4921 
  8.1000  8.0875   4.2000  4.4161   6.6000  6.9117   3.3000  3.2618   6.9000  6.8790 
  6.9000  6.8316   8.1000  7.9807   3.3000  3.2831   3.3000  3.2627   3.3000  3.2972 
  6.9000  6.8050   3.3000  3.3236   6.9000  6.8785   4.5000  4.5023   4.5000  4.4559 
  8.1000  8.0759   6.9000  6.8745   6.9000  6.8628   6.9000  6.8927   5.7000  5.6721 
  6.6000  6.8364   6.9000  6.8660   6.9000  6.8624   4.5000  4.4741   5.7000  5.6883 
  8.1000  8.0706   6.9000  6.8914   6.9000  6.8837   3.3000  3.3084   4.5000  4.4834 
  3.3000  3.3005   3.3000  3.6947   5.7000  5.6799   3.3000  3.4456   4.5000  4.4979 
  6.9000  6.8650   5.1000  5.5807   5.7000  5.6966   3.3000  3.2927   5.7000  5.6818 
  4.5000  4.4629   5.7000  5.7109   8.1000  8.0797   3.3000  3.2764   6.9000  6.8949 
  8.1000  8.0846   3.3000  3.3007   4.5000  4.4127   5.7000  5.6642   3.2036  3.3236 
  8.1000  8.0790   4.5000  4.4858   6.9000  6.8970   6.9000  6.8909   6.6000  6.5531 
  5.7000  5.7115   6.9000  6.8729   3.3000  3.2820   3.3000  3.1703   3.3000  3.2837 
  8.1000  8.0450   8.1000  8.0786   6.9000  6.8804   5.4000  5.4307   5.7000  5.6642 
  8.1000  8.0915   6.9000  7.0276   5.7000  5.7128   3.3000  3.2867   3.3000  3.3020 
  8.1000  8.0802   7.8000  7.9717   6.9000  6.8863   6.9000  6.8771   3.3000  3.2948 
  3.3000  3.2895   5.7000  5.6972   3.3000  3.2976   4.5000  4.5210   4.5000  4.5775 
  4.5000  4.4808   5.7000  5.7657   8.1000  8.0649   4.5000  4.4832   5.7000  5.6584 
  4.5000  4.4739   6.9000  6.8665   3.3000  3.2835   5.7000  5.7698   6.9000  6.8714 
  6.9000  6.8761   8.1000  8.0865   8.1000  8.0673   5.7000  5.6837   6.6000  6.9055 
  4.5000  4.4603   3.2036  3.3402   5.7000  5.5600   6.9000  6.8830   8.1000  8.0807 
  8.1000  8.3451   5.4000  5.5278   3.3000  3.3305   3.3000  3.2915   8.1000  8.0969 
  6.9000  6.8656   8.1000  7.9822   8.1000  8.0508   4.5000  4.4998   4.5000  4.4798 
  5.7000  5.6745   6.9000  6.8763   5.7000  5.6770   6.9000  6.8852   6.9000  6.9392 
  4.5000  4.4669   8.1000  8.0746   3.3000  3.2713   6.9000  6.8823   4.5000  4.3435 
  5.7000  5.6816   4.5000  4.4972   3.3000  3.2930   4.5000  4.4789   5.7000  5.7021 
  3.3000  3.3025   4.5000  4.5098   8.0036  8.0804   5.7000  5.7455   5.7000  5.6987 
  3.3000  3.2721   8.1000  8.0714   5.1000  5.3486   6.9000  6.8650   6.9000  6.9405 
  4.4036  4.5064   3.3000  3.3207   5.7000  5.6787   7.8000  7.7946   5.7000  5.6140 
  6.9000  6.8699   8.1000  8.0223   5.7000  5.6735   5.7000  5.6943   4.5000  4.5060 
  5.7000  5.7086   5.7000  5.7101   3.3000  3.2840   6.9000  6.9416   3.3000  3.2653 
  4.5000  4.4957   7.2000  8.0823   5.4000  5.5534   6.9000  6.9023   8.1000  8.1019 
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Table 4.2 The estimation of P margin of California using 5 different networks (cont.) 
  4.8000  5.7039   5.7000  5.7270   4.5000  4.4471   5.7000  5.7204   4.5000  4.4650 
  6.9000  6.8776   8.1000  8.0702   5.7000  5.6935   5.7000  5.6954   4.5000  4.4996 
