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Executive Summary 
 

When a transformer's winding gets too hot, either the load has to be reduced as a short-term 

solution or another transformer bay needs to be installed as a long-term solution. To decide on 

whether and when to employ either of these two strategies, one needs be able to predict the 

transformer temperature accurately. There are several transformer models for predicting top-oil 

temperature. These include the traditional top-oil-rise model, top-oil model and semi-physical 

model.  

 

From previous research we have found that the best model for predicting TOT is the semi-

physical model. Based on this model, we created and developed a software tool TOTPS (Top-Oil 

Temperature Prediction System) using LabVIEW, which gave SRP’s engineers a friendly user 

interface with which to use the semi-physical model to predict TOT (Top-Oil Temperature) and 

calculate the maximum load that a transformer is capable of carrying.  

 

Once we began using this tool we found that the semi-physical model yielded a wide range of 

coefficients for data that appeared, to the eye, to be similar. We hypothesized that the wide range 

of coefficients was caused by the absence of significant drive variables. We consequently added 

wind and solar radiation as driving variables to our model. When we used linear regression with 

the revised model to calculate the model coefficients, we found that this range of coefficient 

decreased, indicating that including these other variables produced a more reliable model. This 

increase in reliability was however still insufficient to allow us to have confidence that our 

model would calculate coefficients that represent the real system.  
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There are several outstanding issues that need to be solved before a production grade program 

can be produced. These tasks include: 

• Identifying sources of error in the data we are working with. 

• Developing a quality control algorithm that will eliminate as much erroneous data as 

possible, e.g., data samples taken during rain storms change the thermodynamics; hence 

these data points will not conform to a model based on dry weather.  

• Improving our algorithm so that it can more robustly handle erroneous data. 

• Implementing strategies that can deal effectively with the ill-conditioned nature of the 

matrices that result from linear regression. 

• Determine the effect on the reliability of the model of including additional driving 

variables. 

• Determine the effect of the nonlinearity on our model. 
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1. INTRODUCTION 

1.1 Introduction 

 

The Salt River Project (SRP), a local power utility company based in Phoenix, Arizona, 

has many substation distribution transformers (SDT’s) throughout the valley.  When a 

transformer’s winding gets too hot, either the load must be reduced, as a short-term 

solution, or another transformer needs to be installed to share the load, as a long-term 

solution.  To decide on whether to use either of these two strategies, one should be able to 

predict the transformer’s top-oil temperature (TOT) accurately.  To do that, SRP came to 

the department of Electrical Engineering of Arizona State University and asked us to 

develop a tool that could be used in system planning to predict the maximum load that a 

transformer is capable of carrying by predicting a transformer’s TOT, which can in turn 

be used to predict the temperature of the transformer winding.   

 

There are several fundamental models for predicting transformer temperature, such as the 

top-oil-rise model and top-oil model.  All models are designed to model the same 

phenomenon: when an increase in the load (current) of the transformer occurs, an 

increase in the losses within the device provides more heat and results in an increase in 

the overall TOT.  Earlier work by another student [1] provided a model (semi-physical 

model) which could accurately predict TOT using load and ambient temperature as 

driving variables.  Using this semi-physical model, our goal was to create and develop a 
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software tool (virtual instrument) that could allow engineer in SRP’s planning group to 

easily predict TOT.   

 

As the research progressed, we noticed that the results of the semi-physical model yielded 

coefficients that varied widely even though the input data sets used for constructing the 

model were similar, similar enough that the coefficients calculated should have been 

within five or ten percent of each others; consequently a second goal of our research was 

to investigate the cause of the widely varying coefficients. 

 

1.2 Literature review 

 

Two temperatures are used in estimating the loss of insulation life of a transformer: the 

hot-spot temperature (HST) and the top-oil temperature (TOT).  Prediction of HST and 

TOT in transformers has gained momentum recently because of the deregulation of 

power distribution system.  Accurately predicting HST and TOT can save money since it 

allows maximal loading of transformers while keeping the loss of life of the insulation 

within operator-defined limits.  There are several fundamental models for predicting a 

transformer’s TOT.  In this section the various models which are relevant to our research 

are discussed.   
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Model #1 Top-oil-rise Model ANSC C57.92, C57.115 

 

The classical model for predicting a transformer’s TOT is described in IEEE/ANSI 

standard C57.92 (updated as C57.115) and is called IEEE/ANSI C57.115 model.  The 

IEEE/ANSI C57.115 model for TOT rise over ambient temperature [4] is governed by 

the first order differential equation, 

uo
o

o dt
d

T θθ
θ

+−=  (1.1) 

which has the solution, 

i
Tt

iuo
oe θθθθ +−−= − ))(( /1  (1.2)  
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where, 

oθ : top-oil rise over ambient temperature, °C, 

θ fl : top-oil rise over ambient temperature at rated load, °C, 

θu : ultimate top-oil rise for load L, °C, 

θi : initial top-oil rise for t=0, °C, 

ambθ : ambient air temperature, °C, 

To : time constant at rated KVA (hr.), 
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flP : rated load (MVA), 

C : thermal capacity (Wh/oC),  

n: oil exponent, 

K: ratio of load to rated load, 

R: Ratio of load loss to no-load loss at rated load. 

If (1.1) is solved, the TOT, topθ , is then given by, 

ambi
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ambotop

oe θθθθ

θθθ

++−−=
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− ))(( /1

 (1.5) 

Our goal is to find the parameters of (1.5) (namely 0T , R and flθ ) that will most 

accurately predict topθ  as measured by field data.  There are several ways to do this.  One 

way is using linear regression along with measured data.  To use linear regression we 

must first construct a discrete-time form of (1.1).  Applying the forward Euler 

discretization rule,  
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where t∆  is the sampling period, and solving we get,  
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where I[k] is the per-unit transformer current (based on the rated value of the transformer) 

at time-step index k.  
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When the load current is near its rating, or 1>R  and 12 >RK , TOT rise over ambient 

temperature is given by, 
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But this simplified model does not accurately account for the effects of ambient 

temperature dynamics on TOT [2,5].  

 
Model #2 Top-oil model 
 

 

The top-oil model (as opposed to top-oil-rise model) proposed by Lesieutre et al. [2], 

accounts for dynamic variations in ambient temperature.  It is based on the differential 

equation that defines the TOT topθ  by, 

ambutop
top

o dt
d

T θθθ
θ

++−=  , (1.9) 

and has the solution, 

topi
T
t

topiambutop
oe θθθθθ +−−+=

−

)1)(( ,   (1.10)  

where topiθ  is the initial TOT for t=0.  

To improve upon the manufacturer supplied coefficients, Lesieutre et al. used linear 

regression algorithm to get optimal coefficients obtained from measured data.  To use 

linear regression, the defining equation must first be written in a discretized linear form.  

To achieve this, Lesieutre et al. [2] applied the forward Euler discretization, 
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and solved (1.9), with n=1, to get the following discretized form: 
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where I[k] is the per-unit transformer current (based on the rated value of the transformer) 

at time-step index k.  Equation (1.12) can also be written in a form amenable to linear 

regression with coefficients 31 kk −  as, 

3
2

211 ][][)1(]1[][ kkIkkkkkk ambtoptop ++−+−= θθθ . (1.13) 

Lesieutre et al. showed that the top-oil model outperforms the top-oil-rise model [2]. 

 

Model #3 Semi-physical Model 
 

It has been shown [1,5,6] that if (1- 1k ) in equation (1.13) is replaced by another 

coefficient, 4k , then, 

3
2

241 ][][]1[][ kkIkkkkkk ambtoptop +++−= θθθ . (1.14) 

Re-assigning the subscripts of the coefficients we get, 

432
2

1 ]1[][][][ kkkkkkIkk topambtop +−++= θθθ . (1.15) 

The resulting model is known as a semi-physical model because it is not based entirely 

on physical principles.   
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Another student compared these three different models for the prediction of TOT and 

found that Model #3 gave the best prediction [1].  She tried several attempts to improve 

the semi-physical model used for TOT prediction.  She also studied some of the sources 

of error that affect TOT prediction, such as database quantization, remote ambient 

temperature monitoring and low sampling rate.  After thorough study, we selected the 

semi-physical model for the prediction of a transformer’s TOT.  

 

1.3 Thesis overview 

 

The study focuses on the development of a graphical tool for predicting TOT using a 

semi-physical model and on the studies conducted to assess the effect of solar radiation 

and wind velocity on the prediction of TOT.  In Chapter 2, three algorithms needed for 

the simulation of TOTPS are discussed.  In Chapter 3, the GUI (graphical user interface) 

for predicting TOT is provided.  In Chapter 4, we investigate the causes of coefficient 

variability to improve the TOTPS reliability.  In Chapter 5, the results of solar radiation 

and wind velocity on the resultant TOT predicted by linear regression model are reported.  

Finally some conclusions and proposals for future work are presented in Chapter 6. 
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2. ALGORITHM NEEDED FOR THE SIMULATION OF TOTPS 

 

2.1 Introduction 

 

In this study, we use the so-called semi-physical model proposed by Tylavsky, Qing et. al 

[1,5,6] as the basis for developing TOTPS (Transformer Top-Oil Temperature Prediction 

System).  In order to build TOTPS, several algorithms were studied.  These included an 

algorithm needed to determine the coefficients in the semi-physical model, an algorithm 

needed to calculate the HST and an algorithm needed to use the semi-physical model to 

predict the maximum load that a transform can endure without exceeding operating 

limits. 

 

2.2 Linear regression algorithm 

 

In Chapter 1 it was shown that we could configure our model so that we could use linear 

regression to get optimal coefficients for a semi-physical model from measured data.  The 

typical criteria for linear regression is a least-squares criteria to minimize the error 

squared over all data points.   

 

For a data set with one input, X, and one output, Y, and assuming there is a linear 

relationship between the input and output, linear regression can be used to find the 

optimal coefficients, A and k, which give a best fit (in the least-square sense) to the 

single-variable equation, 
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XkAY *+= , (2.1) 

where, 

X: independent variable, 

k: a coefficient to be determined, 

Y: dependent variable. 

Using linear regression, the value of k is determined by selecting the value such that the 

square of the error between the actual Y and the predicted Y is minimized.  But in our 

case, (1.15), there are three independent variables: load, ambient temperature and TOT.  

Then a multiple-regression is necessary.  The method used for multiple-regression is an 

extension of that used for single regression.  

 

For a model with three independent variables, the generalization of equation (2.1) can be 

written in the form, 

4332211 *** kXkXkXkY +++= . (2.2) 

Equation (2.2) can be expressed in normalized mathematical format, 

ε

ε

+=

++−+−+−=
∧

−−−

Y

kXXkXXkXXkY 4333222111 )(*)(*)(*  (2.3) 

Where, 

Y : actual value of TOT (dependent variable), 

∧

Y : predicted (estimated) value of TOT, 

ε : the error between the actual and the predicted TOT, 

1X : load value (independent variable or driver variable), 
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−

1X : mean value of 1X , 

2X : ambient temperature (independent variable or driver variable), 

−

2X : mean value of 2X , 

3X : TOT (independent variable or driver variable), 

−

3X : mean value of 3X , 

4321 ,,, kkkk : coefficients to be determined, 

N: the number of sample data. 

