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Executive Summary 
 
Power system dynamic simulations and transient stability studies vitally depend on the accuracy 
of the load models. However, it is widely recognized that the monitoring capability for loads is 
insufficient while the accuracy of load models has not been fully investigated. Meanwhile, the 
analysis on the adequacy or necessity of existing dynamic composite load models is left open the 
literature. This project aims to tackle these challenging by analyzing the complexity trade-off of 
the load models used for studying the increasingly critical fault-induced delayed-voltage recovery 
(FIDVR) events. Real-time and non-intrusive estimation of the load models are also pursued in this 
project, by leveraging high-resolution and high-bandwidth data even available within distribution 
feeders. This project has successfully developed a software tool for grid operators to perform 
measurement-based load modeling using the WECC composite load model (CMPLDW) structure. 
The report is presented in two parts. 
 
Part I: Model Complexity Analysis and Improved Parameter Estimation for Dynamic Load 
Models 
 
Transient stability analysis is becoming increasingly important for power systems engineers and 
researchers. Accurate dynamic models are required, but dynamic load modeling by fitting the 
input-output measurements during fault events is an area of weakness. For example, the WECC 
composite load model (CMPLDW) has been developed recently as an improvement to existing 
composite load models such as the complex load model (CLOD). The WECC CMPLDW has 
been developed to better represent fault-induced delayed-voltage-recovery (FIDVR) events, which 
are of increasing concern to electric utilities. However, the model nonlinearity and large number 
of parameters of the WECC CMPLDW model pose severe identifiability issues and performance 
degradation for the measurement-based load modeling approach using the classical nonlinear least- 
squares (NLS) objective. 
 
This report will first present a general framework that can effectively analyze and visualize the 
parameter (in)sensitivity and dependency of complex dynamic load models with large numbers 
of parameters under FIDVR. The possible impact of these effects on the predictive ability of the 
model is also explored. Finally, we present an improved parameter estimation algorithm by better 
designing the NLS error objective using a regularized term according to a priori information on 
parameter values. Two different types of regularization techniques have been proposed. 
Effectiveness of our model sensitivity and dependency analysis, as well as the improved numerical 
performance of the proposed parameter estimation schemes, have been validated using both 
synthetic data and real measurement collected during FIDVR events. Albeit focused on the 
WECC CMPLDW and the CLOD model, the proposed approaches can be readily used for dynamic 
composite load modeling in general. 
 
Part II: Non-intrusive Load Monitoring within Distribution Feeders 
 
The FIDVR phenomenon is believed to be driven by the stalling of single-phase compressor 
motors, such as those in residential air conditioners and refrigerators. While CMPLDW was 
specifically designed to replicate this behavior, it may still be inadequate due to being a positive 
sequence model. Positive sequence simulations assume that sub-cycle phenomena are negligible, 
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but we show in both simulation and laboratory testing that this is not true for compressor motors. 
For an instantaneous voltage drop event, the motor is much more likely to stall if the event occurs 
at the moment of zero crossing as opposed to at a peak. 
 
One aspect of load modeling that is often discussed but unsolved is the real-time updating of load 
model parameters on a daily or seasonal basis. In this work, we propose using harmonic 
information to monitor load composition. For example, the often-observed “rabbit ears” are 
characteristic of a power electronic load with a rectified front-end. Based on empirical data 
measured at an office building, we can observe that such loads are active during the day, but absent 
at night, which suggests an HVAC system run by variable frequency drives. Based on such analysis 
at the aggregate level, we can perform long term monitoring of load dynamics. 
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Chapter 1

Introduction

Development of dynamic load models is essential for transient stability analysis and control de-
signs in power systems [1,2]. However, due to the inherent uncertainty, complexity, and diversity of
power system loads, their modeling remains challenging to academic and industrial researchers [3].
Thanks to wide deployment of digital fault recorders, the measurement-based load modeling ap-
proach becomes increasingly popular; see [4–9]. This approach determines parameters of a given
model structure by fitting field measurements during system disturbances, and the resultant param-
eterized models can be directly used for dynamic studies.

There exist several dynamic load model structures for measurement-based load modeling. One
popular choice consists of a static constant impedance-current-power (ZIP) component and a dy-
namic induction motor (IM) component. This ZIP+IM model has been widely used due to its
simple structure [4–7]. In addition, the complex load model (CLOD) developed by PSS/E, which
has been preliminarily investigated in [8], has several more components including two IMs of
different torque-speed and current-speed curves. Although these load models are effective in rep-
resenting load dynamic behavior during most short-duration faults, they fail to model fault-induced
delayed-voltage-recovery (FIDVR) events; see [10, 11]. Slow voltage recovery after low-voltage
faults is mainly caused by the stalling of low-inertia single-phase IMs. It is of increasing concern
to utilities because of the resultant loss of voltage control and potential cascading effects. To model
FIDVR events, the WECC composite load model (CMPLDW) has been developed [9], which in-
cludes a single-phase IM component among other enhancements. There exist very few studies on
measurement-based load modeling using CMPLDW.

The CMPLDW model, or general composite load models, are known for having a large number
of input parameters and being nonlinear. The resultant parameter identifiability issues challenge
the measurement-based load modeling. Even for the CLOD model of just a few parameters, it has
been observed in [8] that the fraction of large or small IMs could contribute equally to the dynamic
load response. Dependency of these two fraction parameters implies they cannot be uniquely
identified using the input-output measurements. Similar parameter dependency effect has been
observed for the ZIP+IM model as well [6]. To investigate potential parameter dependency for
CMPLDW, we propose to adopt the K-medoids algorithm [12] to cluster the model parameters,
as well as to use the multidimensional scaling (MDS) technique [13] to visualize the parameter
similarity. Unlike [6] which only considers the pair-wise correlation of any two parameters, our
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proposed approach can capture the dependency among multiple parameters, more attractive for
dealing with the large number of CMPLDW parameters.

Model interdependency negatively impacts the parameter estimation, and often this results in
an estimate from the training case which is optimal but unreasonable. The consequences of this
unidentifiability are then analyzed, by examining the performance of the model solution on previ-
ously unseen test cases. The effect of increasing the number of training cases is also examined.

Results from the first five chapters motivate us to improve the estimation scheme for load
model parameters using fault measurements. This problem is typically formulated as nonlinear
least-squares (NLS) by minimizing the fitting error between the modeled and measured outputs.
To tackle this ill-posed problem due to parameter dependency, we advocate to incorporate a priori
information in the parameter estimation. Two methods are presented. The first uses a maximum
a-posteriori (MAP) estimation method, and the second uses a 2-norm based regularization term.
To the best of our knowledge, no previous work has leveraged the regularization technique to
overcome the identifiability issues in measurement-based load modeling. Although our improved
estimation scheme will focus on CLOD and CMPLDW, it can readily used for other dynamic load
models as well.

This report is organized as follows. Chapter 2 introduces the CMPLDW and CLOD models and
the background on measurement-based load modeling. Chapter 3 presents the sensitivity analysis
of the CMPLDW model. Chapter 4 presents the analysis and visualization of the dependency
among CMPLDW parameters. The consequences of parameter insensitivity and interdependency
is presented in Chapter 5. Two improved parameter estimation approaches are developed and
validated in Chapter 6. Concluding remarks are addressed in Chapter 7.
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Chapter 2

Modeling and Problem Statement

This work is focused on the composite WECC CMPLDW and complex load (CLOD) structures
and the modeling of FIDVR events.

2.1 WECC CMPLDW
Fig. 2.1 illustrates the structure of the model. It consists of a substation transformer model, a feeder
equivalent model, and six load model components [9]. The load components include three three-
phase (3Φ) motors, one single-phase (1Φ) motor, one static ZIP load, and an electronic load, all
connected in parallel. The 3Φ motors are henceforth named motor A, B, and C, and the 1Φ motor,
which is used to model an air conditioner compressor, is named motor D. Compared to the simple
ZIP+IM model of only 13 parameters [5], the WECC CMPLDW model has a more extensive list of
parameters used to describe its static and dynamic behaviors under disturbances. A representative
CMPLDW model has in total 121 parameters as listed in Table 2.1; see more detailed in [9]. Table
2.1 also shows example parameter values, developed by an earlier report [10]. These parameters
can be categorized to represent the following:

• substation and feeder (e.g., transformer reactance and feeder equivalent impedance);

• load model components (e.g., reactance and inertia of a motor, or the ZIP coefficients);

• the fraction for each load component (e.g., Fel, FmA, etc.).

