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EXECUTIVE SUMMARY 
Fault location on transmission lines is a very important application aimed at identifying the exact 
location of the fault and repairing the fault conditions with a goal of restoring the system as 
quickly as possible. With transmission lines equipped with digital relays at either ends or 
dedicated fault locators, the task of locating faults is rather simple. If most of the relays in the 
system are electromechanical or if transmission lines have multiple taps, the required 
measurements are not available and locating faults accurately is very difficult.  

Fortunately, recording devices such as digital fault recorders (DFRs) are installed at some 
substations for fault monitoring and analysis. When a fault occurs, DFRs are triggered and will 
record pre-selected quantities. Generally, the recordings are available only at  a few locations due 
to the number of installed DFRs being typically much lower than the number of substations in a 
given system. Alternatively, the recording devices may be extensively installed at substations in 
the system, but every installed recording device may not be triggered by a fault. In either case, 
when a fault occurs, only sparsely-located measurements are obtained. This type of data is 
denoted as “sparse data”. Under this situation, many proposed algorithms for estimating fault 
location based on DFR measurements may fail to produce accurate results.  

This project is aimed at developing accurate fault location algorithms for situations where only 
sparse field data is available. The basic concept of matching the recorded and simulated 
waveforms to determine the most probable fault location is utilized. The recorded waveforms are 
captured using DFRs while the simulated waveforms are produced running a short circuit 
program using an accurate model of the power system. This study investigated the feasibility of 
the new fault location algorithm and proposed possible improvements to it.  

To determine the degree of matching between recorded and simulated waveforms, the during-
fault phasor is used to calculate the fitness value. The procedure of finding the best-matched 
simulation waveform is an optimization problem. There are many approaches for solving an 
optimization problem. In this study, a genetic algorithm is used. For enabling the usage of the 
fault location software developed in this study, data requirements are specified. The PSS/E 
model and DFR files are necessary to run the software. PSS/E software is commercial software 
used to calculate the power flow and carry out short circuit studies. Fifteen fault cases provided 
by CenterPoint Energy were used for testing the algorithm thoroughly using several different 
versions of the PSS/E model.  

The performance of the fault location algorithm and software was analyzed. The results of the 
analysis suggest that many factors may affect the accuracy of the proposed fault location 
algorithm. The most important factor is the power system model accuracy. The model may not 
reflect the real system operation condition when a fault occurs. Therefore, the static system 
model should be updated to reflect the real condition. Other factors affecting the accuracy of the 
fault location estimate include exact phasor calculation, synchronization, determination of the 
fault inception, selection of branch candidates, and genetic algorithm convergence. Based on the 
analysis, several improvements were made. The final test results show that the genetic algorithm 
is very promising in its ability to accurately estimate the fault location.  
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1 INTRODUCTION 
 
 
How to find a fault location in a transmission network is an important problem because 
identifying an accurate fault location can facilitate rapidly repairing any damage and restoring 
the faulty transmission line to service. It is especially critical for the permanent fault in a large-
scale transmission system. If a fault location cannot be identified quickly and, as a result, the line 
outage time is prolonged during a period of peak load, there will be severe economic loss and 
reliability issues.  

A lot of effort have been made on the topic and several solutions were proposed. However, they 
cannot be applied in all circumstances. Basically there are the following solution classes.  

1. Methods based on using expert’s knowledge and combining the recordings to locate a 
fault.  

In references [1] and [2], expert systems utilize both the binary quantities (relay and 
breaker status) and analog quantities (voltage and current measurements). The binary 
information is used to estimate the fault section, such as a bus or a line. The analog 
quantities are used to further pinpoint a fault location.  

2. Calculating the line impedance to locate a fault.  

Various one-end, two-end or three-end algorithms utilizing the voltage and current 
quantities for estimating the fault location have been proposed[3][4][5][6][7]. The one-
end algorithm is the simplest and does not require the communication of data between 
the monitoring devices located at different ends of the same transmission line. 
However, the fault resistance and remote-in feed may adversely affect its accuracy. For 
the special case where each end of parallel transmission lines is located at the same 
tower and two DFRs are installed at only one end (common bus) of parallel lines, one-
end of the algorithm can give highly accurate results despite the fault resistance impact 
[8]. Two-end and three-end algorithms are essentially independent of the fault 
resistance and yield quite accurate estimates. While synchronized sampling may obtain 
better results than unsynchronized sampling, it needs additional system requirements 
like Phasor Measurement Units for interfacing the timing signals for sampling 
synchronization from the GPS [9].  

3. Methods based on measurement of the fault generated traveling wave component 
[10][11].  

The methods in this class make use of traveling waves generated by faults for 
estimating a fault location. The main advantages of such algorithms are improved 
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accuracy and insensitivity to series compensation capacitors. There are drawbacks. 
Conventional current transformers cannot satisfy the requirements of accuracy and 
sampling rates; therefore, the capacitor voltage transforms are utilized for obtaining the 
transform waveform. Another problem is the situation where traveling waves are not 
produced when a fault occurs at a voltage inception angle close to zero. Finally, there 
can be a problem in distinguishing between traveling waves reflected from the fault and 
from the remote end of the line.  

It has been demonstrated that the existing algorithms are only suitable for specific cases, and 
there is still no satisfactory solution for every system. For example, in the CenterPoint Energy 
transmission system, only recorded data at limited substation locations are available. When a 
fault occurs in such systems, only several (two or three) DFRs may be triggered. The data 
obtained from triggered DFRs is sparse. Under this situation, there is not enough measurements 
to locate a fault using the methods mentioned above. A new fault location approach is required in 
such systems. In the next three sections, the scheme and implementation of a new approach using 
waveform matching and simulation are presented and corresponding results are shown in the 
subsequent section.  
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2 SCHEME OF NEW FAULT LOCATION APPROACH  
 

 

2.1 Introduction 

This chapter presents an outline of the proposed fault location approach. Considering that the 
approach uses sparse data (that is, limited amounts of field data) to locate a fault, the first section 
presents the concept of sparse data. Then, the scheme of waveform matching and matching 
criteria are stated. Simulation results are shown subsequently. At the end of the chapter, the 
optimal approach and selected genetic algorithm are discussed.  

2.2 Sparse data 

Sparse data refers to the data obtained from recording devices sparsely located at substations in a 
power system network. Examples of recording devices may include digital fault recorders 
(DFRs), digital relays, or other intelligent electronic devices (IEDs). The data captured by 
recording devices may include analog quantities, such as voltages and currents, as well as digital 
quantities such as breaker and relay operation status. Both analog and digital quantities may be 
useful for locating the fault. Digital quantities can be used to estimate the fault section and 
analog signals can further be used to calculate the exact fault location.  

The sparse data may include two possible cases. In the first case, many systems, recording device 
may not be installed at every substation or bus for monitoring purposes. It is common that only a 
small number of the buses or substations in the system have recording devices installed. In the 
second case, the recording devices may be extensively installed at the substations in the system, 
but every recording device installed may not be triggered by a fault. It is possible that only 
limited recording devices may be triggered under certain fault conditions. Based on some fault 
cases provided by CenterPoint Energy, the minimum number of triggered DFRs is one, the 
largest number of triggered DFRs is three. In either case, when a fault occurs on a system, only 
sparsely located measurements are obtained from the limited number of triggered recording 
devices. This type of data is denoted as “sparse data”.  

Fig. 1 illustrates the concept of sparse data. The system represents a part of the 138 kV 
CenterPoint Energy transmission system. While the system part has a total of 19 buses, DFRs are 
installed at three buses only. Clearly, the system is sparsely monitored. When a fault occurs on 
the line between bus 11 and bus 12, the DFRs located at buses 1, 3, or 16 may be triggered to 
record the specified quantities during the fault. In certain cases some of the DFRs at buses 1, 3, 
16 may not be triggered. Then even fewer measurements will become available for locating the 
fault. The data obtained in these cases may be interpreted as “sparse data”.  

In such a system, the fault may be several buses away from the DFR locations. Therefore, none 
of the common algorithms (such as one-end, two-end and three-end and so on) is applicable for 
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locating the faults. To solve this problem, the waveform matching approach is proposed as 
follows. 

 

 

 

 

 

 

 

 

 

Fig. 1  The sample system for illustrating data scarcity 

2.3 Waveform matching 

In the waveform matching approach, the model of the power system is utilized to carry out 
simulation studies. The matching is made between the voltage and current waveforms obtained 
by recording devices and those generated in simulation studies. The fault location is searched 
through the system by utilizing an iterative search process. The search process consists of the 
following steps. 

First, an initial fault location is assumed and asserted in the model. Second, the simulation 
studies are configured according to the specified fault. Third, the simulation studies 
corresponding to the specified fault are carried out utilizing appropriate simulation tools. Fourth, 
simulated waveforms of quantities of interest are obtained. Fifth, the corresponding simulated 
waveforms are compared with recorded ones, and the matching degree of the simulated and 
recorded waveforms is evaluated by using appropriate criteria. Sixth, the initial fault location is 
modified according to certain approaches, and then the process proceeds to the second step and 
continues. The above steps are iterated until the simulated waveforms that match the best the 
recorded ones are produced. The fault location will be determined as the one specified in the 
simulation studies for the case when generating simulated waveforms best match the recorded 
ones.  

To evaluate the matching degree of the simulated and recorded waveforms, two different 
methods may be employed. The first one is using phasors for matching. The second one is using 
transients for matching. In the phasor matching based approach, short circuit studies are carried 
out to obtain phasors under specified fault conditions. Then the phasors are compared with those 
derived from the recorded waveform. In the transient matching based approach, transient studies 
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are carried out to obtain the transients generated by the specified faults. Then the transients are 
compared with the corresponding ones extracted from the recorded waveforms.  

For the phasor matching, a short circuit model of the system is needed. For transient matching, a 
transient model of the system is needed. In our work, the short circuit model of PSS/E provided 
by CenterPoint Energy is used for short circuit studies [12]. In this stage of our work, only the 
“phasor matching” based approach for fault location is utilized. 

In order to obtain the best waveform match, the search range should be extensive enough to 
cover all possible faulted branches. There are certain difficulties involved in implementing the 
method. First, it may be time-consuming. The worst situation is to search all branches in the 
whole power system. Besides this point, the fault resistance has to be considered. Therefore, the 
search process is two-dimensional. Second, there is no preferred approach for guiding the search 
process. The engineers have difficulty in knowing where to pose faults in the next iteration step. 
It is possible to pose faults randomly. The fault may occur far away from the recording device 
locations in a big system. To determine the possible area for posing faults is challenging.  