  8.1000  8.0501   4.2000  4.3828   5.7000  5.7075   8.1000  8.0812   4.5000  4.4945 
  6.6000  6.5827   6.9000  6.8954   5.7000  5.6770   6.9000  6.8920   5.7000  5.7547 
  8.1000  8.0795   6.9000  6.8854   5.7000  5.7218   6.9000  6.8988   6.9000  6.9054 
  3.3000  3.2941   5.1000  5.5000   6.9000  6.8633   8.1000  8.0912   3.3000  3.3115 
  6.9000  6.8686   3.3000  3.3384   7.8000  7.7915   8.1000  8.0381   6.9000  6.8766 
  8.1000  8.0478   5.7000  5.7175   4.5000  4.4396   6.9000  6.8922   7.8000  7.7403 
  8.1000  8.0943   4.5000  4.4755   8.1000  8.0678   8.1000  8.0741   5.7000  5.6977 
  4.5000  4.4930   4.2000  4.2997   4.5000  4.4578   6.9000  6.8770   5.4000  5.3366 
  4.5000  4.5034   3.3000  3.3104   6.3000  6.3959   4.5000  4.4763   3.3000  3.2806 
  4.5000  4.4487   4.5000  4.4565   3.3000  3.2847   5.7000  5.7052   6.9000  6.8887 
  4.5000  4.4812   7.8000  8.2935   4.5000  4.4594   6.9000  6.8907   5.4000  5.3211 
  8.1000  8.0748   4.5000  4.4858   4.5000  4.4366   4.2000  4.2351   6.9000  6.8932 
  6.9000  6.8982   6.9000  6.8654   7.8000  6.9082   4.5000  4.4205   3.3000  3.2941 
  6.9000  6.8849   7.5000  8.0701   6.9000  6.9815   4.5000  4.5198   4.5000  4.5033 
  8.1000  8.0831   8.1000  8.0826   6.9000  6.8793   4.5000  4.5314   6.9000  6.8858 
  5.7000  5.7085   8.1000  8.0765   5.7000  5.6971   3.3000  3.2814   3.3000  3.3190 
  3.3000  3.2924   8.1000  8.1118   2.7000  2.7802   8.1000  8.0759   5.7000  5.6150 
  3.3000  3.2924   5.7000  5.7178   8.1000  7.9913   3.3000  3.2931   3.3000  3.3040 
  3.3000  3.4829   6.9000  6.8845   3.3000  3.6162   5.7000  5.6859   3.3000  3.2586 
  6.9000  6.8748   5.7000  5.4380   5.7000  5.7595   5.7000  5.6804   5.7000  5.6959 
  5.4000  5.3750   4.5000  4.4878   8.1000  8.0823   3.3000  3.3581   6.9000  6.8912 
  4.5000  4.4488   3.3000  3.3025   6.9000  6.8933   6.9000  6.8912   3.0000  2.9210 
  8.1000  7.9038   5.7000  5.4650   8.1000  8.0566   3.3000  3.2895   4.5000  4.3463 
  3.3000  3.2813   8.1000  8.0720   8.1000  8.0614   6.9000  6.8817   4.5000  4.5001 
  8.1000  8.0812   6.9000  6.8815   5.7000  5.6662   4.5000  4.5057   6.3000  6.4694 
  3.3000  3.2694   8.1000  8.0370   4.5000  4.5393   5.7000  5.7141   8.1000  7.8419 
  8.1000  8.1118   4.5000  4.4923   5.7000  5.7664   3.3000  3.2927   4.5000  4.5050 
  4.2000  4.3037   8.1000  8.0717   5.1000  5.3700   4.5000  4.5106   8.1000  8.0208 
  8.1000  8.2186   8.1000  8.0577   4.5000  4.4823   6.3000  6.6988   6.0000  6.7772 
  4.5000  4.4851   3.3000  3.3184   5.7000  5.6618   5.7000  5.6888   3.3000  3.3601 
  4.5000  4.4485   3.3000  3.3167   4.5000  4.4538   5.4000  5.6440   4.5000  4.5837 
  4.5000  4.4804   3.3000  3.3383   8.1000  8.0798   4.5000  4.4833   5.7000  5.6964 
  4.2000  3.9404   8.1000  8.0826   3.3000  3.2937   4.5000  4.5164   5.7000  5.7051 
  5.7000  5.6934   5.7000  5.6064   3.3000  3.2800   4.5000  4.4941   3.3000  3.2959 