We note that in the WECC CMPLDW model, a subset of them will be excluded in the ensuing
study. They are marked in italic fonts in Table 2.1. Some of them either follow a fixed setting or
are well known to be unidentifiable using field measurements. For instance, the induction motor
type parameters MtypA, MtypB, MtypC, and MtypD as shown in Fig. 2.1, are preset to have
motors A, B, and C designated as 3Φ and motor D as 1Φ. Based on the specific motor, its low
voltage trip delay or reconnection time (Ttr1A, Ttr2B, or Trc2C) is often deactivated by taking an
infinite value. These parameters are preset following the optimal setting in the report [10].
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Table 2.1: List of WECC CMPLDW Parameters with Example Values
Feeder Electronic Load Motor B Motor C Motor D

Bss 0 Fel 0.167 FmB 0.167 FmC 0.167 FmD 0.167
Rfdr 0.04 Pfel 1 MtypB 3 MtypC 3 MtypD 1
Xfdr 0.05 Vd1 0.75 LFmB 0.8 LFmC 0.8 LFmD 1
Fb 0.75 Vd2 0.65 RsB 0.03 RsC 0.03 CompPFD 0.97
Xxf 0.08 Frcel 0.25 LsB 1.8 LsC 1.8 VstallD 0.6

Tfixhs 1 Motor A LpB 0.16 LpC 0.16 RstallD 0.1
Tfixls 1 FmA 0.167 LppB 0.12 LppC 0.12 XstallD 0.1
LTC 1 MtypA 3 TpoB 0.1 TpoC 0.1 TstallD 0.02
Tmin 0.9 LFmA 0.7 TppoB 0.0026 TppoC 0.0026 FrstD 0
Tmax 1.1 RsA 0.04 HB 1 HC 0.1 VrstD 0.9
step 0.00625 LsA 1.8 EtrqB 2 EtrqC 2 TrstD 0.4
Vmin 1 LpA 0.1 Vtr1B 0.5 Vtr1C 0.5 FuvrD 0.17
Vmax 1.02 LppA 0.083 Ttr1B 0.02 Ttr1C 0.02 Vtr1D 0.65
Tdel 30 TpoA 0.092 Ftr1B 0.2 Ftr1C 0.2 Ttr1D 0.02

Tdelstep 5 TppoA 0.002 Vrc1B 0.65 Vrc1C 0.65 Vtr2D 0.9
Rcmp 0 HA 0.05 Trc1B 0.6 Trc1C 0.6 Ttr2D 5
Xcmp 0 EtrqA 0 Vtr2B 0.7 Vtr2C 0.7 Vc1offD 0.4

Static Load Vtr1A 0.75 Ttr2B 0.02 Ttr2C 0.02 Vc2offD 0.4
Pfs -0.99 Ttr1A ∞ Ftr2B 0.3 Ftr2C 0.3 Vc1onD 0.45
P1e 2 Ftr1A 0.2 Vrc2B 0.85 Vrc2C 0.85 Vc2onD 0.45
P1c 0.54546 Vrc1A 0.9 Trc2B ∞ Trc2C ∞ TthD 30
P2e 1 Trc1A ∞ Th1tD 0.3
P2c 0.45454 Vtr2A 0.5 Th2tD 2.05
Pfrq -1 Ttr2A 0.02 TvD 0.025
Q1e 2 Ftr2A 0.47
Q1c -0.5 Vrc2A 0.639
Q2e 1 Trc2A 0.73
Q2c 1.5
Qfrq -1

MBase 0
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Figure 2.1: A schematic of the WECC CMPLDW composite load model [10].

2.2 CLOD
The CLOD model is a composite model defined in Siemens PSSE [14] and PowerWorld [15],
which means that it combines several simpler submodels. The CLOD model contains an induction
motor (IM) model, a simplified ZIP model, and a few other static components. The submodels are
described in more detail here:

• Induction motors Labeled Large Motors and Small Motors, these two submodels are each
characterized by a d-q reference frame dynamic model.

• Discharge lighting For voltages above 0.75 pu, the real power is modeled as constant
current, and the imaginary as exponential with an exponent of 4.5. As voltage decreases
below 0.75 pu, both P and Q drop linearly until the light is completely extinguished below
0.65 pu voltage.

• Transformer losses Transformer saturation and hysteresis losses.

• Constant MVA Constant real and reactive power consumption.

• Remaining loads The real power is modeled typically as constant current and the imagi-
nary power as constant impedance. This is abbreviated as PI/QZ.

The CLOD model also includes a feeder with a feeder impedance. The parameters of the CLOD
model are the percentage allocations of each submodel, summing to 100%. Since there are six
submodels, we can set five parameters independently. Additionally, we can also set the feeder
impedance, R and X , for a total of seven parameters. We chose to use the CLOD model for our
studies because it contains a sufficient amount of dynamics, but is also simple enough to understand
easily.
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Figure 2.2: Voltage profiles during FIDVR events recorded in PQube datasets #1 and #2.

2.3 Measurement-based load modeling
With emerging fast-sampled data collected during power system disturbances, measurement-based
load modeling has been advocated to effectively construct dynamic load models by estimating the
model parameters. During a disturbance, fault recorders can measure the input voltage profile and
the resultant real and reactive power outputs. Measurement-based load modeling aims to fit the
output-measurement data via minimizing a prescribed error objective.

The data fitting objective is typically the classical Euclidean error norm. Specifically, with the
output measurement vector denoted by y, the vector of parameters θ is estimated by solving a
nonlinear least-squares problem, as given by:

min
θ

1

2
‖r(θ)‖2

2 :=
1

2
‖y − f(θ)‖2

2 (2.1)

θ̂ = arg min
θ

1

2
‖y − f(θ)‖2

2 (2.2)

where r is the fitting residual based on the function f that relates θ to the output. Note that the
output y includes both real and reactive power data.

The event measurements are taken from real datasets collected by a southern US utility com-
pany. They are recorded using PQube devices [16] during three summer months in 2012. Each
event includes the voltage profile and the corresponding real and reactive power consumption, all
with a sampling rate of 60 Hz. Two FIDVR events have been identified from the data. As plotted in
Fig. 2.2, the voltage profile of FIDVR takes a long time, usually several seconds, to recover from
the voltage drop caused by a certain disturbance. This phenomenon generally results from the high
penetration of single-phase induction motors in power systems, which can barely be captured by
the traditional ZIP+IM model structure. We thus mainly focus on addressing FIDVR type of fault
in the ensuing analysis.
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Chapter 3

Parameter Sensitivity Analysis

As shown in [4–7], dynamic load modeling is generally challenged by the unidentifiability of
parameters that describe the model structure. The unidentifiability has two primary causes: the
insensitivity of some parameters and the dependency among several parameters [6]. It is difficult
to identify these parameters accurately because different values of insensitive parameters or various
combinations of dependent parameters may result in a similar output response. In Chapters 3 and
4, the sensitivity and interdependency of the CMPLDW parameters will be investigated. Similar
analysis has been performed for the CLOD model in [17], and similar conclusions were obtained.

We will first use trajectory sensitivity analysis to obtain a feature vector for each parameter.
Trajectory sensitivity represents the sensitivity of the system dynamic response to the changes of
each parameter in θ [18]. If the state-space representation of load models is available, this sen-
sitivity factor can be evaluated using the perturbation method [4, 5]. However, for complex load
models such as CMPLDW, it is difficult to develop their mathematical state-space representations.
Hence, we will use a finite-difference derivative approximation to perform the trajectory sensitiv-
ity analysis. Specifically, for the i-th parameter θi, its trajectory sensitivity at any time t can be
approximated by [18]:

Ji(t) :=
∂f(t;θ)

∂θi

∣∣∣∣
θ=θ0

≈ f(t;θ0 + εei)−f(t;θ0 − εei)
2ε

(3.1)

where θ0 has the nominal parameter values, ei is the Kronecker vector with all entries zero except
for the i-th entry equal to 1, and the perturbation coefficient ε is a small positive value. The
dynamic system output f(t;θ) under different parameter settings can be obtained by numerical
simulation. Hence, the resultant sensitivity Ji(t) will consist of discrete-time samples throughout
the fault event. Concatenating the samples into a vector Ji of length T for each parameter, we can
use it as the feature vector to characterize the effects of changing θi in the dynamic response. Note
that perturbations in both active and reactive power outputs are included in the vector Ji.

Main results from the parameters’ trajectory sensitivity under FIDVR events are illustrated in
this chapter. Given a fault voltage disturbance, we first show that some parameters have very
minimal (even absolutely zero) sensitivity. Interestingly, we make further observations that the
sensitivity is strongly related to the shape of the faulted voltage, which originates from the thresh-
olding nonlinearity of the WECC CMPLDW.
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Figure 3.1: The 2-norm and its logarithm of the trajectory sensitivity of each parameter from the
test on PQube data set #1, sorted in descending order.

3.1 Insensitive parameters
Using the sensitivity vectors {Ji}, we can first identify the parameters that the load model out-
put is insensitive to. Figure 3.1 plots the sorted ‖Ji‖2 values and their logarithmic values for all
CMPLDW parameters under the voltage input in dataset #1. Clearly, almost half the parameters
have very minimal, or even zero, trajectory sensitivity, which means that changing the value of
several CMPLDW parameters could result in negligible output perturbations. Hence, we choose a
predetermined threshold rth > 0 and only select the parameters with ‖Ji‖2 ≥ rth for the ensuing
analysis. For the N parameters selected, their corresponding feature vectors are stacked into the
T ×N matrix J, which is approximately the Jacobian matrix for the measurement function f(θ) at
θ = θ0. The most significantly sensitive parameters are marked as bold in Table 2.1. Particularly,
by setting the threshold rth as 1% of the nominal output norm ‖Ji‖2, a total of N = 70 parameters
are selected to form the resultant Jacobian J.

Some of the absolutely insensitive parameters are related to the tripping behavior of the load
components, which may not be activated under the given input voltage profile. For example,
parameters Vd1 and Vd2 are used to set the voltage levels for tripping the electronic load. Slightly
varying their values will not cause any change of the system response if the lowest voltage input
is significantly higher than the initial tripping levels specified in Vd1 and Vd2. These examples
reveal the thresholding nonlinearity of the CMPLDW model. Therefore, the selection of insensitive
parameters depends on both the initial parameter setting θ0 and the input voltage profile.
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Figure 3.2: Illustration of vertical and horizontal stretching of the voltage profile.

3.2 Impact of input fault voltage profile
Building on previous analysis, we investigate the impact of the input voltage profile on the param-
eter sensitivity. We first designate PQube data set #1 in Figure 2.2 as our base case. We then
modify the base case profile to emulate faults of varying severity and recovery time. Specifically,
we scale the profile vertically to vary the minimum fault voltage, while maintaining the pre-fault
voltage. We scale the profile horizontally to vary the recovery time. These are both illustrated in
Figure 3.2.