2.4 Criteria for determining the matching degree 

In the phasor matching based approach, phasors generated from simulation studies (i.e., short 
circuit studies and those obtained from recorded waveforms) are needed. Short circuit studies can 
usually directly generate the simulation results in the phasor form. An appropriate signal 
processing technique needs to be applied in order to extract phasors from the recorded 
waveforms. Fourier transform may be used for this purpose [13][14][15].  

In order to determine the matching degree between the simulated and recorded phasor and find 
the best match, a quantitative criterion for determine the matching degree is necessary. First, the 
variables should be determined. As mentioned above, to pose a fault in PSS/E, a fault location, 
fault type and fault resistance should be specified. For fault type, the user provides the 
information. The parameters that will be varied are fault location and fault resistance. Next, the 
matching degree can be formulated as follows:  

 ( ) { } { }∑∑
==

−+−=
iN

k
krkski

Nv

k
krkskvfc IIrVVrRxf

11
, &&&&  (2.1) 

or  

 ( ) { } { }∑∑
==

−+−=
iN

k
krkski

Nv

k
krkskvfc IIrVVrRxf

11
, &&&&  (2.2) 

where 

( )fc Rxf , : the defined cost function when using phasor angle and magnitude or magnitude only 
for matching  

x :  the fault location  
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fR : the fault resistance 

kvr  and kir : the weights for the errors of the voltage and current measurements respectively 

ksV  and krV : the during-fault voltage phasors obtained from the short circuit simulation studies 
and recorded waveforms respectively 

ksI  and krI : the during-fault current phasors obtained from the short circuit studies and recorded 
waveforms respectively 

k : the index of the voltage or current phasors match 

vN  and iN : the total number of voltage and current phasors to be matched respectively.  

The cost function ( )fc Rxf ,  equals to zero theoretically when the phasors obtained from 
simulation studies exactly match those obtained from recorded waveforms. Therefore, for 
practical purpose, the best fault location estimate would be the one that minimizes the cost 
function. An appropriate optimization procedure needs to be selected to solve the minimized 
problem. Equations 2.1 and 2.2 can be converted into the maximum problem shown as follows, 

 ( ) ( )fcff RxfRxf ,, −=  (2.3) 

where ( )ff Rxf ,  represents the fitness function when using phasor or magnitude for matching. 

2.5 Simulation results 

To investigate the nature of the fitness function, various simulation studies have been carried out 
to obtain the fitness value versus the fault location and resistance using the sample power system 
shown in Fig. 1. The fitness value is obtained by specifying the faults with varying fault 
resistance on each line throughout the system, running simulations, and applying equations (2.2) 
and (2.3). When posing faults, the fault location changes in steps of 4 miles and the fault 
resistance in steps of 0.02 p.u. For each fault location and fault resistance, a corresponding 
fitness value can be obtained. To plot the fitness value versus the fault location and fault 
resistance, the value of the fault location needs to be defined. 

Firstly, the search sequence for all lines in the system should be defined. For example, suppose 
we pose faults in the following sequence: 1-2, 2-3, 3-4, 4-5, 3-6, 6-7, 7-8, 8-9, 3-10, 10-11, 11-
12, 12-13, 13-14, 14-15, 15-16, 3-17, 17-18, 18-19 for the line sequence shown in Fig. 1. Bus 1 
is defined as the initial bus for line 1, bus 2 is defined as the initial bus for line 2, and finally the 
bus 18 is defined as the initial bus for the last line. The fault location is defined as the distance of 
the fault from the initial bus. When the fault location is determined to be at zero miles, the posed 
fault location is situated at bus 1. The next fault location is changed based on preset step selected 
to be 4 miles. If the distance is smaller than the first line (1-2) length, the posed fault is located 
on the first line from the bus 1. Otherwise, the distance is compared with the sum of the first line 
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(1-2) and the second line (2-3) length. If it is smaller, then the posed fault location is selected on 
the second line 4 miles (the first line length) away from bus 2.  

Now suppose we assume that a phase A to ground fault with fault resistance 0.1 p.u. occurs on 
the line between buses 13 and 12, and is located 9.1 miles away from bus 13. The fault location 
is the distance from bus 1 to the fault point and it is obtained by adding those lines’ length, which 
contains lines 1-2, 2-3, 3-4, 4-5, 3-6, 6-7, 7-8, 8-9, 3-10, 10-11, 11-12, and the distance from bus 
12 to the fault point. Therefore, the fault location would be at 312.7 miles according to the above 
definition. If the recorded data are only available at bus 1, the fitness value versus the fault 
location and fault resistance for this specific fault can be obtained as depicted in Fig. 2.  

In Fig. 2 the maximum fitness value occurs at point (312.7, 0.1), which is the optimal solution 
for the phase A to ground fault. It is noted that the surface contains some local maximum and 
saddles. The surface is not regular.  

 

 

 

 

 

 

 

 
 

Fig. 2  The fitness surface for an A-G fault 

2.6 Optimal approach 

To obtain the maximum fitness value and its corresponding fault location and fault resistance, 
the same approach as described in section 2.5 is used to search whole network and draw the 
fitness value surface, then pick the optimal solution. The approach is effective. However, it is 
time consuming and hence impractical for some large, complex power systems.  

Many optimization approaches have been applied in the power system field. Most of them are 
utilized to solve the economic dispatch, maintenance scheduling, fuel resource scheduling, unit 
commitment and load dispatch for optimal power flow. Basically, the current literature identifies 
three main types of search methods: calculus-based, enumerative and random. The calculus-
based methods seek a local extreme by solving the usually nonlinear set of equations resulting 
from setting the gradient of the objective function equal to zero or seeking local optima by 
selecting an initial point and moving in a direction related to the local gradient. However, as seen 
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in Fig. 2, the fitness surface is not regular, and contains saddle points and local maximum points. 
Simulation studies show similar characteristics for other types of faults. Therefore, it is rather 
difficult to use the first method to find the global maximum point. The enumerative schemes 
have been considered in many shapes and sizes. The idea is fairly straightforward: within a finite 
search space or a discrete infinite search space, the search algorithm starts looking at objective 
function values at every point in the space, one at a time. The method is simple; however, it lacks 
efficiency.  

Random search algorithms have achieved increasing popularity because of the shortcoming of 
calculus-based and enumerative schemes. The genetic algorithm (GA) is an example of a search 
procedure that uses random choice as a tool to guide a highly exploitative search through a 
coding of a parameter space. The research shows that the GA based optimization approach is 
good at finding the globally optimal solution and avoiding the local optima; in other words, it is 
more robust than conventional search methods. Therefore, the GA is selected as the tool for 
finding the global optima in our study.  

2.7 Genetic algorithm overview 

Genetic algorithms (GA) are search and optimization methods based on the mechanics of natural 
selection and natural genetics. Unlike other traditional “hill-climbing” methods involving 
iterative changes to a single solution, GA works with a population of solutions that evolves in a 
manner analogous to natural selection. Candidate solutions to an optimization problem are 
represented by chromosomes, which, for example, encode the solution parameters as a numeric 
string. The fitness of each solution is calculated using an evaluation function that measures its 
worth with respect to the objective and constraint of the optimization problem.  

Several simple “genetic” operators create successive “generations” of the population, as 
illustrated in Fig. 3.  

 

 

  

 

 

 

 

 

Fig. 3  A generation of a simple genetic algorithm 
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In each generation, solutions are selected stochastically according to their fitness in order to be 
recombined to form the next generation. Relatively “fit” solutions survive; “unfit” solutions tend 
to be discarded. A new generation is created by stochastic operators (typically the “crossover”) 
that swaps parts of binary-encoded solution strings and that changes (or “mutates”) random bits 
in the strings. Successive generations yield fitter solutions that are approaching the optimal 
solution to the problem. The details related to the implementation are as follows. 

The mechanics of a simple genetic algorithm are surprisingly simple, involving nothing more 
complex than copying strings and swapping partial strings. A simple genetic algorithm that 
yields good results in many practical problems is composed of three operators: Reproduction, 
Crossover and Mutation.  

Reproduction is a process in which individual strings are copied according to their objective 
function values f . In the biological field this function is called the fitness function. Copying 
strings according to their fitness values means that strings with a higher value have a higher 
probability of contributing one or more offspring in the next generation. The reproduction 
operator may be implemented in an algorithmic form in a number of ways. The simplest way is 
to create a biased roulette wheel. Each string in the current generation will be allocated a slot 
sized in proportion to its fitness. In the Fig. 4, for each string i in the population, its fitness is 
evaluated as fi. The appropriate share of the roulette wheel to allot the ith string is obtained as 

∑
=

N

k
k

i

f

f

1

. Thus, those strings with high fitness values are allocated a large share of the wheel, 

while those strings with low fitness values are given a relatively small portion of the roulette 
wheel. To reproduce, we just “spin” the weighted roulette wheel N times (where N is the number 
of the current population) to yield the reproduction candidate.  

 

                                                                                                          
∑

=

N

k
k

i

f

f

1

           

 

 

 

 

Fig. 4  Simple reproduction allocates offspring strings using a 
roulette wheel with slots sized according to fitness 

After reproduction, the crossover may proceed in two steps. First, pairs of the members of the 
reproduction candidate strings (where the candidate number should be even) are chosen. Second, 
each pair of strings undergoes crossover as follows: an integer position k along the string is 

 
25% 
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selected uniformly at random between 1 and the string length less one [1, l-1] (where l is the bit 
number of the string). Exchanging the partial string of the two strings between positions k+1 and 
l inclusively creates two new strings. The probability that the crossover operator is applied will 
be denoted by Pc. This process is repeated until all pairs have been covered. Of the three genetic 
operators, the crossover operator is the most crucial in obtaining the final optimal result because 
crossover is responsible for mixing the useful information contained in each of the strings of the 
population in the search; this leads to steadily improving performance.  

Next, mutation is applied to the candidate strings after crossover. In the sample GA, mutation is 
an occasional (with small probability) random alternation of the value of a string position. For 
the binary coding, the mutation operator is a stochastic bit-wise complement applied with 
uniform probability Pm The mutation is needed because, even though reproduction and crossover 
effectively search and recombine high-performance notions, occasionally they may lose some 
potentially useful genetic material. The mutation operator can be helpful to diversify the search 
and introduce new strings into the population in order to fully explore the search space. 
Therefore, it enables the search to overcome local minima. Applying the mutation too frequently 
may destroy the highly fit strings in the population, which may slow and impede the convergence 
to a solution. Usually the mutation probability is small; the empirical value is 1.001.0 ≤≤ mP . 

