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Executive Summary 

As the US moves towards competitive markets in electric power generation, the shift of 
ownership and operational control of generation from the vertically integrated utilities to 
independent, for-profit generation owners has raised a number of fundamental issues regarding 
grid control. Questions concerning appropriate generator control loop functionality to meet grid-
wide objectives, while simultaneously enabling full profit potential for individual generator 
owners, have not been fully answered more than a decade into North America’s experience in 
electric utility restructuring.  

Generators remain the fundamental control resource for achieving system-wide frequency 
regulation, stable electromechanical dynamic response, and, to a lesser degree, voltage control. 
In working toward appropriate functionality, the goal should be to develop practical generator 
feedback controls that maximize a generator's contributions to the system-wide control 
objectives while minimally conflicting with that generator’s profit-making, energy production 
activities. Remaining issues relate to the creation of generator control designs that are more 
appropriate to the new operational objectives of a restructured power network.  Generator control 
designs needs to address (1) regulation of bilateral transactions, (2) the interplay of generation 
controls with grid congestion management, and (3) the need for large numbers of distributed, 
potentially intermittently-connected generators to “do no evil” with respect to stable, system-
wide electromechanical response. 

In this project, we modified the traditional “Automatic Generation Control (AGC)” to 
accommodate bilateral transactions. Specific reconfiguration of the area control area 
functionality in AGC was developed so that area interchange error signals could be 
supplemented to account for imbalances in multiple, point-to-point bilateral transactions. As 
might be expected, the finer granularity required to maintain regulation on multiple bilateral 
transactions requires monitoring of a greater number of control error signals along with greater 
diversity in generation setpoint-update capability. However, our design demonstrated that the 
functionality of tracking bilateral transactions can successfully be incorporated in an “AGC-like” 
control structure. We anticipate that such functionality could be added to existing control center 
software with fairly minimal modifications. In general, the designs developed in the project 
provide a practical roadmap for specifying this enhanced functionality to software vendors. 

We also developed an algorithm to automate a generator’s contribution to relieving grid 
congestion. The algorithm is based upon control signals that supplement direct market prices as 
incentives for redispatch of generation. The redispatch signals are based on the gradient 
directions that are locally optimal in “backing off” from active line flow constraints in an 
Optimal Power Flow (OPF). While this approach is conceptually straightforward, it was still 
necessary to develop a computationally efficient method for extracting such information in an 
operational time frame. We demonstrate our approach using the IEEE 14-bus test system. The 
new algorithm could be further developed for implementation in control center software.  

There is an implementation issue of the OPF-based congestion relief algorithm in a very 
large-scale, interconnected control area. Even with the advanced computational approach 
developed in the congestion relief algorithm, its OPF-based approach might become 
computationally impractical in very large-scale control areas being considered for North 
American operations under Regional Transmission Operators. Anticipating this challenge, we 
developed a partitioning scheme for decomposing the OPF-based computations into a sequence 
of computations over smaller portions of the network. Building upon existing coherency and 
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synchrony-based partitioning techniques that focus on frequency, angle, and active power 
deviations, we developed an extension for partitioning that incorporated reactive power flows 
and bus voltage magnitude variations. Given the very novel nature of this approach, we 
conducted a computational demonstration of the partitioning algorithm’s effectiveness. A 
research-grade software package was created in the MATLAB environment, building on 
MATPOWER, Power Systems Engineering Research Center’s MATLAB-based power flow and 
OPF code. Full source code and documentation for this OPF-partitioning software is provided in 
the final project report. 

In the years to come there will be a growing need for small-scale generators (i.e., distributed 
generation) to have controllers that will allow the generators to participate in meeting system 
stability objectives . We created a framework for standardized design of fast-time scale governor 
controllers for such generators. The approach was to develop controllers for small-scale 
generators so that the generators would not degrade the network’s small-signal 
electromechanical stability as the number of on-line generators grows. The approach uses the 
well-established Linear-Quadratic-Regulator (LQR) controller design methodology, with an 
added constraint placed on the controllers to guarantee that their interconnection with generator 
dynamics is passive. We simulated use of the controllers with the IEEE 14-bus test system. This 
initial investigation suggested that a relatively small degree of frequency regulation performance 
is sacrificed in exchange for this standardized, guaranteed stable behavior. This contribution of 
the project is an initial feasibility study into a new class of controller designs for distributed 
generation. More development work could proceed to more thorough simulation of the governor 
control designs, with subsequent progression to hardware implementation and testing on grid-
connected, small-scale, distributed generation units. 
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1. Generation Control in a Restructured Environment 

1.1 Background and Motivation 

As the US moves towards competitive markets in electric power generation, the shift of 

ownership and operational control of generation from the vertically integrated utilities to 

independent, for-profit generation owners has raised a number of fundamental questions 

regarding grid control. Some of the questions relating to appropriate generator control loop 

functionality are still not completely answered, more than a decade into North America’s 

experience in electric utility restructuring. Generators remain the fundamental control resource 

for achieving system wide goals of frequency regulation, stable electromechanical dynamic 

response, and to a lesser degree, voltage control. In broad terms, the goal is development of 

practically implementable feedback controls that maximize a generator's contributions to these 

system-wide control objectives, while minimally conflicting with generators’ primary profit 

making activity of producing energy. Key questions relate to the creation of generator control 

designs that are more appropriate to the new operational objectives of a restructured power 

network, including the control of bilateral transactions, the interplay of generation controls with 

congestion relief in the grid, and the need for large numbers of distributed, potentially 

intermittently connected generators to “do no evil” with respect to stable system-wide 

electromechanical response.  

 
Contributions Reported in this Work 

The first area of investigation concerned modification to traditional “Automatic Generation 

Control (AGC)” to accommodate bilateral transactions. In this aspect of the work, specific 

reconfiguration of the area control area functionality in AGC is proposed, in such a way that area 

interchange error signals can be supplemented to account for imbalances in multiple point-to-

point, bilateral transactions. As might be expected, the finer granularity required to maintain 

regulation on multiple bilateral transactions requires a greater number control error signals to be 

monitored, with greater diversity in generation setpoint update capability. However, the design 

proposed here demonstrates that the functionality of tracking bilateral transactions can 

successfully be incorporated in an “AGC-like” control structure.  
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The report next turns to methodologies to automate generators’ contributions to network 

congestion relief. The approach employed is based upon control signals to supplement direct 

market price outcomes, where these signals seek to incentive redispatch of generation. The 

direction of redispatch is obtained from gradient directions that are locally optimal in “backing 

off” from active line flow constraints in an Optimal Power Flow (OPF). While conceptually 

straightforward, this work demonstrates a computationally efficient method for extracting such 

information in an operational timeframe. The approach is demonstrated in the context of the 

IEEE 14 bus test system. However, even with the advanced computational approach advocated, 

there remains concern that an OPF-based approach for congestion relief might become 

computationally impractical in the very large scale ISO’s and RTO being considered for North 

American operations. Anticipating this challenge, work under this project also considered a 

partitioning scheme for decomposing the OPF-based computations into a sequence of 

computations over smaller portions of the network. Building upon existing coherency and 

synchrony based partitioning techniques, an extension to incorporate consideration of reactive 

power flows and bus voltage magnitude variations was developed.  

 

The final contribution of the report addresses a problem we anticipate to become increasingly 

relevant with penetration of large numbers of small-scale generators; e.g., distributed generation. 

We develop a framework for standardized design of fast-time scale governor controllers. The 

basic premise is to develop controllers with the property that successive additions of any number 

of such small generators with these designs can be guaranteed not to detract from the small-

signal electromechanical stability of the network. The approach uses the standard Linear-

Quadratic-Regulator (LQR) linear controller design methodology, with an added constraint 

placed on the controllers to guarantee that their interconnection with generator dynamics is 

passive. Our sample designs for the IEEE 14 bus test system suggest that a relatively small 

degree of regulation performance is sacrificed in exchange for this standardized, guaranteed 

stable behavior.  
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1.2 Organization of the Report 

The report is organized into five chapters, representing each of the major thrusts of contribution 

in the work. Chapter Two addresses the redesign of traditional AGC to accommodate bilateral 

transactions. Chapter Three describes the use of generation redispatch for automated congestion 

relief, based upon price signals obtained from an optimal power flow (OPF) formulation. 

Anticipating the challenges in employing an OPF-based control methodology in the operation of 

very large scale ISO’s and RTO’s, Chapter Four addresses the extension of coherency-based 

methods of network partitioning to account for reactive power flows and bus voltage magnitude 

variations, with the goal of partitioning into smaller sub-problems the calculations necessary for 

Chapter Three’s techniques. Finally, Chapter Five considers the impact of generation controls on 

network-wide electromechanical dynamics. Recognizing concerns that increasing penetration of 

distributed generation will mean large numbers of smaller units that may connect and disconnect 

from the grid intermittently, this chapter’s premise is that such distributed generators’ governors 

will need a standardized design. In particular, we anticipate such units should possess faster time 

scale controls such that connecting/disconnecting any set of units can be guaranteed to “do-no-

evil” with regard to electromechanical stability. The approach described in that chapter examines 

modification of well-known LQR design techniques, applied to generator governor design, with 

the novelty that passivity constraints are imposed on the resulting generator/controller 

input/output characteristic, to guarantee that connection to the network should not undermine 

system-wide electromechanical small-signal stability.  
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2. Automatic Generation Control (AGC) Adapted to a Restructured Power 

Systems Operating Environment 

2.1 The Need for AGC Redesign 

In a restructured power system environment, allowing independent, competitive generating units 

the flexibility to enter into bilateral contracts raises new engineering issues in planning and 

operation, even though the underlying physical behavior of units and the operational goals for 

the system operator remain essentially the same. With the emergence of the distinct identities of 

GENCOs, TRANSCOs, DISCOs and the ISO, many of the ancillary services of a vertically 

integrated utility will have a different role to play and hence have to be modeled differently. 

Among these ancillary services is the automatic generation control (AGC). In the new scenario, a 

DISCO can contract individually with a GENCO for power and these transactions are done under 

the supervision of the ISO.  

 
In this chapter, we formulate the two area dynamic model following the ideas presented by 

Kumar et al [1], [2]. Specifically we focus on the dynamics and trajectory sensitivities. The 

concept of a DISCO participation matrix (DPM) is proposed which helps the visualization and 

implementation of the contracts. The information flow of the contracts is superimposed on the 

traditional AGC system and the simulations reveal some interesting patterns. The trajectory 

sensitivities are helpful in studying the effects of parameters as well as in optimization of the 

ACE parameters viz. tie line bias and frequency bias parameters K and B respectively. The 

traditional AGC is well discussed in the papers of Elgerd and Fosha [3], [4] as well as in text-

books [5], [6], [7]. Research work in deregulated AGC is contained in [1], [2], [8], [9].  

 
This chapter is organized as follows. In section 2, we explain how the bilateral transactions are 

incorporated in the traditional AGC system leading to a new block diagram. Simulation results 

are presented in section 3. In section 4, we discuss trajectory sensitivities and the optimization of 

K and B parameters using these sensitivities. Section 5 presents conclusions.  
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2.2 Traditional Versus New AGC 

There is a wealth of analyses available in the literature on traditional AGC. In a traditional power 

system structure, the generation, transmission and distribution is owned by a single entity called 

‘Vertically Integrated Utility’ (VIU) which supplies power to the customers at regulated rates. 

The definition of a control area is somewhat determined by the pooling arrangements of utilities. 

Sometimes the physical boundaries of a VIU define a control area. All such control areas are 

interconnected by tie lines.  

 
It is a primary goal of the AGC to control the tie line power flow at the scheduled value defined 

by the contracts among various VIUs, to maintain a generation equal to the local load, thus 

controlling the frequencies of the control areas as close to the nominal value as possible during 

normal load changes. In cases of loss of generation in an area the neighboring utility will come to 

help it. In the classical AGC system, this balance is achieved by detecting the frequency and tie 

line power deviations to generate the ACE (area control error) signal which is in turn utilized in 

the integral feedback control strategy as shown in the block diagram (Figure 1) for a two-area 

system. It should be noted that this is a linearized model of the AGC, hence is based on an 

assumption that the frequency and tie line power deviations are small.  

 
During a sudden load change within an area, the frequency of that area experiences a transient 

drop. A generator in each area is designated to be on regulation to meet this change in load in 

steady state. In the transient state there will be power flows from other areas to this area to 

supply excess load. Here, the feedback mechanism comes into play and generates appropriate 

raise/lower signals to the turbines to make generation follow the load. In the steady state, the 

generation is exactly matched with the load, driving the tie line power and frequency deviations 

to zero. The area control error (ACE) vanishes in the steady state. This system has performed 

exceedingly well in the past.  
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Figure 2-1: Two area system (traditional scenario) 

In a competitive market structure, vertically integrated utilities no longer exist. The utilities do 

not own generation-transmission-distribution any more, instead there are three different entities 

viz. GENCOs (generation companies), TRANSCOs (transmission companies) and DISCOs 

(distribution companies). GENCOs can be imagined to be at par with ‘independent power 

producers’ (IPPs) and they compete with each other to sell the power they produce. TRANSCOs 

are accessible to any GENCO or DISCO for wheeling of power. Again, a control area is defined 

by physical boundaries as before, but now, a DISCO has the freedom to contract with any 

GENCO, in its own area or otherwise for a transaction of power with a GENCO in another area. 

This is called a ‘bilateral transaction’. All the transactions have to be cleared by the ISO [10].  

 
There can be various combinations of contracts between DISCOs and GENCOs which can be 

conveniently visualized by the concept of a ‘DISCO participation matrix’ (DPM). The rows of a 

DPM correspond to GENCOs and columns to DISCOs which contract power. Each entry in this 

matrix can be thought as a fraction of a total load contracted by a DISCO (column) towards a 

GENCO (row). The sum of all the entries in a column in this matrix is unity e.g. for a two-area 

system, DPM will have the structure that follows.  
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1 2 3 4  

            

1

2

3

4

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

cpf cpf cpf cpf

cpf cpf cpf cpf

cpf cpf cpf cpf

cpf cpf cpf cpf

 

 
 
where cpfjd  =  Contract Participation factor of jth GENCO in the load following of dth DISCO. 

DPM shows the participation of a DISCO in a contract with any GENCO, hence the name Disco 

Participation Matrix.  

 
As any entry in a DPM corresponds to a contracted load by a DISCO, it must be demanded from 

the corresponding GENCO involved in the contract and should be reflected in the control loop. 

Whenever a load change takes place in this new restructured system, it is felt in its own area as in 

the traditional case, but as defined by the contractual agreement (hence DPM), only a particular 

GENCO must follow the load change demanded by a particular DISCO. Thus, information 

signals must flow from the DISCOs to the GENCOs specifying corresponding demands. This 

introduces new information signals which were absent in the traditional scenario. These signals 

carry information as to ‘which GENCO has to follow a load demanded by which DISCO’. Also, 

for those DISCOs having a contract with GENCOs NOT in their area, demand signals must 

adjust the scheduled flow over the tie lines. This change in scheduled flow produces a tie line 

power error which is used to derive ACEs for the control areas involved. Based on all 

abovementioned ideas, a block diagram for an AGC in a deregulated system can be 

conceptualized and depicted as in Figure 2. Structurally it is based upon the idea of [1]. Dashed 

lines show the demand signals.  
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Figure 2-2: Two area system (deregulated scenario) 
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2.3 Simulation Results of Two-Area System in the Deregulated Environment 

A two-area system is used to illustrate the behavior of the proposed AGC scheme. The data for 

this system is taken from [3].  

2.3.1 Case 1: Base case 

Consider a case where the GENCOs in each area participate equally in AGC, i.e., ACE 

participation factors are apf1 =0.5, apf2=1-apf1=0.5; apf3=0.5, apf4=1-apf3=0.5.  

Assume that the load change occurs only in area I. Thus, the load is demanded only by DISCO1 

and DISCO2. Let the value of this load perturbation be 0.1 pu MW for each of them.  

 

DPM  = 

0.5 0.5 0 0

0.5 0.5 0 0

0 0 0 0

0 0 0 0  

 

 

Note that as DISCO3 and DISCO4 do not demand from any GENCOs, corresponding 

participation factors (columns 3 and 4) are zero. DISCO1 and DISCO2 demand identically from 

their local GENCOs viz. GENCO1 and GENCO2. The frequency deviations in area I and II, 

actual tie line power flow in a direction from area I to area II and the generated powers of 

various GENCOs following a step change in the loads of DISCO1 and DISCO2 are shown in 

figures 2.3.A, 2.3.B and 2.3.C respectively.  

 

 
Figure 2.3.A 
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Figure 2.3.B 

 
Figure 2.3.C 

Figure 2-3: Base case simulation 

 

The tie line power goes to zero in the steady-state as there are no contracts of the DISCOs in one 

area with the GENCOs in other areas. In the steady state, the generation of each GENCO 

matches the demand of the DISCOs in contract with it. e.g. GENCO1 generates  

 

4

1,

1

( _ _ _ _ _' ')* 0.1d

d

pu MW load of DISCO d cpf pu
=

=

 

As GENCO3 and GENCO4 are not contracted by any DISCOs, their generation change is zero in 

the steady state.  



 

11 

2.3.2 Case 2: Individual DISCO Contratcs  

Consider a case where all the DISCOs contract with the GENCOs for power as per the following 

DPM,  

 

    DPM  =  

0.5 0.25 0 0.3

0.2 0.25 0 0

0 0.25 1 0.7

0.3 0.25 0 0  

 

 

Assume that the total load of each DISCO is perturbed by 0.1 pu and each GENCO participates 

in AGC as defined by following apfs:  

 apf1=0.75,apf2=1-apf1=0.25; apf3=0.5, apf4=1-apf3=0.5 
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Figure 2.4.A 

 
Figure 2.4.B 

 
Figure 2.4.C 

Figure 2-4: Simulation with demand from DISCOs 

DISCOs in area I demand 0.08 pu MW from the GENCOs in area II. (This is obtained by 

summing the entries in the lower left block of the DPM matrix.) Likewise, DISCOs in area II 

demand 0.03 pu MW from the GENCOs in area I. (This is given by the top right block of the 

DPM matrix.) The tie line power settles down to the net scheduled value viz. 0.05 pu MW from 
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area II to area I (Figure 4.B). Again, as in the base case, GENCOs generate power equal to the 

contracted demands of the DISCOs. (Figure 4.C).  

2.3.3 Case 3: Contract violation 

Consider case 2 again except that DISCO1 demands an additional 0.1 pu MW which is not 

contracted out to any GENCO.  

 
The uncontracted load of DISCO1 reflects in the generations of GENCO1 and GENCO2. Thus, 

this excess load is taken up by the GENCOs in the same area as that of the DISCO making the 

uncontracted demand. GENCO3 and GENCO4 generate to satisfy their own demands as in case 2 

and are not affected by this excess load (Figure 2.5).  
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Figure 2.5.A 

 
 

 
 

Figure 2.5.B 

 
Figure 2.5.C 

Figure 2-5: Two area system (deregulated scenario) 
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2.4 Trajectory Sensitivities and Optimization 

The two-area system in the deregulated case with identical areas can be optimized with respect to 

system parameters to obtain the best response. Figure 2.2 showed a closed loop system with 

feedback that is derived from the states of frequency deviations and the tie line power flow 

deviation. The parameters involved in the feedback are the integral feedback gains (K1=K2=K) 

and the frequency bias (B1=B2=B). The optimal values of K and B depend on the cost function 

used for optimization [11]. The integral of square error criterion is chosen for this case [3],  

 22

, 1

0

[ ( ) ( )]tie errorC P f dt= +  

The ‘equi-B’ cost curves can be plotted as shown in Figure 2.6 assuming =1 and =1. The 

optimum values of K and B correspond to the point where the curves reach the minimum.  

 

 

Figure 2-6: ‘Equi-B’ cost curves  

The cost curves in Figure 2.6 correspond to the case of AGC in the deregulated environment 

where DISCO1 and DISCO2 contract to have 0.05 pu MW equally from the local GENCOs. 

Thus, the contracted load perturbation in area I is 0.1 pu MW. DISCO1 demands an excess 

(uncontracted) load of 0.1 pu MW. DISCO3 and DISCO4 do not have contracts with any 

GENCO. The cost function is plotted against K for various values of B to obtain equi-B curves 

as shown in Figure 6. It is found that the optimum values of the parameters K and B are 

consistent with those obtained from the optimization of the case of two-area traditional AGC 
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system i.e., the two-area system in the ‘Vertically Integrated Utility’ environment with only one 

generating unit in each area [3].  

 

The optimal parameter values given above were obtained by evaluating the cost function for 

many sets of parameter values. A more systematic approach to the optimization can be achieved 

by using trajectory sensitivities in conjunction with a gradient type Newton algorithm.  

 

The closed loop system of the form in Figure 1 or Figure 2 can be characterized in the state-

space as follows.  

 

 
cl clx A x B u

•

= +  (2.1) 

where 

 x: states 
 Acl: closed loop A matrix 
 Bcl: closed loop B Matrix 
 u: pu MW load change of DISCOs 

 
Differentiating with respect to a parameter , 

 ( ) ( ) ( )cl cl clx A x A x B u
•

= + +  (2.2) 

where the subscript ‘ ’ denotes a derivative. Equations (2.1) and (2.2) can be solved 

simultaneously to obtain trajectory sensitivities x . 

2.4.1 Gradient type Newton algorithm 

Optimization of the deregulated AGC system used trajectory sensitivities in the following way:  

  = [ K   B ]T (parameter vector) 

 22

, 1

0

[ ( ) ( )]tie errorC P f dt= +  (the cost function) 

 o = [ Ko   Bo]
T (guess values) 
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Do until converged with required accuracy: 
 

1. Using the latest , simulate the system along with trajectory sensitivities i.e.,  

 

, ,1 1, , ,
tie error tie errorP Pf f

K K B B
 

 
to obtain  
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, 1
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2. Form, 
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C C

B KK
H

C C

K B B

=  

 
3. Update parameters, 

 
1[ ( )] . ( )fH f=  

 
End 
 

When this procedure is applied to the two-area system in the deregulated case, the optimum 

values of the parameters match with those obtained by plotting ‘equi-B’ cost curves. This 

‘trajectory sensitivity approach’ to optimization will be useful for any general control strategy, 

particularly when nonlinearities are involved.  

2.5 Conclusions on AGC Redesign for a Restructured Environment 

AGC provides a relatively simple, yet extremely effective method of adjusting generation to 

minimize frequency deviations and regulate tie-line flows. This important role will continue in 

restructured electricity markets. However some important modifications are necessary to cater 

for bilateral contracts that span control areas.  
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Bilateral contracts can exist between DISCOs in one control area and GENCOs in other control 

areas. The scheduled flow on a tie-line between two control areas must exactly match the net 

sum of the contracts that exist between market participants on opposite sides of the tie-line 

(taking account of contract directions). If a contract is adjusted, the scheduled tie-line flow must 

be adjusted accordingly.  

 

A key concept in the work here is that of the ‘DISCO Participation Matrix’ (DPM. The DPM 

provides a compact yet precise way of summarizing bilateral contractual arrangements. The 

modeling of AGC in a restructured environment must take account of the information flow 

relating to bilateral contracts. Clearly, contracts must be communicated between DISCOs and 

GENCOs. As demonstrated here, it is also important that information regarding contracts is 

taken into account in establishing/adjusting the tie-line setpoints.  
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3. Congestion Management in the Restructured Power Systems 

Environment – An Optimal Power Flow Framework 

3.1 Problem Motivation and Chapter Organization 

The restructuring of the electric power industry has involved paradigm shifts in the real-time 

control activities of the power grids. Managing dispatch is one of the important control activities 

in a power system. Optimal power flow (OPF) has perhaps been the most significant technique 

for obtaining minimum cost generation patterns in a power system with existing transmission 

and operational constraints. The role of an independent system operator in a competitive market 

environment would be to facilitate the complete dispatch of the power that gets contracted 

among the market players. With the trend of an increasing number of bilateral contracts being 

signed for electricity market trades, the possibility of insufficient resources leading to network 

congestion may be unavoidable. In this scenario, congestion management (within an OPF 

framework) becomes an important issue. Real-time transmission congestion can be defined as 

the operating condition in which there is not enough transmission capability to implement all the 

traded transactions simultaneously due to some unexpected contingencies. It may be alleviated 

by incorporating line capacity constraints in the dispatch and scheduling process. This may 

involve redispatch of generation or load curtailment. Other possible means for relieving 

congestion are operation of phase-shifters or FACTS devices.  

 

In this chapter we look at a modified OPF whose objective is to minimize the absolute MW of 

rescheduling. In this framework, we consider dispatching the bilateral contracts too in case of 

serious congestion, with the knowledge that any change in a bilateral contract is equivalent to 

modifying the power injections at both the buyer and the seller buses. This highlights the fact 

that, in a restructured scenario, contracts between trading entities must be considered as system 

decision variables (in addition to the usual generation, loads and flows). Figure 1.1 shows a 

transaction network [12] in a typical deregulated electricity system. It displays links of data and 

cash flow between various market players. In the figure, G stands for generator-serving entities 

(or GENCOs), D for load or demand-serving entities (LSEs or discos), E for marketers, and ISO 

for the independent system operator.  
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Figure 3-1: Transaction network 

The dispatch problem has been formulated with two different objective functions: cost 

minimization and minimization of transaction deviations. Congestion charges can be computed 

in both the cases. In a pool market mode, the sellers (competitive generators) may submit their 

incremental and decremental bidding prices in a real-time balancing market. These can then be 

incorporated in the OPF problem to yield the incremental/decremental change in the generator 

outputs. Similarly, in case of a bilateral market mode, every transaction contract may include a 

compensation price that the buyer-seller pair is willing to accept should its transaction be 

curtailed. This can then be modeled as a prioritization of the transactions based on the latter’s 

sensitivities to the violated constraint in case congestion occurs.  

 
In this chapter, we also seek to develop an OPF solution incorporating FACTS devices in a given 

market mode (pool or bilateral dispatch). FACTS devices assume importance in the context of 

power system restructuring since they can expand the usage potential of transmission systems by 

controlling power flows in the network. FACTS devices are operated in a manner so as to ensure 

that the contractual requirements are fulfilled as far as possible by minimizing line congestion.  

 
Various optimization techniques have been used to solve OPF problems. These may be classified 

as sequential, quadratic, linear, nonlinear, integer and dynamic programming methods, Newton-

based methods, interior point methods, etc. Nonlinear programming methods involve nonlinear 

objective and constraint equations. These make up the earliest category of OPF techniques as 

they can closely model electric power systems. The benchmark paper by Dommel and Tinney 

[13] discusses a method to minimize fuel costs and active power loss using the penalty function 
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optimization approach. Divi and Kesavan [14] use an adapted Fletcher’s quasi-Newton technique 

for optimization of shifted penalty functions. Linear programming deals with problems with 

constraints and objective function formulated in linear forms. Sterling and Irving [15] solved an 

economic dispatch of active power with constraints relaxation using a linear programming 

approach. Chen et al. [16] developed a successive linear programming (SLP) based method for a 

loss minimization objective in an ac-dc system. In the SLP approach, the nonlinear OPF problem 

is approximated to a linear programming problem by linearizing both the objective function as 

well as the constraints about an operating state. At every iteration, a suboptimal solution is found 

and the variables are updated to get a new operating state. The process is then repeated until the 

objective function converges to an optimal level. Megahed et al. [17] have discussed the 

treatment of the nonlinearly constrained dispatch problem to a series of constrained linear 

programming problems. Similarly, Waight et al. [18] have used the Dantzig-Wolfe 

decomposition method to break the dispatch problem into one master problem and several 

smaller linear programming subproblems. Combinations of linear programming methods with 

the Newton approach have been discussed in the literature [19]. In [20], Burchett and Happ apply 

an optimization method based on transforming the original problem to that of solving a series of 

linearly constrained subproblems using an augmented Lagrangian type objective function. The 

subproblems are optimized using quasi-Newton, conjugate directions, and steepest descent 

methods. Quadratic programming is another form of nonlinear programming where the objective 

function is approximated by a quadratic function and the constraints are linearized. Nanda et al. 

[21] discuss an OPF algorithm developed using the Fletcher’s quadratic programming method. 

Burchett et al. [22] discuss a successive quadratic programming (SQP) method where the 

approximation-solution-update process is repeated to convergence just as in the SLP method. In 

this method, a sequence of quadratic programs is created from the exact analytical first and 

second derivatives of the power flow equations and the nonlinear objective function. Interior 

point methods are fairly new entrants in the field of power system optimization problems. Vargas 

et al. [23] discussed an interior point method for a security-constrained economic dispatch 

problem. In [24], Momoh et al. present a quadratic interior point method for OPF problems, 

economic dispatch, and reactive power planning.  
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The chapter is organized as follows. In Section 2 we look at congestion management 

methodologies and how they get modified in the new competitive framework of electricity power 

markets. A simple example is given for the calculation of congestion charges in a scenario where 

the objective of optimization is to maximize societal benefit. In Section 3, we work out different 

OPF formulations. Objective functions that are treated include cost minimization and transaction 

curtailment minimization. Market models involving pool and bilateral dispatches are considered. 

The possibility of using these formulations in an open access system dispatch module and in 

real-time balancing markets is discussed. In Section 4, we treat the subject of including FACTS 

devices in the OPF framework. Various device models are considered and then applied in the 

problem formulation. The impact of these devices on minimizing congestion and transaction 

deviations is studied. In Section 5, the OPF results are displayed on two test systems and 

inferences are drawn from the same. Further areas of research in this field are then explored in 

the concluding section.  

3.2 Congestion Management Methodologies 

In this chapter, we look at congestion management methodologies and how they get modified in 

the new competitive framework of electricity power markets. A simple example is given for the 

calculation of congestion charges in a scenario where the objective of optimization is to 

maximize societal benefit. 

 
The unbundling of the electric power market has led to the evolution of new organizational 

structures. Unbundling implies opening to competition those tasks that are, in a vertically 

integrated structure, coordinated jointly with the objective of minimizing the total costs of 

operating the utility. In such a traditional organizational structure, all the control functions, like 

automatic generation control (AGC), state estimation, generation dispatch, unit commitment, 

etc., are carried out by an energy management system. Generation is dispatched in a manner that 

realizes the most economic overall solution. In such an environment, an optimal power flow can 

perform the dual function of minimizing production costs and of avoiding congestion in a least-

cost manner. Congestion management thus involves determining a generation pattern that does 

not violate the line flow limits. Line flow capacity constraints, when incorporated in the 

scheduling program, lead to increased marginal costs. This may then be used as an economic 
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signal for rescheduling generation or, in the case of recurring congestion, for installation of new 

generation/transmission facilities.  

3.2.1 Unbundled operation 

In a competitive power market scenario, besides generation, loads, and line flows, contracts 

between trading entities also comprise the system decision variables. The following pool and 

bilateral competitive structures for the electricity market have evolved/are evolving: 

(1) Single auction power pools, where wholesale sellers (competitive generators) bid to supply 

power in to a single pool. Load serving entities (LSEs or buyers) then buy wholesale power 

from that pool at a regulated price and resell it to the retail loads. 

(2) Double auction power pools, where the sellers put in their bids in a single pool and the 

buyers then compete with their offers to buy wholesale power from the pool and then resell 

it to the retail loads. 

(3) In addition to combinations of (1) and (2), bilateral wholesale contracts between the 

wholesale generators and the LSEs without third-party intervention. 

(4) Multilateral contracts, i.e., purchase and sale agreements between several sellers and 

buyers, possibly with the intervention of third parties such as forward contractors or 

brokers. In both (3) and (4) the price-quantity trades are up to the market participants to 

decide, and not the ISO. The role of the ISO in such a scenario is to maintain system 

security and carry out congestion management. 

 
The contracts, thus determined by the market conditions, are among the system inputs that drive 

the power system. The transactions resulting from such contracts may be treated as sets of power 

injections and extractions at the seller and buyer buses, respectively. For example, in a system of 

n buses, with the generator buses numbered from 1 to m, the nodal active powers may be 

represented as [25] 

 ++=
Kk

iTipoi K
PPP ,, loss compensation, i =1, 2, …m (3.1) 

 +=
Kk

jTjpoj K
DDD ,, ,  j= m+1, …n (3.2) 
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where 

Pi = active injected power at generator bus i` 

Dj = active extracted power at load bus j 

K = set of bilateral / multilateral transactions 

Ppo,I = pool power injected at bus i 

Dpo,j = pool power extracted at bus j 

PTk,I = power injected at bus i in accordance with transaction TK 

DTk,j = power extracted at bus j in accordance with transaction TK 

Loss compensation = power supplied at bus i by all transaction participants to 

make good the transmission losses.  

3.2.2 Congestion management methodologies 

There are two broad paradigms that may be employed for congestion management. These are the 

cost-free means and the not-cost-free means [26]. The former include actions like outaging of 

congested lines or operation of transformer taps, phase shifters, or FACTS devices. These means 

are termed as cost-free only because the marginal costs (and not the capital costs) involved in 

their usage are nominal. The not-cost-free means include: 

 
(1) Rescheduling generation. This leads to generation operation at an equilibrium point away 

from the one determined by equal incremental costs. Mathematical models of pricing tools 

may be incorporated in the dispatch framework and the corresponding cost signals 

obtained. These cost signals may be used for congestion pricing and as indicators to the 

market participants to rearrange their power injections/extractions such that congestion is 

avoided.  

(2) Prioritization and curtailment of loads/transactions. A parameter termed as willingness-to-

pay-to-avoid-curtailment was introduced in [25]. This can be an effective instrument in 

setting the transaction curtailment strategies which may then be incorporated in the optimal 

power flow framework. 

 
In the next chapter we look at OPF formulations incorporating both (1) and (2) above. These 

models can be used as part of a real-time open access system dispatch module [27]. The function 
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of this module is to modify system dispatch to ensure secure and efficient system operation 

based on the existing operating condition. It would use the dispatchable resources and controls 

subject to their limits and determine the required curtailment of transactions to ensure 

uncongested operation of the power system. 

3.2.3 Example of congestion management in an economic dispatch framework 

We now look at an example for calculating optimal bus prices and congestion costs for a power 

system, wherein an independent company (ISO) controls the transmission network and sets nodal 

prices that are computed as part of a centralized dispatch. A simple power system is considered 

here for the calculation of congestion charges. A three-bus system is shown in Figure 3.2.1 with 

generator cost/marginal cost and load benefit/marginal benefit functions as shown. Also shown 

in the figure are the maximum line flow limits and line susceptances.  

 

Figure 3-2: Sample power system 

 
For simplicity we make the following approximations: 

(1) Each transmission line is represented by its susceptance bij. 

(2) A lossless DC power flow model is assumed; i.e., the bus voltage angular differences are 

assumed to be small and the voltage magnitudes approximately 1.00 p.u. 

 
The real power flow on each line is given by 
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 )( jiijij bP =  (3.3) 

where i and j represent the voltage angles at buses i and j, respectively. 

 
The total power injection at bus i is given by  

 =
j

iji PP  (3.4) 

As mentioned above, we solve this problem in a centralized dispatch framework where the 

objective is to maximize social benefit. This optimization problem thus seeks to minimize the 

system operating costs minus the consumer benefit, subject to the binding line flow inequality 

constraints and the power flow equality constraints. The problem involves solving a quadratic 

Lagrangian (quadratic in the decision variables and multipliers). 