The parameter sensitivities are then calculated for each voltage profile and plotted in Figure
3.3 and Figure 3.4 on a log scale. From Figure 3.3 we can see that the parameter sensitivities do
not remain constant. There is a cyan colored line which has relatively low sensitivity between 0
and 0.5 p.u., peaks at 0.6 p.u., then disappears for profiles with higher minimum voltage. This
line corresponds to the parameter VstallD, the stall voltage for motor D. In the base case, the stall
voltage is set to 0.6 p.u.. When the minimum fault voltage does not drop below 0.6 p.u., motor
D will not stall, hence VstallD does not affect the trajectory at all (‖Ji‖2 = 0 for VstallD). Since
Figure 3.3 uses a log axis, those zero sensitivities cannot be plotted. On the other hand, when
the minimum fault voltage is very close to 0.6 p.u., the sensitivity of VstallD exceeds the other
parameters approximately one order of magnitude. This is because a small change in the value of
VstallD will determine whether motor D stalls; this is thresholding nonlinearity. Finally, for faults
where the voltage drops significantly below 0.6 p.u., motor D will definitely stall, so the trajectory
again becomes very insensitive to VstallD. The reason the sensitivity is not exactly zero is merely
because a more severe fault causes the voltage to drop faster, and hence causes motor D to stall a
fraction of a cycle earlier.

We can also see that many parameters have a large peak in sensitivity when the minimum fault
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Figure 3.3: Parameter sensitivity under vertical stretching of the voltage profile. The base case
minimum fault voltage level is 0.3703 pu (see Figure 2.2).

Figure 3.4: Parameter sensitivity under horizontal stretching of the voltage profile. The base case
profile period is 30 s (see Figure 2.2).
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voltage is 0.7 p.u. and a few parameters have a peak at 0.5 p.u.. These can also be attributed
to thresholding nonlinearity. Voltage trip levels Vtr1A, Vtr2B, Vtr2C, and Vtr1D, and voltage
reconnection levels Vrc1B, Vrc1C, and Vrc2A are all between 0.639 and 0.75 p.u.. Voltage trip
levels Vtr1B, Vtr1C, and Vtr2A are all 0.5 p.u.. When the minimum fault voltage is near those
values, not only those voltage thresholds, but also any associated time delays, such as trip delay
times, become very sensitive. For example, motor B parameters Vtr1B and Ttr1B represent the
under-voltage trip level and the trip delay time. If motor B does not trip for the given voltage input,
varying Ttr1B will not affect the output dynamics either. The parameter sensitivities in Figure 3.4
are more uniform than those in Figure 3.3. This is because we are not affecting the minimum fault
voltage. However, we still see some peaks when the profile period is reduced to around 20 s, which
is evidence that thresholding non-linearity is occuring for time thresholds, such as a reconnection
time delay.
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Chapter 4

Parameter Dependency Analysis

Given the input-output data, it has been recognized that the estimation problem (2.1) could ad-
mit multiple (locally) optimal solutions. This observation implies that different combinations of
parameter values could produce the same data fitting results in measurement-based load model-
ing. It has been observed for the CLOD model [8] and more rigorously studied for the ZIP+IM
model [4–7].

From the perspective of systems theory, this challenge relates to the parameter identifiability
issue for dynamic systems [19]. It is possible the system response is insensitive to the changes in
certain parameter values. More interestingly, multiple parameters could be dependent on each other
such that the system output is affected by their parameter values in an aggregated fashion. Existing
studies on the parameter dependency of load models in [6] are limited to the pair-wise similarity
between any two parameters. This method may work well for the simple ZIP+IM model, but
falls short in studying the more complex CMPLDW with dozens of parameters. We will develop a
general analysis framework that can capture the parameter dependency among multiple parameters.

4.1 Examples of dependent parameters
As an example, consider the stator resistance of motors B and C, RsB and RsC. Since the parame-
ters of motors B and C are quite similar, we find that RsB and RsC are essentially indistinguishable
from one another. In Figure 4.1, the default values of RsB and RsC (see Table 2.1) are indicated by
the dashed white lines. The simulation result with RsB and RsC at their default values is the base
case output. With all other parameters fixed, the values of RsB and RsC are then varied between
10% and 200% of their default value. The mean squared error (MSE) between the resulting out-
puts and the base case output are then calculated and contoured in the figure. From the figure, we
can see that as long as RsB and RsC are varied proportionally, the MSE will stay in the dark blue
region extending from the top-left to bottom-right corners. Thus, from a single set of output mea-
surements, it is difficult to uniquely identify both RsB and RsC. Only if we pick one parameter’s
value can we then determine the other parameter.

While the dependence of this particular pair of parameters seems intuitive, there are other pairs
of dependent parameters which have no simple explanation. Consider the following two param-
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Figure 4.1: Contour of the MSE between the base case output and test cases for RsB and RsC, the
stator resistances of motors B and C.

eters for the single-phase motor D: XstallD, the stall reactance in p.u., and Th2tD, the thermal
protection trip completion temperature in p.u.. Both these parameters have quite high sensitivity:
XstallD is ranked first, and Th2tD is 13th among all the parameters. These two parameters are
also completely unrelated from a physical standpoint. However, in Figure 4.2, we can see that they
exhibit interdependent behavior. We hypothesize that this is because for a larger XstallD, the stall
current and hence the thermal losses would be lower, which would require a lower Th2tD to cause
the same tripping behavior. Due to this interdependency, it would still be difficult to identify both
parameters uniquely within the dark blue region.

Finally, we illustrate how thresholding nonlinearity impacts the parameter dependency by con-
touring VstallD and XstallD. VstallD is the stall voltage of motor D, which we also highlighted
in Figure 3.3 and Section 3.2. This Figure 4.3 agrees with our analysis from Section 3.2. Note
that we change the voltage trip level here, whereas Figure 3.3 changed the minimum fault voltage.
When the stall voltage VstallD is set below the minimum fault voltage of 0.3703 p.u., neither its
own value nor that of the stall reactance matters, which leads to the dark red area at the bottom
of the contour. Above 0.3703 p.u., the vertical contour lines mean that VstallD does not matter.
However, since VstallD is higher than the minimum fault voltage, the motor will stall, so XstallD
does impact the simulation result.
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Figure 4.2: Contour of the MSE for two relatively sensitive parameters. XstallD and Th2tD are the
stall reactance and the thermal protection trip completion temperature for motor D, respectively.

4.2 SVD-based dependency analysis
If the trajectory sensitivity vectors of several parameters are very similar, then it is possible several
combinations of these parameter values will produce the same output response. Hence, the param-
eter dependency analysis boils down to the problem of finding the parameters of similar trajectory
sensitivity. As the length of each Ji is the total number of output samples, its value T can be very
large. To reduce the dimension of feature vectors, we will first perform the singular value decom-
position (SVD) [20] on matrix J. To analyze the dependency of parameters with vastly different
sensitivities, we first normalize each Ji to make the parameters comparable. With T >> N , the
compact singular value decomposition (SVD) of the Jacobian matrix J is given by:

J = U ·Σ ·VT (4.1)

where the T × N matrix U = [u1, . . . ,uN ] consists of the N orthonormal left-singular vectors
satisfying UTU = I; and similarly for the right-singular vectors in the N × N matrix V =
[v1, . . . ,vN ]. The diagonal matrix Σ = diag {σ1, σ2, · · · , σN} contains the N singular values
ordered by σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. Clearly, each column of (4.1) can be represented as
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Figure 4.3: Contour of the MSE which highlights the effect of thresholding nonlinearity. XstallD,
the stall reactance for motor D, is continuous, but VstallD, the stall voltage of motor D, is discon-
tinuous.

Ji =
∑N

n=1(σnvn,i)un, where vn,i is the i-th entry of vn. Hence, each un can be viewed as a
common principle component (PC) of all vectors {Ji}, where the scaled vector σnvT

n contains the
weights that every Ji participates in the n-th PC, or the participation factors.

Fig. 4.4 (a) plots all N singular values for the normalized Jacobian matrix. Clearly, the magni-
tude of σn decreases rapidly when n ≤ 20, implying the first few PCs are much more dominant in
forming Ji compared to the rest. Hence, Ji can be well approximated using the first L < N PCs,
as given by Ji ≈ JLi :=

∑L
n=1(σnvn,i)un. In fact, the approximation error ratio using the first L

PCs can be quantified using [20]:

ηL :=
‖J− JL‖F
‖J‖F

=

√∑N
n=L+1 σ

2
n√∑N

n=1 σ
2
n

(4.2)

where ‖ · ‖F denotes the matrix Frobenius norm. Fig. 4.4 (b) plots the approximation error ratio
value versus the number of PCs L. To achieve ηL < 10% one can select L = 16 PCs, while for
ηL < 1%, L = 35 suffices. Hence, we can approximate each Ji of length T using a much smaller

16



(a) (b)

Figure 4.4: For the normalized Jacobian matrix: (a) its singular values σn in descending order; (b)
the approximation error ratio ηL using the first L PCs. Both are obtained using the PQube dataset
#1.

number of PCs with excellent approximation accuracy.