The detail operation is as follows. We need to choose a uniform random number [ ]1,0∈r  for 
each bit in a specific string. If mPr ≤ , then the bit is flipped (from 0 to 1 or from 1 to 0); 
otherwise, the bit remains the same.  

After mutation, all candidate strings are copied into the next population. The process is repeated 
by calculating the fitness of each string, using a roulette wheel method to reproduce, applying the 
operators of crossover and mutation until a pre-specified convergence criterion is met. 
Theoretically, when offspring strings in the population are dominated by one individual string, 
the optimal result is approached. In other words, most of the offspring strings will take on the 
same value and the strings may not change significantly if iteration continues. The most common 
convergence criterion is a preset number of generations (that is, iteration number) or a pre-set 
value for the fitness value.  

2.8 Conclusion 

Simulations show that the proposed fault location approach using the genetic algorithm should 
be used to find a global optimum. We conclude that the genetic algorithm is an appropriate 
approach to find the optimum.  
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3 IMPLEMENTATION OF THE GENETIC 
ALGORITHM  

 

 

3.1 Introduction 

This chapter mainly presents the details of how the genetic algorithm is implemented in our 
work. For genetic algorithm convergence, several behaviors of the fitness value are discussed 
and a proper criterion is suggested.  

3.2 Solution representation 

Genetic algorithms (GA) were initially developed using binary strings to encode the parameters 
of an optimization problem. Binary encoding is a standard GA representation that can be 
employed for many problems; a string of bits can encode integer, real values, sets or whatever is 
appropriate. However, other representations (such as using strings of integers or floating-point 
numbers, or using character strings to represent sets) are utilized. Such representations require 
appropriately designed genetic operators. For our case, the binary encoding representation is 
selected because the genetic manipulation of binary chromosomes can be done by simple 
crossover.  

3.2.1 Encoding 

This step is used to map the parameters of an optimization problem into a binary string of length 
l. Suppose the variable x ( maxmin xxx ≤≤ ) (assuming the decimal value is positive non-integer 
number) is to be represented by a binary string of length l. The encoded value x for the variable 
will be  

 
( )( )

b

l

b xx
xx

roundx 







−

−−
= )

12
(

minmax

min  (3.1) 

where round () gives the nearest integer of the argument, xb and [ ]b represent binary number.  

To construct a multiparameter coding, we can simply concatenate on as many single parameter 
codings as we require. Each coding may have its own sublength and its own xmin and xmax value 
as represented in Fig. 5. 

3.2.2 Decoding 

This is to convert the binary string into meaningful decimal parameter employed in the GA. The 
decoding process is given by  
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Fig. 5  Single parameter and multiple parameter encoding 

3.3 Mapping objective function to fitness function 

In many problems (such as the fault location problem mentioned above, discussed section 2.4), 
the objective is stated as the minimization of the cost function rather than the maximization of 
some utility or profit function. Even if the problem is naturally stated in a maximization form 
(formulas in equation 2.3), this alone does not guarantee that the utility function will be 
nonnegative for all values of the variable x as we require in the fitness function. In GA, a fitness 
function must be a nonnegative figure of merit [16]. It is necessary to map the objective function 
to a fitness function form through one or more mappings. 

The simplest method is to multiply the cost function by a minus one (see section 2.4). This 
operation is insufficient because the fitness function must be a nonnegative number. Therefore, 
the following cost-to-fitness transformation is used: 

 ( ) ( )fc RxfCxf ,max −=  (3.3) 

where maxC is the maximum ( )fc Rxf ,  value in the current population. 

3.4 Fitness scaling 

Ideally, the population size should be as large as possible to enhance the exploration of the 
search space. The genetic algorithm with a large population can be expensive in terms of 
computation time, so a small population may be desirable. However, if the population is too 
small, then the loss of genetic diversity may compromise the search. Genetic diversity is 
important when the solution space is not topographically smooth. A small population would be 
more likely to quickly converge on what may be a local optimum; a comparatively fit individual 

Single parameter x represented by a binary string of length l=4 

0 0 0 0              xmin 

…….            x maps linearly in between xmin and xmax      

1 1 1 1              xmax 

 

Multiparameter coding (10 parameters) 
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in a small starting population will be selected for, and it and its descendants will quickly come to 
dominate, further limiting genetic diversity. In addition, with the sparse spread of initial points, 
the global optimum may never be reached before the search converges on a poor local optimum. 
Even if some local optima are visited, the point may be comparatively unfit, and will not be 
given an adequate opportunity to reproduce and start hill climbing. 

In other words, for genetic algorithm with a small population, the following problem may be 
encountered. At the beginning of the GA runs, it is common to have a few extraordinary 
individuals in the population. The extraordinary individuals would take over a significant 
proportion of the finite population in a single generation, and this may result in premature 
convergence. On the other hand, near the ending of the procedure for generating GA runs, there 
may still be significant diversity within the population; however, the population average fitness 
may be close to the population best fitness. This situation may result in the average and best 
members getting nearly the same number of copies in future generations. In this case, the 
survival of the fittest necessary for the improvement becomes random.  

To overcome the small population problem, we should have the opportunity to regulate the level 
of competition among members of the population to achieve the interim and ultimate algorithm 
performance, as we desire. That is called fitness scaling.  

So-called fitness scaling is actually a linear scaling. Let us define the raw fitness f  and the 
scaled fitness f ′ . The relationship between f ′  and f  as follows: 

 bfaf +=′  (3.4) 

 

 

 

 

 

 

 

Fig. 6  Scaled Fitness 

The relationship between the raw fitness and scaled fitness is shown in Fig. 6.  

The coefficient a and b may be chosen according to the following rules: 

The average scaled fitness avgf ′  should be equal to the average raw fitness avgf , because this will 
insure that each average population member contributes one expected offspring to the next 
generation. 

maxf ′  
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To control the number of offspring given to the population member with maximum raw fitness, 
choose the other scaling relationship to obtain a scaled maximum fitness, avgmult fCf ⋅=′max , 
where multC  is the number of expected copies desired for the best population member. We 
choose 2.1=multC -2.0. 

Now we obtain two equations as follows:  

 avgavg ff =′  or baff avgavg +=  (3.5) 

 avgmult fCf ⋅=′max  or baffC avgmult +=⋅ max  (3.6) 

Solving the two equations, we obtain: 

 
avgmac

avgmult

ff
fC

a
−

⋅−
=

)1(
 (3.7) 

 avg
avg

avgmult f
ff

fCf
b ⋅

−
⋅−

=
max

max  (3.8) 

The scaled fitness may be negative when avgmult fCf ⋅<max . The Fig. 6 may change to the Fig. 7, 
in which the scaled minimum fitness may be negative. This situation may appear when a few bad 
strings have fitness that is far below the population average and maximum. It is known that the 
negative fitness violates nonnegative requirement. Here, when we cannot scale to the desired 

multC , we still maintain equality of the raw and scaled fitness average and map the minimum raw 
fitness minf to a scaled fitness 0min =′f . 

 

 

 

 

 

 

Fig. 7  The unexpected scaled fitness 
 

3.5 Multi-point crossover 

There are several approaches for updating the population, the most utilized approaches known as 
general and steady state. For the general approach, the population is replaced by offspring 
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produced by reproduction, crossover and mutation. The best individual in the population pool is 
generally retained (where these individuals are elitists). In this case, individuals can only 
recombined with those from the same generation. This approach is named the genetic algorithm 
based on elitism. For the alternative steady state approach, new offspring are introduced 
immediately into the population, replacing an existing solution. In our case, the first approach is 
utilized.  

For some cases, the elitists are almost unchanged throughout the iterations. The potential 
problem is observed through investigating the change of individuals in every generation. Simple 
crossover may be one of the reasons for the phenomenon. It may result in comparatively small 
search space.  

A simple crossover refers to the one-point crossover in which a random “cut” point or “cross” 
point is chosen to divide both parent chromosomes. Copying the first part of the string for the 
first parent and the second part of the string for the second parent generates one of the new 
chromosomes. Another approach is by copying the second part of the string for the first parent 
and copying the first part of the string for the second parent. In a simple crossover model, L-1 
positions can be selected as “the cut” point. Here L is the string length.  

The simple crossover includes two steps: First, all newly reproduced strings in the mating pool 
are mated randomly. Second, each pair of strings undergoes crossover as follows. An integrate 
position k is selected randomly between 1 and L-1 (where L is the length of the string). 
Sweeping all characters between position k+1 and L inclusively creates two new strings. For 
example, suppose string 1A  and 2A  are: 

 
0|0011

1|0110

2

1

=

=

A

A
 

Suppose k=4, the resulting crossover produces two new string 1A′  and 2A′  

 
10011

00110

2

1

=′

=′

A

A
 

In two-point crossover, two such cut points are chosen. The parents’ strings are divided into 
three parts. Copying the first and third part from the first parent string and the second part from 
the second parent string, and combining the three parts in a proper order, generates one of the 
new chromosomes. Another is obtained by copying the second part of the first parent string and 
copying the first and third part of the second parent string, then combining them orderly. There 
are ( )L

2  different ways of picking the two cross points. For N-point crossover, there are ( )L
N  

different ways of picking the N cross points. Evidently increasing the number of crossovers will 
generate more possible children. 

For multipoint crossover, m crossover positions, { }1,,2,1 −∈ Lki Κ , (where ik  are the crossover 
points and L is the length of the string) are chosen randomly with no duplicates and sorted into 
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ascending order. The bits between successive crossover points are exchanged between the two 
parents to produce two new offspring. The section from the string beginning to the first crossover 
point is not exchanged between individuals. For example, suppose strings 1A  and 2A  are 

01|0110|110|0011

01|1111|001|0110

2

1

=′

=

A

A
 

and suppose { }11,7,4∈ik , the resulting crossover produces two string 1A′  and 2A′  

00|0110|001|0011
01|1111|110|0110

2

1

=′
=′

A
A

 

Multipoint crossover can encourage the exploration of the search space. In the simple crossover, 
there are L-1 ways to pick the cross points. However, in the multiple point crossover, there are 
( )L

k  different ways of picking the cross points. The larger the number of k, the less structure can 
be preserved. In our work, three-point crossover is adopted. 

3.6 Convergence 

GA search is usually controlled by a fixed number of generations. That means that users can 
control the search since they can select this value arbitrarily. Depending on the selected value, 
this may results in: a) a premature termination of the search process and b) an unnecessarily 
increased time of the search.  

Since genetic algorithms are randomized search procedures, the solution may not be the same in 
every run. Increasing the number of iteration may decrease such difference. Testing proves this 
view.  

