Setting-less Protection: Laboratory Testing

Final Project Report

Power Systems Engineering Research Center
Empowering Minds to Engineer
the Future Electric Energy System

Setting-less Protection: Laboratory Testing

Final Project Report

Project Team

Sakis A. P. Meliopoulos, Project Leader George J. Cokkinides
Georgia Institute of Technology

Graduate Research Assistants
Rui Fan, Renke Huang, Yonghee Lee
Liangyi Sun, and Zhenyu Tan
Georgia Institute of Technology

PSERC Publication 14-03

For information about this project, contact:

Sakis A.P. Meliopoulos
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, Georgia 30332-0250
Phone: 404-894-2926
E-mail: sakis.m@gatech.edu

Power Systems Engineering Research Center

The Power Systems Engineering Research Center (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry and educating the next generation of power engineers. More information about PSERC can be found at the Center's website: http://www.pserc.org.

For additional information, contact:

Power Systems Engineering Research Center
Arizona State University
527 Engineering Research Center
Tempe, Arizona 85287-5706
Phone: 480-965-1643
Fax: 480-965-0745

Notice Concerning Copyright Material

PSERC members are given permission to copy without fee all or part of this publication for internal use if appropriate attribution is given to this document as the source material. This report is available for downloading from the PSERC website.

© 2014 Georgia Institute of Technology. All rights reserved.

Acknowledgements

This is the final report for the Power Systems Engineering Research Center (PSERC) research project T-52G titled "Setting-less Protection". This targeted PSERC research project was funded by EPRI. We express our appreciation to EPRI, and especially to Paul Myrda, Technical Executive, EPRI, for his support and guidance. We also express our appreciation for the support provided by PSERC's industrial members, EPRI members, and the National Science Foundation's Industry / University Cooperative Research Center program.

The authors wish to recognize the postdoctoral researchers and graduate students at the Georgia Institute of Technology who contributed to the research and creation of project reports:

- Rui Fan
- Renke Huang
- Yonghee Lee
- Liangyi Sun
- Zhenyu Tan.

Executive Summary

Present day numerical relays use high end microprocessors for implementing multiple functions of protection, thereby providing many more options for improved protection. At the same time, the additional options have created increased complexity and increased possibilities of human errors, while the basic nature of the problem of selecting settings has remained the same. For example, a transformer protection relay may include all the typical protection functions that traditionally used with electromechanical relays, such as differential, over-current, and voltage over frequency. Since these functions work independently, even if they are implemented on the same relay, they suffer from the same limitations as the common, single relay/single function approach. Each function must be set separately to meet a specified criteria, but the settings must be coordinated with other protective devices. The coordinated settings are typically selected to satisfy requirements that are often conflicting, meaning that compromise settings must be chosen. Because of these compromise settings, occasionally fault conditions can lead to an undesirable relay response. In addition, despite the progress of the last few decades, some protection gaps persist. For instance, we still do not have 100% reliable approaches for certain fault types, such as high impedance faults and faults near neutrals.

Setting-less protection based on dynamic state estimation is an emerging technology that effectively uses advances in numerical relays to improve protection. This protection approach uses simplified settings, just the operating limits of devices. For this reason it was named "setting-less." A more descriptive name is coordination-less protection. The dynamic state estimation approach requires that complex analytics be performed on data acquired by the data acquisition system of a relay.

The setting-less protection method was inspired from the fact that differential protection is one of the most secure protection schemes that we have and does not require coordination with other protection function. Differential protection simply monitors the validity of Kirchoff's current law in a device, i.e., the weighted sum of the currents going into a device must be equal to zero. This concept can be generalized into monitoring the validity of all other physical laws that the device must satisfy, such as Kirchoff's voltage law and Faraday's law. This monitoring can be done in a systematic way by use of dynamic state estimation.

Dynamic state estimation is used to continuously monitor the dynamic model of the component under protection. Specifically, all the physical laws that a component must obey are expressed in the dynamic model of the component. The monitoring system of the component under protection that continuously measures terminal data (such as the terminal voltage magnitude and angle, the frequency, the rate of frequency change), and other variables (such as temperature and speed), and component status data (such as tap setting and breaker status). The dynamic state estimation processes these measurements and extracts the real time dynamic model of the component and its operating conditions. If any one of the physical laws for the component under protection is violated, dynamic state estimation will identify this condition.

Thus, the dynamic state estimator extracts the real-time dynamic model of the component under protection to determine whether the physical laws for the component are being satisfied. The dynamic model of the component accurately reflects the current operating condition of the
component. The decision to trip or not to trip the component is based only on the condition of that component irrespective of the condition (such as faults) of other system components.

In prior research, numerical experiments based on the setting-less protection approach were performed on a number of protection problems, specifically, transmission line protection, capacitor bank protection, transformer protection, reactor protection, induction motor protection and distribution line protection. The research demonstrated that the dynamic state estimation approach provides a secure and dependable protection scheme, and does not require coordination with other devices or protection schemes while, at the same time, addresses many protection gaps.

Following the above positive results from numerical experiments, the method has been refined further and tested in the laboratory. This report summarizes the methodological refinements and the results of further laboratory testing of their application. The analytics of the setting-less protection are complex. To provide a practical approach to setting-less protection, the analytics have been "objectified". Specifically, the basic building blocks of the setting-less protection algorithm have been mathematically abstracted to form objects that are recognizable by a single computational algorithm. The implementation is based on merging unit technology. This report describes:

- Methodology refinements
- Laboratory setup and experiments to test the refinements
- Test results.

The results continue to show that setting-less protection is a viable approach to system protection.

Table of Contents

1. Introduction 1
2. Brief Review of the DSE Based Protection 3
3. Implementation of Setting-less Protection 7
3.1. Protection Zone Mathematical Model 8
3.2. Object-Oriented Measurements 9
3.3. Object-Oriented Dynamic State Estimation 11
3.4. Bad Data Detection and Identification 12
3.5. Protection Logic / Component Health Index 12
3.6. Online Parameter Identification 13
3.7. Summary and Comments 13
4. Laboratory Implementation and Testing 15
4.1. Laboratory Implementation 15
4.2. Testing Procedure - User Interface 16
4.3. Application to Capacitor Bank Protection. 19
4.3.1. Capacitor Bank: Test case 1 - Internal fault 1 24
4.3.2 Capacitor Bank: Test case 2 - Internal fault 2 26
4.4. Application to Single Section Transmission Line Protection. 28
4.4.1. Single Section Transmission Line: Test case - High Impedance Fault, Low Impedance Fault, External Fault, External Breaker Operation 31
4.5. Application to Multi-section Transmission Line Protection 33
4.5.1 Multi-section Transmission Line: Test case - Internal fault 38
4.6. Application to Single Phase Saturable Core Variable Tap Transformer Protection 41
4.6.1. Transformer: Test case 1- Energization 49
4.6.2. Transformer: Test case 2- Source Switching 50
4.6.3. Transformer: Test case 3- Internal Fault 52
4.7. Application to Three Phase Saturable Core Reactor Protection 54
4.7.1 Reactor: Test case 59
5. References 61
Appendix A: Overall Design of the Setting-less Relay 62
Appendix B: Object-Oriented Implementation 64
B1. Time Domain SCAQCF Device Model Description 64
B2. Time Domain SCAQCF Measurement Model Description 65
B3. Measurement Definition 67
B3.1. Actual Measurement 67
B3.2. Virtual Measurement 67
B3.3. Pseudo Measurement 68
B3.4. Derived Measurement 68
B4. Sparsity Based State Estimation Algorithm 69
B5. Frequency Domain SCAQCF Device Model Description 74
B6. Frequency Domain SCAQCF Measurement Model Description 75

Table of Contents (continued)

Appendix C: Time Domain SCAQCF Model - Capacitor Bank 77
C1. Three Phase Capacitor Bank Compact Model 77
C2. Three Phase Capacitor Bank Quadratized Model 78
C3. Three Phase Capacitor Bank SCAQCF Device Model 79
C4. Three Phase Capacitor Bank SCAQCF Measurement Model 86
Appendix D: Time Domain SCAQCF Model - Single Section Transmission Line Protection 93
D1. Three Phase Transmission Line Compact Model 93
D2. Three Phase Transmission Line Quadratized Model 94
D3. Three Phase Transmission Line SCAQCF Device Model 95
D4. Three Phase Transmission Line SCAQCF Measurement Model 99
Appendix E: Time Domain SCAQCF Model - Multi-section Transmission Line Protection 103
E1. Construction of Multi-section Transmission Line SCAQCF Model 103
E2. Three Phase Multi-section Transmission Line SCAQCF Model 104
E3. Three Phase Multi-section Transmission Line SCAQCF Measurement Model 114
Appendix F: Time Domain SCAQCF Model - Single Phase Saturable Core Variable Tap Transformer Protection 118
F1. Single Phase Saturable Core Transformer Compact Model 118
F2. Single Phase Saturable Core Transformer Quadratic Model 120
F3. Single Phase Saturable Core Transformer SCAQCF Device Model 122
F4. Single Phase Saturable Core Transformer SCAQCF Measurement Model 140
Appendix G: Time Domain SCAQCF Model - Three Phase Saturable Core Reactor Protection 155
G1. Three Phase Saturable Core Three Phase Reactor Compact Model Description 155
G2. Three Phase Saturable Core Three Phase Reactor Quadratized Model Description 156
G3. Three Phase Saturable Core Three Phase Reactor SCAQCF Device Model Description 160
G4. Three Phase Saturable Core Three Phase Reactor SCAQCF Measurement Model. 172

List of Figures

Figure 2.1: Illustration of Setting-less Component Protection Scheme 4
Figure 2.2: Illustration of Setting-less Protection Logic 5
Figure 2.3:Overall Approach for Component Protection 6
Figure 3.1: Setting-Less Protection Relay Organization 7
Figure 3.2: Example Derived Measurements 11
Figure 3.3: Confidence Level (\%) vs Parameter k. 13
Figure 4.1: Lab Implementation Illustration 15
Figure 4.2: Setting-less Protection Relay User Interface 16
Figure 4.3: MU Data Concentrator User Interface 18
Figure 4.4: User Interface for the Measurement Channel of the Merging Unit 19
Figure 4.5: Three Phase Capacitor Bank Example 19
Figure 4.6: Three Phase Capacitor Bank Simplified Model (C is the net capacitance of a phase) 20
Figure 4.7: Test System for Capacitor Bank Simulations 24
Figure 4.8: Topology of the Capacitor Bank and Location of Measurements. 25
Figure 4.9: Results of the Capacitor Bank Setting-less Protection 26
Figure 4.10: Topology of the Capacitor Bank and Location of Measurements 27
Figure 4.11: Results of the Capacitor Bank Setting-less Protection 28
Figure 4.12: Three Phase Short Transmission Line Compact Model 29
Figure 4.13:Test System for Transmission Line Simulations 31
Figure 4.14: Configuration of the Transmission Line 32
Figure 4.15: Results of the Singe Section Transmission Line Setting-less Protection 33
Figure 4.16: Three Phase Short Transmission Line Compact Model 34
Figure 4.17: Three Phase Multi-section Transmission Line Compact Model 34
Figure 4.18: Test System for Multi-section Transmission Line 39
Figure 4.19: Location of Measurements at TABL side 40
Figure 4.20: Location of Measurements at VACA side 40
Figure 4.21: Results of the Three Phase Multi-section Transmission Line Setting-less Protection 41
Figure 4.22: Single-Phase Transformer Compact Model 42
Figure 4.23: Energization Situation for Single Phase Transformer 49
Figure 4.24: Results of Setting-less Protection for Transformer Energization Situation 50
Figure 4.25: Source Switching Situation for Single Phase Transformer 51
Figure 4.26: Results of Setting-less Protection for Transformer Source Switching Situation 52
Figure 4.27: Internal Fault Situation for Single Phase Transformer. 53
Figure 4.28: Results of Setting-less Protection for Single Phase Transformer 53
Figure 4.29: Three Phase Saturable Core Reactor Model 54
Figure 4.30: Test System for Three Phase Saturable Core Reactor 60

List of Figures (continued)

Figure 4.31: Results of Setting-less Protection for Three Phase Saturable Core Reactor 60
Figure A.1: Overall Design of Setting-less Protection Relay 62
Figure B.1: Flow Chart of Object-Oriented Setting-less Protection for Linear Case 72
Figure B.2: Flow Chart of Object-Oriented Setting-less Protection for Nonlinear Case 73
Figure C.1: The Three Phase Capacitor Bank Circuit Model 77
Figure D.1: The Three Phase Transmission Line Circuit Model 93
Figure E.1: Three Phase Multi-section Transmission Line Compact Model 103
Figure F.1: Single Phase Transformer Equivalent Circuit 118
Figure G.1: Three Phase Reactor Model 155

1. Introduction

Present day numerical relays use high end microprocessors for implementing multiple functions of protection. For example a transformer protection relay may include all the typical protection functions that traditionally used with electromechanical relays, i.e., differential, over-current, V / Hz function, etc. Since these functions work independently, even if they are implemented on the same relay, they suffer from the same limitations as the usual single relay/single function approach. Each function must be set separately but the settings must be coordinated with other protective devices. The coordinated settings are typically selected so that can satisfy requirements that many times are conflicting and therefore a compromise must be selected. For this reason, most of the time the settings represent a compromise and occasionally may exist possible fault conditions that may lead to an undesirable relay response.

It should be understood that numerical relays have provided many more options that have improved the above procedure. At the same time the additional options have created increased complexity and increased possibilities of human errors, while the basic nature of the problem of selecting settings has remained the same: the settings must be selected to satisfy criteria that many times are conflicting. The natural question is whether any new technologies and trends can favorably affect the protection process.

There are technologies that can enable better, integrated approach to the overall protection. Some of these technologies are (technology is in flux with many developments still to occur):

1. Merging units/separation of data acquisition and data processing/protection
2. GPS synchronized measurements (PMUs)
3. Data Concentrator (PDCs, switches, etc.)
4. Smarter sensors
5. Integrated (power system/relay) analysis programs that enable faster and more reliable assessment of settings
6. Data validation/state extraction
7. Other

It is difficult to assess the full impact of these technologies on the future of protection. One thing is clear though: while there is much technology development in hardware and the capabilities of hardware, the development of new approaches to fully utilize the new capabilities is lagging. This is the classical problem of "hardware being ahead of software". This will come with realistic assessment of the new technologies and bold experimentation of new approaches and the eventual emergence of successful approaches.

The existence of the above technologies and the quest for better more reliable (secure and dependable) protection has led to the investigation of dynamic state estimation protection approaches. This investigation has shown that it is possible to develop a protection approach that does not require coordination with other protection functions and at the same time address many protection gaps. The investigation has been carried out with many numerical experiments and has been reported in the previous year report.

Following the above investigation and the positive results, the method has been further refined and also tested in the laboratory. This report summarizes the method refinements and its application in the laboratory.

2. Brief Review of the DSE Based Protection

For secure and reliable protection of power components such as a generator, line, transformer, etc. a new approach has emerged based on component health dynamic monitoring. The proposed method uses dynamic state estimation [4-7], based on the dynamic model of the component, which accurately reflects the nonlinear characteristics of the component as well as the loading and thermal state of the component.

For more secure protection of protection zones such as transmission lines, transformers, capacitor banks, motors, generators, generator/transformer unit, etc., this report proposes a new method. The method has been inspired from the fact that differential protection is one of the most secure protection schemes that we have and it does not require coordination with other protection function. Differential protection simply monitors the validity of Kirchoff's current law in a device, i.e., the weighted sum of the currents going into a device must be equal to zero. This concept can be generalized into monitoring the validity of all other physical laws that the device must satisfy, such as Kirchoff's voltage law, Faraday's law, etc. This monitoring can be done in a systematic way by the use of dynamic state estimation. Specifically, all the physical laws that a component must obey are expressed in the dynamic model of the component. Dynamic state estimation is used to continuously monitor the dynamic model of the component (zone) under protection. If any of the physical laws for the component under protection is violated, the dynamic state estimation will capture this condition. Thus, it is proposed to use dynamic state estimator to extract the dynamic model of the component under protection [2-5] and to determine whether the physical laws for the component are satisfied. The dynamic model of the component accurately reflects the condition of the component and the decision to trip or not to trip the component is based on the condition of the component only irrespectively of the condition (faults, etc.) of other system components. The proposed method requires a monitoring system of the component under protection that continuously measures terminal data (such as the terminal voltage magnitude and angle, the frequency, and the rate of frequency change - this task is identical to present day numerical relays), other variables such as temperature, speed, etc., as appropriate, and component status data (such as the tap setting, breaker status, etc.). The dynamic state estimation processes these measurements and extracts the real time dynamic model of the component and its operating conditions.

Figure 2.1: Illustration of Setting-less Component Protection Scheme
After estimating the operating conditions, the well-known chi-square test [6] calculates the probability that the measurement data are consistent with the component model, i.e., the physical laws that govern the operation of the component. In other words, this probability, which indicates the confidence level of the goodness of fit of the component model to the measurements, can be used to assess the health of the component. The high confidence level indicates a good fit between the measurements and the model, which indicates that the operating condition of the component is normal. However, if the component has internal faults, the confidence level would be almost zero (i.e., the very poor fit between the measurement and the component model). Figure 2.1 shows the concept of entire proposed protection scheme.

In general, the proposed method can identify any internal abnormality of the component within a cycle and trip the component immediately. Furthermore, it does not degrade the security because a relay does not trip in the event of normal behavior of the component, for example, in case of transformer protection, inrush currents or over excitation currents, since in these cases, as long as the inrush currents are consistent with the transient behavior of the transformer as dictated by the dynamic model, the method will produce a high confidence level that the transients are consistent with the model of the component. Note also that the method does not require any settings or any coordination with other relays.

It is important to note that the proposed scheme will perform best when: (a) the measurements are as accurate as possible - dependent on the type of instrument transformer used, i.e., VT, CT, etc. and the instrumentation channel, i.e., control cable, etc. and (b) the accuracy of the dynamic model of the component under protection. These issues, while important, are beyond the scope of this report. These issues will be addressed in a subsequent report.

Figure 2.2: Illustration of Setting-less Protection Logic
The proposed protection logic is briefly illustrated in Figure 2.2. The method requires a monitoring system of the component under protection that continuously measures terminal data (such as the terminal voltage magnitude and angle, the frequency, and the rate of frequency change) and component status data (such as tap setting (if transformer) and temperature). The dynamic state estimation processes these measurement data with the dynamic model of the component yielding the operating conditions of the component.

This approach faces some challenges which can be overcome with present technology. A partial list of the challenges is given below:

1. Ability to perform the dynamic state estimation in real time
2. Initialization issues
3. Communications in case of a geographically extended component (i.e., lines)
4. New modeling approaches for components - connects well with the topic of modeling
5. Requirement for GPS synchronized measurements in case of multiple independent data acquisition systems.
6. Other

The modeling issue is fundamental in this approach. For success the model must be high fidelity so that the component state estimator will reliably determine the operating status (health) of the component. For example consider a transformer during energization. The transformer will experience high in-rush current that represent a tolerable operating condition and therefore no relay action should occur. The component state estimator should be able to "track" the in-rush current and determine that they represent a tolerable operating condition. This requires a transformer
model that accurately models saturation and in-rush current in the transformer. We can foresee the possibility that a high fidelity model used for protective relaying can be used as the main depository of the model which can provide the appropriate model for other applications. For example for EMS applications, a positive sequence model can be computed from the high fidelity model and send to the EMS data base. The advantage of this approach will be that the EMS model will come from a field validated model (the utilization of the model by the relay in real time provide the validation of the model). This overall approach is shown in Figure 2.3. Since protection is ubiquitous, it makes economic sense to use relays for distributed model data base that provides the capability of perpetual model validation.

Figure 2.3:Overall Approach for Component Protection

3. Implementation of Setting-less Protection

The implementation of the setting-less protection has been approached from an object orientation point of view. For this purpose the constituent parts of the approach have been evaluated and have been abstracted into a number of objects. Specifically, the setting-less approach requires the following objects:

1. the mathematical model of the protection zone
2. the physical measurements that may consist of analog and digital data
3. the mathematical model of the physical measurements
4. the mathematical model of the virtual measurements
5. the mathematical model of the derived measurements
6. the mathematical model of the pseudo measurements
7. the dynamic state estimation algorithms
8. the bad data detection and identification algorithm
9. the protection logic and trip signals
10. online parameter identification method

The last task has not been addressed in the report but it is an integral part of the overall approach as in many cases it will be necessary to fine tune the model of the protection zone via online parameter identification methods.

An overview of the design of the setting-less protection relay is shown in Figure 3.1.

Figure 3.1: Setting-Less Protection Relay Organization
The setting-less protection algorithms have been streamlined for the purpose of increasing efficiency. An object-oriented approach for the DSE based protection algorithm is developed by utilizing the State and Control Algebraic Quadratic Companion Form (SCAQCF). All the
mathematical models of the apparatus in the power system are written in SCAQCF format so that the DSE based protection algorithm could be applied to any device. The algorithm automatically formulates the measurement model in the SCAQCF syntax from the SCAQCF device model and the measurement definition file, as illustrated by Figure 3.1. A data concentrator is utilized to align data from multiple merging units with the same time stamp and feed the streaming data into the DSE based protection module. The DSE based protection scheme continuously monitors the SCAQCF model of the component (zone) under protection by fitting the real-time measurement data to the measurement model in the SCAQCF syntax. If any of the physical laws for the component under protection is violated, the dynamic state estimation will capture this condition. Under normal operation, the device estimated measurement data from DSE should be exactly the same as the real measurement data. The mismatch between real measurements and estimated measurements indicates abnormalities in the device, then diagnose or trip decision should be made. Detailed implementation of setting-less protection in an object-oriented way is shown in Appendix A and Appendix B. This section gives a brief introduction of how setting-less protection is implemented.

3.1. Protection Zone Mathematical Model

The mathematical model of the protection zone is required in a standard form. A standard has been defined in the form of the State and Control Algebraic Quadratic Companion Form (SCAQCF) and in a specified syntax to be defined later. The SCAQCF for a specific protection zone is derived with three computational procedures. Specifically, the dynamic model of a protection zone consists of a set of algebraic and differential equations. We refer to this model as the compact model of the protection zone. Subsequently this model is quadratized, i.e., in case there are nonlinearities of order greater than 2 , additional state variables are introduced so that at the end the mathematical model consists of a set of linear and quadratic equations. We refer to this model as the quadratized model. Finally, the quadratized model is integrated using the quadratic integration method which converts the quadratized model of the protection zone into a set of algebraic (quadratic) function. This model is cast into a generalized Norton form. We refer to this model as the Algebraic Quadratic Companion Form. Since the variables in this AQCF contain all states and controls, thus it is named State and Control Algebraic Quadratic Companion Form.

The standard State and Control Algebraic Quadratic Companion Form is obtained with two procedures: (a) model quadratization, and (b) quadratic integration. The model quadratization reduces the model nonlinearities so that the dynamic model will consist of a set of linear and quadratic equations. The quadratic integration is a numerical integration method that is applied to the quadratic model assuming that the functions vary quadratically over the integration time step. The end result is an algebraic companion form that is a set of linear and quadratic algebraic equations that are cast in the following standards form:

$$
\left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \tag{1}\\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x}\right\}+Y_{e q u} \mathbf{u}+\left\{\mathbf{u}^{T} F_{e q u}^{i} \mathbf{u}\right\}+\left\{\mathbf{x}^{T} F_{e q \chi u}^{i} \mathbf{u}\right\}-B_{e q}
$$

where $I(\mathbf{x}, \mathbf{u})$ is the through variable (current) vector, $\mathbf{x}=\left[\mathbf{x}(t), \mathbf{x}\left(t_{m}\right)\right]$ is the external and internal state variables, $\mathbf{u}=\left[\mathbf{u}(t), \mathbf{u}\left(t_{m}\right)\right]$ is the control variables, t is present time, t_{m} is the midpoint between the present and previous time, $\mathrm{Y}_{\text {eq }}$ admittance matrix, $\mathrm{F}_{\text {eq }}$ nonlinear matrices, and

$$
\begin{equation*}
B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \tag{2}
\end{equation*}
$$

The derivation of the standard State and Control Algebraic Quadratic Companion Form for specific protection zones is provided in the appropriate reports that describe the application of the settingless protection schemes for specific protection zones.

This standardization allows the object oriented handling of measurements in state estimation; in addition it converts the dynamic state estimation into a state estimation that has the form of a static state estimation.

3.2. Object-Oriented Measurements

Any measurement, i.e., current, voltage, temperature, etc. can be viewed as an object that consists of the measured value and a corresponding function that expresses the measurement as a function of the state of the component. This function can be directly obtained (autonomously) from the State and Control Algebraic Quadratic Companion Form of the component. Because the algebraic companion form is quadratic at most, the measurement model will be also quadratic at most. Thus, the object-oriented measurement model can be expressed as the following standard equation:

$$
\begin{align*}
z_{k}(t)= & \sum_{i} a_{i, t}^{k} \cdot x_{i}(t)+\sum_{i} a_{i, m}^{k} \cdot x_{i}\left(t_{m}\right) \\
& +\sum_{i, j, j, t, t} b_{i}^{k} \cdot x_{i}(t) \cdot x_{j}(t) \tag{3}\\
& +\sum_{i, j}^{k} b_{i, j, m}^{k} \cdot x_{i}\left(t_{m}\right) \cdot x_{j}\left(t_{m}\right) \\
& +c_{k}(t)+\eta_{k},
\end{align*}
$$

where z is the measured value, t the present time, t_{m} the midpoint between the present and previous time, x the state variables, a the coefficients of linear terms, b the coefficients of nonlinear terms, c the constant term, and η the measurement error.

The measurements can be identified as: (a) actual measurements, (b) virtual measurements, (c) derived measurements and (d) pseudo measurements. The types of measurements will be discussed next.

Actual Measurements: In general the actual measurements can be classified as across and through measurements. Across measurements are measurements of voltages or other physical quantities at the terminals of a protection zone such as speed on the shaft of a generator/model. These quantities are typically states in the model of the component. For this reason, the across measurements has a simple model as follows:

$$
\begin{equation*}
z_{j}=x_{i} \pm x_{j}+\eta_{j} . \tag{4}
\end{equation*}
$$

Through measurements are typically currents at the terminals of a device or other quantities at the terminals of a device such as torque on the shaft of a generator/motor. The quantity of a through measurement is typically a function of the state of the device. For this reason, the through measurement model is extracted from the algebraic companion form, i.e., the measurement model is simply one equation of the SCACQF model, as follows:

$$
\begin{equation*}
Z_{j}=\sum_{i} Y_{e q x, i}^{k} \cdot X_{i}+\sum_{i, j} F_{e q x, i j}^{k} \cdot x_{i} \cdot x_{j}+\sum_{i} Y_{e q u, i}^{k} \cdot u_{i}+\sum_{i, j} F_{e q u, i j}^{k} \cdot u_{i} \cdot u_{j}+\sum_{i, j} F_{e q u x, i j}^{k} \cdot x_{i} \cdot u_{j}-\sum_{i} b_{e q, i}^{k}, \tag{5}
\end{equation*}
$$

where the superscript k means the k th row of the matrix or the vector.
Virtual Measurements: The virtual measurements represent a physical law that must be satisfied. For example we know that at a node the sum of the currents must be zero by Kirchoff's current law. In this case we can define a measurement (sum of the currents); note that the value of the measurement (zero) is known with certainty. This is a virtual measurement.

The model can provide virtual measurements in the form of equations that must be satisfied. Consider for example the $\mathrm{m}^{\text {th }}$ SCAQCF model equation below:

$$
\begin{equation*}
0=\sum_{i} Y_{e q x, i}^{k} \cdot x_{i}+\sum_{i, j} F_{e q x, i j}^{k} \cdot x_{i} \cdot x_{j}+\sum_{i} Y_{e q u, i}^{k} \cdot u_{i}+\sum_{i, j} F_{e q u, i j}^{k} \cdot u_{i} \cdot u_{j}+\sum_{i, j} F_{e q x u, i j}^{k} \cdot x_{i} \cdot u_{j}-\sum_{i} b_{e q, i}^{k} \tag{6}
\end{equation*}
$$

This equation is simply a relationship among the states the component that must be satisfied. Therefore we can state that the zero value is a measurement that we know with certainty. We refer to this as a virtual measurement.

Derived Measurements: A derived measurement is a measurement that can be defined for a physical quantity by utilizing physical laws. An example derived measurement is shown in Figure 3.2. The figure illustrates a series compensated power line with actual measurements on the line side only. Then derived measurements are defined for each capacitor section. Note that the derived measurements enable the observation of the voltage across the capacitor sections.

Figure 3.2: Example Derived Measurements
Pseudo Measurements: Pseudo measurements are hypothetical measurements for which we may have an idea of their expected values but we do not have an actual measurement. For example a pseudo measurement can be the voltage at the neutral; we know that this voltage will be very small under normal operating conditions. In this case we can define a measurement of value zero but with a very high uncertainty.

Summary: Eventually, all the measurement objects form the following measurement set:

$$
z=h(x, t)+\eta=c+a^{T} x(t)+b^{T} x\left(t_{m}\right)+\left[\begin{array}{ll}
x^{T}(t) & x^{T}\left(t_{m}\right)
\end{array}\right] F\left[\begin{array}{c}
x(t) \tag{7}\\
x\left(t_{m}\right)
\end{array}\right]+\eta,
$$

where z is the measurement vector, x the state vector, h the known function of the model, a, b are constant vectors, F are constant matrices, and η the vector of measurement errors.

3.3. Object-Oriented Dynamic State Estimation

The proposed dynamic state estimation algorithm is the weighted least squares (WLS). The objective function is formulated as follows:

$$
\begin{equation*}
\text { Minimize } J(x, t)=[z-h(x, t)]^{T} W[z-h(x, t)], \tag{8}
\end{equation*}
$$

where W is the diagonal matrix whose non-zero entries are the inverse of the variance of the measurement errors. The solution is obtained by the iterative method:

$$
\begin{equation*}
\hat{x}^{j+1}=\hat{x}^{j}+\left(H^{T} W H\right)^{-1} H^{T} W\left(z-h\left(\hat{x}^{j}, t\right)\right), \tag{9}
\end{equation*}
$$

where ${ }^{\hat{x}}$ is the best estimate of states and H the Jacobian matrix of $h(x, t)$.

It is important to note that the dynamic state estimation requires only the mathematical model of all measurements. It should be also noted that for any component, the number of actual measurements and virtual, derived, and pseudo measurements exceed the number of states and they are independent. This makes the system observable and with substantial redundancy.

3.4. Bad Data Detection and Identification

It is possible that the streaming measurements may include bad data. In this case the algorithm must detect the bad data and identify the data. For the case of setting-less protection, it is important to recognize that in case of a component internal fault, all data may appear as bad data. It is important to determine whether any detected bad data are coming from instrumentation and meter errors or from altered component model due to internal faults. This topic is still under investigation as to what the best approach would be.