 
The variables are given by  

 ],,,[ µPz =  (3.5) 

where 

P  denotes the net power injections at all the buses 

 denotes the voltage angles 

denotes the Lagrangian multipliers for the equality constraints 

µ  denotes the multipliers for the inequality constraints. 

 
The problem may be thus stated as 

 )}()()({min 332211
,

PBPCPC
P

+  (3.6) 

 

subject to 

  (3.7) 
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  (3.8)  

  (3.9) 

  (3.10) 

In this example, the inequality constraint limiting the flow on line 1-2 is taken as binding. The 

Lagrangian function for this problem may be given as 

  
 

  (3.11) 

The optimality condition is given by 
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and 
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From equations (2.12) and (2.13), it can be seen that the optimal value of z may be obtained by 

solving 
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 (3.14) 

Solving the problem in the above example yields the following optimal values: 

 =z  [16.21 8.06 –24.27 | -2.5 –11.21 | 64.86 48.42 55| -21.36]T (3.15) 

The Lagrange multipliers  = [64.86 48.42 55]T  can be interpreted as the optimal nodal prices at 

each of the three buses in $/MWhr. In other words, if these had been used as the bus prices, the 
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generator and load responses to these prices would have been the same as what was obtained in 

the above optimal dispatch. 

 
We now compute the congestion charges (for the flow on each transmission line). The 

congestion charge may be looked upon as the inherent cost of transmitting power across the line. 

A simple way to compute this is given here. The congestion charge cij for line ij is the difference 

in the congestion costs ci and cj at buses i and j, respectively; i.e., 

 cij = cj - ci, (3.16) 

Now, each bus nodal price i is made up of three components, viz., the marginal cost of 

generation at the slack bus, the marginal cost of losses, and the congestion cost. Hence, 
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i c
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P

PC
+= 1

1

11 )(
 (3.17) 

where C1(P1) is the cost function at bus 1, which has been considered as the slack bus in this 

example. 

 
We have considered the lossless case in this example. Hence we have, 

 cij = j  - i, (3.18) 

Thus the congestion charge for any line ij may be computed as the difference in the nodal prices 

between buses i and j. The values obtained in this problem are c12 = -16.43 $/MWhr, c23 = 6.58 

$/MWhr, c13 = -9.86 $/MWhr.  

3.2.4 Congestion Management Using Pricing Tools 

In [26], Glavitsch and Alvarado discuss congestion pricing as may be done by an ISO in the 

absence of information on the marginal costs of the generators. The methodology suggested 

involves observing the behavior of generators under a variety of conditions, based on which 

quadratic coefficients for all generators may be inferred. 
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In [28], Bhattacharya et al. discuss the method of market splitting to alleviate transmission 

congestion. The basic principle of this method lies in sending price signals that either exceed or 

are less than the marginal costs to generators and thereby effecting a change in the generation 

pattern. The market is “split” into different bid areas and the area-prices are calculated for each 

bid area using a “capacity fee.”  

 
In the next section we work out different OPF formulations in the various market modes 

discussed earlier. 

3.3 Optimal Dispatch Methodologies in Different Market Structures 

3.3.1 Market structure issues and section organization 

In this section, we look at ways of managing the power dispatch problem in the emerging 

electricity market structures. The operating strategies that may be used by the ISO in different 

market modes have been explored and test cases have been studied to determine the 

compatibility of the strategies with the market environment. Emphasis is placed on dealing with 

congestion management.  

 
The conventional OPF problem comprises scheduling the power system controls to optimize a 

given objective function under a set of nonlinear inequality constraints and equality constraints. 

Under a deregulated environment, mechanisms for competition and trading are created for the 

market players. This leads to the introduction of new OPF controls. In this chapter we look at 

how to deal with these controls. 

 
The fundamental entity in all competitive market structures is an ISO. “Successful” trading 

requires that the ISO match the power bids from the supply side (GENCOs) with the offers from 

the demand side (discos). This is true for all market structures. The important way in which 

market structures differ is in the manner of the main contractual system that is followed by the 

market players on both the supply and demand sides. We look at two different market modes, 

viz., pool dispatch and bilateral dispatch. 
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3.3.2 Pool dispatch 

Interconnected system operation becomes significant in a deregulated environment. This is 

because the market players are expected to treat power transactions as commercial business 

instruments and seek to maximize their economic profits. Now when several GENCOs decide to 

interchange power, complications may arise. An economic dispatch of the interconnected system 

can be obtained only if all the relevant information, viz., generator curves, cost curves, generator 

limits, commitment status, etc., is exchanged among all the GENCOs. To overcome this complex 

data exchange and the resulting non-optimality, the GENCOs may form a power pool regulated 

by a central dispatcher. The latter sets up the interchange schedules based on the information 

submitted to it by the GENCOs. While this arrangement minimizes operating costs and facilitates 

system-wide unit commitment, it also leads to several complexities and costs involved in the 

interaction with the central dispatcher. Conventionally, the optimal operation of a power system 

has been based on the economic criterion of loss minimization, i.e., maximization of societal 

benefit. Pool dispatch follows the same criterion but with certain modifications necessitated by 

the coexistence of the pool market with a short-term electricity spot market. Namely, these 

effects are demand elasticities and the variation in the spot price with the purchaser’s location on 

the grid. The existence of the spot market or bilateral market behind the scene does not explicitly 

affect the operation of the ISO.  

3.3.3 Pool dispatch formulation 

Neglecting the effects of price elasticities and location, the dispatch formulation may be stated as 

 )()(min
,
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where 
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g and h are the sets of system operating constraints, including system power flow equations 

and line flow limits 

u is the set of control variables, viz., active powers at the generator and load buses 

x is the set of dependent variables 

i and j are the set of GENCOs and discos, respectively 

 
This OPF uses the bids and offers submitted by the participants and sets the nodal prices (that are 

obtained as the Lagrangian multipliers), which are in turn used to charge for the power 

consumption at every node. The vectors of generation and load are denoted as PGi and PDj, 

respectively. The nodal prices applied to the generation and load controlled by players i and j are 

obtained as a byproduct of the OPF and are represented as i and j, respectively. The cost and 

benefit functions of each generator and load are denoted by Ci and Bj, respectively. The cost and 

benefit functions are assumed to be well described by quadratic functions.  

 iGGiGGiGGi cPbPaPC
iii ,,
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,)( ++= ,  i  G (3.21) 
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where G represents the set of all GENCOs and D represents the set of discos.  

 
The equality constraint may be written as 

 0=+ LPP
i

G

j

D ij
 (3.23) 

where L is the transmission loss function. 

 
The capacity constraint (inequality) may be given as 

 0max,ii GG PP  (3.24) 

Problem (3.1) leads to the solution and Kuhn-Tucker conditions given as 
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where  represents the system incremental cost (dual multiplier on the equality constraint) and µ 

and  represent the sets of Kuhn-Tucker dual variables on the capacity and operating constraints, 

respectively.  

3.3.4 Example of corrective rescheduling in pool dispatch 

When the system is insecure and there are violations in the system, the objective of the pool 

central dispatcher is to eliminate the system overload and come up with the corrective 

rescheduling to eliminate the violations as fast as possible. Minimum operating cost, minimum 

number of controls, or minimum shift from the optimum operation may be used as the objective 

function. We now look at an OPF example where the objective function is to minimize the 

rescheduling of generation. Consider a five-bus system as shown in Figure 3.3. The system data 

is given in Table 3.1 

 



 

33 

 

Figure 3-3: Three-generator five-bus system 

Table 3.1: Data for Figure 3.3 

 

Table 3.1A: Bus data 

Bus number Load 
MW 

MVar Gen 
MW 

Gen 
min 
MW 

Gen 
max 
MW 

Voltage 
setpoint 

Cost 
($/MWhr) 

1 (slack) 0 0 270 0 1000 1.05 15 

2 120 60 100 100 400 1.02 17 

3 100 30 - - - - - 

4 80 20 50 50 300 1.02 19 

5 120 30 - - - - - 
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Table 3.1B: Bus data 

From bus To bus p.u. impedance MVA rating Base case power 

flow(MW) 

1 2 j0.06 150 197.27 

1 3 j0.24 100 72.72 

2 3 j0.12 50 46.39 

2 4 j0.18 100 34.29 

2 5 j0.12 120 96.60 

3 4 j0.03 100 19.12 

4 5 j0.24 100 23.40 

 
 
The base case power flow for the system shows (Table 3.1B) that congestion occurs on line 1-2. 

The aim is to reschedule generation to remove this congestion and any other induced congestion. 

We first compute the sensitivities of line flow Pjk to changes in generation PG1, PG2, PG4. For 

that we use the chain rule: 
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where 
p

if  represents the power flow equation at bus i, which is given as  
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In matrix formulation the power flow equation is PB 1
= , where B is the bus susceptance 

matrix computed from the line impedance data. Fixing bus 1 as the slack, we can then get the 

equations for line flows and the line flow sensitivities to generation. The sum of all the products 
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of line flow sensitivities with changes in generation (rescheduling) gives the overload in that 

particular line. 

 
In this particular example, the objective is to minimize the rescheduling of generation required to 

limit the flow on line 1-2 to 150 MVA. The OPF problem can then be given as 
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where 0.47 is the overload on line 1-2. 

 
This OPF problem can be solved to minimize the rescheduling of generation. We get the result 

that bus 1 must drop its generation by 56.2 MW, bus 2 must raise its generation by 52.37 MW, 

and bus 4 must raise its generation by 3.88 MW; 

1GP
= 56.2 MW 

+

2GP
= 52.37 MW 

 

 
+

4GP
= 3.88 MW (3.31) 

3.3.5 Bilateral dispatch 

The conceptual model of a bilateral market structure is that GENCOs and discos enter into 

transaction contracts where the quantities traded and the prices are at their own discretion and 

not a matter for the ISO; i.e., a bilateral transaction is made between a GENCO and a DISCO 



 

36 

without third party intervention. These transactions are then submitted to the ISO. In the absence 

of any congestion on the system, the ISO simply dispatches all the transactions that are 

requested, making an impartial charge for the service.  

3.3.6 Bilateral dispatch formulation  

In a bilateral market mode, the purpose of the optimal transmission dispatch problem is to 

minimize deviations from transaction requests made by the market players. The goal is to make 

possible all transactions without curtailments arising from operating constraints. The new set of 

rescheduled transactions thus obtained will be closest to the set of desired transactions, while 

simultaneously satisfying the power flow equations and operating constraints. One of the most 

logical ways of rescheduling transactions is to do it on the basis of rationing of transmission 

access. This may be modeled as a user-pay scheme with “willingness-to-pay” surcharges to 

avoid transmission curtailment. The mathematical formulation of the dispatch problem may then 

be given as 

 ),(min uxf  

where 

 TToTo AuuWAuuxuf ])[(])[(),( =  (3.32) 
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where 

W is a diagonal matrix with the surcharges as elements 

A is a constant matrix reflecting the curtailment strategies of the market participants 

u and uo
 are the set of control variables, actual and desired 

x is the set of dependent variables 
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g is the set of equality constraints, viz., the power flow equations and the contracted 

transaction relationships, 

h is the set of system operating constraints including transmission capacity limits 

 
The bilateral case can be modeled in detail. We consider transactions in the form of individual 

contracts where a seller i injects an amount of power Tij at one generator bus and the buyer j 

extracts the same amount at a load bus. Let the power system consist of n buses with the first m 

assumed to be seller buses and the remaining n-m as buyer buses. One particular bus (bus 1) may 

be designated as the slack, to take into account transmission losses. The total power 

injected/extracted at every bus may be given by the summation of all individual transactions 

carried out at those buses. Thus, 

for i = 2 to m, ,=
j

iji TP  and 

 for j = m+1 to n, =
i

ijj TP  (3.33) 

The transactions Tij also appear in the power flow equality constraints since they act as the 

control variables along with the usual generator bus voltages. The set of control variables can 

thus be represented as { , } ,T

iju T V=  where V is the vector of generator bus voltages.  

 
The real and reactive power flow equations can be written in the usual form represented by 

0),( =uxg . 

The transaction curtailment strategy is implemented by the ISO in collaboration with the market 

participants. In the case of bilateral dispatch, this strategy concerns the individual power 

contracts. One such strategy is such that, in case of an individual contract, the curtailment of the 

transacted power injected at the GENCO bus must equal the curtailment of the transacted power 

extracted at the DISCO bus. 

 
In this case, we may rewrite the dispatch formulation as 

 

),(min uxf  
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where 
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where 

wij = the willingness to pay factor to avoid curtailment of transaction 

0

ijT = the desired value of transaction ijT  

3.3.7 Test results 

We consider a six-bus system (Figure 3.4) representing a deregulated market with bilateral 

transactions. An OPF will be solved for this system to determine the optimal generation schedule 

that satisfies the objective of minimizing deviations from the desired transactions.  

  
Table 3.2A provides the system data pertaining to generation and load. Table 3.2B provides the 

system network data. Figure 3.2 shows the system network configuration. Buses 1 and 2 are 

GENCO buses and, being PV buses, the voltages here are specified exactly. At the other buses, 

the allowable upper and lower limits of voltage are specified. The losses are assumed to be 

supplied only by the generator at bus 1.  

 

Figure 3-4: Two-generator six-bus system 
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Table 3.2A: System Data 

Bus Generation capacity, 
MW 

Generator cost 
characteristic, $/hr 

Voltage, pu 

1 100  P1  400 55.8 1

2

1 ++ PP  1.05 

2 50  P2  200 95.254.3 2

2

2 ++ PP  1.06 

3 - - 0.9  V3  

1.1 

4 - - 0.9  V4  

1.1 

5 - - 0.9  V5  

1.1 

6 - - 0.9  V6  

1.1 

 

Table 3.2B: System Network Data 

From bus – to bus Resistance, pu Reactance, pu Line charging 
admittance, pu 

1-4 0.0662 0.1804 0.003 

1-6 0.0945 0.2987 0.005 

2-3 0.0210 0.1097 0.004 

2-5 0.0824 0.2732 0.004 

3-4 0.1070 0.3185 0.005 

4-6 0.0639 0.1792 0.001 

5-6 0.0340 0.0980 0.004 

 
 
In this case, bilateral contracts have been considered between each GENCO and each DISCO. 

Table 3.3 shows the desired power transactions.  

Table 3.3: Desired Transactions Before Curtailment 

Bus # Desired transactions, 
MW 

1 20.0 

2 30.0 

3 35.0 

4 50.0 

5 42.0 

6 55.0 
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Three strategies for the curtailment of transactions are adopted for congestion management:  

1. The curtailment on the DISCO loads is assumed to be linear. In this case, all the 

willingness to pay factors are taken to be equal. 

2. Same as case (1), except that the willingness to pay price premium of loads on buses 1 to 

3 is assumed to be twice that of loads on buses 4 to 6. 

3. In this case, the price premium of loads on buses 4 to 6 is assumed to be twice that of 

loads on buses 1 to 3. 

 

The OPF problem is solved using the MINOS-5.0 nonlinear programming solver in the 

Generalized Algebraic Modeling Systems (GAMS) programming environment [29].  

 
Table 3.4 shows the constrained generation and load data obtained from the OPF solution. It can 

be seen that the willingness to pay and the participants’ curtailment strategy are two factors that 

significantly affect the constrained dispatch. The higher the willingness to pay, the less is the 

curtailment of that particular transaction. The curtailment strategies implemented have complex 

effects. These factors not only affect the curtailment of its own transaction, but will also impact 

that of other transactions.  

Table 3.4: Constrained generation and load data after running OPF 

Constrained generation and load, MW Bus # 

Case (1) Case (2) Case (3) 

1 109.63 109.62 109.68 

2 124.24 124.41 123.60 

3 34.72 34.93 33.95 

4 48.87 48.86 48.94 

5 40.74 40.72 40.81 

6 53.99 53.97 54.05 

 

3.3.8 Treatment of transaction-based groups 

In a competitive market scenario, relationships among market players may develop over time and 

may lead to the formation of electricity supply and consumption groups. The concept of a group 

as a collection of buyers, sellers, and market brokers functioning together in a cohesive manner 

has to be dealt with. The formation of such transaction-based groups in a power system 



 

41 

necessitates changes in power dispatch. In the following sections we look at dispatch 

formulations taking into account the group concept.  

3.3.9 Dispatch formulations 

Here the concern is to make possible a group transfer without curtailment, even if the individual 

generators within the group or utility have to be rescheduled. The objective function is 

 ),(min uxf  
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where 

wk = the willingness to pay factor to avoid curtailment of the kth group transaction 

0

ikT = the desired value of transaction ijT  

In this group curtailment dispatch formulation, there is the need to develop a strategy to allocate 

the total group power curtailment among all the group participants. That is, if the GENCO 

powers within a group need to be curtailed, the resulting shortfall has to be allocated to all the 

group discos in accordance with some predetermined strategy.  

 
Another way of implementing curtailment of group transactions is by minimizing the change to 

every injected or extracted power transaction at the generator bus and load bus of a group based 

on the willingness to pay factors. In this case, the objective function may be expressed as 

 ),(min uxf  

where 

 0 2

1 2

( , ) [ ( ) ]
K m

ik ik ik

k i

f u x w T T
= =

=  (3.36) 



 

42 

where ikw = the willingness to pay factor to avoid curtailment of the injected power block ikT . 

 
In this optimal transmission dispatch problem, all power transactions are required to be as close 

as possible to the initial desired power transfers, and the curtailment decisions are based on the 

market players’ willingness to pay to avoid curtailment, their preferred curtailment strategies, 

and on the system security conditions. The dispatch procedure starts with the market participants 

submitting their multilateral transactions to the ISO. If the operating and capacity constraints are 

satisfied while all the desired transactions are dispatched, there is no need to go through the 

curtailment routine. Otherwise the optimal dispatch models described above (Sections 3.2.2, 

3.3.2, 3.4.1) are used to curtail the requested power transfers. Finally, the original/curtailed 

power transfers are dispatched and the ISO buys the required regulating power at bus 1 to 

compensate for transmission losses.  

3.3.10 Test Case 

We now look at an optimal transmission dispatch problem in a deregulated market having 

transaction-based groups. We consider the IEEE 14-bus system here (Figure 3.5).  
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Figure 3-5: IEEE five-generator fourteen-bus system 

Some slight modifications are made. Bus 4 is renumbered as bus 1 and it is assumed that this bus 

is contracted by the system ISO to provide for the transmission losses; i.e., bus 1 is the system 

slack bus. This bus, in addition to bus 5, is usually shown connected to a synchronous condenser. 

But in this problem, we treat bus 1 as a generator bus owned by a GENCO. Similarly, bus 5 is 

treated as a PV-bus in the problem.  

 
Table 3.5A provides the generation bus data. Table 3.5B provides the system network data. The 

voltages at the GENCO buses are specified since they are P-V buses, whereas at the DISCO 

buses, the allowable upper and lower limits of voltage are specified.  
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Table 3.5: Generation and System Network Data 

 

Table 3.5A Generation Bus Data 

Bus Generation 
capacity, MW 

Generator cost 
characteristic, $/hr 

Voltage, pu 

1 - - 1.01 

2 20  P2  100 0.5 2

2 23.51 44.4P P+ +  1.045 

3 20  P3  100 0.5 2

3 33.89 40.6P P+ +  1.07 

4 50  P4  200 0.5 2

4 42.45 105.0P P+ +  1.06 

5 - - 1.09 

 

Table 3.5B: System Network Data 

From bus – to 
bus 

Resistance, pu Reactance, pu Line charging 
admittance, pu 

4-8 0.05403 0.22304 0.0246 

2-8 0.05695 0.17388 0.0170 

1-9 0.06701 0.17103 0.0173 

9-8 0.01335 0.04211 0.0064 

4-2 0.01938 0.05917 0.0264 

2-1 0.04699 0.19797 0.0219 

5-6 0.00000 0.17615 0.0000 

2-9 0.05811 0.17632 0.0187 

6-7 0.00000 0.11001 0.0000 

7-10 0.03181 0.08450 0.0000 

3-11 0.09498 0.19890 0.0000 

3-12 0.12291 0.25581 0.0000 

3-13 0.06615 0.13027 0.0000 

7-14 0.12711 0.27038 0.0000 

10-11 0.08205 0.19207 0.0000 

12-13 0.22092 0.19988 0.0000 

13-14 0.17093 0.34802 0.0000 

 
 
We now assume that there are two groups in this power system: Group 1 consists of buses 2 and 

3 and makes transfers to DISCO buses 7, 9, 11, and 14. Group 2 consists of the single GENCO 
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bus 4 and makes tranfers to DISCO buses 8, 10, 12, and 13. Table 3.6 shows the desired power 

generation and load for both groups.  

Table 3.6: Desired Generation and Load Before Curtailment 

Bus # Pre-curtailment MW 

1 38.1 

2 138.4 

3 92.6 

4 213.5 

5 0.0 

6 0.0 

7 54.3 

8 155.4 

9 91.5 

10 16.8 

11 56.6 

12 13.1 

13 28.2 

14 28.6 

 
 
It is seen from the power flow solution that the dispatch of the contracted transactions without 

any curtailment leads to overloading of the lines between buses 3 and 11, and buses 7 and 9. 

Therefore, to remove this congestion and to ensure that the system security limits are not 

violated, the ISO needs to curtail the power transactions 

 
The following four strategies for the curtailment of transactions are adopted for congestion 

management. The results are shown in Table 3.7.  

 
(1) Both groups 1 and 2 employ the group curtailment formulation as described by (3.35). 

The curtailment on the DISCO loads is assumed to be linear. The total group power 

curtailment is taken as a linear combination of the individual DISCO curtailments. In this 

case, all the willingness to pay factors are taken to be equal to unity. 
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(2) Same as case (1), except that the willingness to pay price premium of the players in group 

2 is assumed to be twice that of the players in group 2. 

(3) In this case, group 1 employs the curtailment strategy given in (3.35), whereas group 2 

adopts the curtailment formulation described in (3.34). Willingness to pay premiums are 

maintained at unity. 

(4) Same as case (3), except that the willingness to pay premiums on the transactions 

between buses 4 and 10, and buses 4 and 12, are doubled.  

 
Table 3.7 shows the constrained generation and load data obtained from the OPF solutions using 

the four curtailment strategies.  

Table 3.7: Constrained Generation and Load Data after Running OPF 

Constrained generation and load, MW Bus # 

Case (1) Case (2) Case (3) Case (4) 

(group #1)     

2 (GENCO) 138.42 138.40 138.51 138.47 

3 (GENCO) 78.53 79.76 87.20 84.73 

7 52.11 52.33 53.58 53.04 

9 86.37 87.20 89.71 88.33 

11 53.10 53.24 55.13 54.75 

14 25.40 25.42 27.32 27.11 

(group #2)     

4 (GENCO) 204.10 197.31 207.01 210.75 

8 149.62 144.36 155.20 155.22 

10 15.53 14.96 12.84 15.32 

12 12.62 12.25 11.25 12.81 

13 26.37 25.81 27.78 27.65 

(loss 
compensator) 

    

1 (GENCO) 35.41 35.23 35.62 36.27 

 
 
The optimal dispatch gives an uncongested system solution (Table 3.7); i.e., all the line 

overloads are removed. In case (1), both the groups use the same curtailment strategies with 

identical willingness-to-pay factors, and this results in all power transactions getting curtailed in 

varying degrees. In case (2), the willingness to pay of group 1 is increased. This does not lead to 

a proportionate reduction in the curtailment of the transactions in group 1 or a proportionate 

increase in the curtailment of transactions in group 2. In case (3), the use of two different 
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curtailment strategies for the two groups seems to affect some transactions more than others. For 

instance, the transaction between buses 4 and 10, and buses 4 and 12, get relatively heavily 

curtailed. This is remedied in case (4) where the willingness to pay for both these pairs of players 

is doubled.  

3.4 Optimal Dispatch Using FACTS Devices in Competitive Market Structures 

In the previous sections of this chapter, we have looked at congestion management in 

competitive power systems using models that include pricing tools such as prioritization and 

curtailment of transactions. In this chapter we look at treating congestion management with the 

help of flexible AC transmission (FACTS) devices. We consider an integrated approach to 

incorporate the power flow control needs of FACTS in the OPF problem for alleviating 

congestion. Two main types of devices are considered here, namely, thyristor controlled series 

compensators (TCSC) and thyristor controlled phase angle regulators (TCPAR).  

 
The concept of flexible AC transmission systems (FACTS) was first proposed by Hingorani [30]. 

FACTS devices have the ability to allow power systems to operate in a more flexible, secure, 

economic, and sophisticated way. Generation patterns that lead to heavy line flows result in 

higher losses, and weakened security and stability. Such patterns are economically undesirable. 

Further, transmission constraints make certain combinations of generation and demand unviable 

due to the potential of outages. In such situations, FACTS devices may be used to improve 

system performance by controlling the power flows in the grid. Studies on FACTS so far have 

mainly focused on device developments and their impacts on the power system aspects such as 

control, transient and small signal stability enhancement, and damping of oscillations [31]-[34]. 

Here we look at solving the OPF problem in a power system incorporating FACTS devices. As 

we have seen in the earlier chapters, different solution approaches are possible to solve the OPF 

problem. The main conventional control variables are the generation MWs when the DC power 

flow model is used. With the increased presence of independent GENCOs in the deregulated 

scenario, the operation of power systems would require more sophisticated means of power 

control. FACTS devices can meet that need.  
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3.4.1 Static modeling of FACTS devices 

For the optimal power dispatch formulation using FACTS controllers, only the static models of 

these controllers have been considered here [35]. It is assumed that the time constants in FACTS 

devices are very small and hence this approximation is justified. 

3.4.1 Thyristor-controlled series compensator (TCSC) 

Thyristor-controlled series compensators (TCSC) are connected in series with the lines. The 

effect of a TCSC on the network can be seen as a controllable reactance inserted in the related 

transmission line that compensates for the inductive reactance of the line. This reduces the 

transfer reactance between the buses to which the line is connected. This leads to an increase in 

the maximum power that can be transferred on that line in addition to a reduction in the effective 

reactive power losses. The series capacitors also contribute to an improvement in the voltage 

profiles.  

 
Figure 3.6 shows a model of a transmission line with a TCSC connected between buses i and j. 

The transmission line is represented by its lumped -equivalent parameters connected between 

the two buses. During the steady state, the TCSC can be considered as a static reactance -jxc. 

This controllable reactance, xc, is directly used as the control variable to be implemented in the 

power flow equation. 

 

Figure 3-6: Model of a TCSC 

Let the complex voltages at bus i and bus j be denoted as Vi i and Vj j, respectively. The 

complex power flowing from bus i to bus j can be expressed as 
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 ijiijijij IVjQPS **
==  

 )]()[(*

ciijjii jBVYVVV +=  

 )()]([ *2

ijijjicijiji jBGVVBBjGV +++=  (3.37) 

where 

 )(1 CLLijij jXjXRjBG +=+  (3.38) 

Equating the real and imaginary parts of the above equations, the expressions for real and 

reactive power flows can be written as 

 )sin()cos(2

jiijjijiijjiijiij BVVGVVGVP =  (3.39) 

 )cos()sin()(2

jiijjijiijjicijiij BVVGVVBBVQ ++=  (3.40) 

Similarly, the real and reactive power flows from bus j to bus i can be expressed as 

 )sin()cos(2

jiijjijiijjiijjji BVVGVVGVP +=  (3.41) 

 )cos()sin()(2

jiijjijiijjicijjij BVVGVVBBVQ +++=  (3.42) 

These equations are used to model the TCSC in the OPF formulations. 

3.4.2 Thyristor-controlled phase angle regulator (TCPAR) 

In a thyristor-controlled phase angle regulator, the phase shift is achieved by introducing a 

variable voltage component in perpendicular to the phase voltage of the line. The static model of 

a TCPAR having a complex tap ratio of 1:a  and a transmission line between bus i and bus j is 

shown in Figure 3.7 
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                                                             1:a  

Figure 3-7: Model of TCPAR 

The real and reactive power flows from bus i to bus j can be expressed as  

* 2 *Re{ [( ) ]}ij i i j ijP V a V a V Y=
2 2 cos( ) sin( )i ij i j ij i j i j ij i ja V G aVV G aVV B= + + (3.43) 

and 

* 2 *Im{ [( ) ]}ij i i j ijQ V a V a V Y=  

 2 2 cos( ) sin( )i ij i j ij i j i j ij i ja V G aVV B aVV G= + +  (3.44) 

Similarly, real and reactive power flows from bus j to bus i can be written as 

 *Re{ [( ) ]}ji j j i ijP V V aV Y=  

 2 cos( ) sin( )j ij i j ij i j i j ij i jV G aVV G aVV B= + + +  (3.45) 

and 

*Im{ [( ) ]}ji j j i ijQ V V aV Y=  

 2 cos( ) sin( )j ij i j ij i j i j ij i jV B aVV B aVV G= + + + +  (3.46)  

The real and reactive power loss in the line having a TCPAR can be expressed as 

l ij jiP P P= +  

 2 2 2 2 cos( )i ij j ij i j ij i ja V G V G VV G= + +  (3.47)  

l ij jiQ Q Q= +  
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 2 2 2 2 cos( )i ij j ij i j ij i ja V B V B VV B= + +  (3.48) 

 
This mathematical model makes the Y-bus asymmetrical. In order to make the Y-bus 

symmetrical, the TCPAR can be simulated by augmenting the existing line with additional power 

injections at the two buses. The injected active and reactive powers at bus i ( Pi, Qi ) and bus j 

( Pj, Qj ) are given as 

 )]cos()sin([22

jiijjiijjiijii BGVaVGVaP =  (3.49) 

 )]cos()sin([ jiijjiijjij BGVaVP +=  (3.50) 

 )]sin()cos([22

jiijjiijjiijii BGVaVBVaQ ++=  (3.51) 

 )]sin()cos([ jiijjiijjij BGVaVQ =  (3.52) 

These equations will be used to model the TCPAR in the OPF formulation.  

The injection model of the TCPAR is shown in Figure 3.8 

 

Figure 3-8: Injection model of TCPAR 

3.4.3 Static VAr compensator (SVC) 

The static VAr compensator (SVC) is generally used as a voltage controller in power systems. It 

can help maintain the voltage magnitude at the bus it is connected to at a desired value during 

load variations. The SVC can both absorb as well as supply reactive power at the bus it is 

connected to by control of the firing angle of the thyristor elements. It is continuously 

controllable over the full reactive operating range as determined by the component ratings.  
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We can model the SVC as a variable reactive power source. Figure 3.9 shows the schematic 

diagram of a SVC and Figure 3.10 shows its control characteristics. 

 

Figure 3-9: Schematic diagram of a SVC 

The slope of the SVC voltage control characteristics can be represented as XSL, the equivalent 

slope reactance in p.u. The limiting values of the SVC inductive and capacitive reactances are 

given by XL and XC, respectively. V and Vref are the node and reference voltage magnitudes, 

respectively. Modeling the SVC as a variable VAr source, we can set the maximum and 

minimum limits on the reactive power output QSVC according to its available inductive and 

capacitive susceptances Bind and Bcap, respectively. These limits can be given as 

 2

max refind VBQ =  (3.53) 

 2

min refcap VBQ =  (3.54) 

where Lind XB 1=   and Ccap XB 1= . 
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Figure 3-10: Control characteristics of a SVC 

3.4.4 Problem formulation for OPF with FACTS devices 

As seen in Chapter 2, the transmission dispatch in a deregulated environment may be a mix of 

pool and bilateral transactions. The optimal dispatch is comprised of complete delivery of all the 

transactions and the fulfillment of pool demand at least cost subject to non-violation of any 

security constraint. It may be assumed that the ISO provides for all loss compensation services 

and dispatches the pool power to compensate for the transmission losses, including those 

associated with the delivery of contracted transactions. The normal dispatch problem is rewritten 

here as 

 )()(min
,

jDj

i
iGi

PP
PBPC

jDiG

 (3.55) 

subject to 

 0),,,,,,( =FVQTPPg kDG  (3.56) 

 0),,,,,,( FVQTPPh KDG  (3.57) 

where 
iGP  and 

jDP  are the active powers of pool generator i with bid price Ci and pool load j 

with offer price Bj, respectively, and , , , , , ,G D kP P T Q V  and F are the vectors of pool power 

injections, pool power extractions, bilateral contracts, reactive powers, voltage magnitudes, 
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voltage angles, and control parameter of FACTS devices placed in the line concerned. Equation 

(3.56) is a set of equality constraints comprising of the set of contracted transaction relationships 

and power balance equations. Equation (3.57) is a set of inequality constraints comprising of the 

system operating constraints. 

 

If only bilateral transactions are considered, we may rewrite the dispatch formulation as 

 ),(min uxf  

where 

 20

2 1

)(),( ijij

m

i

n

mj

ij TTwuxf =
= +=

 (3.58) 

subject to the real and reactive power balance equations 

 0)()( =++ iDC

F

injiG PPPPP
iii

 (3.59) 

 0)()( =++ iDC

F

injiG QQQQQ
iii

 (3.60) 

and the inequality constraints, 

where 

n= number of buses in the power system, with the first m buses being GENCOs and the 

rest, discos  

wij = the willingness to pay factor to avoid curtailment of transaction 

0

ijT  = the desired value of transaction ijT  

ii GG QP , are the real and reactive power generation at GENCO i 

ii DD QP , are the real and reactive load demand at DISCO i 

ii CC QP , are the real and reactive load curtailment at DISCO i 

ii QP , are the real and reactive power injection at bus i 
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F

inji

F

inji QP
i )()( , are the real and reactive power injection at bus i, with the installation of 

FACTS device 

 
The modified OPF is different from the conventional OPF due to the FACTS related control 

variables. If it is desired to use the conventional linear programming based technique to solve the 

modified OPF problem, the solution strategy needs to be changed. This is because, with the 

introduction of the FACTS related control variables, the OPF no longer remains a linear 

optimization problem. One such strategy would be to separate the modified OPF problem into 

two subproblems, viz., the power flow control subproblem and the normal OPF problem. The 

power flow of the system can be obtained from the initial operation values of the power system. 

Using the power flow and constraint equations, the power flow control subproblem may be 

solved, thereby yielding the controllable FACTS devices’ parameters. These parameters may 

then be used to solve the main OPF to obtain the conventional control variable values. Then if 

the solution of the power flow problem with the new control variables does not satisfy the 

constraint equations, this entire process is iteratively repeated until the mismatch falls below 

some predefined tolerance.  

3.4.5 FACTS device locations 

We look at static considerations here for the placement of FACTS devices in the power system. 

The objectives for device placement may be one of the following:  

1. reduction in the real power loss of a particular line 

2. reduction in the total system real power loss 

3. reduction in the total system reactive power loss 

4. maximum relief of congestion in the system. 

