
Satellite Imagery for the Identification of
Interference with Overhead Power Lines

Final Project Report

Power Systems Engineering Research Center

A National Science Foundation
Industry/University Cooperative Research Center

since 1996

PSERC

Power Systems Engineering Research Center

Satellite Imagery for the Identification
of Interference with Overhead Power Lines

Final Project Report

Project Team

Yoshihiro Kobayashi
George Karady
Gerald Heydt

Matthias Moeller
Arizona State University

Robert Olsen

Washington State University

PSERC Publication 08-02

January 2008

Information about this project

For information about this project contact:

George G. Karady (project leader)
Salt River Chair Professor
Arizona State University
Department of Electrical Engineering
P.O. BOX 875706
Tempe, AZ 85287-5706
Phone: 480-965-6569
Fax: 480-965-0745
Email: Karady@asu.edu

Power Systems Engineering Research Center

This is a project report from the Power Systems Engineering Research Center (PSERC). PSERC
is a multi-university Center conducting research on challenges facing a restructuring electric
power industry and educating the next generation of power engineers. More information about
PSERC can be found at the Center’s website: http://www.pserc.org.

For additional information, contact:

Power Systems Engineering Research Center
Arizona State University
577 Engineering Research Center
Box 878606
Tempe, AZ 85287-8606
Phone: 480-965-1643
FAX: 480-965-0745

Notice Concerning Copyright Material

PSERC members are given permission to copy without fee all or part of this publication for in-
ternal use if appropriate attribution is given to this document as the source material. This report
is available for downloading from the PSERC website.

© 2007 Arizona State University. All rights reserved.

 i

Acknowledgements

The work described in this report is for research sponsored by the Power Systems Engineering
Research Center (PSERC) project “Satellite Imagery for the Identification of Interference with
Overhead Power Lines”, project T-37. We express our appreciation for the support provided by
PSERC’s industrial members and by the National Science Foundation under grant NSF EEC
0001880 received under the Industry / University Cooperative Research Center program.

The authors thank industry and government collaborators including Clark Love (Forest One),
James Crane (Exelon), Charles Priebe (Exelon) and Phil Overholt (U.S. Department of Energy).

 ii

Executive Summary

In recent years, renewed emphasis has been placed on vegetation management of trans-
mission right-of-way to avoid tree contacts that could put system reliability at risk. At the same
time, new approaches to vegetation management have been sought to be able to achieve the
needed tree clearances as cost-effectively as possible. One possible approach is to process satel-
lite images to prioritize tree maintenance work. For this approach to work, new computational
tools would be needed to convert satellite image data into useful information for vegetation man-
agement scheduling.

This project’s objective was to develop such computational tools for determining the lo-

cation of trees interfering with overhead transmission lines. The input data were derived from
satellite images, and the GPS coordinates and altitudes of transmission towers. The tools deter-
mine the location of healthy trees that are penetrating a danger zone or safety envelope (e.g., 20
ft radius) surrounding the conductors. Two tools were implemented and tested:

• a transmission line scanning computer program and
• a tall tree identification program.

This work is significant because it shows how satellite images that are already commercially
available can be used for the large-scale assessment of vegetation encroachment on transmission
lines.

Transmission Line Scanning Computer Program

The Transmission Line Scanning Computer Program uses multi-spectral satellite images of
the transmission line. The input data are GPS coordinates of the transmission line towers, the
width of the right-of-way, and the satellite image data. The program is used to scan the satellite
image along the right-of-way from one tower to the next following a straight line; spectral analy-
sis of the scanned satellite data is used to identify areas covered by healthy vegetation. Areas
with healthy vegetation represent a potential danger for the line because of possible contact be-
tween the line and trees. The output of this program is the GPS coordinates of the healthy vegeta-
tion. The code was written using the Java (JDK 1.4) programming language with Java Advanced
Imaging (JAI) Application Programming Interfaces. The source code is included in the report.

Tall Tree Identification Program

By knowing the location of the healthy trees along transmission line right-of-way, it is
possible to use another tool, the Tall Tree Identification Program, to establish where the healthy
trees are endangering the transmission line. Danger zones are areas surrounding the transmission
line conductors where trees can produce flashover or a ground fault. The Tall Tree Identification
Program is designed to identify healthy trees that penetrate the danger zone.

This program uses a stereo pair of satellite images of the transmission line. These stereo

images are obtained from commercial outlets of satellite images. The input data are 1) the GPS
coordinates and altitudes of the towers, and 2) the location of the healthy trees discovered by the
Transmission Line Scanning Computer program. The program calculates the dimensions (i.e.,

 iii

the width and height) of the danger zone for different voltage levels. The program scans the dan-
ger zone pixel by pixel and calculates the elevation of each pixel using stereo matching. The
height of each pixel is measured by using the altitudes of the transmission line towers. The com-
parison of the location and height of the healthy vegetation pixel with the dimensions of the dan-
ger zone identifies where trees are penetrating the danger zone. The program outputs are the GPS
coordinates of healthy trees in the danger zone and the distance from these trees to the transmis-
sion lines.

Case Studies and Next Steps

Case studies were conducted using a transmission line in the San Diego, California area.
This line crosses an area with heavy vegetation and pine trees in the vicinity of the San Diego
River at Mission Bay Park. Visual observation of the right-of-way along the line verified the
proper operation of the Transmission Line Scanning Computer Program in identifying areas of
healthy trees. The Tall Tree Identification Program was then used to identify the closest five
trees which ranged from 24.3 to 30.1 feet from the transmission line.

 The case studies indicate that the developed programs were able to identify trees endan-
gering a transmission line. However, the programs were not fully tested in a utility environment.
They are research-grade programs that require additional testing and development. The following
is recommended future work to improve the tools:

• Test using the other image files of a different, larger site (such as 60 miles)
• Compare the results from commercial off-the-shelf photogrammetry packages
• Visualize the Digital Elevation Model data in 3D view
• Add query functions to the extracted trees
• Add more control units to allow the users to change the attributes of transmission towers

and lines flexibly and interactively.

 iv

Table of Contents

1.0 Introduction...1
1.1 Project objectives and participants..1
1.2 Project duration...2
1.3 A statement of the problem...2

2.0 Literature Review ...3
2.1 The literature of overhead power system transmission...................................3
2.2 Remote sensing and photogrammetry...4
2.3 Satellite images ...4
2.4 Vegetation identification...5
2.5 Height extraction...5

3.0 Calculation of Vegetation Interference from Satellite Images7
3.1 Introduction...7
3.2 Present practices..8
3.3 Determination of the danger zone...10
3.4 Calculation of danger zone dimensions ..13
3.5 Derivation of an equation describing the danger zone..................................16
3.6 Calculating the distance between the transmission line and tree..................18

4.0 Methodology for Development of Computer Programs ...20
4.1 Introduction...20
4.2 Theoretical framework..20
4.3 Loading and displaying images ..21
4.4 Loading a text file of towers ...22
4.5 Displaying the towers and lines ..22
4.6 Defining the danger zone ..22
4.7 Extracting the vegetation areas ...22
4.8 Stereo matching and DSM generation ..23
4.9 Showing the results ...23
4.10 Technologies utilized to implement the theory...23
4.11 Implementation schedule ..24

5.0 Stage 1 Transmission line scanning program. ..25
5.1 Introduction...25
5.2 Packages and classes...25
5.3 Loading image files...26
5.4 Displaying the danger zone area along overhead transmission lines

on an image ...27
5.5 Identifying healthy vegetation areas ...33

6.0 Tool Instruction: Stage 1 for NDVI Visualization..35
6.1 Introduction...35
6.2 Setting Java environments ..35
6.3 How to run the program..36

 v

Table of Contents (continued)

6.4 Loading an image..37
6.5 Results of a test case in Scottsdale AZ ...40

7.0 Digital Surface Model: Pre-Stage 2 ..44
7.1 The digital surface model generated in ERDAS IMAGNE..........................44
7.2 Illustration of vegetation extraction..44

8.0 Tool Implementation: Stage 2 for DEM data ...49
8.1 Introduction...49
8.2 Packages and classes...49
8.3 Loading a stereo pair of images ..49
8.4 Getting matrices surrounding a pixel in the first image of a stereo pair.......50
8.5 Calculating a cross-correlation value..50
8.6 Find the maximum cross-correlation point ...51

9.0 Tool Implementation: Stage3 Integration ...54
9.1 Introduction...54
9.2 Packages and classes...54
9.3 Load the multi spectrum image and DEM image file...................................55
9.4 Setting the geographical information using reference points56
9.5 Set the location of transmission towers and lines ...56
9.6 Extract healthy vegetation pixels with value more than the NDVI

threshold..57
9.7 Labeling and Boundary Searching..57
9.8 Obtaining tree locations ..61
9.9 Visualizing the DEM data with a two cross-section.....................................62

10.0 Tool Instruction: Visualization ...67
10.1 Prerequisite files..67
10.2 Geographical setting ...67
10.3 Tower locations...68
10.4 Running the program ..68
10.5 Reference point visibility..68
10.6 Change the NDVI threshold..69
10.7 Tower location visibility ...70
10.8 Obtaining cross sections ...71
10.9 Extracted trees (healthy vegetation sets)...73
10.10 Scale factor..75

11.0 Case Studies and Consideration..77
11.1 A problem relating to obtaining a stereo pair of satellite images77
11.2 Case 1: The NDVI threshold is set as 0.20 ...77
11.3 Case 2: The NDVI threshold is set as 0.24 ...80
11.4 Case 3: NDVI threshold is set as 0.15 ..81
11.5 Further discussion and considerations ..84

 vi

Table of Contents (continued)

12.0 Conclusions, Recommendations, and Future Work..86
12.1 Conclusions...86
12.2 Future work...86

References...87
Appendix A: The Source Code Utilized ...90
Appendix B: Elevations along a 69 kV Sub transmission Power Line Right-of-Way

in San Diego, CA..141

 vii

List of Tables

Table 1.1 Project researchers ..1
Table 1.2 Project industry advisors...1
Table 3.1 Typical minimum clearance values (Source: TVA) ...10
Table 9.1 Information of three reference points in image...56
Table 9.2 Location of three transmission towers ..57
Table 9.3 Extracted trees...62
Table 10.1 Part of extracted trees ...75
Table 11.1 Extracted tree list when the NDVI=0.2 ..78
Table 11.2 Extracted tree list when the NDVI=0.24 ..81
Table 11.3 Extracted tree list when the NDVI=0.15 ..83
Table 11.4 Closest five trees to transmission lines ...85
Table B.1 Tower base elevations, estimated from several sources142

 viii

List of Figures
Figure 2.1 Stereo pair of satellite images ...5
Figure 2.2 Illustration of LIDAR technology...6
Figure 3.1 Concept of vegetation management on the right-of-way (taken directly

from the Western Area Power Administration web site www.wapa.gov)..................7
Figure 3.2 Identification of the danger zone around the conductors (taken directly

from the Western Area Power Administration web site www.wapa.gov)..................9
Figure 3.3 Determination of the danger zone...12
Figure 3.4 An illustration of danger zone dependence from the distance from the tower ...12
Figure 4.1 Diagram of the system framework..21
Figure 5.1 Java code for making a tiled Image ..26
Figure 5.2 Java Code for calculating the meridian arc length from latitude

using formula (5.1)..30
Figure 5.3 Java code for calculating the X and Y distance between 2 points from latitude

and longitude using formula (5.2)...31
Figure 5.4 Relation of X-Y coordinates and geo-coordinates..32
Figure 5.5 Java code to get XY pixel position in an image from latitude and longitude.....32
Figure 5.6 Java code to convert the value from degree minute-second-format to radians...33
Figure 5.7 Java code to generate a tile with NDVI, green, and blue bands34
Figure 6.1 CLASSPATH setting in JBUILDER..35
Figure 6.2 Screen shot for memory assignment in JBUILDER...36
Figure 6.3 Screen shot for Running Projects in JBUILDER..37
Figure 6.4 Screen shot of the GUI..38
Figure 6.5 Screen shot of the image file loader..38
Figure 6.6 QuickBird satellite image, Scottsdale, AZ..39
Figure 6.7 Screen shot from Google Earth of Scottsdale, AZ..40
Figure 6.8 Screen shot of the result showing a power line between two transmission

towers..41
Figure 6.9 Results of the case with a threshold value of NDVI as 0.03...............................42
Figure 6.10 Results of the case with a threshold value of NDVI as 0.1243
Figure 7.1 A DSM model using IKONOS data..45
Figure 7.2 A visualization in a conventional GIS package, ArcGIS....................................46
Figure 7.3 Visualization in a conventional GIS package, ArcGIS.......................................46
Figure 7.4 Results of extracting vegetation using NDVI data ...47
Figure 7.5 3D views of DSM with NDVI data...48

 ix

Nomenclature

API Application Programming Interfaces
ASU Arizona State University
DEM Digital Elevation Model
DSM Digital Surface Model
DoE U.S. Department of Energy
GIF Format for digital image
GIS Geographical Information Systems
GPS Global Positioning Satellite
GSD Ground sampled distance
IREQ Institut de Reserche Electrique du Quebec
JAI Java Advanced Imaging
JPG Format for digital image
LIDAR Light Detection and Ranging
NDVI Normalized difference vegetation index
PCR Plant cell ratio
PPR Plant pigment ratio
PVR Photosynthetic vigor ratio
RAW Format for digital image
SRP Salt River Project
TIFF Format for digital image
TVA Tennessee Valley Authority
UTM Universal Transverse Mercator
WAPA Western Area Power Administration
WSU Washington State University

 1

1.0 Introduction

1.1 Project objectives and participants

The objective of the project is to develop software which determines the location of ob-
jects or vegetation interfering with overhead transmission lines. The input data are derived from
satellite images and the Global Positioning Satellite (GPS) coordinates of the towers. The code
determines the location of trees or objects that are penetrating a safety envelope (e.g., 20 ft ra-
dius) surrounding the conductors.

The project was initiated in August 2005. The main participants are shown in Table 1.1.
Table 1.2 shows the project industry advisors. In addition to the industry advisors, Clark Love of
Forest One supplied a good deal of information for the project.

Table 1.1 Project researchers
Researcher University Department Project role

G. Karady Arizona State University Electrical Engineering Lead
Y. Kobayashi Arizona State University Architecture Researcher
G. Heydt Arizona State University Electrical Engineering Researcher
M. Moeller University of Dortmund Geography Advisor
R. Olsen Washington State University Electrical Engineering Researcher

Table 1.2 Project industry advisors
Advisor Company

Kevin Allen Oncor Electric Delivery
Luc Audette IREQ
Lane Cope WAPA
James Crane Exelon
Mike Ingram TVA
Dale Krummen American Electric Power
David Lubkeman ABB
Philip Overholt U.S. Department of Energy
Mahendra Patel PJM
Don Pelley Salt River Project
Charles Priebe Exelon
Don Sevcik CenterPoint Energy

 2

1.2 Project duration

 This research project began in September 2005 and ended in October 2007.

1.3 A statement of the problem

 The trees and growing vegetation frequently endanger the operation of a high voltage
transmission line. A potential scenario is that during a storm, wind drives overgrown tress close
to the line. This may cause flashover between the conductor and tree. The effect of this flashover
is unforeseeable. In most cases, protective systems de-energize the line to extinguish the arc. Af-
ter 3 to 6 cycles, re-energization of the line is possible. However, in some cases the short circuit
persists and may trigger wide area outages. An example is the August 2003 blackout in the US
Northeast and adjacent Canada which resulted in the loss of power for millions of households
and significant industrial and commercial financial losses.

 Presently, power companies regularly survey the lines by helicopter to locate trees that
may endanger the line. One of the most common technologies used is LiDAR which results in
airborne images of rights-of-way. In addition, the expected vegetation growth is calculated using
appropriate models. The survey and vegetation growth calculations combined result in a tree
trimming schedule. This approach is expensive because relatively small areas are surveyed this
requiring a considerable number of airborne surveys. Also, sometimes this approach is inaccu-
rate. As an example, inaccuracies may result from an inaccurate prediction of tree growth due to
unexpected rainfall.

 The United States is regularly (yearly, or in some areas more frequently) surveyed by sat-
ellite. The satellite images of large areas, including transmission lines’ rights-of-way, can be pur-
chased. The availability of satellite images is motivation to develop a satellite-image-based, low-
cost method that identifies the location of trees that endanger transmission line operation.

 The objective of this project is to develop software that determines the location of objects
or vegetation that interferes with the operation of an overhead transmission line. The input data
are the satellite images of the line and the GPS coordinates of the towers. The code determines
the location of trees or objects that are penetrating a safety envelope (e.g., a 20 ft radius) sur-
rounding the conductors.

 3

2.0 Literature Review

2.1 The literature of overhead power system transmission

In transmission engineering, major concerns are the vegetation control under transmis-
sion lines and the required clearances between the line and vegetation. A literature survey identi-
fied a few codes and an Australian standard which deal with the clearance problem. [28-30].
IEEE started the development of a guide on vegetation management in 2005. PSERC published a
report in 2007 proposing new advanced vegetation management based on intelligent system
monitoring [46].

A further source of information is the description of power companies’ vegetation man-
agement strategies. Practically every power company has publications dealing with vegetation
management near power lines which are published on their WEB pages. A few typical publica-
tions are given in [31-32]. The major conclusion of these publications is that most companies
clear the vegetation directly under the transmission line to permit visual inspection by and
movement of power companies’ emergency maintenance vehicles. The vegetation control near
the line eliminates the fast growing tall trees without major environmental effect. Pesticides and
chemicals are not used because of their adverse environmental effect. Most companies trim the
vegetation regularly but not frequently enough. The typical time interval is 2-5 years.

Another successful policy is the selection and planting of slow growing, low-height vege-
tation under the transmission lines. Several papers [34-44] deal with this method. Most papers
were published in agricultural journals. In the last 15 years, practically no papers were published
in IEEE transactions on vegetation management under the transmission lines or required clear-
ances. However, the IEEE transactions has published several papers on transmission line survey
methods, and one transaction paper [42] deals with the effect of fire on transmission line opera-
tion. Reference [35] gives a general overview of the vegetation control method used in the USA
and Canada. Papers [34, 36] present an integrated vegetation management strategy, which elimi-
nates power outages caused by vegetation overgrowth. References [37, 41] present vegetation
growth prediction methods, which can be used for timing tree pruning in the transmission lines’
rights-of-way. Reference [38] is a company report that deals with the environmental effect of
vegetation control and discusses related economic problems. Reference [39] proposes the use of
herbicides to control vegetation under the transmission lines and discusses the potential envi-
ronmental effect of herbicides. Paper [44] proposes the planting of stable shrubs under lines.

The conclusion of this literature review is that vegetation overgrowth has produced flash-
overs which in turn have initiated major black outs in recent years. Thus, the reliable operation of
a transmission system requires efficient vegetation control. However, vegetation control is ex-
pensive, and power companies delay pruning trees because of this expense and unfavorable pub-
lic reaction to such actions. The literature shows that the prediction of vegetation growth is inac-
curate, which emphasizes the importance of economical, accurate survey techniques of vegeta-
tion around transmission lines.

 4

2.2 Remote sensing and photogrammetry

This section shows the literature reviews of two research fields, remote sensing and pho-
togrammetry. In this project, remote sensing is related to the technology of identifying vegetation
area, and photogrammetry is related to the technology of determining the height of trees and
plans.