3.5. Protection Logic / Component Health Index

The solution of the dynamic state estimation provides the best estimate of the dynamic state of the component. The well-known chi-square test provides the probability that the measurements are consistent with the dynamic model of the component. Thus the chi-square test quantifies the goodness of fit between the model and measurements (i.e., confidence level). The goodness of fit is expressed as the probability that the measurement errors are distributed within their expected range (chi-square distribution). The chi-square test requires two parameters: the degree of freedom (v) and the chi-square critical value (ζ). In order to quantify the probability with one single variable, we introduce the variable k in the definition of the chi-square critical value:

$$
\begin{equation*}
v=m-n, \quad \zeta=\sum_{i=1}^{m}\left(\frac{h_{i}(\hat{x})-z_{i}}{k \sigma_{i}}\right)^{2}, \tag{10}
\end{equation*}
$$

where m is the number of measurements, n the number of states, and \hat{x} the best estimate of states. Note that since m is always greater than n, the degrees of freedom are always positive. Note also that if k is equal to 1.0 then the standard deviation of the measurement error corresponds to the meter error specifications. If k equals 2.0 then the standard deviation will be twice as much as the meter specifications, and so on. Using this definition, the results of the chi square test can be expressed as a function of the variable k. Specifically, the goodness of fit (confidence level) can be obtained as follows:

$$
\begin{equation*}
\operatorname{Pr}\left[\chi^{2} \geq \zeta(k)\right]=1.0-\operatorname{Pr}\left[\chi^{2} \leq \zeta(k)\right]=1.0-\operatorname{Pr}(\zeta(k), v) . \tag{11}
\end{equation*}
$$

A sample report of the confidence level function (horizontal axis) versus the chi-square critical value k, (vertical axis) is depicted in Figure 3.3.

Figure 3.3: Confidence Level (\%) vs Parameter k
The proposed method uses the confidence level as the health index of a component. A high confidence level indicates good fit between the measurement and the model, and thus we can conclude that the physical laws of the component are satisfied and the component has no internal fault. A low confidence level, however, implies inconsistency between the measurement and the model; therefore, we can conclude that an abnormality (internal fault) has occurred in the component and has altered the model. The discrepancy is an indication of how different the faulty model of the component is as compared to the model of the component in its healthy status.

It is important to point out that the component protection relay must not trip circuit breakers except when the component itself is faulty (internal fault). For example, in case of a transformer, inrush currents or over-excitation currents, should be considered normal and the protection system should not trip the component. The proposed protection scheme can adaptively differentiate these phenomena from internal faults. Similarly, the relay should not trip for start-up currents in a motor, etc.

3.6. Online Parameter Identification

The dynamic state estimation can be extended to include as states parameters of components. In this case, the parameters of the components can be identified from measurements. This represents a fine tuning of the component model.

This option should not be continuously applied. Instead, it should be exercised only when there is doubt about the correctness of the component parameters. The issue will be addressed in greater detail in the filed applications of the setting-less protective relay.

3.7. Summary and Comments

The previous subsections have presented the approach for setting-less protection. The method is based on dynamic state estimation. The dynamic state estimation requires a detail model of the component under protection (protection zone) and a data acquisition system that acquires data with
sufficient speed, such as 2,000 samples per second or higher. The accuracy of the data acquisition system is important, the more accurate it is the better the selectivity of the relay.

The proposed protection approach has been applied to several types of components (i.e., transformers, transmission lines, capacitor banks, etc.). We present examples in the next section.

4. Laboratory Implementation and Testing

This section presents the laboratory implementation and example applications of setting-less protection for a few typical protection zones. For each one of them the constituent parts of the relay are described. The application has been evaluated by a number of numerical experiments.

4.1. Laboratory Implementation

Figure 4.1: Lab Implementation Illustration
The implementation is illustrated in Figure 4.1. Since it is impractical to achieve real measurements from electronic CTs/PTs in the lab, computer simulation based signals are utilized alternatively.

As illustrated by Figure 4.1, the WinXFM program generates digital streaming waveforms representing the terminal voltages and currents of the protection zone (power system component) to the NI 32 channel DC/AC converter. It is emphasized here that the source for the digital streaming waveforms can be simulated voltages and currents of the power system component, or field collected measurements from the CTs/PTs in the COMTRADE format. Omicron amplifiers receive the analog signals from the NI DC/AC converter and amplify these signals to a range which is very similar to real output of electronic CTs/PTs (for voltages around 50 V and for currents around 5A). In this manner, the electrical output (voltages and currents) of the Omicron amplifiers are treated as the secondary electrical quantities from the CTs/PTs in this lab implementation. Two merging units from Reason and GE are connected to the output terminals of the Omicron amplifier. The merging units are utilized to collect the analog signals from the amplifier and convert them to digital signals. These digital signals are transmitted to a personal computer which is used as a setting-less relays. The computer communicates with the merging units in accordance to IEC 61850-8-1 and IEC 61850-9-2 and captures the measurements, performs the dynamic state estimation and issues protection logic. The sampling rate of the waveform generated by WinXFM is 5000 samples/sec (similar to the present top merging unit data transmission speed), and the merging units samples the analog data at a rate of 2880 samples/sec, which means the proposed

DSE-based protection approach should determine the protection decision in $400 \mu \mathrm{~s}$ to avoid coming data overlap.

4.2. Testing Procedure - User Interface

The main user interface of setting-less protection relay is shown in Figure 4.2. Module functions are introduced below.

Figure 4.2: Setting-less Protection Relay User Interface

Device Model:

In the device model module, the SACQCF model for the device under protection is selected.

EBP Relay:

EBP stands for estimation based protection which is the fundamental of our proposed setting-less protection. EBP relay module has two inputs and one output. It reads the SCAQCF device model at the initialization step and real-time measurements from circular buffer continuously. The proposed algorithm in section 3 is integrated in this module. It tries to fit the real-time measurements to the SCAQCF model of the device under protection. Any mismatch between the real-time measurements and estimated measurements indicates the measurements not coming from the healthy device model thus the device under protection is in the unhealthy status (internal faults). EBP relay outputs the results of dynamic state estimation and the confidence level of the device under protection. Also the CPU usage is shown in this module.

Circular Buffer:

Circular buffer is the module which provides a buffer for the real-time measurement coming into the setting-less protection module. For test and lab implementation purpose, the real-time data can either come from a simulated COMTRADE file or directly from the Merging Units.

COMTRADE Data:

This module reads the real-time measurements from existing COMTRADE data files from local computer and transfers these data to circular buffer.

Reports:

In the reports module, two functions are established, animation and performance. Animation shows the device terminal voltage and current phasors while performance shows how the dynamic estimation performs.

MU Data Concentrator:

This module indicates the merging units’ operation status and concentrates the data from multiple merging units and transfers these data to the circular buffer. The user interface of the MU data concentrator is shown in Figure 4.3. As Figure 4.3 shows, the user interface of the MU data concentrator gives all the measurement channels provided by the multiple merging units communicated with the personal computer and the user can modify the settings for each measurement channel, such as the measurement type, the scaling factor, and the instrument transformer ratio, as illustrated in Figure 4.4. Since this module provides the capability of align the measurements from different merging units with the same time stamp (data concentration), the user interface provides the functionality of setting the maximum latency for each sample at a specific time point, which means if the data concentrator receives a measurement at time T1, it will wait a maximum latency, which is set by the user, for other measurements with the same time T 1 , and after waits for the maximum latency time, the data concentrator will transfer the measurements with the time stamp T 1 to the circular buffer and treat the missing packets as error packets. The user interface also provides other useful information of the data concentrator, such as the average latency of the coming measurements and the percentage of the usage of the circular buffer.

Figure 4.3: MU Data Concentrator User Interface

Figure 4.4: User Interface for the Measurement Channel of the Merging Unit

4.3. Application to Capacitor Bank Protection

A capacitor bank typically consists of strings of capacitor cans connected in series and in parallel to form the capacitor bank of the proper ratings. Figure 4.5 shows an example capacitor bank. It is important to point out that the instrumentation of capacitor banks typically includes the terminal voltages and currents as well as other measurements such as neutral voltage and current, current in parallel strings of capacitor cans, etc. All the available measurements should be included in the analytics of the protection function for the capacitor bank. We briefly describe the constituent parts of the setting-less protection for the capacitor bank and then present some example results and execution time result.

Figure 4.5: Three Phase Capacitor Bank Example
Mathematical Model: The mathematical model is presented for a specific capacitor bank. The example capacitor bank ratings are: voltage rating: 115 kV , reactive power rating 48 MVAr . The
protection instrumentation includes the following measurements: terminal voltage measurements (phase to ground), terminal current measurements, neutral voltage, and three phase current measurements before the neutral connection. The simplified three phase capacitor bank circuit model and the above referenced measurements are shown in Figure 4.6.

Figure 4.6: Three Phase Capacitor Bank Simplified Model (C is the net capacitance of a phase)
The derivation of the SCAQCF device model for the capacitor bank of Figure 4.6 and associated measurements is provided in Appendix C. The SCAQCF model is shown below in compact form:

$$
\begin{gathered}
\left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{e q u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{x}^{T} F_{e q x u}^{i} \mathbf{u}\right\}-B_{e q} \\
\vdots
\end{array}\right\} \\
B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
\mathbf{h}(\mathbf{x}, \mathbf{u})=Y_{o p x} \mathbf{x}+Y_{o p u} \mathbf{u}+\left\{\begin{array}{c}
\left.\mathbf{x}^{T} F_{o p x}^{i} \mathbf{x}\right\}+\left\{\mathbf{u}^{T} F_{o p u}^{i} \mathbf{u}\right\}+\left\{\mathbf{x}^{T} F_{o p x u}^{i} \mathbf{u}\right\}-B_{o p} \\
\vdots
\end{array}\right\}
\end{gathered}
$$

Scaling factors: Iscale, Xscale and Uscale
Connectivity: TerminalNodeName
subject to: $\mathbf{h}_{\text {min }} \leq \mathbf{h}(\mathbf{x}, \mathbf{u}) \leq \mathbf{h}_{\text {max }}$

$$
\mathbf{u}_{\min } \leq \mathbf{u} \leq \mathbf{u}_{\max }
$$

where:

$$
Y_{\text {eqx }}=\left[\begin{array}{cccccccccccc}
\frac{4 C}{h} & 0 & 0 & 0 & -\frac{4 C}{h} & 0 & -\frac{8 C}{h} & 0 & 0 & 0 & \frac{8 C}{h} & 0 \\
0 & \frac{4 C}{h} & 0 & 0 & -\frac{4 C}{h} & 0 & 0 & -\frac{8 C}{h} & 0 & 0 & \frac{8 C}{h} & 0 \\
0 & 0 & \frac{4 C}{h} & 0 & -\frac{4 C}{h} & 0 & 0 & 0 & -\frac{8 C}{h} & 0 & \frac{8 C}{h} & 0 \\
-\frac{4 C}{h} & -\frac{4 C}{h} & -\frac{4 C}{h} & 0 & \frac{12 C}{h} & 0 & \frac{8 C}{h} & \frac{8 C}{h} & \frac{8 C}{h} & 0 & -\frac{24 C}{h} & 0 \\
-C & -C & -C & -\frac{h \cdot G}{6} & \frac{h \cdot G}{6}+3 C & -G \cdot L & 0 & 0 & 0 & -\frac{2 h \cdot G}{3} & \frac{2 h \cdot G}{3} & 0 \\
-C & -C & -C & 0 & 3 C & \frac{h}{6}-g \cdot L & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{3} \\
\frac{C}{2 h} & 0 & 0 & 0 & -\frac{C}{2 h} & 0 & \frac{2 C}{h} & 0 & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & \frac{C}{2 h} & 0 & 0 & -\frac{C}{2 h} & 0 & 0 & \frac{2 C}{h} & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & 0 & \frac{C}{2 h} & 0 & -\frac{C}{2 h} & 0 & 0 & 0 & \frac{2 C}{h} & 0 & -\frac{2 C}{h} & 0 \\
-\frac{C}{2 h} & -\frac{C}{2 h} & -\frac{C}{2 h} & 0 & \frac{3 C}{2 h} & 0 & -\frac{2 C}{h} & -\frac{2 C}{h} & -\frac{2 C}{h} & 0 & \frac{6 C}{h} & 0 \\
0 & 0 & 0 & \frac{h \cdot G}{24} & -\frac{h \cdot G}{24} & 0 & -C & -C & -C & -\frac{h \cdot G}{3} & \frac{h \cdot G}{3}+3 C & -G \cdot L \\
0 & 0 & 0 & 0 & 0 & -\frac{h}{24} & -C & -C & -C & 0 & 3 C & \frac{h}{3}-g \cdot L
\end{array}\right]
$$

$$
B_{e q}=\left[\begin{array}{c}
-i_{a}(t-h)-\frac{4}{h} \cdot C \cdot\left[v_{a}(t-h)-v_{m}(t-h)\right] \\
-i_{b}(t-h)-\frac{4}{h} \cdot C \cdot\left[v_{b}(t-h)-v_{m}(t-h)\right] \\
-i_{c}(t-h)-\frac{4}{h} \cdot C \cdot\left[v_{c}(t-h)-v_{m}(t-h)\right] \\
-\frac{4}{6} \cdot G \cdot\left(v_{m}(t-h)-v_{n}(t-h)\right)-G \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right] \\
-\frac{h}{6} \cdot i_{L}(t-h)+g \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right] \\
\frac{1}{2} i_{a}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[v_{a}(t-h)-v_{m}(t-h)\right] \\
\frac{1}{2} i_{b}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[v_{b}(t-h)-v_{m}(t-h)\right] \\
\frac{1}{2} i_{c}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[v_{c}(t-h)-v_{m}(t-h)\right] \\
\frac{1}{2} i_{n}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[-v_{a}(t-h)-v_{b}(t-h)-v_{c}(t-h)+3 v_{m}(t-h)\right] \\
-\frac{5 h}{24} \cdot G \cdot\left(v_{m}(t-h)-v_{n}(t-h)\right)-G \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 \cdot v_{m}(t-h)\right] \\
-\frac{5 h}{24} \cdot i_{L}(t-h)+g \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right]
\end{array}\right]
$$

$$
N_{e q x}=\left[\begin{array}{cccccc}
\frac{4 C}{h} & 0 & 0 & 0 & -\frac{4 C}{h} & 0 \\
0 & \frac{4 C}{h} & 0 & 0 & -\frac{4 C}{h} & 0 \\
0 & 0 & \frac{4 C}{h} & 0 & -\frac{4 C}{h} & 0 \\
-\frac{4 C}{h} & -\frac{4 C}{h} & -\frac{4 C}{h} & 0 & \frac{12 C}{h} & 0 \\
C & C & C & -\frac{h \cdot G}{6} & \frac{h \cdot G}{6}+3 C & G \cdot L \\
C & C & C & 0 & -3 C & \frac{h}{6}-g \cdot L \\
-\frac{5 C}{2 h} & 0 & 0 & 0 & \frac{5 C}{2 h} & 0 \\
0 & -\frac{5 C}{2 h} & 0 & 0 & \frac{5 C}{2 h} & 0 \\
0 & 0 & -\frac{5 C}{2 h} & 0 & \frac{5 C}{2 h} & 0 \\
\frac{5 C}{2 h} & \frac{5 C}{2 h} & \frac{5 C}{2 h} & 0 & -\frac{15 C}{2 h} & 0 \\
C & C & C & -\frac{5 h \cdot G}{24} & \frac{5 h \cdot G}{24}-3 C & G \cdot L \\
C & C & C & 0 & -3 C & \frac{5 h}{24}-g \cdot L
\end{array}\right]
$$

The scaling factors are:

```
X scale}=[\begin{array}{llllllllllll}{115000}&{115000}&{115000}&{115000}&{115000}&{80}&{115000}&{115000}&{115000}&{115000}&{115000}&{80}\end{array}\mp@subsup{]}{}{T
I
```

The terminal nodes are:
CAPBANK_A
CAPBANK_B
CAPBANK_C
CAPBANK_N
For this model no inequalities are imposed.
A number of example events and the performance of the setting-less protective relay for these events are discussed below.

4.3.1. Capacitor Bank: Test case 1 - Internal fault 1

The test system is shown in Figure 4.7. The capacitor bank is shown in the middle lower part of the diagram. It is a $115 \mathrm{kV}, 48 \mathrm{MVAr}$ capacitor bank as described above. This case involves an internal fault in the capacitor bank. The internal construction of the capacitor bank is shown in Figure 4.8. Figure 4.8 also illustrates the location of the measurements. This capacitor bank has the SCAQCF model described earlier.

The test case 1 event involves the following. The system operates under normal conditions when an internal fault occurs inside the capacitor bank which changes the capacitance of phase C. The net capacitance of phase C changes from $4.8 \mu \mathrm{~F}$ to $2.4 \mu \mathrm{~F}$ because of the internal fault. The fault occurs at time 35.0 sec. The entire simulation lasts 50 seconds. Several other events occur during this period but in this example we focus on the internal fault at time 35.0 seconds. The long simulation time was used for testing the setting-less protective relay in the laboratory. Here we are focused on the performance of the relay before, during the fault and after the fault at time 35.0 seconds. Therefore we present the results over the period 33.5 seconds to 37.5 seconds.

Figure 4.7: Test System for Capacitor Bank Simulations

48 MVAr, 115 kV Cap Bank

Figure 4.8: Topology of the Capacitor Bank and Location of Measurements
The results of DSE based protection for the period 33.5 to 37.5 seconds are shown in Figure 4.9. Specifically the figure shows seven sets of traces. The upper set of traces shows the actual and estimated values of the capacitor bank voltage of phase C to ground. The second set of traces shows the actual and estimated values of the capacitor bank current of phase C. The third trace shows the residual of the capacitor bank voltage of phase C. The forth trace shows the same residual in its normal rating. The fifth trace shows the sum of the normalized residuals (chi-square variable). The sixth trace shows the confidence level computed by the state estimator analysis of the residuals. Note that the confidence level clearly shows an internal abnormality of the capacitor bank during the internal fault. The seventh trace shows the execution time of the state estimator. Note that the execution time is less than 29 microseconds.

Figure 4.9: Results of the Capacitor Bank Setting-less Protection

4.3.2 Capacitor Bank: Test case 2 - Internal fault 2

This case involves another internal fault in the capacitor bank. The only difference between this case and the previous case is that the internal fault in this case only slightly changes the net capacitance of phase C. Specifically, another capacitor element is accidently added to one string in phase C capacitor can which changes the string capacitance from $1.2 \mu \mathrm{~F}$ to $0.96 \mu \mathrm{~F}$. As a result, the net capacitance of phase C is $4.56 \mu \mathrm{~F}$ instead of the normal value $4.8 \mu \mathrm{~F}$. The net capacitance change caused by the internal fault is really small compared with the test case 1 . The entire system is the same as Figure 4.7. The construction of the capacitor bank is shown if Figure 4.10. Figure 4.10 also illustrates the location of the measurements.

The test case 2 event also involves the same external events as described in case 1. The internal fault still occurs at 35.0 second. Again, since we are focused on the performance of the relay before, during the fault and after the fault, we only present the results over the period 33.5 seconds to 37.5 seconds.

Figure 4.10: Topology of the Capacitor Bank and Location of Measurements
The results of DSE based protection for the period 33.5 to 37.5 seconds are shown below in Figure 4.11. Same as the test case 1 results, the same seven sets of traces are shown in Figure 5.11. Different from case 1 which confidence level is all zero during the internal fault period, in this case the confidence level has some oscillations during the internal fault. The reason for this phenomenon is because the net capacitance change caused by the fault is very slight, i.e., from $4.8 \mu \mathrm{~F}$ to $4.56 \mu \mathrm{~F}$. An integral function could be applied to smooth the waveform so that the confidence level will stay low when the internal fault happens. Note that the execution time is very similar to the previous test case 1 and it is less than 41 microseconds.

Figure 4.11: Results of the Capacitor Bank Setting-less Protection

4.4. Application to Single Section Transmission Line Protection

The setting-less protection algorithm was applied to a short line as well as a long line. A short line is represented with a single pi equivalent transmission line model shown in Figure 4.12. The figure also shows the typical data acquisition system for relaying applications. It is recommended (as implemented in laboratory) that merging units be used to reduce signal degradation and associated process bus. In this way the setting-less protective relay can be simply connected to the process bus. Note that since the terminals of the line are remote from each other, the measurements must be transmitted through communication lines. All the available measurements should be included in the analytics of the protection function for the transmission line. We briefly describe the constituent parts of the setting-less protection for the transmission line and then present an example results and execution time result.

Figure 4.12: Three Phase Short Transmission Line Compact Model
Mathematical Model: The mathematical model is presented for a specific transmission line. The example transmission line ratings are: 115 kV , active power rating 100 MW . The protection instrumentation includes the following measurements: terminal voltage measurements (phase to neutral), terminal current measurements.

The derivation of the SCAQCF device model for the single section transmission line of Figure 4.12 and associated measurements is provided in Appendix D. The SCAQCF model is shown below in compact form:

$$
\begin{gathered}
\left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{e q u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{x}^{T} F_{e q x u}^{i} \mathbf{u}\right\}-B_{e q} \\
\vdots
\end{array}\right\} \\
B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
\mathbf{h}(\mathbf{x}, \mathbf{u})=Y_{o p x} \mathbf{x}+Y_{\text {opu }} \mathbf{u}+\left\{\begin{array}{c}
\mathbf{x}^{T} F_{\text {opx }}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{o p u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {opxu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}-B_{o p}
\end{gathered}
$$

Scaling factors: Iscale, Xscale and Uscale
Connectivity: TerminalNodeName
subject to: $\mathbf{h}_{\text {min }} \leq \mathbf{h}(\mathbf{x}, \mathbf{u}) \leq \mathbf{h}_{\text {max }}$

$$
\mathbf{u}_{\min } \leq \mathbf{u} \leq \mathbf{u}_{\max }
$$

where:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\frac{4}{h} C & 0 & I_{4}+\frac{4}{h} G L & -\frac{8}{h} C & 0
\end{array}-\frac{8}{h} G L\right.} \\
& Y_{\text {eqx }}=\left[\begin{array}{cccccc}
\frac{-}{h} C & I_{4}+\frac{-}{h} G L & -\frac{1}{h} & 0 & -\frac{8}{h} G L \\
0 & \frac{4}{h} C & -I_{4}-\frac{4}{h} G L & 0 & -\frac{8}{h} C & \frac{8}{h} G L \\
-I_{4} & I_{4} & R+\frac{4}{h}(R G L+L) & 0 & 0 & -\frac{8}{h}(R G L+L) \\
\frac{1}{2 h} C & 0 & \frac{1}{2 h} G L & \frac{2}{h} C & 0 & I_{4}+\frac{2}{h} G L \\
0 & \frac{1}{2 h} C & -\frac{1}{2 h} G L & 0 & \frac{2}{h} C & -I_{4}-\frac{2}{h} G L \\
0 & 0 & \frac{1}{2 h}(R G L+L) & -I_{4} & I_{4} & R+\frac{2}{h}(R G L+L)
\end{array}\right] \\
& N_{\text {eqx }}=\left[\begin{array}{ccc}
\frac{8}{h} C & 0 & I_{4}-\frac{4}{h} G L \\
0 & \frac{8}{h} C & -I_{4}+\frac{4}{h} G L \\
-I_{4} & I_{4} & R-\frac{4}{h}(R G L+L) \\
\frac{5}{2 h} C & 0 & -\frac{1}{2} I_{4}+\frac{5}{2 h} G L \\
0 & \frac{5}{2 h} C & \frac{1}{2} I_{4}-\frac{5}{2 h} G L \\
\frac{1}{2} I_{4} & -\frac{1}{2} I_{4} & -\frac{1}{2} R+\frac{5}{2 h}(R G L+L)
\end{array}\right] \\
& M_{e q}=\left[\begin{array}{ccc}
I_{4} & 0 & 0 \\
0 & I_{4} & 0 \\
0 & 0 & 0 \\
-\frac{1}{2} I_{4} & 0 & 0 \\
0 & -\frac{1}{2} I_{4} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The scaling factors are:

$$
\begin{aligned}
& X_{\text {scale }}=\left[\begin{array}{llllllllllll}
115000 & 115000 & 115000 & 115000 & 115000 & 115000 & 115000 & 115000 & 500 & 500 & 500 & 500 \\
115000 & 115000 & 115000 & 115000 & 115000 & 115000 & 115000 & 115000 & 500 & 500 & 500 & 500
\end{array}\right]^{T} \\
& I_{\text {scale }}=\left[\begin{array}{llllllllllll}
500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 115 & 115 & 115 & 115 \\
500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 115 & 115 & 115 & 115
\end{array}\right]^{T}
\end{aligned}
$$

The terminal nodes are:

YJLINE1_A
YJLINE1_B
YJLINE1_C
YJLINE1_N
YJLINE2_A
YJLINE2_B
YJLINE2_C
YJLINE2_N
For this model no inequalities are imposed.
A number of example events and the performance of the setting-less protective relay for these events are discussed below.

4.4.1. Single Section Transmission Line: Test case - High Impedance Fault, Low Impedance Fault, External Fault, External Breaker Operation

The test system is shown in Figure 4.13. The transmission line is framed by a blue rectangle. It is a 115 kV , 100 MW line as described. This case involves an internal high impedance fault, an internal low impedance fault, an external fault and an external breaker operation on the transmission line. The configuration of the transmission line is shown in Figure 4.14. Figure 4.13 also illustrates the location of the measurements. This transmission line has the SCAQCF model described earlier.

Figure 4.13: Test System for Transmission Line Simulations

The test case event involves the following: The entire simulation lasts 2 seconds. The system operates under normal conditions until the high impedance fault. The high impedance fault (fault conductance is 0.002 mhos) happens at 0.6 sec and cleared at 0.8 sec . The external phase A-C fault happens at 1.0 sec and cleared at 1.2 sec . The low impedance fault (fault conductance is 20 mhos) happens at 1.4 sec and cleared at 1.6 sec . The external breaker operation closes the breaker at 1.8 second.

Figure 4.14: Configuration of the Transmission Line
The results of DSE based protection are shown below in Figure 4.15. Specifically the figure shows six sets of traces. The upper set of traces shows the measured and estimated values of the transmission line voltage of phase A to neutral. The second set of traces shows the measured and estimated values of the transmission line current of phase A. The third trace shows the normalized residual as the difference between measured and estimated values of the transmission line voltage of phase A to neutral. The fourth trace shows the normalized residual as the difference between measured and estimated values of the transmission line current of phase A. The fifth trace shows the confidence level computed by the state estimator analysis of the residuals. Note that the confidence level clearly shows an internal abnormality of the transmission line during the internal faults. The sixth trace shows the execution time of the state estimator. Note that the average time is around 30 microseconds:

Figure 4.15: Results of the Singe Section Transmission Line Setting-less Protection
Interestingly, since the high impedance internal fault is really small, thus the confidence level has some oscillations during the fault. An integral function could be applied to smooth the wave. On the other hand, the confidence level stays zero for the low impedance internal fault.

4.5. Application to Multi-section Transmission Line Protection

The setting-less protection algorithm was applied to a long line. The long line is connected with some short lines. Each short line is represented with a single pi equivalent transmission line model shown in Figure 4.16. The figure also shows the typical data acquisition system for relaying applications. It is recommended (as implemented in laboratory) that merging units be used to reduce signal degradation and associated process bus. In this way the setting-less protective relay can be simply connected to the process bus. Note that since the terminals of the line are remote from each other, the measurements must be transmitted through communication lines. All the available measurements should be included in the analytics of the protection function for the transmission line. We briefly describe the constituent parts of the setting-less protection for the transmission line and then present an example results and execution time result.

Figure 4.16: Three Phase Short Transmission Line Compact Model
Mathematical Model: The mathematical model is presented for a specific multi-section line, with n sections. The protection instrumentation includes the following measurements: 6 terminal voltage measurements (phase to neutral) and 6 terminal current measurements. The simplified three phase multi-section transmission line model is shown in Figure 4.17. Each section (1~n) represents a single-section line model.

Figure 4.17: Three Phase Multi-section Transmission Line Compact Model
Parameter definition for section i :
Parameters at time t are:
$i_{a_{i}}(t)$ and $i_{b_{b_{i}}(t)}$ represent 3-phase $\&$ neutral current at both sides of section i, at time t.
$v_{i}(t)$ and $v_{i+1}(t)$ represent 3-phase \& neutral voltage at both sides of section i, at time t.
$i_{L_{i}}(t)$ represents three-phase \& neutral current of the inductance in section i, at time t.
Parameters at time t_{m} are:
$i_{a_{i}}\left(t_{m}\right)$ and $i_{b_{i}}\left(t_{m}\right)$ represent 3 -phase $\&$ neutral current at both sides of section i, at time t_{m}. $v_{i}\left(t_{m}\right)$ and $v_{i+1}\left(t_{m}\right)$ represent 3-phase $\&$ neutral voltage at both sides of section i, at time t_{m}. $i_{L_{i}}\left(t_{m}\right)$ represents three-phase $\&$ neutral current of the inductance in section i, at time t_{m}.