For the first three objectives, methods based on the sensitivity approach may be used. If the 

objective of FACTS device placement is to provide maximum relief of congestion, the devices 

may be placed in the most congested lines or, alternatively, in locations determined by trial and 

error.  
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3.4.6 Reduction of total system VAr power loss via FACTS devices 

Here we look at a method based on the sensitivity of the total system reactive power loss (QL) 

with respect to the control variables of the FACTS devices. For each of the three devices 

considered in Section 3.4 we consider the following control parameters: net line series reactance 

(Xij) for a TCSC placed between buses i and j, phase shift ( ij) for a TCPAR placed between buses 

i and j, and the VAr injection (Qi) for an SVC placed at bus i. The reactive power loss sensitivity 

factors with respect to these control variables may be given as follows:  

Loss sensitivity with respect to control parameter Xij of TCSC placed between buses i and j,  
 

 

 
 

1.Loss sensitivity with respect to control parameter ij of TCPAR placed between buses 

i and j,  
 

 
2.Loss sensitivity with respect to control parameter Qi of SVC placed at bus i, 

 

 
These factors can be computed for a base case power flow solution. Consider a line connected 

between buses i and j and having a net series impedance of Xij, that includes the reactance of a 

TCSC, if present, in that line. ij is the net phase shift in the line and includes the effect of the 

TCPAR. The loss sensitivities with respect to Xij and ij can be computed as 
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3.4.7 Selection of optimal placement of FACTS devices 

Using the loss sensitivities as computed in the previous section, the criteria for deciding device 

location might be stated as follows:  

1. TCSC must be placed in the line having the most positive loss sensitivity index aij. 

2. TCPAR must be placed in the line having the highest absolute value of loss sensitivity index 

bij. 

3.4.8 FACTS-enhanced system test cases 

In this section we again consider the transmission dispatch problems treated in Sections 3.3.3 and 

3.4.2. Here, the presence of FACTS devices in the power system is accounted for in the optimal 

power dispatch model.  

3.4.9 Six-bus example system 

We consider the same six bus system that as was treated earlier in this chapter. In this case, we 

solve the OPF with TCSC devices installed on two of the most congested lines in the system. To 

determine the optimal placement of the TCSC devices, we first perform the reactive power loss 

sensitivity analysis as developed in Section 3.4. The sensitivity index aij is computed for each 

line in the system and the result shown in Table 3.8 

Table 3.8: VAr Loss Sensitivity Index 

Line From 
bus 

To bus Sensitivity index 

1 1 4 a14 = -0.179 

2 1 6 a16 = -0123 

3 2 3 a23 = -0.23 

4 2 5 a25 = -0.15 

5 3 4 a34 = -0.0189 

6 4 6 a46 = -0.0184 

7 5 6 a56 = -0.044 

 
 
The lines having the most positive loss sensitivity index must be chosen for placement of the 

TCSC devices. For this we select lines 5 and 6 from Table 3.8.  
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When TCSC devices in the inductive mode of operation are connected in series with these two 

lines, with inductive reactances of 53.6% and 48.2% of the line reactances, respectively, it is 

seen that the line overloads are removed. The effect of optimal power dispatch with the TCSC 

devices installed on the line flows is shown in Table 3.9.  

Table 3.9: Line Flows 

Line flow (in p.u.) Line From 
bus 

To 
bus Rated Without 

FACTS devices 
With 

TCSCs in lines 
5 and 6 

1 1 4 0.50 0.138 0.176 

2 1 6 0.50 0.383 0.386 

3 2 3 0.50 0.480 0.494 

4 2 5 0.80 0.132 0.162 

5 3 4 0.57 0.62 0.483 

6 4 6 0.55 0.562 0.418 

7 5 6 0.30 0.025 0.027 

 
 
The constrained generation and load data may be obtained after running the OPF with the TCSCs 

installed. Table 3.10 shows a comparison between the data obtained with and without FACTS 

devices in the system for one particular curtailment strategy employed by the ISO (Case (1)).  

Table 3.10: OPF Results with and without TCSC 

Constrained generation and load, MW, Case (1) of 3.3.3 Bus # 

Without FACTS With FACTS 

1 109.63 109.72 

2 124.24 124.41 

3 34.72 34.96 

4 48.87 49.14 

5 40.74 41.32 

6 53.99 53.99 

 
 
This integrated framework covers the scenario where, even after putting the FACTS devices into 

operation, there is a need for the ISO to curtail the initial power transactions in order to maintain 

the system operation within security limits. The OPF result shows that the individual power 

transactions suffer less curtailment when FACTS devices are included in the system.  
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3.4.10 FACTS-enhanced fourteen-bus example system 

We consider the same fourteen-bus example system that was treated earlier. Here, we solve the 

OPF for three different cases. In each case, one of the three FACTS controllers, viz., TCSC, 

TCPAR, and SVC, is included in the problem formulation. The static models of these devices, as 

developed in Section 3.4, are considered, i.e., a TCSC is represented as a static impedance, a 

TCPAR as a transformer with a complex tap ratio, and an SVC as a reactive power source with 

limits. The optimal locations for placing each of these devices can be determined by sensitivity 

analysis. In this problem we consider these three cases:  

1. A TCSC placed between buses 3 and 11, operated with an inductive reactance of 
 59.3% of the line reactance 

2. A TCPAR placed between buses 3 and 11, operated with a phase shift of –0.039 
 radians and unity tap ratio. 

3. An SVC connected at bus 10, operating as a reactive power source of 0.13 p.u. within 
 limits of ±3.5 p.u., at a voltage of 1.05 p.u. 

 
Here we consider only the Case (4). Table 3.11 shows the results of the OPF with Cases (A), (B) 

and (C) referring to the results obtained with TCSC, TCPAR, and SVC, respectively.  

Table 3.11: OPF Results with TCSC, TCPAR, and SVC 

Constrained generation and load, MW Bus # Pre-
curtailment 

MW 
Case (A) Case (B) Case (C) 

(group #1)     

2 (GENCO) 138.4 136.08 135.73 136.54 

3 (GENCO) 92.6 90.29 91.36 90.60 

7 54.3 53.76 53.81 53.46 

9 91.5 89.93 90.67 90.31 

11 56.6 55.31 55.20 55.25 

14 28.6 27.37 27.40 28.12 

(group #2)     

4 (GENCO) 213.5 208.31 210.81 210.52 

8 155.4 155.26 155.30 155.25 

10 16.8 13.36 14.97 15.36 

12 13.1 11.87 12.71 12.07 

13 28.2 27.81 27.83 27.82 

(loss 
compensator) 

    

1 (GENCO) 38.1 36.85 37.32 36.22 
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3.5 Conclusions and Future Directions for OPF-Based Congestion Management 

The operational aspects of power systems pose some of the most challenging problems 

encountered in the restructuring of the electric power industry. In this chapter we looked at one 

such problem. This work focuses on congestion management within an OPF framework in a 

deregulated electricity market scenario. The conventional OPF problem is modified to create a 

mechanism that enables the market players to compete and trade and simultaneously ensures that 

the system operation stays within security constraints. The pool and bilateral dispatch functions 

of an ISO are dealt with. This chapter then focused on the use of FACTS devices to alleviate 

congestion. An integrated approach that includes FACTS devices in a bilateral dispatch 

framework to maintain system security and to minimize deviations from contractual 

requirements is then proposed. The approach is validated through numerical examples.  

 
OPF is increasingly being used for transmission pricing and transaction evaluation in open 

access transmission systems. From the case studies carried out in this chapter, it was apparent 

that the interactions between market players are complex. Future work in this field may focus on 

quantifying the economic risk faced by market players due to differences in their willingness to 

pay to avoid curtailment. Research may also be carried out on designing different dispatch and 

curtailment strategies. 

 
The sensitivity approach for determining optimal locations of FACTS devices can at best give an 

approximate idea about the optimal location for those devices in a deregulated environment. 

More reliable methods need to be developed for this. 
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4. Network Partitioning Schemes for Facilitating OPF-Based Control 

Algorithms in Large Scale ISO’s and RTO’s 

Use of OPF-based methods in power systems models of a scale appropriate to emerging ISO’s 

and RTO’s involve a huge number of state variables, which present barriers both to intuitive 

understanding of behavior and practical on-line computations. To reduce the computational 

burden, and to gain qualitative insight, it is often useful to partition the original model into 

several reduced sub-networks. Such an approach will allow focus on smaller-scale study area and 

simplify other sub-networks into equivalent models. Extensive research seeking reduced-order 

models to improve numeric efficiency, while accurately representing the physical behavior of the 

original systems, has been developed from many perspectives, over several decades. Our work 

will begin from the foundation of equivalents developed in the context of models for 

electromechanical oscillations. The work here seeks to extend the underlying rationale of such 

techniques to models that account for voltage magnitude variation and reactive power flow. 

4.1 Background and Related Literature 

One of the popular aggregation methods based on “coherency” exploits the observation that in 

multi-machines transients after a disturbance, some synchronous machines have the tendency to 

“swing together”. Such coherent machines are grouped into “coherent areas” which are then 

represented by “equivalent machines” [39], [40] and [48]. The approach exploits the two-times-

scale properties of the power systems in a linear, time-invariant (LTI) dynamic model. The swing 

modes of the system are categorized into 2 classes, slow inter-area modes and fast intra-area 

modes. The small parameter to denote the separation of the time-scales is the ratio of the 

sparseness of the connections between the coherent machines to the stiffness of the connections 

within the coherent machines [40]. Thus, when there is a disturbance to these slow inter-area 

modes, the generator angles in each sub-network will move closely coherently together. The fast 

intra-area modes are localized within these strongly connected regions.  

 
More flexible area clustering called “synchrony”, which is an extension of the concept of 

coherency, is suggested in [57], [58], and [59]. It is argued in those literatures that the synchrony 
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recognition and aggregation algorithm has advantages over the slow-coherency algorithm based 

on Gaussian elimination. The authors define the term “chord” as a selected subset of modes of a 

linearized model. In their works, groups of generators are said to be exactly or approximately 

synchronic in a chord , or are -synchronic, if their angular variations are exactly or 

approximately in constant proportion for any transient in which only the modes in are excited. 

This is different from the earlier - coherency that requires exact or approximate equality of the 

angular variations.  

 
As an alternative to the singular perturbation approaches for characterizing coherency, [41] 

iteratively uses the sensitivity of the smallest non-zero eigenvalue to the removal of lines to 

identify weak cutsets that will partition the network into coherent groups. The advantage of this 

method is that it provides partitions indicating both generators and load buses within a coherent 

area, while many of the previously mentioned researches identify only generator buses within an 

area. This additional information of load buses in the network decomposition is useful because it 

shows the boundaries of weak links between coherent areas in more details. On the other hand, 

work in [63] modifies the slow coherency technique in [39] and augments the eigenbasis matrix 

in [39] to also include the information of load buses. For [63], the approach identifies indices of 

buses within the coherent groups by measuring the closeness of each bus to each area reference 

generator. The closeness is the cosine of the angle between the two row vectors of the 

corresponding eigenbasis matrix. Yet, the criteria for setting a closeness tolerance to assign bus 

indices into coherent areas are arbitrary. Although the work in [41] shares certain features with 

algorithms based on locating weak cutsets within the network [50], it has the advantage of 

explicitly using the interaction of network topology, branch admittances, and machine inertias in 

determining the electromechanical modes in an unreduced, generalized eigenvalue formulation 

of the linearized dynamics [41]. However, the literature on that method to date simplifies the 

analysis to the flat start operating point, treating an operating point at which all the bus voltage 

magnitudes and bus voltage angles are equal to 1 and 0, respectively. Losses of the system are 

ignored in this case.  

 
Work in [60] studies the partitioning of the electrical networks using 3 different types of the 

weighted Laplacian matrix from the network graph and extends the algorithm in [41] to include a 

set of the smallest eigenvalues as a direct approach to simultaneously, instead of recursively, 
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partitioning a system into multiple areas. That work also proposes a second method, namely the 

eigenvector component correlation partitioning, which modifies the correlation function 

suggested in [63] for the steps in excluding lines between generators. The authors mention that 

the research is in its initial stage, so that work does not yet offer numerical results comparing 

quality between these two methods. Moreover, the algorithms require uniform node weights, or 

equality in all bus voltages, to yield the symmetric Laplacian structure. This analytically 

desirable structure is lost in the case of a lossy network.  

 
In contrast to the previous works that focused on partitioning the network in dynamic models, 

this chapter will focus on network partitioning applications in the optimal power flow (OPF). 

Without considering this OPF aspect, the resulting decomposed sub-networks from all previously 

mentioned techniques may not be functional under the system’s various security constraints. A 

different strategy will be introduced to obtain the system weighted Laplacian matrix, which 

accounts for the real topological network structures including losses at the optimal operation 

point. We notice from our new formulation of the optimal power flow Jacobian that a certain 

sub-block of this matrix is in the form of graph Laplacian, and could be processed in our network 

partition. This Laplacian matrix formulation also involves all relevant inequality constraints that 

limit the system to sustain its security while in the optimal operation. We will apply the concept 

of the recursive spectral graph bisection (RSB) presented in [38], [S11, and [56] as our basis to 

formulate the network decomposition scheme. The RSB method is proven in [38] to be optimal 

among various graph-partitioning techniques.  

 
Although the ties between the areas are weak, they should not be completely disregarded during 

the steps of network partition. For a higher degree of accuracy in the simulation of the reduced 

sub-networks, we present here in this research the notion in replacing these ties with the 

equivalent fixed demands or injections between the links.  

 
This chapter will be organized as follows. In the section 2, we include some graph theoretic 

terminology, and notation that we will use for our further discussion. The background material 

on the spectral properties of Laplacian matrices and their relevance to graph partition will be 

explained in the early of the section 3. The fundamental concepts of the optimal power flow and 

system topology that apply to the RSB network partitioning will follow. Here, the key properties 
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of the block matrix 
PN

a
of the system optimal power flow Jacobian are exhibited. This block 

matrix has a form that may be interpreted as weighted graph Laplacian, and the system losses are 

accounted in this computation. We test our algorithm in the IEEE 9 and 30-buses to demonstrate 

the performance of our method in preserving the optimal cost of generation for the decomposed 

sub-networks and in the deviations of the bus nodal prices in scenarios in which their active load 

demands are significantly increased. In addition, in the IEEE 30-bus case, we arbitrarily partition 

this network to examine its characteristics comparing with our RSB approach as evidence that 

the desirable properties produced by RSB are not generic to any partition. The final section 

contains our conclusions and some directions for future work.  

4.2 Terminology and Notation 

To start, readers should be familiar with some basic graph theory terminology and notations used 

in our discussion. We excerpt some of these basic definitions from [45] and [61] for readers’ 

reference:  

A graph G with n vertices and m edges consists of a vertex set V(G)={v1,…,vn}, and an 
edge set E(G)={e1,…,em}. A weighted graph is a graph for which a value wi is 
associated with each vertex vi, and a nonzero weight wij is associated with each edge 
(vi,vj). We consider a zero edge weight to indicate the lack of an edge. Note that graph G 
is also a weighted graph where all edge weights are 1. 

 
A subgraph of a graph G is a graph H such that V(H) V(G) and E(H) E(G); we write this as 

H G and say that “G contains H”. A graph G is connected if it has a u,v-path for each pair u,v 

V(G) (otherwise it is disconnected). For a connected graph G, an edge separator is a set S of 

edges such that if removed would break the graph into components G1 and G2 with no edges 

between G1 and G2. A vertex separator is a set S of vertices such that if these vertices and all 

incident edges are removed, the graph is broken in to components G1 and G2 with no edges 

between G1 and G2 (such separators will be assumed to be minimal sets with respect to the 

particular G1 and G2).  

 
The adjacency matrix of G, written A(G), whose entry aij is the number of copies of the edge 

vivj in G. The incidence matrix of a graph G, written M(G), has rows indexed by V(G) and 

columns indexed by E(G), with mij=1 if vertex vi is the tail of ej, and mij = -1 if vi is the head ej.  
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4.3 Background 

4.3.1 Recursive Spectral Bisection (RSB) 

Work in [37] and references therein explain various important applications of graph partitioning: 

VLSI circuit layout, image processing, solving spare linear systems, computing fill-reducing 

orderings for sparse matrices, and distributing workloads for parallel computation. Generally, the 

objective of graph partitioning is to separate the graph’s vertices into a predetermined number 

sub-graphs, in which each sub-graph has an equal number of vertices and the cutset links among 

these sub-graphs are minimized.  

 
Pothen, Simon, and Liou introduce an approach in [56] to partition the input graph using the 

spectral information of the Laplacian matrix, L; this technique is referred to as recursive 

spectral bisection (RSB).  

 
Work in [36] exhibits a proposition of the Laplacian matrix L that this matrix L should satisfy:  

 L  =  MMt  = - A (4.1) 

where M is the incidence matrix of graph G, A is the adjacency matrix of G, and  is the 

diagonal matrix whose ith entry is the degree of the vertex vi (1 i n). Thus, L is independent of 

the orientation given to G. 

 
For a connected graph, L has the property that its smallest eigenvalue is equal to zero, and each 

element of the corresponding eigenvector is equal to one; all other eigenvalues are greater than 

zero. Miroslav Fiedler proved several properties of the second smallest eigenvalue and its 

corresponding eigenvector of this Laplacian matrix in his famous works [43] and [44]. These 

second smallest eigenvalue and eigenvector have now become known as “Fiedler value” and 

“Fiedler vector,” respectively, in recognition for his contribution. The RSB method that we 

mentioned is based on the Fiedler vector of this Laplacian matrix L. 1 

 
Holzerichter and Oliveria clearly illustrate in [47] to show how finding a partition of a graph, 

which minimizes the number of edge-cuts, can be transformed into an eigenvalue problem 

involving the graph Laplacian. In their analysis, they use Lagrange multipliers to solve 



 

66 

optimization problem setting the objective function to minimize the number of edges between 

the two parts. The non-linear equality constraints are stipulated in the first condition that the 

number of vertices in each part be equal, and second condition that every vertex be assigned to 

one of the partitions.  

 
Chan, and Szeto in [38] show the size of the cutsets can be minimized by using, specifically, the 

corresponding second smallest eigenvalue, the Fiedler value, of the Laplacian matrix, L. They 

introduce the concept of median cut RSB method that maps indices of vertices which have 

values above the median value of Fiedler vector to one part and below the median value of 

Fiedler vector to the other. They prove that this median cut method is the optimal in the sense 

that partition vector induced by this method is the partition vector closest to the Fiedler vector in 

any ls norm, for s 1. The partitions are then further partitioned by recursive application of the 

same procedure. The multiplicity of zero eigenvalues of L indicates the number of connected 

sub-graphs in G. The magnitude of the Fiedler value is proved in [53] as a measure of the 

connectivity among these sub-graphs, and the magnitude of each element of the Fiedler vector as 

a measure of an approximated vertex-distance from the other vertices. If any 2 values of 

elements in the Fiedler vector are closed together, the corresponding vertices connecting path 

will be short.  

4.3.2 Power system network modeling 

Previous work in power systems network modeling in [41], with minor enhancements, will be 

shown in this section. We consider here a power network, with shunts neglected, as the 

interconnection structure of a directed graph G. The original power network has n buses and l 

branches, or hereby n vertices and l edges. Assume each branch has weight b, thus, the 

admittance matrix of the network is TAbAbY }{diag:)( = where matrix A is an unreduced 

incidence matrix for this graph. The equilibrium system frequency is equal to a known value of 

0 . With no coupled lines, no phase shifting transformers, “primitive” per phase admittance 

matrix will be diagonal. We assume, in our first illustration, reactive equations are normalized by 

voltage magnitude as in [55] to yield a symmetric power flow Jacobian.  

 

Let 
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V  n-m, V:=  vector of variable bus voltage magnitudes; 

ä  n,    ä :=  vector of bus voltage phase angles relative to an arbitrary synchronous 

reference frame of frequency 0ù ; 

ù  m, ù :=   vector of generator frequency deviations, relative to synchronous 

frequency 0ù ; 

A  nxl, A:=   the full bus incidence matrix for the network, (no elimination of a 

reference bus);  

A  is constructed by taking component-wise absolute value.  

bl  l,   bl:= vector of transmission line susceptances;  

P
I  n,  PI

:=  vector of net active power injection at each bus. For indices j ranging 

from 1 to (through) m, I

jP  is a constant equal to the mechanical power 

input to machine j. For j ranging from m+1 to through n, component I

jP  

is a constant equal to the negative value of active load demand.  

Q
I: n-m n-m, QI

(V):= vector valued function of net reactive power injections at load 

buses, normalized by voltage magnitude. Each component I

jQ  is a 

function of voltage magnitude at that bus only.  

L:=   rows m+1 through n of an nxn identity matrix (e.g., projection operator selecting 

components m+1 through n of an n-vector);  

 
Under the above simplified assumption, active and (voltage-normalized) reactive power 

absorbed by the network at each bus may be written to follow MATLAB1 format as below.  

In particular 

 
P

N
 (ä ,V):  =  vector-valued function of active power absorbed by network at each bus 

 =  Adiag{bl}diag{exp(|A|Tln(V))}(sin(AT
ä )                                                           (4.2) 

 

                                                
1 MATLAB is a highly efficient matrix computational program developed by MathWorks [51]. 
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[diag(V)] –1
Q

N
( Vä, ): =  vector-valued function of reactive power absorbed by network at each load bus, 

normalized by bus voltage magnitude 

=   Ldiag{|A| bl }V - [diag{VL}-1
L2|A|diag{ bl }diag{exp(|A|Tln(V)}cos(AT

ä )               (4.3) 

 
Its corresponding power Jacobian is: 

 )2()2(: mnmnmnnJ  

 =

L

INN
L

NN

V

QQ

ä

Q

V

P

ä

P

J   (4.4) 

where 

TTT

l

L

T

l

L
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TTT

lL

N

L

TTTT

l

L

N

TTT

l

N

LAäAbLAH

VQHHLbAL
V

QQ

AäAVAbALV
ä

Q

VLAäAVAbA
V

P

AäAV|AbA
ä

P

)}}diag{cos(diag{

}]}[diag{diag{)}diag{diag(}|diag{|

)}(sin))}diag{ln(||}diag{exp(diag{||}][diag{

}][diag{||)}(sin))}diag{ln(||}diag{exp(diag{

)}(cos))}diag{ln(|}diag{exp(diag{

12

1

1

=

++=

=

=

=

             (4.5) 

4.3.3 Role of optimal power flow concepts in partitioning 

In this section, we will explain some fundamental concepts of the optimal power flow (OPF) 

before we proceed further. We summarize some OPF concepts from [62] as below:  

 
Basic OPF will seek the operating point of a power system with the objective to reach a 

minimum active power generating cost while balancing the entire power flow, and satisfying 

other sets of security constraints. The limits on +

gigigi PPP , +

gigigi QQQ , 
+

iii VVV , 

and flows on transmission lines will allow the dispatch of the generation while not allowing the 
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transmission system to violate a limit while achieving the minimum cost of generation. “Bus 

incremental costs” or (BICs) from OPF solution can be used in power systems economic 

analyses to set the marginal cost of power at any bus in the system.  

 
From a standard OPF formulation, one approaches the general optimization problem:  

 

 Min 
=

m

i

gii PC
1

)(            (total cost of active power generation) 

 
subject to 

 

0

0

),( =+ d

g

P

P

vf  (active power balance equations) 

0),( =dQvg  (reactive power balance equations) 

+

gigigi PPP  (active power generation limits) 

+

gigigi QQQ  (reactive power generation limits) 

Line flow limits and other inequality constraints                                                (4.6) 

 
For convenience, we underline some of the above variables to emphasize their vector or matrix 

structures. The state vectors, , and v , are the voltage angles at all buses (including the slack 

bus) and the non-generator bus voltage magnitudes respectively. The above ),( vf denotes the 

real power absorbed into the network at all buses; ),( vg denotes the reactive power absorbed 

into the network at all non-generator buses; and )( gii PC  in the objective function denotes the 

variable cost of operation for each generator.  

 

To solve the above OPF problem, we construct the following Lagrange equation: 

 
=

++=
m

i

dg

T

dg

T

giidg vPPvPPFPCvPPL
1

),,,(),,,()(),,,(  (4.7) 
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In equation (4.7), ),,,( vPPF dg  and ),,,( vPP dg  represent the real and reactive power balance 

equality constraints and all inequality constraints from (6) respectively.  

 
A candidate optimal solution can then be determined by solving for the Kuhn-Tucker conditions 

[49]:  

 mi
PP

C

gi

T

gi

i

gi ,...,1    ,0 ==  

 nj
P

dj

dj

T ,...,1    ,0 ==  

 
TTT

v

v

gg
v

ff

0=+  

 0),,,( =vPPF dg  

 0),,,( vPP dg  

 0=
T

 

 
TT

0     (4.8) 

Each element of the vector 
T

in (4.8) indicates whether the inequality constraints are binding. If 

the element of  is zero, the corresponding inequality constraint is free to be non-binding; if the 

element of  is positive, then the corresponding inequality constraint must be binding. We refer 

these last 2 equations of (4.8) as the complimentary slackness conditions.  
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4.3.4 Median cut spectral bisection power systems network partitioning 

We can observe that the block matrix 
ä

P N

in (4) is in the form of Laplacian matrix associated 

with the weighted graph whose voltage magnitude weight Vi  is assigned to each vertex vi, and 

branch admittance weight bij is assigned to each edge (vi,vj). Thus, we can directly apply any 

property of the weighted Laplacian matrix, L to the block 
ä

P N

. Specifically by the RSB 

method, we can use this 
ä

P N

 block to partition the power systems network into smaller sub-

systems.  

 
As an alternative to formulating the Jacobian matrix in (4), and (5), we can use another technique 

to account for the losses of the study system. This derivation is described in [42] and will be 

repeated below. We will use bus voltage phasors and external current injections as intermediate 

variables during the Jacobian matrix construction. The overbar of the form “ ” is used to 

emphasize a complex valued quality.  

 
Let 

 n,  := vector of bus voltage phase angles relative to an arbitrary synchronous 

reference frame of frequency (reference angle is not deleted); 

V  n,  V:= vector of variable bus voltage magnitudes; 

V  Cn,   V := vector of complex bus voltages; note that V =V.*exp( j ) 

Y  Cnxn, Y := full bus admittance matrix (reference bus rows and column not 

eliminated); 

 I  Cn,    I := vector of currents absorbed into network at each bus;  

 note that I = Y *V  

 S  Cn,   S := vector of complex powers absorbed into network at each bus;  

 note that S =V .*conj( I )   =  conj( I ).*(V ) 

==
)}{exp(

*}{diag                          
)}exp(*.{

        
j

V
jVV
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}{diag*       )}{exp(diag*}{diag* VjjVj ==  

==
)}{exp(

*}{diag*                    
)}exp(*.{

*       
j

VY
jV

Y
I

 

 }{diag**)}{exp(diag*}{diag** VYjjVYj ==  

}){diag**conj(  )}(conj{diag*)*conj(  
)}(conj{

VYjVYj
I

==  

V

V
j

V

Vj

V

V
==

}{
*)}{exp(diag                    

}*).exp({
              

   )}diag{exp( j=  

)}exp(diag{*              
}*).{exp(

*             jY
V

Vj
Y

V

I
==  

 )}{exp(diag*)conj(
)}(conj{

jY
V

I
=   (4.9) 

Thus, 

 

)}(conj*)(conj*}{diag*}*).Idiag{conj(* VYVjVj
S
=  

 )}(exp(diag*)(conj*}{diag*)}(exp*).Idiag{conj(* jYVjjj
V

S
+=  (4.10) 

 
Blocks of the power flow Jacobian in a standard form are easily recovered from the above 

expressions by selecting the appropriate rows and columns of the real or imaginary parts of 
S

 

or 
V

S
. The block 

ä

P N

 obtained from this derivation will still preserve the properties of the 

weighted Laplacian matrix, and we will use this block matrix in our next steps of the network 

partitioning.  
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Given a power systems study network, first, we predetermine a desired number of final sub-

networks. We solve OPF to find its optimal operating point of this system. As a result, we will 

obtain the un-reduced network OPF Jacobian (no deletion of the associated slack generator 

components during the matrix construction). Next, we will apply RSB technique to this weighted 

Laplacian matrix 
ä

P N

block Jacobian. Its smallest eigenvalue is 0, and every element of the 

corresponding eigenvector is one. We will map indices of vertices of their magnitudes above the 

median value of the Fiedler vector to one part and below the median value of the Fiedler vector 

to the other.  For a higher degree of accuracy in the simulation of the reduced sub-networks, we 

replace the ties that link between these new decomposed areas with the equivalent fixed demands 

or injections of values equal to OPF line power flows. The branch flows “from” the relating 

buses will be assigned positive values, and the flows “to” buses will be assigned negative values. 

If a larger number of sub-networks is required, we will then recursively partition further, using 

the same approach, in the sub-network that has smaller Fiedler value of the OPF sub-network 

Jacobian.  

4.4 Optimal Power Flow (OPF) Solver 

In our OPF computation of the nonlinear optimization with constraints, we will use fmincon 

command that is a newer release than constr used in MATPOWER-OPF solver developed by 

PSERC [64].  The command fmincon is included in the Optimization Toolbox (available with 

MATLAB 5.3 Release 11). It uses a successive quadratic programming technique with a quasi-

Newton approximation for the Hessian matrix [54]. The performance of fmincon to solve the 

OPF depends on numerous factors, i.e., fmincon has its limitations in solving the sparse non-

linear constrained minimization problem as our case, so our study networks are inherently 

limited to medium-sized power systems. For a very large-scale power systems network, there are 

several commercial constrained optimization solvers available, e.g. TOMLAB [46]. These 

packages do exploit sparsity and claim to be more robust and more efficient, but were not tested 

in this work.  
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4.5 Numerical Analysis 

4.5.1 IEEE 9-bus network example 

In our initial presentation, we will use the 9-bus power systems data obtained from the 

MATPOWER-OPF solver of PSERC. This network contains 3 generators (buses 1, 2, and 3) 

injecting power to the system feeding 3 loads at buses 5, 7, and 9.  

 

 

 

Figure 4-1: 9-Bus power systems test network 

 
Our goal here is to separate this 9-bus network into the 2 smaller sub-networks. In computing the 

Fiedler eigenvector during the RSB routine, the MATLAB eigs function (finding a few 

eigenvalues and eigenvectors of a sparse matrix) will be employed.  

 
The polynomial characteristic cost functions of these 3 generators are shown in Table 4.1. The 

relationship of a power generating cost (in $/hr) and a specific active power output (in MW) is in 

the quadratic form: igiigiigii cPcPcPC 01

2

2)( ++= .  



 

75 

Table 4.1: The Polynomial Characteristic Cost Coefficients of the 9-Bus Network 

Generator at Bus c2 c1 c0 

1 0.1100 5.0 150 

2 0.0850 1.2 600 

3 0.1255 1.0 335 

 
 
The security constraints on generating active power outputs, bus voltage magnitudes, and 

transmission line flows are presented in Tables 4.2 to 4.4 respectively. Note that the base voltage 

for each bus is 345 KV.  

Table 4.2: The Limits of Generating Active Power Outputs 

Generator at Bus Minimum Active Power Maximum Active Power 

  Output (MW) Output (MW) 

1 10 250 

2 10 300 

3 10 270 

 

Table 4.3: The Limits of Bus Voltage Magnitudes 

- Base Voltage for Each Bus = 345 KV 

Bus No. Lower Boundary (p.u.) Upper Boundary (p.u.) 

1 0.90 1.10 

2 0.90 1.10 

3 0.90 1.10 

4 0.90 1.10 

5 0.90 1.10 

6 0.90 1.10 

7 0.90 1.10 

8 0.90 1.10 

9 0.90 1.10 
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Table 4.4: The Limits of Transmission Line Flows  

Between Buses Maximum Active 

   Line Flow (MW) 

1 - 4 250 

4 - 5 250 

5 - 6 150 

3 - 6 300 

6 - 7 150 

7 - 8 250 

8 - 2 250 

8 - 9 250 

9 - 4 250 

 

Table 4.5: The Complex Power Demands  
– Base Case Load Demands (MW/MVar) 

Bus No. Pd Qd 

5 90 30 

7 100 35 

9 125 50 

 

We run our OPF solver to find the system’s optimal operating point at the base load demands as 

in Table 4.5. The results are the optimal bus voltage magnitudes and angles, the complex power 

branch flows, the active power injected from each generator, and the active power nodal price at 

each bus (see Tables 6 to 9).  

Table 4.6: The Resulting Optimal Bus Voltage Magnitude and Angle at Each Bus  

Bus# V p.u.  Angle-degrees 

1 1.1000 0.2919 

2 1.0974 5.1852 

3 1.0866 3.5411 

4 1.0942 -2.1711 

5 1.0844 -3.6902 

6 1.1000 0.8945 

7 1.0895 -0.9047 

8 1.1000 1.1972 

9 1.0718 -4.3235 

 



 

77 

Table 4.7: The Associated Branch Flows (*100 MW) 

"From"-Bus "To"-Bus Line Power (pu) Line Power (pu) 

    "From" Bus Side "To" Bus Side 

1 4    0.8980 + 0.1297i   -0.8980 - 0.0905i 

4 5    0.3522 - 0.0389i   -0.3504 - 0.1388i 

5 6   -0.5496 - 0.1612i    0.5597 - 0.2219i 

3 6    0.9419 - 0.2263i   -0.9419 + 0.2729i 

6 7    0.3822 - 0.0510i   -0.3807 - 0.1868i 

7 8   -0.6193 - 0.1632i    0.6221 + 0.0082i 

8 2   -1.3432 + 0.0933i    1.3432 + 0.0003i 

8 9    0.7211 - 0.1015i   -0.7072 - 0.1892i 

9 4   -0.5428 - 0.3108i    0.5458 + 0.1294i 

 

Table 4.8: The Optimal Active Power Output from Each Generator 

Generator at Bus 
number  Pg (MW) 

1 89.8020 

2 134.3182 

3 94.1864 

 

Table 4.9: The Lagrange Multipliers (The Active Power Nodal Prices in $/MWhr) of the 

IEEE 9-Bus Network – Unreduced Network (Base Case Load Demands)  

Bus No. Nodal price ($/MWhr) 

1 2475.6 

2 2403.5 
3 2407.6 

4 2475.6 

5 2499.9 

6 2407.6 

7 2425.4 

8 2403.5 

9 2499.9 
average 2444.3 

 
 
When we substitute the values of the active power outputs from Table 4.8 to their corresponding 

polynomial characteristic cost coefficients in Table 4.1, the summation of the optimal power 

generating cost of this 9-bus network at the base case will be $5,296.69/hr.  

 
The voltage magnitudes at buses 1, 6, and 8 reach their upper boundaries (1.10 p.u. volts, see 

Table 4.3 and Table 4.6). Each transmission line flow limit and each generating active power 
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output limit has a rating of approximately 250MW, which is much higher than the values in 

Table 4.7 and Table 4.8. As a result, none of other inequality constraints is active. From Table 

4.9, the active power nodal price is the highest at bus number 9 ($2,499.9/MWhr), and the lowest 

at bus number 2 ($2,403.5/MWhr). The average of all active nodal prices is $2,444.3/MWhr.  

 

The right eigenvectors relating to the two smallest eigenvalues of the 
ä

P N

block are shown in 

Table 4.10.  