Two parameters are important in genetic algorithms: crossover and mutation rate. They may 
affect the final solution. The crossover process randomly selects two parents to exchange genes 
with a crossover rate Pc. A higher crossover rate allows the exploration of the solution space 
around the parent solution. The mutation process randomly mutates one parent with a mutation 
rate Pm. The mutation rate controls the rate new genes are introduced and new solution territory 
explored. A lower mutation rate may cause the search to settle at a local optimum. On the 
contrary, a higher mutation rate could generate too many possibilities since the offspring lose 
their resemblance to the parents. Refined genetic algorithms utilize the variable crossover and 
mutation rate to improve the performance. Tests show that this may help in obtaining less 
iteration for most of the cases. Although the procedure is still random, its convergence may be 
improved.  

It has been observed that GA-based fault location software does not always converge to the same 
solution. In some cases, differences can be significant. We have performed an investigation in an 
attempt to observe causes and proper improvements. 

The outcome is discussed in three parts: 
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- The behavior of maximum fitness value, 

- The behavior of average fitness value, and 

- An experiment toget better results. 

3.6.1 Maximum fitness value behavior 

Maximum fitness value refers to the maximum of all population’s fitness values within a specific 
generation. In order to observe the changing regularity of maximum fitness value, a case (case 
III) was picked up and the same input data file (*.tot) to test all the cases was used. Fig. 8 and 
Fig. 9 show test results. Fig. 8 presents the genetic algorithm convergence procedure for two 
different runs, resistance ranges between 0 and 0.8 p.u. It shows that maximum fitness value 
varies with the iteration and may remain unchanged within some generations. However, the 
tendency of hill climbing is still observed. Fig. 9 presents the genetic algorithm convergence 
procedure for three different runs, resistance ranges between 0 and 0.4 p.u. The figure has similar 
tendency as shown in Fig. 8. The slight difference is that in Fig. 9, less hill climbing shows a 
smaller search space. The two figures show that genetic algorithm can rapidly reach the 
neighborhood of the optimum, in several tens of iterations.  
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Fig. 8  Maximum fitness value for case III, resistance range 0-0.8 p.u. 
 

Fig. 9  Maximum fitness value for case III, resistance range 0-0.4 p.u. 
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It is difficult to determine if the estimated result is optimal. The only identification of the optimal 
solution is based on the fitness value. The smallest fitness value (in absolute value) within the 
search space corresponds to the optimum. However, for many cases we tested, the estimated 
results, obtained within a preset iteration number, locate the real fault location on a nearby 
section. Observing all test cases, some conclusions are listed as follows. 

For every run, the convergence procedure may be different. The maximum fitness value may 
converge at a specific fitness value within a preset number of iterations. Although the 
approached fitness values for different runs may be almost the same, the corresponding estimated 
fault location might be assigned to entirely different sections. This situation may occur most 
frequently for short transmission lines. This phenomenon is consistent with the observation that 
the fitness surface can be very non-linear in specific cases. Increasing the number of iterations 
could be helpful in improving the accuracy of the estimated result and in decreasing the fitness 
value further. Increasing the region of fault resistance corresponds to enlarging the solution 
search space.   Even if the ability of hill climbing is improved, the speed of convergence is still 
not increased. Average fitness value behavior 

Average fitness value refers to the average of all of the population’s fitness values among a 
specific generation. In order to observe the changing regularity of the average fitness value, a 
different case (case IX) was picked. One of test results is shown in Fig. 10. 
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Fig. 10  Maximum and average fitness value for Case IX 

 

There are a couple of observations about this figure. 

1. Average fitness value varies randomly during all iterations. Its absolute value has not 
increased as assumed previously. This is because the replacement scheme utilizes the rule of 
“Both Parent” in which both parent are replaced by the children no matter what the fitness values 
are. Children must not be fitter than their parents. 

2. It is difficult to utilize an average fitness value to set a reasonable iteration-stopping rule 
because the average fitness value has no regularity. To overcome this drawback, we use the 

maximum 

average 
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replacement scheme of “Weak Parent” instead of “Both Parent”. In “Weak Parent”, the parent is 
replaced when the child is fitter than the parent.  

The following test uses the scheme of “Weak Parent”. Fig. 11 shows the result of the same case 
(case IX). The average fitness value gradually approaches the maximum fitness value as the 
number of iterations increase. (The fitness value uses the absolute value in Fig. 11.) This 
characteristic can be utilized  to add an additional termination criterion. When the relative error 
between the average fitness value and the maximum fitness value meets a specific threshold, 
iterating stops. The former criterion utilizes the fixed generation number as a preset threshold. A 
combination of these two criteria can form a new termination condition by forming a relationship 
of “OR” between the two criterions. 
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Fig. 11  Test results obtained from Case IX; two curves are obtained 

by using the same input file (caseXI-1.tot) 
 

After additional research on the new replacement scheme, we find that the above phenomenon 
always occurs except in one special case. In order to explain the exception, we have to be 
familiar with the GA iteration process. We set two parameters to control the production of initial 
population and the number of iterations ; they are “out_iteration” and “in_iteration”.  

The latter parameter is used for the inner loop in which the initial population is produced 
randomly. The former parameter is used for the outer loop in which the initial population is 
produced randomly, except for keeping the best-obtained individuals. Usually the former 
parameter can be set to one (1). When the average fitness value equals or approaches the 
maximum fitness value, the result may be kept unchanged with the number of iterations 
changing. At this time, the parameter is useful in re-initializing the population.  

When the parameter of “out_iteration” is set as a specific number (not equal to one), the 
changing of average fitness value is different from the result shown in the previous figure (Fig. 
11). An example is shown in Fig. 12. In this case, we set out_iteration to 9 and in_iteration to 10; 
the total number of iterations is 90. The average fitness value decreases within an out_iteration, 
however there are some peaks among 90 iterations. In this situation, the termination using 
average fitness value cannot be used.  

Average fitness 

Maximum fitness 
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Fig. 12  Case IX (setting the “out_iteration” to 9, “in_iteration” to 10) 

 

More tests show that the replacement scheme of “Weak Parent” can speed up convergence and 
help obtain more stable results. For example, for case III, using the new improved algorithm 
resulted in each run locating the same section. In general, result of every run cannot locate the 
same section if the previous replacement scheme of “Both Parents” is used for the same case.  

3.6.2 Using a refined genetic algorithm 

The crossover process randomly selects two parents to exchange genes with a crossover rate Pc. 
A higher crossover rate allows the exploration of the solution space around the parent solution. 

The mutation process randomly selects one parent with a mutation rate Pm. The mutation rate 
controls the rate new genes are introduced, and explores new solution territory. If the mutation 
rate is low, the solution may settle at a local optimum. On the contrary, a high rate could 
generate too many possibilities. If the offspring lose their resemblance to the parents, the 
algorithm will not learn from the past and could become unstable. 

In a refined genetic algorithm, the probabilities of crossover and mutation are variable for 
different generations. For every generation, probability of crossover is decreased linearly, while 
the probability of mutation is increased linearly. In order to contain these probabilities within a 
reasonable range, limits should be set so that they do not exceed permitted intervals. 

In order to observe the performance of the refined GA, the case IX is tested thoroughly. The 
results are shown in Fig. 13 (The replacement scheme uses “Both Parent” in which children 
replace their parent whatever their fitness values are.) The first observation about the results 
shown in the figure is that the convergence is random and different for every run. For the same 
fitness value, (for example, -21.5) Fig. 13 shows only 20 iterations are needed for one run and 80 
iterations are needed for another run. The second observation is that the change of maximum 
fitness values may remain static for a number of generations before a superior individual is 
found. The refined GA does not provide better performance. Theoretically, the refined genetic 
algorithm is superior to the normal genetic algorithm. For the same fitness value, the refined 
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algorithm can converge more quickly than the normal genetic algorithm. However, to the 
selection of the appropriate possibility of crossover and mutation should be done carefully.  

Fig. 13  Fitness value for case IX, using refined GA, Pc (0)=0.9, Pm (0)=0.01 

 

3.6.3 Conclusions regarding convergence 

Because the GA is a stochastic search method, it is difficult to move away the randomness of the 
convergence process  and specify the proper convergence criteria to make genetic algorithm 
search converge at the same solution for each run. Since the fitness of a population may remain 
static for a number of generations before a superior individual is found, the application of 
conventional termination criteria becomes problematic. A common practice is to terminate the 
GA after a pre-specified number of generations and then test the quality of the best members of 
the population against the problem definition. If no acceptable solutions are found, the GA may 
be restarted or a fresh search initiated.  

Several convergence schemes can be utilized: 

1. Fitness Sum - if the sum of the fineness over the population falls below the convergence 
criteria; 
2. Average Fitness – when the population average falls below the criteria; 
3. Best Gene – when the chromosome of best fit falls below the criteria; and 
4. Worst Gene – when the worst chromosome falls below the criteria. 

We have used the third scheme; the results show that the method is effective and helps obtain the 
more stable result. Of course, when a new replacement scheme (“Weak Parent” scheme in which 
the parent is replaced if the child is fitter than the parent) is adopted, the second one using 
average fitness value as the convergence rule is effective.  

Theoretically, using the refined GA would help to approach optimal result quickly in most cases. 
We observe that some cases have the benefits. But it may not always be effective for all cases.  
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Moreover, increasing the number of iterations may help obtaining a better solution. However, we 
cannot increase the number of iterations without limit. Although the methods mentioned above 
may help improving the solution to some extent, a new more robust method needs to be 
introduced.  

3.7 Conclusions 

This section mainly describes the scheme of a general genetic algorithm with some 
improvements. The genetic algorithm convergence is discussed in detail and some corresponding 
test results are shown. A convergence criteria is suggested when the replacement scheme of 
“Weak Parent” is utilized. 
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4 IMPLEMENTATION OF THE FAULT LOCATION 
ALGORITHM 

 

4.1 Introduction 

This chapter gives an outline of the implementation of the fault location software. The 
architecture of the fault location software is presented first. Then the details of obtaining the 
accurately matched during-fault phasors and synchronizing the recorded phasors are given. 
Finally, the process of generating and tuning the static model is described.  

During development of the fault location software, fifteen fault cases were tested. All test results 
and test analysis are presented in several interim reports submitted to PSERC. The following text 
refers to these reports. 

4.2 Architecture 

The architecture of the fault location software is shown in Fig. 14. The input data include the 
DFR data, interpretation file, and the system model file in PSS/E format. The operation 
procedure of the software is briefly described, with a detailed illustration presented in succeeding 
sections. 