Remote sensing is defined as “the measurement or acquisition of information of an object
or phenomenon, by a recording device that is not in physical or intimate contact with the object”
in WIKIPEDIA [1]. This area of research initiated in 1858 by taking photographs of Paris from a
balloon. In World War I, systematic aerial photography was developed for military purposes.
Currently, many kinds of measurement devices are used, such as radar, laser, LIDAR, radiome-
ters, photometers, stereographic pairs of aerial photographs, and multispectral images.

On the other hand, Photogrammetry is defined as “a measurement technology in which
the three-dimensional coordinates of points on an object are determined by measurements made
in two or more photographic images taken from different positions” [1].

2.3 Satellite images

At present there are several main civilian sources for and types of satellite images. For
the purpose of extracting ground features in general and tall trees and higher bushes in particular,
the ground sample distance (GSD), which is the spatial resolution of imagery, should be very
high (e.g., one meter or smaller) [2,3]. Ikonos, QuickBird and OrbView sensors are capable of
very high-resolution satellite images and are available on a commercial basis.

According to a satellite image provider, SPACE IMAGING [4], the IKONOS satellite is
the world's first commercial satellite to collect panchromatic images with 1 meter GSD and mul-
tispectral imagery with 4 meter GSD. Ikonos was launched in September, 1999 and started pro-
viding imagery in January, 2000. The images are taken at the satellite altitude of 680 km. The
accuracy of an ortho-rectified image is ±1.75 m. Ikonos takes 11 days to return to a location (re-
visit cycle). Some image examples of the IKONOS sensor are available for free download from
web sites, e.g., [4].

QuickBird is a high resolution satellite owned and operated by DigitalGlobe. Using a
state-of-the-art Ball’s Global Imaging System 2000 sensor, QuickBird uses remote sensing to a
0.61 meter GSD. It was launched in October, 2001, and acquires images at the satellite altitude
of 450 km. The revisit cycle for QuickBird is 1~3.5 days. Information on the QuickBird satellite
is available at [5]. According to [6,7], a stereo pair of QuickBird images is readily used to extract
the height of buildings. Figure 2.1 shows the concept of generating stereo pair satellite imagines
by photographing an area twice using different camera angles.

 5

Figure 2.1 Stereo pair of satellite images

OrbView also offers one of the high-resolution satellite images. The original OrbView-1
was launched in 1995, and the mission was complied in 2000. OrbView-2 and OrbView-3 were
launched in 1997 and in 2001. The OrbView-3 takes 1 meter panchromatic and 4 meter multis-
pectral images. The next generation, OrbView-5, will be launched in early 2007, and it will offer
the highest resolution available to date by simultaneously acquiring 0.41 meter panchromatic and
1.64 meter multispectral imagery [8], which will be the highest-resolution satellite images avail-
able to civilians.

2.4 Vegetation identification

In remote sensing, extracting specific vegetation areas in aerial and satellite images is one
of the current research interests. As described in [24], the plant pigment ratio (PPR), the photo-
synthetic vigor ratio (PVR), the plant cell ratio (PCR), and normalized difference vegetation in-
dex (NDVI) are tested for identifying vegetation or forest areas.

In contemporary research projects on this topic, many researchers use one of the com-
mercial off-the-shelf remote sensing packages, such as the EARDA IMAGINE Subpixel Classi-
fier, for terrain classification, identifying the location of trees, and distinguishing the trees from
low shrubbery and grasses [26].

Reference [27] tries to identify the species of vegetation using multispectral and multi-
temporal data about canopy texture, leaf density, and spectral reflection.

2.5 Height extraction

A common method for the estimation of vegetation height is the analysis of analog and
later digitized aerial photos by means of image stereoscopy. A new technology, which is still un-
der scientific investigation for right-of-way tree trimming identification, is based on LIDAR

 6

(Light Detection and Ranging). For example, Morsdorf makes use of LIDAR technology to ex-
tract vegetation structure for fire management [9]. In [10], Clode tries to classify the trees and
power lines using LIDAR data, and [11] shows the possibility to extract power lines and towers
directly using LIDAR. However, in the LIDAR approach it is necessary to fly over all of the
power lines in order to observe trees and plants, which, though it is possible to acquire highly
accurate data, is very time and labor intensive. LIDAR technology is based on an active laser
pulse signal which is sent out from the airplane towards the earth’s surface. The reflected signal
is recorded by a special sensor. The distance between the airplane and surface can then be calcu-
lated from the time the beam takes from the laser to the ground and back to the sensor. However,
LIDAR is still a challenging technology to use for the identification of vegetation. Figure 2.2
shows the concept of acquiring LIDAR data with an airplane.

Figure 2.2 Illustration of LIDAR technology

 7

3.0 Calculation of Vegetation Interference from Satellite Images

3.1 Introduction

The power industry, as with most industries, is driven by cost and benefit. Overhead
transmissions require maintenance, which includes tree trimming. In the technology of tree
trimming, concerns include the identification of trees close to overhead circuits and the resulting
time and cost of this identification. It takes a significant amount of time and labor to manually
investigate trees under all the power lines by walking or riding the line. Though an approach us-
ing LIDAR and aerial photographs is a viable alternative, this approach requires flying over a
larger number of circuit miles of overhead lines each year.

Figure 3.1 Concept of vegetation management on the right-of-way (taken directly from the

Western Area Power Administration web site www.wapa.gov)

The other method to extract the height of trees from images is to estimate the height from
the radius of a tree’s crown. Borgefors and Hyyppä [12,13] showed that the stem diameter corre-
lates with the height and the radius of the crown. Pollock [14] proposed a generic model to repre-
sent the size of a tree with a formula, called a generalized ellipsoid of revolution (GER). Straub
and Heipke demonstrated an application to extract trees using aerial color infrared images and a
dense digital surface model [15]. A series of research projects by Yasuoka [16, 17] showed tech-
niques to estimate the number of trees in an area using both satellite images and LIDAR data.

The objective of this project is to reduce the cost and time of determining the trees inter-
fering with power lines, and it is proposed to use a stereo pair of multispectral satellite images.
This approach is suggested for a number of reasons.

 8

1. A pair of high-resolution stereo satellite images is available easily at a low price.
2. New satellite images are taken every few days.
3. It is not necessary to fly or drive the lines, so this method has the potential to substan-

tially reduce costs.
4. This approach may yield more uniform results because the procedure is automated.

3.2 Present practices

Practically every power company has developed a policy for vegetation management
around transmission lines. The right-of-way vegetation management policies of Georgia Power,
Bonneville Power Administration, Tennessee Valley Power Authority and Hydro Quebec Trans
Energy were examined. The basic concept of vegetation control is illustrated in Figure 3.1. This
figure shows the typical trees that can be found close to a transmission line. The figure shows
that under the line a free area must be kept to allow for inspection and line patrol. The short,
slow growing trees or shrubs with expected heights less than 25 ft can be planted close to the line
in a distance of more than 12 ft-16 ft. The medium height and medium fast growing trees with an
expected height less than 40 ft, must planted more than 50 ft from the line. This prevents flash-
over if a storm uproots the tree. The distance between the conductor and a fallen tree must re-
main large enough to prevent flashover. The figure gives the names of the different types of trees
that can be found around transmission lines in the USA.

The objective of vegetation management on the right-of-way is to maintain healthy low-
growing plant communities (e.g., shrubs, grasses, and native ferns), and cut trees adjacent to the
right-of-way determined to be a current or future hazard (due to diseased, damaged or other un-
stable conditions) to the transmission line. Vegetation management includes mowing, cutting
dangerous trees, pruning, applying herbicide, and removing trees. Typically, the right-of-way is
mowed once every six years. In addition, herbicide is used to control vegetation, typically fast
growing tall trees. The herbicide is applied manually using backpack sprayers, and non-restricted
herbicides are used. All of the companies are aware of the potential adverse environmental effect
of herbicides and try to minimize their use.

 9

Figure 3.2 Identification of the danger zone around the conductors (taken directly from the

Western Area Power Administration web site www.wapa.gov)

The power companies generally patrol all transmission lines once a year by air or by
ground patrol to identify “dangerous” trees. The dangerous or problematic trees are those that
grow in the easement area and approach the line. The companies regularly prune these trees.
Normally, pruning is required every two to fifteen years depending of the type of trees. Some
companies may remove trees closer than 15 feet from the easement area. However, the most fre-
quent practice of tree cutting is to prune the tree if the distance between the line and tree is less
than a safe value. This leads to the identification of a danger zone around the conductors as
shown on Figure 3.2.

Figure 3.2 shows that it is necessary to consider the temperature dependent sag and the
wind-caused swing of the conductors. Obviously, this danger zone depends on the tower con-
figuration and voltage-to-ground. The trees penetrating into the danger zone are cut back or re-
moved from the right-of-way or easement area.

NERC VM Standard FAC-003-1 defines the minimum vegetating conductor clearances
per IEEE Std. 516-2003 “Guide for Maintenance Methods on Energized Power Lines”. In this
standard Table 5 gives the Minimum Air Insulation Distances (MAID) without Tools in the Air
Gap. Table 3.1 shows the minimum voltage dependent clearances between conductor and vegeta-
tion. The table shows that the minimum clearance is 0.75 m or 2.45 ft for a sub-transmission line
and 4.48m or 14.66ft for a 500 kV line. Different companies use different minimum clearance
values.

 10

Table 3.1 Minimum Air Insulation Distances (MAID) without Tools in the Air Gap.
(Data are copied from Table 5 in IEEE Std. 516-2003)

No Nominal line-to-line voltage
kV

Conductor to vegetation clearance
(m/ ft)

1 72.6-121 0.75m/ 2.45ft
2 138-145 0.9m/ 2.94ft
3 161-169 1.05m/3.42ft
4 230-242 1.57m/6.14ft
5 345-362 2.88m/9.44ft
6 500-550 4.48m/14.68ft
7 765-800 6.24m/20.44ft

3.3 Determination of the danger zone

The minimum clearances must be maintained during the worst condition. This suggests
that the sag of the line is calculated in the worst condition, which is either the maximum tem-
perature or the maximum ice loading at 15°F. The sag data are available in digital format.

The other worst condition is the maximum swing of the line conductor. Determining this
condition requires the identification of the loading zone of the area, which defines the maximum
wind load. The loading zone area is found using the National Electrical Safety Code. With these
data and the conductor weight, the swing angle is calculated. A sample calculation is shown be-
low.

Transmission line data:
H tower 90 ft:=

Distance between phases

Distance between conductor and structure, no wind D con_str 15 ft:=

Distance between towers Span 1000 ft:=

Tower height
Dph_ph 35ft:=

Arbutus All-Aluminum Conductor

d cond 1.026 in:=

Sag at 15F with ice loading

Conductor diameter

w 746
lb

1000 ft
⋅:= Conductor weight

Sag 15F 48.24 ft:=

L chain 5.08 m:= The length of the insulator chain is:

 11

The line is in northern Arizona, which is specified as a Medium loading area by the National
Electrical Safety Code NESC. Table 1 of the NESC gives the wind force and ice loading values
that must be used for design of transmission lines.

Wind force

Fwind_Med 4
lb

ft2
:= Temp 15F:=

Area subjected to the wind is: Awind dcond Span⋅:= Awind 7.943m2
=

Fwind Fwind_Med Awind⋅:= Fwind 155.129kg=

Ice load

Ice forms a hollow cylinder on the conductor surface.
The average diameter is:

Dinner dcond:= Dice 0.25in:=

Douter dcond 2 Dice⋅+:=Dave_ice
Dinner Douter+

2
:=

Douter 1.526 in⋅= Span Dave_ice⋅ π⋅ 31.035m2
=

Ice weight is: ρice 57
lb

ft3
:=

Wice Span
Dave_ice

2

4
⋅ π⋅ ρice⋅:= Wice 229.599kg=

Conductor weight Wcond Span w⋅:= Wcond 338.38kg=

Vertical force FCond_ice Wcond Wice+:= FCond_ice 567.979kg=

The total force and its angle to the vertical line

Fcon_ice_wind FCond_ice
2 Fwind

2
+:= Fcon_ice_wind 588.782kg=

Φo atan
Fwind

FCond_ice

⎛
⎜
⎝

⎞
⎟
⎠

:= Φo 15.276deg⋅=

The swing angle determines the position of the conductor in the horizontal direction. Figure 3.3
shows the conductor position. The minimum clearance is a circle around the conductor. This cir-
cle determines the danger zone. The vegetation, trees, must not penetrate this zone. This calcula-
tion determines the width of the danger zone around the transmission line.

 12

Dac

Figure 3.3 Determination of the danger zone

The conductor position also depends on the distance from the tower because at the tower
the sag is zero, and it increases with distance. The sag is at a maximum at the midpoint if the ad-
jacent towers are on the same elevation, flat terrain. With the increasing sag the width of the
danger zone increases. Accordingly, the danger zone dimensions are at a maximum at the middle
of the span and minimum at the tower. The identified danger zone depends on the distance from
the tower. Figure 3.4 shows the danger zone at the tower and at the middle of the line.

Figure 3.4 An illustration of danger zone dependence from the distance from the tower

Figure 3.4 shows that the width of the danger zone increases slightly. The example shows about
a 12% difference between the width of the danger zone at the tower and at the middle of the line

The height of the danger zone also depends on the distance to the tower. The maximum is
at the tower and the minimum is at the middle of the line. The example shows that the difference
in height is around 58%. The calculation of danger zone widths and heights as a function of dis-
tance from the tower is presented below.

 13

3.4 Calculation of danger zone dimensions

 The following shows the calculation of danger zone dimensions.

Transmission line data

Tower height Htower 90ft:=

Distance between phases Dph_ph 35ft:=

Distance between conductors and structure, no wind Dcon_str 15ft:=

Distance between towers Span 1000ft:=

Maximum value of Sag seg max 30ft:=

Maximum clearance Dclearance 24ft:=

The length of the insulator chain is: Lchain 5.08m:=

Swing angle Φswing 15.276deg:=

Distance between phases A and C DAC 23.2ft:=

Approximate sag calculation

The sag depends on the distance from the tower. The conductor shape is approximated with
a second order parabola. In the sag equation, x is the distance form the tower.

sag x() a x2
⋅ Using this equation the maximum sag is: sag max a

Span
2

⎛⎜
⎝

⎞⎟
⎠

2
⋅

a
4seg max

Span2
:= a 3.937 10 4−

×
1
m

=

The equation for the sag is: sag x() seg max
4seg max

Span2

Span
2

x−⎛⎜
⎝

⎞⎟
⎠

2
⋅−:=

 14

The sag vs. distance (x) from the tower

x 0ft 1ft, 1000ft..:=

0 200 400 600 800 1000
0

10

20

30

sag x()

ft

x

ft
Figure 3.5 Sag vs. distance from the tower

Danger zone width and height calculation

 The inspection of Figure 3.3 leads to equations for calculation of the width of the danger
zone.

WDanger x() DAC 2 Dclearance⋅+ 2 sag x() Lchain+()⋅ sin Φswing()⋅+:=

WDanger 0ft() 126.782ft⋅= WDanger
Span

2
⎛⎜
⎝

⎞⎟
⎠

142.59ft⋅=

Substitution of the sag equation results in a closed formula for danger zone width
calculation

WDanger x() DAC 2 Dclearance⋅+ 2 sag max
4sag max

Span2

Span
2

x−⎛⎜
⎝

⎞⎟
⎠

2
⋅− Lchain+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ sin Φswing()⋅+

Figure 3.6 shows the variation of the danger zone width with the distance from the tower. The
figure shows that percentage difference between the maximum and minimum width of the dan-
ger zone is only around 12%. This suggests selecting a constant width of the danger zone at a
value of 143 ft.

 15

 The distance between the bottom of the danger zone and the ground is:

 Hdanger x() Htower Dclearance− sag x() Lchain+() cos Φswing()⋅−:=

.

Hdanger 0() 49.922 ft⋅= Hdanger
Span

2
⎛⎜
⎝

⎞⎟
⎠

20.982 ft⋅=

Substitution of sag equation results in closed formula for danger zone height calculation

Hdanger x() Htower Dclearance− seg max
4seg max

Span 2

Span
2

x−⎛⎜
⎝

⎞⎟
⎠

2
⋅− Lchain+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

cos Φswing()⋅−

Figure 3.7 shows the variation of the danger zone height with the distance from the tower.

.

0 200 400 600 800 1000
0

50

100WDanger x()

ft

x

ft

.

Figure 3.6 Danger zone widths vs. distance from the tower

0 200 400 600 800 1000
0

10

20

30

40

Hdanger x()

ft

x

ft

 16

Figure 3.7 Danger zone heights vs. distance from the tower

Trees or vegetation cannot penetrate the danger zone; this includes high trees that are out-
side the danger zone but close enough that a storm caused uprooting of the tree could result in
penetration in the danger zone. Even a falling tree cannot penetrate the danger zone. Figure 3.8
illustrates falling tree penetration in the danger zone.

 Accordingly, it is necessary to identify an intermediate danger zone, where a tall falling
tree may cause flashover. The approximate width of the intermediate danger zone depends on the
area. Typically in Arizona, maximum tree height is around 70 ft; simultaneously a redwood tree
in California can be more than 200 ft tall. Local Power Companies must establish the intermedi-
ate zone. The intermediate danger zone width must be added to the danger zone width.

Figure 3.8. Falling tree penetration in the danger zone

3.5 Derivation of an equation describing the danger zone

The calculation above determines the danger zone as the function of the distance from
one of the towers, but the satellite tree identification project requires the coordinates of the dan-
ger zone and the intermediate danger zone. Figure 3.9 shows the two towers identifying the span
and danger zone in an x, y coordinate system. The input data are the GPS (UTM) coordinates of
the two towers, span length or distance between the towers and the maximum sag. The maximum
sag and span are used to calculate the widths and heights of the danger zone and intermediate
danger zone. In Figure 3.9 only the danger zone width is used.

If one assumes that the satellite imaging system has identified a tall tree located close to
the line, the desired output presents the GPS (UTM) coordinates of the tree. Figure 3.9 shows

 17

that the distance from the tree to the line can be calculated by determining the coordinates of the
intersection of two lines: the line between the two towers and the perpendicular line going
through the tree point. The calculation steps are listed below.

xT1
yT1

xT2

yT2

xTree
yTree

Tower 1

Tower 2

Transmission line

Tree

D

Span - D

Distree

W

Danger
Zone

X

y

ymid
xmid

Line perpendicular to the
transmission line

Figure 3.9 A typical transmission line span and its coordinates

 18

3.6 Calculating the distance between the transmission line and tree

Coordinates of the tower and the tree

xT1 1197ft:= xT2 2173ft:= xtree 1540 ft⋅:=

yT1 853ft:= yT2 1071ft:= ytree 676 ft⋅:=

Equation of the transmission line

mline
yT1 yT2−

xT1 xT2−
:= δline atan mline():= δline 12.591deg=

y yT1− mline x xT1−()⋅

Equation of a line perpendicular to the transmission line and going through the tree
coordinates is:

δtree δline 90deg−:= δtree 77.409− deg= mtree tan δtree():=

mtree 4.477−= y ytree− m.tree x xtree−()⋅

The intersection of the two lines is:

ymid yT1− mline xmid xT1−()⋅ ymid ytree− m.tree xmid xtree−()⋅

The subtraction of the equations yields

ytree yT1− mline mtree−() xmid⋅ mtree xtree⋅+ mline xT1⋅−

The coordinates of the mid point are:

xmid
ytree yT1−() mtree xtree⋅ mline xT1⋅−()−

mline mtree−
:= xmid 452.946m=

ymid mtree xmid xtree−()⋅ ytree+:= ymid 279.673m=

The distance between the tree and the line is:

DIStree xtree xmid−()2 ytree ymid−()2
+:= DIStree 75.442m=

DIS.tree must be more than the danger zone width W

 19

The comparision requires the calculation of the variable danger zone width. The first step is
the calculation of the distance between the "mid" point and the tower 1. This followed by
the calculation of the span.