Table 4.10: The Right Eigenvectors Corresponding to the Two Smallest Eigenvalues of the 

ä

P N

block of the OPF Jacobian 

Row First Second 

1 0.3333 0.5282 

2 0.3333 -0.3393 

3 0.3333 -0.3198 

4 0.3333 0.4097 

5 0.3333 0.2440 

6 0.3333 -0.2463 

7 0.3333 -0.3031 

8 0.3333 -0.2568 

9 0.3333 0.2403 

 
 
From Table 4.10, the median value of its Fiedler vector is -0.2463. We will assign the bus 

indices whose corresponding Fiedler vector element greater than this median value to one sub-

network, and the rest to the other sub-network. Figure 2 shows the graphic bisection partitioning 

after our final MATLAB computation. The bus numbers 1, 4, 5, and 9 are grouped together 

forming a sub-network, and the bus numbers 2, 3, 6, 7, and 8 are grouped into the other set. The 

branches connected between buses 5-6, and buses 8-9 are the edge-separators between these two 

sub-networks. The corresponding eigenvalues of Table 4.10 are 0.0000, and 4.6812 respectively. 

As mentioned earlier, the Fiedler value can be used to indicate the connectivity of the 2 sub-

networks. Thus, the large value of 4.6812 from this solution indicates a relatively high degree of 

coupling between the resulting 2 sub-networks.  
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Figure 4-2: The final bisection result of the spectral bisection partitioning 

Next, we need to replace each cutset-link with the equivalent fixed complex (active, and 

reactive) demand or injection at both connected buses, as in Fig 3. The value of each complex 

OPF branch flow for this replacement is obtained from Table 4.7, and will be repeated in Table 

4.11.  

 

 

Figure 4-3: Two separate independent sets after replacing each branch flow by fixed 

complex load demands 
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Table 4.11: The Equivalent Fixed Complex Power Demands or Injections of the Buses 

Forming the Edge Separators (MW/MVar) 

Bus Number Pd Qd 

5 -54.9579 -16.1180 

6 55.9676 -22.1907 

8 72.1091 -10.1513 

9 -70.7155 -18.9245 

 
 
The accuracy of these 2 reduced sub-networks can be measured by running the OPF in each 

decomposed sub-network (see Table 4.12 and Table 4.13).  

Table 4.12: The Optimal Active Power Output from Each Generator - 2 Decomposed Sub-

Networks (Base Load Demands) 

Generator Number in Part Pg (MW) 

1 1 89.8020 

2 2 134.3182 

3 2 94.1864 

 

Table 4.13: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) of the RSB 

Partitioning Network – 2 Decomposed Sub-Networks (Base Demands) 

Bus No. Part Nodal prices ($/MWhr) The magnitudes of errors % errors from the 

      from the unreduced network unreduced network 

1 1 2475.6 0.0 0.0000 

2 2 2403.9 -0.4 -0.0166 

3 2 2406.9 0.7 0.0291 
4 1 2475.7 -0.1 -0.0040 

5 1 2501.0 -1.1 -0.0440 
6 2 2406.9 0.7 0.0291 

7 2 2425.3 0.1 0.0041 

8 2 2403.9 -0.4 -0.0166 

9 1 2499.4 0.5 0.0200 

average 2444.3 0.0 0.0001 

 
 
The resulting total OPF generating cost from Table 4.12 is $5,296.69/hr, which as expected, is 

exactly the same as the total cost obtained from the unreduced network in Table 4.8. In addition, 

the errors of the active power nodal prices in Table 4.13 are very small comparing with the 

values in Table 4.9.  
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Next, we increase active loads in all load buses (buses 5, 7, and 9) as high as 130% of their 

original values, and then test the accuracy of the resulting reduced sub-networks using the same 

approach. Consequently, the generating active power outputs of the unreduced network will be 

as shown in Table 4.14, and the system active power nodal prices will be as shown in Table 4.15. 

In this case, the voltage magnitudes at buses 1, 2, and 6 reach their upper boundaries (1.10 p.u. 

volts). The line flow limits and the generating power output limits are still much higher than the 

resulting branch flows and the generating power outputs from OPF solutions. Accordingly, none 

of these inequality constraints is active.  

Table 4.14: The Optimal Active Power Output of Each Generator – Unreduced Network 

(130% Active Load Demands) 

Generator at Bus 
Number  Pg (MW) 

1   121.4108 

2   172.6415 

3   120.9157 

 

Table 4.15: The Lagrange Multipliers (The Active Power Nodal Prices in $/MWhr) – 

Unreduced Network (130% Active Load Demands) 

Bus No. Nodal prices ($/MWhr) 

1 3171.0 

2 3054.9 
3 3062.4 

4 3171.2 

5 3214.3 

6 3062.4 

7 3092.4 

8 3055.5 

9 3214.7 
average 3122.1 

 
 
As a result, the total OPF generating cost now is raised to $7,966/hr. The system’s lowest active 

power nodal price is still at bus 2 ($3,054.9/MWhr); the highest is at bus 9 ($3,214.7/MWhr).  

 
In the above decomposed sub-network case, if we run the OPF in each reduced sub-network 

separately again, we will obtain the results as shown in Table 4.16 and Table 4.17.  
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Table 4.16: The Optimal Active Power Output from Each Generator – 2 Decomposed Sub-

networks (130% Active Load Demands) 
Generator at Bus 

Number  in Part Pg (MW) 

1 1 155.1871 

2 2 145.4134 

3 2 109.9601 

 

Table 4.17: The Lagrange Multipliers (The Active Power Nodal Prices in $/MWhr) – 2 

Decomposed Sub-networks (130% Active Load Demands) 

Bus No. Part Nodal prices ($/MWhr) The magnitudes of errors % errors from the 

      from the unreduced network unreduced network 

1 1 3914.1 -743.1 -23.4342 

2 2 2673.2 381.7 12.4947 

3 2 2664.2 398.2 13.0029 
4 1 3914.6 -743.4 -23.4422 

5 1 3987.8 -773.5 -24.0643 
6 2 2664.2 398.2 13.0029 
7 2 2702.1 390.3 12.6213 

8 2 2672.7 382.8 12.5282 

9 1 3980.3 -765.6 -23.8156 

average 3241.5 -119.4 -3.4563 

 
 
Consequently, the summation of the OPF generating costs from both parts will be $8,073/hr. The 

error from the unreduced network is 100
7,966

8,073-7,966
 = -2.598 %. From Table 4.17, the 

highest active power nodal price of these 2 decomposed sub-networks is at bus 5 

($3,987.8/MWhr), and the lowest is at buses 3 and 6 ($2,664.2/MWhr). Buses 3 and 6 are 

connected next to each other. The average of all bus nodal prices is $3,241.5/MWhr. The lowest 

magnitude of errors comparing with the value from the unreduced network is at bus 5 ($-

773.5/MWhr) and the highest is at buses 3 and 6 ($398.2/MWhr). The average of all error 

magnitudes is $-119.4/MWhr or -3.4563%. The above analysis in OPF generating cost errors and 

active nodal price errors indicates a relatively high degree of accuracy of the decomposed sub-

network OPF solution relative to the unreduced network, even when we have increased every 

load demand by 130%. 
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Instead of the 2 sub-networks, if we need to partition further to focus our study on a smaller scale 

in 3 separated parts, we can proceed using the same technique as we did previously. Starting 

from the earlier reduced 2 sub-networks, we choose to partition a sub-network with the smaller 

Fiedler value, which means that sub-network will display the lower degree of the connectivity 

within its own elements. The Fiedler value obtained during this third sub-network partitioning 

routine is 5.6835. The Fiedler values of 4.6812 and 5.6835 indicate these sub-networks are 

highly connected. If the resulting 3 sub-networks had been completely disconnected, their 

corresponding Fiedler values of the second and the third partitioning should be both 0.  

 
The voltage magnitudes at buses 1 and 8 reach their upper boundaries. None of other inequality 

constraints is active. The graphic partitioning after the final RSB partitioning procedures is 

shown in Figure 4. Buses 1, 4, 5, and 9 are grouped in the first independent set, buses 2, 7, and 8 

in the second, and buses 3, and 6 in the third. Now, the branches connecting between buses 5-6, 

6-7, and 8-9 are the edge separators between these three groups.  

 

 

Figure 4-4: The final 3 RSB partitioning of the 9-bus network 

Similarly, we delete each edge-cut and replace it with the equivalent fixed complex (active, and 

reactive) demand or injection at both ends with the corresponding OPF branch flow. The final 

graphic representation of these decomposed sub-networks are displayed in Figure 5. The value of 

the complex OPF branch flow for each edge-cut replacement is shown in Table 4.18.  
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Figure 4-5: Three separate independent sets after replacing each branch flow in edge 

separators with fixed complex load demands 

Table 4.18: The Equivalent Fixed Complex Power Demands or Injections of the Buses 

Forming the Edge Separators (MW/MVar) 

Bus Number Pd Qd 

5 -54.9579 -16.1180 

6 94.1596 -27.2888 

7 -38.0430 -18.6878 

8 72.1091 -10.1513 

9 -70.7155 -18.9245 

 
 
We run the OPF in each sub-network separately and check the resulting active power output 

from each generator and each bus active nodal price. The solutions are shown in Table 4.19 and 

Table 4.20.  

Table 4.19: The Optimal Active Power Output from Each Generator - 3  

Decomposed Sub-networks (Base Load Demands) 

Generator Number in Part Pg (MW) 

1 1 89.8020 

2 2 134.3450 

3 3 94.1596 
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Table 4.20: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) – 3 

Decomposed Sub-networks (Base Load Demands) 

Bus No. Part Nodal prices ($/MWhr) The magnitudes of errors % errors from the 

      from the unreduced network unreduced network 

1 1 2475.6 0.0 0.0000 

2 2 2403.9 -0.4 -0.0166 

3 3 2406.9 0.7 0.0291 
4 1 2475.7 -0.1 -0.0040 

5 1 2501.0 -1.1 -0.0440 

6 3 2461.0 -53.4 -2.2180 
7 2 2425.3 0.1 0.0041 

8 2 2403.9 -0.4 -0.0166 

9 1 2499.4 0.5 0.0200 

average 2450.3 -6.0 -0.2496 

 
 
In this base load demand case, the total OPF generating cost of the decomposed sub-networks is 

$5,296.70/hr, which is also almost the same as the total cost obtained from the unreduced 

network, $5,296.69/hr. The magnitudes of errors comparing with the corresponding magnitudes 

from the unreduced network are very small. However, when we compare with the previous 

results of the 2-sub-network case (Table 4.13), the magnitudes and the percentages of errors in 

Table 4.20 (3 decomposed sub-networks) are higher.  

 
When we increase the active power load demands in buses 5, 7, and 9 to 130% of their original 

values, we will obtain the generating active power output and the bus active nodal prices as 

shown in Table 4.21 and Table 4.22.  

Table 4.21: The Optimal Active Power Output of Each Generator - 3 Decomposed Sub-

networks (130% Active Load Demands) 

Generator Number in Part Pg (MW) 

1 1 155.1871 

2 2 164.6798 

3 3 94.1596 
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Table 4.22: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) – 3 

Decomposed Sub-networks (130% Active Load Demands) 

Bus No. Part Nodal prices ($/MWhr) The magnitudes of errors % errors from the 

      from the unreduced network unreduced network 

1 1 3914.1 -743.1 -23.4342 

2 2 2919.6 135.3 4.4290 

3 3 2406.9 655.5 21.4048 
4 1 3914.6 -743.4 -23.4422 

5 1 3987.8 -773.5 -24.0643 
6 3 2461.0 601.4 19.6382 

7 2 2959.2 133.2 4.3073 

8 2 2919.8 135.7 4.4412 

9 1 3980.3 -765.6 -23.8156 

average 3273.7 -151.6 -4.5040 

 
 
The total optimal cost of generation now becomes $8,193 . Comparing with the unreduced 

network case, the optimal cost percentage error will be 100
7,966

8,193-7,966
 = -2.849 %. This 

percentage error is a little higher than the percentage error of the 2 sub-network case (-2.598 %). 

 
 From Table 4.22, the highest active power nodal price of these 3 decomposed sub-networks is at 

bus 5 ($3,987.8/MWhr), and the lowest is at bus 3 ($2,406.9/MWhr). The average of all bus 

nodal prices is $3,273.7/MWhr. The magnitude of the highest error, comparing with the results 

from the unreduced network, is at bus 5 ($-773.5/MWhr) and the lowest is at bus 3 

($655.5/MWhr). The average of all error magnitudes is ($-151.6/MWhr) or -4.5040%. 

 
The above results show that the OPF solutions from the 2 decomposed sub-networks are more 

accurate than the solutions from the 3 sub-networks (both in the base load demands and in 130% 

demands). The huge magnitude of the Fiedler value in the third sub-network partitioning routines 

(5.6835) predicts this larger error in the case of three partitions. In general, the higher number of 

partitioning of the decomposed sub-networks, the lower degree of accuracy of the OPF solutions 

relative to the unreduced sub-network.  

4.5.2 IEEE 30-bus network example 

Next, we test the accuracy of our partitioning method in a larger network, the IEEE 30-bus 

system in Figure 6. This network contains 6 generators (at buses 1, 2, 5, 8, 11, and 13) injecting 
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power to the system feeding 20 loads. The generators’ polynomial characteristic cost coefficients 

are presented in Table 4.23.  

 

 

Figure 4-6: IEEE 30-bus power systems test network 
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Table 4.23: The Polynomial Characteristic Cost Coefficients of the IEEE 30-Bus Network 

Generator at Bus Number c2 c1 c0 

1 0.0200 2.00 0 

2 0.0175 1.75 0 

5 0.0625 1.00 0 

8 0.0083 3.25 0 

11 0.0250 3.00 0 

13 0.0250 3.00 0 

 
 
For this IEEE-30 bus system, we cannot perturb the active power load demands too high to test 

the accuracy of the resulting decomposed sub-networks, as we did in the previous IEEE 9-bus 

case, using the original security constraint values from MATPOWER data. This is one of the 

disadvantages of our OPF based RSB network partitioning. The OPF decomposed sub-networks 

sometimes could have no solution when the margins of system’s inequality constraints are too 

narrow comparing with their corresponding OPF solutions, or when the system’s load demands 

are too heavy.  

 
For readers’ conceptual understanding, we modify some of the MATPOWER IEEE-30 bus 

inequality constraints (presented in Tables 24 to 26) and use them as the limits for our further 

OPF computations. The base voltage for each bus is 135 KV. The base complex power demands 

are shown in Table 4.27.  

Table 4.24: The Limits of Generating Active Power Outputs 

Generator at Bus No. Minimum Active Power Maximum Active Power 

  Output (MW) Output (MW) 

1 0 80 

2 0 100 

5 0 150 

8 0 155 

11 0 130 

13 0 140 
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Table 4.25: The Limits of Bus Voltage Magnitudes - Base Voltage for Each Bus = 135 KV 

Bus No. Lower Boundary (p.u.) Upper Boundary (p.u.) 

1 0.85 1.25 

2 0.85 1.25 

3 0.85 1.25 

4 0.85 1.25 

5 0.85 1.25 

6 0.85 1.25 

7 0.85 1.25 

8 0.85 1.25 

9 0.85 1.25 

10 0.85 1.25 

11 0.85 1.25 

12 0.85 1.25 

13 0.85 1.25 

14 0.85 1.25 

15 0.85 1.25 

16 0.85 1.25 

17 0.85 1.25 

18 0.80 1.25 

19 0.80 1.25 

20 0.80 1.25 

21 0.80 1.25 

22 0.80 1.25 

23 0.80 1.25 

24 0.80 1.25 

25 0.80 1.25 

26 0.80 1.25 

27 0.85 1.25 

28 0.85 1.25 

29 0.80 1.25 

30 0.80 1.25 
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Table 4.26: The Limits of Transmission Line Flows 

Between Buses Maximum Active 

   Line Flow (MW) 

1 - 2 130 

1 - 3 130 

2 - 4 165 

3 - 4 130 

2 - 5 130 

2 - 6 165 

4 - 6 190 

5 - 7 170 

6 - 7 130 

6 - 8 130 

6 - 9 165 

6 - 10 130 

9 - 11 165 

9 - 10 165 

4 - 12 165 

12 - 13 165 

12 - 14 130 

12 - 15 130 

12 - 16 130 

14 - 15 160 

16 - 17 160 

15 - 18 160 

18 - 19 160 

19 - 20 130 

10 - 20 130 

10 - 17 130 

10 - 21 130 

10 - 22 130 

21 - 22 130 

15 - 23 160 

22 - 24 160 

23 - 24 160 

24 - 25 160 

25 - 26 160 

25 - 27 160 

28 - 27 165 

27 - 29 160 

27 - 30 160 

29 - 30 160 

8 - 28 160 

6 - 28 130 
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Table 4.27: The Complex Power Demands – Base Case Load Demands (MW/MVar) 

Bus No. Pd Qd 

2 21.7 12.7 

3 2.4 1.2 

4 7.6 1.6 

7 22.8 10.9 

8 30.0 30.0 

10 5.8 2.0 

12 11.2 7.5 

14 6.2 1.6 

15 8.2 2.5 

16 3.5 1.8 

17 9.0 5.8 

18 3.2 0.9 

19 9.5 3.4 

20 2.2 0.7 

21 17.5 11.2 

23 3.2 1.6 

24 8.7 6.7 

26 3.5 2.3 

29 2.4 0.9 

30 10.6 1.9 

 
 
The OPF solutions of the unreduced network show that the voltage magnitudes at buses 1 and 11 

reach their upper boundaries (1.25 p.u. volts). None of other inequality constraints is active. The 

active OPF generating power and the bus nodal prices for this base case operating point are 

presented in Tables 28 and 29.  

Table 4.28: The Optimal Active Power Output of Each Generator of the IEEE 30-Bus 

Network - Unreduced Network (Base Case Load Demands) 

Generator at Bus number  Pg (MW) 

1 43.5079 

2 57.3270 

5 22.1133 

8 35.0871 

11 16.7068 

13 16.2977 
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Table 4.29: The Lagrange Multipliers (The Active Power Nodal Prices in $/MWhr) of the 

IEEE 30-Bus Network – Unreduced Network (Base Case Load Demands) 

Bus No. Nodal price ($/MWhr) 

1 374.0416 
2 375.6500 

3 381.0403 

4 382.3525 

5 376.4216 

6 383.2506 

7 382.8410 

8 383.2444 

9 383.5451 

10 383.7384 

11 383.5254 

12 381.4709 

13 381.4709 

14 386.0133 

15 387.3401 

16 384.0404 

17 384.8718 

18 389.9821 

19 390.3573 

20 388.9525 

21 386.4065 

22 386.3546 

23 389.6348 

24 390.3501 

25 388.5869 

26 393.5271 

27 385.4257 

28 384.7125 

29 392.8559 

30 397.9208 
average 385.3308 

 
 
All above bus incremental costs are slightly different because of the transmission losses. Bus 1 is 

the generator bus and has the cheapest nodal price ($374.0416/MWhr) contrasting with the load 

bus number 30 which is the most expensive ($397.9208/MWhr). The average of all active nodal 

prices is $385.3308/MWhr. The optimal cost of generation in this base case is $572.26/hr.  

 
At this time, we will apply our RSB network partitioning method to seek the optimal 3 

decomposed sub-networks. The graphic representation of these resulting 3 sub-networks is 

shown in Figure 7. Hence, we will group buses 1, 2, 3, 4, 5, 6, and 7 into the first sub-network, 

buses 8, 24, 25, 26, 27, 28, 29, and 30 into the second, and buses 9, 10, 11, 12, 13, 14, 15, 16, 17, 
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18, 19, 20, 21, and 22 into the third. The branches connecting between buses 4-12, 6-8, 6-9, 6-10, 

6-28, 22-24, and 23-24 are the edge separators among all these three groups. The Fiedler values 

obtained during the partitioning routines of the second and third sub-networks are relatively 

small, i.e., 0.9545 and 0.6741 respectively, which indicate the network has low degree of 

coupling between elements across these 3 separated groups.  

 

 

 

Figure 4-7: The 3 resulting sub-networks from RSB partitioning of IEEE 30-bus network 

Figure 4.8 shows the result after we delete each branch connecting between these groups and 

replace this cutset-link with the equivalent fixed complex power demand or injection at both 

ends (see Table 4.30).  
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Figure 4-8: Three separated independent sets of IEEE 30-bus network after replacing each 

branch flow in edge separators with fixed complex load demand or injection 
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Table 4.30: The Equivalent Fixed Complex Power Demands 

Bus Number Pd Qd 

4 25.7729 5.8852 

6 41.6694 -3.9331 

8 0.6773 14.2295 

9 -16.2073 -3.9637 

10 -12.5022 -4.5119 

12 -25.7729 -4.6925 

22 6.1142 0.1582 

23 1.3947 0.4064 

24 -7.4760 -0.5141 

28 -13.5994 -2.1522 

 
 
With the same base load demands, the OPF solutions of the real power production and the 

network marginal prices of the decomposed RSB sub-networks are presented in Table 4.31 and 

Table 4.32 respectively.  
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Table 4.31: The Optimal Active Power Output from Each Generator - Decomposed Sub-

networks (Base Load Demands)  

Generator at Bus Number  in Part Pg (MW) 

1 1 43.5220 

2 1 57.3359 

5 1 22.1114 

8 2 35.0639 

11 3 16.8267 

13 3 16.1717 

Table 4.32: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) of the RSB 

Partitioning Network – Decomposed Sub-networks (Base Load Demands) 

Bus No. Part Nodal Prices ($/MWhr) The magnitudes of errors % error from 

      from the unreduced network the unreduced network 

1 1 374.0803 -0.0387 -0.0103 

2 1 375.6687 -0.0187 -0.0050 

3 1 381.1132 -0.0729 -0.0191 

4 1 382.4337 -0.0812 -0.0212 

5 1 376.3993 0.0223 0.0059 

6 1 383.1834 0.0672 0.0175 

7 1 382.7893 0.0517 0.0135 

8 2 383.2060 0.0384 0.0100 

9 3 384.1385 -0.5934 -0.1547 

10 3 384.1723 -0.4339 -0.1131 

11 3 384.1262 -0.6008 -0.1567 
12 3 380.8619 0.6090 0.1596 

13 3 380.8619 0.6090 0.1596 

14 3 385.5514 0.4619 0.1197 

15 3 387.0164 0.3237 0.0836 

16 3 383.8867 0.1537 0.0400 

17 3 385.1373 -0.2655 -0.0690 

18 3 389.9478 0.0343 0.0088 

19 3 390.4838 -0.1265 -0.0324 

20 3 389.1571 -0.2046 -0.0526 

21 3 386.8590 -0.4525 -0.1171 

22 3 386.8093 -0.4547 -0.1177 

23 3 389.5454 0.0894 0.0229 

24 2 388.9243 1.4258 0.3653 
25 2 387.6074 0.9795 0.2521 

26 2 392.4399 1.0872 0.2763 

27 2 384.7744 0.6513 0.1690 

28 2 384.6173 0.0952 0.0247 

29 2 392.0520 0.8039 0.2046 

30 2 397.0095 0.9113 0.2290 

average 385.1618 0.1690 0.0431 
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From the resulting nodal prices of the RSB method at the base case load demands, we can 

observe a high degree of accuracy in this decomposed OPF solutions compared with the OPF 

solutions from the unreduced network. The highest active power nodal price of these 3 

decomposed sub-networks is at bus 30 ($397.0095/MWhr), and the lowest is at bus 1 

($374.0803/MWhr) with the average of all bus nodal prices equal to $385.1618/MWhr. The 

highest magnitude of errors comparing with the corresponding magnitudes of the unreduced 

network is at bus 24 in part 2 ($1.4258/MWhr) and the lowest is at bus 11 in part 3 ($-

0.6008/MWhr). The average of all error magnitudes is $0.1690/MWhr or 0.0431%. The 

summation of the optimal power generating costs from these 3 separated networks is $572.23/hr, 

which is also almost the same (0.0052% error) as that of unreduced network, $572.26/hr.  

 
Next, to measure the quality of the RSB method in maintaining the original network properties, 

we will boost the active power demands in all 20 load buses as high as 170% of their base values 

for both unreduced and RSB decomposed sub-network cases. For the unreduced network, the 

voltage magnitudes of the buses 1 and 11 reach their upper boundaries (1.25 p.u. volts); buses 1, 

8, and 11 do for the RSB decomposed sub-network. None of other inequality constraints is 

active. The resulting real power production of both cases will be increased as shown in Table 

4.33 and Table 4.34, respectively.  

Table 4.33: The Optimal Active Power Output from Each Generator – Unreduced IEEE 

30-Bus Network (170% Active Load Power Increase) 

Generator at Bus Number  Pg (MW) 

1 63.4543 

2 80.5785 

5 28.7145 

8 85.9350 

11 33.9441 

13 33.1296 
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Table 4.34: The Optimal Active Power Output from Each Generator - Decomposed Sub-

networks (170% Active Load Power Increase) 

Generator at Bus Number  in Part Pg (MW) 

1 1 59.0196 

2 1 75.4128 

5 1 27.2462 

8 2 74.5636 

11 3 45.3007 

13 3 44.0522 

 
 

The summation of the optimal power generating costs from Table 4.34 is $1,149.20/hr. It 

deviates from the total cost of the unreduced network in Table 4.33, $1,140.40/hr, by 

100
1,140.40

1,149.20-1,140.40
 = -0.7717%, which is very small even in this case for which we have 

greatly boosted their active load demand consumptions. Note that the percentage of this error is 

much smaller than that of the 9-bus RSB network partitioning. We hypothesize that this is 

because the 30-bus network has the smaller Fiedler values (degree of coupling among each 

separated part). For a highly coupled network, the resulting decomposed sub-networks may not 

preserve the original network properties well.  

 
Tables 35 and 36 present the bus active nodal prices from both cases at the new operating point.  
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Table 4.35: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) of the IEEE 

30-Bus Network – Base Case (170% load increased) 

Bus No. Nodal price ($/MWhr) 

1 453.8142 
2 457.0242 

3 458.9324 

4 467.6545 

5 469.7157 

6 465.6489 

7 465.7421 

8 467.9373 

9 469.0944 

10 469.7807 

11 469.7915 

12 470.3024 

13 465.6517 

14 475.1732 

15 478.0598 

16 470.9923 

17 472.7137 

18 483.7188 

19 484.5255 

20 481.4941 

21 475.9807 

22 475.8773 

23 483.0019 

24 484.5781 

25 481.0175 

26 491.8170 

27 474.2775 

28 471.8815 

29 490.6819 

30 502.0765 
average 474.2986 
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Table 4.36: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) – 

Decomposed Sub-Networks (170% Load Demands) 

Bus No. Part Nodal prices ($/MWhr) The magnitudes of errors % error from 

      from the unreduced network the unreduced network 

1 1 436.0848 17.7294 3.9068 

2 1 438.9367 18.0875 3.9577 

3 1 446.4086 12.5238 2.7289 

4 1 448.2860 19.3685 4.1416 

5 1 440.5854 29.1303 6.2017 
6 1 449.4016 16.2473 3.4892 

7 1 450.4271 15.3150 3.2883 

8 2 448.7813 19.1560 4.0937 

9 3 526.6231 -57.5287 -12.2638 
10 3 526.8433 -57.0626 -12.1466 

11 3 526.5052 -56.7137 -12.0721 

12 3 520.2594 -49.9570 -10.6223 

13 3 520.2594 -54.6077 -11.7272 

14 3 531.0012 -55.8280 -11.7490 

15 3 534.0990 -56.0392 -11.7222 

16 3 526.7901 -55.7978 -11.8469 

17 3 529.2835 -56.5698 -11.9670 

18 3 540.8786 -57.1598 -11.8167 

19 3 542.0711 -57.5456 -11.8767 

20 3 538.8510 -57.3569 -11.9123 

21 3 532.5884 -56.6077 -11.8929 

22 3 532.2651 -56.3878 -11.8492 

23 3 539.3136 -56.3117 -11.6587 

24 2 479.6238 4.9543 1.0224 

25 2 469.2478 11.7697 2.4468 

26 2 480.2263 11.5907 2.3567 

27 2 458.7626 15.5149 3.2713 

28 2 457.5107 14.3708 3.0454 

29 2 475.0806 15.6013 3.1795 

30 2 486.4198 15.6567 3.1184 

average 494.4472 -20.1486 -4.2292 

 
 
Comparing Table 4.36 with Table 4.35, the highest magnitude of errors is at bus 5 

($29.1303/MWhr) and the lowest is at bus 19 ($-57.5456/MWhr). The average of all error 

magnitudes is $-20.1486/MWhr or -4.2292%. We can see that the RSB reduced sub-networks 

can still very well preserve the OPF solutions of the original unreduced network.  

 
To compare the quality of this Fiedler vector based partitioning with other arbitrary network 

partitionings, we exhibit one network example that produces a larger number of branches in the 

three cutsets in Figure 4.9. This case contains 12 branch-cuts comparing with 7 in our RSB 



 

101 

method. Buses 1, 2, 3, 4, 10, 12, 13, 14, 16, 17, 18, 19, and 20 are grouped in part 1. Buses 5, 6, 

7, 9, and 11 are grouped in part 2, and buses 8, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 are 

grouped in part 3.  

 
 

 

Figure 4-9: The arbitrary partitioning 3 sub-networks of the IEEE 30-bus network 

Figure 10 shows the resulting 3 separated sub-networks after the deletion of each branch-cut 

connecting among these 3 groups. The value of each equivalent fixed complex demand or 

injection is presented in Table 4.37.  

 



 

102 

 

Figure 4-10: Three separated independent sets of IEEE 30-bus network after replacing 

each branch flow in edge separators with equivalent fixed complex demand or injection – 

arbitrary partitioning 

Table 4.37: The Equivalent Fixed Complex Power Demands of the Buses Forming the Edge 

Separators – Arbitrary Partitioning (MW/MVar 

Bus Number Pd Qd 

2 30.8017 -2.2235 

4 12.0698 -2.2345 

5 -5.0711 -0.6142 

6 -12.0798 -8.1854 

8 0.6944 13.9017 

9 32.915 17.2583 

10 -21.703 -9.1738 

12 17.0906 6.1084 

14 1.3521 0.7173 

15 -12.8113 -4.5393 

18 -5.4481 -1.9456 

21 -16.204 -8.2222 

22 -7.4112 -3.1390 

28 -13.6003 -2.2077 
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In this case, when we operate these 3 decomposed sub-networks at the base load operating point, 

the voltage magnitudes at buses 1, 8, 11, and 13 reach their upper boundaries (1.25 p.u. volts); 

none of other inequality constraints is active. Their OPF solutions will be as shown in Tables 38 

and 39.  

Table 4.38: The Optimal Active Power Output from Each Generator – Arbitrary 

Partitioning (Base Load Demands) 

Generator at Bus Number  in Part Pg (MW) 

1 1 43.4706 

2 1 57.2835 

13 1 16.3742 

5 2 22.1044 

11 2 16.7137 

8 3 35.0775 
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Table 4.39: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) – Arbitrary 

Partitioning Decomposed Sub-networks (Base Load Demands) 

Bus No. Part Nodal prices ($/MWhr) The magnitudes of errors % error from 

      from the unreduced network the unreduced network 

1 1 373.8786 0.1630 0.0436 

2 1 375.4947 0.1553 0.0413 

3 1 380.6005 0.4398 0.1154 

4 1 381.8522 0.5003 0.1308 

5 2 376.3054 0.1162 0.0309 

6 2 383.5537 -0.3031 -0.0791 

7 2 382.9646 -0.1236 -0.0323 

8 3 383.2304 0.0140 0.0037 

9 2 383.5730 -0.0279 -0.0073 

10 1 384.9490 -1.2106 -0.3155 
11 2 383.5677 -0.0423 -0.0110 

12 1 381.8787 -0.4078 -0.1069 

13 1 381.8758 -0.4049 -0.1061 

14 1 386.5854 -0.5721 -0.1482 

15 3 385.6518 1.6883 0.4359 
16 1 384.7865 -0.7461 -0.1943 

17 1 385.9473 -1.0755 -0.2794 

18 1 390.0218 -0.0397 -0.0102 

19 1 390.7637 -0.4064 -0.1041 

20 1 389.5619 -0.6094 -0.1567 

21 3 385.2014 1.2051 0.3119 

22 3 385.1325 1.2221 0.3163 

23 3 388.0933 1.5415 0.3956 

24 3 389.0458 1.3043 0.3341 

25 3 387.6685 0.9184 0.2363 

26 3 392.4885 1.0386 0.2639 

27 3 384.7990 0.6267 0.1626 

28 3 384.6492 0.0633 0.0165 

29 3 392.0612 0.7947 0.2023 

30 3 397.0122 0.9086 0.2283 

average 385.1065 0.2244 0.0573 

 
 

In the base load demand operating point, the highest active power nodal price of these 3 

decomposed sub-networks is at bus 30 ($397.0122/MWhr) and the lowest is at bus 1 

($373.8786/MWhr). The average of all bus nodal prices is $385.1065/MWhr. The highest 

magnitude of errors comparing with the unreduced network is at bus 15 ($1.6883/MWhr) and the 

lowest is at bus 10 ($-1.2106/MWhr). The average of all error magnitudes is $0.2244/MWhr or 

0.0573%. The summation of the optimal costs of generation from these 3 separated networks is 

$572.21/hr or 0.0096% error from that of the un-reduced network ($572.26/hr).  
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As we did earlier, we will increase the active load demand in each bus of this decomposed sub-

network case by the same 170% of its base load. The voltage magnitudes at buses 1, 5, 8, 11, and 

13 reach their upper boundaries (1.25 p.u. volts). None of other inequality constraints is active. 

The optimal power productions and the bus active nodal prices at this new operating point will 

be as shown in Table 4.40 and Table 4.41.  

Table 4.40: The Optimal Active Power Output from Each Generator – Arbitrary 

Partitioning Decomposed Sub-networks (170% Load Demands) 

Generator at Bus Number  in Part Pg (MW) 

1 1 63.1000 

2 1 80.0046 

13 1 33.5333 

5 2 26.6699 

11 2 28.2027 

8 3 98.2901 
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Table 4.41: The Lagrange Multipliers (Active Power Nodal Prices in $/MWhr) – Arbitrary 

Partitioning (170% Load Demands) 

Bus No. Part Nodal prices ($/MWhr) The magnitudes of errors % error from 

      from the unreduced network the unreduced network 

1 1 452.4010 1.4132 0.3114 

2 1 455.0086 2.0156 0.4410 

3 1 465.1339 -6.2015 -1.3513 

4 1 467.5034 0.1511 0.0323 

5 2 433.3736 36.3421 7.7370 
6 2 441.0206 24.6283 5.2890 

7 2 442.3612 23.3809 5.0201 

8 3 488.1613 -20.2240 -4.3219 

9 2 441.0277 28.0667 5.9832 

10 1 502.7701 -32.9894 -7.0223 

11 2 441.0134 28.7781 6.1257 

12 1 467.7012 2.6012 0.5531 

13 1 467.6632 -2.0115 -0.4320 

14 1 477.0171 -1.8439 -0.3880 

15 3 665.3681 -187.3083 -39.1809 

16 1 486.4638 -15.4715 -3.2849 

17 1 500.7654 -28.0517 -5.9342 

18 1 521.1987 -37.4799 -7.7483 

19 1 521.2085 -36.6830 -7.5709 

20 1 517.1835 -35.6894 -7.4122 

21 3 663.1313 -187.1506 -39.3189 
22 3 660.8830 -185.0057 -38.8768 

23 3 663.5023 -180.5004 -37.3705 

24 3 649.3352 -164.7571 -34.0001 

25 3 571.6571 -90.6396 -18.8433 

26 3 590.2068 -98.3898 -20.0054 

27 3 524.5294 -50.2519 -10.5955 

28 3 511.8329 -39.9514 -8.4664 

29 3 548.8923 -58.2104 -11.8632 

30 3 565.9198 -63.8433 -12.7159 

average 520.1411 -45.8426 -9.5070 

 
 
With this 12-branch cut arbitrary network partitioning, in 170% active load demands, the highest 

and lowest active power nodal prices are at bus 15 ($665.3681/MWhr) and bus 5 

($433.3736/MWhr) respectively. The average of all bus nodal prices is $520.1411/MWhr. The 

highest magnitude of errors comparing with the unreduced network is at bus 5 ($36.3421/MWhr) 

and the lowest is at bus 15 ($-187.3083/MWhr). Note that these values are much higher than the 

errors from our RSB approach. The average of all error magnitudes in this arbitrary partitioning 

is $-45.8426/MWhr or -9.5070%, which is about 2 times larger than the results from the RSB 
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partitioning. The optimal cost of generation from all 3 decomposed parts will be $1,161.80/hr, 

which is different from the unreduced network by  

100
1,140.40

1,161.80-1,140.40  = -1.8765%. 