 

Equation (2.3) can be written in matrix notation, 

[ ][ ] jjj Kxy ε+=  (2.4) 

where, 

−

−= jjj XXx  (2.5) 

jy : normalized dependent variable, 

[ ]jx : vector of independent (driver) variables with element ijx , , 

[ ]K : vector of coefficients with element ik , 

j : subscript index for data points. 

Note that when the equation for multiple-regression is written in matrix notation, it 

appears identical to that of single regression. 

 

Equation (2.3) also can be written using scalar notation, 
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j
i

iijj kxy ε+= ∑ , , (2.6) 

where, 

i : subscript index for the ith regression coefficient. 

 

In order to determine the coefficients, we select those values when the error squared 

between the actual TOT and the predicted TOT is minimized.  This criterion can be 

expressed as,  

∑∑ =−
∧

22 min)(min jjj yy ε , (2.7) 

By substituting equation (2.6) into (2,7), we get, 

}))()(2(min{)min( 2
,,
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j i i

iijiijjjj kxkxyyε  

[ ][ ] [ ][ ] )})(2(min{ 22 KxKxyy j
j

jjj +−= ∑  (2.8) 

In order to find the coefficients that minimize the error squared, the equation (2.8) can be 

differentiated with respect to the ith coefficient, ik , with the result set equal to zero. 

∑
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4,,1L=i  

LL +++= ∑ ∑∑
j j

iijijj
j

ijj kxkxxxy )()( 2
,1,1,,  (2.10) 

4,,1L=i  

The notation of equation (2.10) can be simplified by two definitions: 

Definition I: 
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[ ][ ] i
T

j
ijji XXxxW 1,1,1 == ∑  (2.11) 

= matrix of rank equal to the number of regression coefficients, 

Definition II: 

[ ][ ]i
T

j
jij

T
i YXyxYX == ∑ ,  (2.12) 

= vector of rank equal to the number of regression coefficients, where, T is the matrix 

transpose operation. 

 

Using equation (2.11) and equation (2.12), equation (2.10) can be rewritten as, 

∑=
P

PiP
T
i kWYX  (2.13) 

for 4,,1L=i . 

 

Using matrix notation, (2.10) maybe written as, 

[ ] [ ][ ]KWYX T =  (2.14) 

The vector of coefficients can be solved by inverting the W matrix, 

[ ] [ ] [ ]YXWK T1−=  (2.15) 

Using (2.15) along with measured data, where, 

TOTX =1 : top-oil temperature )( Co , 

ambX θ=2 : ambient temperature )( Co , 

LoadX =3 : transformer load (p.u.), (base load is 22.4MVA), 

we can find the optimal coefficients of the semi-physical model that minimize the error 

between the actual TOT and the predicted TOT. 
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2.3 Hot-spot temperature prediction 

 

An algorithm is needed to use the semi-physical model to predict the maximum load that 

a transform can endure without exceeding operating limits.  One of the operating limits is 

the hot-spot temperature limit.  The IEEE Transformer Loading Guide (IEEE/ANSI 

C57.115) [4] equations use the TOT rise over ambient temperature to determine the 

winding hot-spot temperature during an overload.  The IEEE Loading Guide (IEEE/ANSI 

C57.115) equations are based on the assumption that the temperature of the oil exiting the 

winding ducts is the same temperature as the top-oil in the tank.  The hot-spot 

temperature hsθ  is assumed to consist of three components given by the following 

equation [4], 

gambhs θθθθ ++= 0  (2.16) 

Where, 

0θ : top-oil rise over ambient temperature, 

ambθ : ambient air temperature, 

gθ : hot-spot conductor rise over top-oil temperature. 

By substituting equation (1.5) into equation (2.16), we get, 

gtophs θθθ +=  (2.17) 

The ultimate hot-spot conduct rise over top-oil for load is [2], 

m
flgg K 2

)(θθ =  (2.18) 

Where, 

)( flgθ : hot-spot conductor rise over top-oil temperature at rated load, 
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K: ratio of load to rated load, 

m: exponential power of winding loss versus winding temperature rise over oil. 

 

By substituting equation (2.18) into equation (2.17), we get, 

m
flgtophs K 2

)(θθθ +=  (2.19) 

The parameter m is determined by the cooling modes used in liquid filled transformer.  

The guide dictate the typical value for m as: 

m=0.8:for self-cooled (OA), forced-air-cooled (FA) operation, 

m=1: for directed flow forced-air, forced-oil-cooled operation. 

The observed transformers use natural convection of oil in the transformer and natural 

convection of cooling air over the radiator (OA), so we set m=0.8 to predict the HST. 

 

2.4 Iteration algorithm for calculating maximum load 

 

Once we have the optimal coefficients for predicted TOT, our next task (and our ultimate 

goal) is to use this model to find the maximum load that a transformer can tolerate 

without exceeding the maximum TOT and HST provided by SRP. 

 

Because the input data to this process is not available in a simple form, to find the 

maximum load not violating SRP’s maximum TOT and HST criteria, we must employ an 

iterative algorithm.  We will describe a Newton-type iterative procedure, where the 

derivative (inherent in a Newton scheme) is approximated using the difference between 

successive iterates.  Precisely what this means is described in the language of 
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mathematics.  We will provide a conceptual view of this procedure by using the plots 

shown in Figure 2.1.  This figure shows various curves that are useful in describing the 

process by which we can use our model to find the maximum load a transformer can 

withstand. 

 

Figure 2.1 (a) shows the initialized load plot (load(0)) for 2 days at iteration index P=0, 

the increment of load at iteration index P=0 (Incr(0)) and the load plot (load(1)) for the 

next iteration index, P=1.  The relationship between load(0) and load(1) is given by,  

load(1)=load(0)*Incr(0). (2.20) 

 

The TOT plot for 2 days (TOT(0)) in Figure 2.1 (b) and HST plot (HST(0)) in Figure 

2.1(c) at time step t=0 are calculated using equations (1.15) and (2.19), respectively.  The 

maximum TOT value of TOT(0) is given by TOTmax(0) and the maximum HST value of 

HST(0) is given by HSTmax(0) at iteration index P=0.  The TOT limit and HST limit 

given by SRP are also shown in Figure 2.1 (b) and (c) as dotted lines.  We can get the 

load increment at iteration index P=0, Incr(0), by comparing the maximum TOT value 

(TOTmax(0)), to the TOT limit, and the maximum HST value (HSTmax(0)) to the HST 

limit.  We can get load(1) by equation (2.20) and then get TOT(1) and HST(1) using 

(1.15) (along with our optimized coefficients) for the iteration index P=1.  Then we can 

get the load increment Incr(1) for next time step.  We keep calculating until the 

maximum TOT or HST hit the limit.  
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day1 day2

load(0)

load(1)
load

t

load(0)*(Incr(0)-1)

 

(a) 

TOT(0)

TOT(1)

TOTmax(0)

TOTmax(1)

TOT limitTOT

t  

(b) 

HST(0)

HST(1)

HSTmax(0)

HSTmax(1)

HST limitHST

t  

(c) 

Figure 2.1 Iteration algorithm scheme 
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To completely define this iterative scheme, we must define the TOT and HST initial 

conditions at t=0 for any given loading level, the equation that estimates the load at 

successive iterations, and the convergence criteria. 

 

Initial estimate of maximum load 

 

We use the semi-physical model to predict the maximum load that a transformer is 

capable of carrying.  For a selected load/temperature profile, we can get the TOT by 

using (1.15) and the calculated optimal coefficients.  There are three initial conditions 

that we must define for the iteration scheme.  First we must define the initial TOT value 

at t=0, then we must define the initial HST value at t=0.  Finally we must define the 

initial load increment at t=0.  These values will be used to start the TOT simulation for 

any maximum load estimate.  To do this, we assume that the transformer has been 

operating in an environment where all driving variables have been constant for a 

sufficiently long time that the transformer is in a steady state. 

 

Equation (1.15) and (2.19) can be rewritten as, 

432
2

1 )0,1()0,()0,()0,( ktktktIkt topambtop +−++= θθθ , (2.21) 

m
flgtophs tItt 2

)( )0,()0,()0,( θθθ += , (2.22) 

where, t is the time step index for the data points, and 0 is the iteration index.  Assume at 

time index j, we get the initial maximum value of TOT and HST for a given load profile.  

That means, 
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)0,()0max( jTOT topθ=   

         432
2

1 )0,1()0,()0,( kjkjkjIk topamb +−++= θθ , (2.23) 

m
flgtop jIjHST 2

)( )0,()0,()0max( θθ +=  

         m
flg jITOT 2

)( )0,()0max( θ+= , (2.24) 

where, TOTmax(0) and HSTmax(0) are the maximum values at iteration index t=0.  We 

also assume that at the time index j, we get the maximum value of ambient temperature, 

)0,()0max( jAmb ambθ=  (2.25) 

Our approach to finding the factor, Incr1(0) (that when multiplied by the load 

approximates the maximum load to loaded by a transformer), is to assume that the 

TOTmax(0) is approximately the steady state TOT caused by )0,( jI  and Ambmax(0). 