D xT1 xmid−()2 yT1 ymid−()2
+:= D 90.272m=

Span xT1 xT2−()2 yT1 yT2−()2
+ Span 1000ft=

The next step is the calculation of the danger zone width and height

WDang x() DAC 2 Dclearance⋅+ 2
4 sag max⋅

Span2

Span
2

x−⎛⎜
⎝

⎞⎟
⎠

2
⋅ Lchain+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ sin Φswing()⋅+:=

HDang x() Htower
4 sag max⋅

Span2

Span
2

x−⎛⎜
⎝

⎞⎟
⎠

2
⋅ Lchain+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

cos Φswing()⋅− Dclearance−:=

HDang D() 13.75m= WDang D() 39.444m=

The previous calculation shows that the distance between the tree and the line is: Dtree = 75.4 m.
Consequently, the tree is not in the danger zone. Thus, the presented calculation gives a proce-
dure to identify trees within the danger zone.

 20

4.0 Methodology for Development of Computer Programs

4.1 Introduction

This section shows the methodology for implementing a system to identify trees interfer-
ing with overhead power lines from a stereo pair of multispectral satellite images. The frame-
work of the system, the technologies used for implementation and the implementation schedule
are explained in Sections 4.2, 4.3, and 4.4, respectively.

4.2 Theoretical framework

 The objectives are the development of two computer programs to identify trees endanger-
ing transmission line operation. The development is organized into distinct stages:

1. A Transmission Line Scanning Computer program to detect trees and vegetation us-
ing commercially available multispectral satellite images.

2. A Tall Tree Identification program, which has two parts:
a. Development of the Digital Surface Model (DSM) from a pair of stereo im-

ages.
b. Development of a system to identify trees interfering with the lines.

Figure 4.1 shows the diagram of the system framework, and the following list describes the steps
that must be performed by the programs identifying tall trees adjacent to the transmission line:

1. Load and display a pair of multispectral stereo satellite images
2. Load the data about transmission lines and towers
3. Calculate the location of the lines and towers on the image
4. Load danger zone data
5. Specify and display the danger zone area along the lines
6. Detect the trees and plants
7. Calculate stereo matching
8. Generate Digital Surface Model
9. Control the threshold value for detecting vegetation
10. Display the high trees close to reaching the power lines inside the envelope area

Java, one of the object-oriented programming languages, and JAI (Java Advanced Imag-

ing), an example of API (Application Programming Interfaces) for image processing in Java, are
used for the implementation of the system because they provide advantages for transferring and
displaying large scale satellite images through the networks.

 21

Figure 4.1 Diagram of the system framework

There are many formats for digital images such as JPG, GIF, TIFF, and RAW. Remote
sensing techniques especially for the detecting of vegetation commonly use TIFF format (tagged
image file format) because it is able to save four bands, blue, green, red, and infrared bands, in
one file. In addition to the increased numbers of bands, TIFF files can include additional text in-
formation with tags in the format. One of the most common formats in remote sensing is Geo-
TIFF [18], which is one of the TIFF formats with geographic data. For the detection of vegeta-
tion, the ratio of red/infrared is used. The phenomenon is called the red edge because the re-
flected signal from healthy vegetation shows a steep slope and very strong increase in this por-
tion of the electromagnetic spectrum.

Each of the following sections explains the concept of process in the system.

4.3 Loading and displaying images

 This is a description of Process 1which is illustrated in Figure 4.1. A multispectral satel-
lite image file is loaded by selecting the data source in a file browser. A stereo pair of images is
also loaded in the same way. The loaded image is not displayed directly but subdivided into an
array of tiled images with smaller pixels, such as 256 x 256, in order to display the image in real
time. Otherwise, it is not feasible to handle large scale satellite images on regular PCs because of
the limitation of memory size. The size of satellite image is usually bigger than that of the com-
puter screen, so only a small part of a loaded image is displayed in the main panel. The visible
small area on the main-panel is projected in the sub panel as a boundary box. The user is able to
scroll the image and change the visible site by dragging the image with the mouse into the main
panel.

 22

4.4 Loading a text file of towers

The following describes how to load a text file of transmission tower information. This is
Process 2 depicted in Figure 4.1. The user loads one text file containing the location of transmis-
sion towers. In the location file, each tower is indexed with the location information, the longi-
tude and latitude. The index number represents the linkage of transmission lines. For example,
the transmission lines are connected between the tower indexed as N and the tower indexed as
N+1. This information is generally available from the plan and profile studies of transmission
lines.

4.5 Displaying the towers and lines

The following is a description of how towers are displayed. This is Process 3 in Figure
4.1. After loading the satellite image file and the location file, the towers and lines are displayed
on the image by calculating the pixel positions of towers from the longitude and latitude. For the
GeoTIFF formatted image file, the pixel positions are calculated by extracting the geographical
information in the file. On the other hand, it is necessary for regular TIFF images to define the
geographical data manually. The popular public domain, Google Earth [19], may be one method
of acquiring the geographical location information. To do this the user must choose three points
on the loaded image and, by using the longitude and latitude coordinates, select the same loca-
tions in Google Earth. The satellite image use X-Y coordinates with pixels. In order to define the
projection system between these two coordinates, the chosen three points are required. The de-
tails of this process are explained in Chapter 5. Once the projection system is defined, the geo-
graphical location of the towers is expressed using the XY pixel coordinate.

4.6 Defining the danger zone

Processes 4 and 5 in Figure 4.1 relate to defining the danger zone around the transmission
line conductors. The region of interest (ROI) is a region marked over an image, and it is defined
by the tower positions. The pixels inside a circle with a 30 meter radius around each transmission
tower are selected and added to the ROI by default. The enveloped pixels with the same radius
along the power lines are added. Depending on the dimensions of the danger zone, the user can
change the radius.

4.7 Extracting the vegetation areas

Processes 6 and 9 in Figure 4.1 show the extraction of the vegetation. One important
process in Stage 1 is the exact mapping of vegetation. By defining the ROI, only the defined pix-
els in the image are evaluated (whether the pixel has the strong signal of vegetation or not). The
calculation is done by using a Normalized Differenced Vegetation Index (NDVI), which is de-
fined as:

 NDVI = (NIR – R) / (NIR + R) (4.1)

where NDVI is the intensity of the signal in the spectrum corresponding to the amount of healthy
vegetation present in the specific pixel, NIR is the near infrared DN, and R is the red DN. The

 23

value range is normalized for programming convenience between -1 and 1. In order to show only
the healthy vegetation area properly, the best threshold value needs to be defined. The value is
defined manually by the user because it varies from image to image depending on the sensor, the
actual conditions when the image was taken such as weather, illumination and shadows, and the
sensor features such as focal length. It is highly desired to find an automated way to specify thre-
sholds. However, the practical value for NDVI is approximately 0.1-0.3.

4.8 Stereo matching and DSM generation

Stereo matching in the DSM generation is denominated as Processes 7 and 8 in Figure
4.1. Stereo matching and digital surface model (DSM) generation is implemented in Stage 2.
This process includes several steps: first, panchromatic high resolution satellite stereo images
have to be loaded as a stereo pair. Then the appropriate sensor model has to be assigned the im-
age data, and both images have to be linked to each other with tie points. After that, each abso-
lute orientation ground control point (gcp), has to be identified with an accurate x, y, and z value
in both images. Finally, a 3D model can be calculated, providing x, y, and z values for each pixel.
A test DSM using a commercial off-the shelf photogrammetry package, ERDAS IMAGINE, is
demonstrated in Chapter 7.

4.9 Showing the results

 The depiction of results is represented by Process 10 in Figure 4.1. This step shows the
results in 2D and 3D views by integrating the data: NDVI image, DSM, and the danger zone da-
ta. The DSM mapped with the NDVI image will be generated, and the danger zone will be dis-
played on the image. A GIS-based (Geographical Information System) calculation will automati-
cally highlight areas of potential interference by vegetation in the danger zone.

4.10 Technologies utilized to implement the theory

This section introduces some key technologies used in implementing the system to identify
trees interfering with overhead power lines.

Java

 Java [20] is one of the object-oriented programming languages; it was developed by Sun
Microsystems in 1994. It runs in Windows, Mac, UNIX, and Linux environments and has an ad-
vantage over other environments in developing network applications. The basic development kits
and several immediate development environments (IDE) are available for free.

Java Advanced Imaging (JAI)

 Java Advanced Imaging (JAI) is one of the abstract programming interfaces (APIs) for
developing image applications. It is also available for free from Sun Microsystems. This API
supports various important functions for image processing including file I/O, filtering, and ren-
dering [21].

 24

Multispectral TIFF format images

 In this project, multispectral images of TIFF format are used. Digital color images usu-
ally have 3 bands, red, green, and blue. but in order to identify the healthy vegetation such as
trees and grasses, an infrared band is required as well. The TIFF image format is commonly used
in remote sensing and photogrammetry, instead of using the other image formats such as JPG,
BMP, and GIF, because it can handle four bands for red, green, blue, and infrared.

UTM map projection

 Since the earth is not flat, there are many different map projections. In this project, the
Universal Transverse Mercator (UTM) projection is used. It is one of the Gauss-Krüger (ellip-
soidal transversal Mercator) projections. The formula to calculate the projection is explained in
Chapter 5. First, the meridian arc length is calculated from the latitude ϕ by using an equidistant
latitude function (5.1). Then, the X-Y coordinate in ellipsoidal cylindrical conformal projection is
calculated. A semi-major axis value of 6,378,137 meters and a flattening rate of
1/298.257222101 are used, according to the GRS80 definition [22].

4.11 Implementation schedule

As shown in Figure 4.1, the development is broken into 3 stages. This shows the schedule
of development for each stage. Figure 4.2 shows the schedule submitted in the proposal.

Stage 1: Transmission line scanning program
Goal: Develop a tool to extract the healthy vegetation area close to the power

lines from multispectral satellite images: Processes 1, 2, 3, 4, 5, 6, 9.

Stage 2: Tall Tree Identification Program
Goal: Develop a tool to generate digital surface models from a stereo pair of mul-

tispectral satellite images: Processes 7 and 8.

Stage 3: Tall Tree Identification Program
Goal: Integrate the tools of Stages 1 and 2, and develop a system to identify high

trees interfering with overhead power lines: Process 10.

 25

5.0 Transmission line scanning program: Stage 1

5.1 Introduction

 This section shows several techniques used in implementing the tool in Java for Stage 1
described in Chapter 4.1. In Stage1, the goal is to develop a tool utilizing the following func-
tions:

• Loading image files
• Displaying the danger zone along power lines on an image
• Identifying the healthy vegetation area

Each function is explained in Sections 5.3, 5.4, and 5.5, respectively.

5.2 Packages and classes

The all Java classes are implemented in a package named “pserc.” The following is the
list of classes developed for Stage 1:

• PL_ScrollController
• PL_DataTable
• PL_FileLoader
• PL_FilterSlider
• PL_Geo
• PL_ImageCanvas
• PL_MainFrame
• PL_RenderedImageCanvas
• PL_RenderGrid
• PL_ScrollGUI

PL_MainFrame is a main window frame class, and its main function is to execute this program.
The GUI of the PL_MainFrame has two main parts: the Left Panel and Right Panel.

The Left Panel has three small panels, the PL_DataTable, PL_FilterSlider, and PL_RenderGrid.
The PL_DataTable is the top panel and shows the geographical information of positions includ-
ing the corners of a loaded image and transmission towers. The PL_FilterSlider is the bottom
panel and has 5 sliders for red, green, blue, infrared bands, and NDVI value. The
PL_RenderGrid is the middle panel, and it shows the visible area in the main image panel, the
Right Panel which was introduced in the previous paragraph. It also shows the all towers and
lines.

PL_RenderedImageCanvas is the main image panel to show an image in the Right Panel. It ex-
tends the PL_ImageCanvas, which is the fundamental image panel object.

 26

PL_FileLoader is a class to be used in loading image files. PL_Geo is a class to get the geo-
graphical information from the table in the PL_DataTable object, and it defines the parameters
for converting the information of latitude and longitude to a map projection coordinate, Univer-
sal Transverse Mercator (UTM).

PL_ScrollController is a Java interface to control scroll events from mouse actions, and the
PL_ScrollGUI implementing the PL_ScrollControlle is used in the PL_RenderedImageCanvas
to scroll an image.

5.3 Loading image files

Because Java Advanced Imaging (JAI) API supports most of the image formats, the im-
age object is initialized as a planar image object as shown in the PL_FileLoader.

 PlanarImage pi = JAI.create("fileload", file.getAbsolutePath())

The most important concern in loading image files is to support a large size image file because
this project will require handling a gigabyte image file.

/**
 * Make tiled image from image object.
 * @param img PlanarImage input mutlispectral Tiff image.
 * @return RenderedOp 4 bands tiled image.
 */
 protected RenderedOp makeTiledImage(PlanarImage img) {
 ImageLayout tileLayout = new ImageLayout(img); // set the layout
 tileLayout.setTileWidth(tileWidth); // set tile width and height
 tileLayout.setTileHeight(tileHeight);
 RenderingHints tileHints = new RenderingH-
ints(JAI.KEY_IMAGE_LAYOUT, tileLayout);
 ParameterBlock pb = new ParameterBlock();
 pb.addSource(img);
 RenderedOp op=JAI.create("format", pb, tileHints); //generate RenderedOp
object with tile info
 return JAI.create("BandSelect", (PlanarImage)op, new int[] {0,1,2,3});
 }

Figure 5.1 Java code for making a tiled Image

In order to support such a large imagine file, tiles of a tiled image are drawn one by one instead
of drawing the whole image at one time. The following is the function in the
PL_RenderedImageCanvas to make a tiled image from a PlanarImage object.

 As described in Section 4.2.2, this program accepts the image only with 4 channels. Oth-
erwise, the program fails to make a tiled image. After making a tiled image, each tile is drawn in
a paint function. This procedure is explained in Section 5.4.

 27

5.4 Displaying the danger zone area along overhead transmission lines on an image

An image file does not have any geographical information. However, the location infor-
mation of transmission towers uses geographical coordinates, latitude and longitude. Therefore,
some data to define the geographical information of an image is required in advance. In this
stage, the user must get the coordinates of three points (left-top, right-top, and left-bottom cor-
ners) in the image. The information is obtained from Google Earth [19] and it is hard-coded in
PL_Geo class as default. The formula (5.2) is used to convert the coordinates from latitude and
longitude to X-Y in Universal Transverse Mercator (UTM). The formula (5.1) is utilized to get S,
the meridian arc length, and the arc length is subsequently used in the formula (5.2). The details
of the formulas are explained in [22]. Figure 5.2 and Figure 5.3 show the Java codes for imple-
menting the formulas (5.1) and (5.2) respectively.

)1.5(

222101).(1/298.257 rate flattening ,2 as definedty eccentricifirst

 latitude, ,(6378137m) axissemimajor where
7516192768

765765
469762048

765765
117440512

45045
939524096
11486475

58720256
315315

2097152
3003

469762048
26801775

117440512
4099095

524288
9009

131072
693

1879048192
348423075

29360128
4099095

1048576
99099

65536
3465

16384
315

469762048
209053845

117440512
45090045

524288
165165

131072
31185

2048
315

512
35

939524096
766530765

58720256
45090045

2097152
1486485

16384
10395

4096
2205

256
105

16
15

469762048
547521975

117440512
135270135

262144
297297

65536
72765

2048
2205

512
525

16
15

4
3

7516192768
4927697775

29360128
19324305

1048576
693693

65536
43659

16384
11025

256
175

64
45

4
31

16sin
16

14sin
14

12sin
12

10sin
10

8sin
8

6sin
6

4sin
4

2sin
2

*)(1(

2

16

1614

161412

16141210

161412108

1614121086

16141210864

161412108642

161412108642

2

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

=−=

==

=

+=

++=

+++=

++++=

+++++=

++++++=

+++++++=

++++++++=

+−+−+−+−−=

fffe

a

eI

eeH

eeeG

eeeeF

eeeeeE

eeeeeeD

eeeeeeeC

eeeeeeeeB

eeeeeeeeA

IHGFEDCBAeaS

ϕ

ϕϕϕϕϕϕϕϕϕ

 28

)2.5(

cos ,tan ,longitude

,
1

e as definedty eccentrici second ,
sin1

 where,

cos)17947961(
5040

1

cos)5814185(
120

1

cos)1(
6
1cos

cos)54331111385(
40320

1

cos)3302705861(
720
1

cos)495(
24
1cos

2
1

222

2

2

22

77642

5522242

3322

88642

6622242

4442222

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

′===

−
=′

−
=

−+−+

⋅⋅−++−+

⋅⋅+−⋅+⋅⋅=

−+−⋅⋅+

−++−⋅⋅+

⋅⋅++−⋅⋅+⋅⋅⋅+=

ϕηϕλ

ϕ

ϕλ

ϕληη

ληϕλ

ϕλ

ϕληη

ϕληηϕλ

et

e
e

e

aN

tttN

tttN

tNNx

ttttN

ttttN

ttNtNSy

 29

 /**
 * Get the meridian arc length by meter from latitude
 * @param lat double Latitude as radian value
 * @return double Meridian Length (meter)
 */
 public static double getMeridian(double lat) {
 double a = 6378137.0; //semimajor axis of Earth from GRS80
 double f = 1.0 / 298.257222101; //flattening rate of Earth
 double _F = 298.257222101;
 double e = (Math.sqrt(2.0 * _F - 1.0)) / _F; // first eccentricity
 double e_ = (Math.sqrt(2.0 * _F - 1.0)) / (_F - 1.0); //second eccentricity