 
Table 4.3: The performance of networks on California load margin estimation 

 Network 1 Network 2 Network 3 Network 4 Network 5
Number of hidden 

neuron(1st+2nd layer) 
7+4 7+3 6+4 8+3 8+4 

Max error(MW) 904.00 882.3 891.8 625.5 777.2 
Mean error(MW) 105.21 133.20 121.39 97.62 104.24 

Standard deviation (MW) 105.50 133.40 
 

121.51 97.69 104.51 
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Figure 4.3 The performance of the system model  for California load margin 

Table 4.4 The performance comparison on the same test data (California load margin)   
 Network 

1 
Network 

2 
Network 

3 
Network 

4 
Network 

5 
System 

Max error (MW) 485.2447 423.6993 396.2494 673.7733 378.7913 420.0951 
Mean error (MW) 80.1573 82.3018 89.7667 103.3176 97.2577 74.5145 
Standard deviation 

(MW) 
78.8828 82.2095 88.0339 102.8270 95.940 73.5362 

 
Each of the networks is trained and tested with the same data. The overall performance is listed 
in Table 4.4. The P margin required in these cases is around 2000 MW (P at the nose point of PV 
curve, 40,000 multiplied by 5% where 5% is defined in WSCC security criteria as performance 
level A). The last column is the result of system model using a voting mechanism. Note that such 
a voting mechanism reduces both the mean error and standard deviation. The maximum error 
(420) of the system is less than the mean (471.55) and median (423.70) maximum error of the 5 
individual networks. This is about 21% of the minimum margin requirement. The results are 
plotted graphically in Figure 4.3. This clearly shows the credibility of the system model for P 
margin estimation. 

 
4.4.3 P margin estimation over COI transfer limit 
 
The networks are next applied to the P margin estimation for COI transfer limit.  First, a new 
base case is generated which represents a light load in summer (California). Then, gradually the 
generation is decreased in the California area and the generation is scaled up in the Northwest 
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and BC Hydro. The effect is to increase the power transfer on COI step by step. There are totally 
11 steps until the system could not survive further increase on COI. At each step, the 32 worst n-
1 contingencies are studied so the total cases are 336. For each case, P margin on COI transfer, 
power flows and reactive power losses on major paths and reactive power reserve in interested 
areas are recorded as training and testing data. 
 
Again, engineering knowledge is first used to select feature candidates. The inputs include real 
power flow and reactive power loss of some key lines and reactive power reserve in BC Hydro, 
Northwest, PG&E, Nevada and South California. Then instead of using correlation coefficients, 
this data is fed to the neural network PREPCA function. As mentioned in section 2, PREPCA 
can extract useful data and reduce the dimension of the input vectors. It effectively reduced the 
input number from 106 to 46. The reduced features are the inputs to neural networks. Again, 
several neural networks with different sizes (close to the optimum size as computed by Bayesian 
regularization) are tested. The results are listed in Table 4.5.  Units in this table are in 1000 MW. 
The P margin is the margin of transfer on COI. The statistical data on the performance of the 
neural networks is listed in Table 4.6. 