 

This means that a reasonable approximation between TOTmax(0), )0,( jI  and 

Ambmax(0) can be obtained using (1.15) and the steady state assumption that,  

jTOTjTOTjTOT ∀=+= ),0max()0,1()0,(  (2.26) 

Substituting (2.26) into (1.15) yields, 

4213 )0max()0,()0max()0max( kAmbkjIkTOTkTOT +++=  (2.27) 

Solving for TOTmax(0) yields, 

3

4

3

22

3

1

1
)0max(

1
)0,(

1
)0max(

k
kAmb

k
kjI

k
kTOT

−
+

−
+

−
=  (2.28) 

We know from (1.12) and (1.13) that 132 ≈+ kk .  Substituting this into (2.28) and 

rearranging yields, 
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2

3

1 )0,(
1

)0max()0max( jI
k

kAmbTOT
−

≈−  (2.29) 

This equation says that the steady state TOTmax rise above ambient is approximately 

given by )0,(
1 3

1 jI
k

k
−

.  If this is true, then the steady state TOTlimit rise above ambient 

should be approximately given by, 

)0(1)0,(
1

)0max(limit 2

3

1 IncrjI
k

kAmbTOT
−

≈−  (2.30) 

Dividing equation (2.29) by (2.30), we get, 

)0max()0max(
)0max(limit)0(1

AmbTOT
AmbTOTIncr
−

−
= . (2.31) 

This load increment would be the load increment to use if the TOT limit provided was the 

only applicable limit; however, we must also obey the HST limit.  To get an estimate of 

the load increment that would cause the HST to reach its limit, we make the same 

assumptions (i.e. of coincidence in time of HSTmax(0), TOTmax(0) and Ambmax(0), and 

the steady state assumption).  Using these assumptions, (2.19) and (2.29) yields,  

2
)( )0,()0max()0max( kITOTHST flgθ+=  

        
3

4

3

22
)(

3

1

1
)0max(

1
)0,()

1
(

k
kAmb

k
kjI

k
k

flg −
+

−
++

−
= θ  (2.32) 

Assuming 132 ≈+ kk , and substituting this into (2.32) while rearranging yields, 

2
)(

3

1 )0,()
1

()0max()0max( jI
k

kAmbHST flgθ+
−

=− , (2.33)  
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This equation says that the steady state HSTmax rise above ambient is approximately 

given by )0,()
1

( )(
3

1 jI
k

k
flgθ+

−
.  If this is true, then the steady state HST limit rise above 

ambient should be approximately given by, 

)0(2)0,()
1

()0max(limit 2
)(

3

1 IncrjI
k

kAmbHST flgθ+
−

=− , (2.34) 

From equation (2.33) and (2.34), we get, 

)0max()0max(
)0max(limit)0(2

AmbHST
AmbHSTIncr
−

−
= .  (2.35) 

To avoid exceeding either the HST or TOT limits, we select the load multiplier to be, 

))0(2),0(1min()0( IncrIncrIncr =  (2.36) 

This load multiplier is applied to the initial load profile, )0,(kI , to get load(1). 

 

Subsequent estimates of maximum load 

 

The candidate load multiplier at successive iterations, P, is derived similarly and is given 

by, 

)max()max(
)max(limit)(1
PAmbPTOT

PAmbTOTPIncr
−

−
= , (2.37) 

and, 

)max()max(
)max(limit)(2
PAmbPHST

PAmbHSTPIncr
−

−
= . (2.38) 

The load multiplier at iteration index P is selected as the minimum value of )(1 PIncr  and 

)(2 PIncr , 
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))(2),(1min()( PIncrPIncrPIncr = , (2.39) 

At iteration index P+1, the load curve is defined by, 

),()()1,( PtIPIncrPtI =+ . (2.40) 

This load curve is used along with (1.15) to calculate )1,( +PtTOT , and )1,( +PtHST . 

 

Convergence Criteria 

 

The iteration scheme is said to converge at iteration P when limit)max( TOTPTOT < , 

limit)max( HSTPHST <  and either )1max(limit +− PTOTTOT  or 

)1max(limit +− PHSTHST  is less than 0.5 Co .   

 

TOT & HST initial conditions at t=0 

 

Accurately calculating ),( PtTOT  or ),( PtHST  requires that we use ),( PtI  and a 

reasonable initial condition for ),0( PTOT  that is based on ),0( PI .  We estimate this 

initial condition by assuming that for 0<t  the driving variables have been constant for a 

sufficiently long period of time that the transformer is in a steady state.  Using this 

assumption (i.e. 0),,0(),( <= tPTOTPtTOT ) and (1.15) for t=0 yields, 

42
2

13 ),0(),0(),0(),0( kPAmbkPIkPTOTkPTOT +++= , (2.41) 

Solving for ),0( PTOT  gives, 

3

4

3

22

3

1

1
),0(

1
),0(

1
),0(

k
kPAmb

k
kPI

k
kPTOT

−
+

−
+

−
= . (2.42) 
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3.  TOTPS DEVELOPMENT 

 

3.1 LabVIEW overview 

 

LabVIEW, much like the text-based languages such as C and BASIC, is a graphical 

program development environment.  It looks like Visual BASIC language and has several 

similar features such as main function and subroutines.  It contains functions analogous to 

library functions in conventional languages which can be readily implemented by 

‘pointing and clicking’ with a mouse.  However, LabVIEW uses a graphical 

programming language, G, to create programs in a block diagram form instead of 

creating lines of code.  G simplifies scientific computation, process monitoring/control 

and application measurement and can be used for a wide variety of other applications.  

The graphical nature of the LabVIEW environment makes it significantly more intuitive 

than conventional text-based languages. 

 

LabVIEW programs are called virtual instruments (VIs) because of their appearance and 

the way their operation imitates actual instruments.  Generally, a VI has three main parts: 

front panel, block diagram and connector.  

♦ Front panel: the interactive user interface of a VI, which simulates the front panel of a 

physical instrument.  It contains knobs, push buttons, graphs, controls (user inputs) 

and indicators (program outputs).    
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Figure 3.1. Front panel of LabVIEW 

 

♦ Block diagram: the VI’s source code in G language compared to the text-based 

language.  It includes lower-level Vis (subVIs), built-in functions, constants and 

program execution control structures (loop, while, case, sequence structure).  

 

 

Figure 3.2. Block diagram of LabVIEW 

♦ Connector: be used to wire data into the VI from other block diagrams when the VI is 

used as a subVI (a VI that is used within another VI). 
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With these three parts, LabVIEW creates the concept of modular programming.  One can 

divide an application into series of tasks, which can be divided again until a complicated 

application becomes series of simple subtasks. 

LabVIEW can be used not only as a instrument control language, but also as a general 

purpose programming language with extensive libraries of functions.  One can set 

breakpoints and make single-step debugging through the program to see how data passes 

through the program. 

 

3.2 Overview of TOTPS development 

 

Development of the TOTPS required that two different types of VI’s be developed, 

• Analytical VI’s: VI’s that perform linear regression, HST prediction and maximum 

load prediction, 

• Interface VI’s: VI’s that drive the interface. 

Many of the analytical VI’s were developed in coordination with another student’s work 

[1] and thus will not be reported upon here.  In other words, I will focus on the interface 

VI’s developed to drive the TOTPS user interface. 

 

3.3 Customer requirement 

 

The simulation of Transformer Top-Oil Temperature Prediction System (TOTPS) has 

been sponsored by SRP (Salt River Project) for two years.  The overall goal of this work 

is to produce an instrument that SRP can use in the field.  The goal of this work was to 
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produce a friendly graphical user interface so that the system planner or operator can 

easily use the load, ambient temperature and TOT of the substation to predict the 

maximum load that a transformer is capable of carrying.  Additional requirements are 

listed as followings: 

 

Inputs 

• Need to read data collected from the EMS (Energy Management System) UNIX 

platform, normally saved as a text file, 

• Given a user specific day, a moving window can display 10 days’ data centered on 

the user specified date, 

• The user must be given the choices to select training data to be used to calculate the 

coefficient for the semi-physical model, 

• There must be a way to highlight bad data, 

• There must be a method of approximating missing data. 

 

General 

• Friendly graphical user interface for Windows NT/98 operation system, 

• Flexible, 

• Simple to use, 

• Y2K compatible. 

 

Output 

• Predict the maximum load, for a given temperature and load profile. 
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3.4 Software selection 

 

Selecting software for providing a tool for SRP is an important decision.  From the point 

of view established by the goals of the project, the software we considered fell into one of 

two categories: 

• Software that could create a technical user interface (including controls and graphical 

charts) with ease; 

• Software that could allow complex algorithmic development with ease. 

 

There are many issues involved in deciding which category our software should belong 

to.  Ultimately we chose LabVIEW, which belongs to the first category (ease of user 

interface development).  We chose software from the first category because: 

• The user interface for the production software is critical if it is to find acceptance at 

SRP.  We believe that using software that could allow us to create a powerful user 

interface would eventually save use time. 

• We expected that as the project evolved we could have to make a lot of changes to the 

interface.  (We were right!)  Software that allowed us to do this quickly, accurately 

and easily, would save us development time. 

• We felt that we could use any software (from first category) to develop the technical 

algorithm and the interface without too much difficulty. 

 

Of the software in the first category we choose LabVIEW, a powerful visual 

programming development environment, because: 
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• It is excellently suited to developing a GUI that contains the features we know we 

would need.   

• LabVIEW’s graphical programming environment has several features that allow the 

developer to easily create simulation and prediction software.  These features include 

natural representation, easy readability and interaction, language independence, 

programming at higher levels of abstraction and rapid prototyping.   

• The graphical nature of the LabVIEW environment is significantly more intuitive 

than conventional text-based languages.  Compare with other text-based languages, 

one can learn the basics of LabVIEW in an extremely short period of time.  Upon 

completion of the tutorial (approximately 50 hours), one can implement several small 

applications including file manipulation, data manipulation and GPIB instrumentation 

control.  

• In its ultimate incarnation, SRP expected that the tool we are developing would be 

executed using date collected in real-time.  LabVIEW is designed to be good at 

developing virtual instrument that access real time data. 

• LabVIEW’s friendly graphical environment makes it possible to effectively perform 

fairly complex array and string manipulations, which are typically more difficult to 

do using text-based languages.   

• There is a perception that software based on graphical programming environment are 

not well suited to large-scale applications, and that the traditional text-based 

programming languages are better suited for developing large applications.  We were 

told that LabVIEW uses hierarchical programming methodologies and abstraction 

mechanisms that allow an efficient management of program complexity in large 
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applications.  So far, we have been satisfied with the way LabVIEW handles 

hierarchical programming and complexity management. 

• We also noted that troubleshooting and debugging in LabVIEW is also easier than in 

conventional text-based languages.  In LabVIEW the edit/compile/link/run sequence 

of traditional programming languages is replaced by the draw/run cycle.   

• The most impressive feature of LabVIEW’s graphical programming environment is 

that LabVIEW programs do not have to be complied into executables prior to 

running.  

 

3.5 Designing the GUI (Graphic User Interface) 

 

In the LabVIEW program environment, the front panel (or GUI) is the window through 

which the user interacts with the program.  The front panel is primarily a combination of 

controls and indicators.  Controls simulate typical input objects you might find on a 

conventional instrument, such as knobs and switches.  Indicators show output values 

produced by the program.  In general, 

 

Controls = Input from the User = Source Terminals, 

Indicators = Outputs to the User = Destinations. 
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Figure 3.3. TOTPS interface 

 

Once we had established the basic front panel for the TOTPS (shown in Figure 3.3), we 

presented it to SRP’s planners and EMS operators.  The indicators and controls were 

made to appear operational through the use of ‘dummy’ data.  We showed SRP operators 

how they would be able to select menu items, push buttons and use the interface just as if 

it were connected to the actual EMS system.  We were able to get feedback from the 

users and immediately make changes based on their comments.  This was a very effective 

method for obtaining agreement by all the relevant parties, since it gave the users a real 

voice in the development process. 