 //Step 1: Calcuate the A, B, C, D, E, F, G, H, I,
 //They are the constants multiplied with e for equidistant latitude function

 double A = 1.0 + (3.0 / 4.0) * Math.pow(e, 2) +

(45.0 / 65.0) * Math.pow(e, 4) + (175.0 / 256.0) * Math.pow(e, 6) +
 (11025.0 / 16384.0) * Math.pow(e, 8) +
 (43659.0 / 65536.0) * Math.pow(e, 10) +
 (693693.0 / 1048576.0) * Math.pow(e, 12) +
 (19324305.0 / 29360128.0) * Math.pow(e, 14) +
 (4927697775.0 / 7516192768.0) * Math.pow(e, 16);
 double B = (3.0 / 4.0) * Math.pow(e, 2) + (15.0 / 16.0) * Math.pow(e, 4) +
 (525.0 / 512.0) * Math.pow(e, 6) +
 (2205.0 / 2048.0) * Math.pow(e, 8) +
 (72765.0 / 65536.0) * Math.pow(e, 10) +
 (297297.0 / 262144.0) * Math.pow(e, 12) +
 (135270135.0 / 117440512.0) * Math.pow(e, 14) +
 (547521975.0 / 469762048.0) * Math.pow(e, 16);
 double C = (15.0 / 64.0) * Math.pow(e, 4) + (105.0 / 256.0) * Math.pow(e, 6) +
 (2205.0 / 4096.0) * Math.pow(e, 8) +
 (10395.0 / 16384.0) * Math.pow(e, 10) +
 (1486485.0 / 2097152.0) * Math.pow(e, 12) +
 (45090045.0 / 58720256.0) * Math.pow(e, 14) +
 (766530765.0 / 939524096.0) * Math.pow(e, 16);
 double D = (35.0 / 512.0) * Math.pow(e, 6) +
 (315.0 / 2048.0) * Math.pow(e, 8) +
 (31185.0 / 131072.0) * Math.pow(e, 10) +
 (165165.0 / 524288.0) * Math.pow(e, 12) +
 (45090045.0 / 117440512.0) * Math.pow(e, 14) +
 (209053845.0 / 469762048.0) * Math.pow(e, 16);
 double E = (315.0 / 16384.0) * Math.pow(e, 8) +
 (3465.0 / 65536.0) * Math.pow(e, 10) +
 (99099.0 / 1048576) * Math.pow(e, 12) +
 (4099095.0 / 29360128.0) * Math.pow(e, 14) +
 (348423075.0 / 1879048192.0) * Math.pow(e, 16);
 double F = (693.0 / 131072.0) * Math.pow(e, 10) +
 (9009.0 / 524288.0) * Math.pow(e, 12) +
 (4099095.0 / 11744052.0) * Math.pow(e, 14) +
 (26801775.0 / 469762048.0) * Math.pow(e, 16);
 double G = (3003.0 / 2097152.0) * Math.pow(e, 12) +
 (315315.0 / 58720256.0) * Math.pow(e, 14) +
 (11486475.0 / 939524096.0) * Math.pow(e, 16);
 double H = (45045.0 / 117440512.0) * Math.pow(e, 14) +
 (765765.0 / 469762048.0) * Math.pow(e, 16);
 double I = (765765.0 / 7516192768.0) * Math.pow(e, 16);

 //Get the valued of all stages of the partial differential coefficients with
 //respect to e.
 double b = a * (1.0 - e * e);
 double B1 = b * A;
 double B2 = b * (-B / 2.0);
 double B3 = b * (C / 4.0);
 double B4 = b * (-D / 6.0);
 double B5 = b * (E / 8.0);
 double B6 = b * (-F / 10.0);
 double B7 = b * (G / 12.0);
 double B8 = b * (-H / 14.0);

 30

 double B9 = b * (I / 16.0);

 double d = lat; // latitude

 //equidistant latitude function
 double m = B1 * d + B2 * Math.sin(2.0 * d) + B3 * Math.sin(4.0 * d) +
 B4 * Math.sin(6.0 * d) + B5 * Math.sin(8.0 * d) +
 B6 * Math.sin(10.0 * d) + B7 * Math.sin(12.0 * d) +
 B8 * Math.sin(14.0 * d) + B9 * Math.sin(16.0 * d);

 return m;
 }

Figure 5.2 Java Code for calculating the meridian arc length from latitude using formula
(5.1)

 31

/**
 * Calculate the XY distnace from the original point to the target point
 *
 * @param latS String Original point's latitude as DDMMSS.SS
 * @param lonS String origianl point's longitude as DDMMSS.SS
 * @param _latS String Target point's latitude as DDMMSS.SS
 * @param _lonS String Target point's latitude as DDMMSS.SS
 * @return double[] (double[0], double[1]) represents (X distance, Y distance) in UTM
 */
 public static double[] getXY(String latS, String lonS, String _latS, String _lonS){
 double lat=getRadian(latS); //convert latitide as Radian
 double lon=getRadian(lonS); //convert longitude as Radian
 double _lat=getRadian(_latS); //convert target latitude as Radian
 double _lon=getRadian(_lonS); //convert target longitude as Radian
 double a=6378137.0; //semimajor axis of Earth from GRS80
 double f= 1.0/298.257222101; //flattening rate of Earth
 double _F=298.257222101;
 double e=(Math.sqrt(2.0*_F -1.0)) / _F; // first eccentricity
 double e_=(Math.sqrt(2.0*_F - 1.0)) / (_F-1.0); // second eccentricity

 double t=Math.tan(lat);
 double delta_lon=lon-_lon; // offset degree in longitude
 double mu2=e_*e_*Math.cos(lat)*Math.cos(lat);
 double N=a/(Math.sqrt(1.0-e*e*Math.sin(lat)*Math.sin(lat)));
 double m0=0.9999; //UTM factor from Gauss-Kruger projection
 double cos=Math.cos(lat);
 double[] xy=new double[2];

 //Get the distance in Y direction using Gauss-Kruger projection
 xy[1] = - ((getMeridian(lat) - getMeridian(_lat))
 +
 1.0 / 2.0 * N * (Math.pow(cos, 2)) * t * (delta_lon * delta_lon)
 +
 1.0 / 24.0 * N * (Math.pow(cos, 4)) * t *
 (5.0 - t * t + 9 * mu2 + 4.0 * mu2 * mu2) *
 Math.pow(delta_lon, 4)
 -
 1.0 / 720.0 * N * (Math.pow(cos, 6)) * t *
 (-61.0 + 58.0 * t * t - t * t * t * t - 270.0 * mu2 +
 330.0 * t * t * mu2) * Math.pow(delta_lon, 6)
 -
 1.0 / 40320.0 * N * (Math.pow(cos, 8)) * t *
 (-1385.0 + 311.0 * t * t - 543.0 * t * t * t * t +
 Math.pow(t, 6)) * Math.pow(delta_lon, 8)) * m0;

 //Get the distance in X direction using Gauss-Kruger projection
 xy[0] = (N * cos * delta_lon
 -
 1.0 / 6.0 * N * (Math.pow(cos, 3)) * (-1.0 + t * t - mu2) *
 Math.pow(delta_lon, 3)
 -
 1.0 / 120.0 * N * (Math.pow(cos, 5)) *
 (-5.0 + 18.0 * t * t - t * t * t * t - 14.0 * mu2 +
 58.0 * t * t * mu2) * Math.pow(delta_lon, 5)
 -
 1.0 / 5040.0 * N * (Math.pow(cos, 7)) *
 (-61.0 + 479.0 * t * t - 179.0 * Math.pow(t, 4) + Math.pow(t, 6)) *
 Math.pow(delta_lon, 7)) * m0;

 return xy; // XY distnace by meter
 }

Figure 5.3 Java code for calculating the X and Y distance between 2 points from latitude
and longitude using formula (5.2)

 32

The formula (5.1) calculates the X and Y distances (meter) from the information on lati-
tude and longitude. Therefore, after the coordinates of 3 points (left-top, left-bottom, and right-
top) of an image are defined, any point represented with latitude and longitude can be defined as
a position in the image.

Figure 5.4 Relation of X-Y coordinates and geo-coordinates

For example, if a transmission tower has a coordinate (Lo, La), then the distance from the

left top corner of the image can be calculated using the function in the previous section. The dis-
tance is supposed as (X’, Y’). The position of tower (x’, y’) is defined as:

x’= X’/(X/width_pixel): X/width_pixel is kept as EW_scale
y’=Y’/(Y/ height_pixel): Y/height_pixel is kept as NS_scale

Figure 5.5 shows the Java code to get the X-Y position in the image from latitude and

longitude.

/**
 * Get the XY pixel position from latitude and longitude.
 * @param _lat String latitude should be represented as DDMMSS.SSS
 * @param _lon String longitude should be represented as DDMMSS.SSS.
 * @return Point Pixel Position in image.
 */
 public static Point pixelPos(String _lat, String _lon){
 double[] xy=getXY(latitude, longitude, _lat, _lon); //get UTM position
 int xpos = (int)(xy[0]/EW_scale); //convert UTM-xy to X image position
 int ypos = (int)(xy[1]/NS_scale); //convert UTM-xy to Y image position
 return new Point(xpos, ypos);
 }
Figure 5.5 Java code to get XY pixel position in an image from latitude and longitude

In this project, any image is assumed as orth-rectified. In other words, it is assumed that
two positions with the same y-value have the same latitude, and two points with the same x-value
have the same longitude. In addition, the latitude or longitude degree in this program is repre-

 33

sented as a string object. The degree, minute and second values, is input as one word. For exam-
ple, if the degree, minute, and second values are “33,” “45,” and “49.876,” then it is represented
as “334549.876.” Figure 5.6 is a function to convert the degree from degree-minutes-second no-
tation to radians.

/**
 * Get the radian value from degree as DDMMSS.SSS.
 * @param _d_m_s String input degree.
 * @return double radian value.
 */
 public static double getRadian(String _d_m_s){
 double temp=Double.parseDouble(_d_m_s);
 int _d= (int)(temp/10000.0); //get Degree value as integer
 temp=temp- ((double)_d*10000.0);
 int _m= (int) (temp/100.0); //get Minute value as integer
 double _s=temp- ((double)_m*100.0); // get Second value as real number
 return ((double)_d + (double)_m/60.0 + _s/3600.0) *Math.PI/180.0; //convert the degree to ra-
dian
 }

Figure 5.6 Java code to convert the value from degree minute-second-format to Radians

5.5 Identifying healthy vegetation areas

For extracting the healthy vegetation area in multispectral images, NDVI is used as de-
scribed in Chapter 4.

NDVI = (NIR – R) / (NIR + R). (5.1)

NDVI represents the intensity of the signal in the spectrum corresponding to the amount of
healthy vegetation present in the specific pixel. The notation NIR is the near infrared signal, and
R is the red signal. In order to support a large image file, the tiled image is created as explained
in Section 5.2. Figure 5.7 shows a sub-block defined in a paint function in a PL_RenderedImage
-Canvas. It is best to draw tiles one by one. The tile size is 256 x 256. The integer array object,
“pixels[],” store the pixel information of a tile. It has 4 bands. The byte array object, “data[],” get
the NDVI value, and the green, and blue values from “pixels[].” During the process, if the NDVI
value is more than the threshold value defined in the PL_FilterSlider Panel, the pixel is set as
white. After getting “data[],” a new buffered image object is initialized using the “data[].” Then,
the BufferedImage is drawn in the proper position.

 34

 // Draw each tile
 for(tj = topIndex; tj <= bottomIndex; tj++) {
 for (ti = leftIndex; ti <= rightIndex; ti++) {

 Raster raster = displayImage.getTile(ti, tj); // Get the raster information
 int width2 = raster.getWidth(); // get raster's width
 int height2 = raster.getHeight(); // get raster's height
 int bands = raster.getNumBands(); // get raster's band number (Supposed 4)
 int[] pixels = new int[width2 * height2 * bands]; // pixel information of tile image
 byte[] data = new byte[width2 * height2 * 3]; // target pixel data

 raster.getPixels(ti * 256, tj * 256, width2, height2, pixels); // 256 x 256 is the tile size FIXED!!!!

 int index = 0;
 // For each pixel in a tile
 for (int h = 0; h < height2; h++)
 for (int w = 0; w < width2; w++) {
 int red = pixels[index * 4 + 2]; // Get Red band pixel info
 int inf = pixels[index * 4 + 3]; // Get Infrared band pixel info
 float ndvi = (float) (((float) (inf - red)) / ((float) (red + inf))); // Cacluate NDVI
 data[index * 3 + 2] = (byte) ((ndvi + 1.0) * 100.0); //Set the NDVI in Red band
 data[index * 3 + 1] = (byte) pixels[index * 4 + 1]; //Set the original Green in green band
 data[index * 3 + 0] = (byte) pixels[index * 4]; //Set the original Blue in blue band

 int thres=(int)(PL_FilterSlider.threshold*100.0)+100; // Get NDVI Theashold value from PL_FilerSlider
 if(data[index*3+2]>thres){ // If the NDVI value is more than Thesdhold, the pixel is WIHTE.
 data[index * 3 + 2] = (byte) 255; //red
 data[index * 3 + 1] = (byte) 255; //green
 data[index * 3 + 0] = (byte) 255; //blue
 }
 index++;
 }

 // *** ROI Operation *** //
 DataBufferByte dbuffer = new DataBufferByte(data, width2 * height2 * 3);
 //Get SampleModel
 sampleModel = RasterFactory.
 createPixelInterleavedSampleModel(DataBuffer.TYPE_BYTE, width2, height2, 3);
 //Get ColorModel
 colorModel = PlanarImage.createColorModel(sampleModel);

 //Create Buffered image and draw it in the proper tile position
 WritableRaster wr = RasterFactory.createWritableRaster(sampleModel,dbuffer, new Point(0, 0));
 BufferedImage bi = new BufferedImage(colorModel, wr, colorModel.isAlphaPremultiplied(), null);
 int xInTile = displayImage.tileXToX(ti);
 int yInTile = displayImage.tileYToY(tj);
 AffineTransform tx = AffineTransform.getTranslateInstance(xInTile + panX, yInTile + panY);
 g.drawRenderedImage(bi, tx);
 }
 }

Figure 5.7 Java code to generate a tile with NDVI, green, and blue bands

 35

6.0 Tool Instruction: Stage 1 for NDVI Visualization

6.1 Introduction

This chapter presents the operation instructions of the developed tool. The intent is to
serve as explanatory material in connection with a users’ manual which appears as an appendix.

6.2 Setting Java environments

 We use a JBuilder X, which is one of the Java immediate developing environment (IDE)
packages, and it is available from [24]
 http://www.borland.com/downloads/download_jbuilder.html.

 In order to run our program, the additional API of Java Advanced Imaging (JAI) is re-
quired. JAI is downloadable from
http://java.sun.com/products/java-media/jai/index.jsp

 After installing JBuilderX and JAI (1.1.2), the class paths to “jai_codec.jar” and
“jai_core.jar” are required. The following image shows the class-path setting in JBuilderX.

Figure 6.1 CLASSPATH setting in JBUILDER

The last step is to open the “jbuilder.config” file in JBuilder/bin directory and change the

amount of memory allocation in order to handle big image files. The following case sets the base
starting memory pool as 128 megabytes, and allows for a maximum of 512 megabytes.

 36

Figure 6.2 Screen shot for memory assignment in JBUILDER

6.3 How to run the program

By opening the project file, “PSerc.jpx” in the PSerc folder and selecting the “Run Pro-
ject” command, the program starts. Figure 6.3 displays the results.

 37

Figure 6.3 Screen shot for Running Projects in JBUILDER

6.4 Loading an image

This program can read only TIFF formatted image files with four bands. The band order
is blue-green-red-infrared. By selecting the “Open Image” menu item under the pull down menu
“File” -> “Open,” the file loader window pops up. Select the file name in the window then the
image is displayed in the main screen. Figures 6.4 and 6.5 show the process.

 38

Figure 6.4 Screen shot of the GUI

Figure 6.5 Screen shot of the image file loader

Before loading an image, some information should be obtained. TIFF images usually do
not have geographical information. However, the location of the transmission tower is repre-

 39

sented with geo-coordinates using latitude and longitude. In order to specify the location and
scale of an image, the latitude, and longitude of three corner points (left top, right top, and left
bottom points) should be defined. The data can be obtained by using Google Earth [19]. The lati-
tude and longitude information is shown in the bottom status bar.

Figure 6.6 QuickBird satellite image, Scottsdale, AZ

With reference to Figures 6.6 and 6.7, the following is the information on an image used
in a test case. The <qbird_94.tif> file is a Quickbird satellite image taken in 1994 over Scotts-
dale, Arizona. In this test case, the location data of towers is hard-coded.

 Left-top: 33º35’ 03.46” N 111º50’05.78”W
 Right-top: 33º35’ 03.46” N 111º49’16.62”W
 Left-bottom: 33º34’ 34.49” N 111º50’05.78”W

 Image size = 2108 x 1489 pixels

The power line is depicted from (33º34’ 48.87” N, 111º49’42.79”W) to (33º34’ 37.91” N,
111º49’33.57”W).

 40

Figure 6.7 Screen shot from Google Earth of Scottsdale, AZ

The red circle shows the left top corner of the image used for testing. The red rectangle shows
the latitude and longitude of the position of the red circle.

6.5 Results of a test case in Scottsdale AZ

Once the image is loaded, the boundaries of the envelop area near the power lines are
shown in the main panel, which is the panel on the right. The left panel has three components,
the geo-coordinate information panel, the grid panel, and the NDVI control panel. Figure 6.8
shows a screen capture of the process.

 41

Figure 6.8 Screen shot of the result showing a power line between two transmission towers

PL_DataTabel Panel

This panel shows the geographical coordinates of the three corner points of the image and
the towers. The first three rows are used for the corner points, and the other rows are used for
transmission towers. Though the information is hard-coded, the interactive functions allowing
the user to add and edit the data will be implemented in the next stage.

PL_RenderGrid Panel

The RenderGrid panel shows the locations of transmission towers and power lines in the
image. The red rectangle boundary shows the displaying area in the main right panel.

PL_FilterSlide Panel

This panel has an interactive function to change the threshold values of NDVI. By drag-
ging the mouse close to the black diamond in the NDVI slide bar, the threshold value is updated.
The following images show the cases using NDVI=0.03 and NDVI=0.12. The user can investi-
gate the healthy vegetation area by sliding the bar. In this test case, a tree in the middle inside the
envelope is considered as a healthy tree as shown in Figure 6.10.

 42

Figure 6.9 Results of the case with a threshold value of NDVI as 0.03

 43

Figure 6.10 Results of the case with a threshold value of NDVI as 0.12

 44

7.0 Digital Surface Model: Pre-Stage 2

7.1 The digital surface model generated in ERDAS IMAGNE

Shown here is the process and results of the first trial of generating a DSM (Digital Sur-
face Model), using 1-meter IKONS stereo images. This is to estimate the quality of DSM using
1-meter 4-bands 8-bits color Epipolar stereo images downloaded from [4]. The stereo images are
loaded in the software package for photogrammetry, ERDAS IMAGINE [23]. In order to match
the images, additional X, Y, and Z values are required. The XY data were obtained from Google
Earth. By using the X-Y (latitude and longitude) data from Google Earth, the Z (altitude) is ob-
tained from the elevation data in USGS. The package can generate the height data as a TIF im-
age. Figure 7.1 shows a typical result.

Once the height data is generated, it can be visualized in the regular GIS package such as
ArcGIS. The image does not have the regular 8 bit values between 0 and 255, but the height val-
ues between –28 and 78, in this case. Figures 7.2 and 7.3 show the visualization.

7.2 Illustration of vegetation extraction

Figures 7.4 and 7.5 illustrate the process of the extraction of vegetation. The regions cir-
cled are trees that are identified spectrally and rendered to a three dimensional view in Figure
7.5.

 45

Figure 7.1 A DSM model using IKONOS data

 46

Figure 7.2 A visualization in a conventional GIS package, ArcGIS

Figure 7.3 Visualization in a conventional GIS package, ArcGIS

 47

Figure 7.4 Results of extracting vegetation using NDVI data

 48

Figure 7.5 3D views of DSM with NDVI data

The more accurate the X-Y-Z coordinates used, the more accurate the DSM data which is gener-
ated.