In the case of CenterPoint Energy, specialized software called “DFR Assistant” converts the 
DFR raw data into COMTRADE format, and determines the fault type and faulted branches 
based on individual DFR recording [17]. Based on such information, the phasors of the 
monitored voltages and currents, pre-fault breaker status, and the total DFR information file can 
be obtained. Based on the interpretation file, a cross-reference between the designations used by 
DFR Assistant and the designations used by PSS/E can be found. The contents and generation of 
the DFR interpretation file and the total DFR information file will be illustrated later.  

Based on the topology data and a number of available measurements, the fault location software 
determines the type of fault location algorithm to be utilized. In special cases when one-end, 
two-end, or three-end algorithms can be used, the fault location can be obtained directly based on 
the related voltage and current phasors without running PSS/E simulation studies. The approach 
for selecting the fault location algorithm is illustrated below. 

Fig. 15 shows the system configuration used for one-end, two-end and three-end algorithms. The fault 
location software compares the actual system topology data and the available measurements with these 
configurations. If any of the configurations matches the actual case, then the matched one will be 
selected for fault location estimation. If none matches the actual case, then the genetic algorithm is 
selected for estimating the fault location. 
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Fig. 14  Architecture of fault location software 
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Fig. 15  The selection of fault location algorithms 

 

If the case belongs to the general case, then the following modules are to be executed. 

• The current phasors and/or the pre-fault breaker status can be utilized to tune the system 
topology (update the static system model). Only the service status of the branch is updated. 
If the magnitude of the pre-fault current phasor of the monitored branch is smaller than a 
pre-specified value, then the branch is considered as being out of service. Branch status is 
also updated according to the pre-fault breaker status. If both the pre-fault breaker status 
and the current of a branch are monitored, the recorded current overrules the breaker status 
for determining the service status of the branch. 

• After the system topology is updated, the PSS/E load flow study is carried out to obtain the 
pre-fault phasors of the related bus voltages and branch currents. Then, the phasors derived 
from the recorded waveforms are synchronized by a simple rotation with reference to the 
phasors obtained by the load flow study.  

• Based on the faulty branches given by DFR Assistant and the system topology, the 
software derives the list of total faulted branch candidates for posing faults. 

• The GA algorithm based approach is activated for searching the faults. 
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4.3 Obtaining phasors 

Fourier transform is used for obtaining the pre-fault and during-fault phasors for the voltage and 
current measurements. Identification of the moment of fault inception is required before 
calculating the during-fault voltage and current phasors. The phasor of the voltage or current 
quantity during the fault is calculated from the waveform with reference to the pre-fault phasor. 
Fig. 16 illustrates the concept. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16  Phasors obtained from the recorded waveforms 
 
The following nomenclature is used. 

naR : the pre-fault phasor of phase a obtained from the recorded waveform 

nbR : the pre-fault phasor of phase b obtained from the recorded waveform 

ncR : the pre-fault phasor of phase c obtained from the recorded waveform 

faR : the during-fault phasor of phase a obtained from the recorded waveform 

fbR : the during-fault phasor of phase b obtained from the recorded waveform 

fcR : the during-fault phasor of phase c obtained from the recorded waveform 

Although the angle of the pre-fault phasor can be arbitrary because of the selection of the 
reference point when applying a Fourier transform, the difference between the angle of the pre-
fault phasor and the angle of the fault phasor is fixed regardless of the reference point. In other 
words, if we rotate the real and imaginary axis as shown in Fig. 16, the angle between the phasor 

naR  and faR  is unchanged. This is also true for phase b and phase c phasors. Using calculated 
pre-fault phasors could change topology of the static model locally. The pre-fault breaker status 
can be determined from the recorded digital channel status or the amplitude of calculated pre-
fault phasors. The later is more reliable and it was used in the fault location software. 
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The calculation of the phasors based on the DFR recorded waveforms is illustrated using an 
example. Fig. 17 shows the three phase voltage waveforms.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17  Three phase voltage waveforms 
 

The following steps are taken to obtain the pre-fault and fault phasors of the voltage waveforms. 

(1) One-cycle Fourier transform is applied to the entire voltage signal to obtain the rms 
voltage magnitude. The rms values of the signals are depicted in Fig. 18.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18  RMS values of the voltage signals 
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(2) Fault inception cycle is found by comparing the rms value cycle by cycle. (Fault 

cycles are defined as the cycles after the fault inception. The fault inception cycles 
are determined from waveforms recorded by a DFR). In this case, the fault is found 
to start at the 13th cycle. For fault location purpose, the phasors at the 16th cycle will 
be utilized to ensure that the system has reached the steady state during the fault.  
 

(3) The pre-fault phasors are calculated using the first cycle of the waveform. In this 
case the phasors are:  

 
Phase a: 72.34 (-88.14 degrees) 
Phase b: 72.84 (152.48 degrees) 
Phase c:  73.28 (31.83 degrees) 

 
(4) The phasors during the fault are calculated using the phase angle shift concept. The 

magnitudes are calculated using the samples in the 16th cycle of the waveform. In 
this case, the magnitudes are: 

 
Phase a: 40.74 V 
Phase b: 61.28 V 
Phase c: 54.43 V 

 
The phase angle shift of the fault voltage signals is depicted in Fig. 19. 

The phase angle shifts of the three phase voltages at the 16th cycle of the waveform are: 

Phase a: 13.46 degrees 
Phase b: 13.42 degrees 
Phase c: -5.25 degrees 

Therefore, the phasors during the fault are: 

Phase a: 40.74 V (13.46 – 88.14 = -74.68 degrees) 
Phase b: 61.28 V (13.42 + 152. 48= 165.9 degrees) 
Phase c: 54.43 V (-5.25 + 31.83 =26.58 degrees) 

The selection of the cycle for the calculation of the during-fault phasors may not always be 
optimal. Due to the lack of synchronization, it is difficult to select the cycle of the waveform that 
corresponds to the same period to calculate the during-fault phasors for different DFR 
recordings. This may bring about errors, especially for the arcing faults during which the fault 
resistance is changing. In other words, if the cycles of waveforms selected for calculating the 
during-fault phasors for different DFR recordings correspond to different fault conditions (such 
as different fault resistances), then there will be errors affecting fault location estimate. 
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Fig. 19  The phase angle shift of the voltage signals 
  

4.4 Fault cycles 

As mentioned above, fault location (FL) software determines fault cycles from the recorded 
waveforms. The purpose of finding the fault cycles is to obtain during-fault phasors which are 
then matched with during-fault phasors obtained through simulation. In certain cases, FL 
software may choose incorrect fault cycles. This may affect the calculation of phasors during the 
fault period. Obviously, the fault location results may be affected.  

Note: The fault cycles are defined as the signal cycles after the fault inception. The fault 
inception moment is determined from the waveforms recorded by DFRs. 

The detailed method is first to get currents from the DFR data file according to the preset order, 
and then calculate the amplitude of a specific phase (A phase) current cycle by cycle.  The  
amplitudes of current calculated from different cycles will be compared with the reference value. 
If the amplitude of the current in a specific cycle increases over a preset threshold, the software 
considers the cycle to be the fault inception cycle or fault cycle. If the fault cycle for the specific 
signal phase cannot be found, other phases (B or C phase) are searched successively. If the fault 
cycle cannot be found on the specific circuit, the other circuits are searched successively until the 
fault cycle is identified. The method may fail under some situations. 

For example, current waveforms for faulted circuit (Exxon Ckt.83) in case IV are shown in Fig. 
20. This is a typical waveform of a single phase to ground fault in which B phase current 
increases during the fault, and waveforms of A and C phase almost do not change. If we use 
currents of the circuit to determine the fault cycle, using phase A does not result in finding the 
fault cycle. However, using B phase current can provide the correct result. The fault cycle is the 
7th cycle from the start (trigger point) of the record. 
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For the same fault, current waveforms on a specific circuit (other circuits, non-directly-faulted 
circuit) are significantly different, such as Dupont-Deer Pk Ckt.85 (Fig. 21). In this case (case 
IV), currents of phases B and C increase during the fault. The current of phase A decreases 
slightly during the fault, but increases after the fault is cleared. If we use the A phase current of 
the circuit to determine the fault cycle, an incorrect result is obtained. The fault cycle is the 14th 
cycle. 

Because the fault occurs randomly, the fault cycle in a specific substation is determined 
according to a specific order, which is determined in the corresponding interpretation file. In the 
existing version of fault location software, the current used for calculating the fault cycle is 
chosen based on the sequence of analog channels in the interpretation files. Incorrect fault cycle 
may be obtained this way.  

In an earlier version of the software, the fault inception cycle is determined through a series of 
tests on individual phase currents or voltages. For example, for a specific circuit, one first 
determines whether A phase current (or voltage) satisfies some test conditions. If the test 
conditions are not met, the software will continue with the B phase, then the C phase. If the fault 
inception cycle is not found on the first circuit, the next circuit will be analyzed using the same 
method until the fault inception cycle is found. 

In some cases, the fault inception cycle calculation may be erroneous. The most common 
situation is when a single-phase-to-ground fault occurs; non-faulted-phase current may decrease 
during the fault and increase after the fault is cleared. If this phase happened to be analyzed first, 
the time instant of the current increase will be calculated as the fault instant (which is incorrect). 
This causes above-described method to fail. (This phenomenon has been explained above.) 

The following cases are examples when the fault cycle was picked out incorrectly: cases I, IV, 
VI, XI. 

 
Fig. 20  Case IV: current waveforms on Exxon Ckt.83 in Cedar Bayou 
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Fig. 21  Current waveforms on Dupont-Deer Pk Ckt 85  

in Cedar Bayou 
 

An improved fault detection algorithm was implemented. Three-phase currents (or voltages) are 
analyzed simultaneously. This method uses the following observation. For each phase that 
satisfies a magnitude condition, a counter is started. The process continues in the same way in 
the next cycle. If the magnitude condition is certified in three consecutive cycles for any of the 
phases, the fault instant is found. 

This method can correctly calculate the fault inception cycle under the situation mentioned above 
(case I, IV, VI). The approach may not be fit for the “bad” waveform, such as case XI, in which 
the calculated fault cycle may be selected earlier than the real fault inception. 

An alternative approach is to use the sampled data from transient waveforms to determine the 
fault cycle. The method can determine the fault cycle after several sample intervals.  

4.5 Signal processing 

4.5.1 DC offset component 

As it is well known, depending on the incidence angle, that fault current may contain a 
significant decaying DC offset component. This component may result in erroneous phasor 
estimates. This has been observed in the recorded waveforms for several test cases in the interim 
reports mentioned at the beginning of this chapter. 