The derivation of the SCAQCF device model for the three phase multi-section transmission line of Figure 4.17 and associated measurements is provided in Appendix E. The SCAQCF model is shown below in compact form:

$$
\begin{gathered}
\left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{e q u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{x}^{T} F_{e q x u}^{i} \mathbf{u}\right\}-B_{e q} \\
\vdots
\end{array}\right\} \\
B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
\mathbf{h}(\mathbf{x}, \mathbf{u})=Y_{o p x} \mathbf{x}+Y_{o p u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{o p x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{u}^{T} F_{o p u}^{i} \mathbf{u}\right\} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\left.\mathbf{x}^{T} F_{o p x u}^{i} \mathbf{u}\right\}-B_{o p} \\
\vdots
\end{array}\right\}
\end{gathered}
$$

Scaling factors: Iscale, Xscale and Uscale

Connectivity: TerminalNodeName
subject to: $\mathbf{h}_{\text {min }} \leq \mathbf{h}(\mathbf{x}, \mathbf{u}) \leq \mathbf{h}_{\text {max }}$

$$
\mathbf{u}_{\min } \leq \mathbf{u} \leq \mathbf{u}_{\max }
$$

where:

$$
Y_{e q x}=\left[\begin{array}{llll}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24} \\
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{array}\right] \quad N_{e q x}=-\left[\begin{array}{ll}
N_{11} & N_{12} \\
N_{21} & N_{22} \\
N_{31} & N_{32} \\
N_{41} & N_{42}
\end{array}\right] \quad M_{e q}=\left[\begin{array}{cc}
I_{8 \times 8} & 0 \\
0 & 0 \\
-0.5 I_{8 \times 8} & 0 \\
0 & 0
\end{array}\right]
$$

And,

$$
\begin{gathered}
Y_{11}=\left[\begin{array}{cccccccc}
M_{11} & 0 & M_{12} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{22} & 0 & 0 & 0 & \cdots & 0 & M_{21} \\
M_{21} & 0 & M_{22}+M_{11} & M_{12} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{21} & M_{22}+M_{11} & M_{12} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{12} & 0 & 0 & 0 & \cdots & M_{21} & M_{22}+M_{11}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
Y_{13}=\left[\begin{array}{cccccccc}
M_{14} & 0 & M_{15} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{25} & 0 & 0 & 0 & \cdots & 0 & M_{24} \\
M_{24} & 0 & M_{25}+M_{14} & M_{15} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{24} & M_{25}+M_{14} & M_{15} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{15} & 0 & 0 & 0 & \cdots & M_{24} & \left.M_{25}+M_{14}\right]_{(4 n+4) \times(4 n+4)} \\
Y_{12}= & \begin{array}{ccccc}
M_{13} & 0 & 0 & \cdots & 0 \\
0 \\
0 & 0 & \cdots & 0 & M_{23} \\
M_{23} & M_{13} & 0 & \cdots & 0 \\
0 & M_{23} & M_{13} & \cdots & 0 \\
\vdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{23}
\end{array} M_{13}
\end{array}\right]_{(4 n+4) \times(4 n)} \quad\left[\begin{array}{cccccc}
M_{16} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & M_{26} \\
M_{26} & M_{16} & 0 & \cdots & 0 & 0 \\
0 & M_{26} & M_{16} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{26} & M_{16}
\end{array}\right]_{(4 n+4) \times(4 n)}
\end{gathered}
$$

$$
\begin{aligned}
& Y_{21}=\left[\begin{array}{cccccc}
M_{31} & 0 & M_{32} & 0 & \cdots & 0 \\
0 & 0 & M_{31} & M_{32} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{32} & 0 & 0 & \cdots & M_{31}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{22}=\left[\begin{array}{cccc}
M_{33} & 0 & 0 & 0 \\
0 & M_{33} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{33}
\end{array}\right]_{(4 n) \times(4 n)} \\
& Y_{23}=\left[\begin{array}{cccccc}
M_{34} & 0 & M_{35} & 0 & \cdots & 0 \\
0 & 0 & M_{34} & M_{35} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{35} & 0 & 0 & \cdots & M_{34}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{24}=\left[\begin{array}{cccc}
M_{36} & 0 & 0 & 0 \\
0 & M_{36} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{36}
\end{array}\right]_{(4 n) \times(4 n)} \\
& Y_{31}=\left[\begin{array}{cccccccc}
M_{41} & 0 & M_{42} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{52} & 0 & 0 & 0 & \cdots & 0 & M_{51} \\
M_{51} & 0 & M_{52}+M_{41} & M_{42} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{51} & M_{52}+M_{41} & M_{42} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{42} & 0 & 0 & 0 & \cdots & M_{51} & M_{52}+M_{41}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& Y_{33}=\left[\begin{array}{cccccccc}
M_{44} & 0 & M_{45} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{55} & 0 & 0 & 0 & \cdots & 0 & M_{54} \\
M_{54} & 0 & M_{55}+M_{44} & M_{45} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{54} & M_{55}+M_{44} & M_{45} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{45} & 0 & 0 & 0 & \cdots & M_{54} & M_{55}+M_{44}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& Y_{32}=\left[\begin{array}{cccccc}
M_{43} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & M_{53} \\
M_{53} & M_{43} & 0 & \cdots & 0 & 0 \\
0 & M_{53} & M_{43} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{53} & M_{43}
\end{array}\right]_{(4 n+4) \times(4 n)} \quad Y_{34}=\left[\begin{array}{cccccc}
M_{46} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & M_{56} \\
M_{56} & M_{46} & 0 & \cdots & 0 & 0 \\
0 & M_{56} & M_{46} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{56} & M_{46}
\end{array}\right]_{(4 n+4) \times(4 n)} \\
& Y_{41}=\left[\begin{array}{cccccc}
M_{61} & 0 & M_{62} & 0 & \cdots & 0 \\
0 & 0 & M_{61} & M_{62} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{62} & 0 & 0 & \cdots & M_{61}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{42}=\left[\begin{array}{cccc}
M_{63} & 0 & 0 & 0 \\
0 & M_{63} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{63}
\end{array}\right]_{(4 n) \times(4 n)} \\
& Y_{43}=\left[\begin{array}{cccccc}
M_{64} & 0 & M_{65} & 0 & \cdots & 0 \\
0 & 0 & M_{64} & M_{65} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{65} & 0 & 0 & \cdots & M_{64}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{44}=\left[\begin{array}{cccc}
M_{66} & 0 & 0 & 0 \\
0 & M_{66} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{66}
\end{array}\right]_{(4 n) \times(4 n)} \\
& N_{11}=\left[\begin{array}{cccccccc}
P_{11} & 0 & P_{12} & 0 & 0 & \cdots & 0 & 0 \\
0 & P_{22} & 0 & 0 & 0 & \cdots & 0 & P_{21} \\
P_{21} & 0 & P_{22}+P_{11} & P_{12} & 0 & \cdots & 0 & 0 \\
0 & 0 & P_{21} & P_{22}+P_{11} & P_{12} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & P_{12} & 0 & 0 & 0 & \cdots & P_{21} & P_{22}+P_{11}
\end{array}\right]_{(4 n+4) \times(4 n+4)}
\end{aligned}
$$

$$
\begin{gathered}
N_{31}=\left[\begin{array}{cccccccc}
P_{41} & 0 & P_{42} & 0 & 0 & \cdots & 0 & 0 \\
0 & P_{52} & 0 & 0 & 0 & \cdots & 0 & P_{51} \\
P_{51} & 0 & P_{52}+P_{41} & P_{42} & 0 & \cdots & 0 & 0 \\
0 & 0 & P_{51} & P_{52}+P_{41} & P_{42} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & P_{42} & 0 & 0 & 0 & \cdots & P_{51} & P_{52}+P_{41}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
N_{12}=\left[\begin{array}{cccccc}
P_{13} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & P_{23} \\
P_{23} & P_{13} & 0 & \cdots & 0 & 0 \\
0 & P_{23} & P_{13} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & P_{23} & P_{13}
\end{array}\right]_{(4 n+4) \times(4 n)} \quad N_{32}=\left[\begin{array}{cccccc}
P_{43} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & P_{53} \\
P_{53} & P_{43} & 0 & \cdots & 0 & 0 \\
0 & P_{53} & P_{43} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & P_{53} & P_{43}
\end{array}\right]_{(4 n+4) \times(4 n)} \\
N_{21}=\left[\begin{array}{cccccc}
P_{31} & 0 & P_{32} & 0 & \cdots & 0 \\
0 & 0 & P_{31} & P_{32} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & P_{32} & 0 & 0 & \cdots & P_{31}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad N_{22}=\left[\begin{array}{ccccc}
P_{33} & 0 & 0 & 0 \\
0 & P_{33} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & P_{33}
\end{array}\right]_{(4 n) \times(4 n)} \\
N_{41}=\left[\begin{array}{cccccc}
P_{61} & 0 & P_{62} & 0 & \cdots & 0 \\
0 & 0 & P_{61} & P_{62} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & P_{62} & 0 & 0 & \cdots & P_{61}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad N_{42}=\left[\begin{array}{cccc}
P_{63} & 0 & 0 & 0 \\
0 & P_{63} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & P_{63}
\end{array}\right]_{(4 n) \times(4 n)}
\end{gathered}
$$

$M_{i j}$ and $P_{i j}$ are defined as follows:

$$
\begin{gathered}
E \cdot F_{1}=\left[\begin{array}{llllll}
M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\
M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\
M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\
M_{41} & M_{42} & M_{43} & M_{44} & M_{45} & M_{46} \\
M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\
M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66}
\end{array}\right] \quad E \cdot F_{2}=\left[\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33} \\
P_{41} & P_{42} & P_{43} \\
P_{51} & P_{52} & P_{53} \\
P_{61} & P_{62} & P_{63}
\end{array}\right] \\
E=\left[\begin{array}{lll}
\frac{4}{h} I_{12 \times 12} & -\frac{8}{h} I_{12 \times 12} \\
\frac{1}{2 h} I_{12 \times 12} & \frac{2}{h} I_{12 \times 12}
\end{array}\right], F_{1}=\left[\begin{array}{cc}
\frac{h}{6} A+B & \frac{2 h}{3} A \\
-\frac{h}{24} A & \frac{h}{3} A+B
\end{array}\right], F_{2}=\left[\begin{array}{c}
B-\frac{h}{6} A \\
B-\frac{5 h}{24} A
\end{array}\right] \\
A=\left[\begin{array}{ccc}
0 & 0 & I_{4 \times 4} \\
0 & 0 & -I_{4 \times 4} \\
-I_{4 \times 4} & I_{4 \times 4} & R
\end{array}\right] \quad B=\left[\begin{array}{ccc}
C & 0 & G \cdot L \\
0 & C & -G \cdot L \\
0 & 0 & R \cdot G \cdot L+L
\end{array}\right]
\end{gathered}
$$

where R, L, C, G are the resistance, inductance, capacitance and stabilizing conductance matrices of the single-section transmission line (as shown in Figure 4.16).

An example event and the performance of the setting-less protective relay for the event is discussed below.

4.5.1 Multi-section Transmission Line: Test case - Internal fault

Figure 4.18 illustrates a transmission line system. The voltage and current measurements are installed at two terminals of the monitored TABL-VACA line, as shown in Figure 4.19 and 4.20. The ratings of the transmission line are: voltage rating 500 kV , capacity rating 3500 MVA . This case involves an internal fault in the transmission line.

This multi-section transmission line has the SCAQCF model described earlier. Take a 2-section transmission line as an example. The scaling factors are:

$X_{\text {scale }}=[500000$	500000	0500000	500000	0500000	500000	500000	500000	0500000	- 500000
500000	500000	- 4041	4041	4041	4041	4041	4041	4041	4041
500000	500000	500000	500000	500000	0500000	0500000	500000	0500000	500000
500000	500000	- 4041	4041	4041	4041	4041	4041	4041	$4041]^{T}$
$I_{\text {scale }}=[4041$	4041	4041	4041	4041	4041	4041	4041	4041	4041
4041	4041	5000005	500000	500000	500000	5000005	500000	50000050	500000
4041	4041	4041	4041	4041	4041	4041	4041	4041	4041
4041	40415	5000005	5000005	500000	5000005	5000005	5000005	50000050	$500000]^{T}$

The terminal nodes are:
TABL_A
TABL_B
TABL_C
TABL_N
VACA_A
VACA_B
VACA_C
VACA_N
For this model no inequalities are imposed.

Figure 4.18: Test System for Multi-section Transmission Line

Figure 4.19: Location of Measurements at TABL side

Figure 4.20: Location of Measurements at VACA side
The system operates under normal conditions when an internal fault occurs inside the transmission line. Several other events occur during this period but in this example we focus on the internal fault happens at 25.1 sec and clears at 26.0 sec . The long simulation time was used for testing the setting-less protective relay in the laboratory. Here we are focused on the performance of the relay before, during the fault and after the fault. Therefore we present the results over the period 24.7 seconds to 26.4 seconds.

The results of DSE based protection is shown below in Fig.4.21. Specifically the figure shows seven sets of traces. The upper set of traces show the actual and estimated values of the phase A to ground voltage at TABL side of multi-section transmission line. The second set of traces show the actual and estimated values of phase A current at TABL side. The third and fourth traces show
the residuals and normalized residuals of TABL side voltage, respectively. The fifth trace shows the sum of the normalized residuals (chi-square variable). The sixth trace shows the confidence level computed by the state estimator analysis of the residuals. Note that the confidence level clearly shows an internal abnormality of the multi-section transmission line during the internal fault. The seventh trace shows the execution time of the state estimator. Note that the execution time is less than 198 microseconds.

Figure 4.21: Results of the Three Phase Multi-section Transmission Line Setting-less Protection

4.6. Application to Single Phase Saturable Core Variable Tap Transformer Protection

The setting-less protection algorithm has been applied to a single phase saturable core variable tap transformer. The transformer model used for the SCAQCF mathematical model is shown Figure 4.22. The instrumentation of the transformer typically includes the terminal voltages and currents as well as other measurements such as neutral current. All the available measurements should be included in the analytics of the protection function for the transformer. We briefly describe the constituent parts of the setting-less protection for the transformer and then present an example results and execution time result.

Figure 4.22: Single-Phase Transformer Compact Model
Mathematical Model: The mathematical model is presented for a specific single phase saturable core variable tap transformer. The example transformer ratings are: voltage rating is 25 kV , active power rating 300 kW , the nonlinear exponent is 5 . The protection instrumentation includes the following measurements: terminal voltage measurements (phase to ground) and terminal current measurements.

The derivation of the SCAQCF device model for the single phase transformer of Figure 4.22 and associated measurements is provided in Appendix F. The SCAQCF model it is shown below:

$$
\begin{aligned}
& \left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{\text {equ }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {eqxu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}-B_{e q} \\
& B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
& \mathbf{h (x , u)}=Y_{\text {opx }} \mathbf{x}+Y_{\text {opu }} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {opx }}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{\text {opu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{x}^{T} F_{\text {opxu }}^{i} \mathbf{u}\right\} \\
\vdots
\end{array}\right\}-B_{o p} \\
& \text { Scaling factors: Iscale, Xscale and Uscale } \\
& \text { Connectivity: TerminalNodeName }
\end{aligned}
$$

where:
$Y_{e q x}=\left[\begin{array}{ll}Y_{e q x_{-} 11} & Y_{e q x_{-} 12} \\ Y_{e q x_{-} 21} & Y_{e q x_{-} 22}\end{array}\right]_{52 \times 52}$

$$
Y_{\text {eqx }-12}=\left[\begin{array}{llllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
Y_{\text {eax }-21}=\left[\begin{array}{llllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
F_{e q 0} & =\cdots=F_{e q 22}=0_{52 \times 52} \\
F_{e q 23}: f_{e q[10 \times 10]} & =-\frac{1}{\lambda_{0}^{2}}, \quad \text { other elements are } 0 \\
F_{e q 24}: f_{e q[23 \times 23]} & =-1, \quad \text { other elements are } 0 \\
F_{e q 25}: f_{e q[24 \times 20]} & =-1, \quad \text { other elements are } 0 \\
F_{e q 26} & =\cdots=F_{\text {eq48 }}=0_{52 \times 52} \\
F_{\text {eq49 }}: f_{e q[36 \times 36]} & =-\frac{1}{\lambda_{0}^{2}}, \quad \text { other elements are } 0 \\
F_{e q 50}: f_{e q[49 \times 49]} & =-1, \quad \text { other elements are } 0 \\
F_{e q 51}: f_{e q[50 \times 36]} & =-1, \quad \text { other elements are } 0
\end{aligned}
$$

$$
N_{e q x}=\left[\begin{array}{l}
N_{e q x^{\prime} 1} \\
N_{e q x_{_} 2}
\end{array}\right]_{52 \times 26}
$$

$$
N_{e q \chi}-1=\left[\begin{array}{llllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

The scaling factors are:

$$
\begin{aligned}
& X_{\text {scale }}=\left[\begin{array}{llll}
X_{\text {scale_1 }} & X_{\text {scale_2 }} & X_{\text {scale_3 }} & X_{\text {scale_4 }}
\end{array}\right]_{52}^{T} \\
& X_{\text {scale_1 }}=\left[\begin{array}{lllllllllllll}
2.5 e 4 & 2.5 e 4 & 2.5 e 4 & 500 & 500 & 500 & 10 & 10 & 500 & 500 & 100 & 4.0 e 3 & 4.0 e 3
\end{array}\right] \\
& X_{\text {scale_2 }}=\left[\begin{array}{llllllllllll}
4.0 e 4 & 4.0 e 4 & 2.5 e 4 & 2.5 e 4 & 2.5 e 4 & 500 & 500 & 10 & 10 & 1 & 1 & 1
\end{array}\right] \\
& X_{\text {scale_ }}=X_{\text {scale_1 }} \\
& X_{\text {scale_4 }}=X_{\text {scale_2 }} \\
& I_{\text {scale }}=\left[\begin{array}{llll}
I_{\text {scale_1 }} & I_{\text {scale_2 }} & I_{\text {scale_3 }} & I_{\text {scale_4 }}
\end{array}\right]_{52}^{T} \\
& I_{\text {scale_1 }}=\left[\begin{array}{lllllllllllll}
10 & 10 & 500 & 500 & 10 & 500 & 10 & 10 & 100 & 100 & 100 & 10000 & 10000
\end{array}\right] \\
& I_{\text {scale_2 }}=\left[\begin{array}{lllllllllllll}
500 & 500 & 10 & 10000 & 10000 & 500 & 500 & 100 & 100 & 1 & 1 & 1 & 1
\end{array}\right] \\
& I_{\text {scale_3 }}=I_{\text {scale_1 }} \\
& I_{\text {scale_4 }}=I_{\text {scale_2 }}
\end{aligned}
$$

The terminal nodes are:
XFMRH_A
XFMRH_N
XFMRL_A
XFMRL_N
A number of example events and the performance of the setting-less protective relay for these events are discussed below.

4.6.1. Transformer: Test case 1- Energization

This case involves an energization situation in single phase saturable core transformer. The system is the shown in Figure 4.23. The single phase transformer is $25 \mathrm{kV}, 300 \mathrm{~kW}$ as described above. In this example, the protection of single phase saturable core transformer in an energization situation is present. The transformer suddenly connects to the system at $\mathrm{t}=0.4 \mathrm{~s}$ and an energization happens to the transformer. Since the energization is not a fault it should not trip the transformer. Later the load connects the transformer and a transient will occur, but the transformer should not be tripped.

Figure 4.23: Energization Situation for Single Phase Transformer
The results of DSE based protection for the period 0 to 0.9 seconds are shown in Figure 4.24. Specifically the figure shows six sets of traces. The upper trace shows the actual left side terminal voltages of the transformer. The second trace shows the estimated left side terminal voltages of the transformer. The third trace shows the residual of the voltage while the forth trace shows the normalized residual of the left side terminal voltage. The fifth trace shows the sum of the normalized residuals (chi-square variable). The sixth trace shows the confidence level computed by the state estimator analysis of the residuals.

Figure 4.24: Results of Setting-less Protection for Transformer Energization Situation
Seen from the figure, at $\mathrm{t}=0.4 \mathrm{~s}$ the confidence level dropped to zero and returned to 100% immediately, which means there is no fault and transformer should not be tripped. This also happened when the load was suddenly connected to system at 0.7 second. The setting-less protection detected it was not an internal fault so that it did not trip the transformer

4.6.2. Transformer: Test case 2- Source Switching

This case involves a source switching situation in single phase saturable core transformer system. The system is the shown in Figure 4.25 . The single phase transformer is $25 \mathrm{kV}, 300 \mathrm{~kW}$ as described above. In this example, the protection of single phase saturable core transformer in a source switching situation is present. The transformer connects to one source of the system at $\mathrm{t}=0 \mathrm{~s}$ and suddenly it changes to another source at $\mathrm{t}=0.2 \mathrm{~s}$, which has an angle difference with the former one. Since it is not a fault so that transformer should not be tripped.

Figure 4.25: Source Switching Situation for Single Phase Transformer
The results of DSE based protection for the period 0 to 0.3 seconds are shown Figure 4.26. Specifically the figure shows six sets of traces. The upper trace shows the actual left side terminal voltages of the transformer. The second trace shows the estimated left side terminal voltages of the transformer. The third trace shows the residual of the voltage while the forth trace shows the normalized residual of the left side terminal voltage. The fifth trace shows the sum of the normalized residuals (chi-square variable). The sixth trace shows the confidence level computed by the state estimator analysis of the residuals.

Figure 4.26: Results of Setting-less Protection for Transformer Source Switching Situation
Seen from the figure, at $\mathrm{t}=0.2 \mathrm{~s}$, the transformer suddenly switched to another source, leading a voltage angle mismatch to the transformer. The confidence level dropped to zero and returned to 100% immediately. The setting-less protection detected it was not an internal fault so that it did not trip the transformer.

4.6.3. Transformer: Test case 3- Internal Fault

This case involves an internal fault situation in single phase saturable core transformer system. The system is the shown in Figure 4.27. The single phase transformer is $25 \mathrm{kV}, 300 \mathrm{~kW}$ as described above. In this example, the protection of single phase saturable core transformer in 10\% inter-turn fault situation is present. The entire simulation lasts 10 seconds. Several other events occur during this period but in this example we focus on the internal fault at time 1.5 seconds. The transformer connects to the system at $\mathrm{t}=0 \mathrm{~s}$ and suddenly an inter-turn fault occurs inside the transformer at $\mathrm{t}=1.5 \mathrm{~s}$. Since it is an internal fault so that transformer should be tripped.

Figure 4.27: Internal Fault Situation for Single Phase Transformer
The results of DSE based protection for the period 1.1 to 2.1 seconds are shown in Figure 4.28. Specifically the figure shows eight sets of traces. The upper set of traces shows the actual and estimated left side terminal voltages of the transformer. The second set of traces shows the actual and estimated left side terminal currents of the transformer. The third trace shows the residual of the voltage while the forth trace shows the residual of the left side terminal current. The fifth trace shows the normalized residual of the voltage while the sixth trace shows the normalized residual of the left side terminal current. The seventh trace shows the sum of the normalized residuals (chisquare variable). The eighth trace shows the confidence level computed by the state estimator analysis of the residuals.

Figure 4.28: Results of Setting-less Protection for Single Phase Transformer

Seen from the result, an internal fault happens at 1.5 s and clears at 1.7 s . Because of the fault, the residual becomes large, the confidence level drops to zero very quickly and it stays there, which means the relays should send a trip signal to the breakers to prevent the damage of transformer.

4.7. Application to Three Phase Saturable Core Reactor Protection

Magnetic (saturable) core reactors are used for compensation of long transmission lines, current limiting applications as well as in filters to limit harmonics. The circuit model of a three phase reactor is shown in Figure 4.29. Note that in Figure 4.29, gL is the conductance that presents the core loss, g_{c} is the conductance of the "stabilizer". Current transformer and potential transformer are used to measure the current and voltage. The merging units are GPS synchronized. The measurements are utilized in a dynamic state estimation. Any violation of the physical laws would imply an internal fault in the reactors. The protection logic would trip the reactor when either the physical laws are violated or the operating condition exceeds operating limits.

Figure 4.29: Three Phase Saturable Core Reactor Model
Mathematical Model: The mathematical model is presented for a specific three phase saturable core reactors. The example reactor ratings are: voltage rating is 115 kV , active power rating 100 MW, the nonlinear exponent is 11 . The protection instrumentation includes the following measurements: terminal voltage measurements (phase to ground) and terminal current measurements.

The derivation of the SCAQCF device model for the saturable core reactor of Figure 4.29 and associated measurements is provided in Appendix G. The SCAQCF model is shown:

$$
\begin{gathered}
\left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q \mathbf{x}}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{e q u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{x}^{T} F_{e q x u}^{i} \mathbf{u}\right\}-B_{e q} \\
\vdots
\end{array}\right\} \\
B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
\mathbf{h}(\mathbf{x}, \mathbf{u})=Y_{o p x} \mathbf{x}+Y_{o p u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{o p x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{u}^{T} F_{o p u}^{i} \mathbf{u}\right\}+\left\{\mathbf{x}^{T} F_{o p x u}^{i} \mathbf{u}\right\}-B_{o p} \\
\vdots
\end{array}\right\}
\end{gathered}
$$

Scaling factors: Iscale, Xscale and Uscale

Connectivity: TerminalNodeName
subject to: $\mathbf{h}_{\text {min }} \leq \mathbf{h}(\mathbf{x}, \mathbf{u}) \leq \mathbf{h}_{\text {max }}$

$$
\mathbf{u}_{\min } \leq \mathbf{u} \leq \mathbf{u}_{\max }
$$

where:

$$
\begin{gathered}
Y_{e q x_{44 \times 44}}=\left[\begin{array}{lllll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right] \\
A_{11(7 \times 7)}=\left[\begin{array}{ccccccc}
g_{L} & 0 & 0 & -g_{L} & 0 & 0 & 0 \\
0 & g_{L} & 0 & -g_{L} & 0 & 0 & 0 \\
0 & 0 & g_{L} & -g_{L} & 0 & 0 & 0 \\
-g_{L} & -g_{L} & -g_{L} & 3 g_{L} & 0 & 0 & 0 \\
-\frac{h}{6} & 0 & 0 & \frac{h}{6} & 1 & 0 & 0 \\
0 & -\frac{h}{6} & 0 & \frac{h}{6} & 0 & 1 & 0 \\
0 & 0 & -\frac{h}{6} & \frac{h}{6} & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& A_{12(7 \times 15)}=\left[\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& A_{13(7 \times 7)}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{2 h}{3} & 0 & 0 & \frac{2 h}{3} & 0 & 0 & 0 \\
0 & -\frac{2 h}{3} & 0 & \frac{2 h}{3} & 0 & 0 & 0 \\
0 & 0 & -\frac{2 h}{3} & \frac{2 h}{3} & 0 & 0 & 0
\end{array}\right] \\
& A_{14}=[0]_{7 \times 15} \\
& A_{21}=[0]_{15 \times 7} \\
& A_{22}=I_{15 \times 15} \\
& A_{23}=[0]_{15 \times 7} \\
& A_{24}=[0]_{15 \times 15} \\
& A_{31(7 \times 7)}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{h}{24} & 0 & 0 & -\frac{h}{24} & 0 & 0 & 0 \\
0 & \frac{h}{24} & 0 & -\frac{h}{24} & 0 & 0 & 0 \\
0 & 0 & \frac{h}{24} & -\frac{h}{24} & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{33(7 \times 7)}=\left[\begin{array}{ccccccc}
g_{L} & 0 & 0 & -g_{L} & 0 & 0 & 0 \\
0 & g_{L} & 0 & -g_{L} & 0 & 0 & 0 \\
0 & 0 & g_{L} & -g_{L} & 0 & 0 & 0 \\
-g_{L} & -g_{L} & -g_{L} & 3 g_{L} & 0 & 0 & 0 \\
-\frac{h}{3} & 0 & 0 & \frac{h}{3} & 1 & 0 & 0 \\
0 & -\frac{h}{3} & 0 & \frac{h}{3} & 0 & 1 & 0 \\
0 & 0 & -\frac{h}{3} & \frac{h}{3} & 0 & 0 & 1
\end{array}\right] \\
& A_{34(7 \times 15)}=\left[\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& A_{41}=[0]_{15 \times 7} \\
& A_{42}=[0]_{15 \times 15} \\
& A_{43}=[0]_{15 \times 7} \\
& A_{44}=I_{15 \times 15} \\
& F_{e q x 0}=\cdots=F_{\text {eqx } 6}=0_{44 \times 44} \\
& F_{\text {eqx } 7}: f_{\text {eqx }[5 \times 5]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx8 }}: f_{\text {eqx } x 8 \times 8]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx9 }}: f_{\text {eqx }[9 \times 9]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 10}: f_{\text {eqx }[10 \times 8]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 11}: f_{e q \times[11 \times 5]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } \times 12}: f_{\text {eqx }[6 \times 6]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 13}: f_{\text {eqx }[13 \times 13]}=-1, \quad \text { other elements are } 0
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {eqx14 }}: f_{\text {eqx[14×14] }}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 15}: f_{\text {eqx }[15 \times 13]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 16}: f_{\text {eqx }[16 \times 6]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 17}: f_{\text {eqx }[7 \times 7]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 18}: f_{\text {eqx }[18 \times 18]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx19 }}: f_{\text {eqx[19×19] }}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx20 }}: f_{\text {eqx }[20 \times 18]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 21}: f_{\text {eqx }[21 \times 7]}=-1, \quad \text { other elements are } 0 \\
& F_{e q \times 22}=\cdots=F_{e q \times 28}=0_{44 \times 44} \\
& F_{\text {eq } x 29}: f_{\text {eqx }[27 \times 27]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 30}: f_{\text {eqx }[30 \times 30]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx31 }}: f_{e q x[31 \times 31]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 32}: f_{\text {eqx }[32 \times 30]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 33}: f_{\text {eqx }[33 \times 27]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 34}: f_{\text {eqx }[28 \times 28]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 35}: f_{\text {eqx }[35 \times 35]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 36}: f_{\text {eqx }[36 \times 36]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx37 }}: f_{\text {eqx }[37 \times 35]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx38 }}: f_{\text {eqx }[38 \times 28]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx39 }}: f_{\text {eqx }[29 \times 29]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 40}: f_{\text {eqx }[40 \times 40]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 41}: f_{\text {eqx }[41 \times 41]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 42}: f_{\text {eqx }[42 \times 40]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx43 }}: f_{\text {eqx }[43 \times 29]}=-1, \quad \text { other elements are } 0 \\
& N_{\text {eqx } 44 X 7}=\left[\begin{array}{c}
0_{4 X 7} \\
B_{1(3 X 7)} \\
0_{19 X 7} \\
B_{2(3 X 7)} \\
0_{15 X 7}
\end{array}\right] \\
& B_{1}=\left[\begin{array}{ccccccc}
-\frac{h}{6} & 0 & 0 & \frac{h}{6} & -1 & 0 & 0 \\
0 & -\frac{h}{6} & 0 & \frac{h}{6} & 0 & -1 & 0 \\
0 & 0 & -\frac{h}{6} & \frac{h}{6} & 0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

$$
B_{2}=\left[\begin{array}{ccccccc}
-\frac{5 h}{24} & 0 & 0 & \frac{5 h}{24} & -1 & 0 & 0 \\
0 & -\frac{5 h}{24} & 0 & \frac{5 h}{24} & 0 & -1 & 0 \\
0 & 0 & -\frac{5 h}{24} & \frac{5 h}{24} & 0 & 0 & -1
\end{array}\right]
$$

The scaling factors are:
$X_{\text {scale }}=\left[\begin{array}{llll}X_{\text {scale_1 }} & X_{\text {scale_ } 2} & X_{\text {scale_3 }} & X_{\text {sclle_ }-4}\end{array}\right]_{44}^{T}$
$X_{\text {sclle }-1}=\left[\begin{array}{lllllllllll}2.5 e 5 & 2.5 e 5 & 2.5 e 5 & 500 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
$X_{\text {scal }_{-} 2}=\left[\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
$X_{\text {scall }_{-} 3}=X_{\text {scale_1 }}$
$X_{\text {scale }_{4}}=X_{\text {scale }_{-2}}$
$I_{\text {scale }}=\left[\begin{array}{llll}I_{\text {sclle }-1} & I_{\text {sclle }-2} & I_{\text {sclle }-3} & I_{\text {sclle }-4}\end{array}\right]_{44}^{T}$
$I_{\text {scale }-1}=\left[\begin{array}{lllllllllll}50 & 50 & 50 & 50 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
$I_{\text {scale }^{2}}=\left[\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
$I_{\text {scale_3 }}=I_{\text {scalle_ }}$
$I_{\text {scalle_4 }}=I_{\text {scalle_ } 2}$
An example events and the performance of the setting-less protective relay for this events are discussed below.