Many traditional text-based software development tools allow the developer to quickly 

build a GUI for demonstration purposes, but then the GUI must be redone in a 
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conventional programming language for implementation.  An advantage of using 

LabVIEW was that we were able to take the GUI developed with the users’ inputs, and 

use it directly in our final product.  All that was required was to strip out the ‘dummy’ 

data, and make the appropriate connections to the actual acquired data.  Thus, we saved 

significant development time by using LabVIEW as both a rapid prototype tool and as 

our programming language during creation of the TOTPS software. 

 

3.5.1 Virtual instrument architecture 

 

LabVIEW’s modularity greatly streamlines the process of developing TOTPS software.   

Each of the functions that make up TOTPS has a main virtual instrument (VI) which 

contains subVIs representing steps in that function.  Likewise, each subVI may contain 

additional subVIs and so on.  Each subVI performs a single function or a group of 

associated functions, which also facilitates the opportunity for code reuse.  The 

modularity can be seen in Figure 3.4, which shows the VI hierarchy of TOTPS.  

Main Function

Read Input
Data Get Date

Predict HST

Calculate the
model

Coefficients

Get data for
maximum load

calculation

Choosing
Training Data

Fix Missing
Data

Interpolate Get temp offset
for temp profile

Display TOT
&HST

prediction by
Model

Calculate
Max Load

 

Figure 3.4. VI hierarchy 
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Begin

Open file (Substation/Site)

Display needed information

Select the training date

Choosing training dates at least 3 days

Having missing data?

Calculate coefficients using linear regression

Fix Missing data

Select the date whose load & temperature profile
will be used for maximum load determination

Add offest to the ambient temperature profile

Calculate the maximum load

Is result
reasonable?

Output the result

End

Yes

No

Yes

No

 

Figure 3.5 Flow chart of TOTPS 
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Figure 3.5 shows the flow chart of the TOTPS process. 

 

3.6 User interface 

 

3.6.1 Data preparation 

 

At SRP, the load, ambient temperature, and TOT for each substation distribution 

transformer are monitored and recorded in the EMS (Energy Management System) on a 

UNIX platform.  They are transferred to a database as a text file annually. 

The structure of the data set files is formed by a description file header and the values of 

load, ambient temperature and top-oil temperature as shown in Figure 3.6. 

 

 

Figure 3.6 Alameda substation data file 

 

The definition of each variable we assigned to the data in the data file, its type and an 

example consistent with the data set shown in Fig. 3.6. is shown in Table 3.1. 
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Table 3.1. Definition of input data file 

Variable Example Variable Type 

Substation Name Alameda String 

Bay Name Bay2 String 

Initial Date 19980101 String 

Initial Time 00:00 String 

Final Date 19990913 String 

Final Time 23:45 String 

Substation for Ambient 

Temperature Measured 

Alameda String 

Load 5.2 Float 

Year 1998 String 

Date 0801 String 

Time 000 String 

Ambient Temperature 56.0 Float 

Top Oil Temperature 37.0 Float 

TGFL 45.5 Float 

M1 0.8 Float 

M2 0.9 Float 

M3 1.3 Float 
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Note that some of the data:   

TGFL: no-load loss at rated load, 

M1: self-cooling mode ‘m’ coefficient for calculating HST, 

M2: first stage cooling mode ‘m’ for calculating HST, 

M3: second stage cooling mode coefficient ‘m’ for calculating HST, 

are not containing in the data file.  These data must be obtained from SRP transformer 

reports. 

 

There are two different kinds of data in the input “.txt” data file: one is the header, 

including the description of the substation, transformer name and parameters; the other is 

the raw data of load (measured in MVA), ambient temperature (measured in Fahrenheit), 

top-oil temperature and hot-spot temperature (measured in Centigrade/Celcius).  

LabVIEW cannot automatically distinguish the header and raw data using the I/O file 

function.  In order to separate these two parts, SRP added a special character ‘@’ to the 

end of first part, just before the first load value of second part.  The program looks for 

this special character and, if found, stores the strings before and after ‘@’ into two 

different arrays for later use. 

 

3.6.2 Data initialization 

 

There are certain functions that our software performs before the user pushes the first 

button.  First of all, several TOTPS software variables must be initialized to respective 

default values.  The Date is set to Jan. 20, all the coefficients of semi-physical top-oil 
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model are set to 0.0.  The fields of ‘Initial Date’, ‘Final Date’, ‘Initial Time’, ‘Final 

Time’ and ‘Base’ are made blank.  The TOT limit value is set to 110.00 Co  and HST 

limit value is set to 150.00 Co .  Only the ‘Open File’ and ‘Get Data’ buttons are shown 

to the user, the others are made invisible.  The ‘Temperature Offset’ default value is set to 

10.00. 

 

3.6.3 Open file (Substation/Site) 

 

The first function users must perform is to open the data file from which they wish to 

return data.  To do this, they must click on the button displayed in the ‘Substation/Title’ 

control box (see Figure 3.3).  This will open a Windows directory window that the user 

can use to locate the designated site.  Normally all the data files are stored on the data 

directory of a local hard drive.  The user must select an existing data file whose type is 

defined as a ‘text document’, as Figure 3.7 shows, 

 

Figure 3.7 Choose file to read 
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If the user tries to move on to the next step (selecting a date) before opening a data file, a 

dialog box (Figure 3.8) will pop up to remind him to first select an input data file.  After 

selecting the file, another dialog box (Figure 3.9) will appear asking him if he want to 

replace the “temp.txt” file.  The user should hit the “Replace” button to go to next step. 

 

 

Figure 3.8 Message reminds opening a file 

 

 

Figure 3.9 Dialog for the replace button 

 

3.6.4 Get data 

 

To choose the date for training, the ‘Get Data’ entry box is used. In this box the user 

specifies the Month in the range of 1 to 12 (representing January to December), the Day 

in the range of 1 to 31 and the Year (using four digits).  Figure 3.10 shows the structure 

rings of labVIEW, which are special numeric objects used to make these selections. 
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Figure 3.10 Choosing data 

 

If the user selects a date beyond the initial date and final date associated with date in the 

data file, an error message will pop up (Figure 3.11) to indicate that the selected date is 

not between the initial date and final date.  In this case, the user has to choose another 

date. 

 

 

Figure 3.11 Error message 

 

Once the ‘Get Data’ button is pushed, load, TOT, ambient temperature and HST data will 

be displayed for a 10 day period centered on the date selected as shown in Figure 3.13.  

For example, if you select 10/15/1998, you will see data displayed for dates from 

10/10/1998 to 10/19/1998 (Figure 3.12).  It includes 5 days before and 4 days after the 
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selected date.  The plots in the middle of the screen will display the load, ambient 

temperature (AMB) and top-oil temperature (TOT) curves of that 10 days (Figure 3.13). 

 

 

Figure 3.12 Display 10 days’ date 

 

 

Figure 3.13 Plot for the Load, Amb and TOT 
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Our model does not incorporate sophisticated calendar development.  For example, we 

have not included a leap year checking function in the program.  So if the user chooses 

February 29 and unfortunately that year is not a leap year, a problem will occur when the 

program tries to read the data file, and all the displays will be set to 0.  

 

3.6.5 Choosing training data 

 

The user chooses training data by clicking the ‘radio button’ in the ‘Choosing Training 

Data’ entry box.  The color of the radio button will change from gray to black if the user 

clicks on it, as shown in Figure 3.14.  (On the screen, the radio button changes from gray 

to orange.)  

 

 

Figure 3.14 Pick 6 days for training 

 

It was the conclusion of SRP that the user should be given the responsibility for choosing 

the training data for the semi-physical model.  Our research shows that 3 days is the 

minimum time period to get optimal coefficients that can accurately predict TOT.  The 
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user must choose at least 3 dates to get the optimal coefficients, otherwise TOTPS will 

pop up an error message (Figure 3.15).  

 

 

Figure 3.15 Error message for at least 3 dates 

 

In order to give users a friendly user interface, we put four different kinds of input and 

calculated data on the same plot with different colors (Figure 3.16).  In the display area, 

the green curve shows the dates the user has chosen. In this way, users can distinguish 

which data they have picked for the training.  Table 3.2 shows the color specifications, 

for the four plots of TOTPS from top to bottom. 

 

 

Figure 3.16  Display date of TOT, predicted H.S. 

 

 

 



 

 41

Table 3.2. Different color indication 

Color Load Amb TOT H.S.T Data Type 

White X X X X Input 

Yellow    X* Simulated 

Red X X X X Predicted 

Dark Blue X X X  Limit 

 

*Note that the HST data is simulated using the algorithm described in chapter 2 only when no HST data is 

available in the input data file. 
 

3.6.6 Fix missing data 

 

When the computer sensors are measuring data, some unexpected events may interrupt 

the sampling of data, such as power shut down, communication block etc.  When this 

happens, the equipment will record a value of –1 instead of the true value; hence a –1 in 

the data indicates bad data.  

 

It is preferable that the user chooses good data for model training, but sometimes there 

will be a requirement to use a specified date’s data, which could contain bad data.  If such 

dates are selected, we have shown that the algorithm will give acceptable results if we 

‘fix’ the missing (bad) data using linear interpolation.  Table 3.3 shows a simple example 

of corrected data that results from interpolating. 
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Table 3.3 Linear interpolate 

Point 1 2 3 4 5 6 7 

Data value before 10 -1 -1 -1 -1 -1 22 

Data value after 10 12 14 16 18 20 22 

 

Figure 3.17 and Figure 3.18 show the results of fixing missing data.  Note that the scale 

of plot changes in Figure 3.18 because of fixing the missing data with linear interpolate. 

 

 

Figure 3.17 Load before fixing missing data 

 

 

Figure 3.18 Load after fixing missing data (Note the change in scale.) 

 

Not all of the missing data needs to be fixed.  Data only needs to be fixed if the missing 

data occurs in the days selected.  To fix missing data the user must simply click on the 

button in the ‘Fix Missing Data’ entry box.  If missing data does not occur during the 
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dates selected, it is not necessary for the user to click the ‘Fix Missing Data’ button.  

However, if missing data does occurs at other (non-selected) dates, clicking the ‘Fix 

Missing Data’ button can change the scale and give the user more resolution as described 

earlier.  If missing data is not fixable in the selected days, the user must return to the 

previous step to choose other training data; otherwise an error message will pop up 

(shown in Figure 3.19) when the user tries to calculate model coefficients with the 

‘Calculate Coefficients’ button 

 

Figure 3.19 Remind for the bad data chosen 

 

3.6.7 Calculate coefficient 

 

After choosing the data for training and fixing the bad data (if desired and/or necessary), 

the linear regression algorithm discussed earlier can be used to calculate the ‘k’ 

coefficients of equation (3.1). 