For example, the waveform of faulted C-phase current on “Holman Ckt.44” (Fig. 22) in the case 
IX and waveform of faulted C phase current on “TP&L-Jewett Ckt. 98” (Fig. 23) in case VII 
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contain decaying DC offset component. In 345 KV systems, a DC component (Fig. 23) is evident 
and lasts a longer time. 

 

Fig. 22  Case IX: current waveforms on Holman Ckt. 44 (138KV) 
 

In order to minimize the effect of transients during phasor calculation, the FL program utilizes 
the data taken 3 cycles after the fault occurs. However, the DC component still exists even after 
the third cycle of the fault. It is known that a decaying DC component is accompanied with both 
high-frequency harmonics and low-frequency inter-harmonics. This could be one of the reasons 
for the FL result being inaccurate in some cases.  

Using an improved Fourier algorithm can remove DC offset. Three references were identified 
related to the DC offset removal and proposed algorithms were implemented to test their 
performance [13]-[15]. The algorithm given in reference [13] gave the best results and was 
selected for the final implementation. The corresponding change in the FL implementation was 
achieved by adding a new a global function “dft1”.  

Notes: 

1. In order to use the improved Fourier algorithm, the number of samples per cycle of recorded 
data needs to be an even number. If the number of samples is odd, the sampled data from 
two cycles are used to obtain the calculated phasor.  

2. There are two assumptions: a) input signal does not contain sub-harmonics; and b) the 
highest frequency of the input signal is at least twice less than the sampling frequency.  

If the two assumptions are satisfied, the performance of the algorithm is optimal.  
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Fig. 23  Case XII: current waveforms on TP&L Jewett Ckt. 98 from 

Limestone (345 KV) 

 

4.5.2 High frequency noise 

For some cases, the waveforms recorded by DFRs are severely polluted by high-frequency noise. 
This noise may result in a calculation error for the phasor estimation and consequently in a 
wrong fault location estimate. 

For case I presented in the test report, the following waveforms were obtained from DFR files 
(Fig. 24). Obviously, the presence of the noise is such that the useful signals appear completely 
buried underneath. 
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Fig. 24  Case I, current waveform of section 4110-4111 
 

Using low-pass filtering can remove high frequency noise and improve the performance of the 
Fourier algorithm. 

Corresponding changes are: adding a class “CFilter” to implement Butterworth low-pass filter 
and calling the low-pass filter before calculating the phasors. Because the 8th order low-pass 
filter will introduce one cycle delay for output to approach steady state, the filtered data in the 
first cycle are not steady and they do not correspond to their actual values. In the current 
program, data in the second filtered cycle followed the initial recorded cycle is used for 
calculating the pre-fault phasor and data in the second filtered cycle or later cycle after fault 
inception is used for calculating the during-fault phasor. 

4.6 Synchronizing the phasors obtained from DFR recordings 

The PSS/E load flow study based on the modified system model is carried out to obtain the pre-
fault phasors. Rotating them in reference to the phasors obtained by the load flow study 
synchronizes the phasors calculated from each DFR recording.  

The synchronization of the voltage and current phasors is illustrated next. Fig. 25 shows the 
relationship between the phasors obtained from the load flow study and from the recorded 
waveforms (Fig. 16). The phasor may represent a voltage or a current. In addition to the 
nomenclature used in Fig. 16, the following new symbols are defined: 

naS : the pre-fault phasor of phase a obtained by the load flow study 

nbS : the pre-fault phasor of phase b obtained by the load flow study 
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Fig. 25  The relationship between the phasors obtained by load flow 
study and by recorded waveforms 

 

 
ncS :  the pre-fault phasor of phase c obtained by the load flow study 

 α :  the angle difference between the phasor obtained by the load flow study and the 
phasor obtained from the recorded waveform. 

Synchronization is done by rotating counterclockwise the fault phasors faR , fbR  and fcR  by an 
angle of α . All DFR data are synchronized to the simulated phasors in the same way. As a 
result, all the DFR data can be synchronized. 

In the above programs, the commands “FNSL, OPT” are used to perform the load flow studies 
using the Newton-Raphson method. The pre-fault voltage and current quantities are obtained 
using commands such as BUSDAT, BRNCUR, BRNFLO and BRNMVA. BUSDAT is used to 
obtain the bus voltages. BRNCUR, BRNFLO and BRNMVA are used to obtain the branch 
currents. The voltage and current quantities are saved in a file with pre-specified name that will 
be interpreted and processed by the C++ programs. 

4.7 Processing the static model 

The given static system model, used in simulation studies, may not reflect the prevailing 
operating conditions of the system when the fault occurs. To match the phasors extracted from 
DFRs and those obtained from simulation studies, it may be beneficial that the system model 
used in studies be updated by utilizing the information captured close to the moment when the 
fault occurs. The process of updating the system model is called “the tuning of the system 
model.” 
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Tuning of the system model may include updating the topology as well as the generation and 
load data of the system. The pre-fault data, including the pre-fault phasors and breaker status, 
provided by DFRs may be used for the tuning process.  

4.7.1 Determining the topology 

4.7.1.1 Read topology data 

The CenterPoint Energy transmission system is described in PSS/E file format. The topology 
(i.e., connectivity between different buses), line status (whether the line is in service or not), line 
impedances, and susceptances are extracted from the original file. A module called “topology 
processor” realizes such functionality. A sample system shown in Fig. 26 is used to illustrate the 
processing of the topology data. 

Based on this diagram, the following information is obtained and saved in appropriate files. 

• Connectivity is described as shown in the following table:  
100  8 
8    100  3   -99 (a minus sign indicates a transformer) 
3    5    5   8 
5    3    3   43  2 
2    5    6 
7    99 
99   7    -8  43 
43   99   5   -10 
10   -43 
6    2 

 

For example, the line “8 100 3 -99 (a minus sign indicates a transfomer)” denotes that bus 8 is 
connected with bus 100 and bus 3 through a line, and connected to bus 99 through a transformer.  

 

Fig. 26  A sample system 
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• Branch service status is described as shown in the following table (only not-in service 
branches are included): 

3  5  2 

This means that the branch 2 between the bus 3 and 5 is out of service. 

• Branch Impedances and Susceptances (including both the zero sequence and positive 
sequence quantities) are obtained as shown in the following table: 

100  8  0.01  0.02  0.015  0.1  0.2  0.01 
8    3  0.1   0.1   0.03   0.2  0.25 0.02 
… 

For example, the first line reads “the line between bus 100 and bus 8 has positive sequence 
impedance of 0.01+j0.02 p.u., positive sequence susceptance of 0.015 p.u., zero sequence 
impedance of 0.1+j0.2 p.u., and zero sequence susceptance of 0.01 p.u. 

4.7.1.2 Topology Modification 

Based on the pre-fault breaker status and the pre-fault current magnitudes of the monitored 
branches derived from the DFR data, the service status (i.e., in or out of service status in the 
static model saved in the PSS/E file) of the branches will be updated. A zero magnitude (or 
smaller than 0.01 p.u.) of the current through a monitored branch indicates an out-of service 
status of the branch. If both the current and the breaker status of a branch are available, the 
current measurement will be used instead of the breaker status for topology update. This is based 
on the observation that the monitoring of currents is usually more reliable than the monitoring of 
the breaker status because the measured contacts of the breaker themselves may misoperate or 
may not be monitored.  

The topology modification is realized using the IPLAN language, which is part of the PSS/E 
package [18]. The IPLAN language is able to modify the system topology, control the load flow 
and short circuit studies, and control the reporting of the results of the PSS/E activities. Like 
other programming languages, IPLAN language can be used to write programs by which one can 
automatically control the PSS/E activities, read and save the results in a disk file. The IPLAN 
language facilitates the interaction between the PSS/E activities and C++ programs.  

The following program illustrates how the IPLAN language is used to modify the system 
topology. 

PROCEDURE updateSY 
QPUSH 'MENU,OFF' 
QPUSH 'CASE' 
QPUSH OldSave 
QPUSH 'chng' 
QPUSH '3' 
LOOP i = 1 TO in_ser 
QPUSH in_bus1_i(i),',',in_bus2_i(i),',',in_ckt(i) 
QPUSH '1' 
QPUSH '1' 
QPUSH '0' 
QPUSH '0' 
ENDLOOP 
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LOOP i = 1 TO out_ser 
QPUSH out_bus1_i(i),',',out_bus2_i(i),',',out_ckt(i) 
QPUSH '1' 
QPUSH '0' 
QPUSH '0' 
QPUSH '0' 
ENDLOOP 
QPUSH '-1' 
QPUSH 'SAVE' 
QPUSH NewSave 
RETURN 
END 

In this program, “OldSave” is the original file containing the system model. The IPLAN 
command “chng” is used to update the service status of all the branches whose actual status 
differs from the status indicated in the original model. The actual status refers to the status 
obtained from the DFR recordings based on the pre-fault breaker status and the current 
magnitudes of the monitored branches. The updated model is saved in a new file named 
“NewSave”. The branches whose status needs to be modified are determined by C++ program 
and passed to the IPLAN program. The IPLAN program can be invoked inside the C++ program. 
This is accomplished by using the following C++ program scripts. 

void callexe(char *prog, char *args) 
{ 
_ spawnl(_P_WAIT, prog, prog, args, NULL); 
} 
Void invoke_Psse () 
{ 
callexe("x:\\pti\\psse26\\pssexe\\psslf4", "-gnikool off -buses 4000 –inpdev  
g:\\users2\\liaoy\\ly\\psse\\flocini.idv"); 
} 
//File: flocini.idv 
EXEC c:\windows\profiles\liaoy\desktop\update 
@END 

 

The interaction between the C++ program and the PSS/E application software can be achieved 
using the described approach. 

4.7.2 Tuning static system 

4.7.2.1 When additional data are not available 

In this situation, only limited DFR data can be used to tune the generator and load data.  

(1) Approach I 

The objective function should be determined first. The goal of updating the generator output 
power and load power is to make the static system model closer to the real life system at the time 
before the fault occurs. To reach the goal, the waveform-matching based approach is utilized. 
The matching is made between the voltage and current waveforms obtained by DFR and those 
generated in power flow studies.  
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To evaluate the matching degree of the simulated and recorded waveforms, the following criteria 
is utilized, 
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where 

cf : the objective function or the defined cost function 

kvr  and kir : the weights for the errors of the voltages and currents respectively 

ksV  and krV : the pre-fault voltage phasors obtained from the load flow calculation and  recorded 
waveforms respectively 

ksI  and krI : the pre-fault current phasors obtained from the load flow calculation and recorded 
waveforms respectively 

vN  and iN : the total number of the voltage and current phasors respectively 

The meaning of ksV , krV , ksI  and krI in equation above is different from the one in equation 
(2.2).  