 49

8.0 Tool Implementation: Stage 2 for DEM data

8.1 Introduction

 This section shows several techniques used in implementing the tool in Java for Stage 2
described in Chapter 4.11. In this stage, the goal is to develop a tool utilizing the following func-
tions:

• Loading a pair of stereo images
• Getting matrices surrounding a pixel in the first image of the stereo pair
• Calculating a cross-correlation value between matrices of each pixel in the first and

second images
• Find the maximum cross-correlation point for a pixel in the first image from a list of

pixels of a corresponding horizontal line in the second image
• Calculating the distance between each pixel in the first image and the position with

the maximum cross-correlation position in the second image
• Generating and saving a DEM image file with a set of the distance values for each

pixel

The functions are explained in the following sections.

8.2 Packages and classes

 The main class PL_StereoTest class is developed to generate a DEM image file in the
same package, “pserc,” as the package in Stage 1. Once a PL_StereoTest object is initialized, a
DEM file is automatically saved as a TIFF formatted image file with 16-bit float values. The fol-
lowing are the global variables used in the class.

 Container p; // Container of Main Frame
 PlanarImage pi, pi2; // Stereo pair images
 Raster inputRaster, inputRaster2; // Raster data for stereo pair images
 int imageWidth, imageHeight; // Image size
 int maxTileX, maxTileY; // X and Y Tile maximum indices
 RenderedOp op; // Output image
 int filterSize=4; // filterSize 4 = 9x9 matrix for calculate correlation
 int hightOffset=-45; // search left end (45 pixels)
 int hightOffset2=-25; // search right end (25 pixels)
 String outputFilename; // Output file name

Figure 8.1 Java code of global variable in PL_StereoTest class

8.3 Loading a stereo pair of images

Two images are required to be loaded as a PlanarImage object. The raster data is also extracted
from the file as a global variable to save the calculation time.

 50

//*** Load stereo images and set their size and raster data
 private void loadImage(){
 pi = JAI.create("fileload", "0000010000.tif"); // load the first image of stereo pair
 pi2= JAI.create("fileload", "0010000000.tif"); // load the seconf image of stereo pair
 outputFilename="dem9x9offset20_2007_08_14.tif"; // Set the output DEM file name
 imageWidth=pi.getWidth(); // Set the image width
 imageHeight=pi.getHeight(); // set the image height
 inputRaster = pi.getData(); // set the raster data of first image
 inputRaster2 = pi2.getData(); // set the raster data of second image
 }

Figure 8.2 Java Code for loading a stereo pair of images

8.4 Getting matrices surrounding a pixel in the first image of a stereo pair

The functions explained in Sections 8.4, 8.5, and 8.6 are used in the main constructor
function explained in Section 8.7. The getMatrix is a function to extract the pixel values sur-
rounding a pixel at a position of (X, Y) and return the values as a matrix of an integer array. A 9
x 9 matrix is used to generate Dem images in this project.

// *** Local function to get a set of pixel values surrounding (xpos, ypos) pixels as a matrix
 private int[] getMatrix(int xPos, int yPos, int imageID){
 int filterMatrix=filterSize*2+1; // Matrix size
 int[] matrix=new int[filterMatrix*filterMatrix]; // Matrix values
 int index=0;
 // for each pixel position repeating matrix such as 81 times for 9x9 and 25 times for 5x5 matrix
 for(int i=yPos-filterSize; i<=(yPos+filterSize); i++){
 for (int j = xPos - filterSize; j <= (xPos + filterSize); j++) {
 if(i < 0 || i>=imageHeight || j<0 || j>=imageWidth) matrix[index]=0;
 else if(imageID==0) matrix[index]=inputRaster.getSample(j, i, 0); // get the pixel value at (j, i) in the first image
 else if(imageID==1) matrix[index]=inputRaster2.getSample(j, i, 0); // get the pixel value at (j, i) in the second
image
 index++;
 }
 }
 return matrix;
 }

Figure 8.3 Java Code for making a matrix surrounding a pixel

8.5 Calculating a cross-correlation value

The main process of stereo matching is to calculate the cross-correlation between two
matrices. The cross-correlation, C, is calculated as,

)*/()*),(*),(()),(),,((212122211222111 OOUUjiVjiVjiIjiIC i∑ −= ,

 :)),(),,((222111 jiIjiIC The cross correlation value of the pixel position),(11 ji in the first image,

1I , and the pixel position),(22 ji in the second image, 2I
),(kkk jiV : The Template matrix around the position of),(kk ji in the first kI

kU : The mean value of template matrix),(kkk jiV

kO : The standard deviation of template matrix),(kkk jiV

 51

// A local function to get Cross-correlation of _a anb _b matrices
 // This is called by the get_max_corrlation_xposition function
 private float get_corrlation(int[] _a, int[] _b){
 // C((i1, j1), (i2, j2))= {V1(i1, j1)*V2(i2, j2) - u1*u2)/(o1*o2)
 // V1 (i1, j1) = template matrix surrounding of pixel position (i1, j1)
 // u1, u2 = mean of the template of V1 and V2
 // o1, o2 = root mean sqaure
 int length=_a.length; // The length of matrix such as 81 for 9x9 matrix
 float _a_mean=0.0f; float _b_mean=0.0f; // The mean value in each matrix
 float _a_SD=0.0f; float _b_SD=0.0f; // The standard deviation value in each matrix
 float correlation=0.0f; // correlation value

 // calculate the mean value for each matrix
 for(int i=0; i<length; i++){
 _a_mean += (float)_a[i];
 _b_mean += (float)_b[i];}
 _a_mean = _a_mean/length;
 _b_mean = _b_mean/length;

 // calculate the SD and scalar product
 for(int i=0; i<length; i++){
 _a_SD += (_a[i] - _a_mean) *(_a[i] - _a_mean);
 _b_SD += (_b[i] - _b_mean) *(_b[i] - _b_mean);
 correlation += (_a[i] - _a_mean) * (_b[i] - _b_mean);
 }
 // calculate the cross-correlation
 if(_a_SD*_b_SD == 0) correlation =0.0f;
 else correlation =(float) (correlation/Math.sqrt(_a_SD*_b_SD));
 return correlation;
 }

Figure 8.4 Java Code for getting a cross-correlation value

8.6 Find the maximum cross-correlation point

For each pixel in the first image, the position with the maximum cross-correlation among
a set of positions on the corresponding line in the second image is calculated. The stereo pair of
images has an epi-polar line at the same horizontal line position in each image. For example, an
epi-polar line in the third row of the first image occurred in the same place in the second image.
Therefore, it is sufficient to calculate the cross-correlation values of all points of one line in the
second image and find a point with the maximum value. The real position with a maximum
cross-correlation value is refined by using the cross-correlation values of neighbor pixels as:

) point)C(max *2-point) C(previous point)(C(next *2
point) C(previous-point)C(next -point)max (position) real(

+
= pp ,

where p(real position) is the position with a real number, p(max point) is the position with an in-
teger number, C(max point) is the maximum cross-correlation value, C(next point) is the cross-
correlation value of the next point, and C(previous point) is the value of the previous point. For
example, when the maximum cross-correlation point is x = 100, the next and previous points are
x = 101 and x = 99, respectively.

 52

 Once the real position with the maximum cross-correlation value in the second image is
calculated, the distance between the position and the original point in the first image is returned
because the height of the position is relative to the distance in stereo matching.

// A local function to get maximum corrlation at (xPox, yPos) pixel of a image
 private float get_max_corrlation_xposition(int xPos, int yPos){
 int[] V1=getMatrix(xPos, yPos, 0); // Get a matrix around (xPos, yPos)
 boolean allZero=true; // flag for no-matching case
 for(int i=0; i<V1.length; i++){ // check if the values in matrix is all 0s
 if(V1[i] !=0) allZero=false;
 }
 if(allZero) return 0.0f; // If all values in Matrix =0, then return 0.
 float pre_correlation = 0.0f; // Previous orrelation value
 float nxt_correlation = 0.0f; // Next Correlation value
 float max_correlation = 0.0f; // Maximum correlation value during the serach
 float current_correlation =0.0f; // Current correlation value for xPos
 int max_index=0;
 for(int i=xPos+hightOffset; i<xPos+hightOffset2 ; i++){
 if(i<0 || i>=imageWidth) continue;

 int[] V2=getMatrix(i, yPos, 1); //Get a matrix of X=i position from the second image
 float correlation = get_corrlation(V1, V2); // *** Call get_corrlation value of V1 and V2 matrices

 // Update the curren, next, previous corrlation values
 if(correlation > max_correlation){
 pre_correlation = current_correlation;
 max_correlation = correlation;
 max_index = i;
 if(i==(imageWidth-1)) nxt_correlation =0.0f;
 }
 else if(i==(max_index+1)) nxt_correlation = correlation;
 current_correlation = correlation;
 }
 // calculate the real position (not integer) using the previous and next correlation value
 float sub_pos = (hightOffset + hightOffset2)/2;
 if((2.0f*(pre_correlation + nxt_correlation - 2.0*max_correlation))==0){}
 else sub_pos = ((float)max_index) - (nxt_correlation - pre_correlation)/(float)(2.0f*(pre_correlation + nxt_correlation -
2.0*max_correlation));
 return sub_pos-(float)xPos;
 }

Figure 8.5 Java Code for getting the position with the maximum cross-correlation value

The following is a part of the main function to save the distances, between the position
with the maximum cross-correlation point in the second image and the corresponding point in the
first image, as a TIFF image files. In order to reduce the calculation time, the tile size is set as
128 x 128 pixels. The distance value is divided by the maximum distance so that the pixel value
is saved as a 16 bit floating point value in the range of 0.0 to 1.0. Figure 8.7 shows the DEM im-
age file calculated in this stage. The distance is represented as the gray level in the image. For
example, the lighter pixels signify higher elevations or taller objects. The saved image will be
used in the next step as DEM data.

 53

// For each tiled image
 for(int tj=tiledImage.getMinTileY(); tj<tiledImage.getNumYTiles(); tj++)
 for(int ti=tiledImage.getMinTileX(); ti<tiledImage.getNumXTiles(); ti++){

 float[] imageData=new float[128*128]; // keep the distanct to the point with maximum correlation
 float maxPos = hightOffset2; // Search right limit for the maximum correlation point
 float minPos = hightOffset; // Search left limit for the maximum correlation point
 int count = 0;
 for (int j = 0; j < 128; j++) { // Image is tiled as 128x128 pixels
 for (int i = 0; i < 128; i++) {
 int xIndex = tiledImage.tileXToX(ti)+i; // X potioin in original image
 int yIndex = tiledImage.tileYToY(tj)+j; // Y position in original image
 float[] pos = new float[1]; // Local variable to save the distanct to the point with maximum correlation

 // *** MAIN FUNCTION to calcualte MAX-correlation
 pos[0] = (float) get_max_corrlation_xposition(xIndex, yIndex);
 if (maxPos < pos[0]) pos[0] = maxPos; // Set minimum posiiton for calcuaiton error
 if (minPos > pos[0]) pos[0] = minPos; // Set maximum position for calculation error
 imageData[count] = (float) ((pos[0] - minPos) / (maxPos - minPos)); // distance to maximum correlation point
 count++;
 }
 }
 // Save the array data of distance to maximum correlation points in Output image
 javax.media.jai.DataBufferFloat dbuffer = new javax.media.jai.DataBufferFloat(imageData, 128 * 128);
 Raster raster = RasterFactory.createWritableRaster(sampleModel, dbuffer, Point(128*ti, 128*tj));
 tiledImage.setData(raster);
 }
 JAI.create("filestore", tiledImage, "floatpattern.tif", "TIFF"); // Save the output image as TIFF file
 }

Figure 8.6 The Java Code for calculating and saving DEM image files

Figure 8.7 A DEM image

 54

9.0 Tool Implementation: Stage3 Integration

9.1 Introduction

 This section shows the several techniques used in implementing the tool in Java for Stage
3 described in Chapter 4.11. The goal is to develop a tool utilizing the following functions:

• Load the multi-spectrum image and DEM image file
• Set the geographical information using reference points
• Set the location of transmission towers and lines
• Extract healthy vegetation pixels with a value more than the NDVI threshold
• Label the regions and extract the boundary polygons
• Get the tree locations
• Visualize the DEM data with two cross-sections

Each function is explained in Sections 9.3 through 9.9, respectively.

9.2 Packages and classes

The all Java classes are implemented in a package named “pserc.” The following is the
list of classes developed for Stage 3.

• PL_Output
• PL_OutputControlPanel
• PL_OutputHistograph

PL_Ouput is a main window frame class, and it has the main function to execute this tool. The
frame has two components, the PL_OutputControlPanel and the PL_OutputHistograph as shown
in Figure 9.1.

PL_OutputControlPanel is the panel to allow the user to control several input data. There are 4
sub panels: the NDVI-panel to interact with the NDVI threshold value, the Geo-panel to show
the reference points for geographical setting, the tower-panel to show the latitude, longitude, and
altitude data of transmission towers, and the tree-panel to show the list of trees with information
of location and distance to transmission line.

PL_OutputHistograph is a main image panel to show NDVI data and DEM data. It has the func-
tions to label the regions with healthy NDVI values and generate the polygon and boundary box
from each region.

 55

Figure 9.1 A Screen Shot of the PL_Output Frame

9.3 Load the multi spectrum image and DEM image file

The first step is to load the multi spectrum image and DEM image. They are the satellite
images of IKONOS provided by a company, GEOEYE. The process to load the multi spectrum
image is the same as the one developed in Stage 1. The DEM image file generated by the pro-
gram of Stage 2 is loaded. The setImage() in the PL_OutputHistograph is the function .

 // Sub function called by Constructor to load images
 public void setImage(){
 origImage =JAI.create("fileload", "color4.tif"); // load color image for NDVI image processing
 demImage= JAI.create("fileload", "floatpattern.tif"); // load DEM image for showing cross-section
 panX =0; panY =0; // Set the pan value as (0, 0)
 atx = AffineTransform.getTranslateInstance(0.0, 0.0); // Set the default Translate materix
 RenderedOp op = makeTiledImage(origImage); // Call this makeTiledImage function for making tiled image
 demRaster=demImage.getData(); // set DEM raster data
 displayImage = op.createInstance(); // create a display image copied from original image
 sampleModel = displayImage.getSampleModel(); // assign the smaple model from the image
 colorModel = displayImage.getColorModel(); // assign the color model of the image
 getTileInfo(displayImage); // get tile information for display image
 fireTilePropertyChange(); // change the properties of tile
 imageDrawn = false; // image drawn is set as false in default
 }

Figure 9.2 Java Code for loading the multi-spectrum image and DEM image

 56

9.4 Setting the geographical information using reference points

In this stage, the reference points to set up the geographical information are manually
specified because we could not get the data. By using the commercial GPS device and Google
Earth, the latitude and longitude was measured as described in Appendix B. Because the images
used in this stage did not have proper orientation, a new constructor function was added to the
PL_Geo class,

PL_Geo geo = new PL_Geo(lat0, lon0, x0, y0, lat1, lon1, x1, y1, lat2, lon2, x2, y2);

The PL_Geo’s constructor needs 12 parameters of 3 reference points to initialize an object. The
“lat0” and “lon0” are the latitude and the longitude in the world coordinate, and the “x0” and
“y0” are the x and y position of the first reference point in the image. The parameters with the
index “1” are for the second reference point, and those with index “2” are for the last reference
point. The geographical coordinates are extracted from Google Earth. The conversion from the
XY coordinate in the image to the geographical coordinate is implemented using the regular al-
gebra defined as below.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

10

10

10

10

longitudelongitude
latitudelatitude

YY
XX

dc
ba

The 2 x 2 linear transformation matrix is defined in the “createGeoPanel()” function of the
PL_OutputControlPanel using the following reference points:

Table 9.1 Information of three reference points in image
 Latitude Longitude X Y
Point 0 32º45’32.10¨ 117 º 12’06.42” 46 154
Point 1 32º45’52.01” 117 º 11’43.17” 778 606
Point 2 32º45’30.59” 117 º 11’48.72” 95 607

The latitude and longitude are measured in degrees, minutes, and sounds defined in the
“createGeoPanel() function of PL_OutputControlPanel. The X and Y values are the position of
the first image of the stereo pair, and they are defined in the constructor function of
PL_OutptuHistograph to allow the user to change and update the position after executing the
program.

9.5 Set the location of transmission towers and lines

In Stage3, the geographical coordinates of transmission tower locations are defined by
using Google Earth and a GPS device. The following are the latitude, longitude, and altitude for
3 transmission towers.

 57

Table 9.2 Location of three transmission towers
 Latitude (Degree) Longitude (Degree) Altitude (feet)
Tower 0 32.75928019950938 117.19934737424919 24.0
Tower 1 32.76058333333333 117.19897222222224 10.0
Tower 2 32.76355686675233 117.19828677534942 24.0

The information is set in the “createTowerPanel()” function of the PL_OutputControlPanel.

9.6 Extract healthy vegetation pixels with value more than the NDVI threshold

The next step is to extract the healthy vegetation pixels whose NDVI value is more than
the NDVI threshold defined in the slider component, NDVISlider, in the
PL_OutputControlPanel. The NDVI values are calculated using the same formula defined in
Section 5.5. The healthy pixels are displayed in white. The process is implemented in the paint-
Components() function in PL_OutputHistograph.

9.7 Labeling and Boundary Searching

The pixels with a value more than the NDVI threshold were painted in white, as ex-
plained in the previous section. In order to show a list of regions (not a list of pixels) with
healthy NDVI values, it is required to make a region from adjacent pixels. This is called “label-
ing” in image processing, and it is a process to assign a unique index for each region with adja-
cent pixels from binary data (0s and 1s). The following is the Java code to implement the label-
ing algorithm.