4321 )(*)1(*)1(*)1( kkTOTkkAmbkkLoadkkTOT +++++=+  (3.1) 

 

The user can get these coefficients by clicking the button in the ‘Calculate Coefficient’ 

program control box.  The predicted top-oil temperature based on the input load, ambient 

temperature and calculated coefficients are also plotted on the same set of axis (in 
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yellow) that display the input TOT.  The prediction of TOT is usually extremely accurate, 

the input TOT and predicted TOT are almost the same as shown in Figure 3.20. 

 

 

Figure 3.20 Calculate coefficient 

 

3.6.8 Get the load/temperature profile 

 

After the coefficients are obtained, the user can choose the date for the load and 

temperature profiles that he wants to use to calculate maximum transformer load.  He can 

get the predicted ambient temperature profile from historic data.  We give users the 

freedom to adjust the temperature profile (Figure 3.21).  For example, the temperature for 

the same day of next year may be 10 degrees higher.  To adjust the temperature profile 

the user must simply chooses a numeric number (could be negative) and click on the 

button in the ‘Temperature Offset’ entry box. 

 

Figure 3.21 Get ambient temperature profile 
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3.6.9 Calculate the maximum load 

 

After getting the load and ambient temperature profiles of selected date, TOTPS uses the 

iteration algorithm described in Chapter 2 to calculate the maximum load that this 

transformer can endure without exceeding the operation limits.  The TOT limit is 110 

Co . The HST limit is 150 Co .  Both of these limits may be changed by the user using 

the lines in the ‘Cal. Max Temp’ box as shown in Figure 3.22.  To calculate the 

maximum load the user must simply click on the button in the ‘Cal. Max Temp’ entry 

box shown in Figure 3.22.  

 

Figure 3.22 Red button for maximum value 

 

Once the maximum load is obtained, TOTPS will display the maximum load, ambient 

temperature and TOT curves (Figure 3.23).  The white color curve represents the current 

selected load, ambient temperature, TOT and HST profile, the red color curve represents 

the predicted maximum load, TOT, HST profile.  The dark blue color curve represents 

the TOT limit and HST limit. 
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Figure 3.23 Get maximum temperature 

 

The maximum load limit can be dictated by either the TOT or HST limits. (The example 

shown in Figure 3.22 is one in which the maximum load was limited by the HST limit.)  

The limit (HST or TOT) that reaches first, as the load is increased, is indicated by the 

‘radio button’ in Figure 3.22.  The one that turns red marks the thermal limit.  

 

 

 

 

 

 

 

 

Red color curve

White color curve

Dark blue color curve
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4. ASSESSING TOTPS RELIABILITY 

 

4.1 Introduction 

 

We built the TOTPS program with LabVIEW software using the semi-physical model to     

predict the transformer’s top-oil temperature.  We got good predictions from a wide range 

of coefficients by using TOTPS.  For example, the load coefficient, 1k , ranged from 

about –0.5 to 8.0 for ten different SRP transformers; even though this range was large, 

the TOT prediction obtained using these coefficients was good and the maximum error 

between calculated TOT and predicted TOT was less than Co3± , which was the 

criterion set by SRP for the good prediction.  Each substation had similar transformers 

under similar operating conditions; hence we expected to get similar 1k  coefficients, not 

the wide range of 1k  coefficients we obtained.  We hypothesized that there were several 

possible causes that led to this wide range of 1k  coefficients: quantization noise, other 

noise and absence of significant driving variables.  In this chapter, we investigate the 

effects on the 1k  coefficient of quantization noise and other noise added to the driving 

variable. 

 

4.2 Semi-physical model unreliable coefficients 

 

An example of the range of 1k  coefficients we obtained during 9 consecutive 10-day 

intervals on a single transformer is shown in Table 4.1 (a).  Table 4.1 (a) shows a list of 

coefficients calculated by a linear regression algorithm for different data sets taken from 
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the same transformer (Pringle substation bay 3).  Table 4.1 (b) shows a list of coefficients 

for 10 similar but different transformers.   

Table 4.1 Coefficients list  

Day k1 k2 k3 k4
01-10 -0.2285 -0.0004 0.8333 7.8057
11-20 0.1527 0.0010 0.9977 0.0430
21-30 4.9471 -0.0002 0.9722 0.0629
31-40 0.5939 0.0045 0.9847 0.2680
41-50 -0.1299 0.0005 0.9940 0.2076
51-60 0.0686 0.0021 1.0005 -0.1341
61-70 -0.6978 0.0018 0.9991 0.0149
71-80 0.1047 0.0009 0.9892 0.4021
81-90 0.1789 0.0001 0.9549 1.7676  

(a) Pringle substation bay 3 coefficients 

Substation k1 k2 k3 k4
alemeda1 4.1792 0.0293 0.9416 0.0448
arcadia2 1.8429 0.0209 0.9582 -0.0496
collier2 0.2322 0.0026 0.9844 0.3766
corbell3 1.4172 0.0194 0.9576 0.1771
falcon3 1.9766 0.0281 0.9468 -0.1884

fountain2 3.8987 0.0284 0.9325 0.6973
kay2 2.5245 0.0259 0.9476 0.1635

pringle3 -0.2285 -0.0004 0.8333 7.8057
sheely1 -0.5028 0.0059 0.9783 0.5261

sunlakes2 8.0832 0.1182 0.7769 0.8206  

(b) List of coefficients for different substation 

 

One source of noise that we thought might cause the large 1k  range was the TOT 

measurement error caused by old-style mechanical temperature transducers.  Earlier 

research [1] showed that a type of hysteresis would create problems when we tried to 

apply the algorithms to transformers.  To avoid this problem, we limited our analysis to 

data taken from the substations whose data were generated from solid-state temperature 

transducers; hence the range of coefficients displayed in table 4.1 cannot be caused by the 

hysteresis of mechanical temperature transducers.   



 

 49

 

One possible cause of the wide range of 1k  coefficients, we hypothesized, might be due 

to quantization measurements and other noise. 

 

4.3 Quantized and non-quantized data 

 

In the semi-physical model of the transformers that were studied, the optimal coefficients 

we calculated were based on measured data: TOT, ambient temperature and load.  The 

measured TOT and ambient temperature data that was available for the majority of the 

duration of this research was rounded to two significant digits, load (measured in MVA) 

was rounded to three significant digits.  We refer to this as ‘old-style’ data.  More 

recently SRP has been updating their EMS system and the data logged by the new EMS 

system has 4 digits of precision.  This data we refer to as ‘new-style’ data.  Table 4.2 and 

Table 4.3 show two typical data segments from the old-style and the new-style data.  

Table 4.2 Old-style data 
Load Year Data Time Tamb(F) TOT(C)

3.9 1998 0101 0015 55 37
3.8 1998 0101 0030 55 37
3.8 1998 0101 0045 55 36
3.8 1998 0101 0100 55 36
3.8 1998 0101 0115 55 36
3.8 1998 0101 0130 55 36  

 

 

 

Table 4.3 New-style data 
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Load Year Data Time Tamb(F) TOT(C)
3.8716 1998 0101 0015 54.6712 37.4861
3.8123 1998 0101 0030 54.9073 36.9368
3.7821 1998 0101 0045 55.0129 36.4567
3.8231 1998 0101 0100 55.0794 35.6877
3.8251 1998 0101 0115 54.8811 36.3689
3.7627 1998 0101 0130 54.5864 36.1392  

 

The old-style data’s TOT is rounded to the nearest integer (such as 65) and the new-style 

data’s TOT is rounded to 4 decimal digits (such as 64.5318).  To estimate the effects of 

using greater precision on the range of 1k  value obtained from similar transformers under 

similar operating condition, we asked SRP to supply us with old-style and new-style data 

for a transformer, both measured over the same time interval.  Tables 4.4 and 4.5 show 

that the range, over which the 1k  coefficient varies, decreases from 

=),( max1min1 kk (0.3992, 2.5907) for the old-style data to =),( max1min1 kk  (0.9395, 2.3027) 

for the new-style data.  

Table 4.4 Alameda1 old-style (quantized) data 

Day k1 k2 k3 k4
01-10 2.5907 0.0162 0.9659 0.1921
11-20 1.4386 0.0187 0.9560 0.5012
21-30 1.6416 0.0170 0.9633 0.2492
31-40 0.4979 0.0204 0.9570 0.3441
41-50 0.3992 0.0198 0.9500 0.6405
51-60 1.2813 0.0194 0.9635 0.0984  

      Table 4.5 Alameda1 new-style (non-quantized) data 
Day k1 k2 k3 k4

01-10 2.3027 0.0156 0.9726 -0.0355
11-20 1.1995 0.0182 0.9619 0.2911
21-30 2.0906 0.0150 0.9723 0.0220
31-40 1.0586 0.0182 0.9667 0.1000
41-50 0.9395 0.0187 0.9610 0.2953
51-60 1.4472 0.0180 0.9738 -0.1804  
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Unfortunately, the range of 1k  values obtained from the new-style data is still too large to 

be useful in predicting transformers’ peak loading.  We hypothesized that one possible 

cause of the wide range of 1k  values could be noise in the measured data. 

 

4.4 Simulated data with noise 

 

Our experiments with large sets of real data from SRP showed that our model was good 

for predicting the TOT, but the optimal coefficients we got varied over an unacceptably 

wide range.  We suspected that this may be due to the noise portion of the driving 

variables.  In order to study the effects of noise added to the driving variables, we 

generated a set of simulated data for testing by using the equation, 

4321 ]1[][][][ kkTOTkkAmbkkLoadkkTOT +−++=  (4.1) 

Where, 

)1)((1 +∆+

∆
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θ fl : top-oil rise over ambient temperature at rated load, °C, 

To : time constant at rated KVA (hr.), 

R: ratio of load loss to no-load loss at rated load, 
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t∆ : the sampling period. 

We selected the values of parameters RT flo ,,θ  from the transformer test report: 50=flθ , 

5=oT , 10=R  and 25.0=∆t .  Using these values, the simulated coefficients we 

obtained were the following: 

1645.21 =k , 

0476.02 =k , 

9524.03 =k , 

2165.04 =k . 

We picked the load, initial value of TOT and ambient temperature from a real data set 

(Arcadia substation), then calculated the theoretically exact result (to within the error of 

the Forward Ruler rule used in (4.1)) for TOT as shown in Figure 4.1. 
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Figure 4.1 Simulated data by simulator 
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We then tested our simulation and regression algorithms by putting the simulated data 

into our semi-physical model linear regression algorithm.  Our linear regression 

algorithm gave us the optimal coefficients shown in Table 4.6.  As should be the case, we 

got exactly the same results as the simulated coefficients for all 10-day time intervals.  

This proved to us that our simulator and regression algorithm were working correctly.   