4.7.1 Reactor: Test case

This case involves an internal fault situation in three phase saturable core reactor system. The system is the shown in Figure 4.30. The single phase transformer is 115 kV , 100 MW as described above. In this example, the protection of three phase saturable core reactor in 15% inter-turn fault situation is present. The entire simulation lasts 5 seconds. Several other events occur during this period but in this example we focus on the internal fault at time 0.35 seconds. The transformer connects to the system at $\mathrm{t}=0 \mathrm{~s}$ and suddenly an inter-turn fault occurs inside the transformer at $\mathrm{t}=0.35 \mathrm{~s}$. Since it is an internal fault so that transformer should be tripped.

Figure 4.30: Test System for Three Phase Saturable Core Reactor
The results of DSE based protection for the period 0.25 to 0.56 seconds are shown in Figure 4.31. Specifically the figure shows eight sets of traces. The upper set of traces shows the actual and estimated phase A voltages of the reactor. The second set of traces shows the actual and estimated phase A currents of the transformer. The third trace shows the residual of the voltage while the forth trace shows the residual of the current. The fifth trace shows the normalized residual of the voltage while the sixth trace shows the normalized residual of current. The seventh trace shows the sum of the normalized residuals (chi-square variable). The eighth trace shows the confidence level computed by the state estimator analysis of the residuals.

Figure 4.31: Results of Setting-less Protection for Three Phase Saturable Core Reactor
From the above figure, it can be seen that an internal fault happens at 0.35 s and clears at 0.45 s . Because of the fault, the residual becomes large and the confidence level drops to zero very quickly, which means the relays should send a trip signal to the breakers to prevent the damage of reactors.

5. References

1. Meliopoulos, A. P. Sakis; Anjan Bose. PSERC Publication 10-17, Substation of the Future: A Feasibility Study, October 2010.
2. Meliopoulos, A. P. Sakis; G. Cokkinides, R. Huang, E. Farantatos, S. Choi, Y. Lee. Wide Area Dynamic Monitoring and Stability Controls. IREP Symposium 2010, Bulk Power System Dynamics and Control VIII, Buzios, Brazil, August 1-6, 2010.
3. Meliopoulos A. P. Sakis; and George Cokkinides. Power System Relaying: An Introduction, Book in Preparation, 980 pages.
4. Meliopoulos, A. P. Sakis; George Cokkinides, Renke Huang, Evangelos Farantatos, Sungyun Choi, Yonghee Lee and Xuebei Yu. Smart Grid Technologies for Autonomous Operation and Control. IEEE Transactions on Smart Grid, vol. 2, no. 1, March 2011.
5. Choi, Sungyun; Yonghee Lee, George Cokkinides and A. P. Sakis Meliopoulos. Transformer Dynamic State Estimation Using Quadratic Integration. Proceedings of the 2011 Power Systems Conference \& Exposition, Phoenix, AZ, March 20-23, 2011.
6. Choi, Sungyun; Yonghee Lee, George Cokkinides, and A. P. Meliopoulos. Dynamically Adaptive Transformer Protection Using Dynamic State Estimation. Proceedings of the PAC World Conference 2011, Dublin, Ireland, June 27-30, 2011.
7. Meliopoulos, A. P. Sakis; George Cokkinides, Sungyun Choi, Evangelos Farantatos, Renke Huang and Yonghee Lee. Symbolic Integration and Autonomous State Estimation: Building Blocks for an Intelligent Power Grid. Proceedings of the 2011 ISAP, Xersonissos, Crete, Greece, September 25-28, 2011.
8. Kezunovic, Mladen. Translational Knowledge: From Collecting Data to Making Decisions in a Smart Grid. IEEE Proceedings, April 2011.
9. Vasilić, S.; M. Kezunović. Fuzzy ART Neural Network Algorithm for Classifying the Power System Faults. IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1306-1314, April 2005.
10. Kezunović, Mladen; I. Rikalo. Detect and Classify Faults Using Neural Nets. IEEE Computer Applications in Power, vol. 9, no. 4, pp. 42-47, October 1996.
11. Zhang, N.; and Mladen Kezunović. Transmission Line Boundary Protection Using Wavelet Transform and Neural Network. IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 859869, April 2007.
12. Zhang N.; and Mladen Kezunović. A Real Time Fault Analysis Tool for Monitoring Operation of Transmission Line Protective Relay. Electric Power Systems Research Journal, vol. 77, no. 3-4, pp. 361-370, March 2007.
13. Meliopoulos, A. P. Sakis; George Cokkinides, Zhenyu Tan, Sungyun Choi, Yonghee Lee, and Paul Myrda. Setting-less Protection: Feasibility Study. Proceedings of the of the $46^{\text {st }}$ Annual Hawaii International Conference on System Sciences, Maui, Hawaii, January 7-10, 2013.

Appendix A: Overall Design of the Setting-less Relay

Figure A.1: Overall Design of Setting-less Protection Relay
Figure A1 illustrates the overall design of setting-less protection relay. The algorithms for the setting-less protection have been streamlined for the purpose of increasing efficiency. An objectoriented approach for the DSE based protection algorithm is developed by utilizing the State and Control Algebraic Quadratic Companion Form (SCAQCF). All the mathematical models of the protection zones in the power system are written in SCAQCF format so that the DSE based protection algorithm could be applied to any device. The setting-less protection relay has two kind of input data. One of the input data is the measurement model in the SCAQCF syntax and the other one is the real-time measurements data coming from the data concentrator. The measurement model in SCAQCF syntax is created by using the measurement pointers defined in the measurement definition file and getting the mathematical formulas for the measurements from the corresponding SCAQCF device model file, which describes the mathematical model of the protection zone. The details of how to formulate the SCAQCF measurement model can be found in Appendix B. There is a possibility that the real-time measurement data comes from multiple merging units, and a data concentrator is provided in the overall approach to align all data from different merging units with the same time stamp and feed them as one-way streaming data to the setting-less protection relay. The details of the data concentrator is described in section 4.2. The output of the setting-less protection relay is the protection logic, which determines the protection action according to the following criteria: if the real-time measurements fit the device measurement model well (the dynamic state estimation shows a high confidence level), then the protection zone is in a healthy status; otherwise, some abnormalities inside the protection zone have occurred, protection action should be acted. Note that the protection zone SCAQCF model and the measurement definition is automatically generated by the software WinIGS.

Inside the setting-less protection relay, dynamic state estimation performs whenever the data comes in. At the same time, error analysis and bad data detection are simultaneously operating in case there is some bad data or computation error which could both bring the incorrect protection results. In the near future, model parameter identification function will be added so that it can modify the protection zone model provide that the device parameters are changed.

Appendix B: Object-Oriented Implementation

B1. Time Domain SCAQCF Device Model Description

Each device mathematical model should be expressed in the generalized State and Control Algebraic Quadratic Companion Form (SCAQCF) so that each model is in the object-oriented manner. Most devices in the power system are nonlinear and for the differential equation, the quadratic integration method could be utilized to make each device model in quadratic form. The standard SCAQCF model is shown below:

$$
\begin{aligned}
& \left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{e q u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {eqxu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}-B_{e q} \\
& B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
& \mathbf{h}(\mathbf{x}, \mathbf{u})=Y_{\text {opx }} \mathbf{x}+Y_{\text {opu }} \mathbf{u}+\left\{\begin{array}{c}
\mathbf{x}^{T} F_{\text {opx }}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{\text {opu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {opxu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}-B_{o p} \\
& \text { Scaling factors: Iscale, Xscale and Uscale } \\
& \text { Connectivity: TerminalNodeName }
\end{aligned}
$$

where:
$I(\mathbf{x}, \mathbf{u})$: the through variables of the device model, $I=\left[I(t), I\left(t_{m}\right)\right]$
\mathbf{x} : external and internal state variables of the device model, $\mathbf{x}=\left[\mathbf{x}(t), \mathbf{x}\left(t_{m}\right)\right]$
\mathbf{u} : control variables of the device model, i.e., transformer tap, etc. $\mathbf{u}=\left[\mathbf{u}(t), \mathbf{u}\left(t_{m}\right)\right]$
$Y_{\text {eqx }}$: matrix defining the linear part for state variables,
$F_{e q x}$: matrices defining the quadratic part for state variables,
$Y_{\text {equ }}$: matrix defining the linear part for control variables,
$F_{\text {equ }}$: matrices defining the quadratic part for control variables,
$F_{\text {equu }}$: matrices defining the quadratic part for the product of state and control variables,
$B_{e q}$: history dependent vector of the device model,
$N_{\text {eqx }}$: matrix defining the last integration step state variables part,
$N_{\text {equ }}$: matrix defining the last integration step control variables part,
$M_{e q}$: matrix defining the last integration step through variables part,
$K_{e q}$: constant vector of the device model,
Iscale : scaling factors for the through variables and zeros on the left side of the equations,
Xscale : scaling factors for the state variables ${ }_{\mathbf{x}}$,
Uscale : scaling factors for the control variables \mathbf{u},
TerminalNodeName : terminal names defining the connectivity of the device model,
$\mathbf{h}_{\min } \leq \mathbf{h}(\mathbf{x}, \mathbf{u}) \leq \mathbf{h}_{\max }$: operating constraints,
$\mathbf{u}_{\text {min }}, \mathbf{u}_{\text {max }}$: lower and upper bounds for the control variables.
$Y_{o p x}$: constraint matrix defining the linear part for state variables,
$F_{o p x}$: constraint matrices defining the quadratic part for state variables,
$Y_{\text {opu }}$: constraint matrix defining the linear part for control variables,
$F_{\text {opu }}$: constraint matrices defining the quadratic part for control variables,
$F_{\text {opxu }}$: constraint matrices defining the quadratic part for the product of state and control variables, $B_{o p}$: constraint history dependent vector of the device model.

B2. Time Domain SCAQCF Measurement Model Description

The measurement model is derived from the above SCAQCF device model. The primary data that define a measurement are pointers and the measurement error. Specifically a measurement is defined as follows:

Measurement type: number 14 stands for actual TORQUE measurement; number 15 stands for actual SPEED measurement; number 16 stands for actual VOLTAGE measurement; number 17 stands for actual CURRENT measurement; number 24 stands for the virtual measurement; number 25 stands for voltage pseudo measurement; number 27 stands for current pseudo measurement; number 28 stands for voltage derived measurement; number 29 stands for current derived measurement;
Measurement standard deviation: standard deviation in metric unit
Measurement Terminal: the terminal numbers where this measurement comes from
For derived measurements, the following three definitions are required:
Measurement Ratio: the ratio of the derived measurement to the actual measurement
Measurement Number: from which actual measurement this derived measurement can be derived

All details about the measurement definition are shown in the next section.
From the above definition and the SCAQCF the measurement model is extracted in the following form. All the measurements from the device are listed on the left side of the equations.

$$
\left.\begin{array}{c}
\mathbf{y}(\mathbf{x}, \mathbf{u})=Y_{m, x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{m, x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{m, u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{m, u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\mathbf{x}^{T} F_{m, x u}^{i} \mathbf{u}\right\}+C_{m} \\
\vdots
\end{array}\right]+C_{m, x}=N_{m, u} \mathbf{x}(t-h)+N_{m, u} \mathbf{u}(t-h)+M_{m} I(t-h)+K_{m} \quad .
$$

Measurement standard deviation: sigma (metric unit)
where:
$\mathbf{y}(\mathbf{x}, \mathbf{u})$: measurement variables at both time t and time $t_{m}, \mathbf{y}=\left[\mathbf{y}(t), \mathbf{y}\left(t_{m}\right)\right]$
\mathbf{x} : external and internal state variables of the measurement model, $\mathbf{x}=\left[\mathbf{x}(t), \mathbf{x}\left(t_{m}\right)\right]$
\mathbf{u} : control variables of the measurement model, i.e., transformer tap, etc. $\mathbf{u}=\left[\mathbf{u}(t), \mathbf{u}\left(t_{m}\right)\right]$
$Y_{m, x}$: matrix defining the linear part for state variables,
$F_{m, x}:$ matrices defining the quadratic part for state variables,
$Y_{m, u}$: matrix defining the linear part for control variables,
$F_{m, u}$: matrices defining the quadratic part for control variables,
$F_{m, x u}$: matrices defining the quadratic part for the product of state and control variables,
C_{m} : history dependent vector of the measurement model,
$N_{m, x}$: matrix defining the last integration step state variables part,
$N_{m, u}$: matrix defining the last integration step control variables part,
M_{m} : matrix defining the last integration step through variables part,
K_{m} : constant vector of the measurement model,
sigma : matrix defining the standard deviation in metric unit.
The measurement model should be constructed from the device model and the definition of the measurements. The measurements include actual measurements, pseudo measurements, virtual measurements and derived measurements. The definition of all the measurements are shown in the next section and the creation of the SCAQCF time domain measurement model of different devices are presented in the following Appendices.

B3. Measurement Definition

This section shows how measurements are defined for the setting-less protection algorithm. There are four types of measurements: (1) actual measurement; (2) pseudo measurement; (3) virtual measurement and (4) derived measurement.

B3.1. Actual Measurement

Actual measurements are the measurements which can be actually measured. For each actual measurement, the following information is provided:

Measurement type: number 14 stands for TORQUE measurement; number 15 stands for SPEED measurement; number 16 stands for VOLTAGE measurement; number 17 stands for CURRENT measurement
Measurement standard deviation: standard deviation in metric unit
Measurement Terminal: the terminal numbers where this measurement comes from

> MeasurementType, 16
> MeasStdDev, 600
> MeasTerminal, 2, 3
> MeasurementEnd
> MeasurementType, 17
> MeasStdDev, 5
> MeasTerminal, 0
> MeasurementEnd

Some typical actual measurements are given above. From the measurement type it is easy to know the first measurement is a voltage actual measurement. Its standard deviation is 600 V . The voltage is measured between device terminal 2 and 3, i.e., $v_{\text {meas }}=v_{2}-v_{3}$.

The second measurement is a current actual measurement. Its standard deviation is 5 A . The current is measurement at device terminal 0 , i.e., $i_{\text {meas }}=i_{0}$. The expression of i_{0} could be obtained from the SCAQCF device model.

B3.2. Virtual Measurement

Virtual measurements present the zeros on the left side of the internal equations. For each virtual measurement, the following information is provided:

Measurement type: number 24 stands for the virtual measurement
Measurement standard deviation: standard deviation in metric unit
Measurement Terminal: the device equation number where this measurement comes from
MeasurementType, 24
MeasStdDev, 0.0010000

```
MeasTerminal, 4
MeasurementEnd
```

A typical virtual measurement is given above. From the measurement type it is easy to know this measurement is a virtual measurement. Its standard deviation is 0.001 . The value of this measurement is 0.0 and it is used for the $4^{\text {th }}$ equation (start from $0^{\text {th }}$) of the device model.

B3.3. Pseudo Measurement

Pseudo measurements are the measurements which are normally not measured, like the voltage or current at the neutral terminal. For each pseudo measurement, the following information is provided:

Measurement type: number 25 stands for voltage pseudo measurement; number 27 stands for current pseudo measurement
Measurement standard deviation: standard deviation in metric unit
Measurement Terminal: the terminal number where this measurement comes from

```
MeasurementType, 25
MeasStdDev, 0.10000
MeasTerminal, 3
MeasurementEnd
MeasurementType, 27
MeasStdDev, 0.10000
MeasTerminal, 3
MeasurementEnd
```

Some typical pseudo measurements are given above. From the measurement type it is easy to know the first measurement is a voltage pseudo measurement. Its standard deviation is 0.1 V . The pseudo measurement is for the voltage at device terminal 3, i.e., $0=v_{3}$.

The second measurement is a current pseudo measurement. Its standard deviation is 0.1 A . The pseudo measurement is for the current at device terminal 3, i.e., $0=i_{3}$. The expression of i_{0} could be obtained from the SCAQCF device model.

B3.4. Derived Measurement

Derived measurements are the measurements which can be derived from the actual measurements. For each derived measurement, the following information is provided:

Measurement type: number 28 stands for voltage derived measurement; number 29 stands for current derived measurement
Measurement standard deviation: standard deviation in metric unit
Measurement Terminal: the terminal numbers where this measurement comes from
Measurement Ratio: the ratio of the derived measurement to the actual measurement

Measurement Number: from which actual measurement this derived measurement can be derived

MeasurementType, 28
MeasStdDev, 600
MeasTerminal, 2, 3
MeasRatio, 1.0
MeasNumber, 0
MeasurementEnd
MeasurementType, 29
MeasStdDev, 5
MeasTerminal, 0
MeasRatio, 1.0
MeasNumber, 1
MeasurementEnd

Since the derived measurements come from the actual measurements, the standard deviation and the terminal information should be the same as the original measurement.

Some typical actual measurements are given above. From the measurement type it is easy to know the first measurement is a voltage derived measurement. Its standard deviation is 600V. This derived voltage measurement has the same value as the voltage measured between device terminal 2 and 3, i.e., $v_{\text {dereived }}=v_{2}-v_{3}$.

The second measurement is a current derived measurement. Its standard deviation is 5 A . This derived current measurement has the same value as the current measured at device terminal 0 , i.e., $i_{\text {derived }}=i_{0}$. The expression of i_{0} could be obtained from the SCAQCF device model.

B4. Sparsity Based State Estimation Algorithm

Given the SCAQCF measurement model and input matrices, the next step is the formation of the system Jacobian matrix and measurement vectors. A suitable sparse matrix library is used in order to store sparse matrices and execute sparse matrix operations.

The estimation algorithm is based on the Gauss-Newton iterative algorithm.

$$
X^{v+1}=X^{v}-\left(H^{T} W H\right)^{-1} H^{T} W\left(h\left(X^{v}\right)-Z\right)
$$

At each time step of the estimation algorithm, the contributions of each measurement to the information matrix $H^{T} W H$ and the vector $H^{T} W\left(h\left(X^{v}\right)-Z\right)$ are computed. For example assuming that the ith measurement has the following generic form:

$$
z_{i}=c_{i}+a_{i 1} \cdot x_{i 1}+a_{i 2} \cdot x_{i 2} \cdot x_{i 3}+\eta_{i}
$$

Then the Jacobian matrix's ith row will be:

$$
\left[\begin{array}{lllllllll}
0 & \cdots & a_{i 1} & \cdots & a_{i 2} \cdot x_{i 2} & \cdots & a_{i 2} \cdot x_{i 3} & \cdots & 0
\end{array}\right]
$$

The contribution of this row to the information matrix $H^{T} W H$ is the following:

$$
\left[\begin{array}{ccccccccc}
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
0 & \cdots & w_{i} a_{i 1} a_{i 1} & \cdots & w_{i} a_{i 1} a_{i 2} x_{i 2} & \cdots & w_{i} a_{i 1} a_{i 2} \cdot x_{i 3} & \cdots & 0 \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
0 & \cdots & w_{i} a_{i 1} a_{i 2} \cdot x_{i 2} & \cdots & w_{i}\left(a_{i 2} \cdot x_{i 2}\right)^{2} & \cdots & w_{i} a_{i 2}^{2} \cdot x_{i 2} x_{i 3} & \cdots & 0 \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
0 & \cdots & w_{i} a_{i 1} a_{i 2} \cdot x_{i 3} & \cdots & w_{i} a_{i 2}^{2} \cdot x_{i 2} x_{i 3} & \cdots & w_{i}\left(a_{i 2} \cdot x_{i 3}\right)^{2} & \cdots & 0 \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0
\end{array}\right)
$$

The contribution of the measurement to the vector $H^{T} W\left(h\left(X^{v}\right)-Z\right)$ is the following:

$$
\left[\begin{array}{c}
0 \\
\vdots \\
w_{i} a_{i 1} b_{i} \\
\vdots \\
w_{i} a_{i 2} \cdot x_{i 2} b_{i} \\
\vdots \\
w_{i} a_{i 2} \cdot x_{i 3} b_{i} \\
\vdots \\
0
\end{array}\right], \text { where } b_{i}=c_{i}+a_{i 1} \cdot x_{i 1}+a_{i 2} \cdot x_{i 2} \cdot x_{i 3}-z_{i}
$$

Based on the above formulas, it's possible to calculate the non-zero contributions of each measurement formula and insert the contributions to the information matrix $H^{T} W H$ and the vector $H^{T} W\left(h\left(X^{v}\right)-Z\right)$.Once the reading of all the measurements is completed and their contribution is added to the corresponding matrix and vector, the formation of the information matrix $H^{T} W H$ and the vector $H^{T} W\left(h\left(X^{v}\right)-Z\right)$ is completed and stored in sparse form using a suitable Spartrix Library.

The flow chart of object-oriented setting-less protection is shown in Figure B1 and Figure B2. All the SCAQCF component models are stored in the standard matrices which are introduced in section 3. In the initialization step, the program reads all the matrices, calculates the linear part of
the Jacobian matrix H and prepares the output COMTRADE channels. After the initialization, the dynamic station estimation based setting-less protection algorithm starts to check the health status of the component under protection. It performs the Chi-square test based on the calculated measurements from state estimation and the original measurements from the COMTRADE file. Meanwhile, bad data identification and operation limit monitoring are also done during the state estimation procedure. According to the result of Chi-square test, the protection logic decides the protection action for the component. The entire algorithm is real time and it iterates until no more measurements are available.

It is important to notice that most of device models are nonlinear, which means the Jacobian matrix needs to be updated at each iteration. To increase the speed, the linear part of matrix H can be precalculated at the SE initialization procedure. The program will identify whether the device model is linear or nonlinear. If the model is linear, then the Jacobian matrix H will stay constant. Otherwise, the program will only update the nonlinear part of H to minimize the calculation. The sparsity based state estimation algorithm mentioned before is applied and only the non-zero data will contribute to the information matrix $H^{T} W H$ and the vector $H^{T} W\left(h\left(X^{\nu}\right)-Z\right)$.

Figure B.1: Flow Chart of Object-Oriented Setting-less Protection for Linear Case

Figure B.2: Flow Chart of Object-Oriented Setting-less Protection for Nonlinear Case

B5. Frequency Domain SCAQCF Device Model Description

The frequency domain device model should be expressed in the generalized State and Control Algebraic Quadratic Companion Form (SCAQCF) as well. Compared with the time domain model, the frequency domain SCAQCF device model only has the states and control variables in the steady state. States in the frequency domain is usually expressed in the phasor format. Here in the SCAQCF model, each phasor is separated into real and imaginary parts for computation simplification. The frequency domain standard SCAQCF model is shown below:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\mathbf{I} \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{X}+\left\{\begin{array}{c}
\vdots \\
\mathbf{X}^{T} F_{e q x}^{i} \mathbf{X} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{U}+\left\{\begin{array}{c}
\vdots \\
\mathbf{U}^{T} F_{\text {equ }}^{i} \mathbf{U} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{X}^{T} F_{e q x u}^{i} \mathbf{U}\right\}-B_{e q} \\
\vdots
\end{array}\right\} \\
& \mathbf{h}(\mathbf{X}, \mathbf{U})=Y_{\text {opx }} \mathbf{X}+Y_{\text {opu }} \mathbf{U}+\left\{\begin{array}{c}
\vdots \\
\mathbf{X}^{T} F_{\text {opx }}^{i} \mathbf{X} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{U}^{T} F_{\text {opu }}^{i} \mathbf{U} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{X}^{T} F_{o p x u}^{i} \mathbf{U} \\
\vdots
\end{array}\right\}-B_{o p}
\end{aligned}
$$

Scaling factors: Iscale, Xscale and Uscale
Connectivity: TerminalNodeName

$$
\begin{aligned}
\text { subject to: } & \mathbf{h}_{\min } \leq \mathbf{h}(\mathbf{X}, \mathbf{U}) \leq \mathbf{h}_{\max } \\
& \mathbf{U}_{\min } \leq \mathbf{U} \leq \mathbf{U}_{\max }
\end{aligned}
$$

where:

I : the through variables of the device model,
\mathbf{X} : external and internal state variables of the device model,
\mathbf{U} : control variables of the device model, i.e., transformer tap, etc.
$Y_{e q x}$: matrix defining the linear part for state variables,
$F_{e q x}$: matrices defining the quadratic part for state variables,
$Y_{\text {equ }}$: matrix defining the linear part for control variables,
$F_{\text {equ }}$: matrices defining the quadratic part for control variables,
$F_{\text {equu }}$: matrices defining the quadratic part for the product of state and control variables,
$B_{e q}$: constant vector of the device model,
Iscale : scaling factors for the through variables and zeros on the left side of the equations,
Xscale : scaling factors for the state variables \mathbf{X},
Uscale : scaling factors for the control variables \mathbf{U},
TerminalNodeName : terminal names defining the connectivity of the device model
$\mathbf{h}_{\min } \leq \mathbf{h}(\mathbf{X}, \mathrm{U}) \leq \mathbf{h}_{\max }$: operating constraints,
$\mathbf{U}_{\text {min }}, \mathbf{U}_{\text {max }}$: lower and upper bounds for the control variables.
$Y_{\text {opx }}$: constraint matrix defining the linear part for state variables,
$F_{o p x}$: constraint matrices defining the quadratic part for state variables,
$Y_{\text {opu }}$: constraint matrix defining the linear part for control variables,
$F_{\text {opu }}$: constraint matrices defining the quadratic part for control variables,
$F_{\text {opxu }}$: constraint matrices defining the quadratic part for the product of state and control variables,
$B_{o p}$: constraint history dependent vector of the device model.

B6. Frequency Domain SCAQCF Measurement Model Description

The frequency domain measurement model is derived from the above frequency domain SCAQCF device model. The primary data that define a measurement are pointers and the measurement error. Specifically a measurement is defined as follows:

Measurement type: number 14 stands for actual TORQUE measurement; number 15 stands for actual SPEED measurement; number 16 stands for actual VOLTAGE measurement; number 17 stands for actual CURRENT measurement number 24 stands for the virtual measurement; number 25 stands for voltage pseudo measurement; number 27 stands for current pseudo measurement; number 28 stands for voltage derived measurement; number 29 stands for current derived measurement
Measurement standard deviation: standard deviation in metric unit
Measurement Terminal: the terminal numbers where this measurement comes from
For derived measurements, the following three definitions are required:
Measurement Ratio: the ratio of the derived measurement to the actual measurement
Measurement Number: from which actual measurement this derived measurement can be derived

All details about the measurement definition are shown in the next section.
All the measurements from the device are listed on the left side of the equations.

$$
\mathbf{Y}=Y_{m x} \mathbf{X}+\left\{\begin{array}{c}
\vdots \\
\mathbf{X}^{T} F_{m x}^{i} \mathbf{X} \\
\vdots
\end{array}\right\}+Y_{m u} \mathbf{U}+\left\{\begin{array}{c}
\vdots \\
\mathbf{U}^{T} F_{m u}^{i} \mathbf{U} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{X}^{T} F_{m \times u}^{i} \mathbf{U} \\
\vdots
\end{array}\right\}+C_{m}
$$

Measurement standard deviation: sigma (metric unit)
where:
\mathbf{Y} : measurement variables in the steady state, \mathbf{X} : external and internal state variables of the component model, \mathbf{U} : control variables of the component model, i.e., transformer tap, etc.
$Y_{m x}$: matrix defining the linear part for state variables,
$F_{m x}$: matrices defining the quadratic part for state variables,
$Y_{m u}$: matrix defining the linear part for control variables,
$F_{m u}$: matrices defining the quadratic part for control variables,
$F_{m \times u}$: matrices defining the quadratic part for the product of state and control variables,
C_{m} : history dependent vector of the measurement model.
sigma : matrix defining the standard deviation in metric unit.

The frequency domain measurement model should be constructed from the frequency domain device model and the definition of the measurements. The measurements include actual measurements, pseudo measurements, virtual measurements and derived measurements. The definition of each measurement has already shown in Section 3.The creation of the frequency domain SCAQCF time domain measurement model are presented in Appendix B.

Appendix C: Time Domain SCAQCF Model Capacitor Bank

This Appendix presents the derivation of the time domain model of a capacitor bank in the SCAQCF syntax. The model is first presented with what we call the compact form, which is the familiar standard notation model. We subsequently quadratized the model and then the quadratic model is integrated to provide the SCAQCF device model. A typical measurement channel list is also presented to show the procedure of creating the SCAQCF measurement model.

C1. Three Phase Capacitor Bank Compact Model

Figure C1 gives the circuit model of the three phase capacitor bank.