Even though this arbitrary partitioning preserved the optimal power flow solution characteristics 

for the base load demand, it could not do so when we significantly changed the operating points. 

The large magnitudes of the errors in the marginal price indicate this incapability. The huge 

errors of the system marginal prices are noticeable in part 3 because the large number of load 

buses locate far from the only one generator of that sub-network, bus 8. The higher number of 

branch-cuts also contribute to this loss of computational accuracy when boosting the active load 

demands. In our RSB network partitioning, the algorithm will minimize these undesirable 

factors. The method will try to balance and optimize the bus and branch configurations among all 

sub-networks. It will also seek to minimize the number of branch-cuts of the system, which in 

turn will diminish the coupling between the sub-networks, and as a result, will improve the 

accuracy of the OPF solution relative to the unreduced network.  

 
Thus, we conclude that the reduced sub-networks produced by our RSB method can maintain a 

higher degree of accuracy during the OPF calculation. Our motivation for this research is to 

suggest an alternative approach to save the computational time of the large-scale power systems 

simulation. If we want to consider only some small portions in such a large-scale grid, we do not 

need to take the whole network model into our computation. We can apply the RSB network 

partitioning mentioned in this research to limit our focus on the smaller areas of interest. In 

practice, the RSB network partitioning could be applied as a preliminary measurement of 

network variables in the routine operations of the large-scale power systems.  

4.6 Conclusions Regarding Network Partitioning for OPF 

We propose a network partitioning technique to separate a large-scale power systems grid into 

the predetermined number of reduced order sub-networks. We use the concept of recursive 

spectral bisection (RSB) from the graph theory as the heart of our algorithm. The RSB network 

partitioning will locate the weak ties among these interconnections that produce the minimal 
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cutset-links and will seek to equate the size of each sub-network. We exercise our method in the 

IEEE 9 and 30-bus systems to test our method’s performance. The results are very promising.  

 
However, our method still has some disadvantages. If the load demands in a study network are 

too heavy, the OPF decomposed sub-networks could have no solution. Moreover, the current 

implementation of the algorithms makes use of the MATLAB Optimization Toolbox version 2.0, 

which unlike other elements of MATLAB is not designed to employ sparse matrices. In a power 

systems context, this is a significant disadvantage that adds significantly to the computational 

cost. However, the prospect of a transparent update to this toolbox that would allow sparsity to 

be exploited is quite probable. As an outlook for our future work, a key concept to reduce the 

computational burden may lie in the idea to include a set of smallest eigenvalues for the network 

partitioning, as reported in [60]. 
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5. Passivity-Based Standardized Governor Control Design 

5.1 Background and Motivation for Passivity-Based Controllers 

Among the future trends perceived (correctly or incorrectly) as being encouraged by 

restructuring is that of growing penetration of smaller-scale generation, owned or leased either 

by individual customers, or by distribution companies operating micro-grids “downstream” from 

the substation. More broadly, restructuring does make it very probable that the mix of generation 

stock connected to the grid at any moment in time will become more volatile, and the nature of 

the interconnected generator types more varied. This clearly presents a challenge to the faster 

time scale controls that are expected to contribute to stable electromechanical response, as it 

remains true that generators are overwhelmingly the vehicle by which such control is exercised. 

In the era of the vertically integrated utility, feedback controller design for stability enhancing 

loops on generating units could be carried out in an environment where the designers had 

available full knowledge of both the machine’s characteristics, and that of the grid to which it 

would connect. Moreover, for major units, the pattern of unit commitment was fairly predictable 

season-by-season. This allowed careful controller design, that for large or otherwise stability-

critical generating units, could be tailored carefully to fairly predictable operating conditions. 

The loss of this degree of predictability regarding patterns of unit commitment, and the growing 

volatility of operating conditions in general, suggests a new control design paradigm may be 

needed. Particularly for smaller units, such as those that might be classified as “distributed 

generation,” one might seek a design of feedback control (e.g., governor loops, power system 

stabilizer loops) that ideally could be guaranteed “stability enhancing” for any operating 

condition, or pattern of commitment among other units on the network. If such an ideal scenario 

is unobtainable, one might a least seek designs with the property that they could be expected not 

to contribute to a lessening of stability. 

 
In control system analysis techniques, “passivity” is an input-output property associated with a 

subsystem that generally provides that such a subsystem will not degrade stability of a larger 

system upon interconnection. Applying this concept as a design guideline must be approached 

with care, as it is dependent upon the properties of the existing system (the power grid) to which 
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the subsystem (a generator with appropriate feedback controls) is connected. For a thorough 

treatment of these topics in passivity-based control design, the reader is referred to [65]. The goal 

of the work to be presented in this chapter is to formulate a design methodology to yield passive 

controllers for generator control loops, while staying within the framework of a very well-known 

(and well-supported by software design tools) design method. In particular, this chapter will 

approach the design of governor control loops using standard Linear-Quadratic-Regulator (LGR) 

techniques, while adding a novel enhancement that the problem will be formulated to ensure the 

controllers produced are passive. Our premise is that this may provide an attractive technique for 

design of governor control loops for small-scale generators that connect to the grid in 

unpredictable patterns. 

5.2 Modeling Electromechanical Dynamics for Governor Control 

The work presented here seeks to apply passivity based control and model reduction to power 

system electromechanical dynamics. A power system as analyzed here will be assumed to 

consist of a large number power sources that are generating plants or generators, power end 

users, at loads, and a transmission network that connects them.  The transmission systems of the 

most electric utilities are interconnected and the systems operate as members of power pools. 

The primary objective of the interconnection is improved service reliability; a loss of generation 

in one area can be made up by utilizing spare capacity in another area. However, the end result 

is a very large system of enormous complexity that can impede reliable control design.  The 

principles of power system modeling relevant to electromechanical dynamics are elementary, 

but are reviewed in the following section for completeness.  

5.2.1 Brief review of relevant principles in power system modeling 

In a power system the fundamental power flow variables are the voltage (V [Volt]) and the 

current (I [Ampere]). In the normal operation, most power system voltages and currents are (at 

least approximately) sinusoidal functions of time, all with the same frequency, i.e., the current 

and the voltage have the form 
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(5.2.1) 

  (5.2.2) 

In this formulation 0 represents the frequency and  the phase shift of the considered system. 

Vmax and Imax are real numbers denoting the amplitudes. The time dependent voltage v(t) and 

current i(t) are complex quantities. The phase shift  is defined by being the phase angle of the 

complex variable; e.g., for v(t) 

  (5.2.3) 

The instantaneous power supplied to a one-port having terminal voltage v(t) and injected current 

i(t) is 

  (5.2.4) 

Suppose 

  (5.2.5) 

with P constant over the time interval [0, T]. 

 

Introducing 

      (5.2.6) 

Since transmission system will be modeled by linear admittances the voltage and the current are 

related through linear algebraic constraints. Hence it is only necessary to consider either one of 

the variables. As is the common practice, the voltage will be the variable that is used in this 

work. For easier handling of the model, the given system is transformed with a Fourier 

transformation. The associated fundamental Fourier-component are 

  (5.2.7) 
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With the so called complex admittance matrix Y the relation between current and voltage is 

given by a matrix admittance relation (see, e.g. [6]): 

  (5.2.8) 

The admittance matrix contains all the network information. 

5.2.2 Modeling of generator and load buses 

The fourteen-bus example network has been employed in previous chapters; here we expand the 

model to include the electromechanical dynamics of generators.  The parameter values for this 

extended version of the fourteen bus system are described in Appendix B. The states variables 

of the dynamics will be associated with the generators of the system. The modeling for 

electromechanical dynamics is the subject of widely available textbook treatments; see, for 

example, [6]. 

  (5.2.9) 

in which M is the effective rotational inertia of the generator-turbine set. The injected power P is 

  

Since the range of speed variation in normal operation is very small (typically less than 1.0%) 

the mechanical power P can be approximated by the product of the torque m and the constant 

rotated speed 0; i.e. 

  

Assuming lossless performance of the generator in transforming applied mechanical power to 

electrical output, it is straightforward that the electrical torque e is given by 
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in which 

  

The mechanical shaft angle m and the electrical phase angle e can be related by (see [6]) 

      (5.2.10) 

speed 

  (5.2.11) 

then the mechanical acceleration may be expressed either in terms of the time derivative of  or 

: i.e., 

  (5.2.12) 

Using the approximations and equivalences above, the resulting equation for the rotational 

dynamics at generator #k is 

  (5.2.13) 

in which, by equation (5.2.10), we have 

  (5.2.14) 
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Also with equation (5.2.8) and equation (5.2.7) the product defining active power can be 

rewritten as a function of the voltage and the phase angle 

  (5.2.15) 

This leads to a set of differential equations, indexed by k for each node with a generator attached. 

At generator nodes, there is a control system which attempts to hold the voltage magnitude of 

each generator constant. The nodes j without a generator attached and their voltage Vj and phase 

deviation j yield to another set of equations. The current delivered, ij satisfies the equation 

  (5.2.16) 

in which Yj represents admittance of an admittance load. Equation (5.2.16) can be rewritten as 

  (5.2.17) 

in which Pj,0 and Qj,0  are known constants. Equation (5.2.17) imposes two constraints at each 

node that yields an additional vector constraint 

  (5.2.18) 

Using the index "g" for node attached to a generator bus and "l" for nodes attached to a load bus, 

the following set of variables are given to model the power system: 

  (5.2.19) 

The set of quantities given in (5.2.19) define the (complex) vector V and the associated 

(complex) vector 1= Y. V. The admittance matrix Y is known. This yields the following structure 

of the equations: 

  (5.2.20) 
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  (5.2.21) 

  (5.2.22) 

5.2.3 Overall linearized state-space model 

The equations (5.2.20) - (5.2.22) are linearized around the equilibrium 
0
, V

0
. This equilibrium 

satisfies the equations 

  (5.2.23) 

and 

  (5.2.24) 

if the set point vg
0
 is chosen as 

  

The linearized equations are then given by 

 

(5.2.25) 

 (5.2.26) 

 

The term (Ddamp) is the rotational damping, appearing as a diagonal matrix. Since the second 

Jacobian matrix appearing in (5.2.26) is a square matrix, and may be assumed invertible in the 

vicinity of equilibria that define normal operating points, equation (5.2.26) can be solved to yield 

 

  (5.2.27) 

Combining equation (5.2.27) with equation (5.2.25) results in 
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(5.2.28) 

 
 

with the output given by 

 (5.2.29) 

The applied control will measure the output frequency g and produce at the generator the 

control input m. A diagram with the principle structure is shown in Figure 2.1. Introducing 

state space formulation yields a system of differential equations given by 

(5.2.30) 

 

 

(5.2.31) 

which is equivalent to 

  (5.2.32) 

Note that the term Pm is input in units of mechanical power to the system. The values of the 

matrices used for the IEEE14 bus network are in Appendix B.1.  Conceptually, the passing of 

input/output quantities between the power system, viewed as plant, and our feedback to be 

designed, as controller, is illustrated in Figure 5.1. 
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Figure 5-1: Signal Exchange between Power System and Controller 

5.2.4 Dynamic model development summary 

In this section the principles of power system modeling have been derived. A state space system 

for a power system has been formulated.  This model will serve as the numerical example for 

further investigations to` be carried out in subsequent sections. 

 
In this section the principles of power system modeling have been derived. A state space system 

for a power system has been formulated.  This model will serve as the numerical example for 

further investigations to be carried out in subsequent sections. 

5.3 The Quadratic Storage Function of the IEEE 14 Bus Network 

In this Chapter a quadratic storage function for the IEEE 14-bus network will be determined. 

The storage function will serve as the state dependent term in the cost function for design of a 

Linear Quadratic Regulator (LQR). The numerical solution for the LQR problem applied to our 

example will be computed using the MATLAB [51] tool lqr. The result is a feedback matrix 

with the property that it minimizes the cost function; our subsequent development will modify 

this standard controller design approach in such a way as to produce controllers that are passive. 
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5.3.1 The cost function 

The cost function J(t) of LQ-problems is defined by 

  (5.3.1) 

The term < x, Qx > determines the stored energy in the system. The use of the control u(t) is 

penalized by the term < u, Ru >; here R will be chosen such that this penalty is negligible. For 

the IEEE14 bus network the dimensions of the matrix Q are 10 x 10, and R‘s are 5 x 5, where R 

is selected as 10
–5

•I, with I representing a 5 x 5 identity matrix.  
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5.3.2 Interpretation of the storage function 

In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and 

the storage function, as reviewed here in Appendix A. The supply rate is the rate of energy going 

into the system and the storage function measures the amount of energy stored inside the system. 

 

These two functions are related via the dissipation inequality (A.8), which states that along time 

trajectories of the dynamical system the supply rate is not less then the increase in storage. This 

correlates to the assumption that no system can increase its stored energy by more than the 

amount of energy that is supplied to it from the outside. The difference between the internally 

stored and the supplied energy is the dissipated energy. 

As described in chapter A the storage function is quite important to determine whether a 

dynamical system (FDLS) is dissipative or not. Furthermore, the storage function measures the 

amount of energy that is stored inside the system at any instant of time. 

5.3.3 Determination of a storage function for the IEEE 14 bus network 

Since our numerical example of the IEEE14 bus network is given in state space formulation, it is 

reasonable to adopt this state space formulation given in 2. The IEEE14 bus network swing 

dynamics are linearized, yielding the state space formulation (2.32). Introducing the state 

variable x~  as 

  5.3.2) 

And the matrix A as 

  (5.3.3) 

with the input matrix B
~

  for the input u = Pm 
 

  (5.3.4) 
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and the output matrix C
~

  for the output y =  

  (5.3.5) 

yields the dynamical system 

  (5.3.6) 

with D
~

   = 0.  
 

To apply the principle of passivity-based control, we must first establish whether our system is 

indeed passive. If a system is dissipative it is also passive ([74]). Thus it will be easier to 

determine whether the system is dissipative, since this implies passivity. A necessary condition 

for Dissipativity (and hence passivity) is that the considered dynamical system is a minimal 

realization. A system G (s) is given by 

  (5.3.7) 

Standard results (e.g., Theorem 2.4-6 of [84]) yields to the criteria for a system in equation 

(5.3.7) to be a minimal realization; these require: 

 

• the matrices (A, B) are controllable, and 

• the matrices (C, A) are observable. 

 

Controllability and observability means the matrices 

  (5.3.8) 

and 
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  (5.3.9) 

have the rank n with 

  

For the IEEE14 bus network G(s) in equation (5.3.6) this can easily be verified by using the 

MATLAB functions ctrb(A,B) and obsv(A,C). Since 

 

(5.3.10) 

 

 

(5.3.11) 

 

the system G(s) is not a minimal realization and the method proposed in [88] cannot be applied 

to this system in its present form. To apply this algorithm the system (5.3.7) has to be 

transformed into a minimal realization. This is done in the next section. 

5.3.4 Transformation to a minimal realization 

The state space used for the model of the IEEE14 network will be modified through the 

introduction of a reference angle. The angle deviations are defined in reference to the first angle 

  (5.3.12) 

This means that within the overall vector of states, the state variable 1 will always be zero, 

which yields a zero eigenvalue and associated unobservability. The system can be reduced by 

elimination of this reference angle from the state space formulation. To eliminate this state one 

uses the following dimension reducing transformation 

  (5.3.13) 
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with 

                 
 
 

 

  (5.3.14) 

with  

 

To reconstruct the complete state vector one has the relation 

 

 
and 
 

 
 

Using these transformation yields  

  (5.3.15) 

So the reduced system matrix is given by 
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  (5.3.16) 

The matrices B (C, D, respectively) are determined by eliminating the appropriate row  or 

column. Now the observability and controllability tests are applied to the resulting 9 state 

dynamical system. The rank of the controllability and observability matrices are 

 

(5.3.17) 

  

(5.3.18) 

Hence, the new system 

  (5.3.19) 

is minimal and the design in [87], [88] for the matrix Q can be applied. The size of the matrices 

is shown in Table 3.1. 

Table 5.1: Dimensions for MATRICES in Reduced System G 
 

 
 

All further examinations will be done for the IEEE14 bus network as represented by this G(s). 
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5.3.5 Determination of a storage function 

When applying the lqr algorithm to develop a feedback control, it is necessary to obtain first an 

appropriate quadratic storage function. As mentioned above, the storage function will be chosen, 

such that it is a quadratic function in the states, such given by 

  

Assuming the IEEE14 bus network is dissipative, then the given definition of Dissipativity 

(MIE) in Theorem A.3.3 holds for an appropriate Q. Instead using a matrix Q and checking for 

the Dissipativity, one approach is going all the way around. Interpreting the inequality (MIE) as 

an optimization problem leads to an appropriate storage function Q. In this approach the 

passivity constraints are applied on the storage function Q. As a second approach to select Q, a 

formulation using the (partial) derivatives of the power flow equations to determine an 

appropriate Q is discussed later in this chapter. Additionally the matrix Q of the storage function 

can just be taken as an identity matrix. The controls based on these three possible Q choices are 

developed and investigated in Section 5.4. 

 

First, various possible choices for the matrix Q of the storage function S(x) =< x, Qx > in the 

IEEE14 bus network are determined. 

5.3.6 Optimization approach to selection of design matrix Q  

The determination of the matrix Q via the optimization approach is based on the definition of 

Dissipativity for quadratic storage functions. The associated definition of Dissipativity for the 

optimization approach is given by [88], [89]. A dynamical system is therefore dissipative, if the 

matrix 

  (5.3.20) 

with 
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(5.3.21) 

 (5.3.22) 

 

This can be restated as an optimization problem. The objective function is minimizing the 

maximal eigenvalue of the matrix function F(Q) 

  (5.3.23) 

with the constraint that the matrix Q is symmetric, positive definite. With this optimization 

algorithm, storage functions of several examples are determined. To illustrate the concept in 

simple systems familiar to most readers, we begin with examples of linear RLC-networks, which 

of course are inherently dissipative. This class of examples is developed in the next section. 

5.3.7 Examples of determining the matrix Q by optimization 

In this section this approach of determining the storage function via the Dissipativity inequality 

(MIE) is applied on several examples. The inequality is applied on some simple RCL-circuits to 

determine its validity and its precision. For the circuits it is known apriori that they are 

dissipative. In this way the algorithm and its implementation will be tested to see if a solution Q 

that confirms passivity can be reliably computed. 

 
Example circuit #1 
 

The first used RCL-circuit is shown in Figure 5.2. This simple network consists of inductors, 

capacitors, and resistors. Hence this RCL~network has to be a dissipative system (energy is 

"destroyed" in the resistors and dissipated in form of heat). The voltage u(t) is used as input 

variable. The output variable is the voltage at the resistor R parallel to the capacitor C. 
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Figure 5-2: Passive example RCL-circuit #1. Input is the voltage u(t),  

output the voltage at the resistor R. 

The dynamics of this RCL-circuit is described by systems equations given by 

(5.3.27) 

 
 

 
 
(5.3.28) 

 

with x = [ iL I vC ]  as the state variables. The numeric parameter values used for this system are 

given in Appendix D. 

 

Applying the optimization algorithm to this system should lead to a square, symmetric positive 

definite matrix Q.  For the numeric parameter values employed here, the result one obtains is 

(5.3.28) 

 

 

(5.3.29) 

 

 

(5.3.30) 
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Apparently the criterion of positive definiteness of the matrix Q is fulfilled, but the criteria of 

negative definiteness of the matrix F( Q) is violated. The location of the eigenvalues is shown in 

the Figures 5.3 and 5.4. 
 

 

Figure 5-3: Location of the eigenvalues for example circuit #1. 

Obviously two of three eigenvalues of F( Q) are positive. But if one considers their relative 

magnitude in the relation to the third eigenvalue, one observes that 

  (5.3.31) 

 

Since the eigenvalues 1 and 2 are much smaller than 3, we will assumed that these 

eigenvalues may be treated as essentially zero. If one accepts this premise, the dynamical system 

can be classified as dissipative and the concept of dissipative control will be applied. 
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Figure 5-4: Detailed picture of the location of the eigenvalues for example circuit (1). 

 
 

Example circuit #2 

 

Again a simple RCL-circuit is used. The circuit is shown in 3.4. Due to its construction 
 

 

Figure 5-5: Passive RCL~circuit #2. 

this RCL-circuit is only passive and not strictly passive, which is a challenge for the proposed 

algorithm. 

 

 The dynamics of this RCL-circuit is described by systems equations given by 
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(5.3.32) 

 
(5.3.33) 

 

again with x = [ iL I vC ]  as the state vector. The parameters used are shown in Appendix D. Here, 

the algorithm converges and the conditions in equation (5.3.20) are satisfied2 

 

(5.3.34) 

(5.3.35) 

 

 

(5.3.36) 

 

The results are shown in Appendix C.  

 

Knowing that the algorithm works, the IEEE14 bus system has been examined and a matrix Q 

for storage function < x, Qx > can be derived. 

5.3.8 The energy matrix Q determined for the IEEE14 system 

The MATLAB routine simsys2 is applied on the IEEE14 example system. As in the case of our 

simple circuit example above, one finds a wide range of magnitudes for the relevant eigenvalues, 

with not all maintaining a single sign. However, since the critical eigenvalues (the eigenvalues at 

the right side of the imaginary axis) are very small compared to the other eigenvalues, as a 

heuristic, we will proceed as if these values were zero. Hence the conditions for Dissipativity of 

the IEEE14 bus network will be treated as being “practically” satisfied, and we will consider the 

quality of control design that results. 

 

The matrices F( Q) and Q are shown in Appendix C. The associated eigenvalues of the matrices 

F( Q) ands Q are 

                                                
2 As a matter of fact, the same approximation error appears in this dynamical system. But 

again,we will accept the heuristic of  classifying the system as passive to within a numerical 

tolerance. 
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and 
 

 
 

In the further developments of the control we will use the determined approximated storage 

function Q as one exact storage function of the dynamical system (5.3.19). Since there is another 

approach for determining a energy matrix Q (to be described in the following section), the 

energy matrix as derived in this section will be labeled as Qopt
. 
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5.3.9 Observations regarding the approach via optimization 

Since the optimization did not yield to an unique result for Q in the sense of Dissipativity in 

(MIE), an approximation of the objective function 

  

based on the Gershgorin-circles was investigated. Here in the main text we will comment only 

that this approach did not improve the effectiveness of the algorithm. For completeness this 

investigation is briefly summarized in Appendix D. 

5.3.10 Determining the matrix Q via the approach of the partial derivatives of the power 

flow functions 

Another approach determining the energy matrix Q is the possibility via the partial derivatives of 

the power flow function which then yields a quadratic approximation to the potential function 

routinely used in power system Lyapunov functions. The energy matrix of the storage function 

can be approximated by 

  (5.3.37) 

This is the matrix Q of a storage function for the power system dynamic equations. The power 

system equations are given by equations: 

 

 

(5.3.38) 

 

 

(5.3.39) 

(5.3.40) 

 

 

(5.3.41) 
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The quadratic storage function S (Q) then is given by 

  (5.3.42) 

with 

  (5.3.43) 

With the given constraints (5.3.40) and (5.3.41) one can solve the system (5.3.38)~(5.3.41) for 

L and vL in terms of G. 

  (5.3.44) 

The storage function expressed in terms of the state variables  and G is given by 

  (5.3.45) 

with 
 
 

(5.3.46) 

 
 

(5.3.47) 

 

Note that the matrix N is not a square matrix. This method, applied on the IEEE14 bus system, 

yields a reduced system 

  (5.3.48) 
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The matrix Q
pd

 created by this approach is not inherently symmetric. To force the desired 

symmetry, the following standard step is performed 

  

The maximum magnitude component-wise error introduced by using the symmetric 

approximation is quite small. For our IEEE14 bus system example this error is  

  

Unfortunately the matrix F(QTd) in (MIE) is also not negative definite. The eigenvalues 

 
 

 
 

are positive and negative. And the ratio between the minimum and maximum eigenvalue is 10. 

Comparing the eigenvalues of the matrix QPd and the eigenvalues of the matrix Qopt shows, 

that the eigenvalues of these matrices are very close to each other. This yields the assumptions 

the developed controls will not be very different if they are based on Qopt or QTd. For 

simplification in the notation in the following sections the matrix QPd = QTd, if not otherwise 

stated. 
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5.3.11 Summary of storage function development 

Associating a quadratic storage function with passive systems, we have demonstrated a means 

by which the constraints of passivity can be imposed on an optimization problem, such as that 

employed in LQR design. Upon careful examination, the model for the IEEE14 bus network is 

shown to fails a rigorously imposed passivity test, since the matrix function F(Q) is not strictly 

negative definite. This may be explainable with the complexity of the numerical algorithms 

employed for the optimization and their sensitivity to initial conditions. The derived matrix Qopt 

can be possibly better optimized in regard the function F(Q). Nonetheless, the derived Qopt was 

not strictly negative definite, yet was the best derivable Q. 

 

Via this approach, the two problems have been solved in one step ~ the Dissipativity (and 

therefore the passivity) of the system is established to hold within an acceptable (heuristically 

determined) numeric threshold, and the storage function Q is simultaneously determined. Based 

on a choice of matrix Q a LQR based control can now be designed. Various designed control can 

be compared to controls, can be compared, based on differing choices of the matrix Q. 

 

In the next section of this chapter the controls based on this method are computed and 

implemented, and their performance bears out the acceptance of a heuristic criterion of “near 

passivity” as being acceptable for design purposes. 

5.4 Results of the Control Design 

In this section the quality of the control produced by our design method will be discussed. The 

quality of a control is on the one hand judged by the nature of its dynamic response, and on the 

other hand by the used amount of control energy. The cost function is given by 

  (5.4.1) 

The matrix Q is the matrix assigning the amount of energy stored in the system, while the 

matrix R "penalizes" use of a control, i.e., the more control effort is necessary the higher is the 

energy consumption. The importance in choosing the matrices Q and R will be shown in the 

next sections. For the matrix Q, three different approaches are made 
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The matrices Q and QPd
 were derived earlier in Chapter 3.5 and 3.7. In more investigations the 

influence of the matrix R is examined. The first case discussed, is the control designed with the 

assumption of R = 0. Since the numeric implementation of the lqr algorithm in MATLAB does 

not allow a choice of R identically zero, R = 10-16 *I is chosen.  This is quite small compared to 

the magnitude of nonzero elements of the matrices Q. To make this examination into a fair 

comparison between the designed, controls, the difference in relative magnitude of elements 

between the matrices Q, Q
Pd

 and the matrix Qid
 has to be confronted, and the problem of output 

normalization must be solved. 

5.4.1 Dimensionality Issues 

In order to have a fair comparison, the influence of the different dimensions in the used matrices 

Q( has to be eliminated. Therefore the condition 

  (5.4.2) 

has to be satisfied. This is easily done by multiplying the matrices Q, Qid with a constant 0:. In 

this case, O:Q, O:Q
Pd

 = 0.1 and O:Q
id

 = 1. So the maximum eigenvalues of the normed 

matrices are 

 

(5.4.3) 

(5.4.4) 

 

 

(5.4.5) 

 

In the future simulations, these matrices are used. 

5.4.2 Output normalizing via /LQR-gain 

To examine the system the step or impulse response for the system are computed. Since these 

functions are not normalized, i.e., their output is not fixed on a certain value, the direct results 

cannot be compared to each other. Therefore, an output of the step response has to fixed on a 
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certain value. This has to be done for all the designed controls. The approach is to normalize the 

step response of the transfer function such that 

  (5.4.6) 

in which fldc is the gain at s = o. The transfer function is given by 

   

The associated block-diagram is shown in the upper part of Figure 5.4.1. As can be seen the in 

this figure, the transfer function can be rewritten in the following form 

  (5.4.7) 

The associated block-diagram is shown in the lower part of Figure 5.4.1. To compute the 

required dc gain, the system is viewed as a sequence of SISO systems. This is done by 

selecting one column of Bi and one row of C. Computing the dc-gain at (i.e., s = 0) yields 

  

   (5.4.8) 

with (i,j) corresponding to the SISO system {Yi, Uj}. As can be seen in the Figures 5.7 and 5.8 

after scaling by fldc the control reaches the same output value in the step response after the 

rescaling. This now allows a consistent comparison to the control effort expended in each 

design. 
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Figure 5-6: Block diagram of the feedback system. The lower part of the diagram shows the 

system split into the external input and into the feedback. 

 

 Figure 5-7: Step response of the SISO 

system without rescaling. 

 

 
Figure 5-8: Corrected response of the 

SISO system appropriate rescaling 
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Table 5.2: Norm of the Output 

 

5.4.3 Comparison of control effort expended between designs 

In this section the effort of the different controls to reach the same output value on a step 

response is investigated. One possibility in which to rate the control energy is to consider the 

new output 

  

The graph of the step response of the SIMO system with selected single input and vector of 

outputs is shown in Figure 5.4.4. Regarding the Figure 5.4.4 the control based on Q
id

 is the 

control using the most effort. This means it is the control with the worst properties. To make a 

statement about the quality of the control of the SIMO system, it is necessary to compute the L2 

norm of the output, given by (see [65]): 

  (5.4.9) 

The results, obtained by the MATLAB-function normit1 are shown in the Table 5.2. Now the 

question is: In what way does the matrix R, previously assumed to be of negligible magnitude, 

influence the control effort? Therefore, the following ratios 
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Figure 5-9: Control Effort Summary Results
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and 
 

 
 

are of interest, and have been computed and plotted in Figure 5.10. This ratio has been computed 

with several different values for R, successively chosen of order 10-16, 10-17, …   10-20 magnitude. 

 

The x-axis in Figure 5.10 is the power in the control signal. That is, Figure 5.10 shows the 

progression of the ratio depending on R. The reader should note that the ratio is constant and 

stays approximately 1, indicating both that the magnitude of R has little effect, and the choice of 

Q or QPd
 does not make significant difference regarding the overall control energy expended. 

The authors must frankly state that this outcome was surprising, and remains without an 

intuitive explanation. Nonetheless, the pragmatic conclusion drawn is that the control based on 

the matrix Qid
 is not nearly as good as the other two controls. 

 

In the subsequent investigations, the control based on Qid
 will no longer considered. 
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Figure 5-10: Ratios of Output Norms 

5.5 Construction of a State Observer to Feed the LQR Controller 

In this chapter a state observer for the IEEE14 bus system is developed. Since the whole system 

has to be regarded as an interconnected network of generators spread over a large area, 

restrictions have to be introduced to make the assumed controller design, which includes a full 

state observer, fit to reality.  In particular, it is wildly unrealistic to require that each generator’s 

local control logic implement a full dynamic model for the electromechanical dynamics of the 

network, which is implicit in the full state observer assumption.  Therefore our goal in this 

section will be to investigate the feasibility of reduced dimension observers, which produce the 

local state estimates to “feed” each generator’s LQR controller.  

5.5.1 Additional constraints on the IEEE14 system 

Due to the problem of real-time transfer of data, it is quite unrealistic, that all of the states can 

be observed in reality. Actually the only directly measurable states available to me as the 

operator of a given machine are the state variables associated with "my" plant or generator. In 
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the IEEE14 example system, the only observable state is the state Xl if we define the generator 

#1 as the generator of "my" plant3. Using this knowledge, the new matrix Cr is4 

  

 

Computing the rank of the observability matrix 

  

shows that the system is fully observable by this choice of Cr. With the same reasoning of 

problems in the real-time transfer of data the choice for the matrix B: and in the same moment 

B; is 

  

The only state (=generator) which can influence the behavior of the system is the generator of 

"my" plant. With these restriction a state-observer is constructed. The questions which have to 

be answered are, if it is possible to create a state observer which shows a "sufficiently good" 

behavior, i.e., the estimated states are sufficiently close to the true values of the states to enable 

the control to operate. Additionally is the dynamics of the observer fast enough. Furthermore, 

can a feedback control be designed in which the feedback input to the system is only based on 

the first estimated state. In addition to that, it is very important to know, is it possible to reduce 

the system? 

5.5.2 Construction of the observer 

The goal of an observer is to create its error dynamics faster than the dynamics of the feedback 

control system. The dynamics of the error 

  (5.5.1) 

                                                
3 Consider the IEEE14 bus network as representative of a large network, with multiple generators playing the role of “plants.” In 

this scenario, as an owner of such a plant, one has control and knowledge about one’s own unit(s) only. 
4 Note that the starting formulation here maintains the reference angle as a state. This state is, as shown before, neither observable 
nor controllable and eliminated from the system. Nonetheless which generator stands for "my" plant it does make sense to use the 
associated angle of the "my" plant as a reference angle and eliminate the mode correlating to the reference angle from the system. 
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are described by the equation 

  (5.5.2) 

(e.g. [67]). 
 

Since the choice of L is arbitrary, it is reasonable to choose the matrix L such that 

  (5.5.3) 

Table 5.3: Lopt and Kopt and the Eigenvalues of the Feedback Matrices 

 
 

This can be realized by the MA TLAB function place. Since the choices of B; and B: are 

restricted to a vector, the eigenvalues turn out to be complex in the given system. To make the 

dynamics of the observer fast enough, the eigenvalues are chosen as 

  

Since the rank of the matrix Cr is 1, the maximum multiplicity of the eigenvalues is 1. Hence, 

small terms are added to the pole locations. The results are shown in Table 5.3. 

5.5.3 Open loop response of the observer model 

To judge the quality of the observer model, the open loop response of the observer is computed. 

The model equations are 
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(5.5.4) 

 

  (5.5.5 

with 

  

The choice of C allows us to compare the estimated state with the actual state. The results are 

shown in Figure 5.5.1. 

5.5.4 Step response of the closed control loop 

The dynamics of the closed control loop is given by 

                                           (5.5.6) 

  

Regarding now the step response of the closed loop system shows for each of the determined 

Kopt and KPd a rather unexpected behavior a the very beginning. The amplitude is far 

overshooting than the designated value of 1 (see Figures 5.12 and 5.13). 