4.3 K-medoids clustering
The K-medoids algorithm [12] is adopted to cluster the N parameters using the trajectory sensi-
tivities Ji as feature vectors. Given the number of clusters K, K-medoids aims to find the cluster
assignment {Ck}Kk=1 that minimizes the overall distance between any input vector and the medoid
of its assigned cluster. K-medoids is preferred over the classical K-means clustering for its im-
proved robustness to noise and outliers [12]. To this end, define the distance between any two
parameters i and j using the Euclidean-norm dissimilarity measure as follows:

dij = ‖Ji − Jj‖2. (4.3)

The approximate feature vectors {JLi } of reduced dimension can be leveraged to facilitate the
distance computation in (4.3), which is an effective pre-processing approach in high-dimensional
data clustering . In particular, the approximate dissimilarity metric can be defined by:

dij ≈ ||JLi − JLj ||2 =

√√√√ L∑
n=1

σ2
n(vn,i − vn,j)2. (4.4)
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For given distance metric and clustering assignment {Ck}Kk=1, the medoid of each cluster k is
defined as:

ck := arg min
j∈Ck

∑
i∈Ck,i 6=j

dij, (4.5)

which has the minimum summed distance from other parameters within the same cluster. The
overall distance minimization problem for K-medoids thus becomes:

min
{Ck}

K∑
k=1

∑
i∈Ck

dick (4.6)

where ck is the medoid of Ck given by (4.5). Albeit non-convex, the optimization problem (4.6) is
typically solved by the partitioning around medoids (PAM) algorithm [12].

To evaluate the K-medoids clustering results, one can use the silhouette value [21]. If parameter
i is assigned into Ck, its average intra-cluster dissimilarity is defined as:

a(i) :=
1

|Ck| − 1

∑
j∈Ck,j 6=i

dij, (4.7)

while the definition of inter-cluster dissimilarity is given by:

b(i) := min
k′ 6=k

1

|Ck′|
∑
j∈Ck′

dij. (4.8)

The silhouette value of parameter i is defined as:

s(i) =
b(i)− a(i)

max {a(i), b(i)} , (4.9)

which by definition satisfies −1 ≤ s(i) ≤ 1. The closer s(i) is to 1, the better the cluster assign-
ment for parameter i is. In general, a large average silhouette value over all input parameters (close
to 1) indicates that the clustering assignment is of good quality.

Fig. 4.5 (a) plots the average silhouette values for the K-medoids clustering results under
different numbers of clusters K. From this figure, we have chosen K = 10, 20, and 30 for further
investigation, and plotted the average silhouette values of each cluster for these K choices in Figs.
4.5 (b)-(d). When K = 10, most of the average cluster silhouette values are quite small, or even
negative, indicating that the cluster assignment is poor. However, if K increases to 30, a majority
of clusters have just a few elements, or even consist of a single element. Such an assignment
prevents us from drawing useful conclusions on the similarity among parameters. Finally, we have
selected K = 20 as a compromise between silhouette values and preferred cluster size. Some
of the example cluster assignments under K = 20 are listed in Table 4.1. As expected, quite a
few clusters contain the motor parameters of the same property. For example, C16 contains the
fraction of motors that obey the second low voltage trip level of motors B and C, {Ftr2B, Ftr2C}.
Interestingly, there are parameters that capture completely different load characteristics clustered
in a group. For example, XstallD the stall reactance, Th2tD the thermal protection trip completion
temperature, and TthD, the thermal time constant for motor D are grouped in C2. Although they
are not directly related, they exhibit strong interdependency as validated in Section 4.5.
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(a) (b) (c) (d)

Figure 4.5: (a) The average silhouette values under different numbers of clusters K, and silhouette values of each parameter for
(b) K = 10; (c) K = 20; and (d) K = 30.
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Table 4.1: Selected K-medoid Clustering Assignments using K = 20

Cluster Parameters
2 XstallD, Th2tD, TthD
4 HA, HC
6 Trc1B, Trc1C
8 Vtr2A, Vtr1B, Vtr1C

10 Ttr2B, Ttr2C
11 Q1c, Q2c
13 Ttr2A, Ttr1B, Ttr1C
16 Ftr2B, Ftr2C

4.4 MDS-based visualization
In addition to the quantitative clustering results, we further employ the multidimensional scaling
technique [13] to provide an intuitive visualization of the CMPLDW parameter dependency. MDS
aims to map high-dimensional inputs to a lower p-dimensional space while best preserving pair-
wise dissimilarity of the data. For a given dissimilarity measure {dij} among any parameter pair
(i, j), MDS will output a low-dimensional representation X := {xi}Ni=1 of dimension p. Specifi-
cally, the dissimilarity can be preserved by solving the following optimization problem:

min
X

σ (X ) :=

{∑
i,j [‖xi − xj‖2 − dij]2∑

i,j ‖xi − xj‖2

}1/2

(4.10)

where the defined error objective σ (X ) is known as the Kruskal Stress [13]. The smaller σ(X ) is,
the better the MDS mapping is. The minimization problem (4.10) can be solved using a variety of
iterative methods, such as the gradient descent or the majorization technique [13]. These iterative
algorithms can be initialized based on the SVD results; i.e., using the first p participation factors
σnv

T
n as the initial guess for entries of xi.
Fig. 4.6 illustrates the 2-dimensional MDS mapping {xi} for the CMPLDW model parameters.

A reasonably small objective value σ(X ) = 0.21 has been obtained for this MDS mapping. To
better evaluate the MDS results, the K-medoids clustering assignment in Fig. 4.5 (c) underK = 20
has been added to each parameter, showing that the clusters are well separated in this 2-dimensional
space. In particular, the clusters listed in Table 4.1 can be easily identified in this figure. The MDS
results are effective for visualizing the parameter dependency.

4.5 Numerical results
We investigate two of the parameter clusters obtained by the above dependency analysis. Based
on Table 4.1, we select the parameters in clusters C2 and C4 and compare the similarity of their
trajectory sensitivity profiles, as plotted in Fig. 4.7. For the parameters that are within either
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Figure 4.6: MDS result for theN = 70 parameters in a 2-dimensional space: each circle represents
a parameter, while the larger ellipses correspond to the K-medoids clusters under K = 20 in Fig.
4.5 (c).

Table 4.2: Four modified cases of parameter settings.

XstallD Th2tD TthD HA HC
Ini. Case 0.1 2.05 30 Ini. Case 0.05 0.1

Case 1 0.1 1.7 38 Case 3 0.2 0.01
Case 2 0.105 2.4 23.5 Case 4 0.01 0.8

cluster, they share an extremely similar trajectory sensitivity pattern. This observation confirms
our earlier dependency analysis results.

Furthermore, Table 4.2 lists four modified cases of parameter settings for the CMPLDW model,
all of which result in a nearly identical output response as depicted by Fig. 4.8. The dashed verti-
cal line partitions the response to active and reactive power outputs, respectively. This convention
is adopted for all the ensuing output response plots. Compared to the initial case, cases 1-4 are
produced by varying the values of parameters in either C2 or C4. Due to the similar trajectory sen-
sitivity pattern, the effect of changing the value of one parameter could be compensated by that of
other parameters in the same cluster, which makes the resultant dynamic responses indistinguish-
able. For example, in case 1, the thermal time constant TthD is increased from 30 to 38, while the
thermal protection trip completion level Th2tD is decreased from 2.05 to 1.7. Still, the dynamic
response stays almost the same as the initial case. This reveals the parameter identifiability issue
and manifests the necessity of the dependency analysis.
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Figure 4.7: Comparison of the normalized trajectory sensitivity for the two parameter clusters in
Table 4.1: (top) C2 = {XstallD, Th2tD, TthD}, and (bottom) C4 = {HA, HC}.

Figure 4.8: The active/reactive power outputs under the four cases of different parameter settings
as listed in Table 4.2.
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Chapter 5

Effects on Load Modeling

5.1 Parameter estimation using noisy measurements
In [17], we found that the CLOD model, being highly non-linear, also had interdependent param-
eters. We found that out of the five submodels in CLOD, there were only 2 distinct responses.
Specifically, the large motor, small motor, and constant power submodels produced very similar
responses to the disturbance. The discharge lighting and PI/QZ submodels produced a second re-
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Figure 5.1: The total estimation error as a function of the measurement SNR.
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sponse. Thus, the responses have become very insensitive to the parameter values. Conversely, the
parameter estimate becomes very sensitive to the measured waveforms, and in particular, noise.
Another way to understand this is that the optimization problem outlined in Section 2.3 is very
ill-conditioned, in that the cost function is very flat near the optimal solution. In the ideal case, we
could still converge to the correct optimal solution, albeit with more iterations.

However, when measurement noise is introduced, the ill-conditioning of the problem means
that the correct solution can no longer be attained. In Fig. 5.1, first presented in [17], we showed
the total error as a function of the signal to noise ratio (SNR) of the measurements, by adding
white Gaussian noise to y, in increments of 5 dB between 0 dB and 90 dB. for each level of noise,
5 realizations of the random noise are tested, and the median and maximum of those 5 trials are
shown. We can see that as the SNR drops below 40 dB, the noise causes the error to behave errat-
ically due to the global minimum jumping unpredictably between multiple local minima created
by the addition of noise. The reader may notice that the error does not decrease monotonically as
SNR increases. This can be attributed to the fact that we average over only 5 realizations of noise,
to keep computation time reasonable. The non-monotonicity seen in Fig. 5.5 and Fig. 6.2 is also
due to this.

5.2 Impact on model prediction accuracy
In the previous section, we showed how the CLOD model had interdependent parameters, and
looked at how this manifests itself in the inability of the parameter estimation to find the correct
minimum when the measurements contain noise.