Figure C.1: The Three Phase Capacitor Bank Circuit Model
The compact capacitor bank model is derived from this circuit and it is given with the following equations:
$i_{a}(t)=C \cdot \frac{d}{d t}\left(v_{a}(t)-v_{m}(t)\right)$
$i_{b}(t)=C \cdot \frac{d}{d t}\left(v_{b}(t)-v_{m}(t)\right)$
$i_{c}(t)=C \cdot \frac{d}{d t}\left(v_{c}(t)-v_{m}(t)\right)$
$i_{n}(t)=-C \cdot \frac{d}{d t}\left(v_{a}(t)+v_{b}(t)+v_{c}(t)-3 v_{m}(t)\right)$
$0=G \cdot\left(v_{m}(t)-L \cdot \frac{d i_{L}(t)}{d t}-v_{n}(t)\right)-C \cdot \frac{d}{d t}\left(v_{a}(t)+v_{b}(t)+v_{c}(t)-3 \cdot v_{m}(t)\right)$
$0=g \cdot L \cdot \frac{d i_{L}(t)}{d t}-C \cdot \frac{d}{d t}\left(v_{a}(t)+v_{b}(t)+v_{c}(t)-3 \cdot v_{m}(t)\right)+i_{L}(t)$

In compact matrix form, the model is:
$\left[\begin{array}{c}i(t) \\ 0\end{array}\right]=A \cdot\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]+B \cdot \frac{d}{d t}\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]$
where: $i(t)=\left[\begin{array}{c}i_{a}(t) \\ i_{b}(t) \\ i_{c}(t) \\ i_{n}(t)\end{array}\right], v(t)=\left[\begin{array}{c}v_{a}(t) \\ v_{b}(t) \\ v_{c}(t) \\ v_{n}(t) \\ v_{m}(t)\end{array}\right]$
$A=\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -G & G & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cccccc}C & 0 & 0 & 0 & -C & 0 \\ 0 & C & 0 & 0 & -C & 0 \\ 0 & 0 & C & 0 & -C & 0 \\ C & C & C & 0 & -3 C & 0 \\ -C & -C & -C & 0 & 3 C & -G L \\ -C & -C & -C & 0 & 3 C & g L\end{array}\right]$

C2. Three Phase Capacitor Bank Quadratized Model

All the terms in the three phase capacitor bank compact model are linear and quadratic terms. Therefore the quadratized model is identical to the compact model. In compact matrix form, the model is:
$\left[\begin{array}{c}i(t) \\ 0\end{array}\right]=A \cdot\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]+B \cdot \frac{d}{d t}\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]$
where: $i(t)=\left[\begin{array}{c}i_{a}(t) \\ i_{b}(t) \\ i_{c}(t) \\ i_{n}(t)\end{array}\right], v(t)=\left[\begin{array}{c}v_{a}(t) \\ v_{b}(t) \\ v_{c}(t) \\ v_{n}(t) \\ v_{m}(t)\end{array}\right]$
$A=\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -G & G & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cccccc}C & 0 & 0 & 0 & -C & 0 \\ 0 & C & 0 & 0 & -C & 0 \\ 0 & 0 & C & 0 & -C & 0 \\ C & C & C & 0 & -3 C & 0 \\ -C & -C & -C & 0 & 3 C & -G L \\ -C & -C & -C & 0 & 3 C & g L\end{array}\right]$

C3. Three Phase Capacitor Bank SCAQCF Device Model

The state and control algebraic quadratic companion form (SCAQCF)device model is derived after quadratic integration of the quadratized model with a time step h. The result is:

At time t,

$$
\begin{aligned}
& i_{a}(t)= \frac{12}{h} \cdot C \cdot\left[v_{a}(t)-v_{m}(t)\right]-\frac{24}{h} \cdot C \cdot\left[v_{a}\left(t_{m}\right)-v_{m}\left(t_{m}\right)\right]+3 i_{a}(t-h)+\frac{12}{h} \cdot C \cdot\left[v_{a}(t-h)-v_{m}(t-h)\right] \\
& i_{b}(t)= \frac{12}{h} \cdot C \cdot\left[v_{b}(t)-v_{m}(t)\right]-\frac{24}{h} \cdot C \cdot\left[v_{b}\left(t_{m}\right)-v_{m}\left(t_{m}\right)\right]+3 i_{b}(t-h)+\frac{12}{h} \cdot C \cdot\left[v_{b}(t-h)-v_{m}(t-h)\right] \\
& i_{c}(t)= \frac{12}{h} \cdot C \cdot\left[v_{c}(t)-v_{m}(t)\right]-\frac{24}{h} \cdot C \cdot\left[v_{c}\left(t_{m}\right)-v_{m}\left(t_{m}\right)\right]+3 i_{c}(t-h)+\frac{12}{h} \cdot C \cdot\left[v_{c}(t-h)-v_{m}(t-h)\right] \\
& i_{n}(t)= \frac{12}{h} \cdot C \cdot\left[-v_{a}(t)-v_{b}(t)-v_{c}(t)+3 v_{m}(t)\right]-\frac{24}{h} \cdot C \cdot\left[-v_{a}\left(t_{m}\right)-v_{b}\left(t_{m}\right)-v_{c}\left(t_{m}\right)+3 v_{m}\left(t_{m}\right)\right] \\
&+3 i_{n}(t-h)+\frac{12}{h} \cdot C \cdot\left[-v_{a}(t-h)-v_{b}(t-h)-v_{c}(t-h)+3 v_{m}(t-h)\right] \\
& 0= \frac{h}{6} \cdot G \cdot\left(v_{m}(t)-v_{n}(t)\right)+\frac{2 h}{3} \cdot G \cdot\left(v_{m}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right)-G \cdot L \cdot i_{L}(t)-C \cdot\left[v_{a}(t)+v_{b}(t)+v_{c}(t)-3 v_{m}(t)\right] \\
& \quad+\frac{h}{6} \cdot G \cdot\left(v_{m}(t-h)-v_{n}(t-h)\right)-G \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right] \\
& 0= \frac{h}{6} \cdot i_{L}(t)+\frac{2 h}{3} \cdot i_{L}\left(t_{m}\right)-g \cdot L \cdot i_{L}(t)-C \cdot\left[v_{a}(t)+v_{b}(t)+v_{c}(t)-3 v_{m}(t)\right] \\
& \quad+\frac{h}{6} \cdot i_{L}(t-h)+g \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right]
\end{aligned}
$$

At time t_{m},
$i_{a}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{a}(t)-v_{m}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{a}\left(t_{m}\right)-v_{m}\left(t_{m}\right)\right]-\frac{1}{2} i_{a}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{a}(t-h)-v_{m}(t-h)\right]$ $i_{b}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{b}(t)-v_{m}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{b}\left(t_{m}\right)-v_{m}\left(t_{m}\right)\right]-\frac{1}{2} i_{b}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{b}(t-h)-v_{m}(t-h)\right]$
$i_{c}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{c}(t)-v_{m}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{c}\left(t_{m}\right)-v_{m}\left(t_{m}\right)\right]-\frac{1}{2} i_{c}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{c}(t-h)-v_{m}(t-h)\right]$

$$
\begin{aligned}
i_{n}\left(t_{m}\right)= & \frac{1}{2 h} \cdot C \cdot\left[-v_{a}(t)-v_{b}(t)-v_{c}(t)+3 v_{m}(t)\right]+\frac{2}{h} \cdot C \cdot\left[-v_{a}\left(t_{m}\right)-v_{b}\left(t_{m}\right)-v_{c}\left(t_{m}\right)+3 v_{m}\left(t_{m}\right)\right] \\
& -\frac{1}{2} i_{n}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[-v_{a}(t-h)-v_{b}(t-h)-v_{c}(t-h)+3 v_{m}(t-h)\right] \\
0= & -\frac{h}{24} \cdot G \cdot\left(v_{m}(t)-v_{n}(t)\right)+\frac{h}{3} \cdot G \cdot\left(v_{m}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right)-G \cdot L \cdot i_{L}\left(t_{m}\right)-C \cdot\left[v_{a}\left(t_{m}\right)+v_{b}\left(t_{m}\right)+v_{c}\left(t_{m}\right)-3 v_{m}\left(t_{m}\right)\right] \\
& +\frac{5 h}{24} \cdot G \cdot\left(v_{m}(t-h)-v_{n}(t-h)\right)-G \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right] \\
0= & -\frac{h}{24} \cdot i_{L}(t)+\frac{h}{3} \cdot i_{L}\left(t_{m}\right)-g \cdot L \cdot i_{L}\left(t_{m}\right)-C \cdot\left[v_{a}\left(t_{m}\right)+v_{b}\left(t_{m}\right)+v_{c}\left(t_{m}\right)-3 v_{m}\left(t_{m}\right)\right] \\
& +\frac{5 h}{24} \cdot i_{L}(t-h)+g \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right]
\end{aligned}
$$

Write the above equations into the standard SCAQCF matrix form: (no control variable in this capacitor bank model)

$$
I(\mathbf{x})=Y_{e q x} \cdot \mathbf{x}-B_{e q}
$$

where:

$$
I(\mathbf{x})=\left[\begin{array}{c}
i_{a}(t) \\
i_{b}(t) \\
i_{c}(t) \\
i_{n}(t) \\
0 \\
0 \\
i_{a}\left(t_{m}\right) \\
i_{b}\left(t_{m}\right) \\
i_{c}\left(t_{m}\right) \\
i_{n}\left(t_{m}\right) \\
0 \\
0
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
v_{a}(t) \\
v_{b}(t) \\
v_{c}(t) \\
v_{n}(t) \\
v_{m}(t) \\
i_{L}(t) \\
v_{a}\left(t_{m}\right) \\
v_{b}\left(t_{m}\right) \\
v_{c}\left(t_{m}\right) \\
v_{n}\left(t_{m}\right) \\
v_{m}\left(t_{m}\right) \\
i_{L}\left(t_{m}\right)
\end{array}\right]
$$

$$
Y_{\text {eqx }}=\left[\begin{array}{cccccccccccc}
\frac{12 C}{h} & 0 & 0 & 0 & -\frac{12 C}{h} & 0 & -\frac{24 C}{h} & 0 & 0 & 0 & \frac{24 C}{h} & 0 \\
0 & \frac{12 C}{h} & 0 & 0 & -\frac{12 C}{h} & 0 & 0 & -\frac{24 C}{h} & 0 & 0 & \frac{24 C}{h} & 0 \\
0 & 0 & \frac{12 C}{h} & 0 & -\frac{12 C}{h} & 0 & 0 & 0 & -\frac{24 C}{h} & 0 & \frac{24 C}{h} & 0 \\
-\frac{12 C}{h} & -\frac{12 C}{h} & -\frac{12 C}{h} & 0 & \frac{36 C}{h} & 0 & \frac{24 C}{h} & \frac{24 C}{h} & \frac{24 C}{h} & 0 & -\frac{72 C}{h} & 0 \\
-C & -C & -C & -\frac{h \cdot G}{6} & \frac{h \cdot G}{6}+3 C & -G \cdot L & 0 & 0 & 0 & -\frac{2 h \cdot G}{3} & \frac{2 h \cdot G}{3} & 0 \\
-C & -C & -C & 0 & 3 C & \frac{h}{6}-g \cdot L & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{3} \\
\frac{C}{2 h} & 0 & 0 & 0 & -\frac{C}{2 h} & 0 & \frac{2 C}{h} & 0 & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & \frac{C}{2 h} & 0 & 0 & -\frac{C}{2 h} & 0 & 0 & \frac{2 C}{h} & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & 0 & \frac{C}{2 h} & 0 & -\frac{C}{2 h} & 0 & 0 & 0 & \frac{2 C}{h} & 0 & -\frac{2 C}{h} & 0 \\
-\frac{C}{2 h} & -\frac{C}{2 h} & -\frac{C}{2 h} & 0 & \frac{3 C}{2 h} & 0 & -\frac{2 C}{h} & -\frac{2 C}{h} & -\frac{2 C}{h} & 0 & \frac{6 C}{h} & 0 \\
0 & 0 & 0 & \frac{h \cdot G}{24} & -\frac{h \cdot G}{24} & 0 & -C & -C & -C & -\frac{h \cdot G}{3} & \frac{h \cdot G}{3}+3 C & -G \cdot L \\
0 & 0 & 0 & 0 & 0 & -\frac{h}{24} & -C & -C & -C & 0 & 3 C & \frac{h}{3}-g \cdot L
\end{array}\right]
$$

$$
B_{e q}=\left[\begin{array}{c}
-3 i_{a}(t-h)-\frac{12}{h} \cdot C \cdot\left[v_{a}(t-h)-v_{m}(t-h)\right] \\
-3 i_{b}(t-h)-\frac{12}{h} \cdot C \cdot\left[v_{b}(t-h)-v_{m}(t-h)\right] \\
-3 i_{c}(t-h)-\frac{12}{h} \cdot C \cdot\left[v_{c}(t-h)-v_{m}(t-h)\right] \\
-3 i_{n}(t-h)-\frac{12}{h} \cdot C \cdot\left[-v_{a}(t-h)-v_{b}(t-h)-v_{c}(t-h)+3 v_{m}(t-h)\right] \\
-\frac{h}{6} \cdot G \cdot\left(v_{m}(t-h)-v_{n}(t-h)\right)+G \cdot L \cdot i_{L}(t-h)+C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right] \\
-\frac{h}{6} \cdot i_{L}(t-h)-g \cdot L \cdot i_{L}(t-h)+C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{m}(t-h)\right] \\
-\frac{1}{2} i_{a}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[v_{a}(t-h)-v_{m}(t-h)\right] \\
-\frac{1}{2} i_{b}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[v_{b}(t-h)-v_{m}(t-h)\right] \\
-\frac{1}{2} i_{c}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[v_{c}(t-h)-v_{m}(t-h)\right] \\
-\frac{1}{2} i_{n}(t-h)+\frac{5}{2 h} \cdot C \cdot\left[-v_{a}(t-h)-v_{b}(t-h)-v_{c}(t-h)+3 v_{m}(t-h)\right]
\end{array}\right]
$$

The input matrices of the capacitor bank SCAQCF device model for the setting-less protection algorithm are shown below:

TerminalNodeName
CAPBANK_A
CAPBANK_B
CAPBANK_C
CAPBANK_N
-1

Xscale
0, 11500
1, 11500
2, 11500
3, 11500
4, 11500
5, 80
6, 11500

7, 11500
8, 11500
9, 11500
10, 11500
11, 80
-1

Iscale
0, 230
1, 230
2, 230
3, 230
4, 1
5, 1
6, 230
7, 230
8, 230
9, 230
10, 1
11, 1
-1
Yeqx
0, 0, 0.192
0, 4, -0.192
0, 6, -0.384
0, 10, 0.384
1, 1, 0.192
1, 4, -0.192
1, 7, -0.384
1, 10, 0.384
2, 2, 0.192
2, 4, -0.192
2, $8,-0.384$
2, 10, 0.384
3, $0,-0.192$
3, 1, -0.192
3, 2, -0.192
3, 4, 0.576
3, 6, 0.384
3, 7, 0.384
3, 8, 0.384
3, 10, -1.152
4, $0,-0.0000048$
4, 1, -0.0000048
4, 2, -0.0000048
4, 3, -0.0000001667
4, 4, 0.0000145667

4, 9, -0.0000006667
4, 10, 0.0000006667
5, 0, -0.0000048
5, 1, -0.0000048
5, 2, -0.0000048
5, 4, 0.0000144
5, 5, 0.00001667
5, 11, 0.00006667
$6, \quad 0,0.024$
6, 4, -0.024
6, 6, 0.096
6, 10, -0.096
7, 1, 0.024
7, 4, -0.024
7, 7, 0.096
7, 10, -0.096
8, 2, 0.024
8, 4, -0.024
8, 8, 0.096
8, 10, -0.096
9, $0,-0.024$
9, $1,-0.024$
9, 2, -0.024
9, 4, 0.072
9, 6, -0.096
9, 7, -0.096
9, 8, -0.096
9, 10, 0.288
10, 3, 0.0000000416
10, 4, -0.0000000416
10, 6, -0.0000048
10, 7, -0.0000048
10, 8, -0.0000048
10, 9, -0.0000003333
10, 10, 0.0000147333
11, 5, -0.00000416
11, 6, -0.0000048
11, 7, -0.0000048
$11,8,-0.0000048$
11, 10, 0.0000144
11, 11, 0.00003333
-1
Feqx
-1
Neqx
$0, \quad 0,0.192$

0, 4, -0.192
1, 1, 0.192
1, 4, -0.192
2, 2, 0.192
2, 4, -0.192
3, $0,-0.192$
3, $1,-0.192$
3, 2, -0.192
3, 4, 0.576
4, $0,0.0000048$
4, 1, 0.0000048
4, 2, 0.0000048
4, 3, -0.0000001667
4, 4, -0.000014233
5, $0,0.0000048$
5, 1, 0.0000048
5, 2, 0.0000048
5, 4, -0.0000144
5, 5, 0.00001667
$6,0,-0.12$
6, 4, 0.12
7, 1, -0.12
7, 4, 0.12
8, 2, -0.12
8, 4, 0.12
9, $0,0.12$
9, 1, 0.12
9, 2, 0.12
9, 4, -0.36
10, $0,0.0000048$
10, 1, 0.0000048
10, 2, 0.0000048
10, 3, -0.000000208
10, 4, -0.000014192
11, $0,0.0000048$
11, 1, 0.0000048
11, 2, 0.0000048
11, 4, -0.0000144
11, 5, 0.000000208
-1
Meq
$0, \quad 0,1.0$
1, 1, 1.0
$2,2,1.0$
3, 3, 1.0
6, $0,-0.5$
7, 1, -0.5

```
        8, 2, -0.5
        9, 3, -0.5
    -1
```

 Keq
 -1

C4. Three Phase Capacitor Bank SCAQCF Measurement Model

More specifically, for capacitor bank, the actual measurements are:
Three currents at time t (phase A, phase B, and phase C);
Three voltages at time t (phase A-G, phase B-G, phase C-G);
Three bottom currents at time t (bottom phase A, bottom phase B, and bottom phase C);
One neutral voltage at time t (phase $\mathrm{N}-\mathrm{G}$);
Three currents at time tm=t-h/2 (phase A, phase B, and phase C);
Three voltages at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$ (phase A-G, phase B-G, phase C-G);
Three bottom currents at time tm=t-h/2 (bottom phase A, bottom phase B, and bottom phase C);
One neutral voltage at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$ (phase $\mathrm{N}-\mathrm{G}$);

The virtual measurements are:

Two measurements with zero value at the left side of the equations at time t;
Two measurements with zero value at the left side of the equations at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$;
The measurement channel list:
MeasurementType, 16
MeasStdDev, 1150
MeasTerminal, 0, 3
MeasurementEnd
MeasurementType, 17
MeasStdDev, 2
MeasTerminal, 0
MeasurementEnd
MeasurementType, 17
MeasStdDev, 2
MeasTerminal, 1
MeasurementEnd
MeasurementType, 17
MeasStdDev, 2
MeasTerminal, 2
MeasurementEnd
MeasurementType, 16
MeasStdDev, 1150
MeasTerminal, 1, 3
MeasurementEnd
MeasurementType, 16

MeasStdDev, 1150
MeasTerminal, 2, 3
MeasurementEnd
MeasurementType, 16
MeasStdDev, 1150
MeasTerminal, 3
MeasurementEnd
MeasurementType, 17
MeasStdDev, 2
MeasTerminal, 0
MeasurementEnd
MeasurementType, 17
MeasStdDev, 2
MeasTerminal, 1
MeasurementEnd
MeasurementType, 17
MeasStdDev, 2
MeasTerminal, 2
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 4
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 5
MeasurementEnd

Based on the device model and the measurement channel list, the equations for the measurement model are given below:

At time t,
$v_{a n}(t)=v_{a}(t)-v_{n}(t)$
$v_{b n}(t)=v_{b}(t)-v_{n}(t)$
$v_{c n}(t)=v_{c}(t)-v_{n}(t)$
$v_{n n}(t)=v_{n}(t)$
$i_{a}(t)=\frac{4}{h} \cdot C \cdot\left[v_{a}(t)-v_{n}(t)\right]-\frac{8}{h} \cdot C \cdot\left[v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]+i_{a}(t-h)+\frac{4}{h} \cdot C \cdot\left[v_{a}(t-h)-v_{n}(t-h)\right]$
$i_{b}(t)=\frac{4}{h} \cdot C \cdot\left[v_{b}(t)-v_{n}(t)\right]-\frac{8}{h} \cdot C \cdot\left[v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]+i_{b}(t-h)+\frac{4}{h} \cdot C \cdot\left[v_{b}(t-h)-v_{n}(t-h)\right]$
$i_{c}(t)=\frac{4}{h} \cdot C \cdot\left[v_{c}(t)-v_{n}(t)\right]-\frac{8}{h} \cdot C \cdot\left[v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]+i_{c}(t-h)+\frac{4}{h} \cdot C \cdot\left[v_{c}(t-h)-v_{n}(t-h)\right]$

$$
\begin{aligned}
& i_{a m}(t)=\frac{4}{h} \cdot C \cdot\left[v_{a}(t)-v_{n}(t)\right]-\frac{8}{h} \cdot C \cdot\left[v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]+i_{a}(t-h)+\frac{4}{h} \cdot C \cdot\left[v_{a}(t-h)-v_{n}(t-h)\right] \\
& i_{b m}(t)=\frac{4}{h} \cdot C \cdot\left[v_{b}(t)-v_{n}(t)\right]-\frac{8}{h} \cdot C \cdot\left[v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]+i_{b}(t-h)+\frac{4}{h} \cdot C \cdot\left[v_{b}(t-h)-v_{n}(t-h)\right] \\
& i_{c m}(t)=\frac{4}{h} \cdot C \cdot\left[v_{c}(t)-v_{n}(t)\right]-\frac{8}{h} \cdot C \cdot\left[v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]+i_{c}(t-h)+\frac{4}{h} \cdot C \cdot\left[v_{c}(t-h)-v_{n}(t-h)\right] \\
& 0=v_{n}(t) \\
& 0=\frac{h}{6} \cdot G \cdot v_{n}(t)+\frac{2 h}{3} \cdot G \cdot v_{n}\left(t_{m}\right)-G \cdot L \cdot i_{L}(t)-C \cdot\left[v_{a}(t)+v_{b}(t)+v_{c}(t)-3 v_{n}(t)\right] \\
& \quad+\frac{h}{6} \cdot G \cdot v_{n}(t-h)+G \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{n}(t-h)\right] \\
& 0=\frac{h}{6} \cdot i_{L}(t)+\frac{2 h}{3} \cdot i_{L}\left(t_{m}\right)-g \cdot L \cdot i_{L}(t)-C \cdot\left[v_{a}(t)+v_{b}(t)+v_{c}(t)-3 v_{n}(t)\right] \\
& \quad+\frac{h}{6} \cdot i_{L}(t-h)+g \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{n}(t-h)\right]
\end{aligned}
$$

At time t_{m},
$v_{a n}\left(t_{m}\right)=v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)$
$v_{b n}\left(t_{m}\right)=v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)$
$v_{c n}\left(t_{m}\right)=v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)$
$v_{n n}\left(t_{m}\right)=v_{n}\left(t_{m}\right)$
$i_{a}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{a}(t)-v_{n}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]-\frac{1}{2} i_{a}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{a}(t-h)-v_{n}(t-h)\right]$
$i_{b}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{b}(t)-v_{n}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]-\frac{1}{2} i_{b}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{b}(t-h)-v_{n}(t-h)\right]$
$i_{c}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{c}(t)-v_{n}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]-\frac{1}{2} i_{c}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{c}(t-h)-v_{n}(t-h)\right]$
$i_{a m}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{a}(t)-v_{n}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]-\frac{1}{2} i_{a}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{a}(t-h)-v_{n}(t-h)\right]$
$i_{b m}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{b}(t)-v_{n}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]-\frac{1}{2} i_{b}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{b}(t-h)-v_{n}(t-h)\right]$
$i_{c m}\left(t_{m}\right)=\frac{1}{2 h} \cdot C \cdot\left[v_{c}(t)-v_{n}(t)\right]+\frac{2}{h} \cdot C \cdot\left[v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right]-\frac{1}{2} i_{c}(t-h)-\frac{5}{2 h} \cdot C \cdot\left[v_{c}(t-h)-v_{n}(t-h)\right]$
$0=v_{n}\left(t_{m}\right)$
$0=-\frac{h}{24} \cdot G \cdot v_{n}(t)+\frac{h}{3} \cdot G \cdot v_{n}\left(t_{m}\right)-G \cdot L \cdot i_{L}(t)-C \cdot\left[v_{a}(t)+v_{b}(t)+v_{c}(t)-3 v_{n}(t)\right]$
$+\frac{5 h}{24} \cdot G \cdot v_{n}(t-h)+G \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{n}(t-h)\right]$

$$
\begin{aligned}
0= & -\frac{h}{24} \cdot i_{L}(t)+\frac{h}{3} \cdot i_{L}\left(t_{m}\right)-g \cdot L \cdot i_{L}(t)-C \cdot\left[v_{a}(t)+v_{b}(t)+v_{c}(t)-3 v_{n}(t)\right] \\
& +\frac{5 h}{24} \cdot i_{L}(t-h)+g \cdot L \cdot i_{L}(t-h)-C \cdot\left[v_{a}(t-h)+v_{b}(t-h)+v_{c}(t-h)-3 v_{n}(t-h)\right]
\end{aligned}
$$

It is very easy to write the above equations in the standard SCAQCF format:
$\mathbf{y}(\mathbf{x}, \mathbf{u})=Y_{m, \mathbf{x}} \mathbf{x}+\left\{\begin{array}{c}\vdots \\ \mathbf{x}^{T} F_{m, \mathbf{x}}^{i} \mathbf{x} \\ \vdots\end{array}\right\}+Y_{m, u} \mathbf{u}+\left\{\begin{array}{c}\vdots \\ \mathbf{u}^{T} F_{m, u}^{i} \mathbf{u} \\ \vdots\end{array}\right\}+\left\{\begin{array}{c}\vdots \\ \mathbf{x}^{T} F_{m, x u}^{i} \mathbf{u} \\ \vdots\end{array}\right\}+N_{m, x} \mathbf{x}(t-h)+N_{m, u} \mathbf{u}(t-h)+M_{m} I(t-h)+K_{m}$
where:

$$
Y_{m, x}=\left[\begin{array}{cccccccccccc}
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\frac{4 C}{h} & 0 & 0 & 0 & -\frac{4 C}{h} & 0 & -\frac{8 C}{h} & 0 & 0 & 0 & \frac{8 C}{h} & 0 \\
0 & \frac{4 C}{h} & 0 & 0 & -\frac{4 C}{h} & 0 & 0 & -\frac{8 C}{h} & 0 & 0 & \frac{8 C}{h} & 0 \\
0 & 0 & \frac{4 C}{h} & 0 & -\frac{4 C}{h} & 0 & 0 & 0 & -\frac{8 C}{h} & 0 & \frac{8 C}{h} & 0 \\
\frac{4 C}{h} & 0 & 0 & 0 & -\frac{4 C}{h} & 0 & -\frac{8 C}{h} & 0 & 0 & 0 & \frac{8 C}{h} & 0 \\
0 & \frac{4 C}{h} & 0 & 0 & -\frac{4 C}{h} & 0 & 0 & -\frac{8 C}{h} & 0 & 0 & \frac{8 C}{h} & 0 \\
0 & 0 & \frac{4 C}{h} & 0 & -\frac{4 C}{h} & 0 & 0 & 0 & -\frac{8 C}{h} & 0 & \frac{8 C}{h} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-C & -C & -C & -\frac{h \cdot G}{6} & \frac{h \cdot G}{6}+3 C & -G \cdot L & 0 & 0 & 0 & -\frac{2 h \cdot G}{3} & \frac{2 h \cdot G}{3} & 0 \\
-C & -C & -C & 0 & 3 C & \frac{h}{6}-g \cdot L & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\frac{C}{2 h} & 0 & 0 & 0 & -\frac{C}{2 h} & 0 & \frac{2 C}{h} & 0 & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & \frac{C}{2 h} & 0 & 0 & -\frac{C}{2 h} & 0 & 0 & \frac{2 C}{h} & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & 0 & \frac{C}{2 h} & 0 & -\frac{C}{2 h} & 0 & 0 & 0 & \frac{2 C}{h} & 0 & -\frac{2 C}{h} & 0 \\
\frac{C}{2 h} & 0 & 0 & 0 & -\frac{C}{2 h} & 0 & \frac{2 C}{h} & 0 & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & \frac{C}{2 h} & 0 & 0 & -\frac{C}{2 h} & 0 & 0 & \frac{2 C}{h} & 0 & 0 & -\frac{2 C}{h} & 0 \\
0 & 0 & \frac{C}{2 h} & 0 & -\frac{C}{2 h} & 0 & 0 & 0 & \frac{2 C}{h} & 0 & -\frac{2 C}{h} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{h \cdot G}{24} & -\frac{h \cdot G}{24} & 0 & -C & -C & -C & -\frac{h \cdot G}{3} & \frac{h \cdot G}{3}+3 C & -G \cdot L \\
0 & 0 & 0 & 0 & 0 & -\frac{h}{24} & -C & -C & -C & 0 & 3 C & \frac{h}{3}-g \cdot L
\end{array}\right]
$$

$$
N_{m, x}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\frac{4 C}{h} & 0 & 0 & 0 & -\frac{4 C}{h} & 0 \\
0 & \frac{4 C}{h} & 0 & 0 & -\frac{4 C}{h} & 0 \\
0 & 0 & \frac{4 C}{h} & 0 & -\frac{4 C}{h} & 0 \\
\frac{4 C}{h} & 0 & 0 & 0 & -\frac{4 C}{h} & 0 \\
0 & \frac{4 C}{h} & 0 & 0 & -\frac{4 C}{h} & 0 \\
0 & 0 & \frac{4 C}{h} & 0 & -\frac{4 C}{h} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
C & C & C & -\frac{h \cdot G}{6} & \frac{h \cdot G}{6}+3 C & G \cdot L \\
0 & 0 & C & 0 & -3 C & \frac{h}{6}-g \cdot L \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{5 C}{2 h} & 0 & 0 & 0 & \frac{5 C}{2 h} & 0 \\
0 & -\frac{5 C}{2 h} & 0 & 0 & \frac{5 C}{2 h} & 0 \\
0 & 0 & -\frac{5 C}{2 h} & 0 & \frac{5 C}{2 h} & 0 \\
-\frac{5 C}{2 h} & 0 & 0 & 0 & \frac{5 C}{2 h} & 0 \\
0 & -\frac{5 C}{2 h} & 0 & 0 & \frac{5 C}{2 h} & 0 \\
0 & 0 & -\frac{5 C}{2 h} & 0 & \frac{5 C}{2 h} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
C & C & C & -\frac{5 h \cdot G}{24} & \frac{5 h \cdot G}{24}-3 C & G \cdot L \\
C & C & C & 0 & -3 C & \frac{5 h}{24}-g \cdot L
\end{array}\right]
$$

$$
M_{m}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\frac{1}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Appendix D: Time Domain SCAQCF Model - Single Section Transmission Line Protection

This Appendix presents the derivation of the time domain model of a transmission line in the SCAQCF syntax. The model is first presented with what we call the compact form, which is the familiar standard notation model. We subsequently quadratize the model and then the quadratic model is integrated to provide the SCAQCF device model. A typical measurement channel list is also presented to show the procedure of creating the SCAQCF measurement model.

D1. Three Phase Transmission Line Compact Model

Figure D1 gives the circuit model of the three phase four wire transmission line.

Figure D.1: The Three Phase Transmission Line Circuit Model
The compact transmission line model is derived from this circuit and it is given with the following equations:
$i_{1}(t)=C \frac{d v_{1}(t)}{d t}+i_{L}(t)+G L \frac{d i_{L}(t)}{d t}$
$i_{2}(t)=C \frac{d v_{2}(t)}{d t}-i_{L}(t)-G L \frac{d i_{L}(t)}{d t}$
$0=-v_{1}(t)+v_{2}(t)+R\left(i_{L}(t)+G L \frac{d i_{L}(t)}{d t}\right)+L \frac{d i_{L}(t)}{d t}$
In compact matrix form, the model is:
$\left[\begin{array}{c}i(t) \\ 0\end{array}\right]=A \cdot\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]+B \cdot \frac{d}{d t}\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]$
where: $i(t)=\left[\begin{array}{c}i_{a 1}(t) \\ i_{b_{1}}(t) \\ i_{c 1}(t) \\ i_{n 1}(t) \\ i_{a 2}(t) \\ i_{b 2}(t) \\ i_{c 2}(t) \\ i_{n 2}(t)\end{array}\right], \quad v(t)=\left[\begin{array}{c}v_{a 1}(t) \\ v_{b 1}(t) \\ v_{c 1}(t) \\ v_{n 1}(t) \\ v_{a 2}(t) \\ v_{b 2}(t) \\ v_{c 2}(t) \\ v_{n 2}(t)\end{array}\right]$
$A=\left[\begin{array}{ccc}0 & 0 & I_{4 \times 4} \\ 0 & 0 & -I_{4 \times 4} \\ -I_{4 \times 4} & I_{4 \times 4} & R\end{array}\right] \quad B=\left[\begin{array}{ccc}C & 0 & G \cdot L \\ 0 & C & -G \cdot L \\ 0 & 0 & R \cdot G \cdot L+L\end{array}\right]$
R, L, C, G are the resistance, inductance, capacitance and stabilizing conductance matrices of the transmission line (as shown in the above figure).