This can be explained considering the bode-plot of the feedback system. The diagram is show in 

Figure 5.14. As can be seen in Figure 5.14 there exists an eigenvalue which is dominating in the 

high frequency band. This eigenvalue is responsible for the "odd" behavior of the step response 

done to the feedback system. One mode may be attributed as causing the overshooting at the 

beginning. 
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Figure 5-11: Plot of the state 6 and the state 60. As is obvious, that the estimated states 

follows almost optimal the state 6. The error of the state and the estimated state is 

marginal. 
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Figure 5-12: Step response of the first 

Feedback System with different locations 

of the eigenvalue.  Relevant design values 

are given in Table 5.2 

Figure 5-13: Step response of the second 

Feedback System with different locations 

of the eigenvalue.  Relevant design values 

are given in Table 5.2. 
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Figure 5-14: Bode-plot of the feedback system. It shows a clear dominance of the fastest 

eigenvalue (the eigenvalue located on the very left) in the high frequency band. 

Table 5.4: Values used in Eigenvalue Computation 

 

 

This overshooting could cause some trouble in the overall design and so it has to be reduced 

in some way. Since the main interest in this investigation is concentrated on the lower frequency 

band, there are two possibilities to remove this unintended progression of the step response. 
 

1. Removing the mode associated with high frequency band. 

2. The mode associated with the high frequency band is dominated by the one troublesome 

eigenvalue. Hence moving this eigenvalue to a more "reasonable" value more right 

decreases this influence and smoothes the step response. 
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In this work the 2nd approach has been chosen. Hereby the MATLAB routine place been used to 

create the new feedback matrices 

     (5.5.7) 

Hereby the vector E; is the vector of the eigenvalues of interest. only with a change in the first 

eigenvalue given by Table 5.4. The improvement of the step response of the feedback system 

can be seen in the Figures 5.12 and 5.13. The more the first eigenvalue of the feedback matrix is 

moved to the right, the lower becomes the peak until finally at an eigenvalue 
 

 
 

3. The system considered here is of course a power system example. The state variables are 

the frequency of the generators and the deviation of their angles. Neglecting shaft 

torsional dynamics (as we do here), the bandwidth of the transfer function of a generator 

is quite limited. Hence there is no possible high frequency influence on the generators’ 

rotational dynamics. 

 

The system shows a "nice" behavior. This can also be seen in the root-locus diagram given in 

Figures 5.12-5.14. In these plots the Evans root locus of the SISO open-loop model 

                                                    

  

is shown. Using the MATLAB function rlocus it is necessary to determine a feedback gain k. 

For the purposes in this work, k has to be 

  

that denotes in the case of k = 0 no feedback control, and in the case of k = 1 full feedback 

control.  In principle there is no major difference between the approaches. By changing the pole 

location in the feedback, a major change in the control matrix KC, is done. The change in the 

control matrices are shown in Table 5.5.3. 
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A major question is, in which way this change in the control matrices K; influences the needed 

control energy. Since the values of K; are smaller than the values of KC, it is quite reasonable to 

assume, that the needed control energy of the control matrices K; is smaller. Additionally the 

question is raised, how is the observer influenced by these changes and in which way the system 

can be reduced. 

 

4 Since only one state is considered being observable and controllable, the control matrix 

K is reduced to a vector. The values of the matrices designed by placing the eigenvalues 

(Kf 2) are from a lower dimension than the matrices KC, designed by the LQR 

algorithm. 

 

 

Figure 5-15: Root-Locus diagram for the 

feedback system 1 

Figure 5-16: Root-Locus diagram for the 

feedback system 2 
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Figure 5-17: Root-Locus diagram for the 

feedback system 3 

 
 
 
 
 

 
 
 
 

 

 

Table 5.5: Matrices K of the Feedback Control  
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5.5.5 Control energy expended by the new controls 

In this section the amount of used control energy is examined. Therefore the closed loop model 

is employed, constructed as: 

 

 

 

 

(5.5.8) 

 

  (5.5.9) 

with 

  

To examine use of control energy, a step input is applied to excite the system. The results are 
shown in the following sections. Since the cases Kopt and KPd are very similar to each other 

here only the case KC, = Kopt is considered. 

5.5.5.1 Case: Kopt 

For the feedback matrix K in the observer system (5.5.6) is chosen to be the matrix Kopt based 

on the matrix Qopt derived by the passivity constraints. The step response of this system is 

given in the Figure 5.18. To reach the control goal, a very high amount of control energy is 

needed. 
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Figure 5-18: Plot of the state variable x1 and the control feedback Kopt•xe of the observer 

system. 

The bode diagrams of the observer systems based on Kopt and KPd in Figures 5.19 and 5.20 

show the dominance of an eigenvalue in the high frequency band. This finally leads the 

controller failing, and makes the system unstable as seen in its step response. 
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Figure 5-19: Bode-diagram of the 

observer system based on the control 

matrix Kopt. 

Figure 5-20: Bode-diagram of the 

observer system based on the control 

matrix Kopt. 

 

5.5.5.2 Performance for Other Gain Selections 

In this section the modified matrices are the basis for the observer model. Again, the step a given 

onto the system. The overall output of the system is the state Xl and the control output. With the 

second output the control can be judged since the amount of used control energy is a sign for the 

quality of the control. The result of the step response is visualized in the Figure 5.21 and 5.22. As 

can be seen, both controls are able to stabilize the system. As expected, the used control energy 

in the model based on K2 is much less than the used control energy in the case based on KI. 
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Figure 5-21: Step response of the observer 

system based on first gain selection 

 

 

Figure 5-22: Step response of the observer 

system based the second gain selection 

 

 

5.5.6 Conclusions Regarding Construction of the State Observer 

In this section the observer model has been constructed. The feedback matrices have been 

determined and implemented. Certain difficulties in the control design have been investigated 

and (if possible) eliminated. The constructed state-space observer is the new model in next 

examinations and can be treated as a "black box". 

 

The remaining question to be addressed relates to reduction of the order of the "black box" 

observer system. The motivation is that in real applications a very large number of states (> 700) 

is involved. The goal is to reduce these large-scale systems to a much smaller dimensional 

system. This question will be examined in the next section of this chapter. 
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5.6 Dimensionality Reduction to Allow Practical Implementation of the State Observer 

Consider the nature of the control design described thus far: each generator locally implements a 

state feedback control, based on LQR design, that assumes avaialability of the full state vector 

to “feed” this control.  Clearly, the full state vector is not available as a measurement.  So as a 

first step towards practical implementation, we have examined the construction of an observer, 

or dynamic state estimator, to be coupled with each controller.  Such an observer reconstructs an 

estimate of the state vector from available measurements local to the generator.  However, even 

with the use of an observer, a critical shortcoming remains with regard to any practical 

implementation: the required state observer that is part of the design has the same dimension as 

the overall system to be controlled.  In other words, the computational power employed at each 

controller would have to be such that the full, linearized electromechanical state space model of 

the power system was implemented in software. This is obviously impractical.  Considering a 

large-scale power system problem, this raises the obvious need to reduce the observer 

dimension. In other words, we seek to create a observer with a much lower number of internal 

states, which has the same (or approximately the same) input/output properties. To this end, in 

this section the balanced realization of the observer model is examined. The idea is to use the 

balanced realization of the observer, ranking the states in order with regard to their impact on 

input/output behavior, and thereby make an intelligent choice as to reduction of its number of 

states. This yields to a lower dimensional observer with the approximate input/output behavior 

of the original system. The procedure employed here follows the algorithms of [80], [81]. A 

balanced realization of the observer system is obtained. Then it is simply truncated by 

discarding those parts relating to the state variables that are most weakly coupled to the inputs 

and outputs. 

5.6.1 The balanced realization 

The balanced realization algorithm is described in [80]. For a continuous-time and 
asymptotically stable system 

  (5.6.1) 

a balanced realization 
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  (5.6.2) 

is one for which the Lyapunov equations 

  (5.6.3) 

and 

  (5.6.4) 

have a common solution 

  

and  is diagonal. P and Q are the controllability and observability gramians, respectively. The 

controllability gramian is defined by 

  (5.6.5) 

and analogously the observability gramian 

  (5.6.6) 

In such a balanced realization the state variable is equally strongly coupled to the input and the 

output of the system. Solving the Lyapunov equations (5.6.3) and (5.6.4) for a dynamical system 

(A, B, C, D) gives solutions P and Q. The matrix is determined by 

  

With the matrix R a singular value decomposition can be done in the following form 

  (5.6.7) 
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Then the balanced realization (a, b, c, d) of the system (A, B, C, D) is given by 

  (5.6.8) 

(5.6.9) 

         
(5.6.10) 

  (5.6.11) 

where the transformation matrix is given by 

  (5.6.12) 

 

Considering the Gramian vector go,c. This vector go,c is given by 

  (5.6.13) 

The vector go,c is sorted. The first elements of go,c  correlate to the states with the most 

influence on the input/output behavior, the last elements correlate to the states with the least 

influence on the input/output behavior. 

5.6.2 Balanced realization of the observer model 

The goal is, determining a blanced realized model (a, b, c, d) of the open loop observer model 
(A–LC, B*, K, D) with 

  

as shown in Figure 5.23 on the following page. The new observer model (a, b, c, d) will then be 
reduced in its states and tested to determine how well the control behaves with the reduced 
observer. 
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Figure 5-23: Observer VS. Balanced realization 
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The aggregate dynamics of the balanced realized model of the system and observer together is 

given by 

  (5.6.25) 

 

As a proof, that the balanced realization observer behaves the same input/output property as the 

original observer, the step responses of the systems are shown in Figure 5.24. The output Xl of 

the combination system-original observer and system-balanced realization observer are identical. 

Additionally, the Bode diagrams of the two combined systems in Figure 5.25 demonstrate that 

the input/output behaviors of these two systems are very similar. 
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Figure 5-24: Output Xl based on the combination System-Observer vs. System-Balanced 

Realization. The error of the System-Balanced Realization is minimal. 
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Figure 5-25: Bode diagrams of the system-observer combination vs. system-balanced 

realization combination 

This means, the dynamics of the balanced realization based system is unchanged. Based on this 

knowledge, the observer (after applying the balanced realization) is reduced in its states by 

eliminating certain modes. Regarding the vector go,c for the IEEE14 bus network 
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The vector go,c shows, that the biggest difference in dimension is about 102 between the first 

and the last element of go,c.  Therefore the first try will be to eliminate the state, associated to 

the last element in go,c. This means the associated columns and rows will be eliminated from 

the formulation. To determine the quality of the approximation the bode-diagrams of the 

original observer and the reduced observer is computed. The results are shown in Figure 5.26. 
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Figure 5-26: Bode diagrams of the open loop observers: Original observer (shown as line 

format -) and Reduced observer (shown as line format x). 
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After reducing the 9th mode the step response to the system with the reduced observer is shown 

in Figure 5.24. Surprisingly the system is unstable, even if the reduced feedback observer has a 

very similar input/output behavior as the full state observer. The explanation is given by 

considering the bode diagrams. The bode diagrams of the reduced model vs. the full observer 

model are shown in Figure 5.25. In Figure 5.25 the unstable behavior of the reduced system is 

explained. Even if the open loop input/output behavior of the reduced observer is a good 

approximation to the full state observer, that closed loop with the reduced model changes the 

dynamics dramatically. This leads finally to the instability of the closed loop system. 

 

This yields the conclusion, that the model reduction via the balanced realization can not be 

successfully applied to a dynamical system like the IEEE14 bus network in its present form I. 

There exist other approaches to reduce the model of a dynamical system, e.g. the approach of 

[83]. But this method does not yield to a successful solution either. 

5.6.3 Sensitivity analysis 

As shown in the previous section, a reduction of the system consisting of the IEEE14 bus 

network and an observer2 cannot be done by the here shown approach. This raises the question 

why this approach is not working. Therefore a sensitivity analysis has been done. In the 

sensitivity analysis the impact of parameter changes in the observer matrix L and the control 

matrix K to closed loop system has been examined. 

 

The matrix of the closed loop is given by 

  (5.6.26) 

1 As a matter of fact, the IEEE14 bus network is a stable but poorly damped system. While 

not practically of interest, one notes that increasing the damping of the system in equation by 

increasing the entries in the matrix Ddamp would yields a system which would be easier to 

reduce by the balanced realization (see Appendix E). 

2 To avoid cumbersome repetition, if not mentioned explicitly, the composite system 

"IEEE14 bus network–observer" will be called simply "the system" . 
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Figure 5-27: Step Response on the system with observer reduced by order 1. The system is 

instable, even if the reduced observer has almost the same input/output behavior as the full 

observer. 
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Figure 5-28: Bode Diagram of the full model and the by order 1 reduced model 
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The behavior of the system is determined by its eigenvalues. Since we are interested in the 

influence of parameter changes to the stability of A(L, K) we investigate the impact on the 

eigenvalues. 

 

For given initial LO, KO the eigenvalues A(A) can be determined. Then the partial derivatives of 

the eigenvalue vector and either the observer vector L or K is computed such that 

  (5.6.27) 

The eigenvalues of the system A are not sensitive due to parameter changes in L, K respectively, 

if the maximum value of the resulting matrix 2£, 2K respectively is very small (if the maximum 

value of 2( is 0, there is not impact). 

5.6.3.1 Sensitivity of A(L, K) due to changes in L 

Provided that there are no repeated eigenvalues, the following approach the partial derivatives of 

A(L, K) can easily be determined. 

 

With 

  (5.6.28) 

where A is given by 

  (5.6.29) 

the matrix of left eigenvectors can be determined. Analogously the matrix of right eigenvectors 

V can be derived from the equation 

  (5.6.30) 

Then the partial derivatives of the eigenvalues can be derived from 

  (5.6.31) 
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Table 5.6: Matrix of Sensitivity of the Eigenvalues of A due to Parameter Changes in L 
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Table 5.7: Matrix of Sensitivity of the Eigenvalues of A due to Parameter Changes in K 
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with Vk the kth column of V and Wk the kth row of W. The partial derivatives with respect to L 

are derived in a manner analogous to that in equation (5.6.31), replacing L by K. The sensitivity 

matrix for L is shown in Table 5.6, the sensitivity matrix for K is shown in Table 5.7. 

 

The maximum values of the sensitivities with respect to L and K are: 

  (5.6.32) 

This shows, that perturbations in the control matrix K have a bigger impact on the stability of 

the system than variations in the observer matrix L. This is also the explanation for the fact that 

the model reduction presented in this chapter does not yield a practically feasible result. The 

elimination of one or more states influences the stability of the composite system such a way 

that it becomes unstable. 

5.6.4 Summary Observations Regarding Use of a Reduced Order Observer  

Application of the balanced realization technique to obtain a reduced observer has been 

described. This procedure has been applied at the IEEE14 bus network. The model 

approximation of the reduced observer was a very good approximation of the input/output 

behavior of the full state observer. But even since the input/output behavior is very much the 

same, the feedback system constructed out of the physical system and the reduced observer of 

the IEEE14 bus network is unstable. 

 

A reduction of the observer by the balanced realization to a stable composite system with a 

reduced number of states is in this case not possible. 

 

The sensitivity analysis showed that the composite system consisting of the physical system and 

the state observer is quite sensitive due to parameter changes in the control matrix K. A model 

development sequence in which the control matrix K is determined first, then followed by model 

order reduction, appears not to be practically feasible because of this high sensitivity. 
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Appendix A

De�nition of Passivity and

Dissipativity

A�� Introduction

This sections introduces the idea of passivity �and dissipativity�� Furthermore the

de�nition of passivity and other de�nitions and theorems related to the subject of

passivity are introduced� The fundamental work in passivity theory is ���� Most of the

de�nitions used in the here presented work are quoted from ����

A�� Passivity

A���� Motivation for Passivity

The passivity theorem and the small gain theorem play an important role in the study

of closed�loop stability ������	��� The small gain theorem is de�ned as following �from

�����

De�nition A���� Consider the closed�loop system 
f
G��G�

given in Figure A�� and let

q � f�� �� � � � ��g� Suppose that both G� and G� have �nite Lq�gain given as �q�G���
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respectively ��G��� Then the closed�loop system �f
G��G�

is Lq�stable if

�q�G�� � ��G�� � �� �A���

Equation �A��� is also known as the small gain condition� This means that two stable

systems G� and G� which are interconnected as shown in Figure A��� result in a stable

closed�loop system provided� that the �loop�gain� is �small� �i�e� less than �� ��	�

The passivity theorem is primarily concerned with the L��space� while the small gain

e�

e�u�y�

u��

�

G�

�
�

y�

G�

Figure A��
 Closed�loop con�guration�

theorem can be formulated for all Lq�spaces�

An important de�nition which will be often used in this work� is the de�nition of

the inner product of two functions in L��

De�nition A���� The inner product of two vector �elds is given by

� f� g � �

�Z

�

f�t�g�t�dt� f� g � L�� �A��
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or more generally for the extended space Lm
�e

� f� g �T �

�Z

�

mX
i��

fi�t�gi�t�dt �A���

with

f � �f�� � � � � fm�� g � �g�� � � � � gm� � Lm
�e�

De�nition A���� Let G � Lm
�e � Lm

�e� Then G is passive if � some constant � such

that

� G�u�� u �T � � �u � Lm
�e� �T � �� �A���

G is strictly input passive if � � and � � such that

� G�u�� u �T � �kuTk
�

�
� � �u � Lm

�e� �T � �� �A�	�

and strictly output passive if � � and � � � � such that

� G�u�� u �T � �k�G�u��Tk
�

�
� � �u � Lm

�e� �T � �� �A�
�

Next to these de�nitions of passivity an important role plays the theorem of inter�

connection of passive systems�

Theorem A���� �from ���� Consider the closed�loop system f
G��G�

in Figure A���

Assume that for any e�� e� in Lm
�e there are solutions u�� u� in Lm

�e� If G� and G� are

passive� then f
G��G�

with the inputs �e�� e�� and outputs �y�� y�� is passive� and strictly

output passive if both G� and G� are strictly output passive�

The proof for this Theorem can be found in e�g� ���� These de�nition can now be

applied on an electrical circuit� Considering a One�port in Figure A��� The power

delivered to the one�port is

p�t� � v�t�i�t��
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N

i�t�

�

v�t�

�

Figure A��� One�port�

If S�t�� represents the energy stored in the system at the initial time t�� then the

one�port is passive if

S�t�� �

tZ

t�

v�t�i�t�dt � �� �v� i	 �t � t�� �A�
�

The nonnegative function S � X � IR� is called the Storage function� The inner

product w �� v� i � is called the Supply rate of the dynamical system ��

A�� Dissipativity

Dissipative systems are of particular interest in engineering and physics� The assump

tion of dissipation� which distinguishes such systems from general dynamical systems

yields to a fundamental additional constraint on their dynamic behavior� For example

viscoelastic system are dissipative since viscous friction is responsible for an energy

loss� Another group of typical dissipative systems are electrical networks in which a

part of the �electrical� energy is dissipated by e�g� resistors in form of heat�

A main result in stability theory states that a feedback system which consists of a

passive dynamical system in the forward and the backward loop is itself passive and

thus stable �Theorem A������ Furthermore the sum of the stored energy in the forward

and backward loop is a Lyapunov function ���������
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Dissipativity is a generalization of the passivity concept� In the concept of Dissi�

pativity a very important equation is the so called dissipation inequality�

De�nition A���� �from ����� A dynamical system � with the supply rate w de�ned on

U�Y is said to be dissipative if there exists a nonnegative storage function S � X � IR��

such that for all �t�� t�� � IR�

� � x� � X� u � U � and y � Y �

S�x�� �

t�Z

t�

w�t�dt � S�x��� �A���

Equation �A��� is the so called dissipation inequality�

The approach taken within equation �A��� is based on physical considerations� The

classi�cation of a system as dissipative implies that a storage function exists� A central

question in this analysis isthe nature of such a storage function �	
���� Therefore the

quantity named available storage is introduced� Available storage is the maximum

amount of storage which may at any time have been extracted from the dynamical

system� The available storage is a generalization of available energy�

De�nition A���� �from ����� The available storage Sa� of a dynamical system � with

supply rate w�t� is the function X into IRe de�ned by

Sx�x� � sup
x�t�

�

t�Z

�

w�t�dt

where the notation �x �� denotes the supremum over all motions starting in state x

at time 	 and where the supremum is taken over all u � U 


The available storage is an important function in determining whether or not a dy�

namical system is dissipative� This shows the theorem of 	
�� below�

Theorem A���� �from ����� The available storage Sa is �nite for all x � X if and

only if � is dissipative
 Moreover� � � Sa � S for dissipative dynamical systems and

Sa is itself a possible storage function
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For proof see �����

In this work the concepts of passivity and Dissipativity are only applied to a class

of linear systems� The systems are described by the linear� time�invariant vector dif�

ferential equation

�x � Ax 	Bu

y � Cx 	Du�


FDLS�

The matrices A�B�C�D of the dynamical system 
FDLS�� are constant matrices

of appropriate dimensions with x � IRn� u � IRm� y � IRp� The essential model

assumptions in considering this model are linearity� time invariance and a �nite number

of degrees of freedom� The transfer function of the dynamical system 
FDLS� is given

by

G
s� � D 	 C
sI�A���B 
A��

A���� Frequency�Domain Condition for Dissipativeness

In this section� the conditions for Dissipativeness are established in case of frequency�

domain� The following theorem for Dissipativeness is given by �����

Theorem A���� �from ���� � Assume that the dynamical system �FDLS� is minimal�

Then it is dissipative with respect to the supply rate w �� u� y � if and only if the

transfer function �A��� is positive real� i�e� G
� 	 j�� 	 G
��j�� � � for all � � �

and � � IR� � 	 j� �� �
A�� or equivalently

� �i� �
�
A�� � �

� �ii� G
j�� 	GT 
�j�� � � for all � � IR� j� �� �
A�

� �iii� the eigenvalues of A with �
�
A�� are non	repeated and the residue matrix

at those eigenvalues� lims�s�

s�s��C
sI�A���B� is Hermitian and nonnegative

de
nite�

�FDLS stands for Finite Dimensional time invariant Linear Systems�
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This theorem gives a necessary and su�cient condition for there to exist a storage

function

S � IRN
� IR�� �x� � IRn� u � U

such that the dissipation inequality �A��� and the solution of the dynamical system

�FDLS�

x� � eA�t��t��x� �

t�Z

t�

eA�t��t��Bu���d�

y�t� � CeA�t�t��x� �

t�Z

t�

CeA�t�t��Bu���d� �Du�t�

is satis�ed� Adopting the normalization convention minx�IRn S�x� � S�	� � 	 de�nes

the available storage
 Sa
 and the required supply
 Sr
 by

Sa�x�� � � lim
t���

inf
u�U

t�Z

�

� u�t�� y�t� � dt �A��	�

Sr�x�� � lim
t
�����

inf
u�U

�Z

t
��

� u�t�� y�t� � dt �A����

subject to the dynamical system �FDLS� and the initial and terminal conditions x�t��� � 	

and x�	� � x�� As shown in Section � in ���
 the assumption of invertibility of the

matrix D�DT reduces the evaluation of the available storage and the required supply

to a standard optimal control problem which may be solved by considering appropriate

solutions of the algebraic Ricatti equation

KA � ATK � �KB�CT ��D �DT ����BTK�C� � 	�
�ARE�

This yields to Lemma � in ���
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Lemma A���� �from ����� Assume that the system �FDLS� is minimal and that D�

DT is invertible� Then the algebraic Ricatti equation �ARE� has a real symmetric

nonnegative de�nite solution if and only if the system �FDLS� is dissipative with re�

spect to the supply rate w� If this is the case	 then there exists precisely one real

symmetric solution K�	 having the additional property ����A��� � �	 where A� �

A � B�D �DT ����BTKT �C�	 and precisely one real symmetric solution	 K�	 hav�

ing the additional property ����A��� � �� Moreover � � K� � K� and every real

symmetric solution satis�es the inequality K� � K � K�� Thus	 all real symmetric

solutions are positive de�nite� The strict inequalities G�j���GT ��j�� � � for � � IR	

����A��� � �� ����A��� � �	 and K� � K� all hold simultaneously�

Lemma �A����� only holds if the transition matrix D �D � DT respectively� is

non�singular� Since the transition matrix in the later used example of Appendix B is

singular	 the case D singular has to be considered� In the case when D�DT ceases to

be nonsingular	 the simplest way of apporaching this problem is introducing


D � lim
���

�D �
�

�
��

Then K�
�
and K�

�
are de�ned by the Ricatti equation

K�A� ATK� � �K�B�CT ��D �DT � �I����BTK��C� � �

and K� � lim���K
�

�
and K� � lim���K

�
�
	 assumed these limits exist� Using Theo�

rem � in ��� de�nes the available storage as

Sa�x� �
�

�
� x�K�� x �

and the required supply as

Sr�x� �
�

�
� x�K�� x � �
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A���� State�Space De�nition for Dissipassivity with Quadratic

Storage Functions

In this section� the de�nition in the state�space for dissipativity will be given� This

will be done considering the storage function being a quadratic function of the state x

�

�
� x�Qx � � �A����

The quadratic storage functions are of a particular interest� Quadratic storage func�

tions re	ect internal linearity� Moreover� in these applications it is a good assumption

for postulating that dissipative systems exhibit their linear input
output behaviors�

Assuming a storage function given by equation �A���� with Q � QT symmetric�� This

leads to Theorem � in ���

Theorem A���� �from ����� Assume that the dynamical system �FDLS� is minimal�

Then the matrix inequalitites

�
ATQ �QA QB�CT

BTQ�C ��D �DT �

�
� �

�MIE�

and

Q � QT
� �

have a solution if and only if �FDLS� is dissipative with respect to the supply rate

w �� u� y �� Moreover� the function �

�
� x�Qx � de�nes a quadratic storage function

if and only if it satis�es these inequalitites� Consequently� K� and K� satisfy these

inequalities and every solution satis�es � � K� � Q � K��

This theorem is proofed in ���� Theorem A���� states that the external linearity

given by the input
output map from u to y is linear implies the existence of a model

which is linear in its state variables ������ This model �i�e� a model like �FDLS��

�As given in ���� this entails no loss of generality�
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has� additionally� a storage function which is quadratic in the state variables� The

matrix inequality �MIE� will have a very important role later in this work� Usually

the storage function of a dynamical system �FDLS� is unknown� Interpreting �MIE�

as an optimization problem yields a solution for the matrix Q and also for the storage

function�
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Appendix B

The IEEE�� bus network

In this appendix the IEEE�� bus network is described� It is the example system� which

is exmined in this work� The One�Line diagram of the IEEE�� bus network is shown

in Figure B��� The IEEE�� bus network consist out of �� buses � � generator buses

G
G

G

G

G

��

��

��

�

�

�

�

�

�

�

�

�

�

��

��

Bus ��s

Figure B��� One�Line Diagram if IEEE�� Bus System�

and � load buses� No in	nite bus is employed� The generators are the input of the

system� They appear at the buses �� 
� �� �� and � The state variables for the IEEE��
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bus network are given by

x �

�
�����������

�G�

���

�G�

�G�

���

�G�

�
�����������

with

x � IR���

B�� Values of the matrices in Chapter �

The parameters for the matrices in ������ are�

A� �

�
��������

�����	
 ��
��
�� �����	� ����� ����
�

��
�	�� ������ ������ ������� ���	�
�

������� ���

� ����� ���
��	 ����	�

������ ������� ���
�	 	���� �������

����	�� �����	� ���
�� ����� ��	��


�
��������

Ddamp �

�
��������

�����	� � � � �

� �����	� � � �

� � �����	� � �

� � � �����	� �

� � � � �����	�

�
��������

M �

�
��������

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�
��������
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The impulse response of the IEEE�� bus network is shown in Figure B��� The output

is the frequency of each generator The parameters are remotely realistic� The system

Time (sec.)
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Figure B��� Impulse Response of the IEEE�� bus network

itself is oscillating� but stable� After a time period of around � minutes the oscillations

are minimal�
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Appendix C

Results of the computations

C�� RCL�circuit ���

In this section are the results for the matrices and eigenvalues of section ����� presented�

Matrix �

���e��� �

�����	�

�������	 �������������� �����������������

�������������� �������������
��� ����������������

����������������� ���������������� �

�� Q

Q �

���e��
 �

������		������
� ���������������
�

���������������
� ����������

��
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�� eig�Matrix�

ans �

���e��� 	


��������������


����������������

�

�� eig�Q�

ans �

���e��� 	

����������������

���������������

��

C�� Computations of the IEEE�� system

The matrix F�Q� is given by

�� Matrix

Matrix �

Columns � through �

���������������� ��������������� ���������������� ����������������
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�������������	�� ����������	

��� ������������

	�� ������������
�	��

��������������	� ������������

	�� ���������
�����	 ������	������
��

�����
�������	�� ������������
�	�� ������	������
�� �������

��
��	�

�����	���	�	�
��� �����������	�	�	� ����������������� ��������
�����	��

�������	�������	 ����������

���
 �������
�	
��	�� ������		��
		�
�

����	������������ �����	���������� ������	�	�������� ����
����
����
�

����	����
	����� ������������
��	 �������
��������� ���	�
����������

�������	�
����	� �����������	�		� ���������������� ������������
��
	

����������
������ ��������		��	�	
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����
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��� ������
��
�	��
��

����������	�
���� �������	�
�����	� ������
��
�	��
�� ����������������

�������

	������ ����������	�	��	� ������	��������	� �������������
��

Columns � through �

�����	���	�	�
��� �������	�������	 ����	������������ ����	����
	�����

�����������	�	�	� ����������

���
 �����	���������� ������������
��	

����������������� �������
�	
��	�� ������	�	�������� �������
���������

��������
�����	�� ������		��
		�
� ����
����
����
� ���	�
����������

������������
		�� �������
����
��	 ��������
�	��	�	� ������	�
	�
��
�

�������
����
��	 ������������	���� �������������
		 �������������	���

��������
�	��	�	� �������������
		 ���	
������	����� ����	�����	������

������	�
	�
��
� �������������	��� ����	�����	������ ������
���
������

��������������
� ������
�

�	�
��� ���
�	�
�������	 ������	�����	���

�������

	������ ����	�����	����� ������
���������� ��������
���
����

����������	�	��	� ���������������� �����	����������� ������	��������	

������	��������	� �����������	��
�� ��������

�����
 ��������	���
��
�

�������������
�� ����������������
 �����	���
������ ����������	�	���

���������	������� �����
	�������	�� ���������
���	�� �����
����������

Columns 
 through ��
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��

The matrix Q is given by

�� Q

Q �

Columns � through �

��������	��
���� �������	��		���� �����	�	�����
�� ������	�	�������
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Appendix D

Optimization via Gershkorim�rings

D���� Restated problem

Since the eigenvalue computation wasunique in MATLAB one decided to approximate

the eigenvalues of a system by its Gershkorim�rings around the diagonal elements of

the system matrix� The eigenvalues have to ly within these rings as shown in �gure

D��� The new optimization problem is �nally described by

z � min �max �Fii �
X

k ��i

jFikj��� Fii � � �D���

G��Q� 	� �min �Qii �
X

k ��i

jQik�j �D�
�

G��Q� 	� Q�QT � � �D���

G��Q� 	� �G��Q�� �D���

�D��

Unfortunately this approach again does not yield to a unique result� As a matter of

fact� the results got worse in all the cases� This justi�es the assumption� that the

restriction on the constraints were too strong�
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Figure D��� Gershkorim�rings for the matrices F�Q� and Q�
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To be able to reduce the size of the system consisting of the physical system and the

observer system �PS�OS� the damping of the system has to be increased� The new

damping matrix is determined by multiplying the old damping matrix by a constant �

Dnew
damp � � �Ddamp� �E���

The new damping matrix yields a new system matrix A�

A� �

�
�Dnew A�

� I

�
� �E���

Based on this system matrix A� a LQR control can be designed which yields a control

matrix of the form K�A��� As seen before one of the eigenvalues of the closed loop

��A�
�BK� is far away from the other eigenvalues of the system� As before� this

eigenvalue is replaced by an eigenvalue which is approximatively �	�� So the new�

destinated closed loop eigenvalues are

���A�

�BK�� �

�
������

�	�

���A
�
�BK�
���

���A
�

�BK�

�
������ �

�
������������������

�
�
���

������ � ��	��i

���������	��i

�����
� � 	�����i

�����
��	�����i

������ � 	����	i

�������	����	i

�	�
��� � 	���i

�	�
����	���i

�
������������������

�E���

Since the eigenvalues of the closed loop system� and the matrices A�� B are known the

matrix K� can be determined� The dynamics of the new system �PS���OS� is given by�
�x

��x

�
�

�
A�

�BK�

LC A�
�BK�

�LC

��
x

�x

�
�E���

or in terms of a balanced realization�
�x

��x
b

�
�

�
A�

�Bk

LC a�bk

��
x

�xb

�
� �E���

204



In the balanced realization �E��� up to � modes �mode ��s �� �� �� can be removed

without loss of stability� By removing mode �� the system becomes unstable�

The step response of the �reduced� system is shown in Figure E�	� That the by

� modes reduced system still provides su
ciently enough precision� is shown by the

Figure E�� The error between ��� ��b

��
is minimal and stable� even in the largest

reduction� This is shown in Figure E��� The bode diagram of the by � states reduced

model and the full system is shown in Figure E��� As can be seen in Figure E�� the

IO properties of the reduced and the full system are almost identical� This yields the

conclusion� that the model reduction by eleminating states of the balanced realization

is realizable� But this approach is not applicable on such poorly damped systems as

the in this work considered IEEE	� bus network�
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Appendix F 
 

Documentation of the MATLAB 

Network Partitioning Code  
 

 Tests the RSB and arbitrarily network partitioning algorithms were performed 

within MATLAB environment [51].  There are 3 main functions and 17 sub-functions in 

our complete packages briefly described below: 

Three main functions: 

• RSB.m 

separate a given test network into a predetermined parts using the recursive 

spectral bisection method (RSB) 

• Arbitrary.m 
prepare OPF data of the arbitrarily cut sub-networks 

• find_cost.m 

perform the OPF for each individual decomposed sub-network and find each sub-

network power generating cost. 

 17 sub-functions: 

• add_Sline.m 
add the equivalent fixed demands or injections at both ends of the cutset-links with the values 

equal the corresponding active/reactive OPF line flows 

• bus_ordering.m 
re-number all the sub-network bus indices to have "1" as its first index and the rest are 1 

incrementally ordered 

• bus_reordering.m 
re-number bus indices of part 1 and part 2  back to the original numbers 

• construct_jacobian.m 
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construct the network OPF Jacobian  

• constructA_Y.m 

construct the network incidence matrix, primitive admittance matrix, and 

admittance matrix 

• dataout.m 
display the network bus voltage and line flow OPF results on the monitor screen 

• edge_separators.m 
 find the indices of the edge separators between the 2 sub-networks 

 

• form_subnetwork.m 
extract the sub-network data from the MATPOWER unreduced network format 

• initial_condition.m 
 create the state initial values for the fmincon command 

• network_data.m 
prepare the necessary network data to be used during our MATLAB computation 

• obj_function.m 
 the objective function for the optimization solver fmincon 

• pf_constraint.m 
setup both equality and inequality OPF constraints for the optimization solver fmincon 

• pflowjac.m 
form the matrix of partial derivative of complex power absorbed by the network at each bus with 

respect to bus voltage angle and voltage magnitude 

• pfmiss.m 
form the vector of complex power mismatch at each bus 

• separation.m 
perform the optimization routine for the RSB network partitioning 

• UPDATESep.m 
update the “Sep” matrix (the matrix that contains indices of each sub-network) 

• UPDATESm.m 

update the matrix “Sm” (the matrix that contains the number of generators and the 

Fiedler value in each sub-network) and determine the part that is separated in the next 

step 
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 The main functions RSB.m, Arbitrary.m and find_cost.m are called from the 

MATLAB command line.  Their related sub-functions, then, are automatically invoked.  