Table 4.6 Results for simulated data 

Day k1 k2 k3 k4
01-10 2.1645 0.0476 0.9524 0.2165
11-20 2.1645 0.0476 0.9524 0.2165
21-30 2.1645 0.0476 0.9524 0.2165
31-40 2.1645 0.0476 0.9524 0.2165
41-50 2.1645 0.0476 0.9524 0.2165
51-60 2.1645 0.0476 0.9524 0.2165  

 

To simulate the effects of noise, we added random noise (uniformly distributed over a 

fixed interval) to the simulated data.  We added random noise separately to load, ambient 

temperature and TOT, then used linear regression to calculate the semi-physical model 

coefficients.  We conducted this study using several different noise amplitudes.  Our 

results, shown in Table 4.7, showed that our algorithm was insensitive to noise in the load 

and ambient temperature variables but that even small amounts of noise added to TOT 

would cause a significant change in the coefficients. 

 

Note that the noise amplitude in Table 4.7 is specified as the percent of maximum magnitude of the signal 

to which the noise was added.  For example, if the maximum TOT value was 50 Co  and the noise 

amplitude was 1%, then the random noise added to TOT was between –0.5 and 0.5.  
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Table 4.7 Coefficients after adding noise 

Noise =1%
k1 k2 k3 k4

Without Noise 2.1645 0.0476 0.9524 0.2165
Load Noise 2.1540 0.0476 0.9523 0.2177
Tamb Noise 2.1537 0.0476 0.9524 0.2166
TOT Noise 2.0658 0.0476 0.9524 0.2164

Noise =2%
k1 k2 k3 k4

Without Noise 2.1645 0.0476 0.9524 0.2165
Load Noise 2.1379 0.0476 0.9522 0.2206
Tamb Noise 2.1429 0.0476 0.9524 0.2167
TOT Noise 1.5640 0.0476 0.9524 0.2168

Noise =4%
k1 k2 k3 k4

Without Noise 2.1645 0.0476 0.9524 0.2165
Load Noise 2.0459 0.0471 0.9512 0.1904
Tamb Noise 2.1023 0.0470 0.9537 0.1845
TOT Noise 0.3329 0.0636 0.9273 0.6219  

 

4.5 Conclusion 

 

The above research showed that in order to improve the reliability of optimal coefficients 

of the semi-physical model, we must use the new-style data and choose data from 

substations whose data were generated from solid-state temperature transducers.  We also 

showed that our algorithm was insensitive to noise added to load and ambient 

temperature measurement, but was very sensitive to noise added to TOT.  But we still can 

not solve the problem of unreliable coefficients, so we thought it was due to the absence 

of driving variables. 

 

The wide range of 1k  coefficients that we get from our algorithm is still too wide to allow 

us to use our results to extrapolate (maximum transformer load), although they are  
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sufficient for interpolating (i.e. predicting TOT values) for conditions similar to those 

used in obtaining the model coefficients. 

 

The unacceptable range of 1k  coefficients obtained from our algorithm must be due to 

one of two causes.  Either the noise in the measured (driving) TOT variable is too large or 

we are missing some significant driving variable from our model. 
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5. RADIATION AND WIND VELOCITY 

 

5.1 Introduction 

 

The semi-physical model is a good predictor of transformer top-oil temperature, however 

the semi-physical model yields a wide range of coefficients for data that appears good to 

the eye.  One reason for that wide range of coefficients may be the lack of driving 

variables in our model.  In this chapter, we investigate the effects of wind velocity and 

radiation as driving variables on the reliability of coefficient estimation. 

 

5.2 Semi-physical model 

 

5.2.1 Prediction and planning 

 

Figure 5.1 shows a typical example of the TOT error (defined as the difference between 

actual TOT value and predicted TOT value by the semi-physical model) using the 

calculated coefficients of load and ambient temperature.  These results were obtained 

using non-quantized tier-one data from the Alameda substation.  Tier-one data is limited 

to cooling due to natural convection in the oil and core.  (If we try to model all three tiers 

of cooling (OA/FA, FA, FOA) using one set of 1k  coefficients, the errors are not nearly 

as low.)  The training data set included 10 days of data as shown in Figure 5.2.  The error 

shown is for the training data.  SRP has defined acceptable error as C03± .  Since the 
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maximum error in this plot is only 1 Co , (which accounts for about 5% of the TOT) 

prediction results like these are acceptable to SRP.   

Semi-physical model training data prediction
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Figure 5.1. Semi-physical model training data prediction 

 

Then we chose another 10 days of data (testing data) to predict the TOT value by the 

semi-physical model using the calculated coefficients of training data.  The testing data 

set included 10 days of data as shown in Figure 5.3. 
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Figure 5.2 10 days of training data 
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Figure 5.3 10 days of testing data 
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Figure 5.4 shows the TOT error (defined as the difference between actual TOT value and 

predicted TOT value by the semi-physical model) of testing data using the calculated 

coefficients of training data. 

Semi-physical model testing data prediction
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Figure 5.4 Semi-physical model testing data prediction 

Comparing the results from Figure 5.1 and Figure 5.4, we can see that the semi-physical 

model is a good predictor of transformer top oil temperature. 

 

The results of Figure 5.1 and Figure 5.4 were generated using the TOTPS tool.  When we 

ran the TOTPS tool again and again for different transformers and different training data, 

we found that the calculated coefficients would vary greatly and sometimes the 1k  

coefficient would be negative.  The negative 1k  coefficient implies that as the load of the 

transformer increases, the transformer gets cooler.  This is clearly a non-physical result.  
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The truth is, the more load losses consumed by a transformer, the higher the TOT will be.  

We decided to determine whether the prediction error increases as the 1k  coefficients 

vary.  We used the real data, along with the semi-physical model and obtained a wide 

range of 1k  values.  We then plotted the peak value of the TOT prediction error (for the 

various 1k  values we obtained) versus 1k .  Error was defined here as the difference 

between the actual TOT value and the predicted TOT value.  These errors for the 1k  

coefficients obtained for one substation (Alemada) are shown in Figure 5.5.  We used the 

above 1k  coefficients and the real testing data (shown in Figure 5.3), along with the semi-

physical model and then plotted the peak value of the TOT predication error versus 1k .  

These errors for the 1k  coefficients are shown in Figure 5.6.   
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Figure 5.5 Maximum error vs K1 (training data) 
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Max Error vs K1
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Figure 5.6 Maximum error vs K1 (testing data) 

 

Although the 1k  coefficient vary widely, the maximum error of TOT is within the 

acceptable range ( C03± ), which indicates that the prediction of TOT is acceptable.  

Extrapolation of the peak load with such a wide range of 1k  coefficients will however 

produce widely varying and unusable results.  

 

We expected that regardless of what methods we employ to limit the range of 1k  

coefficients, there would always be some variability in this, and the other coefficients.  

We wanted to determine what range of 1k  coefficients was acceptable, so that we have a 

target to shoot for in our research.  In discussions with SRP we determined that if we can 

reliably predict maximum load to within %5±  using various sets of training data, then 
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our algorithm would be useful to in a production mode.  Because peak load prediction is 

dominated by the 1k  (load) coefficient, we conducted a study of the effect of varying 1k  

on peak load predicted by our algorithm.  The result of this study, shown as a plot of peak 

load versus 1k , is shown in Figure 5.7.  This figure shows that, for a transformer whose 

true 1k =1.816, the peak load predicted by our algorithm will vary by %5±  provided the 

1k  varies by no more than %10± .  Our conclusion is that if we can reliably predict 1k  to 

within %10± , we should be able to give meaningful peak load predictions. 

 

Peak Load vs K1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.2 1.4 1.6 1.8 2 2.2 2.4

K1

Pe
ak

 L
oa

d 
(p

u)

Figure 5.7 Peak load vs 1k  

In this study, we only change 1k , while keeping 42 kk −  constant.  We know from our 

work that when we use different data sets, all coefficients obtained from linear regression 

vary; hence our target of achieving a %10±  change in 1k  is taken as an approximate 
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target.  Once we are getting more reliable sets of coefficients, we will need to reassess 

whether this range is acceptable. 

 

5.2.2 Matrix analysis 

 

There may be several causes that create the wide range of coefficients from apparently 

similar data sets.  One cause is rooted in the numerical operations used in finding the 

model coefficients.  Referring to the definition of the solution of the linear regression 

problem, (2.14), you will see that in order to get the model coefficients we need to solve a 

problem of the form Ax=b, where A is the W matrix and YXb T= .  For a typical 2x2 

matrix A, which has the elements, 









=

2212

1211

aa
aa

A , 

the inverse matrix of A is given by, 









−

−

−
=−

1112

1222
2
122211

1 1
aa
aa

aaa
A . 

The sensitivity of x to the A matrix coefficients is given by, 

)(1
2121222

122211
1 baba

aaa
x −

−
= . 

If the A matrix is ill conditioned, small variations in the entries of A or b will lead to 

large changes in the solution for x.  Condition number is used to indicate whether the 

calculated matrix is ill conditioned or not.  The L-2 norm condition number is the ratio of 

the largest singular value of matrix to the smallest.  Large condition numbers indicate an 

ill-conditioned matrix.  Figure 5.8 shows the matrix and the condition number of matrix.  
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Figure 5.8 Condition number of matrix 

 

When we re-scale the driving variables and divide them by their maximum values and 

recalculate the coefficients, the condition number decreases a lot as shown in Figure 5.9.  

The coefficients obtained from the natural input and scaled input are the same as shown 

in Table 5.1.  This is to be expected since the condition number of the matrix in Figure 

5.8 and 5.9 is sufficiently good to make the linear regression reliable. 
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Figure 5.9 Condition number of re-scale matrix 
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Table 5.1 Comparing of scale and re-scale coefficients 

Day k1 k2 k3 k4
01-10 0.59644 0.05351 0.93946 0.46635
11-20 -2.79214 0.06186 0.92134 0.85565
21-30 -7.88257 0.06655 0.91793 1.06169
31-40 1.29597 0.05634 0.93596 0.45895
41-50 1.22133 0.06014 0.92908 0.62849
51-60 1.64116 0.05747 0.93432 0.51152  

(a). Natural coefficients 

Day k1 k2 k3 k4
01-10 0.59644 0.05351 0.93946 0.46635
11-20 -2.79214 0.06186 0.92134 0.85565
21-30 -7.88257 0.06655 0.91793 1.06169
31-40 1.29597 0.05634 0.93596 0.45895
41-50 1.22133 0.06014 0.92908 0.62849
51-60 1.64116 0.05747 0.93432 0.51152  

(b). Re-scaled natural coefficients from scale data 

 

Matrix W is ill conditioned, which means the small changes in the matrix YX T  will 

cause a significant change in the result.  Table 5.2 shows the change of 1k  coefficient in 

percent when there are 10% small changes in the item of the matrix.   