D2. Three Phase Transmission Line Quadratized Model

All the terms in the three phase transmission line compact model are linear and quadratic terms. Therefore the quadratized model is identical to the compact model. In compact matrix form, the model is:
$\left[\begin{array}{c}i(t) \\ 0\end{array}\right]=A \cdot\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]+B \cdot \frac{d}{d t}\left[\begin{array}{c}v(t) \\ i_{L}(t)\end{array}\right]$
where: $i(t)=\left[\begin{array}{c}i_{a 1}(t) \\ i_{b 1}(t) \\ i_{c 1}(t) \\ i_{n 1}(t) \\ i_{a 2}(t) \\ i_{b 2}(t) \\ i_{c 2}(t) \\ i_{n 2}(t)\end{array}\right], \quad v(t)=\left[\begin{array}{c}v_{a 1}(t) \\ v_{b 1}(t) \\ v_{c 1}(t) \\ v_{n 1}(t) \\ v_{a 2}(t) \\ v_{b 2}(t) \\ v_{c 2}(t) \\ v_{n 2}(t)\end{array}\right]$
$A=\left[\begin{array}{ccc}0 & 0 & I_{4 \times 4} \\ 0 & 0 & -I_{4 \times 4} \\ -I_{4 \times 4} & I_{4 \times 4} & R\end{array}\right] \quad B=\left[\begin{array}{ccc}C & 0 & G \cdot L \\ 0 & C & -G \cdot L \\ 0 & 0 & R \cdot G \cdot L+L\end{array}\right]$

D3. Three Phase Transmission Line SCAQCF Device Model

The state and control algebraic quadratic companion form (SCAQCF) device model is derived after quadratic integration of the quadratized model with a time step h. The result is:

$$
\begin{aligned}
& I(\mathbf{x})=Y_{e q x} \cdot \mathbf{x}-B_{e q} \\
& B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q}
\end{aligned}
$$

where:

$$
\begin{gathered}
I(\mathbf{x})=\left[\begin{array}{c}
{\left[\begin{array}{c}
i(t) \\
0 \\
0 \\
0 \\
0 \\
i\left(t_{m}\right) \\
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
\\
i\left(t_{m}\right)=\left[i_{a 1}\left(t_{m}\right), i_{b 1}\left(t_{m}\right), i_{c 1}\left(t_{m}\right), i_{n 1}\left(t_{m}\right), i_{a 2}\left(t_{m}\right), i_{b 2}(t)\right. \\
i_{L}(t) \\
v\left(t_{m}\right) \\
i_{L}\left(t_{m}\right)
\end{array}\right] \\
v(t)=\left[v_{a 1}(t), v_{b 1}(t), v_{c 1}(t), v_{n 1}(t), v_{a 2}(t), v_{b 2}(t), v_{c 2}(t), v_{n 2}(t)\right] \\
v\left(t_{m}\right)=\left[v_{a 1}\left(t_{m}\right), v_{b 1}\left(t_{m}\right), v_{c 1}\left(t_{m}\right), v_{n 1}\left(t_{m}\right), v_{a 2}\left(t_{m}\right), v_{b 2}\left(t_{m}\right), v_{c 2}\left(t_{m}\right), v_{n 2}\left(t_{m}\right)\right] \\
i_{L}(t)=\left[i_{a L}(t), i_{b L}(t), i_{c L}(t), i_{n L}(t)\right] \\
i_{L}\left(t_{m}\right)=\left[i_{a L}\left(t_{m}\right), i_{b L}\left(t_{m}\right), i_{c L}\left(t_{m}\right), i_{n L}\left(t_{m}\right)\right]
\end{gathered}
$$

$Y_{e q x}=\left[\begin{array}{cccccc}\frac{4}{h} C & 0 & I_{4}+\frac{4}{h} G L & -\frac{8}{h} C & 0 & -\frac{8}{h} G L \\ 0 & \frac{4}{h} C & -I_{4}-\frac{4}{h} G L & 0 & -\frac{8}{h} C & \frac{8}{h} G L \\ -I_{4} & I_{4} & R+\frac{4}{h}(R G L+L) & 0 & 0 & -\frac{8}{h}(R G L+L) \\ \frac{1}{2 h} C & 0 & \frac{1}{2 h} G L & \frac{2}{h} C & 0 & I_{4}+\frac{2}{h} G L \\ 0 & \frac{1}{2 h} C & -\frac{1}{2 h} G L & 0 & \frac{2}{h} C & -I_{4}-\frac{2}{h} G L \\ 0 & 0 & \frac{1}{2 h}(R G L+L) & -I_{4} & I_{4} & R+\frac{2}{h}(R G L+L)\end{array}\right]$

$$
\begin{aligned}
& N_{\text {eqx }}=\left[\begin{array}{ccc}
\frac{8}{h} C & 0 & I_{4}-\frac{4}{h} G L \\
0 & \frac{8}{h} C & -I_{4}+\frac{4}{h} G L \\
-I_{4} & I_{4} & R-\frac{4}{h}(R G L+L) \\
\frac{5}{2 h} C & 0 & -\frac{1}{2} I_{4}+\frac{5}{2 h} G L \\
0 & \frac{5}{2 h} C & \frac{1}{2} I_{4}-\frac{5}{2 h} G L \\
\frac{1}{2} I_{4} & -\frac{1}{2} I_{4} & -\frac{1}{2} R+\frac{5}{2 h}(R G L+L)
\end{array}\right] \\
& M_{e q}=\left[\begin{array}{ccc}
I_{4} & 0 & 0 \\
0 & I_{4} & 0 \\
0 & 0 & 0 \\
-\frac{1}{2} I_{4} & 0 & 0 \\
0 & -\frac{1}{2} I_{4} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The input matrices of the capacitor bank SCAQCF device model for the setting-less protection algorithm are shown below:

TerminalNodeName
YJLINE1_A
YJLINE1_B
YJLINE1_C
YJLINE1_N
YJLINE2_A
YJLINE2_B
YJLINE2_C
YJLINE2_N
-1
Xscale
0,115000.00
1,115000.00
2,115000.00
3,115000.00
4,115000.00
5,115000.00
6,115000.00
7,115000.00
8,500.00
9,500.00
10,500.00

11,500.00
12,115000.00
13,115000.00
14,115000.00
15,115000.00
16,115000.00
17,115000.00
18,115000.00
19,115000.00
20,500.00
21,500.00
22,500.00
23,500.00
-1

Iscale
0,500.00
1,500.00
2,500.00
3,500.00
4,500.00
5,500.00
6,500.00
7,500.00
8,115000.00
9,115000.00
10,115000.00
11,115000.00
12,500.00
13,500.00
14,500.00
15,500.00
16,500.00
17,500.00
18,500.00
19,500.00
20,115000.00
21,115000.00
22,115000.00
23,115000.00
-1

Yeqx
0,0,0.0059165000
0,1,-0.0014640000
0,2,-0.0007320000
0,3,-0.0011400000
0,8,1.6666666667
0,9,0.3422733078
0,10,0.3014048531
0,11,0.3346104725
0,12,-0.0118080000
0,13,0.0029280000
0,14,0.0014640000
0,15,0.0022800000

0,20,-1.3333333333
0,21,-0.6845466156
0,22,-0.6028097063
0,23,-0.6692209451
1,0,-0.0014640000
1,1,0.0060845000
\bullet
23,22,0.0335621593
23,23,0.1158563363
-1
Feqx
-1
Neqx
0,0,0.0058915000
0,1,-0.0014640000
0,2,-0.0007320000
:
23,10,-0.0334556568
23,11,-0.1077480413
-1

Meq
0,0,1.0000000000
1,1,1.00000000000
2,2,1.00000000000
3,3,1.0000000000
4,4,1.0000000000
5,5,1.00000000000
6,6,1.00000000000
7,7,1.00000000000
12,0,-0.50000000000
13,1,-0.50000000000
14,2,-0.5000000000
15,3,-0.5000000000
16,4,-0.5000000000
17,5,-0.50000000000
18,6,-0.50000000000
19,7,-0.50000000000
-1
Keq
-1

D4. Three Phase Transmission Line SCAQCF Measurement Model

Specifically, for single section transmission line, the actual measurements are:
Three currents at left side at time t (phase A_1, phase B_1, and phase C_1);
Three currents at right side at time t (phase A_2, phase B_2, and phase C_2);
Three voltages at left side time t (phase A-G_1, phase B-G_1, phase C-G_1);
Three voltages at left side time t (phase A-G_2, phase B-G_2, phase C-G_2);
Three currents at left side at time tm (phase A_1, phase B_1, and phase C_1);
Three currents at right side at time tm (phase A_2, phase B_2, and phase C_2);
Three voltages at left side time tm (phase A-G_1, phase B-G_1, phase C-G_1); Three voltages at left side time tm (phase A-G_2, phase B-G_2, phase C-G_2);

The virtual measurements are:
Four measurements with zero value at from KVL equation at time t ;
Two measurements with zero value at from KVL equation at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$;
The measurements definition is shown as follows:

MeasurementType, 16
MeasStdDev, 1080
MeasTerminal, 0, 3
MeasurementEnd
MeasurementType, 16
MeasStdDev, 1080
MeasTerminal, 1, 3
MeasurementEnd
MeasurementType, 16
MeasStdDev, 1080
MeasTerminal, 2, 3
MeasurementEnd
MeasurementType, 16
MeasStdDev, 1080
MeasTerminal, 4, 7
MeasurementEnd
MeasurementType, 16
MeasStdDev, 1080
MeasTerminal, 5, 7
MeasurementEnd
MeasurementType, 16
MeasStdDev, 1080
MeasTerminal, 6, 7
MeasurementEnd
MeasurementType, 17
MeasStdDev, 5.0
MeasTerminal, 0
MeasurementEnd
MeasurementType, 17
MeasStdDev, 5.0
MeasTerminal, 1
MeasurementEnd

MeasurementType, 17
MeasStdDev, 5.0
MeasTerminal, 2
MeasurementEnd
MeasurementType, 17
MeasStdDev, 5.0
MeasTerminal, 4
MeasurementEnd
MeasurementType, 17
MeasStdDev, 5.0
MeasTerminal, 5
MeasurementEnd
MeasurementType, 17
MeasStdDev, 5.0
MeasTerminal, 6
MeasurementEnd
MeasurementType, 24
MeasStdDev, 108
MeasTerminal, 8
MeasurementEnd
MeasurementType, 24
MeasStdDev, 108
MeasTerminal, 9
MeasurementEnd
MeasurementType, 24
MeasStdDev, 108
MeasTerminal, 10
MeasurementEnd
MeasurementType, 24
MeasStdDev, 108
MeasTerminal, 11
MeasurementEnd
Based on the device model and the measurement channel list, the equations for the measurement model are given below:
$\mathbf{y}(\mathbf{x}, \mathbf{u})=Y_{m, x} \mathbf{x}+\left\{\begin{array}{c}\vdots \\ \mathbf{x}^{T} F_{m, x}^{i} \mathbf{x} \\ \vdots\end{array}\right\}+Y_{m, u} \mathbf{u}+\left\{\begin{array}{c}\vdots \\ \mathbf{u}^{T} F_{m, u}^{i} \mathbf{u} \\ \vdots\end{array}\right\}+\left\{\begin{array}{c}\vdots \\ \mathbf{x}^{T} F_{m, x u}^{i} \mathbf{u} \\ \vdots\end{array}\right\}+N_{m, x} \mathbf{x}(t-h)+N_{m, u} \mathbf{u}(t-h)+M_{m} I(t-h)+K_{m}$
where:
$Y_{m x}=\left[\begin{array}{cccccc}K & 0 & 0 & 0 & 0 & 0 \\ 0 & K & 0 & 0 & 0 & 0 \\ \frac{4}{h} C & 0 & I_{4}+\frac{4}{h} G L & -\frac{8}{h} C & 0 & -\frac{8}{h} G L \\ 0 & \frac{4}{h} C & -I_{4}-\frac{4}{h} G L & 0 & -\frac{8}{h} C & \frac{8}{h} G L \\ -I_{4} & I_{4} & R+\frac{4}{h}(R G L+L) & 0 & 0 & -\frac{8}{h}(R G L+L) \\ 0 & 0 & 0 & K & 0 & 0 \\ 0 & 0 & 0 & 0 & K & 0 \\ \frac{1}{2 h} C & 0 & \frac{1}{2 h} G L & 0 & \frac{2}{h} C & -I_{4}-\frac{2}{h} G L \\ 0 & 0 & \frac{1}{2 h} C & \frac{1}{2 h}(R G L+L) & -I_{4} & I_{4} \\ 0 & 0 & & R+\frac{2}{h}(R G L+L)\end{array}\right]$
$K=\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
N_{m}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{8}{h} C & 0 & I_{4}-\frac{4}{h} G L \\
0 & \frac{8}{h} C & -I_{4}+\frac{4}{h} G L \\
-I_{4} & I_{4} & R-\frac{4}{h}(R G L+L) \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{5}{2 h} C & 0 & -\frac{1}{2} I_{4}+\frac{5}{2 h} G L \\
0 & \frac{5}{2 h} C & \frac{1}{2} I_{4}-\frac{5}{2 h} G L \\
\frac{1}{2} I_{4} & -\frac{1}{2} I_{4} & -\frac{1}{2} R+\frac{5}{2 h}(R G L+L)
\end{array}\right]
$$

$$
M_{e q}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
I_{4} & 0 & 0 \\
0 & I_{4} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-\frac{1}{2} I_{4} & 0 & 0 \\
0 & -\frac{1}{2} I_{4} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Appendix E: Time Domain SCAQCF Model - Multisection Transmission Line Protection

This Appendix presents the derivation of the time domain model of a multi-section three phase transmission line in the SCAQCF syntax. The model is derived from integrating n sections of single-section transmission line model in Appendix D. A typical measurement channel list is also presented to show the procedure of creating the SCAQCF measurement model.

E1. Construction of Multi-section Transmission Line SCAQCF Model

Figure E1 shows the multi-section model of the three phase transmission line.

Figure E.1: Three Phase Multi-section Transmission Line Compact Model
Suppose Δt is the sampling time step of the system, and $h=2 \Delta t$. Similar to the single section model, three groups of values at time $t, t_{m}(=t-h / 2)$ and $t-h$ are adopted.

For section i :
Parameters at time t are:
$i_{a_{i}}(t)$ and $i_{b_{b_{i}}(t)}$ represent 3-phase $\&$ neutral current at both sides of section i, at time t.
$v_{i}(t)$ and $v_{i+1}(t)$ represent 3-phase $\&$ neutral voltage at both sides of section i, at time t.
$i_{L_{i}}(t)$ represents three-phase \& neutral current of the inductance in section i, at time t.
Parameters at time t_{m} are:
$i_{a_{i}}\left(t_{m}\right)$ and $i_{b_{i}}\left(t_{m}\right)$ represent 3 -phase \& neutral current at both sides of section i, at time t_{m}.
$v_{i}\left(t_{m}\right)$ and $v_{i+1}\left(t_{m}\right)$ represent 3 -phase $\&$ neutral voltage at both sides of section i, at time t_{m}. $i_{L_{i}}\left(t_{m}\right)$ represents three-phase \& neutral current of the inductance in section i, at time t_{m}.

For each section, the formulation is similar to the single section model in Appendix D. For example, equations in section k are:

$$
\left[\begin{array}{c}
i_{a_{k}}(t) \\
i_{b_{k}}(t) \\
0 \\
i_{a_{k}}\left(t_{m}\right) \\
i_{b_{k}}\left(t_{m}\right) \\
0
\end{array}\right]=E \cdot F_{1}\left[\begin{array}{c}
v_{k}(t) \\
v_{k+1}(t) \\
i_{L_{k}}(t) \\
v_{k}\left(t_{m}\right) \\
v_{k+1}\left(t_{m}\right) \\
i_{L_{k}}\left(t_{m}\right)
\end{array}\right]-\left[\begin{array}{c}
b_{e q_{k}}(1) \\
b_{e q_{k}}(2) \\
b_{e q_{k}}(3) \\
b_{e q_{k}}(4) \\
b_{e q_{k}}(5) \\
b_{e q_{k}}(6)
\end{array}\right]
$$

where:

$$
\left[\begin{array}{llllll}
b_{e q_{k}}(1) & b_{e q_{k}}
\end{array}\left(b_{e q_{k}}(3) \quad b_{e q_{k}}(4) \quad b_{e q_{k}}(5) \quad b_{e q_{k}}(6)\right]^{T}=b_{e q_{k}}\right.
$$

$$
b_{e q_{k}}=E \cdot F_{2} \cdot\left[\begin{array}{c}
v_{k}(t-h) \\
v_{k+1}(t-h) \\
i_{L_{k}}(t-h)
\end{array}\right]+E \cdot F_{3} \cdot\left[\begin{array}{c}
i_{i_{k}}(t-h) \\
i_{b_{k}}(t-h) \\
0
\end{array}\right]
$$

also,

$$
\begin{gathered}
E=\left[\begin{array}{cc}
\frac{h}{6} I_{12 \times 12} & \frac{2 h}{3} I_{12 \times 12} \\
-\frac{h}{24} I_{12 \times 12} & \frac{h}{3} I_{12 \times 12}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{4}{h} I_{12 \times 12} & -\frac{8}{h} I_{12 \times 12} \\
\frac{1}{2 h} I_{12 \times 12} & \frac{2}{h} I_{12 \times 12}
\end{array}\right] \\
F_{1}=\left[\begin{array}{ll}
\frac{h}{6} A+B & \frac{2 h}{3} A \\
-\frac{h}{24} A & \frac{h}{3} A+B
\end{array}\right], F_{2}=\left[\begin{array}{cc}
B-\frac{h}{6} A \\
B-\frac{5 h}{24} A
\end{array}\right], \\
F_{3}=\left[\begin{array}{cc}
\frac{h}{6} I_{12 \times 12} \\
\frac{5 h}{24} I_{12 \times 12}
\end{array}\right] \\
A=\left[\begin{array}{ccc}
0 & 0 & I_{4 \times 4} \\
0 & 0 & -I_{4 \times 4} \\
-I_{4 \times 4} & I_{4 \times 4} & R
\end{array}\right] \quad B=\left[\begin{array}{ccc}
C & 0 & G \cdot L \\
0 & C & -G \cdot L \\
0 & 0 & R \cdot G \cdot L+L
\end{array}\right]
\end{gathered}
$$

where R, Land C are the resistance, inductance and capacitance matrices of each section; G is the stabilizing conductance matrix of each section.

E2. Three Phase Multi-section Transmission Line SCAQCF Model

Divide $E \cdot F_{1}$ as follows, with each $M_{j k}: 4 \times 4(j, k=1,2, \ldots, 6)$:

$$
E \cdot F_{1}=\left[\begin{array}{llllll}
M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} \\
M_{21} & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} \\
M_{31} & M_{32} & M_{33} & M_{34} & M_{35} & M_{36} \\
M_{41} & M_{42} & M_{43} & M_{44} & M_{45} & M_{46} \\
M_{51} & M_{52} & M_{53} & M_{54} & M_{55} & M_{56} \\
M_{61} & M_{62} & M_{63} & M_{64} & M_{65} & M_{66}
\end{array}\right]
$$

Divide $E \cdot F_{2}$ as follows, with each $P_{j k}: 4 \times 4(j=1,2, \ldots, 6, k=1,2,3)$:

$$
E \cdot F_{2}=\left[\begin{array}{ccc}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33} \\
P_{41} & P_{42} & P_{43} \\
P_{51} & P_{52} & P_{53} \\
P_{61} & P_{62} & P_{63}
\end{array}\right]
$$

Additionally,

$$
E \cdot F_{3}=\left[\begin{array}{ll}
\frac{4}{h} I_{12 \times 12} & -\frac{8}{h} I_{12 \times 12} \\
\frac{1}{2 h} I_{12 \times 12} & \frac{2}{h} I_{12 \times 12}
\end{array}\right] \times\left[\begin{array}{l}
\frac{h}{6} I_{12 \times 12} \\
\frac{5 h}{24} I_{12 \times 12}
\end{array}\right]=\left[\begin{array}{c}
-I_{12 \times 12} \\
0.5 I_{12 \times 12}
\end{array}\right]
$$

Thus, for time t :

Actual measurements:

$$
\begin{aligned}
i_{a_{1}}(t)= & M_{11} v_{1}(t)+M_{12} v_{2}(t)+M_{13} i_{L_{1}}(t)+M_{14} v_{1}\left(t_{m}\right)+M_{15} v_{2}\left(t_{m}\right)+M_{16} i_{L_{1}}\left(t_{m}\right) \\
& -\left[P_{11} v_{1}(t-h)+P_{12} v_{2}(t-h)+P_{13} i_{L_{1}}(t-h)\right]-\left[-i_{a_{1}}(t-h)\right] \\
i_{b_{n}}(t)= & M_{21} v_{n}(t)+M_{22} v_{n+1}(t)+M_{23} i_{L_{n}}(t)+M_{24} v_{n}\left(t_{m}\right)+M_{25} v_{n+1}\left(t_{m}\right)+M_{26} i_{L_{n}}\left(t_{m}\right) \\
- & {\left[P_{21} v_{n}(t-h)+P_{22} v_{n+1}(t-h)+P_{23} i_{L_{n}}(t-h)\right]-\left[-i_{b_{n}}(t-h)\right] }
\end{aligned}
$$

Virtual current measurements:

$$
\begin{aligned}
& i_{b_{1}}(t)+i_{a_{2}}(t)=0 \Rightarrow \\
& 0=M_{21} v_{1}(t)+\left(M_{22}+M_{11}\right) v_{2}(t)+M_{12} v_{3}(t)+M_{23} i_{L_{1}}(t)+M_{13} i_{L_{2}}(t) \\
& +M_{24} v_{1}\left(t_{m}\right)+\left(M_{25}+M_{14}\right) v_{2}\left(t_{m}\right)+M_{15} v_{3}\left(t_{m}\right)+M_{26} i_{L_{1}}\left(t_{m}\right)+M_{16} i_{L_{2}}\left(t_{m}\right) \\
& \quad-\left[P_{21} v_{1}(t-h)+\left(P_{22}+P_{11}\right) v_{2}(t-h)+P_{12} v_{3}(t-h)+P_{23} i_{L_{1}}(t-h)+P_{13} i_{L_{2}}(t-h)\right] \\
& \quad-\left[-i_{b_{1}}(t-h)-i_{a_{2}}(t-h)\right] \\
& i_{b_{2}}(t)+i_{a_{3}}(t)=0 \Rightarrow \\
& 0=M_{21} v_{2}(t)+\left(M_{22}+M_{11}\right) v_{3}(t)+M_{12} v_{4}(t)+M_{23} i_{L_{2}}(t)+M_{13} i_{L_{3}}(t) \\
& \quad+M_{24} v_{2}\left(t_{m}\right)+\left(M_{25}+M_{14}\right) v_{3}\left(t_{m}\right)+M_{15} v_{4}\left(t_{m}\right)+M_{26} i_{L_{2}}\left(t_{m}\right)+M_{16} i_{L_{3}}\left(t_{m}\right) \\
& \quad-\left[P_{21} v_{2}(t-h)+\left(P_{22}+P_{11}\right) v_{3}(t-h)+P_{12} v_{4}(t-h)+P_{23} i_{L_{2}}(t-h)+P_{13} i_{L_{3}}(t-h)\right] \\
& \quad-\left[-i_{b_{2}}(t-h)-i_{a_{3}}(t-h)\right] \\
& \\
& \quad \begin{array}{l}
i_{b_{n-1}}(t)+i_{a_{n}}(t)=0 \Rightarrow \\
0=M_{21} v_{n-1}(t)+\left(M_{22}+M_{11}\right) v_{n}(t)+M_{12} v_{n+1}(t)+M_{23} i_{L_{n-1}}(t)+M_{13} i_{L_{n}}(t) \\
+M_{24} v_{n-1}\left(t_{m}\right)+\left(M_{25}+M_{14}\right) v_{n}\left(t_{m}\right)+M_{15} v_{n+1}\left(t_{m}\right)+M_{26} i_{L_{n-1}}\left(t_{m}\right)+M_{16} i_{L_{n}}\left(t_{m}\right) \\
-\left[P_{21} v_{n-1}(t-h)+\left(P_{22}+P_{11}\right) v_{n}(t-h)+P_{12} v_{n+1}(t-h)+P_{23} i_{L_{n-1}}(t-h)+P_{13} i_{L_{n}}(t-h)\right] \\
-\left[-i_{b_{n-1}}(t-h)-i_{a_{n}}(t-h)\right]
\end{array}
\end{aligned}
$$

Virtual voltage measurements:

$$
\begin{aligned}
0= & M_{31} v_{1}(t)+M_{32} v_{2}(t)+M_{33} i_{L_{1}}(t)+M_{34} v_{1}\left(t_{m}\right)+M_{35} v_{2}\left(t_{m}\right)+M_{36} i_{L_{1}}\left(t_{m}\right) \\
& -\left[P_{31} v_{1}(t-h)+P_{32} v_{2}(t-h)+P_{33} i_{L_{1}}(t-h)\right] \\
0= & M_{31} v_{2}(t)+M_{32} v_{3}(t)+M_{33} i_{L_{2}}(t)+M_{34} v_{2}\left(t_{m}\right)+M_{35} v_{3}\left(t_{m}\right)+M_{36} i_{L_{2}}\left(t_{m}\right) \\
& -\left[P_{31} v_{2}(t-h)+P_{32} v_{3}(t-h)+P_{33} i_{L_{2}}(t-h)\right]
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
0=M_{31} v_{n}(t)+M_{32} v_{n+1}(t)+M_{33} i_{L_{n}}(t)+M_{34} v_{n}\left(t_{m}\right)+M_{35} v_{n+1}\left(t_{m}\right)+M_{36} i_{L_{n}}\left(t_{m}\right) \\
-\left[P_{31} v_{n}(t-h)+P_{32} v_{n+1}(t-h)+P_{33} i_{L_{n}}(t-h)\right]
\end{gathered}
$$

For time t_{m} :

Actual measurements:

$$
\begin{aligned}
i_{a_{1}}\left(t_{m}\right)= & M_{41} v_{1}(t)+M_{42} v_{2}(t)+M_{43} i_{L_{1}}(t)+M_{44} v_{1}\left(t_{m}\right)+M_{45} v_{2}\left(t_{m}\right)+M_{46} i_{L_{1}}\left(t_{m}\right) \\
& -\left[P_{41} v_{1}(t-h)+P_{42} v_{2}(t-h)+P_{43} i_{L_{1}}(t-h)\right]-\left[0.5 i_{a_{1}}(t-h)\right] \\
i_{b_{n}}\left(t_{m}\right)= & M_{51} v_{n}(t)+M_{52} v_{n+1}(t)+M_{53} i_{L_{n}}(t)+M_{54} v_{n}\left(t_{m}\right)+M_{55} v_{n+1}\left(t_{m}\right)+M_{56} i_{L_{n}}\left(t_{m}\right) \\
- & {\left[P_{51} v_{n}(t-h)+P_{52} v_{n+1}(t-h)+P_{53} i_{L_{n}}(t-h)\right]-\left[0.5 i_{b_{n}}(t-h)\right] }
\end{aligned}
$$

Virtual current measurements:

$$
\begin{aligned}
& i_{b_{1}}\left(t_{m}\right)+i_{a_{2}}\left(t_{m}\right)=0 \Rightarrow \\
& 0=M_{51} v_{1}(t)+\left(M_{52}+M_{41}\right) v_{2}(t)+M_{42} v_{3}(t)+M_{53} i_{L_{1}}(t)+M_{43} i_{L_{2}}(t) \\
& \quad+M_{54} v_{1}\left(t_{m}\right)+\left(M_{55}+M_{44}\right) v_{2}\left(t_{m}\right)+M_{45} v_{3}\left(t_{m}\right)+M_{56} i_{L_{1}}\left(t_{m}\right)+M_{46} i_{L_{2}}\left(t_{m}\right) \\
& \quad-\left[P_{51} v_{1}(t-h)+\left(P_{52}+P_{41}\right) v_{2}(t-h)+P_{42} v_{3}(t-h)+P_{53} i_{L_{1}}(t-h)+P_{43} i_{L_{2}}(t-h)\right] \\
& \quad-\left[0.5 i_{b_{1}}(t-h)+0.5 i_{a_{2}}(t-h)\right] \\
& i_{b_{2}}\left(t_{m}\right)+i_{a_{3}}\left(t_{m}\right)=0 \Rightarrow \\
& 0=M_{51} v_{2}(t)+\left(M_{52}+M_{41}\right) v_{3}(t)+M_{42} v_{4}(t)+M_{53} i_{L_{2}}(t)+M_{43} i_{L_{3}}(t) \\
& +M_{54} v_{2}\left(t_{m}\right)+\left(M_{55}+M_{44}\right) v_{3}\left(t_{m}\right)+M_{45} v_{4}\left(t_{m}\right)+M_{56} i_{L_{2}}\left(t_{m}\right)+M_{46} i_{L_{3}}\left(t_{m}\right) \\
& \quad-\left[P_{51} v_{2}(t-h)+\left(P_{52}+P_{41}\right) v_{3}(t-h)+P_{42} v_{4}(t-h)+P_{53} i_{L_{2}}(t-h)+P_{43} i_{L_{3}}(t-h)\right] \\
& -\left[0.5 i_{b_{2}}(t-h)+0.5 i_{a_{3}}(t-h)\right] \\
& \\
& i_{b_{n-1}}\left(t_{m}\right)+i_{a_{n}}\left(t_{m}\right)=0 \Rightarrow \\
& 0=M_{51} v_{n-1}(t)+\left(M_{52}+M_{41}\right) v_{n}(t)+M_{42} v_{n+1}(t)+M_{53} i_{L_{n-1}}(t)+M_{43} i_{L_{n}}(t) \\
& +M_{54} v_{n-1}\left(t_{m}\right)+\left(M_{55}+M_{44}\right) v_{n}\left(t_{m}\right)+M_{45} v_{n+1}\left(t_{m}\right)+M_{56} i_{L_{n-1}}\left(t_{m}\right)+M_{46} i_{L_{n}}\left(t_{m}\right) \\
& -\left[P_{51} v_{n-1}(t-h)+\left(P_{52}+P_{41}\right) v_{n}(t-h)+P_{42} v_{n+1}(t-h)+P_{53} i_{L_{n-1}}(t-h)+P_{43} i_{L_{n}}(t-h)\right] \\
& -\left[0.5 i_{b_{n-1}}(t-h)+0.5 i_{a_{n}}(t-h)\right]
\end{aligned}
$$