 
Table 4.5 The estimation of P margin on COI transfer using 5 different networks 

network 1 network 2 network 3 network 4 network 5 
label  estimation label   estimation label    estimation label   estimation label  estimation
   0.3728   0.3730    0.2434   0.2330   1.8415   1.7872   0.8523   0.8426    0.1281   0.1385
   1.7878   1.7953    1.3843   1.4091   0.0009   -0.0032    0.1281   0.1573    1.0220   1.0744
   1.8170   1.8628    1.3613   1.3385    0.3772   0.3740    0.1472   0.1328    0.7019   0.7145
   0.5865   0.5821    0.2850   0.2205    0.3308   0.3451    0.7532   0.7437    0.7665   0.7665
   0.6929   0.6895    0.2584   0.2491    0.6045   0.5959    0.0758   0.0811    1.3485   1.3126
   1.8414   1.8829    0.2042   0.1930    0.2657   0.2609    0.1998   0.2015    0.4876   0.4923
   0.5112   0.5073    0.3056   0.3169    0.6605   0.6626    0.3728   0.3885    0.1946   0.1878
   0.5156   0.5253    0.3053   0.3386    0.4749   0.4664    0.1219   0.1426    0.0758   0.0391
   0.6063   0.6150    0.7102   0.7254    0.5156   0.5174    0.0653   0.0657    0.4204   0.4195
   0.0716   0.0964    1.4119   1.4153    0.7102   0.6975    0.9057   0.8972    0.2006   0.1916
   0.3988   0.4103    0.2095   0.1973    0.7412   0.7713    0.0573   0.0477    0.7555   0.7569
   0.5867   0.6011    1.0614   1.0497    1.1240   1.1339    1.8679   1.8706    0.1638   0.1906
   0.0101   0.0092    1.0680   1.0595    0.2799   0.2744    0.4876   0.4929    0.0779   0.0843
   0.3673   0.3758    1.8395   1.8414    0.1018   0.0902    0.0244   0.0176    0.5865   0.5914
   1.5043   1.5330    1.8414   1.8459    1.8176   1.7322    0.6605   0.6155    0.1472   0.1224
   0.9888   1.0094    0.2718   0.2523    0.3840   0.3820    0.9375   0.9630    0.6583   0.6604
   0.1899   0.1911    0.6727   0.6826    0.1998   0.1954    0.3058   0.2921    1.2840   1.2522
   0.5262   0.4980    0.0244   0.0628    0.5379   0.5413    0.6929   0.7213    0.2452   0.2126
   0.7434   0.7279    0.0758   0.0843    0.6029   0.5722    0.0761   0.1111    0.8834   0.8820
   0.7575   0.7681    0.6039   0.6017    1.8395   1.8093    1.3421   1.2995    0.9876   0.9969
   0.4846   0.4755    0.4060   0.4047    0.0726   0.0624    2.0036   1.8990    0.3058   0.3029
   0.5083   0.5028    1.3485   1.3733    0.1486   0.1563    0.5413   0.5439    0.6508   0.6383
   0.2806   0.2799    0.1108   0.1118    0.3046   0.2961    0.1919   0.1995    0.0244   0.0252
   0.0729   0.0864    0.1254   0.1383    0.9695   0.9554    0.3269   0.3339    0.1298   0.1240
   0.4628   0.4514    0.5720   0.5642    0.0244   0.0118    0.7385   0.7310    0.6039   0.5889
   0.5413   0.5708    0.1919   0.1845    0.9690   0.9375    0.0257   0.0200    0.1964   0.1918
   0.6542   0.6430    0.2378   0.2184    0.3388   0.3371    0.2127   0.2132    1.3856   1.3879
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Table 4.5 The estimation of P margin on COI transfer using 5 different networks (cont.) 
   0.5156   0.4887    0.3771   0.3943    0.0456   0.0445    1.4315   1.4473    0.3046   0.2941
   0.4125   0.4100    1.8484   1.8405    0.0733   0.0448    0.5156   0.5127
   1.3426   1.3222    0.0726   0.0745    0.0956   0.1177    0.1376   0.1312    0.3995   0.3989
   0.1704   0.2070    0.0786   0.0674    0.1402   0.1302    0.6197   0.6389    0.0399   0.0225
   0.3574   0.3621    0.6029   0.6151    1.0680   1.0680    0.2831   0.2863    0.0733   0.0703
   0.4749   0.4821    1.8564   1.8920    1.3843   1.3998    0.2952   0.3088    0.5044   0.4764
   0.7412   0.7401    0.2042   0.1946    0.3058   0.3042    1.3322   1.3712    0.1472   0.1442