Before the find_cost.m main function is used, either RSB.m (for the RSB partitioning 

method) or Arbitrary.m (for the arbitrarily partitioning method) are required to be 

executed. 

All above functions and sub-functions are described in more detail in the next 

section.  Note that the data entering in the sub-functions can be either unreduced network 

data or the sub-network data; the output data are in the same format.   
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Function “RSB.m” 
 

 The function RSB.m is the main program to separate a given test network into the 

predetermined parts using the recursive spectral bisection method (RSB).  This function 

can be called from the MATLAB command line.   

 From the study-network data in the MATPOWER format, first, the code extracts 

all the necessary information (i.e., number of lines and buses, and indices and numbers of 

all types of buses).  The resulting information is used to initialize some values before the 

code enters the main partitioning loop.  The partitioning loop runs until the desired 

number of parts is met or until every part has only one generator left.  To facilitate the 

construction of the incidence and network admittance matrices, in each iteration, the code 

needs to re-number all the sub-network bus indices.  The function “separation.m” is 

invoked in each iteration to process the optimization problem.  The resulting bus indices 

of the 2 parts are re-numbered back to the original indices using the function 

“bus_reordering.m”.  The function “add_Sline.m” adds the equivalent fixed demands or 

injections to both ends of the cutset-links.  The number of generator buses in each part is 

determined. 

The code chooses to partition in the next sub-network that has the smaller Fiedler 

value, and that has more than 1 generator left.  

 When the main loops end, the monitor screen displays the generating cost, the 

indices of all separated parts, and the program executed time.  The resulting bus data 

(after adding the equivalent fixed demands or injections), and the indices of all 

decomposed sub-networks are stored in M-files.  These 2 matrices are used as the input 

data for the function “find_cost.m” to test our method’s performance to check the total 

cost of power generation and the bus active nodal prices. 

 

 

{RSB.m - MATLAB code follows:} 
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% Clear the monitor screen. 
clc 
% Clear all previous variables. 
clear all 
 
% Input a predetermined number of desired parts. 
parts=input('How many parts to be separated? ') 
 
% Check the total computational time (also see toc command below). 
tic 
 
% Choose to test between 9 or 30 bus cases. 
  [baseMVA, Bus, gen, Line, area, gencost] = case9; 
% [baseMVA, Bus, gen, Line, area, gencost] = case30; 
 
% Prepare necessary data to be processed in the first loop. 
[nbus,nline,slacklist,genlist,loadlist,slackUgen,all_list,... 
      nslack,ngen,nload,L_sUg]=network_data(Bus,Line); 
 
% Initialize data for the first loop computation. 
 
% First loop set all buses together in one part. 
Sep(:,1)=[1:nbus]'; 
% Number of generators. 
Sm(1,1)=ngen; 
% Smallest eigenvalue. 
Sm(2,1)=0; 
% Current part number that is separated. 
seppt=1; 
% # of buses within current part. 
busseppt=nbus; 
% Set flag : cost of generating power from each RSB loop. 
index_cost=1; 
 
% RSB loop starts here. 
while(size(Sep,2)<parts)&(size(Sep,2)<L_sUg) 
 
% Check the buses in the current part. 
nonzero_index=length(find(Sep(1:busseppt,seppt))); 
bus_list=Sep(1:nonzero_index,seppt); 
 
% Prepare data for the next loop of network partitioning. 
[Bus_sub,Line_sub,gen_sub,gencost_sub,nbus_sub,nline_sub]=... 
   form_subnetwork(Bus,Line,bus_list,gen,gencost); 
 
% Re-number the network bus indices making them no shift in numbering. 
% Otherwise, later loops are not converge. 
[Bus_sub_or,Line_sub_or,gen_sub_or,gencost_sub_or] = ... 
   bus_ordering(Bus_sub,Line_sub,nbus_sub,nline_sub,gen_sub,gencost_sub); 
 
% Use the re-numbered data for our computations. 
[nbus_sub,nline_sub,slacklist_sub_or,genlist_sub_or,loadlist_sub_or,... 
   slackUgen_sub_or,all_list_sub_or,nslack_sub,ngen_sub,nload_sub,... 
   L_sUg_sub]=network_data(Bus_sub_or,Line_sub_or); 
 
% Construct the network incident matrix and admittance matrix. 
[A_sub_or,Yp_sub_or,Ybus_sub_or] = ... 
   constructA_Y(nbus_sub,nline_sub,Bus_sub_or,Line_sub_or); 
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% The fmincon function require users to set the initial data. 
[vbus_sub_or,Pg_sub_or,del_sub_or,vmag_sub_or,x0_sub_or] = ... 
    initial_condition(Bus_sub_or,baseMVA,nbus_sub,... 
    slacklist_sub_or,genlist_sub_or,slackUgen_sub_or,gen); 
 
% The RSB partitioning is occurred within this sub-function. 
[fval,part_1_or,part_2_or,second_smallest_eig,... 
    sline,sline_oddindex,sline_evenindex] = separation... 
   (del_sub_or,x0_sub_or,Ybus_sub_or,Yp_sub_or,A_sub_or,... 
   Bus_sub_or,Line_sub_or,baseMVA,slacklist_sub_or,... 
   genlist_sub_or,loadlist_sub_or,nbus_sub,gencost_sub_or,... 
   gen_sub_or,slackUgen_sub_or,L_sUg_sub,Bus_sub,Line_sub); 
 
% The value of the objective cost function. 
gen_cost(index_cost)=fval; 
% Increase flag when complete the first loop. 
index_cost=index_cost+1; 
 
% Re-number bus indices in part_1, and part_2 back to the original number. 
[part_1,part_2]=bus_reordering(Bus_sub,Bus_sub_or,part_1_or,part_2_or); 
 
% This function locates the cutsets that link between the 2 parts. 
[edge_cuts,cut_index] = ... 
    edge_separators(part_1,part_2,Bus_sub,Line_sub,nbus_sub,nline_sub) 
 
% This function adds the fixed equivalent demands or injections 
%    to the cutset links. 
[Bus] = ... 
    add_Sline(edge_cuts,cut_index,Bus,sline,... 
    sline_oddindex,sline_evenindex,baseMVA) 
 
% Update the Sep matrix. 
Sep=UPDATESep(Sep,seppt,part_1,part_2); 
 
% Check # of gen in part1. 
gen1=length(find(ismember(part_1,gen(:,1)))); 
 
% Check # of gen in part2. 
gen2=length(find(ismember(part_2,gen(:,1)))); 
    
% Use the same functions as above  
%   to determine the Fiedler value for part 1 
sm1=0; 
if gen1 >1, 
[Bus_sub,Line_sub,gen_sub,gencost_sub,nbus_sub,nline_sub]=... 
   form_subnetwork(Bus,Line,part_1,gen,gencost); 
 
[Bus_sub_or,Line_sub_or,gen_sub_or,gencost_sub_or] = ... 
   bus_ordering(Bus_sub,Line_sub,nbus_sub,nline_sub,... 
   gen_sub,gencost_sub); 
 
[nbus_sub,nline_sub,slacklist_sub_or,genlist_sub_or,... 
        loadlist_sub_or,slackUgen_sub_or,all_list_sub_or,... 
        nslack_sub,ngen_sub,nload_sub,L_sUg_sub]=... 
        network_data(Bus_sub_or,Line_sub_or); 
 
[A_sub_or,Yp_sub_or,Ybus_sub_or] = ... 
   constructA_Y(nbus_sub,nline_sub,Bus_sub_or,Line_sub_or); 
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[vbus_sub_or,Pg_sub_or,del_sub_or,vmag_sub_or,x0_sub_or] = ... 
    initial_condition(Bus_sub_or,baseMVA,nbus_sub,... 
    slacklist_sub_or,genlist_sub_or,slackUgen_sub_or,gen); 
 
[fval,part_1_1_or,part_1_2_or,second_smallest_eig1,... 
    sline1,sline_oddindex1,sline_evenindex1] = separation... 
   (del_sub_or,x0_sub_or,Ybus_sub_or,Yp_sub_or,A_sub_or,... 
   Bus_sub_or,Line_sub_or,baseMVA,slacklist_sub_or,... 
   genlist_sub_or,loadlist_sub_or,nbus_sub,gencost_sub_or,... 
   gen_sub_or,slackUgen_sub_or,L_sUg_sub,Bus_sub,Line_sub); 
 
% re-number bus indices of part_1, and part_2 back to the original number 
 
[part_1_1,part_1_2]=bus_reordering(Bus_sub,Bus_sub_or,... 
    part_1_1_or,part_1_2_or) 
 
 
sm1=second_smallest_eig1; 
 
end, 
 
% Use the same functions as above  
%   to determine the Fiedler value for part 2 
sm2=0; 
if gen2 >1, 
[Bus_sub,Line_sub,gen_sub,gencost_sub,nbus_sub,nline_sub]=... 
   form_subnetwork(Bus,Line,part_2,gen,gencost); 
 
% Re-number network bus indices making them no shift in numbering 
[Bus_sub_or,Line_sub_or,gen_sub_or,gencost_sub_or] = ... 
   bus_ordering(Bus_sub,Line_sub,nbus_sub,nline_sub,gen_sub,gencost_sub); 
 
[nbus_sub,nline_sub,slacklist_sub_or,genlist_sub_or,loadlist_sub_or,... 
   slackUgen_sub_or,all_list_sub_or,nslack_sub,ngen_sub,nload_sub,... 
   L_sUg_sub]=network_data(Bus_sub_or,Line_sub_or); 
 
[A_sub_or,Yp_sub_or,Ybus_sub_or] = ... 
   constructA_Y(nbus_sub,nline_sub,Bus_sub_or,Line_sub_or); 
 
[vbus_sub_or,Pg_sub_or,del_sub_or,vmag_sub_or,x0_sub_or] =... 
    initial_condition(Bus_sub_or,baseMVA,nbus_sub,slacklist_sub_or,... 
    genlist_sub_or,slackUgen_sub_or,gen); 
 
[fval,part_2_1_or,part_2_2_or,second_smallest_eig2,... 
    sline2,sline_oddindex2,sline_evenindex2] = separation... 
   (del_sub_or,x0_sub_or,Ybus_sub_or,Yp_sub_or,A_sub_or,Bus_sub_or,... 
   Line_sub_or,baseMVA,slacklist_sub_or,genlist_sub_or,loadlist_sub_or,... 
   nbus_sub,gencost_sub_or,gen_sub_or,slackUgen_sub_or,L_sUg_sub,... 
   Bus_sub,Line_sub); 
 
% Re-number bus indices of part_1, and part_2 back to the original number 
[part_2_1,part_2_2]=bus_reordering(Bus_sub,Bus_sub_or,... 
    part_2_1_or,part_2_2_or) 
 
 
sm2=second_smallest_eig2; 
 
end, 
 
% From the Fiedler values of sub-networks 1 and 2 above,  
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%   determine which part (part_1, or part_2)  
%   that is separated next. 
[Sm,seppt]=UPDATESm(Sm,seppt,gen1,gen2,sm1,sm2); 
 
% # of buses that is separated next 
busseppt=length(find(Sep(:,seppt))); 
 
end, 
 
% Show the resulting OPF cost of generation, and the partitioning matrix 
gen_cost 
Sep 
 
% Save these matrices in M-files formats to proceed next 
%   in “find_cost.m” to test the sub-network performances. 
save Bus_9buses_RSB_3parts.m -ascii Bus 
save Sep_9buses_RSB_3parts.m -ascii Sep 
 
% Stop Timing 
toc       

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function “Arbitrary.m” 
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 The function Arbitrary.m is the main program to prepare OPF data of the 

arbitrarily cut sub-networks to use further in the “find_cost.m” main program.  First, the 

code finds the OPF optimal operating point of the unreduced IEEE30-bus network.  The 

optimization approach used here is similar to that of “RSB.m” and find_cost.m.  The OPF 

solutions are displayed on the screen.  Next, the code creates matrices/vectors 

“cut_index”(the location of the cutset indices in the "Line" data), “edge_cuts”(the bus 

indices linking between cutsets), “part_a”, “part_b”, and “part_c”(bus indices of part a, b, 

and c).  These matrices/vectors are the inputs to the function “add_Sline.m” to add the 

equivalent fixed demands or injections at both ends of the cutset-links with the values 

equal the corresponding active/reactive OPF line flows.  The bus index matrix of the 

arbitrarily partitioning network and the “Bus” data after added equivalent fixed 

demands/injections are stored in M-files.  As in RSB.m, these 2 matrices are used in the 

function “find_cost.m” to test this arbitrarily cut partitioning performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{Arbitrary.m - MATLAB code follows:} 
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% Clear the monitor screen. 
clc 
% Clear all previous variables. 
clear all 
 
% Check the total computational time (also see toc command below). 
tic 
 
% Obtain the IEEE 30-bus data. 
[baseMVA, Bus, gen, Line, area, gencost] = case30; 
 
% Prepare data to be processed in the first loop 
[nbus,nline,slacklist,genlist,loadlist,slackUgen,all_list,... 
      nslack,ngen,nload,L_sUg]=network_data(Bus,Line); 
 
% Construct the network incidence and admittance matrices. 
[A,Yp,Ybus] = constructA_Y(nbus,nline,Bus,Line); 
  
[vbus,Pg,del,vmag,x0] = initial_condition... 
   (Bus,baseMVA,nbus,slacklist,genlist,slackUgen,gen); 
 
% The lower and upper boundaries for the state solution. 
lower_bound=[gen(:,10)./baseMVA; 
            -2*pi.*ones(length(del),1); 
          Bus(:,13)]; 
               
upper_bound=[gen(:,9)./baseMVA; 
             2*pi.*ones(length(del),1); 
             Bus(:,12)]; 
 
% These "options" are the operation modes of the "fmincon". 
% See the Optimization toolbox 2.0 manual for more details.          
options = optimset('Display','iter','Diagnostics','on'); 
 
% The optimization routine begins here. 
[x,fval,exitflag,output,lamda]=fmincon('obj_function',x0,[],[],[],[],... 
    lower_bound,upper_bound,'pf_constraint',options,Ybus,Yp,A,Bus,... 
    Line,baseMVA,slacklist,genlist,loadlist,nbus,gencost,gen); 
 
% These values are the Lagrange multipliers: 
% for the lower boundaries of the state variable 
lamda_lower=lamda.lower 
% for the upper boundaries of the state variable 
lamda_upper=lamda.upper 
% for the linear inequality constraints 
lamda_ineqlin=lamda.ineqlin 
% for the linear equality constraints 
lamda_eqlin=lamda.eqlin 
% for the nonlinear inequality constraints 
lamda_ineqnonlin=lamda.ineqnonlin 
% for the nonlinear equality constraints 
lamda_eqnonlin=lamda.eqnonlin 
 
% Extract the desired values from the resulting "x". 
% Bus voltage angles. 
del_final=x(L_sUg+1:L_sUg+nbus); 
% Bus voltage magnitudes. 
vmag_final=x(L_sUg+nbus+1:L_sUg+(2.*nbus)); 
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% Complex bus voltages. 
vbus_final = vmag_final.*exp(j*del_final); 
 
% Display the OPF solutions on the screen. 
OPF_Pg=baseMVA.*x(1:size(gen,1)); 
 
% Show the power flow solution results. 
nline = size(Line,1); 
fromto = Line(:,1:2); 
 
% “cline” here is the sline in the "dataout" function 
% It is the complex line flow at two ends (from bus to network) 
% “Bus”, “Line” here actually are “Bus_sub_or”, “Line_sub_or” 
[sline,sline_oddindex,sline_evenindex] = ... 
    dataout(vbus_final,A,Yp,fromto,nline,Bus,Line); 
 
% The OPF cost of power generation. 
gen_cost=fval 
 
% 3 parts 
% The location of the cutset indices in the "Line" data 
cut_index=[... 
    5; 
    6; 
    7; 
    10; 
    12; 
    14; 
    27; 
    28; 
    18; 
    20; 
    22; 
    41] 
 
% The bus indices linking between the cutsets. 
edge_cuts=[... 
    2 5; 
    2 6; 
    4 6; 
    6 8; 
    6 10; 
    9 10; 
    10 21; 
    10 22; 
    12 15; 
    14 15; 
    15 18; 
    6 28] 
 
% Bus indices of part a 
part_a=[... 
    1 
    2 
    3 
    4 
    10 
    12 
    13 
    14 
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    16 
    17 
    18 
    19 
    20]; 
 
% Bus indices of part b 
part_b=[... 
    5 
    6 
    7 
    9 
    11]; 
 
% Bus indices of part c 
part_c=[... 
     8 
    15 
    21 
    22 
    23 
    24 
    25 
    26 
    27 
    28 
    29 
    30]; 
 
% Check for the accuracy. 
% All bus indices. 
all_parts=union(part_a,union(part_b,part_c)); 
% # of all buses. 
total_bus=length(all_parts) 
 
% Delete cutset branches and replace them with the equivalent fixed demands or  
%   injections at both ends. 
[Bus_added] = ... 
    
add_Sline(edge_cuts,cut_index,Bus,sline,sline_oddindex,sline_evenindex,baseMVA) 
     
% Initialize data 
Sep=zeros(30,3); 
% Assign the first row of "Sep" as bus indices of part a 
Sep(1:length(part_a),1)=sort(part_a); 
% Assign the second row of "Sep" as bus indices of part b 
Sep(1:length(part_b),2)=sort(part_b); 
% Assign the third row of "Sep" as bus indices of part c 
Sep(1:length(part_c),3)=sort(part_c); 
% Display the "Sep" matrix on the screen to check for the correctness again. 
Sep 
 
% Save these matrices to proceed next to find the generating cost  
%   of sub-networks. 
save Bus_30buses_arbitary_3parts2pi.m -ascii Bus_added 
save Sep_30buses_arbitary_3parts2pi.m -ascii Sep 
 
% Stop timing. 
toc       
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Function “find_cost.m” 
 

 The function find_cost.m is the main program to perform the OPF for each 

decomposed sub-network and to calculate the sub-network power generating cost.  This 

function can be called from the MATLAB command line.   

 Two input data matrices (Sep_xxx_xxx and Bus_xxx_xxx) created by “RSB.m” 

or “Arbitary.m” main functions are loaded at the beginning of the program.  Users can 

choose to perform the test either in the unreduced or decomposed sub-network by 

commenting/un-commenting some specific command lines.  All generator bus indices 

and the equivalent fixed demands or injections at both ends of each cutset-link are 

displayed on the screen.  Next, the code perturbs the active load demand in each load bus 

as a percentage deviating from its base case.  During each iteration, the main-loop of the 

find_cost.m extracts each column of the matrix Sep (sub-network bus indices), and 

performs each sub-network OPF computation.  The code uses the similar approach as the 

approach in “RSB.m” and “Arbitary.m”, so the sub-functions to be called from this main-

loop are quite the same.  The code, then, re-numbers all the sub-network bus indices by 

the function “bus_ordering.m” to make the construction of the sub-network admittance 

and incidence matrices possible.  Sub-network data and the state solution lower/upper 

boundaries are set before each optimization loop begins.  The resulting Lagrange 

multipliers and OPF solutions are displayed on the monitor screen.   The complex line 

flows are determined by the function “dataout.m”.  Once the main program iterates until 

all the sub-network state solutions are solved, the generating active powers and their 

corresponding costs are displayed on the monitor screen. 
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{find_cost.m - MATLAB code follows:} 

 
% Clear the monitor screen. 
clc 
% Clear all the values of the previous variables. 
clear all 
 
% Check the total computational time (also see toc command below). 
tic 
 
% Choose between IEEE 9 or 30-bus case. 
[baseMVA, Bus, gen, Line, area, gencost] = case9; 
%[baseMVA, Bus, gen, Line, area, gencost] = case30; 
 
% For 9 buses: 
% These 2 matrices are obtained after the function "RSB.m" or "Arbitary.m" 
load Sep_9bus_arbitary1.m; 
load Bus_9bus_arbitary1.m; 
 
% If users want to find the gen cost of the original unreduced network, 
%   uncomment here. 
% Sep=Bus(:,1) 
Sep=Sep_9bus_arbitary1; 
 
% Check which buses are the generator buses 
Gen_location=Sep; 
Gen_location=ismember(Gen_location(:,:),gen(:,1)) 
 
% Display the equivalent fixed demands or injections 
%   at both ends of the cutsets on the screen. 
temp_fixed_S_added=Bus_9bus_arbitary1(:,3:4)-Bus(:,3:4); 
fixed_S_added=[Bus(:,1) temp_fixed_S_added] 
Padded=temp_fixed_S_added(:,1) 
Qadded=temp_fixed_S_added(:,2) 
 
% The code perturbs load demand at each load bus here. 
%   Change to the desired percentage value. (70 percent in this case) 
temp=0.70.*Bus(:,3); 
Bus=Bus_9bus_arbitary1; 
Bus(:,3)=Bus(:,3)+temp; 
 
% Initialize data. 
temp_Pg=[]; 
 
for index_sub_number=1:size(Sep,2); 
 
% # of buses in the current part. 
n_sub=length(find(Sep(:,index_sub_number))); 
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% Bus indices of the current part. 
bus_sub_list=Sep(1:n_sub,index_sub_number); 
 
% Create new data from the current part. 
[Bus_sub,Line_sub,gen_sub,gencost_sub,nbus_sub,nline_sub]=... 
   form_subnetwork(Bus,Line,bus_sub_list,gen,gencost); 
 
% Re-number the index number of the sub-network  
%   making them no shift in numbering. 
[Bus_sub_or,Line_sub_or,gen_sub_or,gencost_sub_or] = ... 
   bus_ordering(Bus_sub,Line_sub,nbus_sub,nline_sub,gen_sub,gencost_sub); 
 
% Extract some desired data from the previous sub-network information. 
% Note : “nbus_sub” and “n_sub” is the same. 
[nbus_sub,nline_sub,slacklist_sub_or,genlist_sub_or,loadlist_sub_or,... 
   slackUgen_sub_or,all_list_sub_or,nslack_sub,ngen_sub,nload_sub,... 
   L_sUg_sub]=network_data(Bus_sub_or,Line_sub_or); 
 
% Construct sub-network incidence matrix and admittance matrix. 
[A_sub_or,Yp_sub_or,Ybus_sub_or] = ... 
   constructA_Y(nbus_sub,nline_sub,Bus_sub_or,Line_sub_or); 
 
% Function "fmincon" need the initial condition. 
[vbus_sub_or,Pg_sub_or,del_sub_or,vmag_sub_or,x0_sub_or] = ... 
    initial_condition(Bus_sub_or,baseMVA,nbus_sub,slacklist_sub_or,... 
    genlist_sub_or,slackUgen_sub_or,gen); 
 
 
% The lower and upper boundaries for the state solution. 
lower_bound=[gen_sub_or(:,10)./baseMVA; 
            -inf.*ones(length(del_sub_or),1); 
          Bus_sub_or(:,13)]; 
               
upper_bound=[gen_sub_or(:,9)./baseMVA; 
             inf.*ones(length(del_sub_or),1); 
             Bus_sub_or(:,12)]; 
 
% These "options" are operatation modes of the "fmincon". 
% See the Optimization toolbox 2.0 manual for more details. 
options = optimset('Display','iter','Diagnostics','on'); 
                       
% The optimization begins here. 
[x,fval,exitflag,output,lamda]=fmincon('objective',x0_sub_or,... 
    [],[],[],[],lower_bound,upper_bound,'constraints',options,... 
    Ybus_sub_or,Yp_sub_or,A_sub_or,Bus_sub_or,Line_sub_or,... 
    baseMVA,slacklist_sub_or,genlist_sub_or,loadlist_sub_or,... 
    nbus_sub,gencost_sub_or,gen_sub_or); 
 
 
% These values are the Lagrange multipliers: 
% for the lower boundaries of the state variables 
lamda_lower=lamda.lower 
% for the upper boundaries of the state variables 
lamda_upper=lamda.upper 
% for the linear inequality constraints 
lamda_ineqlin=lamda.ineqlin 
% for the linear equality constraints 
lamda_eqlin=lamda.eqlin 
% for the nonlinear inequality constraints 
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lamda_ineqnonlin=lamda.ineqnonlin 
% for the nonlinear equality constraints 
lamda_eqnonlin=lamda.eqnonlin 
 
 
% Extract the desired values from the resulting "x". 
% Bus voltage angles. 
del_sub_final=x(L_sUg_sub+1:L_sUg_sub+nbus_sub); 
% Bus voltage magnitudes. 
vmag_sub_final=x(L_sUg_sub+nbus_sub+1:L_sUg_sub+(2.*nbus_sub)); 
% Complex bus voltages. 
vbus_sub_final = vmag_sub_final.*exp(j*del_sub_final); 
 
 
% Display OPF solution on the screen. 
OPF_Pg_sub=baseMVA.*x(1:size(gen_sub_or,1)) 
temp_Pg(length(temp_Pg)+1:length(temp_Pg)+size(gen_sub_or,1))=OPF_Pg_sub; 
OPF_v_sub=x((size(gen_sub_or,1)+1):size(x,1)); 
OPF_solution_sub=[OPF_Pg_sub; 
                  OPF_v_sub] 
 
% Show the power flow solution results 
nline_sub = size(Line_sub,1); 
actual_fromto = Line_sub(:,1:2); 
% cline here is the sline in the "dataout" function 
% complex line flow at two ends (from bus to network) 
% Bus, Line here actually are Bus_sub_or,Line_sub_or 
[sline,sline_oddindex,sline_evenindex] = ... 
    dataout(vbus_sub_final,A_sub_or,Yp_sub_or,actual_fromto,... 
    nline_sub,Bus_sub_or,Line_sub_or,Bus_sub,Line_sub); 
 
% The current sub-network generating cost. 
cost_sub(index_sub_number)=fval; 
 
% Go to the next part. 
end, 
 
% Display OPF solution on the screen. 
% All generating powers. 
Pgen=temp_Pg.' 
% The generating costs from all parts. 
cost_sub 
% The total generating cost from all parts. 
total_cost=sum(cost_sub) 
% Stop timing 
toc       
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Function “add_Sline.m” 
 

 The function add_Sline.m is invoked from the main routines “RSB.m” and 

“Arbitrary.m”.  This command adds the equivalent fixed demands or injections at both 

ends of the cutset links with the values equal the corresponding active/reactive OPF line 

flows.  The branch flows “from” the relating buses are assigned positive values, and the 

flows “to” buses are assigned negative values.   

 

Arguments:   

edge_cuts - bus indices at both ends of the cutsets 

   linking between two separated parts. 

cut_index - indices of lines in the “Line” data that form matrix  

     edge_cuts 

Bus  - network “Bus” data 

Sline  - active/reactive OPF line flows 

sline_oddindex - Sline “from” buses 

sline_evenindex - Sline “to” buses 

baseMVA - system base MVA (100MVA) 

Returns:  

Bus_added - bus data after adding the equivalent fixed  
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  demands or injections at both ends of the cutset-links. 

 

 

 

 

 

 

 

 

 

 

{add_Sline.m - MATLAB code follows:} 

 
function [Bus_added] = ... 
    add_Sline(edge_cuts,cut_index,Bus,sline,sline_oddindex,... 
    sline_evenindex,baseMVA) 
 
% Initialize data. 
Bus_added=Bus; 
 
% Replace line flows with equivalent fixed demands "From" bus. 
 
for index=1:length(cut_index), 
 
    % Active line flows. 
    Bus_added(edge_cuts(index,1),3)=Bus_added(edge_cuts(index,1),3)+... 
        real(sline_oddindex(cut_index(index)))*baseMVA; 
    % Reactive line flows.  
    Bus_added(edge_cuts(index,1),4)=Bus_added(edge_cuts(index,1),4)+... 
        imag(sline_oddindex(cut_index(index)))*baseMVA; 
     
end, 
 
 
% Replace line flows with equivalent fixed injections "To" bus. 
for index=1:length(cut_index), 
     
    % Active line flows. 
    Bus_added(edge_cuts(index,2),3)=Bus_added(edge_cuts(index,2),3)+... 
        real(sline_evenindex(cut_index(index)))*baseMVA; 
    % Reactive line flows. 
    Bus_added(edge_cuts(index,2),4)=Bus_added(edge_cuts(index,2),4)+... 
        imag(sline_evenindex(cut_index(index)))*baseMVA; 
     
end, 
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Function “bus_ordering.m” 
 

 The function bus_ordering.m is invoked from the main routines “RSB.m” and 

“find_cost.m”.   This function is used to facilitate the construction of the incidence and 

network admittance matrices.  The code re-numbers all the sub-network bus indices to 

have "1" as its first bus index and the rest are 1 incrementally ordered. 

 First, the code re-numbers the sub-network “Bus” data, and then change the sub-

network “Line” and “gen” data to their corresponding indices.  No change of the bus 

index for the sub-network “gencost” data.  

 

Arguments:   

 Bus_sub - sub-network “Bus” data 

Line_sub - sub-network “Line” data 

nbus_sub - # of sub-network buses 

nline_sub - # of sub-network lines 

gen_sub - sub-network “gen” data 

gencost_sub - sub-network “gencost” data 
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Returns:  

 Bus_sub_or - ordered sub-network “Bus” data 

Line_sub_or - ordered sub-network “Line” data 

gen_sub_or - ordered sub-network “gen” data 

gencost_sub_or - ordered sub-network “gencost” data 

 

 

 

 

 

 

 

 

{bus_ordering.m - MATLAB code follows:} 
 
function [Bus_sub_or,Line_sub_or,gen_sub_or,gencost_sub_or]=... 
   bus_ordering(Bus_sub,Line_sub,nbus_sub,nline_sub,gen_sub,gencost_sub) 
 
% Initialize the values. 
Bus_sub_or=Bus_sub; 
Bus_sub_or(:,1)=[1:nbus_sub].'; 
Line_sub_or=Line_sub; 
 
% Re-number the "Line" data of sub-network in column 1. 
for index1=1:size(Line_sub,1), 
   Line_sub_or(index1,1)=find(Bus_sub(:,1)==Line_sub(index1,1)); 
end, 
 
% Re-number the "Line" data of subnetwork in column 2. 
for index1=1:size(Line_sub,1), 
   Line_sub_or(index1,2)=find(Bus_sub(:,1)==Line_sub(index1,2)); 
end, 
 
% List of generator buses of the sub-network ordered data. 
gen_sub_list_or1=Bus_sub_or(find(Bus_sub_or(:,2)==2),1); 
gen_sub_list_or2=Bus_sub_or(find(Bus_sub_or(:,2)==3),1); 
gen_sub_list_or=sort(union(gen_sub_list_or1,gen_sub_list_or2)); 
for index=1:length(gen_sub_list_or) 
   gen_sub_list_or_final(index,1)=gen_sub_list_or(index); 
end, 
 
 
% Re-number the bus number of the sub-network "gen" data 
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gen_sub_or=gen_sub; 
gen_sub_or(:,1)=gen_sub_list_or_final; 
 
% No re-numbering in gencost_sub 
gencost_sub_or=gencost_sub; 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function “bus_reordering.m” 
 

 The function bus_reordering.m is invoked from the main routines “RSB.m” and 

“find_cost.m”.  Because our RSB partitioning routine uses the input data whose indices 

are previously ordered by the function “bus_ordering.m”, the part 1 and part 2 indices 

obtained are not the correct number.  This function re-numbers those indices back to the 

original number. 

 

Arguments: 

part_1  - indices of buses in part 1 

part_2  - indices of buses in part 2 

 

Returns: 

 Bus_sub - sub-network “Bus” data 
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Bus_sub_or - sub-network “Bus” data that is previously ordered by the function  

“bus_ordering.m” 

part_1_or - part 1 bus indices from the computation of the ordered input data 

part_2_or - part 2 bus indices from the computation of the ordered input data 

 

 

 

 

 

 

 

 

 

 

 

 

{bus_reordering.m - MATLAB code follows:} 

 
function [part_1,part_2]=bus_reordering(Bus_sub,Bus_sub_or,... 

    part_1_or,part_2_or) 

 

% Locate the indices of "Bus_sub_or" that have the same 

%   bus numbers as "part_1_or" 

Find the bus indices of the Bus_sub_or 

for index1=1:length(part_1_or), 

    temp1(index1)=find(Bus_sub_or(:,1)==part_1_or(index1)); 

end, 

% Use that indices to locate the true bus number of part 1  

part_1=Bus_sub(temp1,1); 

 

% Locate the indices of "Bus_sub_or" that have the same 

%   bus numbers as "part_2_or" 

for index2=1:length(part_2_or), 

    temp2(index2)=find(Bus_sub_or(:,1)==part_2_or(index2)); 
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end, 

% Use that indices to locate the true bus number of part 2 

part_2=Bus_sub(temp2,1); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function “construct_jacobian.m” 
 

 The function “construct_jacobian.m” is invoked from the function 

“separation.m”.   This function constructs the network OPF Jacobian.  It transfers some 

input data to “pflowjac.m” to formulate the partial derivative of complex powers with 

respect to voltage angles (
!"

"S ) and with respect to voltage magnitudes (
V

S

!

! ).  Blocks of 

the power flow Jacobian in a standard form are recovered by selecting the appropriate 

rows and columns of the real or imaginary parts of 
!"

"S  or 
V

S

!

! .  

 

Arguments:   
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Ybus  - network admittance matrix  

vbus_final - network complex bus voltage 

slackUgen - indices of the network slack buses and generator buses 

loadlist  - indices of the network load buses 

 

Returns:  

jac_final - resulting OPF Jacobian (no deletion of the  

     associated slack generator components) 

 

 

 

 

 

 

 

 

 

 

 

{construct_jacobian.m - MATLAB code follows:} 

 
function [jac_final] = construct_jacobian(Ybus,vbus_final,slackUgen,loadlist) 
 
% Use function "pflowjac.m" to create the partial derivatives 
%  of COMPLEX power absorbed by the network at each bus, with 
%  respect to bus voltage angles and voltage magnitudes. 
[dsdd, dsdv] = pflowjac(Ybus,vbus_final);  
 
% Construct the power flow jacobian matrix. 
% No deletion of the slack generator components. 
jac_final = [ ... 
         real(dsdd(slackUgen,slackUgen)) real(dsdd(slackUgen,loadlist)) ... 
         real(dsdv(slackUgen,loadlist)); ... 
 
         real(dsdd(loadlist,slackUgen)) real(dsdd(loadlist,loadlist)) ... 
         real(dsdv(loadlist,loadlist)); ... 
          
         imag(dsdd(loadlist,slackUgen)) imag(dsdd(loadlist,loadlist)) ... 
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            imag(dsdv(loadlist,loadlist)) ]; 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function “constructA_Y.m” 
 

 The function constructA_Y.m is invoked from the main routines “RSB.m”, 

“Arbitrary.m”, and “find_cost.m”.  This function employs sparse matrices to construct 

the network incidence matrix, primitive admittance matrix, and admittance matrix.  