Virtual voltage measurements:

$$
\begin{gathered}
0=M_{61} v_{1}(t)+M_{62} v_{2}(t)+M_{63} i_{L_{1}}(t)+M_{64} v_{1}\left(t_{m}\right)+M_{65} v_{2}\left(t_{m}\right)+M_{66} i_{L_{1}}\left(t_{m}\right) \\
\quad-\left[P_{61} v_{1}(t-h)+P_{62} v_{2}(t-h)+P_{63} i_{L_{1}}(t-h)\right] \\
0=M_{61} v_{2}(t)+M_{62} v_{3}(t)+M_{63} i_{L_{2}}(t)+M_{64} v_{2}\left(t_{m}\right)+M_{65} v_{3}\left(t_{m}\right)+M_{66} i_{L_{2}}\left(t_{m}\right) \\
\quad-\left[P_{61} v_{2}(t-h)+P_{62} v_{3}(t-h)+P_{63} i_{L_{2}}(t-h)\right] \\
\vdots \\
0=M_{61} v_{n}(t)+M_{62} v_{n+1}(t)+M_{63} i_{L_{n}}(t)+M_{64} v_{n}\left(t_{m}\right)+M_{65} v_{n+1}\left(t_{m}\right)+M_{66} i_{L_{n}}\left(t_{m}\right) \\
-\left[P_{61} v_{n}(t-h)+P_{62} v_{n+1}(t-h)+P_{63} i_{L_{n}}(t-h)\right]
\end{gathered}
$$

Write the above equations into the standard SCAQCF matrix form: (no control variable in this model)

$$
I(x)=Y_{e q x} \cdot x-B_{e q}
$$

where:

$$
\begin{aligned}
& Y_{e q X}=\left[\begin{array}{cccc}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24} \\
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{array}\right] Y_{11}=\left[\begin{array}{cccccccc}
M_{11} & 0 & M_{12} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{22} & 0 & 0 & 0 & \cdots & 0 & M_{21} \\
M_{21} & 0 & M_{22}+M_{11} & M_{12} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{21} & M_{22}+M_{11} & M_{12} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{12} & 0 & 0 & 0 & \cdots & M_{21} & M_{22}+M_{11}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& Y_{13}=\left[\begin{array}{cccccccc}
M_{14} & 0 & M_{15} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{25} & 0 & 0 & 0 & \cdots & 0 & M_{24} \\
M_{24} & 0 & M_{25}+M_{14} & M_{15} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{24} & M_{25}+M_{14} & M_{15} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{15} & 0 & 0 & 0 & \cdots & M_{24} & M_{25}+M_{14}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& Y_{12}=\left[\begin{array}{cccccc}
M_{13} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & M_{23} \\
M_{23} & M_{13} & 0 & \cdots & 0 & 0 \\
0 & M_{23} & M_{13} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{23} & M_{13}
\end{array}\right]_{(4 n+4) \times(4 n)} \quad Y_{14}=\left[\begin{array}{cccccc}
M_{16} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & M_{26} \\
M_{26} & M_{16} & 0 & \cdots & 0 & 0 \\
0 & M_{26} & M_{16} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{26} & M_{16}
\end{array}\right]_{(4 n+4) \times(4 n)}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{21}=\left[\begin{array}{cccccc}
M_{31} & 0 & M_{32} & 0 & \cdots & 0 \\
0 & 0 & M_{31} & M_{32} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{32} & 0 & 0 & \cdots & M_{31}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{22}=\left[\begin{array}{cccc}
M_{33} & 0 & 0 & 0 \\
0 & M_{33} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{33}
\end{array}\right]_{(4 n) \times(4 n)} \\
& Y_{23}=\left[\begin{array}{cccccc}
M_{34} & 0 & M_{35} & 0 & \cdots & 0 \\
0 & 0 & M_{34} & M_{35} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{35} & 0 & 0 & \cdots & M_{34}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{24}=\left[\begin{array}{cccc}
M_{36} & 0 & 0 & 0 \\
0 & M_{36} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{36}
\end{array}\right]_{(4 n) \times(4 n)} \\
& Y_{31}=\left[\begin{array}{cccccccc}
M_{41} & 0 & M_{42} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{52} & 0 & 0 & 0 & \cdots & 0 & M_{51} \\
M_{51} & 0 & M_{52}+M_{41} & M_{42} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{51} & M_{52}+M_{41} & M_{42} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{42} & 0 & 0 & 0 & \cdots & M_{51} & M_{52}+M_{41}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& Y_{33}=\left[\begin{array}{cccccccc}
M_{44} & 0 & M_{45} & 0 & 0 & \cdots & 0 & 0 \\
0 & M_{55} & 0 & 0 & 0 & \cdots & 0 & M_{54} \\
M_{54} & 0 & M_{55}+M_{44} & M_{45} & 0 & \cdots & 0 & 0 \\
0 & 0 & M_{54} & M_{55}+M_{44} & M_{45} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & M_{45} & 0 & 0 & 0 & \cdots & M_{54} & M_{55}+M_{44}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& Y_{32}=\left[\begin{array}{cccccc}
M_{43} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & M_{53} \\
M_{53} & M_{43} & 0 & \cdots & 0 & 0 \\
0 & M_{53} & M_{43} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{53} & M_{43}
\end{array}\right]_{(4 n+4) \times(4 n)} \quad Y_{34}=\left[\begin{array}{cccccc}
M_{46} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & M_{56} \\
M_{56} & M_{46} & 0 & \cdots & 0 & 0 \\
0 & M_{56} & M_{46} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & M_{56} & M_{46}
\end{array}\right]_{(4 n+4) \times(4 n)} \\
& Y_{41}=\left[\begin{array}{cccccc}
M_{61} & 0 & M_{62} & 0 & \cdots & 0 \\
0 & 0 & M_{61} & M_{62} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{62} & 0 & 0 & \cdots & M_{61}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{42}=\left[\begin{array}{cccc}
M_{63} & 0 & 0 & 0 \\
0 & M_{63} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{63}
\end{array}\right]_{(4 n) \times(4 n)} \\
& Y_{43}=\left[\begin{array}{cccccc}
M_{64} & 0 & M_{65} & 0 & \cdots & 0 \\
0 & 0 & M_{64} & M_{65} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M_{65} & 0 & 0 & \cdots & M_{64}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad Y_{44}=\left[\begin{array}{cccc}
M_{66} & 0 & 0 & 0 \\
0 & M_{66} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & M_{66}
\end{array}\right]_{(4 n) \times(4 n)}
\end{aligned}
$$

and,

$$
\left.B_{e q}=-N_{e q x}\left[\begin{array}{ccc}
v_{1}(t-h) \\
v_{n+1}(t-h) & \\
{\left[\begin{array}{llll}
v_{2}(t-h) & v_{3}(t-h) & \cdots & v_{n}(t-h)
\end{array}\right]^{T}} \\
{\left[i_{L_{1}}(t-h)\right.} & i_{L_{2}}(t-h) & \cdots
\end{array} i_{L_{n}}(t-h)\right]^{T}\right]-M_{e q}\left[\begin{array}{c}
i_{a_{1}}(t-h) \\
i_{b_{n}}(t-h) \\
{\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right]^{T}} \\
{\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right]^{T}}
\end{array}\right]
$$

where:

$$
\begin{aligned}
& N_{11}=\left[\begin{array}{cccccccc}
P_{11} & 0 & P_{12} & 0 & 0 & \cdots & 0 & 0 \\
0 & P_{22} & 0 & 0 & 0 & \cdots & 0 & P_{21} \\
P_{21} & 0 & P_{22}+P_{11} & P_{12} & 0 & \cdots & 0 & 0 \\
0 & 0 & P_{21} & P_{22}+P_{11} & P_{12} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & P_{12} & 0 & 0 & 0 & \cdots & P_{21} & P_{22}+P_{11}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& N_{31}=\left[\begin{array}{cccccccc}
P_{41} & 0 & P_{42} & 0 & 0 & \cdots & 0 & 0 \\
0 & P_{52} & 0 & 0 & 0 & \cdots & 0 & P_{51} \\
P_{51} & 0 & P_{52}+P_{41} & P_{42} & 0 & \cdots & 0 & 0 \\
0 & 0 & P_{51} & P_{52}+P_{41} & P_{42} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & P_{42} & 0 & 0 & 0 & \cdots & P_{51} & P_{52}+P_{41}
\end{array}\right]_{(4 n+4) \times(4 n+4)} \\
& N_{12}=\left[\begin{array}{cccccc}
P_{13} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & P_{23} \\
P_{23} & P_{13} & 0 & \cdots & 0 & 0 \\
0 & P_{23} & P_{13} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & P_{23} & P_{13}
\end{array}\right]_{(4 n+4) \times(4 n)} \quad N_{32}=\left[\begin{array}{cccccc}
P_{43} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & P_{53} \\
P_{53} & P_{43} & 0 & \cdots & 0 & 0 \\
0 & P_{53} & P_{43} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & P_{53} & P_{43}
\end{array}\right]_{(4 n+4) \times(4 n)} \\
& N_{21}=\left[\begin{array}{cccccc}
P_{31} & 0 & P_{32} & 0 & \cdots & 0 \\
0 & 0 & P_{31} & P_{32} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & P_{32} & 0 & 0 & \cdots & P_{31}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad N_{22}=\left[\begin{array}{cccc}
P_{33} & 0 & 0 & 0 \\
0 & P_{33} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & P_{33}
\end{array}\right]_{(4 n) \times(4 n)} \\
& N_{41}=\left[\begin{array}{cccccc}
P_{61} & 0 & P_{62} & 0 & \cdots & 0 \\
0 & 0 & P_{61} & P_{62} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & P_{62} & 0 & 0 & \cdots & P_{61}
\end{array}\right]_{(4 n) \times(4 n+4)} \quad N_{42}=\left[\begin{array}{cccc}
P_{63} & 0 & 0 & 0 \\
0 & P_{63} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & P_{63}
\end{array}\right]_{(4 n) \times(4 n)} \\
& N_{e q x}=-\left[\begin{array}{ll}
N_{11} & N_{12} \\
N_{21} & N_{22} \\
N_{31} & N_{32} \\
N_{41} & N_{42}
\end{array}\right] \quad M_{e q}=\left[\begin{array}{cc}
I_{8 \times 8} & 0 \\
0 & 0 \\
-0.5 I_{8 \times 8} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Use 2-section transmission line as an example. The input matrices of the three phase multi-section transmission line SCAQCF device model for the setting-less protection algorithm are shown below:

TerminalNodeName

TABL_A
TABL_B
TABL_C
TABL_N
VACA_A
VACA_B

```
VACA_C
VACA_N
-1
Xscale
0 , 500000
1 , 500000
2 , 500000
3 , 500000
4 , 500000
5 , 500000
6 , 500000
7 , 500000
8 , 500000
9 , 500000
10 , 500000
11 , 500000
12 , 4041
13 , 4041
14 , 4041
15 , 4041
16 , 4041
17 , 4041
18 , 4041
19 , 4041
20 , 500000
21 , 500000
22 , 500000
23 , 500000
24 , 500000
25 , 500000
26 , 500000
27 , 500000
28 , 500000
29 , 500000
30 , 500000
31 , 500000
32 , 4041
33 , 4041
34 , 4041
35 , 4041
36 , 4041
37 , 4041
38 , 4041
39 , 4041
```

Iscale		
0	,	4041
1	,	4041
2	,	4041
3	,	4041
4	,	4041
5	,	4041
6	,	4041
7	,	4041
8	,	4041
9	,	4041
10	,	4041
11	,	4041
12	,	500000
13	,	500000
14	,	500000
15	,	500000
16	,	500000
17	,	500000
18	,	500000
19	,	500000
20	,	4041
21	,	4041
22	,	4041
23	,	4041
24	,	4041
25	,	4041
26	,	4041
27	,	4041
28	,	4041
29	,	4041
30	,	4041
31	,	4041
32	,	500000
33	,	500000
34	,	500000
35	,	500000
36	,	500000
37	,	500000
38	,	500000
39	,	500000
-1		

Yeqx (totally 640 non-zero entries)

0	,	0		0.0072096
0	,	1	,	-0.00168812
0	,	2	,	-0.00059576
0	,	3	,	-0.0010674
0	,	12	,	2
0	,	13	,	0.530225548
0	,	14	,	0.450162387
0	,	15	,	0.527372557
0	,	20	,	-0.0144192
0	,	21	,	0.00337624
0	,	22	,	0.00119152
0	,	23	,	0.0021348
0	,	32	,	-2
0	,	33	,	-1.060451095
0	,	34	,	-0.900324774
0	,	35	,	-1.054745115
1	,	0	,	-0.00168812
1	,	1	,	0.0076404
1	,	2	,	-0.00168812
1	,	3	,	-0.000751
1	,	12	,	0.530225548
1	,	13	,	2
1	,	14	,	0.530225548
1	,	15	,	0.506414742
1	,	20	,	0.00337624
1	,	21	,	-0.0152808
1				2288.734852

Feqx
-1

Neqx (totally 320 non-zero entries)

0	,	0	,	0.0072096
0	,	1	,	-0.00168812
0	,	2	,	-0.00059576
0	,	3	,	-0.0010674
0	,	12	,	0
0	,	13	,	0.530225548
0	,	14	,	0.450162387

0	,	15	,	0.527372557
1	,	0	,	-0.00168812
1	,	1		0.0076404
1	,	2		-0.00168812
1	,	3	,	-0.000751
1	,	12	,	0.530225548
1	,	13		0
1	,	14		0.530225548
1	,	15		0.506414742
2	,	0		-0.00059576
2	,	1		-0.00168812
2	,	2		0.0072096
2	,	3	,	-0.000399056
2	,	12	,	0.450162387
2	,	13	,	0.530225548
2	,	14	,	0
2	,	15		0.451167214
3	,	0		-0.0010674
3	,	1		-0.000751
3	,	2		-0.000399056
3	,	3	,	0.0044192
3	,	12	,	0.264879236
3	,	13	,	0.25435292
3	,	14		0.226604182
3	,	15		0
4	,	4	,	0.0072096
39	,	19	,	-2781.311065
-1				
Meq				
0	,	0	,	1
1	,	1	,	1
2	,	2	,	1
3	,	3	,	1
4	,	4	,	1
5	,	5	,	1
6	,	6	,	1
7	,	7	,	1
20	,	0	,	-0.5
21	,	1	,	-0.5
22	,	2	,	-0.5
23	,	3	,	-0.5
24	,	4	,	-0.5

```
    25 , 5 , -0.5
    26 , 6 , -0.5
    27 , 7 , -0.5
```

-1

Keq
-1

E3. Three Phase Multi-section Transmission Line SCAQCF Measurement Model

For multi-section transmission line, the actual measurements are:
Six currents at both side of the transmission line, at time t (phase A, phase B, and phase C);
Six voltages at both side of the transmission line, at time t (phase A-N, phase B-N, phase C-N);
Six currents at both side of the transmission line, at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$ (phase A, phase B, and phase C);

Six voltages at both side of the transmission line, at time tm=t-h/2 (phase A-N, phase B-N, phase C-N);

The pseudo measurements are:

Two neutral currents at both side of the transmission line, at time t (phase N);
Two neutral voltages at both side of the transmission line, at time t (phase N);
Two neutral currents at both side of the transmission line, at time tm=t-h/2 (phase N);
Two neutral voltages at both side of the transmission line, at time tm=t-h/2 (phase N);
The virtual measurements are:
Twelve measurements with zero value at the left side of the equations at time t, including four virtual current measurements and eight virtual voltage measurements;
Twelve measurements with zero value at the left side of the equations at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$, including four virtual current measurements and eight virtual voltage measurements;

The measurement channel list:
MeasurementType, 17
MeasStdDev, 40.41
MeasTerminal, 0
MeasurementEnd
MeasurementType, 17
MeasStdDev, 40.41
MeasTerminal, 1
MeasurementEnd
MeasurementType, 17
MeasStdDev, 40.41
MeasTerminal, 2
MeasurementEnd
MeasurementType, 17

MeasStdDev, 40.41
MeasTerminal, 4
MeasurementEnd
MeasurementType, 17
MeasStdDev, 40.41
MeasTerminal, 5
MeasurementEnd
MeasurementType, 17
MeasStdDev, 40.41
MeasTerminal, 6
MeasurementEnd
MeasurementType, 16
MeasStdDev, 5000
MeasTerminal, 0, 3
MeasurementEnd
MeasurementType, 16
MeasStdDev, 5000
MeasTerminal, 1, 3
MeasurementEnd
MeasurementType, 16
MeasStdDev, 5000
MeasTerminal, 2, 3
MeasurementEnd
MeasurementType, 16
MeasStdDev, 5000
MeasTerminal, 4, 7
MeasurementEnd
MeasurementType, 16
MeasStdDev, 5000
MeasTerminal, 5, 7
MeasurementEnd
MeasurementType, 16
MeasStdDev, 5000
MeasTerminal, 6, 7
MeasurementEnd
MeasurementType, 27
MeasStdDev, 404.1
MeasTerminal, 3
MeasurementEnd
MeasurementType, 27
MeasStdDev, 404.1
MeasTerminal, 7
MeasurementEnd
MeasurementType, 25
MeasStdDev, 50000
MeasTerminal, 3

MeasurementEnd
MeasurementType, 25
MeasStdDev, 50000
MeasTerminal, 7
MeasurementEnd
MeasurementType, 24
MeasStdDev, 4.041
MeasTerminal, 8
MeasurementEnd
MeasurementType, 24
MeasStdDev, 4.041
MeasTerminal, 9
MeasurementEnd
MeasurementType, 24
MeasStdDev, 4.041
MeasTerminal, 10
MeasurementEnd
MeasurementType, 24
MeasStdDev, 4.041
MeasTerminal, 11
MeasurementEnd
MeasurementType, 24
MeasStdDev, 500
MeasTerminal, 12
MeasurementEnd
MeasurementType, 24
MeasStdDev, 500
MeasTerminal, 13
MeasurementEnd
MeasurementType, 24
MeasStdDev, 500
MeasTerminal, 14
MeasurementEnd
MeasurementType, 24
MeasStdDev, 500
MeasTerminal, 15
MeasurementEnd
MeasurementType, 24
MeasStdDev, 500
MeasTerminal, 16
MeasurementEnd
MeasurementType, 24
MeasStdDev, 500
MeasTerminal, 17
MeasurementEnd
MeasurementType, 24

MeasStdDev, 500
MeasTerminal, 18
MeasurementEnd
MeasurementType, 24
MeasStdDev, 500
MeasTerminal, 19
MeasurementEnd
Based on the device model and the measurement channel list, the standard SCAQCF equations for the measurement model are given below:

$$
\mathbf{y}(\mathbf{x}, \mathbf{u})=Y_{m, \mathbf{x}} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{m, x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{m, u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{m, u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{m, x u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+N_{m, x} \mathbf{x}(t-h)+N_{m, u} \mathbf{u}(t-h)+M_{m} I(t-h)+K_{m}
$$

where:

$$
\left.\begin{array}{c}
Y_{m, \mathrm{X}}=\left[\begin{array}{cccccccc}
T & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & T & 0 & 0 & 0 & 0 & 0 & 0 \\
{\left[\begin{array}{rrrrrr}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24}
\end{array}\right]} \\
0 & 0 & 0 & 0 & T & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & T & 0 & 0 \\
{\left[\begin{array}{rrrrr}
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{array}\right]}
\end{array}\right] N_{m, x}=-\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
{\left[\begin{array}{lll}
N_{11} & N_{12} \\
N_{21} & N_{22}
\end{array}\right]} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
{\left[\begin{array}{lll}
N_{31} & N_{32} \\
N_{41} & N_{42}
\end{array}\right]}
\end{array}\right] M_{m, x}=\left[\begin{array}{cccc}
0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
{\left[\begin{array}{cccc}
I_{8 \times 8} & & 0 \\
0 & 0 & 0
\end{array}\right]} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
{\left[\begin{array}{cccc}
-0.5 I_{8 \times 8} & 0 \\
0 & 0 & -1 \\
0 & 0
\end{array}\right]}
\end{array}\right] \\
T
\end{array}\right]
$$

And, the definitions of $Y_{i j}$ and $N_{i j}$ are given in Appendix E.2.

Appendix F: Time Domain SCAQCF Model - Single Phase Saturable Core Variable Tap Transformer Protection

This document describes the model of a single-phase, two-winding, saturable-core variable tap transformer. The model is based on a standard transformer equivalent circuit, but the core magnetizing reactance is modeled as a nonlinear inductor with a current characteristic equation of high degree of nonlinearity.

F1. Single Phase Saturable Core Transformer Compact Model

The overall physical model of a single phase, saturable core variable tap transformer is illustrated in Figure F1. Core losses are also considered in the model, expressed by the conductance g_{c}. The "numerical stabilizers" $g_{s 1}, g_{s 2}, g_{s 3}$ and $g_{s 4}$ are introduced to eliminate possible numerical problems. The compact model is based on the circuit analysis of the equivalent circuit of Figure F1.

Figure F.1: Single Phase Transformer Equivalent Circuit
The model with nonlinear magnetizing inductor in the compact form is described by equations (3.1) through (3.18)

$$
\begin{align*}
& i_{1}(t)=i_{L 1}(t)+g_{s 1} \alpha L_{1} \frac{d i_{L 1}(t)}{d t} \tag{3.1}\\
& i_{2}(t)=i_{L 2}(t)+g_{s 2}(1-\alpha) L_{1} \frac{d i_{L 2}(t)}{d t} \tag{3.2}\\
& i_{3}(t)=i_{L 3}(t)+g_{s 3} \beta L_{2} \frac{d i_{L 3}(t)}{d t} \tag{3.3}
\end{align*}
$$

$$
\begin{aligned}
& i_{4}(t)=i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} \frac{d i_{L 4}(t)}{d t} \\
& i_{5}(t)=-i_{1}(t)-i_{2}(t) \\
& i_{6}(t)=-i_{3}(t)-i_{4}(t) \\
& 0=v_{1}(t)-v_{5}(t)-\alpha r_{1} i_{1}(t)-\alpha L_{1} \frac{d i_{L 1}(t)}{d t}-e_{c 1}(t) \\
& 0=v_{2}(t)-v_{5}(t)-(1-\alpha) r_{1} i_{2}(t)-(1-\alpha) L_{1} \frac{d i_{L 2}(t)}{d t}+e_{c 2}(t) \\
& 0=v_{3}(t)-v_{6}(t)-\beta r_{2} i_{3}(t)-\beta L_{2} \frac{d i_{L 3}(t)}{d t}-e_{c 3}(t) \\
& 0=v_{4}(t)-v_{6}(t)-(1-\beta) r_{2} i_{4}(t)-(1-\beta) L_{2} \frac{d i_{L 4}(t)}{d t}+e_{c 4}(t) \\
& 0=\alpha N_{1} i_{c 1}(t)-(1-\alpha) N_{1} i_{c 2}(t)+\beta N_{2} i_{3}(t)-(1-\beta) N_{2} i_{4}(t) \\
& 0=e_{c 1}(t)-\alpha \frac{d \lambda(t)}{d t} \\
& 0=e_{c 2}(t)-(1-\alpha) \frac{d \lambda(t)}{d t} \\
& 0=e_{c 3}(t)-\beta \frac{N_{2}}{N_{1}} \frac{d \lambda(t)}{d t} \\
& 0=e_{c 4}(t)-(1-\beta) \frac{N_{2}}{N_{1}} \frac{d \lambda(t)}{d t} \\
& 0=-i_{1}(t)+i_{c 1}(t)+i_{m}(t)+g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=-i_{2}(t)+i_{c 2}(t)-i_{m}(t)-g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=i_{m}(t)-i_{0} \frac{\lambda(t)}{\lambda_{0}}{ }^{n} \\
& 0.9<t(t)<1.1 \\
& \operatorname{sign}(\lambda(t)) \\
& 0
\end{aligned}
$$

There are 18 states variables

$$
X=\left[\begin{array}{c}
v_{1}(t), v_{2}(t), v_{3}(t), v_{4}(t), v_{5}(t), v_{6}(t), \\
i_{L 1}(t), i_{L 2}(t), i_{L 3}(t), i_{L 4}(t), \lambda(t) \\
e_{c 1}(t), e_{c 2}(t), e_{c 3}(t), e_{c 4}(t), i_{c 2}(t), i_{c 2}(t), i_{m}(t)
\end{array}\right]
$$

And 6 though variables

$$
I=\left[i_{1}(t), i_{2}(t), i_{3}(t), i_{4}(t), i_{5}(t), i_{6}(t)\right]
$$

And 1 control variable

$$
U=[t(t)]
$$

F2. Single Phase Saturable Core Transformer Quadratic Model

The model is quadratized by introducing additional internal state variables, so that the $\mathrm{n}^{\text {th }}$ exponent is replaced by equations of at most quadratic degree. Since the exact degree of nonlinearity is not known until the user specifies it, the model performs automatic quadratization of the equations. A special procedure is used, so that the model is quadratized using the minimum number of additional internal states, while also maintaining the scarcity of the resulting equations. The methodology is based on expressing the exponent in binary form. The binary representation provides all the information about the number of new variables and equations that need to be introduced and about the form of the equations (products of new variables). The procedure is described later. Following this procedure the model can be converted into the standard quadratized form:

$$
\begin{align*}
& i_{1}(t)=i_{L 1}(t)+g_{s 1} \alpha L_{1} z_{1}(t) \tag{4.1}\\
& i_{2}(t)=i_{L 2}(t)+g_{s 2}(1-\alpha) L_{1} z_{2}(t) \tag{4.2}\\
& i_{3}(t)=i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t) \tag{4.3}\\
& i_{4}(t)=i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t) \tag{4.4}\\
& i_{5}(t)=-i_{L 1}(t)-i_{L 2}(t)-g_{s 1} \alpha L_{1} z_{1}(t)-g_{s 2}(1-\alpha) L_{1} z_{2}(t) \tag{4.5}\\
& i_{6}(t)=-i_{L 3}(t)-i_{L 4}(t)-g_{s 3} \beta L_{2} z_{3}(t)-g_{s 4}(1-\beta) L_{2} z_{4}(t) \tag{4.6}\\
& 0=z_{1}(t)-\frac{d i_{L 1}(t)}{d t} \tag{4.7}\\
& \quad \begin{array}{r}
0=z_{2}(t)-\frac{d i_{L 2}(t)}{d t} \\
0=z_{3}(t)-\frac{d i_{L 3}(t)}{d t} \\
0=z_{4}(t)-\frac{d i_{L 4}(t)}{d t} \\
0=z_{5}(t)-\frac{d \lambda(t)}{d t} \\
0=v_{1}(t)-v_{5}(t)-\alpha r_{1}\left(i_{L 1}(t)+g_{s 1} \alpha L_{1} z_{1}(t)\right)-\alpha L_{1} z_{1}(t)-e_{c 1}(t) \\
0=v_{2}(t)-v_{5}(t)-(1-\alpha) r_{1}\left(i_{L 2}(t)+g_{s 2}(1-\alpha) L_{1} z_{2}(t)\right)
\end{array} \tag{4.8}\\
& \quad-(1-\alpha) L_{1} z_{2}(t)+e_{c 2}(t) \tag{4.9}\\
& 0=v_{3}(t)-v_{6}(t)-\beta r_{2}\left(i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t)\right)-\beta L_{2} z_{3}(t)-e_{c 3}(t) \tag{4.10}\\
& 0=v_{4}(t)-v_{6}(t)-(1-\beta) r_{2}\left(i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t)\right) \tag{4.11}\\
& \quad-(1-\beta) L_{2} z_{4}(t)+e_{c 4}(t) \tag{4.12}
\end{align*}
$$

$$
\begin{align*}
& 0=\alpha N_{1} i_{c 1}(t)-(1-\alpha) N_{1} i_{c 2}(t)+\beta N_{2}\left(i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t)\right)- \\
& (1-\beta) N_{2}\left(i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t)\right) \\
& 0=e_{c 1}(t)-\alpha z_{5}(t) \\
& 0=e_{c 2}(t)-(1-\alpha) z_{5}(t) \\
& 0=e_{c 3}(t)-\beta \frac{N_{2}}{N_{1}} z_{5}(t) \\
& 0=e_{c 4}(t)-(1-\beta) \frac{N_{2}}{N_{1}} z_{5}(t) \\
& 0=-i_{L 1}(t)-g_{s 1} \alpha L_{1} z_{1}(t)+i_{c 1}(t)+i_{m}(t)+g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=-i_{L 2}(t)-g_{s 2}(1-\alpha) L_{1} z_{2}(t)+i_{c 2}(t)-i_{m}(t) \\
& -g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=i_{m}(t)-i_{0} \cdot y_{m}(t) \cdot[\operatorname{sign}(\lambda(t))]^{n+1} \\
& 0=y_{1}(t)-\frac{\lambda(t)^{2}}{\lambda_{0}^{2}} \\
& 0=y_{2}(t)-y_{1}(t)^{2} \\
& \text {...... } \\
& \text {...... } \\
& 0=y_{m 1}(t)-y_{m 1-1}(t)^{2} \tag{4.23+m1}\\
& 0=y_{m 1+1}(t)-y_{i 1}(t) \cdot y_{j 1}(t) \\
& 0=y_{m 1+2}(t)-y_{m 1+1}(t) \cdot y_{j 2}(t) \\
& \begin{cases}0=y_{m}(t)-y_{m-1}(t) \cdot y_{j m 2}(t) & , \text { if } n \text { even } \\
0=y_{m}(t)-y_{m-1}(t) \cdot \frac{\lambda(t)}{\lambda_{0}} & \text {, if } n \text { odd }\end{cases} \\
& 0.9<t(t)<1.1
\end{align*}
$$

There are $23+\mathrm{m}$ states

$$
X(t)=\left[\begin{array}{c}
v_{1}(t), v_{2}(t), v_{3}(t), v_{4}(t), v_{5}(t), v_{6}(t), \\
i_{L 1}(t), i_{L 2}(t), i_{L 3}(t), i_{L 4}(t), \lambda(t), \\
z_{1}(t), z_{2}(t), z_{3}(t), z_{4}(t), z_{5}(t), \\
e_{c 1}(t), e_{c 2}(t), e_{c 3}(t), e_{c 4}(t), i_{c 1}(t), i_{c 2}(t), \\
i_{m}(t), y_{1}(t), y_{2}(t), \cdots \cdots, y_{m}(t)
\end{array}\right]
$$

And 6 though variables

$$
I=\left[i_{1}(t), i_{2}(t), i_{3}(t), i_{4}(t), i_{5}(t), i_{6}(t)\right]
$$

And 1 control variable

$$
U=[t(t)]
$$

Based on the above formulation, the number of additional internal states and equations m is computed as follows:
$m=m_{1}+m_{2}$
where:
$m_{1}=\operatorname{int}\left(\log _{2}(n)\right)$
$m_{2}=(\#$ of ones in the binary representation of $n)-1$
The sets of indices i and j in the last set of equations are provided by positions of ones in the binary representation of n. The values of these indices are equal to the values of the power of 2 corresponding to that position, meaning that the right most positions is indexed 0 and the left most indexed $\operatorname{int}\left(\log _{2}(n)\right)$. The variable y_{0} is by definition equal to λ, so it is not used and appears as λ in the equations. If the symbol y_{0} was used instead of λ then only the first case in equation (M4.23+m1+m2) would have been necessary, since this would include the second when the index becomes 0 . However, since λ is physically related to flux, for the time being the use of this symbol is preferred instead.

F3. Single Phase Saturable Core Transformer SCAQCF Device Model

The differential equations in above model are integrated with the quadratic integration method and the equations that are algebraic are sufficed to be written at times t and t_{m}. The SCAQCF model yields the following model.