   1.3256   1.2773

 
Table 4.6: The performance of networks on COI transfer margin estimation 

 Network 1 Network 2 Network 3 Network 4 Network 5 
Number of hidden 

neuron(1st+2nd layer) 
16+6 16+5 15+5 15+4 14+3 

Max error (MW) 53.48 73.79 63.50 76.24 42.65 
Mean error (MW) 20.85 18.77 19.47 24.92 14.72 

Standard deviation (MW) 20.68 18.50 19.75 24.35 14.73 
 

Table 4.7 The performance comparison on the same test data (COI transfer margin) 
 Network 1 Network 2 Network 3 Network 4 Network 5 System

Max error (MW) 23.45 8.02 32.86 16.64 21.25 7.84 
Mean error (MW) 4.07 1.80 7.07 3.03 5.57 1.39 
Standard deviation 

(MW) 
4.05 1.77 6.91 3.01 5.63 1.38 
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Figure 4.4 The performance of the system model (COI transfer margin) 



 
Again, the networks are fed identical test data. Table 4.7 summarizes the performance. The 
required P margin on COI is around 125MW (P at the nose point of PV curve, 2500, multiplied 
by 5% where again 5% is defined in WSCC security criteria as performance level A). The last 
column is the result of system model using a voting mechanism. Note that using this method 
decreases the maximum error, mean error and standard deviation. The maximum error is less 
than 6.3% of the required margin. The result of the system model is plotted in Figure 4.4 
showing clearly that the margin is precise for all test cases. This further establishes the credibility 
of the approach for P margin estimation. 
  
Next two additional cases are studied to show the effect of equipment outages combined with n-1 
contingency studies. To begin, the possibility of the outage of the Table Mountain-Tesla 500 kV 
line in combination with other contingencies is included. The Table Mountain-Tesla line outage 
will cause a significant decrease in COI transfer limit. The purpose of this study is to test if the 
neural networks have the ability to generalize under more diverse operating conditions. If so, 
then a given neural network (or set of five networks in our model) can be used to cover more 
operating scenarios and in effect act as multiple nomograms. Table 4.8 shows the statistical 
performance on this data. Figure 4.5 depicts graphically the difference between the estimated and 
actual margins on this data set. The number of test cases increases here to follow the rule given 
by equation (4.1). As expected, estimate errors increase. Still, the errors are not large and again, 
there are no misclassifications. The next set of data adds the possibility of the outage of the 
Diablo Canyon nuclear unit #1 in combination with other contingencies. Table 4.9 shows the 
statistical performance on this data. Figure 4.6 depicts graphically the difference between the 
estimated and actual margins on this data set. Again, the errors are not large and there are no 
misclassifications. This provides further justification of the use of these networks for widely 
varying system conditions. 
 

Table 4.8 The performance comparison with  
Table Mountain-Tesla outage (COI transfer margin) 

 Network 1 Network 2 Network 3 Network 4 Network 5 System
Max error (MW) 46.68 44.04 82.38 112.70 50.44 25.94 
Mean error (MW) 11.53 10.02 14.39 38.94 11.00 5.63 
Standard deviation 

(MW) 
11.54 10.05 14.45 39.10 11.05 5.66 

 
Table 4.9 The performance comparison with  

Diablo Canyon unit outage (COI transfer margin) 
 Network 1 Network 2 Network 3 Network 4 Network 5 System

Max error (MW) 37.81 59.84 66.83 42.24 33.17 28.60 
Mean error (MW) 9.92 14.41 11.13 13.49 7.91 7.00 
Standard deviation 

(MW) 
10.00 14.51 11.10 13.39 7.98 7.05 
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Figure 4.5 The performance of the system model including Table Mountain-Tesla 

outage (COI transfer margin) 
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Figure 4.6 The performance of the system model including Diablo Canyon outage 
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5. Conclusions  
 
5.1 Remarks 
 
This study investigates some approaches to improving operator procedures with particular 
emphasis on estimating transfers limited by voltage security using neural networks. In practice, 
the relations between critical paths and operating conditions are tabulated and plotted as 
nomograms for on-line use by system operators. With such a simplified view of system 
conditions, the operator is often unable to have a complete understanding of operational limits. 
 