 58

 // sub function called by paintComponent function to segment the healthy pixels with unique indices
 // Fij[] = 1 or 0, _w= image width, _h=image height, (_ti, _tj) index of tile
 private void createRegion8(int[] Fij, int _w, int _h, int _ti, int _tj){

 for(int i=0; i<_h; i++){ // for each pixel
 for(int j=0; j<_w; j++){

 if(Fij[i*_w+j]==0){} // checking if 0 or 1
 else {
 int[] lp=new int[4]; // create int[4]
 if(i-1<0){ lp[0]=0; lp[1]=0; lp[2]=0;} // if it is out of image
 if(j-1<0){ lp[0]=0; lp[3]=0;}
 if(j+1>_w){lp[2]=0;}
 lp[0]=Fij[(i-1)*_w+(j-1)]; // X X X X X
 lp[1]=Fij[(i-1)*_w+j]; // X lp[0] lp[1] lp[2] X
 lp[2]=Fij[(i-1)*_w+(j+1)]; // X lp[3] (j,i) X X
 lp[3]=Fij[i*_w+(j-1)]; // X X X X X
 int L1=0; int L2=0; // labels for search conditions

 //*** Get the indices of L1 and L2 (L1<L2)
 //except if L1=L2=0, if L2=0, keep the L1=ID, L2=0.
 for(int p=0; p<4; p++){ //*** Keep the indices L1 (smallar ID) L2 (bigger ID)
 if(lp[p]!=0){
 if(L1==0){ L1=lp[p];} // L1 is changed from 0 to lp[p] for first hit
 else if(L2==0 && L1==lp[p]){}// for searching in the same ID area
 else if(L2==0 && L1>lp[p]){ // for second hit but order is wrong
 L2=L1;
 L1=lp[p];
 }
 else if(L2==0 && L1<lp[p]){L2=lp[p];} // for second hit
 else{// L2 !=0 && L1!=0
 }
 }
 }
 //*** Checking Condition of prePixels
 if(L1==0 && L2==0){ // Fij[j,i] is the first point for a new region
 lamda++;
 if(lamda<maxLamda){ //lamda=0~499
 tempT[lamda]=lamda; // lamda = regionID is assigned to tempT and Fij
 Fij[i*_w+j]=lamda;
 }
 else{ // in the case for updating the array space
 maxLamda+=500;
 int[] tempTT=new int[maxLamda]; // expand the array space
 System.arraycopy(tempT,0,tempTT,0,lamda); // copy the array contents
 tempTT[lamda]=lamda;
 tempT=tempTT;
 Fij[i*_w+j]=lamda;
 }
 }
 else if(L2==0&& L1!=0){ // searching an existing region
 Fij[i*_w+j]=L1;
 }
 else { // Two areas(L1!=0 && L2!=0) are existing in the lp[]
 Fij[i*_w+j]=L1; // change the index of Fij from 1 to L1
 for(int r=0; r<=lamda; r++){
 if(tempT[r]==L2) tempT[r]=L1;
 }
 }

 }
 }
 }// end of all pixels

 // seach again to get the starting point for each region
 for(int i=0; i<_h; i++){
 for(int j=0; j<_w; j++){
 if(Fij[i*_w+j]>0){ // Hit a region
 int tempID=Fij[i*_w+j];
 Fij[i*_w+j]=tempT[tempID]; // Assign the regionID to Fij
 Integer segIDInte=new Integer(tempT[tempID]);
 if(!idV.contains(segIDInte)) {
 idV.addElement(segIDInte); // add IDs to the list
 getSegPolygon(Fij, j, i, _ti, _tj); // call sub function to extract polygon (or boundary box)
 }

Figure 9.3 Java Code for labeling the healthy vegetation regions

 59

After labeling the regions with healthy vegetation, it is necessary to define the boundaries
of the labeled regions. The boundaries of each region are approximated by a polygon. These po-
lygons are extracted using the technique of boundary searching. There are mainly three kinds of
boundary searching, which are edge-based, corner-based, and pixel-based searching. This pro-
gram applied corner-based searching because the searching algorithm can determine the bound-
ary correctly with only one way tracking. The other two algorithms need both clockwise and
counterclockwise tracking. Corner-based searching requires preparing 16 conditions of 2 x 2 bi-
nary pixels beforehand. Each condition has one tracking direction among top, bottom, right, and
left. The conditions and their tracking directions are shown in Figure 9.2.

The algorithm begins searching from the start point and defines the correct direction by
checking which condition is matched among the 16 cases described below. If the direction is
changed, the point is added to the list of the boundary polygon. If the searching point comes back
to the start point, the searching is stopped. A polygon extracted from each region is saved in a
Vector object as a boundary box.

Figure 9.4 Conditions of 2 x 2 pixels and their searching directions

 60

// sub function called by createRegion8() function to create a polygon from pixel-region
 // Fij[] = indices of regions. (_x,_y)=staring point, (_ti,_tj)= tile indices
 public void getSegPolygon(int[] Fij, int _x, int _y, int _ti, int _tj){
 Polygon p=new Polygon(); // output polygon for each region
 int _w=256; // tiled image has 256x256 pixels
 int j=_x; int i=_y; // (j, i) is position of starting
 int ID=Fij[_y*_w+_x]; // index of region in Fij[]
 boolean comeback=false; // used to check if the searching finished
 int direction = 0; // direction of searching: 0 (right), 1(up), 2(left), 3(down)
 int count=0; // keep the counts to avoid infinite loop

 while(!comeback && count<100){ // X X X X X X X X
 count++; // X X X (LT) (RT) X X X
 int LT = 0;int RT = 0;int LB = 0; int RB = 0; // X X X (LB) (RB) X X X
 // get the values at the position of LT(left top), RT (right top), LB (left bottom), RB (right bottom)
 if (j - 1 >= 0 && i - 1 >= 0) LT = Fij[(i - 1) * _w + j - 1];
 if (j <= _w && i - 1 >= 0) RT = Fij[(i - 1) * _w + j];
 if (j - 1 >= 0 && i < _w) LB = Fij[i * _w + j - 1];
 if (j <= _w && i < _w) RB = Fij[i * _w + j];

 if (LT != ID && RT ==ID && LB !=ID && RB !=ID) { //case 1: go right
 p.addPoint(_ti*_w+j, _tj*_w+i); // X O
 direction=0; // X X
 j++;
 }
 else if (LT != ID && RT != ID && LB != ID && RB == ID) { //case 2: go down
 p.addPoint(_ti*_w+j, _tj*_w+i); // X X
 direction=3; // X O
 i++;
 }
 else if (LT != ID && RT == ID && LB != ID && RB == ID) { //case 3: go down
 direction = 3; // X O
 i++; // X O
 }
 else if (LT != ID && RT != ID && LB == ID && RB != ID) { // case 4: go left
 p.addPoint(_ti*_w+j, _tj*_w+i); // X X
 direction = 2; // O X
 j--;
 }
 else if(LT!=ID && RT==ID && LB==ID && RB!=ID){// case 5 : go right if the pre-direction is up
 if(direction == 1){ // X O
 p.addPoint(_ti*_w+j, _tj*_w+i); // O X
 direction=0;
 j++;
 }
 else if(direction == 3){ // go left if the pre-direciton is left
 p.addPoint(_ti*_w+j, _tj*_w+i);
 direction=2;
 j--;
 }
 else{System.out.println("*** GetLInkList has case 5 with error.");}
 }

 else if (LT != ID && RT != ID && LB == ID && RB == ID) { //case 6: go left
 direction = 2; // X X
 j--; // O O
 }
 else if (LT != ID && RT == ID && LB == ID && RB == ID) { //case 7: go left
 p.addPoint(_ti * _w + j, _tj * _w + i);
 direction = 2; // X O
 j--; // O O
 }
 else if (LT == ID && RT != ID && LB != ID && RB != ID) { //case 8 : go top
 p.addPoint(_ti * _w + j, _tj * _w + i);
 direction = 1; // O X
 i--; // X X
 }
 else if (LT == ID && RT == ID && LB != ID && RB != ID) { //case 9 : go right
 direction = 0; // O O
 j++; // X X
 }
 else if (LT == ID && RT != ID && LB != ID && RB == ID) { //case 10 : go down if pre is right
 if (direction == 0) { // O X
 p.addPoint(_ti * _w + j, _tj * _w + i); // X O
 direction = 3;
 i++;
 }
 else if (direction == 2) { // go top if pre is left

 61

 p.addPoint(_ti * _w + j, _tj * _w + i);
 direction = 1;
 i--;
 }
 else {
 System.out.println("*** GetLInkList has case 5 with error.");
 }
 }
 else if (LT == ID && RT == ID && LB != ID && RB == ID) { //case 11 : go down
 p.addPoint(_ti * _w + j, _tj * _w + i);
 direction = 3; // O O
 i++; // X O
 }
 else if (LT == ID && RT != ID && LB == ID && RB != ID) { //case 12: go up
 direction = 1; // O X
 i--; // O X
 }
 else if (LT == ID && RT == ID && LB == ID && RB != ID) { //case 13; go right
 p.addPoint(_ti * _w + j, _tj * _w + i);
 direction = 0; // O O
 j++; // O X
 }
 else if (LT == ID && RT != ID && LB == ID && RB == ID) { //case 14: go up
 p.addPoint(_ti * _w + j, _tj * _w + i);
 direction = 1; // O X
 i--; // O O
 }
 if (i == _y && j == _x) comeback = true; // check if the searching is back to the original position
 }// end of while-loop
 if(p.npoints>1) { // If there are points more than 1, then add the boundary box to ipV vector.
 Rectangle r=(Rectangle)p.getBounds();
 ipV.addElement(r);
 }
 }

Figure 9.5 Java code for boundary searching

Figure 9.6 Healthy vegetation and boundary box

9.8 Obtaining tree locations

The locations of tree are posted in the text area of the treePanel of the
PL_OutputControlPanel. As explained in the precious section, each region of healthy vegetation
is converted to a boundary polygon and saved as a boundary box in a Java Vector object. Figure
9.6 shows the healthy vegetation and the boundary box in white and red respectively. The loca-
tion is define as the center of the boundary box, and the geographical coordinate is calculated

 62

from the XY position in the image by using the “getLAT(X, Y)” function in PL_Geo. Table 9.3
shows the results of 5 trees among 95 total in the case of the NDVI threshold = 0.20.

9.9 Visualizing the DEM data with a two cross-section

The final step is to visualize the output. The paintComponent function in the
PL_OutputHistograph is the function to draw the 6 components: 1) pixels, 2) ROI and section
lines, 3) cross-sections, 4) transmission lines and towers, 5) boundary boxes of healthy trees, and
6) reference points as shown in Figure 9.7.

Table 9.3 Extracted trees
ID Latitude Longitude Distance to Line
0 32.759251042034705 117.19985426770678 25.782452
1 32.75928400942072 117.1998345690552 27.645329
2 32.75953096171785 117.19973683669522 17.101068
3 32.75918758139942 117.19980425768894 23.711155
4 32.759336868606894 117.1997209176232 27.473486
5 32.759566403240605 117.19962773072264 16.185623
…..

Figure 9.7 Drawing components

1) Pixels: As explained in Section 9.6, the NDVI value is replaced in the red channel the

same as Stage 1.

 63

for(tj = topIndex; tj <= bottomIndex; tj++) { // loop for each tile
 for (ti = leftIndex; ti <= rightIndex; ti++) {

 Raster raster = displayImage.getTile(ti, tj); // Get the raster information
 int width2 = raster.getWidth(); // get raster's width
 int height2 = raster.getHeight(); // get raster's height
 int bands = raster.getNumBands(); // get raster's band number (Supposed 4)
 int[] pixels = new int[width2 * height2 * bands]; // pixel information of tile image
 byte[] data = new byte[width2 * height2 * 3]; // target pixel data
 int[] Fij=new int[width2* height2]; // region ID data
 tempT[0]=0; tempT[1]=0; // tempT is used for segmentation of selected pixels
 raster.getPixels(ti * 256, tj * 256, width2, height2, pixels); // 256 x 256 is the tile size FIXED

 int index = 0;
 for (int h = 0; h < height2; h++) // For each pixel in a tile
 for (int w = 0; w < width2; w++) {

 int red = pixels[index * 4 + 0]; // Get Red band pixel info
 int inf = pixels[index * 4 + 3]; // Get Infrared band pixel info
 float ndvi = (float) (((float) (inf - red)) / ((float) (red + inf))); // Cacluate NDVI
 byte ndviByte=(byte)((ndvi + 1.0) * 100.0); // convet NDVI rane from -1.0~1.0 to 0~200
 data[index * 3 + 2] = (byte) ndviByte; //set the NDVI in red band
 data[index * 3 + 1] = (byte) pixels[index * 4 + 1]; //Set the original Green in green band
 data[index * 3 + 0] = (byte) pixels[index * 4 + 2]; //Set the original Blue in blue band
 int thres=slideValue; // get slide value defined in PL_OutputControlPanel

 // ** Get Healthy Pixels
 int xIndex = displayImage.tileXToX(ti)+w; // get the real position in a big origianl image
 int yIndex = displayImage.tileYToY(tj)+h; // get the real position in a big origianl image
 if(ndviByte>thres && Roi.contains(xIndex, yIndex)){
 Fij[index]=1; // If the pixel is inside ROI and more than NDVI theshold
 }
 index++;
 } // end for all pixels in a tile

 // cut less than 4 pixels
 int[] Fij2=new int[256*256]; // temporal int[] to convert the dat
 index=0;
 for (int h = 0; h < height2; h++)
 for (int w = 0; w < width2; w++) {
 if(Fij[index]>0 && // If the NDVI value is more than Thesdhold, the pixel is WIHTE.
 (w+1)<width2 && (w-1)>=0 && (h+1)<height2 && (h-1)>=0 &&
 Fij[(h+1)*width2+w]>0 &&
 Fij[h*width2+w-1]>0 && Fij[h*width2+w+1]>0 &&
 Fij[(h-1)*width2+w]>0){
 data[index * 3 + 2] = (byte) 255; //red
 data[index * 3 + 1] = (byte) 255; //green
 data[index * 3 + 0] = (byte) 255; //blue
 Fij2[index]=1;
 if(ti*256+w==mouseP.x){ // add the healthy pixel position of vertical cross-section
 int ypos=tj*256+h;
 ndvi380.add(new Integer(ypos));
 }
 if(tj*256+h==mouseP.y){ // add the healthy pixel position of horizontal cross-section
 int xpos=ti*256+w;
 ndvi360.add(new Integer(xpos));
 }
 }
 index++;
 }

 Fij=new int[256*256];
 for(int i=0; i<256*256; i++) Fij[i]=Fij2[i]; // swap the Fij and Fij2
 createRegion8(Fij, width2, height2, ti, tj); // *** Segmentation to put indices for each region

 // create a data buffer from data[] and draw the new tile image at the proper position
 DataBufferByte dbuffer = new DataBufferByte(data, width2 * height2 * 3);
 sampleModel = RasterFactory.createPixelInterleavedSampleModel(DataBuffer.TYPE_BYTE, width2, height2, 3);

 64

 colorModel = PlanarImage.createColorModel(sampleModel);
 WritableRaster wr = RasterFactory.createWritableRaster(sampleModel,dbuffer, new Point(0, 0));
 BufferedImage bi = new BufferedImage(colorModel, wr, colorModel.isAlphaPremultiplied(), null);
 int xInTile = displayImage.tileXToX(ti); // get X tile indices
 int yInTile = displayImage.tileYToY(tj); // get Y tile indices
 AffineTransform tx = AffineTransform.getTranslateInstance(xInTile +panX, yInTile + panY);
 g.drawRenderedImage(bi, tx);
 }
 }

Figure 9.8 Java code for drawing pixels

2) ROI and section lines: The boundary of ROI is drawn with a thick white line. The

section lines are defined from a mouse clicked point, and the horizontal and vertical
lines are drawn in red.

// Step2: *** Draw ROI and cross-section lines***
 if (Roi == null) return;
 AffineTransform tx = AffineTransform.getTranslateInstance(panX, panY);
 Shape shape = tx.createTransformedShape(Roi.getAsShape());
 g.setStroke(new BasicStroke(2)); //Set the stroke size as 2
 g.setPaint(new Color(255, 255, 255)); //Set as White
 g.draw(shape); // draw ROI
 g.setColor(Color.red); // set as Red
 g.drawLine(0, mouseP.y, 800, mouseP.y); // draw horizontal cross-section line
 g.drawLine(mouseP.x, 0, mouseP.x, 700); // draw vertical cross-section line

Figure 9.9 Java code for drawing ROI and section lines

3) Cross-sections: The horizontal cross-section is displayed at the bottom of the site im-

age, and the vertical cross-section is displayed at the right of the image. The sections
inside of ROI are drawn in a light gray, and the healthy vegetation points are dawn in
white. The outside of ROI is drawn in dark gray. These cross-sections are updated
always when the user clicks the different point in the image.

// Step3: *** Draw Cross-section ground***
 for(int i=0; i<700; i++){
 if(!Roi.contains(mouseP.x, i)) g.setColor(Color.gray); // out of ROI
 else if (ndvi380.contains(new Integer(i))) g.setColor(Color.white); // healthy NDVI
 else g.setColor(Color.lightGray); // inside ROI but not healthy
 g.drawLine(800, i, 800 + (int)(xdem[i]) , i); // draw a section line
 }
 for(int i=0; i<800; i++){
 if(!Roi.contains(i, mouseP.y)) g.setColor(Color.gray); // out of ROI
 else if (ndvi360.contains(new Integer(i))) g.setColor(Color.white); // healthy NDVI
 else g.setColor(Color.lightGray); // inside ROI but not healthy
 g.drawLine(i, 800, i, 800 - (int)ydem[i]); // draw an horizontal section
 }

Figure 9.10 Java code for drawing cross sections

4) Transmission towers and lines: The transmission towers are drawn as red lines on the

horizontal cross-section. The locations of towers are also visible when the check box
named “Show Tower” in PL_OutputControlPanel is on. The height of tower is
changed by sliding the bar named “SCALE Factor” in the PL_OutputControlPanel.

 65

Each transmission line is drawn between the tops of tower as a white line in the hori-
zontal cross-section.

// Step4: *** Transmission lines and towers***
 g.setColor(Color.red);
 g.setStroke(new BasicStroke(2));
 g.drawLine(tower0.x, 800-(int)towerZ0 , tower0.x, 800-(int)towerZ0-towerLength); // draw tower 0
 g.drawLine(tower1.x, 800-(int)towerZ1 , tower1.x, 800-(int)towerZ1-towerLength); // draw tower 1
 g.drawLine(tower2.x, 800-(int)towerZ2 , tower2.x, 800-(int)towerZ2-towerLength); // draw tower 2
 g.setColor(Color.white);
 g.setStroke(new BasicStroke(1));
 g.drawLine(tower0.x, 800-(int)towerZ0-towerLength , tower1.x, 800-(int)towerZ1-towerLength); // draw line be-
tween towe0 and 1
 g.drawLine(tower1.x, 800-(int)towerZ1-towerLength , tower2.x, 800-(int)towerZ2-towerLength); // draw line be-
tween tower1 and2
 if(PL_OutputControlPanel.showTower.isSelected()){
 g.setColor(Color.red); //set color as Red
 g.setStroke(new BasicStroke(2));
 g.fillRect(tower0.x - 5, tower0.y - 5, 10, 10); // draw tower 0 as 5x5 box
 g.drawString("Tower0", tower0.x, tower0.y);
 g.fillRect(tower1.x - 5, tower1.y - 5, 10, 10); // draw tower 1 as 5x5 box
 g.drawString("Tower1", tower1.x, tower1.y);
 g.fillRect(tower2.x - 5, tower2.y - 5, 10, 10); // draw tower 2 as 5x5 box
 g.drawString("Tower2", tower2.x, tower2.y);
 }

Figure 9.11 Java code for drawing transmission towers and lines

5) Boundary Boxes: The pixels greater than the NDVI threshold are painted in white. To

avoid the noise pixels, 4 neighbors filter is applied. The boundary boxes are displayed
in yellow.

// Step5: *** Draw boundary boxes of healthy trees ***
 g.setColor(Color.yellow); //set color as yellow
 g.setStroke(new BasicStroke(1)); //Set the stroke size as 2
 PL_OutputControlPanel.treeInfo.setText("ID \t"+"Latitude \t\t"+"Longitude \t\t"+"Distance to Power line \n");
 for(int i=0; i<ipV.size(); i++){ // for each region (polygon)
 Rectangle p=(Rectangle)ipV.elementAt(i); // extract boundary box from ipV vector object
 if(PL_OutputControlPanel.showTreeBox.isSelected())
 g.drawRect(p.x, p.y, p.width, p.height); // darw boundary boxes
 if(PL_OutputControlPanel.showTreeID.isSelected())
 g.drawString(""+i, p.x, p.y); // draw index numbers

 int tX=(p.x+p.width/2); // get center X of boundary box
 int tY=(p.y+p.height/2);// get genter Y of boundary box
 double[] pos=PL_Geo.getLAT(tX, tY); // convert (x, y) to (latitude, longitude)
 Point tempP =PL_Geo.getPixelPos(pos[0], pos[1]);

Figure 9.12 Java code for drawing the boundary box of healthy vegetation

6) Reference Points: The 3 reference points are displayed as a small yellow circle with

the names only when the check box named “Show Reference Points” is on in the
PL_OutputControlPanel.