The final goal of updating generator output power and load power is to minimize the function 
shown in equation (4.1). 

Second, all generator nodes and load nodes related to the triggered DFRs are searched. The 
details are illustrated as described below. 

The generator nodes can be searched among the substations where DFRs were triggered. All 
buses in the substation where the DFRs were triggered should be easy to find. These buses may 
be the extended buses of remote buses whose voltage is controlled by corresponding generators. 
The generator nodes can be obtained through matching these buses with the extended buses in 
the power flow raw data file and picking the corresponding generator node buses.  

Then, load buses should be searched through introducing the “search depth” concept. The 
“search depth” is defined as the number of lines on a certain search path starting from a specified 
bus. The search depth is used as a constraint in the search process. Here, starting search buses are 
those buses that are included in the substation with triggered DFRs. After obtaining a list of total 
possible load buses, real load buses should be picked through comparing the load buses in the 
power flow raw data file. 

Third, the tuning strategy should be determined.  

The simplest probing method is to tune the generator and load data according to a specific rule. 
The following rule is applied in determining the individual load and generator power: “Adjust 
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the power such that, at each load or machine, the ratio of individual load or machine power to the 
total power of all buses, loads or machines being processed remains unchanged.” 

After the generator power and load power are tuned, then determine whether the tuning is 
effective. If the tuning is effective, we can continue the tuning according to the direction of the 
increase until the best match between the pre-fault load and simulated power flow is achieved. 
Otherwise, perform updating of the generator output power and load power pursuing the opposite 
direction. The flowchart of tuning the static system model is shown in the Fig.27. 

Obtaining the bus number of substations where
DFR were triggered

Obtaining the generator bus number of the
substation based on the above information

Using a specified “search depth” obtain a list of
the load bus numbers

Obtaining the generator data

Increasing the output power of generators
and the load power based on a specific rule

Decreasing the output power of generators
and the load power based on a specific rule

Calculating load flow using PSS/E

Calculating the fitness value

Fitness value is decreased?

Reaching preset model numbers?

End

Calculating load flow using PSS/E

Calculating the fitness value

Fitness value is decreased?

Reaching preset model numbers?

End

Y

Y

Y

Y

N

N
N

N

 

 
Fig. 27  The flowchart of tuning static system model 
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Table 1 shows the change of fitness value before and after tuning for the case IV. The table 
includes a total of six cases using different DFR files and the different matched quantities.  

In Table 1, the first column represents the different combinations of DFRs. The second column 
shows the fitness value calculated using the pre-fault phasor. The first value in the second 
column is obtained using the untuned system model. The second one is obtained using tuned 
system model, which is produced based on the adjusting strategy mentioned above. Using the 
same tuned system model, the fitness values are obtained by matching during-fault phasor and 
they are listed in the third column. In order to observe the effect of model tuning and compare to 
the fitness value obtained by using the static model, the fitness values calculated using the pre-
fault phasor and static model are also listed in the third column.  

When the fitness value is close to zero, the recorded waveform fits the simulated waveform 
completely. We can then say that the tuning strategy is effective once the fitness value has the 
tendency to approach zero. In Table 1, the third column shows that the fitness value has a 
tendency to decline. This may explain why the tuned model is closer to the actual operation 
condition than the static model. The extent of decrease depends on the region of tuning.  

Table 1 – The change of fitness value before and after tuning for Case IV 

DFR Files 
Utilized 

Fitness value using pre-fault 
phasor before and after model 

tuning  

Fitness value using during-
fault phasor before and after 

model tuning  

Quantities 
matched 

Event 870 15.499→9.289 39.48→34.57 All monitored 
currents 

Event 870 5.344→0.527 10.24→7.72 Currents on affected 
Ckt. 74 

Event 870 
Event 877 35.492→26.431 60.32→58.49 All currents 

Event 870 
Event 877 7.361→0.906 13.96→11.25 Currents on affected 

Ckt. 74 and Ckt. 98 

Event 870 15.707→9.497 41.72→38.41 All currents and all 
voltages 

Event 870 
Event 877 35.806→26.745 62.01→60.18 All currents and all 

voltages 
 

(2) Approach II 

The objective function remains the same as shown in equation (4.1). The criterion is used to 
evaluate the degree of matching between the recorded pre-fault waveform and simulated pre-
fault waveform obtained from the updated system model. The best match corresponds to the 
model that could reflect the real system operating condition just before the fault occurs.  

It is easy to conclude that the problem is actually a problem of finding an optimum. The goal is 
to obtain an optimal model instead of the original system model. This is hard to achieve since the 
parameters of the generators and loads, the number of loads and generators, and the system 
topology may be changing all the time. Therefore, it is more desirable to obtain a better model as 
opposed to looking for a model that permits the optimal matching according to the criterion. 
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In the former strategy, a new problem is that the tuned system model may not always keep the 
load flow convergence. Based on the former tuning strategy, generator and load data are updated 
according to a specific rule. After the system parameters are updated, the software must check 
the fitness value obtained by matching the pre-fault phasors.  

In Fig. 27, once the calculated fitness value is no longer decreasing, the tuning operation stops. 
When the tuning scope or tuning ratio becomes large, the corresponding load flow for the tuned 
system model may not converge. Therefore, a step to check the load flow convergence is added 
into the program.  

With the running of the fault location software, an additional problem occurs. The problem is 
that the load flow convergence is not related to the tuning ratio. It is possible that, for a specific 
ratio, the load flow will converge. Continuing updating the ratio according to the tuning trend, 
the load flow may diverge. After that, the load flow may become convergent again.  

In the former version of the tuning system, only the generators located at the substations where 
the DFRs have triggered are tuned. It is known that usually several DFRs could be triggered by a 
specific fault. Sometimes, only one DFR is triggered. Under this condition, the number of tuned 
parameters is too small to make a meaningful change. The details are as follows. 

First, the tuned generator buses and load buses should be picked up.  

To obtain the generator buses, the station buses of the monitored substations should be obtained 
by searching the corresponding interpretation files. These buses are the generators’ extended 
buses (behind the step-up transformer). The generator’s bus number will be obtained through 
searching the load flow raw data file.  

To obtain the load buses, the concept of a search layer mentioned earlier is applied. In the 
substations where DFRs have triggered, station buses can be obtained through reading the 
interpretation files. The branches connected to these buses are the first layer. The other layer can 
be derived from these branches. The tuned load bus number finally is obtained through checking 
the branch’s ‘from’ and ‘to’ bus. 

The tuned parameters of generators and loads are obtained through searching the load flow raw 
data file thoroughly. 

The tuning strategy is to first preset a step for active and reactive power, such as 1% of rated 
active and reactive power. Then, specific updated models are generated through modifying the 
power of generators and loads. For the load, the ratio of active and reactive power remains fixed 
in order to make the load flow converging easily.  

The change for each generator or load is different. After the parameters of the generators are 
updated, it has to be determined whether they are in the range of the power output. If the power 
is more than the upper limit, the power output is set as a maximum power output. If the power is 
lower than the lower limit, the power output is set as a minimum power output. For the loads, the 
power has no fixed limit; the minimum is set as zero. The ratio of reactive over active power 
remains the factor under the rated condition.  
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In our case, a total of 60 updated models are generated. Then, the PSS/E is invoked to calculate 
the load flow. The total mismatch in the whole set of updated system models is used to determine 
whether the load flow converges. Those updated models in which the load flow is not convergent 
for are ignored.  

Calculating the fitness value using the pre-fault phase for matching compares the rest of the 
models plus the original static system model. The minimum fitness value is found and the 
corresponding model is the one we find. The flow chart is shown in Fig. 28.  

 

Obtaining the bus number of all monitored substations

Obtaining the generator bus number in the substation based
on the above information

Using a specified “search depth” to obtain a list of the load
bus number

Obtaining the generator parameters by invoking the IPLAN
program “gen_loadbus.irf”

Tuning the selected generator and load data based on a
specific strategy

Calculating load flow using an updated system model

Convergent?

Calculating the fitness value

Generating enough models?

Picking a maximum fitness value and obtaining corresponding
index of updated model

Obtaining a list of parameters for the selected system model

Saving the selected model

End

N

N

 

 

Fig. 28  The flowchart for local tuning of the static system model 
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As a final note, the key to these two approaches is to keep the balance between the tuned 
generator and load data. This point is a necessary condition to make the power flow convergent.   

4.7.2.2 When additional data are available 

Comparing with the approach presented in section 4.7.2.1, the alternative approach is to use 
additional real time data to tune the static system model. In PSS/E model, a static system model 
usually can be divided into many areas. For each area, the generator data in an hour or half an 
hour before the fault occurs may be provided. These real time data can be helpful in improving 
the static system model accuracy.  

Because additional real data have not been obtained for this project, the following statement is 
only for giving an outline of a possible future approach.  

The software routine (in PSS/E) “SCAL” can be utilized to modify the total load, generation 
(positive generator power), motor load (negative generator power), bus connected capacitors, 
and/or bus connected reactors in a specified subsystem of the working case. The entire working 
case is scaled when the suffix ALL is specified when invoking SCAL. Otherwise, the user 
selects the subsystem to be processed based upon the suffix specified. If only a specific area is 
scaled, the suffix AREA is specified.  

Here is the detailed procedure to follow. Before running the fault location software to estimate a 
fault location, the additional generator power in the whole network or some specific areas should 
be changed according to the information provided by utilities. These data are real time 
measurements in an hour or half an hour before the fault occurs. Then, activity “SCAL” is 
executed in PSS/E. The total change of load data should be equal to the total change of the 
generator data. The changed system model will replace the static system model and PSS/E will 
use the changed one to simulate faults.  

4.8 Conclusions 
Two main factors may affect the accuracy of the fault location estimate. One is the correct 
calculation of the fault cycle combined with synchronization of recorded phasors. Another is the 
model utilized for carrying short circuit study, which should reflect the real system operation 
condition when a fault occurs. The efforts of obtaining more accurate recorded phasors and static 
model can lead to more accurate fault location estimates. 
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5 TEST RESULTS 
 

 

5.1 Introduction 

Total of fifteen fault cases were tested using different version of fault location software and 
different version of PSS/E model. For all the results listed here, the PSS/E model of version 28.0 
provided by CenterPoint Energy and the latest version of fault location software are utilized. 
Only two cases are given in detail and other cases are included in the summary of tests.  