 

Table 5.2 Percentage change in 1k  due to change in YX T  vector and W matrix 

Case
%Change

k1 1 2 3 4 5 6
2.33316 18.081 11.809 1.533 446.184 264.246 171.938

-0.71771 12.871 5.263 0.227 356.572 1527.062 1160.49
1.68014 19.488 12.009 3.609 1571.957 870.68 691.277
1.46798 17.258 12.334 0.122 1010.668 1039.218 38.55
1.59359 10.932 1.762 0.545 80.409 382.223 472.631
1.88384 11.022 2.577 0.125 326.745 421.711 104.966
-0.3069 11.314 1.364 1.431 1883.692 3066.9 4940.592
1.52877 10.394 0.63 0.983 200.689 203.817 414.506
1.24062 9.809 0.014 0.898 262.217 96.643 368.86

0.6955 11.901 0.283 3.942 1443.377 150.839 1604.216
1.89612 9.864 0.346 0.603 296.282 76.862 229.42
1.82294 9.577 0.215 0.379 294.554 83.803 220.751  



 

 66

For the real 3x3 matrix W, which has the items, 


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and matrix YX T , which has items, 










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


=

3

2

1

b
b
b

YX T , 

Table 5.2 shows 6 different cases: 

Case1: 11a  increase by 10%, 

Case2: 12a  increase by 10%, 

Case3: 13a  increase by 10%, 

Case4: 1b  increase by 10%, 

Case5: 2b  increase by 10%, 

Case6: 3b  increase by 10%. 

Small changes in ija  values cause proportional changes in 1k  values, which small 

changes in YX T  values cause disproportionately large changes in the 1k  values. 

 

5.3 Solar radiation 

 

A significant driving variable in our model may be solar radiation.  In this section we 

develop a solar radiation model.  
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5.3.1 Fundamentals of solar radiation 

 

To account for solar radiation, we first need to be able to predict quantitatively the Sun’s 

motion and its effect on the energy flux on a given location on the earth.  Specifically, we 

need to understand the following aspects of solar radiation [3], 

 

Beam radiation 

Solar radiation intercepted by a surface with negligible direction change and scattering in 

the atmosphere.  Beam radiation is also referred to as direct radiation. 

Diffuse radiation 

Solar radiation scattered by aerosols, dust, and by the Rayleigh mechanism, it does not 

have a unique direction. 

Total radiation 

The total of diffuse and beam radiation, sometimes is referred to as global radiation. 

 

5.3.2 Calculation of solar radiation 

 

Solar radiation is a significant source of heat flux in Phoenix, Arizona (which is the 

location of the transformers under study).  Preliminary hand calculations indicate that 

heat flux could contribute as much heat as that produced by 25% of the full load losses of 

the transformer.  Modeling this heat source could consequently improve the performance 

of the model.  The simplest method of calculating atmospheric absorption of solar 

radiation for clear skies is using Bouger’s law equation [3], 
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atmob II τ*=  (5.1) 

Where, 

bI : solar radiation at the surface in the direction of the sun (the direct normal radiation), 

0I : solar constant, the average amount of solar radiation in the near earth space, 

atmτ : atmospheric transmittance. 

 

For an observed substation, we first can get the solar constant 0I  by, 

))365/**2cos(*034.01(*353.1 nIo π+=  (5.2) 

Where, 

n: the date number countered from January 1. 

Its measured value is 1.353 2/ mkW .  However, since the sun-earth orbit is elliptical, the 

sun-earth distance varies by 7.1±  percent during a year, and the extraterrestrial radiation 

also varies slightly by the inverse-square law [3]. 

 

The atmospheric transmittance atmτ  is given by, 

)),0(*095.0exp()),0(*65.0(exp(*5.0 αατ mmatm −+−=  (5.3) 

where, 

),0( αm : the air mass (radiation attenuation in the atmosphere) at sea level (altitude 0). 

 

The air mass at sea level (altitude 0) is given by, 

ααα sin*614])sin*614(1229[),0( 5.02 −+=m  (5.4) 

Where, 
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α : altitude angle. 

α

Vertical

Horizontal
plane

S

sα

 

Figure 5.10 Horizontal map 

 

Figure 5.10 shows the relationship between altitude angle α  and solar-azimuth angle sα .  

The altitude angle α  is measured from the local horizontal plane upward to the center of 

sun.  The azimuth angle sα  is measured in the horizontal plane between a due south line 

and the projection of the site-to-sun line on the horizontal plane. 

)cos(*)cos(*)cos()sin(*)sin()sin( hLL ss δδα +=  (5.5) 

)cos(/)sin(*)cos()sin( αδα hss =  

where, 

h: the solar hour angle, is equal to o15  times the number of hours from local solar noon, 

sδ : declination of sun, 

L: the latitude of the location. 
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Figure 5.11 Zenith map 

 

Figure 5.11 shows the map of solar radiation over the point P on the earth.  We can get 

the degree of declination (dh) and the minute of declination (dm) from Table 5.3 [3], then 

we get the declination of the sun sδ , 

180
*)60/( πδ dmdh

s
+

=  (5.6) 
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Table 5.3 Summary Solar Ephemeris 

Date Degree(dh) Minute(dm) 

Sept.1-4 8 35 

Sept.5-8 7 7 

Sept.9-12 5 37 

Sept.13-16 4 6 

Sept.17-20 2 34 

Sept.21-24 1 1 

Sept.25-28 0 32 

Sept.29-30 -2 6 

 

These equations can be used to calculate the heat flux as a function of latitude and time of 

day and year.  Determining the amount of heat flux received requires that the size and 

orientation of each surface of the transformer be known.  The total heat flux available to 

the transformer is then the sum of heat flux available to each surface.   

 

We get the size and orientation of each surface of the transformer of Arcadia substation 

by SRP’s transformer structure map as shown in Figure 5.12.  The specification for the 

length a, width b and height c is the following, a=164in, b=64in and c=131in. 
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Figure 5.12 Transformer face 1 orientation toward due north 

 

The component of solar radiation, cbI , , intercepted by the surface of a collector is given 

by, 

)cos(*, iII bcb =  (5.7) 

where, i, the incidence angle for a fixed surface is given by, 

)sin(*)sin(*sin*)cos(
))cos(*sin*sincos*(cos*)cos(*)cos(
))cos(*sin*coscos*(sin*)sin()cos(

h
LLh

zLLi

ws

ws

ws

αβδ
αββδ
αββδ

+
++

−−=
 (5.8) 

where, 

wα : wall-azimuth angle defined in the same manner as the solar-azimuth angle sα  

β : collect tilt angle defined as positive for surface facing south. 
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Figure 5.13 Definition of incidence angle i 

 

Figure 5.13 shows the definition of incidence angle i, surface title angle β , solar-altitude 

angle α , wall-azimuth angle wα , and solar-azimuth angle sα  for a non-south-facing, 

titled surface.  The incidence angle i depends on the three basic solar angles: Lhs ,,δ  as 

well as on the two angles that characterize the surface orientation: β−  (surface facing 

north) and wα .  

 

There are several special cases that we encountered.  The incidence angle for them is 

given by the following, 

• Vertical surface facing due south 

)cos(*)sin(*)cos()cos(*)sin( hLL ss δδ +−  

• Horizontal surface 
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)cos(*)cos(*)cos()sin(*)sin( hLL δδ +  

• Vertical surface facing west 

)cos(*)sin( αα s−  

• Vertical surface facing east 

)cos(*)sin( αα  

• Vertical surface facing due north 

))cos(*)sin(*)cos()cos(*)sin(( hLL ss δδ +−−  

The total solar radiation (SE) is the sum of all of the solar radiation intercepted by all 

surfaces of a collector. 

 

The total solar radiation for a transformer of dimensions a=164in, b=64in, c=131in is 

shown in Figure 5.15.  Because SRP (and other utilities) may not be interested in 

determining the orientation of their transformers, we also investigated the total solar 

radiation collected using the transformers orientated of Figure 5.14.   
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Figure 5.14 Transformer face 1 orientation toward due west 
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The solar radiation collected by this orientation is shown in Figure 5.16.  Comparing the 

results seen in Figure 5.15 and Figure 5.16 shows that the orientation of the transformer 

has a relatively minor effect on the total solar radiation profile experienced by the 

transformer.  
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Figure 5.15 Solar radiation (face 1 orientation toward due north) 



 

 76

Solar radiation (west)
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Figure 5.16 Solar radiation (face 1 orientation toward due west) 

 

Note that accurately determining the heat flux received by the transformer requires that 

the effects of reflection, elevation and air-pollution be taken into account.  Because we 

will be including the radiation heat flux (Figure 5.15) in our linear regression procedure 

in the form, 

45
2

123 ][][][]1[][ kkPkkIkkkkkk Radambtoptop ++++−= θθθ , (5.10) 

getting the magnitude of the heat flux is unimportant; the linear regression algorithm will 

determine the optimal multiplier value, 5k , that will ultimately control the magnitude of 

the radiation term. 
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5.4 Wind velocity 

 

5.4.1 Introduction and data preparation 

 

Just as external fans cool the SDT by changing its thermodynamics, so too does wind 

change the thermal performance of an SDT.  We suspected that wind may be a significant 

driving variable and decided to include it in our model. 

 

Our first task was to acquire wind data for the SRP prism site.  We obtained the wind 

velocity data from Nancy Selover, Assistant State Climatologist of the office of 

Climatology at Arizona State University.  The wind velocity data we received for 17 SRP 

prism substations (Alamada, Arcadia, Collier, Corbell etc.) included measurements 

collected from July 1999 to Feb. 2000. The structure of data file is showed in Table 5.4. 
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Table 5.4 Structure of input wind data file 
 

Explanation Value 

Year Year 1999 

Mo Month 07 

Da Day 01 

Time 5 minutes sample period from 00:00AM 55 

St Station number 3 

Temp Temperature (Fahrenheit, whole degree) 56 

Dew Dew point (Fahrenheit, whole degree) 76 

RH Rain in hundredths of an inch (2 decimal place %) 88 

Rain Rain or Sun/Cloudy 1 

Wdir Wind direction in whole compass degree 0 through 

360, (clockwise) where 0=no direction, 360=north 

247 

WSpd Wind speed (mph, 5 minutes average) 7 

PkGst Peak gust speed (mph, 5 minutes average) 14 

 

5.4.2 Developing a wind model 

 

Developing a model that accounts for cooling due to wind flow is a complicated problem.  

To do this properly, we need to know the wind velocity near the SDT as well as the 
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detailed geometry of the SDT.  The next step is then to develop equations that 

approximate the heat flow from the transformer to the surrounding air.  This problem, in 

itself, is a major research problem, which is beyond the scope of this project.  Further, we 

do not have wind velocity data near the surface of the SDT.  We only have wind velocity 

measured somewhere in the substation in which the SDT resides.  Also, we do not know 

the geometry of the SDT.   While we could, with some research, find this geometry, SRP 

has no interest in developing geometric models for all of their SDTs – and (we suspect) 

neither do other utilities who might use the techniques that we’re researching. 