One could argue, however, that another interpretation of the results is that when several param-
eter estimates all produce similar simulation results, then there is no need to differentiate between
those results. In other words, as long as the residual, y − f(θ̂) is small, then θ̂ is a good solution.
If this is true, then for CLOD we really only needed a model with two degrees of freedom, and the
question becomes simply identifying and grouping parameters that behave similarly. However, we
will now show that while this will work for the particular fault we used in Section 5.1, we will run
into problems when we try to reuse this model in the future to predict responses to other faults.
Specifically, we will look at whether the model is able to produce correct transient simulation re-
sults for faults at other buses on a system. In the language of machine learning, we wish to see
how a model’s performance on the training data set translates into performance on the test data set.
The system we will use is the 37 bus case from [22], which contains 57 branches, 9 generators, 25
loads, and bus voltages ranging from 69 kV to 345 kV. It is shown in Fig. 5.2. The fault bus, bus
1, is highlighted.

In Fig. 5.3, we show how the accuracy of a model that is derived from a disturbance at one bus
impacts the accuracy of simulations performed using the model on the same type of disturbance
at other buses. In this figure, there are 127 data points, each one representing one set of load
model parameters, θ̂k, generated from a uniform sampling of possible model parameters. On the
horizontal axis, the model residual for a point k is defined as:
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slack

Figure 5.2: 37 bus case from [22] used for validation (fault bus highlighted).

‖y1 − f1(θk)‖2
2 (5.1)

This is the error when the model k is applied to the training fault, with measurements denoted by
y1 and simulation f1. Note that when we perform parameter estimation based on a fault at bus 1,
we try to find θ to minimize (5.1). On the vertical axis, mean prediction residual for a point k is
defined as:

1

36

37∑
n=2

‖yn − fn(θk)‖ (5.2)

This is the average error if the model θk were used to predict the results of a disturbance at the
other buses (n ∈ [2, 37]). The red line is the line of best fit for the 127 data points. Finally, the
shaded area represents the range of the prediction residual, between minn∈[2,37] ‖yn − fn(θk)‖ and
maxn∈[2,37] ‖yn − fn(θk)‖.
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Figure 5.3: The accuracy of a model on the training disturbance is on the X axis. The accuracy of
the model on the test disturbances is on the Y axis. Small errors in the derivation of a model from
one disturbance leads to large errors when that model is applied to other disturbances.

From the points in Fig. 5.3, we can see that there is a clear correlation between the accuracy
of the model derived from bus 1, and the accuracy when it is applied to other buses. Models that
produced waveforms that were closest to the measurements y (i.e. small model residual), could be
expected to perform better on average than most other models when applied to other disturbances.
However, if we look at the axes, we can see that their scales are very different: the slope of the red
line is 11.31, meaning that every unit of error when generating the model results in, on average,
11.31 units of error when predicting future disturbances. Additionally, the shaded region shows
that the maximum error has an even worse behavior. By the time our model residual is 0.1, our
maximum prediction residual has reached 10, a factor of 100 greater. What this ultimately means
is that even if a model performs very well on the training data, its ability to perform reasonably on
the test data can not be guaranteed.

We can also see this in the time domain. In Fig. 5.4, we chose a data point in Fig. 5.3 with
the fifth lowest model residual, henceforth known as θ̃. θ̃ had a low mean prediction residual,
but a relatively high maximum prediction residual. We then plotted waveforms for faults at three
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Figure 5.4: Best, average, and worst case for a set of parameters with low model residual. The
solid blue lines are the correct transient response at each of the 37 buses, and the dashed red lines
are the transient response using incorrect parameters. The horizontal axis is time in seconds.

different buses using the parameters θ̃. The average case corresponds with the point for θ̃ in Fig.
5.3, the best case with the lower bound in the blue shaded region directly below θ̃, and the worst
case with the upper bound. Here, we can see that even for parameters that perform very well (the
best case and average case are very close), the worst case is still very poor. This means that if we
were to use θ̃ to estimate a disturbance at another bus, most of the time we will be accurate, but
sometimes the simulation will show stability when in fact the system is unstable, or vice-versa.
With such uncertainty, researches would find it difficult to draw meaningful conclusions.

5.3 Effect of multiple inputs
In Chapter 4 and Section 5.1, we saw that both the CLOD and CMPLDW models have parameter
interdependency, and in Section 5.2, we saw that this decreases our confidence in the CLOD model
for predicting the results of other disturbances. In this section, we investigate whether this can be
improved by using multiple disturbances, in essence increasing the number of training cases.

In Section 5.2, we saw that a single disturbance is not enough information to determine the
correct load model parameters, and an incorrectly chosen set of parameters can have disastrous
consequences during future simulations. The reason that noise had such a large effect is that the
cost function for one disturbance had multiple local minima. When noise exists in the measure-
ments, the amplitude of these local minima are affected, meaning that the global minimum jumps
unpredictably between these minima. In essence, these local minima are all acceptable solutions to
the parameter estimation problem for that one disturbance, though only one is the correct model.
We can use multiple disturbances to find the local minimum that is common among them.

To implement what was just described, however, is intractable. In order to do this, we would
require a list of all the local minima for disturbance 1, and another list for disturbance 2, which we
could then compare to find the overlapping minima. For such a non-linear optimization problem,
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Figure 5.5: Error versus noise for three LSQ estimators: one using a single disturbance, one using
two disturbances, and one using three disturbances.

it is computationally intractable to enumerate all the local minima, and we would have no way of
determining when we had covered all of them. Instead, we define a list of disturbance buses B, and
modify (2.2) to accommodate multiple disturbances:

θ̂ = arg min
θ

1

2

∑
n∈B

‖yn − fn(θ)‖2
2 (5.3)

In Fig. 5.5, we see the result of using two disturbances and three disturbances. We can see
that multiple disturbances decrease the maximum error (the dashed line) somewhat, but not signif-
icantly. Also, the median error is also only marginally better. Clearly, using multiple disturbances
will not allow us to reduce the effects of interdependency to any meaningful extent. In Section 6.1,
we look at a second method.
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Chapter 6

Improved Parameter Estimation

In this chapter, two improved parameter estimation approaches are proposed. Both methods use a
priori information to reduce the impact of parameter interdependency.

6.1 Maximum a posteriori estimator
In this section, we use a probabilistic maximum a posteriori (MAP) estimator to improve the ro-
bustness of the model to measurement noise, and hopefully decrease the negative impact from
noise that we saw in Fig. 5.1. A MAP estimator uses prior knowledge of the values that p is most
likely to take, in order to eliminate outliers. The source of this knowledge would come from the
experiences of system operators.

6.1.1 Formulation
The MAP estimator for a continuous random variable is defined in [23] as:

θ̂ = arg max
θ

{
hΘ|Y (θ|y)

}
(6.1)

Using Bayes’ theorem, this can be rewritten:

θ̂ = arg max
θ

{gY (y|θ)gΘ(θ)} (6.2)

where gY is the likelihood function and gΘ is the prior. The likelihood function captures the
information provided by the measurements, and the prior captures the a priori knowledge we have
of the parameters.

The likelihood function is defined as follows:

gY (y|θ) =
T∏
t=1

fY

(
y[t]− f(θ)[t]

σY

)
T∏
t=1

fY (ŷ[t]) (6.3)

29



where fY is a chosen probability density function (PDF), σY is a predetermined constant, t is time,
and ŷ is the standardized values of y. For this definition of gY to be valid, we must assume that
values in y are mutually independent of each other. While this is almost certainly not true, we do
not have sufficient information to allow us to calculate the joint probability density function for
measurements that are not independent. Thus, we make this simplifying assumption.

The prior is obtained by using experience to make an educated guess of what the parameters
should be, µθ =

[
µθ(1) · · · µθ(N)

]
, as well as their confidence, which could be translated into

a standard deviation σθ =
[
σθ(1) · · · σθ(N)

]
. gΘ. gΘ could then be calculated as:

gΘ(θ) =
N∏
n=1

fΘ

(
θ(n)− µθ(n)

σθ(n)

)

=
N∏
n=1

fΘ

(
θ̂(n)

)
(6.4)

Again, similar to the case for gY (y|θ), (6.4) is only valid if the parameters are mutually inde-
pendent. In this case, we know for certain that they are not, because the sum of the parameters
must equal 100%. However, there currently exists very little literature on random variables with a
constant sum. Thus, we again make the simplifying assumption of independence.

6.1.2 Implementation
The next step is to choose PDFs for fY and fΘ. Based on preliminary testing, we have found that
a normal distribution is a good choice for fY and a Laplace distribution is a good choice for fΘ.

The reason why a normal distribution—an extremely common PDF—is unsuitable for fY is
because of the interaction of gY and gΘ. In (6.2), we multiply the two PDFs together. Thus, when
we perform the optimization, what is important is not the values gY and gΘ at an iteration, but
rather the relative benefit to the objective function of an improvement in v or p. In other words, an
improvement of gY or gΘ from 1e–3 to 1e–2 has a greater impact than from 0.1 to 0.2. In Fig. 6.1
we show a standard normal distribution. If we zoom in on the tail of the distribution, we can see
that it decays increasingly rapidly at higher numbers of standard deviations from the mean. What
this means is that for a unit step at x toward the mean, the relative increase of f(x) is higher for
larger values of |x|.

When applied to our load model MAP estimator, for fΘ, it is reasonable for us to use a normal
distribution, because we wish to severely penalize the objective function when p is far from µp.
However, in the case of fY , this is undesirable. In the case when measurement noise is very high
or the measurements are corrupted, we wish to disregard the measurements. However, in this
situation ŷ[t] will be large, so we are evaluating fY very far from the mean, meaning that the
objective function is penalized heavily for following the prior instead of the measurements. On the
other hand, when we have measurements with low noise, we should trust the measurements more
instead of following the operator’s guess. However, in this situation we are evaluating fY very
close to the mean, where the shallow slope of fY results in the prior, fΘ, dominating.
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Figure 6.1: The tail of a standard normal distribution decays increasingly rapidly.