The neural network implicitly models the relation between security and the system loading and 
power flow patterns in the interested area. Here for VSA, static analysis methods, which are 
commonly used by utilities, are employed but there are no limitations to this in the proposed 
approach. Thus, a general methodology for fast on-line security assessment has been proposed. 
Two kinds of neural networks, Kohonen networks and feedforward neural networks, are 
investigated. The latter is found to be more suitable for this problem. Feature selection is based 
on both engineering knowledge and statistical correlation. Principle component analysis is used 
for further feature reduction and data preprocessing. For robustness, multiple networks are used 
with the final estimated based on an average after tossing out the lowest and highest estimations. 
Different system operating conditions (winter, summer), different loading levels and contingency 
plans are used for generating training and testing data. These different scenarios mimic the 
studies and methods used in utilities. The data comes from computations using mature algorithms 
developed for static security analysis. As was done in this study, it is straightforward to present 
the procedures with the estimated margins in a database. Therefore, the method can be easily 
embedded into the security analysis module in a modern energy management system. Excluding 
the training period, the neural networks operate extremely fast and are suitable for on-line 
application. 
 
Specific contributions from this study were: 
 

• A typical set of operating procedures was tabulated into an on-line database. 
Conceptually, these margins can be easily modified on-line to reflect changing system 
conditions. 

• Several pattern matching type approaches were investigated using a modified New 
England 39 bus system. Based on these results, a system based on feedforward artificial 
neural networks (ANN) was designed.  

• A modified ANN system, employing multiple networks and a voting system, was applied 
to the Western System Coordinating Council (WSCC) system. The analysis was based on 
a WSCC 5000 bus model over a large range of loading conditions considering all major 
contingencies. 

• Results on P margin estimations for the California Oregon Intertie showed no 
misclassifications of security and an average error of 1.2%. 

• Results on P margin estimations for the California area showed no misclassifications of 
security and average error of 3.7%. 
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• A single estimator covering select multiple contingencies raised margin errors on the 
California Oregon Intertie to 5.8% but again there were no misclassifications of security. 
Conceptually, this situation represents a flexible multivariate nomogram. 

 
The test results shown here establish that using a system of feedforward ANNs, one can 
accurately estimate security margins for on-line application. In practice, the operating schedules 
face the possibility of numerous combinations of operating conditions and equipment outages. 
To avoid a proliferation of estimators, it is important that a single network can perform well 
under some multiple contingencies. The results show that some such combinations can be solved 
using only one set of neural networks. Thus, one may be able to provide a complete system 
assessment with a manageably small number of networks, each trained for a limited set of 
multiple outages.  
 
Finally, the effectiveness of the method, of course, depends largely on the credibility of the data. 
That is, to what extent does the data used for training represent the unstudied cases? For the 
voltage security assessment problem studied here, this condition appears to be reasonable. There 
is a trade-off here between accuracy of the approach, number of networks and number of off-line 
studies. That is, this approach requires operation planners to increase somewhat the number of 
off-line studies, as well as carefully record data, so as to improve the estimates. Further, more 
accurate results are obtained if each estimator (set of networks) is limited to only one double 
contingency.  
 
5.2 Further research 
 
While the results presented in this work show the validity of the ANN approach, there are several 
extensions needed for practical on-line application. First, only one security problem has been 
investigated here. A practical system must consider all security criteria, including thermal limits, 
voltage decay, voltage dip, and so on. Second, greater use of on-line data may improve the 
performance significantly. For example, for the problem at hand, there is a well-known 
indication of voltage collapse: a small change in power flow causing large change in voltage.  
Measurements, where available, that indicate such a condition could also be features inputted 
into a neural network. Further, the objective is to use the system to not only calculate the margin 
but also to determine transfer limits based on the margin estimate and other security inputs.  
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