5.2 Example I 

5.2.1 Event Data 
• Event Date/Time: 08-23-2000 10:05:50 
• Event Type:  Phase B-GND fault 
• Fault location:  Exxon Ckt. 03, 2.5 miles from SRB 138 (Calculated Fault Location) 
• Triggered DFRs: SRB 138 (Event 316), Cedar Bayou (Event 318), South Channel (Event 

322) 

5.2.2 Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 29  One-Line Diagram of section of CenterPoint Energy 
transmission system (solid line – actual, dashed line – calculated) 
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5.2.3 Sensitivity Study 

The purpose of the sensitivity study is to provide information on the FL performance under 
various combinations of parameters. The table below includes summary of the results. 

Table 2 – Sensitivity Study Results of version 28 of PSS/E updated system model 

DFR Files 
Utilized Fault location by matching |Error| 

(miles) Quantities matched 

Event 316 40570-41450, 37.2% from 40570 0.08 Currents in all affected 
branches 

Event 316 
Event 318 40570-41450, 39.3% from 40570 0.01 

All recorded currents and 
voltages in SRB and Cedar 

Bayou 

All three 40570-41450, 39.6% from 40570 0.02 All recorded currents and 
voltages 

In this case, three files from three DFRs are available. The closest DFR is located about 2.5 miles 
from the fault location. No taps are located between the DFR and the fault location. The fault 
type is phase B to ground. The real fault, according to CenterPoint Energy, is situated on Exxon 
Ckt. 03, 2.5 miles from SRB. In the Table 2, three options and their corresponding results are 
listed. Results show that different options lead to essentially the same location estimate. Results 
also show that the accuracy of the estimated location can satisfy the requirement of the user.  

5.3 Example II 

5.3.1 Event Data 
• Event Date/Time: 10-30-2000 11:15:13 
• Event Type:  Phase B-GND fault 
• Fault location:  Hardy Ckt. 95, 2.36 miles from Glenwood (Known Fault Location) 
• Triggered DFRs: Greens Bayou 138 (Event 251), White Oak (Event 250), King (Event 252) 
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5.3.2 Diagram 

 
Fig. 30  One-Line Diagram of section of CenterPoint Energy 

transmission system (solid line – actual, dashed line – calculated) 

5.3.3 Sensitivity study 

The purpose of the sensitivity study is to provide information on the FL performance under 
various combinations of parameters. The table below includes summary of the results. 

Table 3 – Sensitivity Study Results 

DFR Files 
Utilized 

Fault location by 
matching 

|Error| 
(miles) Quantities matched 

Event 251 
Event 250 
Event 252 

40620-48295 and 31.6% from 
40620 0.48 All currents 

Event 251 
Event 250 
Event 252 

40620-48295 and 35.5% from 
40620 0.24 All currents and all voltages 

Event 251 
Event 252 

40620-48295 and 37.2% from 
40620 0.15 All currents 

 

In this case, three files from three DFRs located at different substations are available. The closest 
DFR (located at Green Bayou) is situated at 4.54 miles from the fault location.  One tap is 
located between the DFR and fault location. According to data received from CenterPoint 
Energy, actual location is at 2.36 miles from Glenwood. Results listed in table 3 show that the 
three estimated locations using different options (different DFR combination and different 
matched quantities) are close to the actual one, their accuracy is deemed reasonable.  
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5.4 Summary of results 

Test results for all fifteen fault cases are listed in Table 4. 

Table 4 – Test results for 15 fault cases 

Case # Numb er of 
DFR triggered 

Actual or calculated fault 
location 

Estimated fault 
location Error 

1 2 41111-41700  
0.40 mile 

41111-41700  
0.2 mile 0.2 

2 2 48402-40590 
3.32 miles 

48402-40590 
3.63 miles 0.3 

3 1 41300-48386 
3.49 miles 

41300-48386 
3.15 miles 0.3 

4 3 40570-41405 
2.50 miles 

40570-41405 
2.47 miles 0.0 

5 1 46262-48306 
2.0 miles 

46262-48306 
1.18 miles 0.8 

6 1 46570-48219 
1 mile 

46570-48219 
0.1 mile 0.9 

7 1 46570-48219 
2.8 miles 

46512-4830 
6.1 miles 3.3 

8 1 46262-48306 
3 miles 

46262-48306 
5.7 miles 2.7 

9 1 5915-9073 
66.0 miles 

5915-9073 
66.9 miles 1.0 

10 1 45840-40180  
3.8 miles 

40180-40620 
0.4 mile 0.9 

11 3 40620-48295 
2.36 miles 

40620-48295 
2.13 miles 0.2 

12 2 46020-3390 
7.77 miles 

46020-3390 
6.54 miles 1.2 

13 2 46020-3391 
7.77 miles 

46020-3391 
6.2 miles 1.6 

14 2 46020-3391 
7.77 miles 

46020-3391 
4.77 miles 3.0 

15 2 46020-3390 
7.77 miles 

46020-3390 
7.09 miles 0.7 

 

5.5 Conclusions 

Fifteen fault cases are tested thoroughly and corresponding results are listed in Table 4. In this 
table, all triggered DFR files are involved and all monitored currents and voltages are utilized for 
matching. Most of the test results judged to be reasonably accurate.  
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6 CONCLUSIONS 
 

 
This document mainly presents the algorithm, module and test results of the suggested fault 
location algorithm. All results are related to fifteen test cases provided by CenterPoint Energy. 
Although the test results listed in this document are for just a few cases and cannot be assume to 
express software performance completely, test results are quite good. Some conclusion and 
suggestion are given below. 

Test results show that that accuracy of the fault location estimate is related to several factors. The 
number of DFRs triggered is one. Having more DFRs triggered is helpful in improving the 
accuracy. Under the situation when multiple DFRs are triggered, determination of the fault 
inception cycle is another key to the accuracy. For a specific case, if a different DFR is used with 
a different fault inception cycle to calculate the during-fault recorded phasors, additional error 
will be introduced.  

Test results show that a specific case is sensitive to the fault search region, especially in 345KV 
system. Based on test results, the fault resistance range is recommended to set be 0-0.4 p.u. 
(actual value 0-76 Ω) or less in 138KV, 0-0.05 p.u. (actual value 0-60Ω) or less in 345KV 
systems.  

Test results show that using all monitored currents and voltages for matching is a good choice. 
Using only a few selected quantities for matching may lead to an error in determining the fault 
location.  

Test results show that updated model can help improve the accuracy of the fault location 
estimate for most cases. More benefits will be obtained if real power flow is obtained at the time 
fault occurs.  

The actual faulted branch (section) must be included in the list of candidates. Otherwise, 
estimated fault location never reaches the actual fault location. 



 

 50

7 REFERENCES 
 

 
[1] A.A. Girgis and M.B. Johns, “A hybrid expert system for fault section identification, fault type 

classification and selection of fault location algorithms”, IEEE Transactions on Power Apparatus 
and Systems, vol.4 , no.2, April 1989. 

[2] M.Kezunovic, I.Rikalo, C.W.Fromen, D.R.Sevick, S.M.McKenna,”Automatic fault analysis using 
intelligent techniques and synchronized sampling”, in Proceeding of the CIGRE General Session, 
Paris, France, September 1998. 

[3] M.S. Eriksson, and G.D. Rockfeller, “An accurate fault locator with compensation for apparent 
reactance in the fault resistance resulting from remote-end infeed”, IEEE Transactions on Power 
Apparatus and Systems,  PAS-104, no.2, Feb. 1985. 

[4] Q. Zhang, Y. Zhang, W. Song, and D. Fang, “Transmission line fault location for single-phase-to-
earth fault on non-direct-ground neutral system”, IEEE Transactions on Power Delivery, Vol. 13, 
no.4, Oct. 1998. 

[5] D. Novosel, D. G. Hart, E. Ud, and J. Garitty, “Unsynchronized two-terminal fault location 
estimation”, IEEE Transactions on Power Delivery, vol. 7, no.1, January 1992. 

[6] A.A. Girgis, D. G. Hart and W.L. Peterson, “A new fault location technique for two-and three-
terminal lines”, IEEE Transactions on Power Delivery, vol. 7, no. 1, January 1992. 

[7] D. L. Waikar, S. Elangovan, and A.C. Liew, “Fault impedance estimation algorithm for digital 
distance relaying”, IEEE Transactions on Power Delivery, vol. 9, no.3, July 1994. 

[8] Y. Liao and S. Elangovan, “Digital distance relaying algorithm for first-zone protection for parallel 
transmission lines”, IEE Proceedings-Part C: Generation, Transmission and Distribution, vol. 145, 
no. 5, Sept 1998  

[9] M. Kezunovic and B. Perunicic, “Automated transmission line fault analysis using synchronized 
sampling at two ends”, IEEE Transactions on Power Systems, vol. 11, no.1, pp. 441-447. 

[10] Z. Q. Bo, A. T. Johns, and R. K. Aggarwal, “A novel fault locator based on the detection of fault 
generated high frequency transients”, Sixth International Conference on Developments in Power 
System Protection, Nottingham, England, March 1997. 

[11] Z.Q. Bo, G.Weller, M.A. Redfern, “Accurate fault location technique for distribution system using 
fault-generated high-frequency transient voltages signals”, IEE Proc. Gener. Transm. Distrib. Vol. 
146, No. 1, January 1999. 

[12] Power technologies, Inc. “PSS/E-27 program operation manual “, December, 2000 
[13] M. Kezunovic, Yong Guo, “Simplified Algorithms for Removal of the Effected of Exponentially 

Decaying DC-offset on the Fourier Algorithm,”  (to be published) in IEEE Transactions on Power 
Delivery.  

[14] Jun-Zhe Yang, Chiu-Wen Liu, “Complete Elimination of DC Offset in Current Signals for Relaying 
Applications”,  Power Engineering Society Winter Meeting, 2000 IEEE, Volume 3, PP1933-PP1938. 

[15] Jhy-Cherng Gu, Sun-Li “Removal of DC Offset in Current and Voltage Signals Using a Novel 
Fourier Filter Algorithm”, IEEE Trans. On Power Delivery, Vol.1, No.1, January 2000. 

[16] David E. Goldberg, “Genetic algorithms in search, optimization and machine learning”, Addison-
wesley Publishing Company, INC, 1989. 

[17] Test Laboratories International, Inc. “DFR assistant- software for automated analysis and archival 
of DFR records with integrated fault location calculation”, [Online] http://www.tli-inc.com  

[18] Power technologies, Inc. “IPLAN program manual “, December, 2000. 


	Cover
	Title
	Contact information
	Execurive summary
	Table of contents
	1. Introduction
	2. Scheme
	3. Genetic algroithm
	4. Fault location algorithm
	5. Test results
	6. Conclusions
	7. References