 

Based on these facts we decided to try a simple wind model that would fit in our linear 

regression algorithm.  We decided to model the effect of wind on TOT as linear.  That is, 

we approximating the TOT defining differential equation to be, 

wywxambutop
top

o dt
d

T θθθθθ
θ

++++−= . (5.11) 

 

Notice that there are two terms in this model that account for wind, wxθ  and wyθ .  

Realizing that SDT are not cubes, we felt we needed to model cooling separately along 

the surfaces running North-South, and along surfaces running East-West.  

Discretizing (5.11) using the forward Euler discretization rule gives the linear form, 

][][][][]1[][ 764
2

123 kVkkVkkkIkkkkkk yxambtoptop +++++−= θθθ  

 (5.12) 

where, 

1k : coefficient for the input load, 
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2k : coefficient for the input ambient temperature, 

3k : coefficient for the simulated TOT, 

4k : constant coefficient, 

6k : coefficient for the input wind velocity x direction, 

7k : coefficient for the input wind velocity y direction. 

 

5.4.3 Transforming wind data to fit our model 

 

To use linear regression with measured data with the model of (5.12), we needed to 

resolve our wind velocities into two orthogonal directions.  Since the transformers we 

studied were oriented along N-S/E-W grid lines, we resolved the wind velocities in our 

data file into two orthogonal components along these directions.  The velocity that runs in 

the E-W direction is given by, 

)cos(* θVVx =  (5.13) 

The wind velocity that runs in the N-S direction is given by, 

)sin(* θVVy =  (5.14) 

where, 

θ : angle of wind direction with respect to the North in degree, 

V: peak wind velocity, in 15 minutes interval. 

 

Notice that the wind velocities are amplitudes, rather than vectors.  We use amplitudes 

because the cooling takes place as long as the wind is blowing, regardless of the direction 
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in which it is blowing.  Also in chosing the wind velocity, we choose the average wind 

speed instead of the peak gust speed.  

 

5.5 New model for TOTPS 

 

The semi-physical model can give us good prediction but can not give reliable 

coefficients for the real data.  A modified semi-physical model was needed to accurately 

predict the top oil temperature, so we added two additional variables (Figure 5.13), wind 

velocity and solar radiation to the semi-physical model and obtained, 

Load

Amb

Radiation

Wind

TOT

10

1
+sT

 

Figure 5.17 Transformer model 

wywxRambutop
top

o dt
d

T θθθθθθ
θ

+++++−= . (5.15) 

Discretizing (5.15) using the forward Euler discretization rule gives the linear form, 

][][][][][]1[][ 7654
2

123 kVkkVkkRkkkIkkkkkk yxambtoptop ++++++−= θθθ  

 (5.16) 

where, 

1k : coefficient for the input load, 

2k : coefficient for the input ambient temperature, 
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3k : coefficient for the simulated TOT, 

4k : constant coefficient, 

5k : coefficient for the solar radiation, 

6k : coefficient for the input wind velocity x direction, 

7k : coefficient for the input wind velocity y direction. 

 

Using the linear regression algorithm discussed in chapter 1 to calculate the optimal 

coefficients ( 71 kk − ) with the assigned model of (1.15) and the new model of (5.16), we 

can get the results shown in Table 5.5 (a) - (d). 

Table 5.5 Compare coefficients with/without wind, radiation 

(a) Coefficients for semi-physical model 
K1 K2 K3 K4

1~10 2.8089 0.0392 0.9491 0.5054
11~20 3.4749 0.0518 0.9130 1.8320
21~30 2.4262 0.0096 0.9739 0.3050
31~40 2.6937 0.0299 0.9610 0.3670
41~50 1.9194 0.0367 0.9666 0.2376
51~60 4.2012 -0.0061 0.9396 2.2087
61~70 2.9176 0.0036 0.9680 0.7795
71~80 2.1243 0.0340 0.9726 -0.0225
81~90 1.5478 0.0278 0.9694 0.4080

91~100 1.6531 0.0308 0.9729 0.1834
101~110 2.0403 0.0305 0.9769 0.0850
111~120 1.8803 0.0336 0.9661 0.4054
121~130 1.7774 0.0336 0.9564 0.7226  

(b) Coefficients with radiation 
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K1 K2 K3 K4 K5
1~10 0.6842 0.0330 1.0120 -2.1612 0.0342

11~20 1.8955 0.0337 0.9565 0.4550 0.0234
21~30 1.0904 0.0112 0.9897 -0.3418 0.0245
31~40 1.6345 0.0304 0.9802 -0.4569 0.0147
41~50 1.5745 0.0295 0.9788 -0.1784 0.0085
51~60 3.4078 -0.0024 0.9513 1.6384 0.0087
61~70 2.4964 0.0022 0.9773 0.3994 0.0067
71~80 2.0605 0.0330 0.9746 -0.0932 0.0014
81~90 1.1858 0.0041 0.9956 -0.2228 0.0190

91~100 1.3020 0.0253 0.9784 0.0960 0.0051
101~110 1.6275 0.0194 0.9900 -0.1774 0.0066
111~120 1.2044 0.0108 0.9928 -0.1410 0.0143
121~130 0.9350 0.0077 0.9961 -0.2009 0.0204  

(c) Coefficients with wind velocity 

K1 K2 K3 K4 K5 K6
1~10 3.1048 0.0290 0.9461 1.0215 -0.0269 -0.0185

11~20 3.5862 0.0513 0.9099 2.1114 -0.0192 -0.0298
21~30 2.4301 0.0059 0.9742 0.4873 -0.0213 -0.0169
31~40 2.6430 0.0311 0.9599 0.4321 -0.0078 -0.0037
41~50 1.8876 0.0362 0.9662 0.3116 -0.0069 -0.0080
51~60 4.1794 -0.0070 0.9407 2.2043 -0.0038 -0.0082
61~70 2.8889 0.0044 0.9683 0.7768 -0.0033 -0.0096
71~80 2.1063 0.0344 0.9725 0.0035 -0.0030 -0.0049
81~90 1.6840 0.0266 0.9686 0.4087 0.0058 0.0066

91~100 1.6493 0.0308 0.9728 0.1872 -0.0006 -0.0002
101~110 2.0357 0.0304 0.9770 0.0882 -0.0003 -0.0006
111~120 1.8887 0.0336 0.9659 0.4240 -0.0003 -0.0041
121~130 1.6543 0.0339 0.9552 0.8054 -0.0081 -0.0056  

(d) Coefficients with radiation and wind velocity 

K1 K2 K3 K4 K5 K6 K7
1~10 0.9759 0.0271 1.0068 -1.7030 0.0323 -0.0144 -0.0131

11~20 2.1624 0.0356 0.9491 0.8176 0.0206 -0.0145 -0.0204
21~30 1.1385 0.0095 0.9893 -0.2422 0.0236 -0.0094 -0.0069
31~40 1.6351 0.0306 0.9799 -0.4374 0.0146 -0.0013 -0.0007
41~50 1.5477 0.0292 0.9783 -0.1024 0.0085 -0.0067 -0.0077
51~60 3.4119 -0.0031 0.9518 1.6499 0.0085 -0.0014 -0.0075
61~70 2.4686 0.0031 0.9776 0.3970 0.0067 -0.0032 -0.0097
71~80 2.0715 0.0338 0.9736 -0.0367 0.0008 -0.0029 -0.0047
81~90 1.2812 0.0037 0.9947 -0.2129 0.0187 0.0040 0.0042

91~100 1.2998 0.0253 0.9784 0.0981 0.0051 -0.0002 -0.0003
101~110 1.6308 0.0194 0.9902 -0.1889 0.0067 0.0005 0.0016
111~120 1.2148 0.0109 0.9925 -0.1246 0.0142 -0.0010 -0.0023
121~130 0.9441 0.0074 0.9968 -0.2248 0.0206 -0.0001 0.0026  
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We compare the maximum value, minimum value, average value and stand deviation of 

four different cases. 

Case 1: use linear regression for the semi-physical model, get coefficients 41 kk − , 

Case 2: use linear regression for the model with solar radiation, get coefficients 51 kk − , 

Case 3: use linear regression for the model with wind velocity, get coefficients 61 kk − , 

Case 4: use linear regression for the model with solar radiation and wind velocity, get 

coefficients 71 kk − . 

Table 5.6 Comparing of 1k  coefficient 
measure 1 2 3 4
Max 4.2012 3.4078 4.1794 3.4119
Min 1.5478 0.6842 1.6493 0.9441
Ave 2.4204 1.6230 2.4414 1.6756
Std 0.7797 0.7260 0.8022 0.7000
Range 2.6534 2.7237 2.5302 2.4677

case

 

The results in Table 5.6 show that the modified semi-physical model improves the 

reliability of the coefficients a little bit.  The range of coefficient decreases from 2.6534 

to 2.4677. 

 

5.6 Conclusion 

 

We expected the addition of solar radiation and wind velocity to significantly reduce the 

range of 1k  variables obtained through linear regression.  As shown in Table 5.6, this was 

not the case.  Follow-on work will be needed to determine why this is the case and what 

other approach is needed to reduce the 1k  range obtained from linear regression. 
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 

A software tool TOTPS (top-oil temperature prediction system) was created and 

developed to predict the TOT and maximum load a transformer is capable of carrying 

using the semi-physical model.  In this work, several attempts are reported to improve the 

reliability of the optimal coefficients calculated by linear regression.  These attempts 

include eliminating the effect of quantization and noise, and adding additional driving 

variables (such as solar radiation and wind velocity).  It was shown that if the optimal 

coefficients vary within %10±  of the actual value, we still could get an acceptable peak 

load range.  Further research showed that the revised semi-physical model with load, 

ambient temperature, TOT, solar radiation and wind velocity as driving variables tended 

to decrease slightly the range of 1k  coefficients obtained from similar data sets.  Even 

with the addition of these variables, the range of 1k  is still too large to allow the peak 

transformer load to be estimated with confidence. 

 

6.2 Future work 

 

The peak load predicted by the TOTPS software is still not sufficiently accurate to be 

used as a production good tool.  We have been told by the utility system operators that if 

the prediction are not accurate they will very quickly cease to use TOTPS.  Consequently 

the objecting of future works is to improve the consistency with which we can calculate 
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1k  and, hence the peak value of a transformer dynamic load.  There are several other 

methods to get the optimized coefficients, that can be explored including weighted linear 

regression algorithm and neural network methods.  Another model change that may lead 

to improvement is the use of different sets of model coefficients for different operating 

temperature ranges.  A two-tiered/three-tiered model is essential when several different 

thermal dynamic conditions exist, such as when transformer fans and/or oil pumps turn 

on at high load values in summer.  The biggest task remaining is to determine what is the 

cause the wide range of 1k  variable.  Three possible driving variables that may account 

for this wide range of 1k  are rain, radiation to the night sky and cloud cover.       
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