 66

// Step6: *** Draw Referece points ***
 if(PL_OutputControlPanel.showRef.isSelected()){ // if checkbox is ON
 g.setColor(Color.yellow);
 g.fillOval(ref0.x-3, ref0.y-3, 6, 6); // draw reference 0
 g.drawString("Point0", ref0.x, ref0.y);
 g.fillOval(ref1.x-3, ref1.y-3, 6, 6); // draw reference 1
 g.drawString("Point1", ref1.x, ref1.y);
 g.fillOval(ref2.x-3, ref2.y-3, 6, 6); // draw reference 2
 g.drawString("Point2", ref2.x, ref2.y);
 }

Figure 9.13 Java code for drawing reference points

Figure 9.14 The PL OutputControlPane

 67

10.0 Tool Instruction: Visualization

10.1 Prerequisite files

This section shows the instructions for the program developed in Stage 3. The PL_Output
has the main function to execute the program.

This tool can be executed in any Java environment. However, there are four required files
to run it correctly. Two panchromatic epipolar stereo images, named as “000.tif” and “001.tif,”
are required.Correct operation needs a DEM image file and a multispectrum image with red,
green, blue, and infrared. The DEM image file should be named “floatpattern.tif,” and the mul-
tispectrum image should be named “color4.tif.” The “000.tif” and “001.tif” show the different
views because they are a stereo pair. The file, “color4.tif,” should have the same view as
“000.tif.” These four image files should be saved in the “PSerc” directory in the window system.

Figure 10.1 Prerequisite files

10.2 Geographical setting

In order to define the projection between the pixel (XY) coordinate and geographical (la-
titude and longitude) coordinate, the user should acquire the information of three locations in the
image before starting the program. The three locations should be ground true points. If the in-
formation is not available, the information of latitude and longitude is obtained by using Google
Earth. In this project, we used the program to obtain the information as shown in Table 9.1.
Theoretically, the three points should be selected near the different corners of the image.

 68

10.3 Tower locations

Table 9.2 presents the tower locations of the transmission line around San Diego

10.4 Running the program

Figure 10.2 shows the initial screen shot of the developed program. The stereo images
and multispectrum images are automatically set by reading the image files, which are saved in
the proper directory as described in Section 10.1. The three reference points are automatically
shown in the first block of the right panel. The default values of the NDVI threshold and scale
factor (explained in Sections 9.6 and 9.9) are set as 0.20 and 25, respectively, as shown in the
second block in the right panel. The information of the towers is shown in the third block of the
right panel.

Figure 10.2 The initial screen shot

10.5 Reference point visibility

This program has a function to hide and show the three (3) reference points by checking
the box named “Show reference points” in the right panel, as shown in Figure 10.3. Once the
checkbox is checked, three reference points are shown on the image. In the same block as the
checkbox, the latitude and longitude for each reference point are shown. For each point, the lati-
tude is shown in the first textbox and the longitude is shown in the second textbox. For example,
the latitude of the first reference point, “Point0,” is 32.75891666666666 degrees, and the longi-
tude is 117.20178333333331 degrees, as shown in Figure 10.3.

 69

Figure 10.3 Checkbox for visibility of reference points

10.6 Change the NDVI threshold

The second interface is on the NDVI threshold. The user can change the NDVI threshold
value by using the slider in the second block (see Figure 10.4). The healthy vegetation area will
be updated by changing the value. Figure 10.5 shows the outputs using four different NDVI thre-
shold values. The white pixels represent healthy vegetation points.

Figure 10.4 GUI of the NDVI threshold slider

 70

Figure 10.5 Screen shots of different NDVI threshold values: from top to bottom, a)

NDVI=0.1, b) NDVI=0.15, c)NDVI=0.2, and d) NDVI=0.25

10.7 Tower location visibility

The program has a function to hide or show the transmission towers by checking the box
named “Show Towers” in the third block, as shown in Figure 10.6. When the checkbox is on, all
of the transmission towers are shown as red squares on the image, as shown in Figure 10.6. Un-
der the checkbox, the information of each transmission tower is shown. The first textbox shows
the latitude degree of a tower’s location, the second shows the longitude degree, and the last one
shows the altitude measured by foot. For example, the latitude, longitude, and altitude are
32.75928019950938 degrees, 117.19934737424919 degrees, and 24.0 feet, respectively.

 71

Figure 10.6 Checkbox for visibility of transmission towers

10.8 Obtaining cross sections

When the program starts, an initial cross-section point is set as the center of the danger
zone. Two cross-section lines from the point are defined in the X and Y directions of the image
and drawn as red lines. The height of each pixel position on the cross-section line is shown in the
cross-section diagram (see Figure 10.7). The height data are from the digital elevation model
(DEM) image file. The cross-section diagram parallel to the X direction (horizontal cross-
section) is shown in the bottom of the image, and the one parallel to the Y direction (vertical
cross-section) is on the right side. This program allows the user to change the cross section point
by clicking any point in the image. When the user clicks a point in the image, the program col-
lects the data for the cross-section from the DEM image. Figure 10.8 shows cross-sections of
three different points.

In the cross-section diagram, the short vertical red lines are transmission towers, and the
white lines between them are transmission lines. The towers and lines are usually not on the sec-
tion line so that they are projected to the section plane. Each elevation is painted: in dark gray for
outside of the danger zone, in light gray for inside of the danger zone, and in white for healthy
vegetation areas inside of the danger zone, as shown in Figure 10.9

 72

Figure 10.7 Vertical and horizontal cross-sections

 73

Figure 10.8 Cross-sections of different points

Figure 10.9 Paint rules of the cross-section

10.9 Extracted trees (healthy vegetation sets)

When the image is updated in this program, the program recalculates the location of trees
(or healthy vegetation sets), and the list of trees within the location information and distance to
the transmission line is updated in the last block of the right panel (see Figure 10.10). Because
the text area is so large, Figure 10.11 shows only a partial list of the extracted trees. The user can
scroll the vertical and horizontal slide bars to look into the data. Table 10.1 shows the top 13
trees in the list. The textural information can be copied and pasted into the other applications.

 74

Figure 10.10 List of extracted trees

 75

Table 10.1 Part of extracted trees
ID Latitude Longitude Distance to Lines

0 32.759251042034705 117.19985426770678 21.128582
1 32.75928400942072 117.1998345690552 15.831722
2 32.75953096171785 117.19973683669522 16.415674
3 32.75918758139942 117.19980425768894 28.056217
4 32.759336868606894 117.1997209176232 26.379023
5 32.759566403240605 117.19962773072264 27.535236
6 32.7592622003266 117.1996072612092 18.496902
7 32.75929827272182 117.19955346662981 33.555576
8 32.75937975721643 117.19949891613452 14.917007
9 32.759457505829374 117.19942315017384 15.484547

10 32.75943572141182 117.19935116877471 15.484547
11 32.75932871661798 117.19931252240548 17.171558
12 32.75923663067426 117.19920341145091 35.778946

……..

In the block there are two checkboxes named “Show Tree IDS” and “Show Tree Box.” If
the “Show Tree IDS” is checked, the indices are shown in the image. The index is used in the list
of Table 10.1. If the “Show Tree Box” is checked, the boundary boxes of tree are drawn, as
shown in Figure 10.11. The right image shows the indices, the middle image shows the boundary
boxes, and the right image shows the indices and boundary boxes together.

Figure 10.11 Tree IDs and boundary boxes: a) right image, b) middle image,

and c) right image

10.10 Scale factor

In the same block as the NDVI threshold slider, there is another slider named “SCALE
Factor.” Because of the limited information on the transmission towers, it was difficult to get the
information of the towers’ heights. To support this case, the scale factor function is temporary
implemented. The user can compare the section height of each point by changing the factor ma-
nually. As shown in Figure 10.12, the height of transmission towers is increased by increasing
the scale factor from 20 to 40.

 76

Figure 10.12 Scale factor and tower height, from top to bottom: a) scale factor=20, b) scale

factor=25, c) scale factor = 30, and d) scale factor =40

 77

11.0 Case Studies and Consideration

11.1 A problem relating to obtaining a stereo pair of satellite images

GeoEye[45] is one of the biggest companies selling stereo pairs of INOKOS satellite im-
ages. They helped a lot on finding stereo pair images with transmission lines and towers. First,
they searched in Arizona, but there was no stereo pair with transmission towers and lines whose
detail information we had. Second, we looked into California using Google Earth and found one
site where the transmission towers and lines are recognizable though we did not have the detail
information on the towers. We decided to use the images because we had no other option. We
went to the site and measured the height of the towers. The details are attached in Appendix B.
The following sections explain the case studies of three different NDVI thresholds using the
same images.

11.2 Case 1: The NDVI threshold is set as 0.20

Figure 11.1 shows the result in the case of the NDVI threshold =0.20. The program ex-
tracted 95 trees (healthy vegetation sets) as shown in Table 11.1. The top 5 trees closest to the
transmission lines are highlighted in yellow in the table. By showing the indices of trees, the top
5 trees are circled in red (See Figure 11.2). By clicking the image and changing the cross-section
points, the elevation can be observed in the tool as shown in Figure 11.3.

Figure 11.1 Screen shot when the NDVI=0.2

 78

Table 11.1 Extracted tree list when the NDVI=0.2
ID Latitude Longitude Distance to Lines
0 32.759251042034705 117.19985426770678 40.78245
1 32.75928400942072 117.1998345690552 42.64533
2 32.75953096171785 117.19973683669522 32.101067
3 32.75918758139942 117.19980425768894 38.711155
4 32.759336868606894 117.1997209176232 42.473488
5 32.759566403240605 117.19962773072264 31.185623
6 32.75927090915831 117.19960498847946 47.045143
7 32.75929827272182 117.19955346662981 48.571705
8 32.759388466048144 117.1994966434048 26.227222
9 32.759457505829374 117.19942315017384 32.37095
10 32.75943572141182 117.19935116877471 32.37095
11 32.75932871661798 117.19931252240548 24.45303
12 32.75923663067426 117.19920341145091 54.78344
13 32.759354818436556 117.19915037776943 31.116964
14 32.759517156553315 117.19898596538566 30.95321
15 32.75920861156173 117.19904429546051 54.78344
16 32.75921668952098 117.1989867113376 36.429234
17 32.759505948908306 117.1989223189895 30.95321
18 32.75943441031378 117.19892989309457 33.009804
19 32.75907421852783 117.19890184449406 37.527306
20 32.76241358501446 117.1989845631576 34.17917
21 32.760715993703116 117.19948305684636 29.145893
22 32.760817394674454 117.19948988001751 32.63272
23 32.76228171547041 117.1990633577639 34.511993
24 32.761173825902176 117.19934138670577 41.379597
25 32.76127646394188 117.19930350621642 41.122395
26 32.76075890698922 117.19941638180457 24.293316
27 32.76086651797896 117.19935501312011 32.202618
28 32.761621081328684 117.1991913815622 53.909477
29 32.761638498992106 117.19918683610275 57.218025
30 32.760699182235605 117.19938758725212 34.350952
31 32.761617345447014 117.1991701660968 53.909477
32 32.761634763110436 117.19916562063737 57.218025
33 32.76114146471207 117.19926107030366 42.195026
34 32.76184874802156 117.19908758692895 45.383442
35 32.76233954760663 117.19892621813679 45.87314
36 32.761160119443865 117.19921182118372 41.379597
37 32.76112341617618 117.19921030436991 42.195026
38 32.761252180711026 117.1991656056914 41.122395
39 32.76094363571944 117.19922393576624 38.93526
40 32.76071223314489 117.1993065149341 30.106556
41 32.76152712744413 117.19907166287494 39.934822
42 32.76217468600001 117.1988693849478 34.756172
43 32.76190284427611 117.19892923183644 44.49052
44 32.76237001617934 117.19884060035933 36.57298
45 32.76132432550146 117.19905801653265 40.595135
46 32.76230531847569 117.19883529400198 50.505573
47 32.76239053885197 117.19880195897208 34.17917
48 32.762101279464645 117.19886635132018 41.77956
49 32.7620371879569 117.19876102990915 41.723053
50 32.76238804003867 117.1987360398462 35.1852
51 32.760666796368945 117.19915194440313 31.11355
52 32.762574030513825 117.19865421659425 36.89915
53 32.760980314310565 117.19907012613318 36.23942
54 32.76142943767791 117.1989307287223 40.198345
55 32.76145369623221 117.19891330280045 40.315865
56 32.762562822868816 117.19859057019809 36.89915
57 32.76238117447124 117.19859359386173 35.795574
58 32.76065993080151 117.19900949841868 30.620935
59 32.760837212444955 117.19892994789645 37.52764
60 32.76243963747992 117.1985117656278 36.6257
61 32.76117498894088 117.19883070370464 40.6934
62 32.762315845895124 117.19853297611121 35.651165
63 32.76214103838842 117.19852311931243 33.974323

 79

ID Latitude Longitude Distance to Lines
64 32.762529830806244 117.19845494240279 37.079998
65 32.760895044581176 117.19879280826933 36.99898
66 32.761137654800734 117.19877387549764 40.61773
67 32.7613622164844 117.1987041767922 39.41286
68 32.762400435398945 117.19844432968812 36.94704
69 32.76102691412522 117.19871401366302 42.34919
70 32.762530437002155 117.1983549273491 36.880646
71 32.76197991266348 117.19848750158883 41.723053
72 32.76250617844786 117.19837235327097 37.079998
73 32.76155005022384 117.19847763482608 50.72802
74 32.76216527226617 117.1983503669437 34.511993
75 32.76250678464376 117.19827233821728 36.953205
76 32.76101444473528 117.19853974448047 42.195026
77 32.76213414814443 117.19822534688109 34.511993
78 32.76249307818545 117.19814277269523 36.89915
79 32.76112018778419 117.19846776806332 40.6934
80 32.76163027297352 117.1983124615444 40.65263
81 32.76086763166455 117.19853367722524 36.32414
82 32.76075752186151 117.19852912678381 37.142754
83 32.76248560642211 117.19810034176446 36.89915
84 32.761971785351115 117.19823443281798 45.823933
85 32.76199791184625 117.19822761462882 36.9607
86 32.76198857214207 117.19817457596535 39.317696
87 32.762152172003766 117.19812078636797 54.404366
88 32.76098021560434 117.19844882034567 42.34919
89 32.7609186229099 117.19840941806054 40.984272
90 32.762052638973266 117.19812457092951 34.162834
91 32.76208747430011 117.19811548001063 34.275566
92 32.76321729634524 117.19884139114916 40.61274
93 32.763202959014464 117.19865651423392 39.785957
94 32.762599476783386 117.19828143411814 39.86619
95 32.76255030412577 117.1981056481218 38.642048

Figure 11.2 Top 5 trees closet to transmission lines in the extracted tree list

Figure 11.3 Cross-sections for the top five trees in the extracted tree list from left to right:

a) no. 8, b) no. 11, c) no. 21, and d) nos. 26 and 40

 80

11.3 Case 2: The NDVI threshold is set as 0.24

This section shows the result the the NDVI=0.24. Figure 11.4 shows the screen shot of
the case. The program extracts 37 trees as shown in Table 11.2. The index number is different
from the case in Section 11.2.

Figure 11.4 Screen shot when the NDVI = 0.24

 81

Table 11.2 Extracted tree list when the NDVI=0.24
ID Latitude Longitude Distance to Lines
0 32.75919255434946 117.19978076949384 36.501625
1 32.75928956389011 117.19955573935954 38.833603
2 32.759446298184365 117.19935950377769 29.71284
3 32.759354818436556 117.19915037776943 30.477798
4 32.759515288612484 117.19897535765297 29.598377
5 32.75922042540265 117.19900792680298 31.909351
6 32.75951652568085 117.19893065399248 29.598377
7 32.75941886059119 117.19894504628671 28.87087
8 32.76243536943201 117.19905654455674 33.693745
9 32.760740883129884 117.1995209423177 39.051643

10 32.76228171547041 117.1990633577639 37.382526
11 32.76240984913279 117.19896334769221 33.693745
12 32.76084910031554 117.19935955857956 35.025322
13 32.76126088954273 117.19916333296169 39.04084
14 32.76216784510913 117.19888226541022 38.00826
15 32.7613317972648 117.19910044746342 38.64876
16 32.760628225160424 117.19913981985663 39.16511
17 32.76256469080965 117.19860117793078 38.122734
18 32.7608477892175 117.19893828289942 40.24754
19 32.76243963747992 117.1985117656278 36.210712
20 32.76212735660667 117.19854888023725 35.645416
21 32.76089193957196 117.19882690419713 44.39688
22 32.7613622164844 117.1987041767922 39.89863
23 32.7621509842885 117.19847614292222 35.975994
24 32.76090001753121 117.19876932007422 42.838875
25 32.76092987990802 117.19878371735045 41.9205
26 32.76253914583387 117.19835265461938 41.42266
27 32.76092614402635 117.19876250188506 41.921906
28 32.76212543931272 117.19822761961082 37.036175
29 32.76111831984336 117.19845716033063 39.21911
30 32.76163587679603 117.19834428474249 38.45661
31 32.76163027297352 117.1983124615444 35.559334
32 32.76076623069322 117.19852685405408 38.287457
33 32.76196555065615 117.19814729822671 35.79366
34 32.76256714026984 117.19835644416291 42.380756
35 32.762582059119964 117.19828597957759 42.91972
36 32.762615026505976 117.19826628092602 43.02298
37 32.76255404000744 117.19812686358718 42.91972

11.4 Case 3: NDVI threshold is set as 0.15

 This section shows the result when the NDVI=0.15. Figure 11.5 shows the screen shot of
the case. The program extracts 104 trees as shown in Table 11.3.