The final implementation issue is the assigning of values to σy and σθ. While the selection
of the appropriate distributions above now allows fY to dominate over fΘ when noise is low, the
relative values of σy and σθ will decide how much fY dominates. Through empirical testing, we
found that setting σy = 0.05 and σθ = 20 works well.

6.1.3 Results
In Fig. 6.2, we show the estimation error versus SNR for two different sets of µθ. The red lines
show the case where µθ is set to be equal to the synthetic value; this is a validation scenario with
a perfect guess. The blue lines show the case where we have no prior knowledge of µθ, so we set
µθ =

[
0.2 0.2 0.2 0.2 0.2

]
. The horizontal black line is the error of this prior (the error for

the prior µθ is the synthetic value is zero). From Fig. 6.2, we can see that in low noise scenarios,
the choice of prior has little effect on the parameter estimation, and the parameter estimate is
comparably accurate for both. This is thanks to our choice of the Laplace distribution for fY . In
high noise situations, the prior keeps the error from increasing dramatically as we saw in Fig. 5.1.
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Figure 6.2: Error versus noise for two MAP estimators with different µθ.

6.2 Euclidean-norm regularized estimator

6.2.1 Formulation
A high level of dependency among load model parameters reveals the issue of parameter identifia-
bility, which will lead to ill-conditioning of the original NLS estimation problem in (2.1). To tackle
this issue, we propose to regularize the NLS objective by incorporating known a priori parameter
values θc, as given by:

min
θ

1

2
‖y − f(θ)‖2

2 +
µ

2
‖Γ (θ − θc) ‖2

2 (6.5)

where Γ is a diagonal matrix of all positive values, and the coefficient µ > 0 will be chosen to
balance the NLS fitting error and the regularization term. A priori parameter setting θc can be
obtained either based on load surveys or from historic disturbance data. The regularization term in
(6.5) prevents the estimated θ from changing significantly from the a priori θc, while minimizing
the mismatch between the modeled and measurement output data.

Interestingly, the regularized objective in (6.5) still admits an NLS form if we augment the
original measurement function with the following:

min
θ

1

2
‖y′ − f ′(θ)‖2

2 := min
θ

1

2

∥∥∥∥[ y√
µΓθc

]
−
[

f(θ)√
µΓθ

]∥∥∥∥2

2

. (6.6)
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For this augmented system, the residual error term becomes r′ := y′−f ′(θ), with the corresponding
Jacobian Jf ′ =

[
JT
√
µΓT

]T
. The reformulation in (6.6) suggests solving the regularized NLS

problem using the classical L-M algorithm, which iteratively updates θ as follows:

∆θ = −
(
JT
f ′Jf ′ + λD

)−1
JT
f ′r
′ (6.7)

= −
(
JTJ + µΓTΓ + λD

)−1 [
JTr + µΓTΓ (θc − θ)

]
where D is a positive diagonal matrix and λ is the damping coefficient chosen by the algorithm.
Matrix D is usually set to be the identity matrix I or the diagonal part of (JTf ′Jf ′), in order to
improve the conditioning of the inverse operation. As for the damping coefficient, at large λ the
update (6.7) would follow the gradient direction JTf ′r

′, which would guarantee an objective cost
reduction. As λ diminishes, it becomes the Gauss-Newton update which can converge geometri-
cally nearby the solution. Thus, typically the value of λ is adaptively adjusted to ensure both the
decrease in the objective (6.5) and a satisfactory convergence rate [24].

6.2.2 Implementation
As shown in (6.7), the regularization term can improve the conditioning of the effective Jacobian
Jf ′ and thus benefit the convergence of the L-M algorithm. However, the regularization matrix and
coefficient need to be carefully chosen to minimally affect the NLS data fitting mismatch error in
(6.5). For example, if µ is too large, the regularization term will dominate the overall objective
of (6.5). The resultant estimate would be extremely close to θc, and may not effectively diminish
the NLS fitting error. We can gradually increase the value of µ from zero until both reasonable
estimated parameter values and satisfactory data fitting performance are achieved. As for matrix
Γ, its diagonals determine the penalty on the deviation between each parameter estimation and
its a priori value. A simple approach is to scale the diagonals of Γ to be inversely proportional
to the absolute value of the entries of θc. One can also incorporate additional information of the
variability of parameter values to set the diagonals of Γ. As suggested by a recent NERC report
[11], several motor parameters, such as the loading factor LFmX, synchronous reactance LsX, and
transient reactance LpX, can be accurately determined by laboratory tests with small variability
in field studies. Accordingly, the corresponding diagonal entries in Γ for these parameters can be
set to a very large value. On the other hand, some parameters could vary significantly depending
on the season, study area, or fault type, including the load component fraction FmX parameters.
Smaller values in their corresponding diagonal entries of Γ will encourage those parameters to be
estimated using more reliable field measurement data, as compared to outdated load surveys.

6.2.3 Results
Numerical tests have been performed to validate the dependency among the WECC CMPLDW
parameters, and the effectiveness of the proposed regularized-NLS scheme. The real disturbance
measurements collected in PQube datasets #1 or #2 are used. The PowerWorld transient analysis
package is employed to simulate the WECC CMPLDW response for a given fault voltage input.
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Table 6.1: Selected parameters with actual and estimated values by the NLS and regularized (R-
)NLS methods, both performed using the synthetic data with (w/) and without (w/o) noise.

Parameter Xxf Pfrq LFmA Vrc2A RsC
Actual value 0.01 -1.3 0.8 0.8 0.01

NLS w/o noise 0.0724 -62.435 0.5828 0.6553 0.4912
R-NLS w/o noise 0.0201 -1.1179 0.6832 0.6468 0.0079

NLS w/ noise 0.0860 109.208 0.3822 0.6441 1.5e-5
R-NLS w/ noise 0.0206 -0.8239 0.6926 0.6487 0.0133

We validate the proposed parameter estimation scheme using both synthetic and real measure-
ment data. To improve the NLS computation efficiency, we have excluded around half of the
parameters with (almost) zero trajectory sensitivity from being estimated. Values for these insensi-
tive parameters are fixed at their nominal ones as listed in Table 2.1. The a priori parameter setting
θc used for solving (6.5) is taken from Table 2.1 as well. To select the regularization coefficient µ,
its value increases from 0.01 by a factor of 2 until satisfactory fitting results are achieved. As for
the diagonal weighting matrix Γ, we use the inverse magnitude of the a priori parameter values
as its diagonal entries. In addition, for the motor internal parameters of small variability in field
studies [11], their corresponding diagonal entries in Γ will be multiplied by a factor of 50.

Using the input voltage from PQube dataset #1, we first generate the modeled active/reactive
power outputs with the values of selected parameters changed from nominal ones, as listed in Ta-
ble 6.1. The noise-free synthetic measurements and the data fitting results using both NLS and
regularized NLS methods are plotted in Fig. 6.3. To test the robustness of the two methods to mea-
surement noise, we also add white Gaussian noise to the measurements, as shown in Fig. 6.4 along
with the data fitting results. For both noise-free and noisy tests, Figs. 6.3 and 6.4 illustrate that the
data fitting error performance for both methods is comparable, with the regularized NLS slightly
outperforming the other. Nonetheless, Table 6.1 demonstrates that the regularized NLS achieves
much more accurate parameter estimates and better robustness to additive noise, as compared to
the original NLS method. For example, the NLS method exhibits “evaporation effects” [24] for
parameter Pfrq, the active power frequency dependency factor. Its estimated value−62.4350 under
the noise-free setting goes far beyond the nominal range for this parameter. Furthermore, the NLS
estimates could be strongly affected by the synthetic measurement noise, as shown for parameters
Pfrq and RsC. Under measurement noise, the L-M update could take extremely large steps under
the original NLS objective. On the other hand, the regularized NLS estimates not only match
well with the actual parameter values, but also show high consistency between the noise-free and
noisy scenarios. It is worth noting that although neither method is able to exactly achieve the ac-
tual parameter values, the fitting results in the output response are shown to be acceptable. This
observation is explained by the issue of parameter identifiability in the CMPLDW model.

We have also validated the performance of the proposed regularized NLS method using the
PQube datasets. Fig. 6.5 plots the measured power output data of PQube dataset #2, along with
the results attained by the two methods. Although both methods show competitive performance in
terms of fitting the output data, the NLS method leads to unreasonable parameter estimate values
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Figure 6.3: Noise-free synthetic data and the fitting results attained by the NLS and regularized
NLS methods.

Figure 6.4: Noisy synthetic data and the fitting results attained by the NLS and regularized NLS
methods.

as listed in Table 6.2, especially for Pfrq. In some real datasets, the measurement data lacks good
quality. This is the case for PQube dataset #1 with several irregular peaks. We first pre-process
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Figure 6.5: PQube dataset #2 and the fitting results attained by the NLS and regularized NLS
methods.

Table 6.2: Selected parameter estimates attained by the NLS and regularized NLS methods using
PQube dataset #2.