Transformers, shunt conductance, and susceptance of the sub-networks are accounted 

during the matrix construction.  Because sparse matrices are not applicable for 

“fmincon.m” in our case, the resulting matrices are required to transform to the full 

format. 
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Arguments:   

nbus  - # of buses 

nline  - # of lines 

Bus  - “Bus” data (MATPOWER format) 

Line  - “Line” data (MATPOWER format) 

 

Returns:  

A - incidence matrix 

Yp - primitive admittance matrix 

Ybus - admittance matrix 

 

 

 

 

 

 

 

 

 

 

{construct_A_Y.m - MATLAB code follows:} 

 
function [A,Yp,Ybus] = constructA_Y(nbus,nline,Bus,Line) 
 
% Construct system incidence matrix A 
A=sparse(nbus,2*nline); 
for i=1:nline 
    A(Line(i,1),i*2-1)=1; 
    A(Line(i,2),i*2)=1; 
end 
 
% Construct primitive admittance matrix y, 
Yp=sparse(zeros(2*nline)); 
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for i=1:nline 
  if Line(i,9)==0    % transmission block 
    Yp(2*i-1,2*i-1)=1/(Line(i,3)+j*Line(i,4))+j*Line(i,5)/2; 
    Yp(2*i,2*i)=Yp(2*i-1,2*i-1); 
    Yp(2*i-1,2*i)=-1/(Line(i,3)+j*Line(i,4)); 
    Yp(2*i,2*i-1)=Yp(2*i-1,2*i); 
  end 
  if Line(i,9)~=0    % transformer block 
    Yp(2*i-1,2*i-1)=1/((Line(i,3)+j*Line(i,4))*Line(i,9)^2); 
    Yp(2*i,2*i)=1/(Line(i,3)+j*Line(i,4)); 
    Yp(2*i-1,2*i)=-1/((Line(i,3)+j*Line(i,4))*Line(i,9)); 
    Yp(2*i,2*i-1)=Yp(2*i-1,2*i); 
  end 
end              
 
% Compute bus admittance matrix Y 
Ybus = A*Yp*A'; 
for i= 1:length(Bus(:,1))   % Add shunt conductance and susceptance 
  Ybus(i,i) = Ybus(i,i)+Bus(i,5)+j*Bus(i,6); 
end 
 
% “fmincon.m” solver does not preserve sparsity in solving our problems. 
A=full(A); 
Ybus=full(Ybus); 

 

 

 

 

 

 

 

 

 

 

 

 

Function “dataout.m”1 

 

 The function dataout.m is invoked from the main routines “Arbitrary.m” and 

“find_cost.m”, and the function “separation.m”.  This function displays the network bus 

voltage and line flow OPF results on the monitor screen.  The bus voltage magnitudes 
                                                
1 This code is developed by Professor Christopher L. DeMarco for his MATLAB power flow packages. 
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and angles are analyzed from the complex bus voltage input data.  The OPF complex line 

flow matrix is calculated from the product of the complex voltage difference across lines 

and the conjugate of the complex line currents.  The branch flows “from”/“to” the 

relating buses are extracted from this matrix. 

 

Arguments:   

vbus  - complex bus voltage of the sub-network 

aa   - network incidence matrix 

bb   - network primitive admittance matrix 

fromto   - matrix of network line indices 

nline   - # of lines 

Bus  - network “Bus” data that previously ordered by  

     function “bus_ordering.m” 

Line  - network “Line” data that previously ordered by  

     function “bus_ordering.m” 

Bus_sub - sub-network “Bus” data 

Line_sub - sub-network “Line” data 

 

Returns:  

Sline   - vector of OPF branch flow solutions 

sline_oddindex - branch flows “from” the relating buses 

sline_evenindex - branch flows “to” the relating buses 

 

 

 

{dataout.m - MATLAB code follows:} 

 
function [sline,sline_oddindex,sline_evenindex] = ... 
    dataout(vbus,aa,bb,fromto,nline,Bus,Line,Bus_sub,Line_sub) 
 
% Convert sparse formatted data to full matrix. 
fromto = full(fromto); 
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% Extract only for first 2 columns of the sub-network Line data. 
actual_fromto = full(Line_sub(:,1:2)); 
 
disp('The current power flow solution for the study network is:') 
disp('    Bus#      V p.u.  Angle-degrees') 
 
% Bus indices. 
b_indices=Bus_sub(:,1); 
% Display the OPF bus voltage results on the screen. 
disp(full([b_indices abs(vbus)  (180/pi)*angle(vbus)])); 
 
% Compute line flows 
% Complex voltage difference accross lines 
vline=aa'*vbus;   
iline=bb*vline; 
sline=vline.*conj(iline); 
evenindex=2*(1:nline)'; 
oddindex=evenindex-ones(length(evenindex),1); 
 
% Display the OPF line flow results on the screen. 
 disp('Associated Branch Flows') 
 disp... 
 ('                                         Power Into Line     Power Into 
Line') 
 disp... 
 ('"From"-Bus          "To"-Bus             "From" Bus Side     "To" Bus Side') 
 disp(full([actual_fromto sline(oddindex) sline(evenindex)])) 
 
 sline_oddindex=sline(oddindex); 
 sline_evenindex=sline(evenindex); 
   
 
return 

 

 

 

 

 

 

 

 

 

 

Function “edge_separators.m” 
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The function edge_separators.m is invoked from the main routines “RSB.m”.  

This function finds the indices of the edge separators between the 2 sub-networks.  It 

checks whether the bus indices of part 1 and part 2 are the indices of the lines linking 

between these 2 parts; those links are the edge separators. 

 

Arguments: 

  part_1  - bus indices of sub-network 1 

part_2  - bus indices of sub-network 2 

Bus_sub - sub-network “Bus” data 

Line_sub - sub-network “Line” data 

nbus_sub - # of buses in the Bus_sub data 

nline_sub - # of lines in the Line_sub data 

 

Returns: 

  edge_cuts - bus indices of the edge separators 

cut_index - indices of the edge_cuts matrix in the Line_sub matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

{edge_separators.m - MATLAB code follows:} 
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function [edge_cuts,cut_index] = ... 
    edge_separators(part_1,part_2,Bus_sub,Line_sub,nbus_sub,nline_sub) 
 
% Indices of line in the sub-network. 
Line_index=Line_sub(:,1:2); 
 
% The edge-separator is the link that its one end locates at 
%   part 1 and the other end locates at part 2. 
for index=1:nline_sub, 
temp1=ismember(Line_index(:,1),part_1); 
temp2=ismember(Line_index(:,2),part_2); 
end, 
cut_index1=find(temp1&temp2); 
 
% In case of reverse order numbering. 
for index=1:nline_sub, 
temp3=ismember(Line_index(:,1),part_2); 
temp4=ismember(Line_index(:,2),part_1); 
end, 
cut_index2=find(temp3&temp4); 
 
cut_index=union(cut_index1,cut_index2); 
 
% This matrix contains bus indices of both ends of the edge separators 
%   that link between the two parts. 
edge_cuts=Line_index(cut_index,:); 
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Function “form_subnetwork.m” 
 

 The function form_subnetwork.m is invoked from the main routines “RSB.m” 

and “find_cost.m”.  This function extracts the sub-network data from the MATPOWER 

unreduced network data using the input sub-network indices.   

 

Arguments: 

  Bus  - “Bus” data (MATPOWER format) 

Line  - “Line” data (MATPOWER format) 

bus_sub_list - sub-network bus indices 

gen  - “gen” data (MATPOWER format) 

gencost - “gencost” data (MATPOWER format)  

 

Returns: 

  Bus_sub - sub-network “Bus” data 

Line_sub - sub-network “Line” data 

gen_sub - sub-network “gen” data  

gencost_sub - sub-network “gencost” data 

nbus_sub - # of bus indices in the Bus_sub data 

nline_sub - # of line indices in the Line_sub data 
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{form_subnetwork.m - MATLAB code follows:} 

 
function [Bus_sub,Line_sub,gen_sub,gencost_sub,nbus_sub,nline_sub]=... 
   form_subnetwork(Bus,Line,bus_sub_list,gen,gencost) 
 
% Number of lines in the network before the bisection 
nline=size(Line,1); 
 
for index1=1:nline, 
% Note: index2 is the line indices in the sub-network that are  
%       in the "Line" data. 
   index2(index1)=ismember(Line(index1,1),bus_sub_list)&... 
            ismember(Line(index1,2),bus_sub_list); 
       
end, 
 
% # of buses in the sub-network. 
nbus_sub=length(bus_sub_list); 
 
% Create new data for the sub-network  
%   that contain the sub-network bus data only. 
Bus_sub=Bus(bus_sub_list,:); 
 
% Create new data for the sub-network 
%   that contain sub-network line data only. 
Line_sub=Line(find(index2),:); 
 
% number of lines in sub-network  
nline_sub=size(Line_sub,1); 
 
% Find the generator buses in the sub-network (including slack) 
gen_sub_list1=Bus_sub(find(Bus_sub(:,2)==2),1); 
gen_sub_list2=Bus_sub(find(Bus_sub(:,2)==3),1); 
gen_sub_list=sort(union(gen_sub_list1,gen_sub_list2)); 
 
% Indices of the sub-network generator buses in the "gen" data 
for index=1:length(gen_sub_list), 
gen_index_sub(index)=find(gen(:,1)==gen_sub_list(index)); 
end, 
 
% Create the new data for the sub-network  
%   that contain only the sub-network “gen” data  
gen_sub=gen(gen_index_sub,:); 
 
% Create the new data for the sub-network  
%   that contain only the sub-network “gencost” data 
gencost_sub=gencost(gen_index_sub,:); 
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Function “initial_condition.m” 
  

 The function initial_condition.m is invoked from the main routines “RSB.m”, 

“Arbitary.m”, and “find_cost.m”.  This function creates the state initial values for the 

fmincon command of the Optimization Toolbox.  The bus voltage magnitudes of slack 

and other generator buses are set to equal the values of the MATPOWER “Bus” data; 

each load bus voltage magnitude is set to equal 1.  All voltage angles are initialized to 0.  

The initial values of the active power generations are set to equal the values from the 

MATPOWER “gen” data.  The initial value state vector, x0, is created from the above 

bus voltage magnitudes/angles and the active power generations. 

 

Arguments: 

  Bus  - “Bus” data (MATPOWER format) 

baseMVA - system base MVA (100MVA) 

nbus   - # of buses 

slacklist  - indices of slack generators 

genlist   - indices of generators  

slackUgen  - indices of both slack and generators  

gen   - “gen” data (MATPOWER format) 

 

Returns: 

  vbus  - complex bus voltages 

Pg  - active power generations 

del  - bus voltage angles 

vmag  - bus voltage magnitudes 
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x0  - initial state vector 

 

 

 

 

 

{initial_condition.m - MATLAB code follows:} 

 
function [vbus,Pg,del,vmag,x0]=initial_condition... 
   (Bus,baseMVA,nbus,slacklist,genlist,slackUgen,gen) 
 
 
% Set the initial values of bus voltage data 
vbus=ones(nbus,1); 
vbus(slacklist)=Bus(slacklist,8); 
vbus(genlist)=Bus(genlist,8); 
del=angle(vbus); 
vmag=abs(vbus); 
 
% Set the initial values of the power generations 
Pg=gen(:,2); 
 
% x0 is used as an state initial value for the "fmincon" MATLAB function 
x0=[Pg./baseMVA; 
    del; 
    vmag]; 
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Function “network_data.m” 
 

 The function network_data.m is invoked from the main routines “RSB.m”, 

“Arbitary.m”, and “find_cost.m”.  This function prepares the necessary network data for 

our further computation by extracting these values from the MATPOWER formatted 

“Bus” and “Line” data. 

 

Arguments: 

Bus  - “Bus” data (MATPOWER format) 

Line  - “Line” data (MATPOWER format) 

 

Returns: 

nbus  - # of buses 

nline  - # of lines 

slacklist  - indices of slack generators 

genlist   - indices of other generators 

loadlist  - indices of load buses 

slackUgen  - indices of both slack and other generators 

all_list   - all bus indices 

nslack   - # of slack generators 

ngen   - # of other generators 

nload   - # of load buses 
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L_sUg   - # of slack and other generators 

 

 

 

 

 

 

 

 

{network_data.m - MATLAB code follows:} 

 
function [nbus,nline,slacklist,genlist,loadlist,slackUgen,all_list,... 
      nslack,ngen,nload,L_sUg]=network_data(Bus,Line) 
 
% Data preparation for further computation. 
 
% Extract data from the input “Bus” and “Line” data. 
% # of buses 
nbus = size(Bus,1); 
% # of lines 
nline = size(Line,1); 
% indices of the slack generators 
slacklist = Bus(find(Bus(:,2)==3), 1); 
% indices of other generators 
genlist   = Bus(find(Bus(:,2)==2), 1); 
% Bus type 4 is isolated bus and is treated as a normal load bus. 
loadlist1  = Bus(find(Bus(:,2)==1), 1); 
loadlist2  = Bus(find(Bus(:,2)==4), 1); 
loadlist = union (loadlist1,loadlist2); 
 
% Find indices of all generator buses. 
slackUgen=union(slacklist,genlist); 
% Find indices of all buses. 
all_list=union(slackUgen,loadlist); 
% # of slack generators. 
nslack=length(slacklist); 
% # of other generators. 
ngen=length(genlist); 
% # of load buses. 
nload=length(loadlist); 
% # of all generator buses. 
L_sUg=length(slackUgen); 
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Function “obj_function.m” 
 

 The function obj_function.m is invoked from the main routines “Arbitary.m”, 

“find_cost.m”, and from the function “separation.m” (check the Optimization Toolbox’s 

user manual for the formatting of this function.)  This function is the objective function 

for the optimization solver fmincon.  The active power generations are extracted from the 

state vector, x.  The objective cost (in $/hr) is calculated by the relationship between each 

active power generation and its corresponding polynomial characteristic cost function. 

 

Arguments: 

x   - the resulting state variable: active power generation 

     and bus voltage magnitudes/angles 

Ybus   - network admittance matrix 

Yp   - network primitive admittance matrix 

A   - network incidence matrix 

Bus   - “Bus” data (MATPOWER format) 

Line   - “Line” data (MATPOWER format) 

baseMVA  - system base MVA (100MVA) 
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slacklist  - indices of slack generators 

genlist   - indices of other generators 

loadlist  - indices of load buses 

nbus   - # of buses 

gencost  - “gencost” data (MATPOWER format) 

gen   - “gen” data (MATPOWER format) 

 

Returns: 

f  - the resulting objective value 

 

 

 

 

{obj_function.m - MATLAB code follows:} 
function [f] = obj_function(x,Ybus,Yp,A,Bus,Line,baseMVA,slacklist,genlist,... 
   loadlist,nbus,gencost,gen) 
 
% Indices of the slack and other generator buses 
slackUgen=union(slacklist,genlist); 
 
% Active power generations 
Pg=x(1:length(slackUgen),1); 
 
% Characteristic cost functions in quadratic form 
c2=gencost(:,5); 
c1=gencost(:,6); 
c0=gencost(:,7); 
 
% The objective equation 
cost=(c2.*((Pg.*baseMVA).^2))+(c1.*(Pg.*baseMVA))+c0; 
 
% The resulting objective value 
f=sum(cost); 
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Function “pf_constraint.m” 
 

 The function pf_constraint.m is invoked from the main routines “Arbitary.m” and 

“find_cost.m”, and from the function “separation.m” (check the Optimization Toolbox’s 

user manual for the format ting of this function.)  This function sets up both equality and 

inequality OPF constraints for the optimization solver “fmincon.m”.  The equality 

constraints are the power flow mismatches that are constructed using “pfmiss.m”, and the 

inequality constraints are the line flow securities limits.  Note that the securities limit on 

each bus voltage magnitude and bus active power generation is already imposed as a 

boundary condition in fmincon.m, so it is not considered here. 

 

Arguments: 

x   - the resulting state variable: active power generations 

     and bus voltage magnitudes/angles 

Ybus   - network admittance matrix 
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Yp   - network primitive admittance matrix 

A   - network incidence matrix 

Bus   - “Bus” data (MATPOWER format) 

Line   - “Line” data (MATPOWER format) 

baseMVA  - system base MVA (100MVA) 

slacklist  - indices of slack generators 

genlist   - indices of other generators 

loadlist  - indices of load buses 

nbus   - # of buses 

gencost  - “gencost” data (MATPOWER format) 

gen   - “gen” data (MATPOWER format) 

 

Returns: 

c  - inequality constraints 

ceq  - equality constraints 

 

{pf_constraint.m - MATLAB code follows:} 

 
function [c,ceq] = pf_constraint(x,Ybus,Yp,A,Bus,Line,baseMVA,slacklist,... 
   genlist,loadlist,nbus,gencost,gen) 
 
% # of lines. 
nline = size(Line,1); 
 
% Indices of all generator buses including slack. 
slackUgen=union(slacklist,genlist); 
% Total # of generator buses including slack. 
L_sUg=length(slackUgen); 
% Indices of all buses. 
all_list=union(slackUgen,loadlist); 
 
 
% Assign the first rows of the state vector "x" as output generating powers. 
Pg=x(1:length(slackUgen),1); 
% Change the p.u. values to the real values. 
gen(:,2)=Pg.*baseMVA; 
 
% Initialize the data 
snet=(1+j)*ones(nbus,1); 
 
% Extract complex bus power demand data. 
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% The code assigns the negative to the injections, and 
%   positive to the demand consumptions. 
 
% Complex power injections at generator buses. 
snet(slackUgen)=-(gen(:,2)-Bus(slackUgen,3)) - j*(gen(:,3)-Bus(slackUgen,4));   
% Transform to p.u. values. 
snet(slackUgen)=snet(slackUgen)/baseMVA; 
 
% Complex bus power demands at load buses. 
snet(loadlist)=Bus(loadlist,3)+j*Bus(loadlist,4);     
% Transform to p.u. values. 
snet(loadlist)=snet(loadlist)/baseMVA;               
 
% Extract some rows of the state vector "x" for the values of  
%   the bus voltage angles and magnitudes. 
del=x(L_sUg+1:L_sUg+nbus); 
vmag=x(L_sUg+nbus+1:L_sUg+(2.*nbus)); 
 
% Complex bus voltages. 
vbus = vmag.*exp(j*del); 
 
% Calculate power flow mismatches using the "pfmiss" command. 
fullmiss = pfmiss(Ybus,vbus,snet);   
 
% Construct the mismatch vector. 
rmiss=[real(fullmiss(slackUgen)); 
       real(fullmiss(loadlist));  
       imag(fullmiss(loadlist))]; 
 
% These power flow mismatches, actually, are 
%   the equality constraints of the optimization problem. 
ceq=[rmiss]; 
  
 
 
% The below section is for constructing the inequality constraints. 
% Note that the limits on voltage magnitudes and power generating outputs 
%   are already considered in the upper/lower boundary conditions  
%   of the "fmincon" function. 
 
% Construct the constraints on the line flow limits. 
 
% Complex voltage differences across lines. 
vline=A.'*vbus;  
iline=Yp*vline; 
pline=vline.*conj(iline); 
evenindex=2*(1:nline)'; 
oddindex=evenindex-ones(length(evenindex),1); 
 
% The code puts constraints at both ends of the lines: leaving and entering. 
c=[real(pline(oddindex))-(Line(:,6)./baseMVA); 
   real(pline(evenindex))-(Line(:,6)./baseMVA)]; 
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Function “pflowjac.m”2 
 

 The function pflowjac.m is invoked from the function “construct_jacobian.m”.  

This function forms the matrix of partial derivative of complex power absorbed by the 

network at each bus with respect to bus voltage angle and voltage magnitude. 

The operation of this routine is illustrated as following (see equation (9) and (10) 

also):  

S = diag(vbus)*conj(ibus) = diag(conj(ibus))*vbus; 

                                                
2 This code is developed by Professor Christopher L. DeMarco for his MATLAB power flow packages. 
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Hence: 

dS/d(delta) = diag(vbus)*conj(d(ibus)/d(delta))    + 

                diag(conj(ibus))*d(vbus)/d(delta) 

Similarly: 

dS/d(vmag) = diag(vbus)*conj(d(ibus)/d(vmag))  +  

       diag(conj(ibus))*d(vbus)/d(vmag) 

  

Arguments: 

Y  - admittance matrix 

vbus  - complex bus voltages 

 

Returns: 

dSdd   - partial derivatives of complex powers with respect to 

   voltage angles 

dSdv  - partial derivatives of complex powers with respect to  

     voltage magnitudes 

  

 

 

 

 

 

{pflowjac.m - MATLAB code follows:} 
 
function [dSdd , dSdv] = pflowjac(Y,vbus) 
 
 
% Transform matrices into sparse format. 
Y=sparse(Y); 
vbus=sparse(vbus); 
 
ibus=Y*vbus; 
 
% Complex power absorbed by the network at each bus, with 
%   respect to bus voltage angles. 
dSdd =j*diag(conj(ibus).*vbus) ...  
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         -j*diag(vbus)*conj(Y)*diag(conj(vbus)); 
 
% Complex power absorbed by the network at each bus, with 
%   respect to bus voltage magnitudes. 
dSdv = diag(conj(ibus).*(vbus./abs(vbus)))+ ... 
          diag(vbus)*conj(Y)*diag(conj(vbus)./abs(vbus)); 
     

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function “pfmiss.m”3 
 

 The function pfmiss.m is invoked from the function “pf_constraint.m”.  This 

function forms the vector of complex power mismatch at each bus.  From equation (9) 

                                                
3 This code is developed by Professor Christopher L. DeMarco for his MATLAB power flow packages. 
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S =V .*conj( I )   =  conj( I ).*(V ) 

 V ∈ Cn,     V := vector of complex bus voltages; note that V =V.*exp( !j ) 

 I ∈ Cn,      I := vector of externally injected current at buses ( I = Y *V ) 

Y ∈ Cnxn,   Y := full bus admittance matrix (reference bus rows and column  

                          not eliminated) 

 S ∈ Cn,     S := vector of externally injected power at buses 

 

The function returns mismatches at all buses (no deletion of the slack mismatch 

component.)  Power leaving the bus is treated as positive sign; that entering the bus is 

treated as negative sign. 

  

Arguments: 

Ybus   - complex bus admittance matrix 

vbus   - vector of complex bus voltage phasors 

s_net_demand  - vector of complex bus power demand 

 

Returns: 

nmiss  - a full complex n-vector of power mismatches 

  

 

 

 

 

 

 

{pfmiss.m - MATLAB code follows:} 

 
function nmiss = pfmiss(Ybus,vbus,s_net_demand) 

 



 
 

255 
 
 

ibus=Ybus*vbus; 
 
% The vector of complex power mismatch at each bus. 
nmiss = vbus.*conj(ibus)+s_net_demand; 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function “separation.m” 
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 The function separation.m is invoked from the main routines “RSB.m”.  The RSB 

partitioning is occurred here.  The function sets the OPF state solutions lower and upper 

boundaries for the “fmincon” solver.  Each resulting Lagrange multiplier and OPF state 

solution is displayed on the monitor screen.  The network Jacobian is constructed using 

the function “construct_jacobian.m”.  The OPF branch flows are determined by 

“dataout.m”, and the results are displayed on the screen.  The code uses “eigs” command 

to calculate the Fiedler value/vector of the OPF Jacobian.  Because the structure of the 

Jacobian matrix have the components associated with the slack bus in its first rows, each 

index of the second null is incorrectly numbered.  To assign the correct bus indices, this 

second null is re-numbered during this process. The RSB method assigns buses whose 

indices above the median value of the Fiedler vector to the one part and the below the 

median value to the other.  Warning message is displayed if any error occurs. 

  

Arguments: 

del    - bus voltage angles 

x0    - initial state vector 

Ybus  - bus admittance matrix 

Yp  - primitive bus admittance matrix 

A  - incidence matrix 

Bus  - “Bus” data (MATPOWER format) 

Line  - “Line” data (MATPOWER format) 

baseMVA - system base MVA (100MVA) 

slacklist  - indices of slack bus 

genlist   - indices of other generator buses 

loadlist  - indices of load buses 

nbus   - # of buses 

gencost  - “gencost” data (MATPOWER format) 

gen   - “gen” data (MATPOWER format) 

slackUgen   - indices of slack and other generator buses 

L_sUg   - # of slack and other generator buses 
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Bus_sub  - sub-network “Bus” data (MATPOWER format) 

Line_sub  - sub-network “Line” data (MATPOWER format) 

 

Returns: 

fval    - objective cost value ($/hr) 

part_1_or - re-numbered indices of bus in part 1 

part_2_or - re-numbered indices of bus in part 2 

second_smallest_eig - Fiedler value of the OPF Jacobian 

sline   - vector of OPF branch flow solutions 

sline_oddindex - branch flows “from” the relating buses 

sline_evenindex - branch flows “to” the relating buses 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

258 
 
 

{separation.m - MATLAB code follows:} 

 
function [fval,part_1_or,part_2_or,second_smallest_eig,... 

        sline,sline_oddindex,sline_evenindex]=... 

   separation(del,x0,Ybus,Yp,A,Bus,Line,baseMVA,slacklist,... 

   genlist,loadlist,nbus,gencost,gen,slackUgen,L_sUg,Bus_sub,Line_sub) 

 

% Set the lower boundaries of the state variables, "x". 

lower_bound=[gen(:,10)./baseMVA; 

            -inf.*ones(length(del),1); 

            Bus(:,13)]; 

 

% Set the upper boundaries of the state variables, "x".         

upper_bound=[gen(:,9)./baseMVA; 

             inf.*ones(length(del),1); 

             Bus(:,12)]; 

                                 

% Use "fmincon" in Optimization toolbox 2.0  

% See the user manuals for details 

options = optimset('Display','iter','Diagnostics','on'); 

[x,fval,exitflag,output,lamda]=fmincon('obj_function',x0,[],[],[],[],... 

    lower_bound,upper_bound,'pf_constraint',options,Ybus,Yp,A,Bus,... 

    Line,baseMVA,slacklist,genlist,loadlist,nbus,gencost,gen); 

 

% These values are the Lagrange multipliers: 

% for the lower boundaries of the state variables 

lamda_lower=lamda.lower 

% for the upper boundaries of the state variables 

lamda_upper=lamda.upper 

% for the linear inequality constraints 

lamda_ineqlin=lamda.ineqlin 

% for the linear equality constraints 

lamda_eqlin=lamda.eqlin 

% for the nonlinear inequality constraints 

lamda_ineqnonlin=lamda.ineqnonlin 

% for the nonlinear equality constraints 

lamda_eqnonlin=lamda.eqnonlin 

 

% Extract data from the resulted "x". 



 
 

259 
 
 

% Bus voltage angles. 

del_final=x(L_sUg+1:L_sUg+nbus); 

% Bus voltage magnitudes. 

vmag_final=x(L_sUg+nbus+1:L_sUg+(2.*nbus)); 

% Complex bus voltages. 

vbus_final = vmag_final.*exp(j*del_final); 

 

% Construct the network Jacobian from this OPF operation. 

% This Jacobian contains the elements associated with the slack bus also 

[jac_final] = construct_jacobian(Ybus,vbus_final,slackUgen,loadlist); 

 

% Display the resulting OPF solution on the screen. 

OPF_Pg=baseMVA.*x(1:size(gen,1)); 

OPF_v=x((size(gen,1)+1):size(x,1)); 

OPF_solution=[OPF_Pg; 

              OPF_v] 

           

% Show the resulting power flow solutions on the screen. 

nline = size(Line,1) 

fromto = Line(:,1:2) 

 

% The "cline" is complex line flow at two ends (from bus to network). 

% It is the "sline" in the "dataout" function. 

 

% "Bus", "Line" here actually are "Bus_sub_or","Line_sub_or" 

[sline,sline_oddindex,sline_evenindex] = ... 

    dataout(vbus_final,A,Yp,fromto,nline,Bus,Line,Bus_sub,Line_sub); 

 

% Calculate the 2 smallest eigen-values of the sparse Jacobian matrix. 

options.disp = 0; 

jac_final=sparse(jac_final); 

block_jac_final=jac_final(1:nbus,1:nbus); 

[rjac_vec_final,rjac_val_final,FLAG] = eigs(block_jac_final,2,0,options); 

 

% Display below message if not converged. 

   if FLAG == 1,  

   disp('not converge for the "eigs" command for eigenvector calculation'); 

      return 

   end, 
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% The diagonal vector of the resulting eigenvalue matrix. 

   diag_rjac_val_2min_final=diag(rjac_val_final)     

   rjac_vec_2min_final=rjac_vec_final 

    

% Sometimes, "eigs" command produces the resulting eigenvalues that 

%   are not numerically increasing ordered. 

   if diag_rjac_val_2min_final(1)>diag_rjac_val_2min_final(2), 

        

       second_null_gl=rjac_vec_2min_final(:,1) 

       second_smallest_eig=max(diag_rjac_val_2min_final) 

   end 

    

   if diag_rjac_val_2min_final(2)>diag_rjac_val_2min_final(1), 

        

       second_null_gl=rjac_vec_2min_final(:,2) 

       second_smallest_eig=max(diag_rjac_val_2min_final) 

   end 

    

   % Because the approach constructs the Jacobian matrix  

   %    to have the generator and slack buses associated components 

   %    in its first rows, 

   %    each index of the second null is incorrectly numbered. 

   % To assign the correct index number, this second null is re-numbered.  

   %     

   %    Note:  

   %    The results obtained are still needed 

   %    to enter to the "bus_reording.m" again. 

second_null_or(slackUgen,1)=second_null_gl(1:length(slackUgen),1); 

second_null_or(loadlist,1)=... 

    second_null_gl(length(slackUgen)+1:length(slackUgen)+length(loadlist),1); 

    

   median_second_null_or=median(second_null_or(1:nbus)) 

    

% Assign buses whose indices above the median value of the Fiedler vector 

%   to one sub-network, and the below the median value to the other. 

   part_1_or=find(second_null_or(1:nbus)>median_second_null_or); 

   part_2_or=find(second_null_or(1:nbus)<median_second_null_or);    

    

   % For some cases, some elements are exactly equal to the median value. 

   temp_part=find(second_null_or(1:nbus)==median_second_null_or); 
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   % Check to see whether part 1 contain generator or slack buses 

   temp_slackUgen_part1=any(ismember(part_1_or,slackUgen)); 

   % Check to see whether part 2 contain generator or slack buses 

   temp_slackUgen_part2=any(ismember(part_2_or,slackUgen)); 

   % These buses are assigned to the part that contain no gen. 

   if (temp_slackUgen_part1==0)&(temp_slackUgen_part2==1), 

       part_1_or=union(part_1_or,temp_part); 

   end, 

   if (temp_slackUgen_part2==0)&(temp_slackUgen_part1==1), 

       part_2_or=union(part_2_or,temp_part); 

   end, 

    

   % In case both parts already have generator buses,  

   %    these elements are arbitrarily assigned to part2 

   if (temp_slackUgen_part1==1)&(temp_slackUgen_part2==1), 

       part_2_or=union(part_2_or,temp_part); 

   end, 

    

   % The code checks again to see  

   %  whether part 1 contain any generator or slack buses. 

   new_temp_slackUgen_part1=any(ismember(part_1_or,slackUgen)); 

    

   % The code checks again to see  

   % whether part 2 contain any generator or slack buses. 

   new_temp_slackUgen_part2=any(ismember(part_2_or,slackUgen)); 

    

   % Warning if there are no generators in either part 

   if (new_temp_slackUgen_part1==0)|(new_temp_slackUgen_part2==0), 

      warning('error : no gen or slack in either part'); 

      % Debug if the above warning occurred 

      dbstop if warning 

   end, 
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Function “UPDATESep.m”4 
 

 The function UPDATESep.m is invoked from the main routines “RSB.m”.  The 

new separation matrix “Sepnew” is first obtained as the old separation matrix “Sep”.  All 

entries in the column, corresponding to the separated part, are set to zero.  Then, in this 

column the buses of part_1 are entered.  The buses of part_2 are assigned to the new 

column of Sepnew.  The part of the network, contained in the column “seppt” of Sep, has 

been separated in part_1 and part_2.  Therefore, Sepnew has one column, i.e., part, more 

than Sep and as many rows as there are buses in the biggest part of the network after the 

current separation. 

  

Arguments: 

Sep  - separation matrix before current partition 

seppt  - part that has been separated 

part_1  - bus indices of part 1 after separation of sub-network 

part_2  - bus indices of part 2 after separation of sub-network 

 

Returns: 

Sepnew - separation matrix after current partition 

  

 

 

                                                
4 This code is developed by Professor Christopher L. DeMarco and Juergen Wassner for their work in [7]. 
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{UPDATESep.m - MATLAB code follows:} 

 
function Sepnew=UPDATESep(Sep,seppt,part_1,part_2) 

 

% # of parts. 

npart=size(Sep,2); 

% Total bus #. 

nbus=size(Sep,1); 

 

% # of buses in part1 

nbus1=length(part_1); 

% # of buses in part2 

nbus2=length(part_2); 

 

% Initialize data 

Sepnew=Sep(:,1:npart); 

Sepnew(:,seppt)=zeros(nbus,1); 

 

% Assign buses in part1 into the same column using for the partition steps. 

Sepnew(1:nbus1,seppt)=part_1; 

% Create a new column for matrix Sepnew and assign buses in part2 

%   into that new column 

Sepnew(1:nbus2,npart+1)=part_2; 
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Function “UPDATESm.m”5 
 

 The function UPDATESm.m is invoked from the main routines “RSB.m”.  This 

function updates the matrix “Sm” and determines the part that is separated in the next 

step.  First, the matrix Sm is updated according to the separation matrix Sep (see function 

UPDATESep.m).  The information referring to the new part 1 is entered in the column of 

the currently separated part seppt.  Then, by extending Sm by one column, the values for 

part 2 are entered.  Afterwards, in sep_cand all parts with more than one generator bus 

are found.  Among all these parts in “minidx” the part with the Fiedler value is 

determined and stored as return variable seppt. 

  

Arguments: 

Sm  - contains Fiedler values and the # of generators within  

   every part 

seppt   - part that has been separated 

gen1   - # of generators within new part 1 

gen2   - # of generators within new part 2 

sm1   - Fiedler value of part 1 

                                                
5 This code is developed by Professor Christopher L. DeMarco and Juergen Wassner for their work in [7]. 
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sm2   - Fiedler value of part 2 

 

Returns: 

Sm  - updated matrix of Fiedler values 

seppt   - part that is separated in the next step 

  

 

 

 

 

{UPDATESm.m - MATLAB code follows:} 

 
function[Sm,seppt]=UPDATESm(Sm,seppt,gen1,gen2,sm1,sm2) 

 

% # of parts. 

npart=size(Sm,2); 

 

% # of generator buses in part1. 

Sm(1,seppt)=gen1; 

% The Fiedler value of power flow Jacobian of part1. 

Sm(2,seppt)=sm1; 

 

% Create new column for matrix Sm and assign 

%   # of generator buses in part2 into the row 1 of that new column. 

Sm(1,npart+1)=gen2; 

% Assign the Fiedler value of power flow Jacobian of part2    

%    into the row 2 of that new column. 

Sm(2,npart+1)=sm2; 

 

% The following steps finds the next part to be partitioned next. 

% The candidate parts contain more than one generator. 

sep_cand=find(Sm(1,:)>1); 

% The code selects to partition in the part that has smallest Fiedler value. 

[dum,minidx]=min(Sm(2,sep_cand)); 

seppt=sep_cand(minidx); 
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