 82

Figure 11.5 Screen shot when the NDVI=0.15

 83

Table 11.3 Extracted tree list when the NDVI=0.15
ID Latitude Longitude Distance to Lines
0 32.75926659175729 117.19983911451465 37.14668
1 32.75954961644965 117.19968758757528 28.99467
2 32.75919629023113 117.19980198495922 36.501625
3 32.7593859919114 117.1995860507258 30.971508
4 32.75924978028978 117.1997436449204 37.047302
5 32.759254753239816 117.19972015672529 37.047302
6 32.7592646991399 117.19967318033507 36.99273
7 32.7592379417723 117.19962468713105 37.047302
8 32.75963105159115 117.19932238418623 28.883392
9 32.75943572141182 117.19935116877471 29.71284
10 32.759339293390525 117.19932085740845 30.926754
11 32.75941020111259 117.19925797191019 30.04827
12 32.759312536022925 117.19927236420442 31.015814
13 32.759305064259586 117.19922993327364 31.015814
14 32.759497895625614 117.19913522955929 28.972927
15 32.75923663067426 117.19920341145091 37.94611
16 32.759354818436556 117.19915037776943 30.477798
17 32.7592117412475 117.19916552597958 38.833603
18 32.75896229013706 117.19919733921368 38.169918
19 32.759517156553315 117.19898596538566 29.517462
20 32.75921047950257 117.1990549031932 32.967175
21 32.759100369699524 117.19905035275177 37.34832
22 32.75920611274844 117.19897837633462 32.381893
23 32.759504080967474 117.1989117112568 29.598377
24 32.75944996003636 117.19891473990243 28.827662
25 32.759148255935656 117.19896018951486 37.121777
26 32.759305014906474 117.19891928037988 30.577312
27 32.75928572930221 117.19891321810664 30.796442
28 32.759597379303 117.19882079210399 29.08852
29 32.75906737763695 117.19891472495647 35.559578
30 32.762311577847214 117.19907775504014 41.152702
31 32.76239864148778 117.19889970129604 33.693745
32 32.76109794523007 117.19942776039915 40.448616
33 32.76115764530712 117.19930122850471 38.956085
34 32.76073464843491 117.19943380772642 38.838875
35 32.76080868584274 117.19949215274724 37.45457
36 32.761496683547975 117.19931260709929 41.81247
37 32.760970417763595 117.19942775541715 45.72044
38 32.76155577742912 117.19928609025854 41.02403
39 32.76253613953089 117.19900805633469 36.180367
40 32.76126588716934 117.19929517121345 39.21911
41 32.76156759127004 117.19924972160102 40.93918
42 32.76089388154247 117.19930349127046 36.306488
43 32.76162792221956 117.19917850109978 39.20672
44 32.76184003918985 117.19908985965868 43.146843
45 32.76253861366763 117.1989186490137 36.285725
46 32.76225930018039 117.19893606497158 37.382526
47 32.761288253106244 117.19911181111202 38.159443
48 32.761904712216946 117.19893983956915 40.709908
49 32.7615308633258 117.19909287834034 40.93918
50 32.76071223314489 117.1993065149341 38.731873
51 32.76067552987721 117.19930499812028 39.409515
52 32.7621659771683 117.19887165767751 37.076923
53 32.76254666695032 117.19870573844392 36.982246
54 32.762101279464645 117.19886635132018 35.79366
55 32.76203034706602 117.19877391037156 29.860455
56 32.762093807701305 117.1988239203894 35.79366

 84

ID Latitude Longitude Distance to Lines
57 32.7607103405275 117.19914058075453 38.450935
58 32.76138465645098 117.1989867960314 39.841084
59 32.760980314310565 117.19907012613318 41.9205
60 32.76143627856879 117.1989178482599 41.81247
61 32.76227419435396 117.19871027393938 34.233295
62 32.762522359042904 117.19841251147201 37.703766
63 32.762299059104166 117.19859283296384 34.515533
64 32.76066179874235 117.19902010615137 38.731873
65 32.761533312785986 117.19884814457247 40.45318
66 32.762397961262195 117.1985337370091 35.56777
67 32.760871416899334 117.19886554558438 45.72044
68 32.76187045840945 117.19869358898747 40.709908
69 32.76118369777259 117.19882843097493 39.186565
70 32.76213917044759 117.19851251157974 35.65512
71 32.76117622600925 117.19878600004415 39.186565
72 32.7613622164844 117.1987041767922 39.89863
73 32.76103562295693 117.1987117409333 39.735664
74 32.76197120383176 117.19848977431855 38.721844
75 32.76162408763167 117.1985359798469 40.138313
76 32.76143933422488 117.19857309943833 40.93918
77 32.761558759055546 117.19847536209636 39.460114
78 32.76218826907554 117.19822231823547 39.580585
79 32.76126265877735 117.19855263490687 39.461567
80 32.76101694354858 117.19860566360636 39.442535
81 32.762105547512554 117.19832157239125 35.543816
82 32.76094353701322 117.19860262997874 40.82066
83 32.760763125684015 117.19856094998188 36.306488
84 32.76201906539134 117.19824428463477 39.64527
85 32.76101257679445 117.19852913674778 39.15861
86 32.762459479926974 117.19810715995362 37.2576
87 32.76112018778419 117.19846776806332 39.186565
88 32.76164769063694 117.19830791608497 40.261955
89 32.76229464299691 117.1982056532115 34.115265
90 32.76086389578288 117.19851246175985 41.777996
91 32.762304588897 117.1981586768213 35.29792
92 32.761891537924875 117.19824427965278 40.93162
93 32.76098395148601 117.19847003581106 39.766853
94 32.76095719411841 117.19842154260704 39.777363
95 32.76321729634524 117.19884139114916 38.31733
96 32.7632048269553 117.19866712196662 38.41857
97 32.763056096590624 117.19833979408493 38.135735
98 32.76318983407551 117.19827160721131 39.50761
99 32.76258332086489 117.19839660236397 42.5644

100 32.762599476783386 117.19828143411814 43.023823
101 32.76320535912154 117.1981011275723 40.336445
102 32.76315123819043 117.19810415621792 38.93403
103 32.76320162323987 117.1980799121069 40.336445
104 32.7625764306209 117.19809882993263 43.067863

11.5 Further discussion and considerations

The images around San Diego, California were used in the case studies because of the li-
mitation of stereo image availability elsewhere (see Section 11.1). Three case studies with three
different NDVI threshold values were explained in Sections 11.2, 11.3 and 11. 4. When the
NDVI threshold value was set as 0.20, 95 trees (healthy vegetation regions) were extracted.
When the NDVI was 0.15, 37 trees were extracted. When the NDVI was 0.24, 104 trees were

 85

extracted. When the NDVI=0.15, too few trees were extracted to recognize. When the
NDVI=0.24, too many trees were extracted to identify the locations clearly. Therefore, it was
decided to investigate the extracted trees when the NDVI =0.20.

The closest five trees to the transmission lines were selected from the list of all extracted
trees and displayed in Table 11.4. The locations are considered to have a priority to be observed
if they are endangering the transmission lines.

Table 11.4 Closest five trees to transmission lines
ID in Table 11.1 Latitude Longitude Distance to Lines

26 32.76075890698922 117.19941638180457 24.293316
11 32.75932871661798 117.19931252240548 24.45303
8 32.759388466048144 117.1994966434048 26.227222
21 32.760715993703116 117.19948305684636 29.145893
40 32.76071223314489 117.1993065149341 30.106556

 86

12.0 Conclusions, Recommendations, and Future Work

12.1 Conclusions

 This report presented a literature review about transmission towers and lines and about
remote sensing and photogrammetry on identifying healthy vegetation areas and extracting ob-
ject heights. We developed a framework for implementing tools to extract trees interfering with
overhead power lines. There are 3 stages in this framework:

Stage 1. Transmission line scanning program. This is a tool to extract healthy vegeta-
tion areas close to the power lines from multispectral satellite images.

Stage 2. Tall tree identification program. This is a tool to generate digital surface mod-

els from a stereo pair of multispectral satellite images.

Stage 3. Integrate the tools of Stages 1 and 2, and develop a system to identify high

trees interfering with overhead power lines.

 The tool for Stage 1 was implemented and tested in the first year. The interactive function
helped on finding the healthy vegetation area. A test for generating a digital surface model
(DSM) from a stereo pair of satellite images using one of the commercial off-the-shelf Photo-
grammetry packages, ERDAS IMAGINE, was demonstrated.

 In the second year, the implementations of stages 2 and 3 were completed. One stereo
pair of IKONOS satellite images in San Diego, CA provided by GeoEye was used for testing.

 Case studies using three different NDVI thresholds were explained and considered. The
case studies proved that the developed programs automatically are able to identify trees endan-
gering the transmission line. However, the program was not tested in a utility environment. Thus,
this is not a commercial grade program. It requires further testing and development.

12.2 Future work

 The following is recommended future work to improve the tool developed:

• Test using the other image files of different larger site such as 60 miles.
• Compare the results from commercial off-the-shelf photogrammetry packages.
• Visualize the DEM data in 3D view.
• Add query functions to the extracted trees
• Add more control units to allow the users to change the attributes of transmission

towers and lines flexibly and interactively.

 87

References

[1] WIKIPDEIA, http://en.wikipedia.org/wiki/Main_Page, Aug. 10, 2006.

[2] Ki In Bang, Soo Jeong, Kyung-Ok Kim, Woosug Cho, “Automatic DEM generation using
IKONOS stereo imagery,” Proc. International Geoscience and Remote Sensing Symposium, vol.
7, no. 21-25, July 2003, pp. 4289 – 4291.

[3] T. Toutin, “Comparison of stereo-extracted DTM from different high-resolution sensors:
SPOT-5, EROS-a, IKONOS-II, and QuickBird,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 42, no. 10, pp. 2121 – 2129.

[4] SPACE IMAGING, http://www.spaceimaging.com/products/ikonos/index.htm, Aug. 10,
2006.

[5] SATELLITE IMAGE CORPORATION, http://www.satimagingcorp.com/gallery-
quickbird.html, Aug. 10, 2006.

[6] T. Krauss, M. Lehner, P. Reinartz, U. Stilla, “Comparison of DSM generation methods on
IKONOS images,” M. Moeller, (editor.), Urban Remote Sensing – Photogrammetrie – Ferner-
kundung – Geo information special issue, 04/2006.

[7] S. Kocaman, L. Zhang, A. Gruen, D. Poli, “3D city modeling from high-resolution satellite
images,” ISPRS Ankara Workshop 2006, Ankara, Turkey, Feb. 2006.

[8] ORBIMAGE,http://www.orbimage.com/corp/orbimage_system/satellite.html, Aug 10, 2006

[9] F. Morsdorf, E. Meier, B. Kötz, K. I. Itten, M. Dobbertin, B. Allgöwer, “LIDAR-based geo-
metric reconstruction of boreal type forest stands at single tree level for forest and wildland fire
management,” Remote Sensing of Environment, vol. 92, no. 3, Aug. 2004, pp 353-362.

[10] Toposys, “Lidar Applications – Pipelines and Trans-mission Lines,”
http://www.toposys.com/pdf-ext/Engl/AP_Corridor.pdf, Aug 10, 2006.

[11] D. Turton, P. Jonas, “Airborne laser scanning –cost effective spatial data”, Map Asia Con-
ference, Kuala Lumpur, Malaysia, October, 2003.

[12] G. Borgefors, T. Brandtberg, F. Walter, “Forest parameter extraction from airborne sen-
sors,” International Archives of Remote Sensing and Photogrammetry, vol. 32, part 3-2W5, pp.
151-157.

[13] J. Hyyppä, H. Hyyppä, G. Ruppert, “Automatic derivation of features related to forest stand
attributes using laser scanner data,” International Archives of Photogrammetry and Remote Sens-
ing, vol. 33, 2002, part B3, pp. 421-428.

 88

[14] R. J. Pollock, “A model-based approach to automatically locating tree crowns in high spatial
resolution images,” J. Desachy (ed.), Proc. 1994 SPIE Conference on Image and Signal Process-
ing for Remote Sensing, (SPIE) Vancouver, BC, Canada.

[15] B. M. Straub, C. Heipke, “Automatic extraction of trees 3D city models from images and
height data” Proc. of Conference on Automatic Extraction of Man-made Objects From Aerial
and Space Images (III), 2001, Zurich, Switzerland.

[16] Yamagish, Y. and Yasuoka, Y,
http://yasulab.iis.u-tokyo.ac.jp/2005/IIS_OH/2005_yamagishi.pdf;dated 2005.

[17] M. Teraoka, M. Setojima, Y. Imai, Y. Yasuoka, “Spatial, temporal, and spectral data analy-
sis for environmental and disaster assessment,” (In Japanese),
http://yasulab.iis.u-tokyo.ac.jp/2004/IIS_OH/2004_teraoka.pdf; dated 2004.

[18] GeoTIFF, http://www.remotesensing.org/geotiff/geotiff.html, Aug 10, 2006.

[19] Google Earth, http://earth.google.com/, Aug. 10, 2006.

[20] JAVA, http://java.sun.com/, Aug. 10, 2006.

[21] Rodrigues, L. H., 2001. Building imaging applications with Java technology: using AWT
image, Java2D, and Java advanced imaging (JAI), Addison-Wesley, Boston.

[22] Q. Yang, J. P. Snyder, W. R. Tober, Map projection transformation: principles and applica-
tions., Taylor and Francis, Hong Kong, 2000.

[23] ERDAS IMAGINE, http://gi.leica-geosystems.com/LGISub1x33x0.aspx, Aug. 10, 2006.

[24] Z. Islam, G. Metternicht, “Fuzzy approach to mapping tree crowns and species from a forest
area using high resolution multispectral data’, Asian Journal of Geoinformatics, vol. 41, no. 1,
September 2003.

[25] ERDAS IMAGINE, Subpixel Classifier, http://gi.leica-geosystems.com/-
LGISub24x0x118.aspx, Aug. 10, 2006.

[26] Applied Analysis Inc, http://www.discover-aai.com/applications, Aug. 10, 2006.

[27] Remote Sensing Tutorial, http://obelia.jde.aca.mmu.ac.uk/giscons/rstut/tutorial/-
chap5/c5p7e.html, Aug. 10, 2006.

[28] Standard FAC-003-0 — Vegetation Management Program. Adopted by NERC Board of
Trustees: February 8, 2005 1 of 3;Effective Date: April 1 2005.

[29] Code of Code of Practice for Electric Line Clearance [Vegetable] Victoria Government
Gazette No 9169, Thursday 25 November, 1990, Southbank, Victoria, Australia.

 89

[30] Vegetation Management Task Force (VMTF). 1996. Environmental Stewardship Strategy
for Electric Utility Rights-of-Way. Edison Electrical Institute, Washington, DC. 9 pp.

[31] PG&E Transmission Line Vegetation Management Project; PGE Transmission line Pro-
ject 2004.doc.

[32] Trees and Power Lines Right-of-Way Safety. Western Area Power Administration:
http://www.wapa.gov.

[33] BPA Vegetation Program. Bonneville Power Administration. DOE / BP-3712;
www.bpa.gov.

[34] Richard H. Yahner1 and Russell J. Hutnik: Integrated vegetation management on an
Electric transmission right-of-way in Pennsylvania, U.S. Journal of Arboriculture vol. 30, no. 5,
September 2004.

[35] Joseph A. Sulak and J. James Kielbaso, “Vegetation management along transmission util-
ity lines in the United States and Canada,” Journal of Arboriculture vol. 26, no. 4, July 2000.

[36] Bramble, W.C., and W.R. Byrnes. 1996. Integrated vegetation management of an electric
utility right-of way ecosystem. Down to Earth, vol. 51, no. 1, pp. 29–34.

[37] Bramble, W.C., W.R. Byrnes, R.J. Hutnik, and S.A. Liscinsky, “Prediction of cover type
on rights-of-way after maintenance treatments,” J. Arboric., vol. 17, pp. 38–43, 1996.

[38] DuPont Co., “Brush control that is effective, economical, and environmentally responsi-
ble,” p. 12, DuPont Vegetation Management, 1996.
[39] Luken, J.O., S.W. Beiting, and R.L. Kumler, “Target/non-target effects of herbicides in
power line corridor vegetation,” J. Arboric., 1993, vol. 19, pp. 299–302.

[40] Luken, J.O., A.C. Hinton, and D.G. Baker, “Assessment of frequent cutting as a plant-
community management technique in power-line corridors,” Environ. Manage., vol. 15, pp. 81–
388, 1991.

[41] Bramble, W.C., W.R. Byrnes, R.J. Hutnick, and S.A. Liscinsky. 1991. “Prediction of
cover type on rights-of-way after maintenance treatments,” J. Arboric. vol. 17, pp. 38–43.

[42] Fonseca, J.R., Tan, A.L., Silva, R.P., Monassi, V., Assuncao, L.A.R., Junqueira, W.S.,
Melo, M.O.C. “Effects of agricultural fires on the performance of overhead transmission lines,”
IEEE Transactions on Power Delivery, vol. 5, no. 2, pp: 687-694, Apr 1990.

[44] Niering, W.A., and R. Goodwin, “Creation of relatively stable shrub lands with herbi-
cides: Arresting “succession” on rights-of-way and pastureland,” Ecology, vol. 55, 1974, pp.
784–795.

[45] GeoEye, http://www.geoeye.com/, Aug. 10, 2006.

[46] "Reliability Based Vegetation Management Through Intelligent System Monitoring" (T-27)
is now available for viewing by PSERC members. The document number is 07-31 and it is in the
Reports for Members Viewing Only Folder on the PSERC website for the next 90 days. The Ex-
ecutive Summary is publicly available.

 90

Appendix A: The Source Code Utilized
This appendix includes Java source code of the following class definitions in package

PSERC:

Stage 1
• PL_ScrollController
• PL_DataTable
• PL_FileLoader
• PL_FilterSlider
• PL_Geo
• PL_ImageCanvas
• PL_MainFrame
• PL_RenderedImageCanvas
• PL_RenderGrid
• PL_ScrollGUI

Stage 2

• PL_StereoTest

Stage 3
• PL_Output
• PL_OutputControlPanel
• PL_OutputHistorgraph

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

Appendix B: Elevations Along a 69 kV Sub transmission Power Line Right-of-
Way in San Diego, CA (June 11, 2007, G. T. Heydt)

1. Introduction
 This is a report on the elevation above mean sea level (MSL) along a power line right-of-
way in San Diego, CA. This is a 69 kV line. The line is the crossing of Interstate 8 at Old Town
in San Diego. Three structures support the circuit as shown in Figure B.1.

Figure B.1 69 kV transmission line in San Diego

 The bases of the estimates of the elevation above MSL of the supporting structures are:

• A visit to the site including visual estimates
• The USGS topographical map “7.5 Minute Series: La Jolla, CA,” dated 1996
• Google Earth

2. Estimates of surface elevation
 The tidal difference in the Pacific Ocean off the coast of San Diego is about 4 feet. This
gives an estimate of the location of the MSL. The San Diego River, which approximately bisects
the stated right-of-way, does not have any tidal difference. The USGS map of the area shows the

 142

ultimate river banks for the river as 10 feet MSL. It is estimated that the river itself is approxi-
mately 3.1 miles from the Pacific Ocean at the Morena Boulevard crossing. At one foot per mile
river slope, the river surface is estimated as 3 feet above mean high tide or 7 feet MSL. This
agrees (approximately) with the USGS map. If the center structure tower base is 3 feet above the
river surface, this gives a surface elevation of 10 feet.

 The 10 and 20 foot contours on the USGS map (made in 1996) give an indication of the
surface elevation at the power line tower bases. These are estimated on the basis of map contours
and visitation to the site and are summarized in Table B.1. Figure B.2 shows the location of sev-
eral features.

Table B.1 Tower base elevations, estimated from several sources
 Tower base elevation

(feet, MSL)
Comments

North
tower

24 Tower is near to Morena Blvd. embankment.
Clears street railway.

Center
tower

10 South of San Diego River.

South
tower

24 South tower is adjacent to on ramp for I-8 free-
way which passes through the 10 foot contour on
the USGS map.

3. Estimate of the right-of-way elevation
 Figure B-3 shows an estimate of the surface elevation along the power line right-of-way.

 143

Figure B.2 Sketch of the right-of-way and adjacent features

 144

Figure B.3 Surface elevation along right-of-way

	Cover
	Title
	Contact information
	Executive summary
	Table of contents
	1. Introduction
	2. Literature review
	3. Vegetation Interference
	4. Development of Computer Programs
	5. Transmission line scanning
	6. Tool Instruction
	7. Digital Surface Model
	8. Tool Implementation
	9. Tool Implementation
	10. Tool Instruction
	11. Case Studies
	12. Conclusions
	References
	Appendix A
	Appendix B