Parameter Fb Pfrq Qfrq HC VrstD
NLS 0.1069 -119.04 0.7505 0.2591 1.6219

Reg-NLS 0.4500 -1.2906 -1.0071 0.1005 0.7089

this dataset by smoothing out these peaks. Fig. 6.6 plots the raw output data and its smoothed
version, and the latter is used for parameter estimation. Clearly, the proposed regularized NLS
method significantly outperforms the original NLS one, in terms of fitting the smoothed and even
the raw measurements. Similar comparisons on the estimated parameter values as in Table 6.2
have been observed for PQube dataset #1. By incorporating the a priori parameter information,
the regularized NLS method has been validated to be of higher accuracy and more robust to noise
compared to the original NLS method.
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Figure 6.6: PQube dataset #1 with the fitting results attained by the NLS and regularized NLS
methods.
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Chapter 7

Conclusions

This work is focused on the complexity analysis of dynamic load models. Our proposed analysis
used the trajectory sensitivity as the feature characterizing each parameter, and employed SVD and
K-medoids to provide quantitative characterization and intuitive visualization of the CMPLDW
parameters’ interdependency, respectively. We found that the sensitivity of the parameters is de-
pendent on the fault voltage profile, due to thresholding nonlinearity. Among sensitive parameters,
some physically unrelated parameters were also shown to exhibit interdependency. The conse-
quence of this unidentifiability is that a model which fits the training data can still perform poorly
on other test cases. Increasing the number of training cases was also not beneficial. To tackle the
identifiability issues for measurement-based load modeling, we developed two improved parame-
ter estimation approaches based on the use of a priori information about the parameter values: the
MAP estimator, and the 2-norm regularized estimator. Extensive numerical tests using both syn-
thetic and real fault data have shown that both approaches result in significant improvements from
the original NLS estimator, even under high noise conditions. This work shows that our improved
measurement-based method can provide promising load modeling performance.
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Chapter 8

Introduction

8.1 Point-on-wave effects on compressor loads
The Fault-Induced Delayed Voltage Recovery phenomenon is believed to be driven by the stalling
of compressor motors after a fault [25]. It is suggested that small compressor motors, with very low
inertia, will stall after a very brief disturbance, even when the fault is properly cleared.In the desert
southwest, FIDVR events are relatively common. A brief voltage disturbance can cause residential
air conditioners to stall all along a feeder or substation, dragging down the voltage. After several
seconds, the individual loads will trip off line by their own thermal protection, and the voltage will
eventually rise. With the loss of a significant part of the load, the voltage rises above the pre-fault
state, and network components (LTC, switched capacitors) react to lower the voltage. After several
minutes the air conditioners will restart, lowering the voltage further.

This stalling characteristic of residential air conditioners has been confirmed in multiple labo-
ratory experiments conducted by BPA, SCE, and EPRI. The air conditioners stall very quickly, and
typically cannot overcome the compressor load to restart immediately after the disturbance.

From a reliability point of view, the concern is that a FIDVR event could cascade, either ini-
tially, right after a disturbance, or due to a poorly timed second event occurring when the voltage
is already low and the system is vulnerable. To study the possibility of such cascades, researchers
in WECC have developed models for compressor loads that have been implemented in traditional
power system simulators including PSLF, PSEE, and PowerWorld. What is typically a single-phase
phenomenon occurring at distribution level-voltages, must be modeled to suit positive sequence
simulators to assess wider cascade potential.

A fundamental premise when developing a positive sequence simulation model is that the
model does not depend on fast, sub-cycle phenomena. If it does, then the subcycle effects must
somehow be incorporated into the positive sequence model. In Chapter 9, we investigate the effect
of subcycle point-on-wave effects on single phase compressor motors.
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8.2 Load monitoring
Improved dynamic load modeling is essential for predictive studies that examine the resilience of
the network to any possible disturbance. The critical importance of accurate load models has been
recognized since the 1996 blackouts in the Western Interconnect. An exhaustive post-blackout
simulation study conducted by the WSCC could not reproduce the blackout event until improved
dynamic load models were used. [26] This comprehensive analysis first determined all the con-
trol characteristics of generation at the time, and confirmed networks models. Nevertheless, the
instability that drove the system to break up could not be replicated in simulation without the in-
clusion of load model dynamics, and a characterization of induction motors became standard in
the West [27]. More recently, observation of Fault-Induced Delayed Voltage Recovery (FIDVR)
event led efforts to develop a more detailed load model, culminating in the CMPLDW composite
load model that is the new standard in WECC. This model has the fidelity to represent measured
disturbance data in simulation.

The load characteristic is not fixed. Wide daily and seasonal variations are apparent in data.
Figure 8.1 shows the MISO load for the year 2012, sampled hourly. The seasonal variations are
obvious, with a strong peak in the summer, a lesser peak in the winter, and spring and fall lows.
The summer peak is more than double the spring minimum. There is also great variability in load
over the course of a day. Figure 8.2 shows a typical spring load characteristic in MISO in which
the weekdays and readily observed. The daily variation is large; the range from low to high is
approximately 20 % of the average load. Obviously the load types vary over the course of a day,
by season, and by weather. On a hot summer day, the load will be dominated by air conditioner
load (which explains more frequency FIDVR events in the summer in the Southwest). In other
seasons the residential air conditioning load may be negligible. Commercial motor and lighting
load will vary by time day, climate, season, etc.

The typical approach to developing a load model for a specified day/season/climate involves
either a disaggregation of a load profile into percentage of individual load classes (industrial, agri-
culture, commercial, residential), or construction of a model from assumed percentages of the load
classes. In either case the load class percentages are translated into parameters in a composite load
model. To do this requires a lot of information about typical loads by location and climate. Much
of this information comes from historical end-use load surveys, and can be correlated to utility
billing data by type and substation. Using such databases, and expert knowledge, Pacific North-
west National Laboratories has developed a Load Modeling Data Tool (LMDT) that takes as input
a bus location in the west, climate zone, time of year time of day, and percent load composition,
and produces the parameters needed for the WECC CMPLDW composite load model [28].

Direct dynamic load measurement in real time is difficult, and just isn’t done at the utility level.
In Chapter 10, we look at how harmonic information can be used for load monitoring.
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Figure 8.1: Total hourly MISO load for Year 2012.

Figure 8.2: Typical MISO spring load profile for nine days showing weekday and weekend varia-
tions.
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Chapter 9

Point-on-Wave Effects on Compressor
Loads

9.1 Compressor loads and point-on-wave Effects
We begin our study of the point-on-wave effects using simulations. We follow up in the next
section with laboratory tests. The simulations use a textbook-type model of a two phase motor
in which the second, or auxiliary winding, is connected to the main wind through a run capacitor
as shown in Figure 9.1. We model mechanical load as triangle wave in angular displacement as a
representation of a reciprocating compressor. We use the simulation model to determine the effect
of the timing of the fault on the voltage wave to the stalling of the motor. We also assess the effect
of the timing of the fault on the angular displacement of the motor on the stalling of the motor.

Figure 9.1: Diagram for single phase compressor simulations including mechanical torque.

A collection of typical voltage disturbances are shown in Figure 9.2. The applied voltages
shown occur at the peak of the voltage waveform, the zero-crossing, and critical points in between.
The results of these simulation collections are shown in Figure 9.3. This graph plots the simulated
machine speed. It is clear that motor stalling does depend on point-on-wave effects. Disturbances
occurring a the voltage peak, for this level of disturbance does not cause the motor to stall. Distur-
bances occurring at the zero-crossing does cause the motor to stall. In between there is a critical
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angle for which the motor may or may not stall depending on the angular displacement in the com-
pression cycle. Overall, this latter effect is small compared to the point-on-wave effect. One of
the lines on the plot show a disturbance that just barely recovers, while a nearby line just fails to
recover.

Figure 9.2: Collection of typical voltages used in simulations to show differences in point-on-
wave application. They are distinguished by where on the voltage cycle the fault occurs: peak,
zero crossing, in between.

When studying the impact of faults, it’s usual to characterize the fault by its voltage dip and
its duration. In Figure 9.4 we map out the space of stall characteristics as a function of fault
duration (horizontal axis), maximum fault voltage that results in stall (vertical axis), with the lines
representing simulations with faults starting at a peak, zero crossing and 45 degrees. The small
distributions of points in the plots represent the effect of rotor position at the time of disturbance,
which turns out to be a small and negligible effect. In this plot, the lower curves are better. They
show that the motor is able to withstand a larger voltage dip during the fault without before stalling.
The zero-crossing points are most sensitive to the voltage dip, and the voltage peaks values are the
least sensitive.

For studying fault-induced delayed voltage recovery, a primary question is whether a distur-
bance is likely to spread. At the location of a fault the voltage disruption can be abrupt as simu-
lated above. That is, we have treated the voltage change to be instantaneous. At some electrical
distance away, filtered by transformers, lines, and with (limited) energy and power support from
other devices, the waveform may be smoothed slightly. Assuming that at some distance away from
the fault the voltage disturbance may appear very slightly smoothed, we performed a set of sim-
ulations and tests to examine how sensitive the stall results are to a smoothing of the waveform.
We repeated the simulations and tests by imposing a one-cycle ramp in the voltage disturbance. A
sample voltage disturbance waveform with a 1 cycle ramp is shown in Figure 9.5. The simulation
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and test results are shown in Figure 9.6 respectively. These results show that the point-on-wave
effect is significantly mitigated by the 1-cycle ramp.

For the objective of developing load models for system wide studies, the results of the 1-cycle
smoothing simulations and laboratory tests are helpful. They suggest that detailed point-on-wave
simulations may not be necessary to study FIDVR phenomena. For loads at the point of disturbance
which may experience instantaneous changes in voltages, the voltage will likely be low enough to
initiate stall even if a 1-cycle voltage smooth is assumed. For determining whether an event is
likely to spread the 1-cycle smoothing will allow quasi-static phasor simulations. Furthermore it
is noted in practice that FIDVR events do not tend spread. The smoothing results suggest a reason
for this, that even a small amount of smoothing reduces the chance of stalling under the worst-case
point-on-wave initiating event.

9.2 Laboratory tests of point-on-wave effects.
The simulation results suggest that for instantaneous voltage changes, the point-on-wave effect
can be substantial. The compressor may or may not stall depending on the sub-cycle timing of
the disturbance. However, when the voltage waveform is slightly smoothed, this effect is greatly
lessened. Then the point-on-wave effect is small, and may be considered negligible for purposes
of developing a simulation model.

It is necessary to test these results in a laboratory environment. We conducted a suite of tests
on two types of air conditioners at the test facilities at the Bonneville Power Administration in
Vancouver, WA. This included a scroll compressor, and a reciprocating compressor. The purpose
of the tests to examine both the effects of point-on-wave for instantaneous disturbances and for
1-cycle smoothed disturbances.

Figures 9.7 and 9.8 summarize the stall characteristics as a function of voltage dip, fault dura-
tion, and point-on-wave, for the scroll compressor tested at the BPA facility. Figure 9.7 uses and
instantaneous voltage disturbance and Figure 9.8 uses a 1 cycle smoothed voltage disturbance. It
is clear that the qualitative conclusions suggested by the simulations are confirmed by the labo-
ratory tests. The point-on-wave effect does matter for instantaneous voltage events but is greatly
mitigated by smooth the voltage.

This same conclusion is drawn from the tests of the reciprocating compressor tests. The results
of those tests are summarized in Figures 9.9 and 9.10
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Figure 9.3: Collection of simulated machine speeds shown the effect of point-on-wave application
of disturbance. Simulations suggest that disturbances occurring at a zero-crossing of voltage will
be more likely to stall than those occuring at a peak.

Figure 9.4: Voltage Dip vs. fault duration for compressor stalling as a function of point-on-wave.
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Figure 9.5: A sample voltage disturbance smoothed over one cycle.

Figure 9.6: Voltage Dip vs. fault duration for compressor stalling as a function of point-on-wave
with a 1 cycle ramp. The ramp greatly reduces the point-on-wave effect.
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Figure 9.7: Voltage Dip vs. fault duration for scroll compressor stalling as a function of point-on-
wave. The disturbance is instantaneous, i.e. no smoothing ramp.

Figure 9.8: Voltage Dip vs. fault duration for scroll compressor stalling as a function of point-on-
wave. The disturbance voltage is smoothed with a 1 cycle ramp.
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Figure 9.9: Voltage Dip vs. fault duration for reciprocating compressor stalling as a function of
point-on-wave. The disturbance is instantaneous, i.e. no smoothing ramp.

Figure 9.10: Voltage Dip vs. fault duration for reciprocating compressor stalling as a function of
point-on-wave. The disturbance voltage is smoothed with a 1 cycle ramp.
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Chapter 10

Load Monitoring

10.1 Load monitoring using harmonic information
In this section we discuss one method for direct measurement of load types that may be applied in
real time. This approach relies on gathering high bandwidth electrical data.

One of the challenges with estimating parameters of a dynamic model from measurements is
that the data must be excited in some way to reveal the dynamic behavior. From disturbance data,
one can calibrate model parameters, as is discussed earlier in this report. It is more difficult to
determine model dynamics when the model shifts slowly over time. In this section we suggest that
there is a different approach that may reveal something about the nature of the load using steady
state measurements of harmonic information. While in steady state it would be difficult to discern
differences between loads or even load types, it may be possible to detect characteristics of one
important load type: power electronic loads [29].

Power electronic loads are typically characterized by a front-end rectifier that converts the AC
source voltages and currents to a DC voltage and current that is then used directly, or is converted
back to a different AC signal depending on the load. One increasingly common power electronic
load is the variable frequency drive, which is of the latter type. By the nature of the rectifier circuit
comprising diode bridges, the current waveform as seen by the grid will contain harmonics, unless
special filtering components are added to the circuit. In Figure 10.1, the current on one phase of
a three phase variable frequency drive is shown. These tests were conducted with the Bonneville
Power Administration as part of past work on studying the characteristics of air conditioning load.
The current displays typical “rabbit ears” that translate into strong 5th and 7th harmonics in current.

The question is whether such harmonics associated with power electronic rectified loads can be
observed in an aggregate load. The challenge for examining this question is that the sampling rate
must be very high to capture. Suppose we sample at 10000 Hz and saved all the data; one 16-bit
data stream over one day would require more than a gigabyte of data. This adds up quickly, and
one can easily understand why high-bandwidth data is not routinely collected. Before suggesting
that such data should be collected, or at least the tracking of harmonics over time, sampled at some
frequency, it is worth examining whether such harmonic characteristics can be seen in real data.
Data at that bandwidth is collected when there is a disturbance, for some period before and after
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Figure 10.1: Source current on one phase of a three phase variable frequency drive. This current
exhibits typical “rabbit ears”, with strong fifth and seventh harmonics.

then event.
Researchers at Lawrence Berkeley National Laboratory have installed distribution-level phasor

measurement units at various locations around their facility, specifically PQube devices (pqube.com).
These devices will record point-on-wave measurements when there is a disturbance. A sample
event is shown in Figure 10.2. The measurement was taken at the service entry of one the labora-
tory’s building. The load in this building should be taken as a typical office building, and not one
of the research building housing unique loads (such as high-powered lasers, or a supercomputer).
A close examine of the current waveform suggests that there are likely harmonics. In our case, we
are less interested in a detailed analysis of the dynamics, but rather on the harmonics in the steady
state waveform. There is sufficient data and the end of the event detection to enable a harmonics
analysis of the current in near steady state.

An FFT analysis for the current after 100ms, i.e., essentially steady state, is shown in Figure
10.3. The FFTs for each of the three currents are normalized by the magnitudes of their (peak) val-
ues at 60 Hz. This normalization allows easy comparison of harmonics relative to the fundamental
frequency component. The odd-numbered harmonics are prominent at 180, 300, 420, 540, 660,
and 780 Hz. Beyond the thirteenth harmonic the harmonics are essentially zero, possibly the result
of an anti-aliasing filter in the system. There are noticeable differences in the amount of various
harmonics. The third harmonic is almost 10% of the fundamental on one phase, and nearly absent
on another. The differences in harmonic content suggests that the loads connected to the circuits
are different.
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Figure 10.2: Recorded line-to-line voltages and currents.

10.2 Two weeks of monitoring harmonics
The data from the event records suggested that collecting steady-state harmonic information from
electrical waveforms could be useful for identifying the part of the load associated with power
electronic rectifiers. To this end we requested of a researcher at LBNL and the manufacturer of the
PQube devices to alter the firmware for one devices to record 16 cycles of steady-state waveforms
of voltage and current at 128 samples per cycle (7680 Hz), every hour for one week. We collected
this data for waveforms into an office building at Lawrence Berkeley National Laboratory every
hour for 317 hours (almost two weeks). A plot of harmonics is shown below in Figure 10.4. It
is clear that there is substantial change (increase) in fifth and seventh harmonics during business
hours on weekdays. On the first weekend there is very little harmonic activity, on the next week
there is some. Checking with facilities confirms there was activities at the lab on that weekend, but
not the prior weekend.

Looking at the harmonics in the current over the course of a day in Figure 10.5, suggests that
there may be dominant load with a power electronic rectifier front end that turns on during the day,
and off at night. The hypothesis that the building has HVAC equipment run by variable frequency
drives was confirmed with facilities.

Looking at the time-domain point-on-wave characteristics for a sample during the afternoon
in Figure 10.6 clearly shows “rabbit ears” consistent with a three phase power electronic rectifier.
The amount observed depends on the time of day. It is obviously present in the afternoon, but is
smaller or missing in the early morning. This comparison is shown in Figure 10.7.
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Figure 10.3: FFT Analysis of Current Waveforms.

Figure 10.4: Plot of harmonics in current at the service entry of an office building at LBNL,
recorded every hour for approximately two weeks. The harmonic content clearly changes over the
course of a day.
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Figure 10.5: Plot of harmonics in current at the service entry of an office building at LBNL, every
hour for one day. The harmonic content changes suggest a dominant power electronic load, which
we confirmed to drive HVAC equipment.

Figure 10.6: Plot of voltage and current observed in the afternoon. The current displays rabbit ears
consistent with a power electronic rectified front-end to a load.
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Figure 10.7: Comparison of current plots in the early morning and early afternoon. The distortion
appears more pronounced in the afternoon.
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Chapter 11

Conclusion and Future Work

11.1 Point-on-wave effects on compressor loads
In summary, understanding the point-on-wave effects are essential for modeling the FIDVR phe-
nomenon in positive sequence simulators. It appears that the effect is small if the voltage dis-
turbance is very mildly smoothed, in which case a model can be developed for use in a positive
sequence simulator for the purpose of assessing the risk of cascading outages away from the point
of disturbance. For the initiating event, at the point of disturbance, it still may be useful to modify
the simulation model at that location to incorporate the effect of an instantaneous voltage event.
The form of modification is a topic of further research.

11.2 Load monitoring
The data in Chapter 10 were collected on a one-time basis as the sensing equipment is not normally
set up to gather information in this way. We were given two weeks to divert the normal use
of these sensor for our purposes, from that of another LBNL project. We are grateful to have
that opportunity. We did not have resources to survey the types of loads for the complete office
building, which would have enabled the calibration of the measurements to percentage of power
electronic loads, and to distinguish between single-phase and three-phase power electronics. We
recommend that a subsequent study focus on installing a dedicated sensors for this purpose, along
with resources for a (near) complete survey of loads for calibration.
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