At Time t

$$
\begin{aligned}
& i_{1}(t)=i_{L 1}(t)+g_{s 1} \alpha L_{1} z_{1}(t) \\
& i_{2}(t)=i_{L 2}(t)+g_{s 2}(1-\alpha) L_{1} z_{2}(t) \\
& i_{3}(t)=i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t) \\
& i_{4}(t)=i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t) \\
& i_{5}(t)=-i_{L 1}(t)-i_{L 2}(t)-g_{s 1} \alpha L_{1} z_{1}(t)-g_{s 2}(1-\alpha) L_{1} z_{2}(t)
\end{aligned}
$$

$$
\begin{aligned}
& i_{6}(t)=-i_{L 3}(t)-i_{L 4}(t)-g_{s 3} \beta L_{2} z_{3}(t)-g_{s 4}(1-\beta) L_{2} z_{4}(t) \\
& 0=i_{L 1}(t)-\frac{h}{6} z_{1}(t)-\frac{2 h}{3} z_{1}\left(t_{m}\right)-i_{L 1}(t-h)-\frac{h}{6} z_{1}(t-h) \\
& 0=i_{L 2}(t)-\frac{h}{6} z_{2}(t)-\frac{2 h}{3} z_{2}\left(t_{m}\right)-i_{L 2}(t-h)-\frac{h}{6} z_{2}(t-h) \\
& 0=i_{L 3}(t)-\frac{h}{6} z_{3}(t)-\frac{2 h}{3} z_{3}\left(t_{m}\right)-i_{L 3}(t-h)-\frac{h}{6} z_{3}(t-h) \\
& 0=i_{L 4}(t)-\frac{h}{6} z_{4}(t)-\frac{2 h}{3} z_{4}\left(t_{m}\right)-i_{L 4}(t-h)-\frac{h}{6} z_{4}(t-h) \\
& 0=\lambda(t)-\frac{h}{6} z_{5}(t)-\frac{2 h}{3} z_{5}\left(t_{m}\right)-\lambda(t-h)-\frac{h}{6} z_{5}(t-h) \\
& 0=v_{1}(t)-v_{5}(t)-\alpha r_{1}\left(i_{L 1}(t)+g_{s 1} \alpha L_{1} z_{1}(t)\right)-\alpha L_{1} z_{1}(t)-e_{c 1}(t) \\
& 0=v_{2}(t)-v_{5}(t)-(1-\alpha) r_{1}\left(i_{L 2}(t)+g_{s 2}(1-\alpha) L_{1} z_{2}(t)\right) \\
& -(1-\alpha) L_{1} z_{2}(t)+e_{c 2}(t) \\
& 0=v_{3}(t)-v_{6}(t)-\beta r_{2}\left(i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t)\right)-\beta L_{2} z_{3}(t)-e_{c 3}(t) \\
& 0=v_{4}(t)-v_{6}(t)-(1-\beta) r_{2}\left(i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t)\right) \\
& -(1-\beta) L_{2} z_{4}(t)+e_{c 4}(t) \\
& 0=\alpha N_{1} i_{c 1}(t)-(1-\alpha) N_{1} i_{c 2}(t)+\beta N_{2}\left(i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t)\right)- \\
& (1-\beta) N_{2}\left(i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t)\right) \\
& 0=e_{c 1}(t)-\alpha z_{5}(t) \\
& 0=e_{c 2}(t)-(1-\alpha) z_{5}(t) \\
& 0=e_{c 3}(t)-\beta \frac{N_{2}}{N_{1}} z_{5}(t) \\
& 0=e_{c 4}(t)-(1-\beta) \frac{N_{2}}{N_{1}} Z_{5}(t) \\
& 0=-i_{L 1}(t)-g_{s 1} \alpha L_{1} z_{1}(t)+i_{c 1}(t)+i_{m}(t)+g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=-i_{L 2}(t)-g_{s 2}(1-\alpha) L_{1} z_{2}(t)+i_{c 2}(t)-i_{m}(t) \\
& -g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=i_{m}(t)-i_{0} \cdot y_{m}(t) \cdot[\operatorname{sign}(\lambda(t))]^{n+1} \\
& 0=y_{1}(t)-\frac{\lambda(t)^{2}}{\lambda_{0}^{2}}
\end{aligned}
$$

$$
0=y_{2}(t)-y_{1}(t)^{2}
$$

\qquad
......

$$
\begin{aligned}
& 0=y_{m 1}(t)-y_{m 1-1}(t)^{2} \\
& 0=y_{m 1+1}(t)-y_{i 1}(t) \cdot y_{j 1}(t) \\
& 0=y_{m 1+2}(t)-y_{m 1+1}(t) \cdot y_{j 2}(t)
\end{aligned}
$$

\qquad
......
$\begin{cases}0=y_{m}(t)-y_{m-1}(t) \cdot y_{j m 2}(t) & , \text { if n even } \\ 0=y_{m}(t)-y_{m-1}(t) \cdot \frac{\lambda(t)}{\lambda_{0}} & , \text { if n odd }\end{cases}$
$0.9<t(t)<1.1$

At Time \boldsymbol{t}_{m}

$$
\begin{aligned}
& i_{1}\left(t_{m}\right)=i_{L 1}\left(t_{m}\right)+g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right) \\
& i_{2}\left(t_{m}\right)=i_{L 2}\left(t_{m}\right)+g_{s 2}(1-\alpha) L_{1} z_{2}\left(t_{m}\right) \\
& i_{3}\left(t_{m}\right)=i_{L 3}\left(t_{m}\right)+g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right) \\
& i_{4}\left(t_{m}\right)=i_{L 4}\left(t_{m}\right)+g_{s 4}(1-\beta) L_{2} z_{4}\left(t_{m}\right) \\
& i_{5}\left(t_{m}\right)=-i_{L 1}\left(t_{m}\right)-i_{L 2}\left(t_{m}\right)-g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right)-g_{s 2}(1-\alpha) L_{1} z_{2}\left(t_{m}\right) \\
& i_{6}\left(t_{m}\right)=-i_{L 3}\left(t_{m}\right)-i_{L 4}\left(t_{m}\right)-g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right)-g_{s 4}(1-\beta) L_{2} z_{4}\left(t_{m}\right) \\
& 0=i_{L 1}\left(t_{m}\right)+\frac{h}{24} z_{1}(t)-\frac{h}{3} z_{1}\left(t_{m}\right)-i_{L 1}(t-h)-\frac{5 h}{24} z_{1}(t-h) \\
& 0=i_{L 2}\left(t_{m}\right)+\frac{h}{24} z_{2}(t)-\frac{h}{3} z_{2}\left(t_{m}\right)-i_{L 2}(t-h)-\frac{5 h}{24} z_{2}(t-h) \\
& 0=i_{L 3}\left(t_{m}\right)+\frac{h}{24} z_{3}(t)-\frac{h}{3} z_{3}\left(t_{m}\right)-i_{L 3}(t-h)-\frac{5 h}{24} z_{3}(t-h) \\
& 0=i_{L 4}\left(t_{m}\right)+\frac{h}{24} z_{4}(t)-\frac{h}{3} z_{4}\left(t_{m}\right)-i_{L 4}(t-h)-\frac{5 h}{24} z_{4}(t-h) \\
& 0=\lambda\left(t_{m}\right)+\frac{h}{24} z_{5}(t)-\frac{h}{3} z_{5}\left(t_{m}\right)-\lambda(t-h)-\frac{5 h}{24} z_{5}(t-h)
\end{aligned}
$$

$$
\begin{aligned}
& 0=v_{1}\left(t_{m}\right)-v_{5}\left(t_{m}\right)-\alpha r_{1}\left(i_{L 1}\left(t_{m}\right)+g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right)\right)-\alpha L_{1} z_{1}\left(t_{m}\right) \\
& -e_{c 1}\left(t_{m}\right) \\
& 0=v_{2}\left(t_{m}\right)-v_{5}\left(t_{m}\right)-(1-\alpha) r_{1}\left(i_{L 2}\left(t_{m}\right)+g_{s 2}(1-\alpha) L_{1} z_{2}\left(t_{m}\right)\right) \\
& -(1-\alpha) L_{1} z_{2}\left(t_{m}\right)+e_{c 2}\left(t_{m}\right) \\
& 0=v_{3}\left(t_{m}\right)-v_{6}\left(t_{m}\right)-\beta r_{2}\left(i_{L 3}\left(t_{m}\right)+g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right)\right)-\beta L_{2} z_{3}\left(t_{m}\right) \\
& -e_{c 3}\left(t_{m}\right) \\
& 0=v_{4}\left(t_{m}\right)-v_{6}\left(t_{m}\right)-(1-\beta) r_{2}\left(i_{L 4}\left(t_{m}\right)+g_{s 4}(1-\beta) L_{2} z_{4}\left(t_{m}\right)\right) \\
& -(1-\beta) L_{2} z_{4}\left(t_{m}\right)+e_{c 4}\left(t_{m}\right) \\
& 0=\alpha N_{1} i_{c 1}\left(t_{m}\right)-(1-\alpha) N_{1} i_{c 2}\left(t_{m}\right) \\
& +\beta N_{2}\left(i_{L 3}\left(t_{m}\right)+g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right)\right)-(1 \\
& -\beta) N_{2}\left(i_{L 4}\left(t_{m}\right)+g_{s 4}(1-\beta) L_{2} z_{4}\left(t_{m}\right)\right) \\
& 0=e_{c 1}\left(t_{m}\right)-\alpha Z_{5}\left(t_{m}\right) \\
& 0=e_{c 2}\left(t_{m}\right)-(1-\alpha) z_{5}\left(t_{m}\right) \\
& 0=e_{c 3}\left(t_{m}\right)-\beta \frac{N_{2}}{N_{1}} z_{5}\left(t_{m}\right) \\
& 0=e_{c 4}\left(t_{m}\right)-(1-\beta) \frac{N_{2}}{N_{1}} z_{5}\left(t_{m}\right) \\
& 0=-i_{L 1}\left(t_{m}\right)-g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right)+i_{c 1}\left(t_{m}\right)+i_{m}\left(t_{m}\right) \\
& +g_{c}\left(e_{c 1}\left(t_{m}\right)+e_{c 2}\left(t_{m}\right)\right) \\
& 0=-i_{L 2}\left(t_{m}\right)-g_{s 2}(1-\alpha) L_{1} z_{2}\left(t_{m}\right)+i_{c 2}\left(t_{m}\right)-i_{m}\left(t_{m}\right) \\
& -g_{c}\left(e_{c 1}\left(t_{m}\right)+e_{c 2}\left(t_{m}\right)\right) \\
& 0=i_{m}\left(t_{m}\right)-i_{0} \cdot y_{m}\left(t_{m}\right) \cdot\left[\operatorname{sign}\left(\lambda\left(t_{m}\right)\right)\right]^{n+1} \\
& 0=y_{1}\left(t_{m}\right)-\frac{\lambda\left(t_{m}\right)^{2}}{\lambda_{0}^{2}} \\
& 0=y_{2}\left(t_{m}\right)-y_{1}\left(t_{m}\right)^{2} \\
& \text {...... } \\
& \text {...... } \\
& 0=y_{m 1}\left(t_{m}\right)-y_{m 1-1}\left(t_{m}\right)^{2} \\
& 0=y_{m 1+1}\left(t_{m}\right)-y_{i 1}\left(t_{m}\right) \cdot y_{j 1}\left(t_{m}\right) \\
& 0=y_{m 1+2}\left(t_{m}\right)-y_{m 1+1}\left(t_{m}\right) \cdot y_{j 2}\left(t_{m}\right)
\end{aligned}
$$

$$
\begin{cases}0=y_{m}\left(t_{m}\right)-y_{m-1}\left(t_{m}\right) \cdot y_{j m 2}\left(t_{m}\right) & \text { if } n \text { even } \\ 0=y_{m}\left(t_{m}\right)-y_{m-1}\left(t_{m}\right) \cdot \frac{\lambda\left(t_{m}\right)}{\lambda_{0}} & \text { if } n \text { odd }\end{cases}
$$

$$
0.9<t\left(t_{m}\right)<1.1
$$

There are $46+2 \mathrm{~m}$ states

$$
\left.X(t)=\left[\begin{array}{c}
X=\left[X(t) \quad X\left(t_{m}\right)\right]
\end{array}\right] \begin{array}{c}
v_{1}(t), v_{2}(t), v_{3}(t), v_{4}(t), v_{5}(t), v_{6}(t), \\
i_{L 1}(t), i_{L 2}(t), i_{L 3}(t), i_{L 4}(t), \lambda(t), \\
z_{1}(t), z_{2}(t), z_{3}(t), z_{4}(t), z_{5}(t), \\
e_{c 1}(t), e_{c 2}(t), e_{c 3}(t), e_{c 4}(t), i_{c 1}(t), i_{c 2}(t), \\
i_{m}(t), y_{1}(t), y_{2}(t), \cdots \cdots, y_{m}(t)
\end{array}\right] .
$$

And 12 though variables

$$
I=\left[\begin{array}{c}
i_{1}(t), i_{2}(t), i_{3}(t), i_{4}(t), i_{5}(t), i_{6}(t) \\
i_{1}\left(t_{m}\right), i_{2}\left(t_{m}\right), i_{3}\left(t_{m}\right), i_{4}\left(t_{m}\right), i_{5}\left(t_{m}\right), i_{6}\left(t_{m}\right)
\end{array}\right]
$$

And 2 control variable

$$
U=\left[\begin{array}{ll}
t(t) & t\left(t_{m}\right)
\end{array}\right]
$$

Based on the above formulation, the number of additional internal states and equations m is computed as follows:
$m=m_{1}+m_{2}$
where:
$m_{1}=\operatorname{int}\left(\log _{2}(n)\right)$
$m_{2}=(\#$ of ones in the binary representation of $n)-1$
The sets of indices i and j in the last set of equations are provided by positions of ones in the binary representation of n. The values of these indices are equal to the values of the power of 2 corresponding to that position, meaning that the right most positions is indexed 0 and the left most indexed $\operatorname{int}\left(\log _{2}(n)\right)$. The variable y_{0} is by definition equal to λ, so it is not used and appears as λ in the equations. If the symbol y_{0} was used instead of λ then only the first case in equation (M4.23+m1+m2) would have been necessary, since this would include the second when the index becomes 0 . However, since λ is physically related to flux, for the time being the use of this symbol is preferred instead.

The input matrices of the single phase saturable core transformer SCAQCF device model for the setting-less protection algorithm are shown below:

The SCAQCF device model is shown below:

$$
\begin{aligned}
& \left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{\text {eqx }} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{\text {equ }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {eqxu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}-B_{e q} \\
& B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{\text {equ }} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
& \mathbf{h (x , u)}=Y_{\text {opx }} \mathbf{x}+Y_{\text {opu }} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {opx }}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{\text {opu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{\text {opxu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}-B_{o p} \\
& \text { Scaling factors: Iscale, Xscale and Uscale } \\
& \text { Connectivity: TerminalNodeName }
\end{aligned}
$$

where the matrices are:
$Y_{e q x}=\left[\begin{array}{ll}Y_{\text {eqx_11 }} & Y_{\text {eqx_12 }} \\ Y_{\text {eqx_21 }} & Y_{\text {eqx_22 }}\end{array}\right]_{52 \times 52}$

$$
Y_{\text {eqx }-12}=\left[\begin{array}{llllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
Y_{\text {eax }-21}=\left[\begin{array}{llllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
F_{e q 0} & =\cdots=F_{e q 22}=0_{52 \times 52} \\
F_{e q 23}: f_{e q[10 \times 10]} & =-\frac{1}{\lambda_{0}^{2}}, \quad \text { other elements are } 0 \\
F_{e q 24}: f_{e q[23 \times 23]} & =-1, \quad \text { other elements are } 0 \\
F_{e q 25}: f_{e q[24 \times 20]} & =-1, \quad \text { other elements are } 0 \\
F_{e q 26} & =\cdots=F_{\text {eq48 }}=0_{52 \times 52} \\
F_{\text {eq49 }}: f_{e q[36 \times 36]} & =-\frac{1}{\lambda_{0}^{2}}, \quad \text { other elements are } 0 \\
F_{e q 50}: f_{e q[49 \times 49]} & =-1, \quad \text { other elements are } 0 \\
F_{e q 51}: f_{e q[50 \times 36]} & =-1, \quad \text { other elements are } 0
\end{aligned}
$$

$$
N_{e q \chi}=\left[\begin{array}{l}
N_{e q \chi_{_} 1} \\
N_{e q \chi_{_} 2}
\end{array}\right]_{52 \times 26}
$$

$$
N_{e q \chi}-1=\left[\begin{array}{llllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

The scaling factors are:

$$
\begin{aligned}
& X_{\text {scale }}=\left[\begin{array}{llll}
X_{\text {scale_1 }} & X_{\text {scale_2 }} & X_{\text {scale_3 }} & X_{\text {scale_4 }}
\end{array}\right]_{52}^{T} \\
& X_{\text {scale_1 }}=\left[\begin{array}{lllllllllllll}
2.5 e 4 & 2.5 e 4 & 2.5 e 4 & 500 & 500 & 500 & 10 & 10 & 500 & 500 & 100 & 4.0 e 3 & 4.0 e 3
\end{array}\right] \\
& X_{\text {scale_2 }}=\left[\begin{array}{llllllllllll}
4.0 e 4 & 4.0 e 4 & 2.5 e 4 & 2.5 e 4 & 2.5 e 4 & 500 & 500 & 10 & 10 & 1 & 1 & 1
\end{array}\right] \\
& X_{\text {scale_ } 3}=X_{\text {scale_1 }} \\
& X_{\text {scale_4 }}=X_{\text {scale_2 }} \\
& I_{\text {scale }}=\left[\begin{array}{llll}
I_{\text {scale_1 }} & I_{\text {scale_2 }} & I_{\text {scale_3 }} & I_{\text {scale_4 }}
\end{array}\right]_{52}^{T} \\
& I_{\text {scale } _1}=\left[\begin{array}{lllllllllllll}
10 & 10 & 500 & 500 & 10 & 500 & 10 & 10 & 100 & 100 & 100 & 10000 & 10000
\end{array}\right] \\
& I_{\text {scale_2 }}=\left[\begin{array}{lllllllllllll}
500 & 500 & 10 & 10000 & 10000 & 500 & 500 & 100 & 100 & 1 & 1 & 1 & 1
\end{array}\right] \\
& I_{\text {scale_3 }}=I_{\text {scale_1 }} \\
& I_{\text {scale_4 }}=I_{\text {scale_2 }}
\end{aligned}
$$

TerminalNodeName
XFMRH_A
XFMRH_N
XFMRL_A
XFMRL_N
-1
Xscale
0, 25.0e3
1, 25.0e3
2, 25.0e3
3, 500.0
4, 500.0
5, 500.0
6, 10.00000
7, 10.00000
8, 500.0000
9, 500.0000
10, 100.0000
11, 4.0e3
12, $4.0 e 3$
13, 4.0e4
14, 4.0e4
15, 25.0e3
16, 25.0e3
17, 25.0e3
18, 500.0
19, 500.0
20, 10.00000
21, 10.00000
22, 1.000000
23, 1.000000
24, 1.000000
25, 1.000000
26, 25.0e3
27, 25.0e3
28, 25.0e3
29, 500.000000
30, 500.000000
31, 500.000000
32, 10.000000
33, 10.000000
34, 500.0000
35, 500.0000
36, 100.0000

37, 4.0e3
38, 4.0e3
39, 4.0e4
40, 4.0e4
41, 25.0e3
42, 25.0e3
43, 25.0e3
44, 500.0
45, 500.0
46, 10.00000
47, 10.00000
48, 1.000000
49, 1.000000
50, 1.000000
51, 1.000000
-1
Iscale
0, 10.000000
1, 10.000000
2, 500.000000
3, 500.000000
4, 10.000000
5, 500.000000
6, 10.000000
7, 10.000000
8, 100.000000
9, 100.000000
10, 100.000000
11, 10000.0
12, 10000.0
13, 500.0
14, 500.0
15, 10.000000
16, 10000.0
17, 10000.0
18, 500.0
19, 500.0
20, 100.000000
21, 100.000000
22, 1.000000
23, 1.000000
24, 1.000000
25, 1.000000
26, 10.000000
27, 10.000000

28, 500.000000
29, 500.000000
30, 10.000000
31, 500.000000
32, 10.000000
33, 10.000000
34, 100.000000
35, 100.000000
36, 100.000000
37, 10000.0
38, 10000.0
39, 500.0
40, 500.0
41, 10.000000
42, 10000.0
43, 10000.0
44, 500.0
45, 500.0
46, 100.000000
47, 100.000000
48, 1.000000
49, 1.000000
50, 1.000000
51, 1.000000
-1
Yeqx
$0,6,1.0000000000 e+000$
0, 11, 2.0000000000e-005
1, 7, 1.0000000000e+000
1, 12, 2.0000000000e-005
$2,8,1.0000000000 e+000$
2, 13, 2.0000000000e-005
3, 9, 1.0000000000e +000
3, 14, 2.0000000000e-005
4, 6, -1.0000000000e+000
4, 7, $-1.0000000000 e+000$
4, 11, -2.00000000000e-005
4, 12, -2.00000000000e-005
5, 8, -1.0000000000e+000
5, 9, -1.0000000000e+000
5, 13, -2.00000000000e-005
5, 14, -2.0000000000e-005
$6,6,1.0000000000 e+000$
6, 11, -1.6666666667e-005
6, 37, -6.6666666667e-005

7, 7, 1.0000000000e+000
7, 12, -1.6666666667e-005
7, 38, -6.6666666667e-005
$8,8,1.0000000000 e+000$
8, 13, -1.6666666667e-005
8, 39, -6.6666666667e-005
9, 9, 1.0000000000e +000
9, 14, -1.6666666667e-005
9, 40, -6.6666666667e-005
10, 10, $1.0000000000 e+000$
10, 15, -1.6666666667e-005
10, 41, -6.6666666667e-005
11, 0, 1.0000000000e+000
11, 4, -1.00000000000e+000
11, 6, -3.4704150000e+000
11, 11, -9.2125025272e-002
11, 16, $-1.0000000000 e+000$
12, 1, $1.0000000000 e+000$
12, 4, -1.0000000000e+000
12, 17, 1.0000000000e+000
13, 2, $1.0000000000 e+000$
13, 5, -1.00000000000e+000
13, 8, -1.2788166667e-003
13, 13, -3.3947241968e-005
13, 18, $-1.0000000000 e+000$
14, 3, $1.0000000000 e+000$
14, 5, -1.00000000000e+000
14, 19, $1.0000000000 e+000$
15, 8, 1.9196119196e-002
15, 13, 3.8392238392e-007
15, 20, 1.0000000000e+000
16, 15, $-1.0000000000 e+000$
16, 16, 1.0000000000e+000
17, 17, 1.0000000000e+000
18, 15, -1.9196119196e-002
18, 18, 1.0000000000e+000
19, 19, 1.00000000000e+000
$20,6,-1.0000000000 e+000$
20, 11, -2.0000000000e-005
20, 16, 7.2037494075e-006
20, 17, 7.2037494075e-006
20, 20, 1.00000000000e+000
20, 22, 1.0000000000e+000
21, 7, -1.00000000000e+000
21, 12, -2.0000000000e-005
21, 16, -7.2037494075e-006

21, 17, -7.2037494075e-006
21, 21, 1.0000000000e+000
21, 22, -1.00000000000e+000
22, 22, 1.0000000000e+000
22, 25, -1.0395010395
23, 23, 1.00000000000e+000
24, 24, 1.0000000000e+000
25, 25, 1.00000000000e+000
26, 32, 1.0000000000e+000
26, 37, 2.0000000000e-005
27, 33, 1.0000000000e+000
27, 38, 2.00000000000e-005
28, 34, 1.0000000000e+000
28, 39, 2.0000000000e-005
29, 35, 1.0000000000e+000
29, 40, 2.0000000000e-005
30, 32, $-1.0000000000 e+000$
30, 33, -1.00000000000e+000
30, 37, -2.0000000000e-005
30, 38, -2.0000000000e-005
31, 34, -1.0000000000e+000
31, 35, -1.00000000000e+000
31, 39, -2.0000000000e-005
31, 40, -2.0000000000e-005
32, 11, 4.1666666667e-006
32, 32, 1.0000000000e+000
32, 37, -3.3333333333e-005
33, 12, 4.1666666667e-006
33, 33, 1.0000000000e+000
33, 38, -3.3333333333e-005
34, 13, 4.1666666667e-006
34, 34, 1.00000000000e+000
34, 39, -3.3333333333e-005
35, 14, 4.1666666667e-006
35, 35, 1.00000000000e+000
35, 40, -3.3333333333e-005
36, 15, 4.1666666667e-006
36, 36, 1.00000000000e+000
36, 41, -3.333333333e-005
37, 26, 1.0000000000e+000
37, 30, -1.0000000000e+000
37, 32, $-3.4704150000 e+000$
37, 37, -9.2125025272e-002
37, 42, $-1.0000000000 e+000$
38, 27, 1.0000000000e+000
38, 30, -1.00000000000e+000

38, 43, 1.00000000000e+000
39, 28, 1.00000000000e+000
39, 31, -1.00000000000e+000
39, 34, -1.2788166667e-003
39, 39, -3.3947241968e-005
39, 44, -1.0000000000e +000
40, 29, 1.00000000000e+000
40, 31, -1.00000000000e+000
40, 45, 1.00000000000e +000
41, 34, 1.9196119196e-002
41, 39, 3.8392238392e-007
41, 46, 1.00000000000e+000
42, 41, -1.00000000000e+000
42, 42, 1.00000000000e+000
43, 43, 1.0000000000e+000
44, 41, -1.9196119196e-002
44, 44, 1.00000000000e+000
$45,45,1.0000000000 e+000$
$46,32,-1.0000000000 e+000$
46, 37, -2.0000000000e-005
46, 42, 7.2037494075e-006
46, 43, 7.2037494075e-006
46, 46, 1.00000000000e +000
46, 48, 1.00000000000e+000
47, 33, -1.0000000000e +000
47, 38, -2.0000000000e-005
47, 42, -7.2037494075e-006
47, 43, -7.2037494075e-006
47, 47, 1.0000000000e+000
47, 48, -1.0000000000e+000
48, 48, 1.00000000000e+000
48, 51, -1.0395010395
49, 49, 1.00000000000e+000
50, 50, 1.00000000000e+000
51, 51, 1.00000000000e+000
-1

Feqx
23, 10, 10, -3.412712e-4
24, 23, 23, $-1.000000 e+000$
25, 24, 10, -0.01847353
49, 36, 36, -3.412712e-4
50, 49, 49, $-1.000000 e+000$
51, 50, 36, -0.01847353
-1

```
Neqx
    6, 6, -1.0000000000e+000
    6, 11, -1.6666666667e-005
    7, 7, -1.0000000000e+000
    7, 12, -1.6666666667e-005
    8, 8, -1.0000000000e+000
    8, 13, -1.6666666667e-005
    9, 9, -1.0000000000e+000
    9, 14, -1.66666666667e-005
    10, 10, -1.00000000000e+000
    10, 15, -1.6666666667e-005
    32, 6, -1.00000000000e+000
    32, 11, -2.0833333333e-005
    33, 7, -1.00000000000e+000
    33, 12, -2.0833333333e-005
    34, 8, -1.0000000000e+000
    34, 13, -2.0833333333e-005
    35, 9, -1.0000000000e+000
    35, 14, -2.0833333333e-005
    36, 10, -1.00000000000e+000
    36, 15, -2.0833333333e-005
-1
```

Meq
-1
Keq
-1

F4. Single Phase Saturable Core Transformer SCAQCF Measurement Model

More specifically, for single phase saturable core transformer the actual measurements are:
Two currents at time t (Primary side and Secondary side);
Two voltages at time t (Primary side and Secondary side);
Two currents at time tm=t-h/2 (Primary side and Secondary side);
Two voltages at time tm=t-h/2 (Primary side and Secondary side);;
The virtual measurements are:
Twenty measurements with zero value at the left side of the equations at time t;
Twenty measurements with zero value at the left side of the equations at time $t \mathrm{~m}=\mathrm{t}-\mathrm{h} / 2$;
The derived measurements are:
Two ground currents at time t (Primary side and Secondary side)
Two ground currents at time tm=t-h/2 (Primary side and Secondary side)

The pseudo measurements are:
Two ground voltages ate time t (Primary side and Secondary side)
Two ground voltages ate time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$ (Primary side and Secondary side)
The measurement channel list:

MeasurementType, 16
MeasStdDev, 300.0
MeasTerminal, 0, 1
MeasurementEnd
MeasurementType, 16
MeasStdDev, 6.0
MeasTerminal, 2, 3
MeasurementEnd
MeasurementType, 17
MeasStdDev, 0.2
MeasTerminal, 0
MeasurementEnd
MeasurementType, 17
MeasStdDev, 10.0
MeasTerminal, 2
MeasurementEnd
MeasurementType, 29
MeasStdDev, 0.2
MeasTerminal, 1
MeasRatio, -1.0
MeasNumber, 0
MeasurementEnd
MeasurementType, 29
MeasStdDev, 10.0
MeasTerminal, 3
MeasRatio, -1.0
MeasNumber, 2
MeasurementEnd
MeasurementType, 25
MeasStdDev, 0.10000
MeasTerminal, 1
MeasurementEnd
MeasurementType, 25
MeasStdDev, 0.10000
MeasTerminal, 3
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 6

MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 7
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 8
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 9
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 10
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 11
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 12
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 13
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 14
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 15
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 16
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 17
MeasurementEnd
MeasurementType, 24

MeasStdDev, 0.0010000
MeasTerminal, 18
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 19
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 20
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 21
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 22
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 23
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 24
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 25
MeasurementEnd
Based on the device model and the measurement channel list, the equations for the measurement model are given below:

At Time t

$$
\begin{aligned}
& v_{12}(t)=v_{1}(t)-v_{2}(t) \\
& 0=v_{2}(t) \\
& v_{34}(t)=v_{3}(t)-v_{4}(t) \\
& 0=v_{4}(t) \\
& i_{1}(t)=i_{L 1}(t)+g_{s 1} \alpha L_{1} z_{1}(t) \\
& i_{2}(t)=i_{L 2}(t)+g_{s 2}(1-\alpha) L_{1} z_{2}(t)
\end{aligned}
$$

$$
\begin{aligned}
& i_{3}(t)=i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t) \\
& i_{4}(t)=i_{L 4}(t)+g_{S 4}(1-\beta) L_{2} z_{4}(t) \\
& 0=i_{L 1}(t)-\frac{h}{6} z_{1}(t)-\frac{2 h}{3} z_{1}\left(t_{m}\right)-i_{L 1}(t-h)-\frac{h}{6} z_{1}(t-h) \\
& 0=i_{L 2}(t)-\frac{h}{6} z_{2}(t)-\frac{2 h}{3} z_{2}\left(t_{m}\right)-i_{L 2}(t-h)-\frac{h}{6} z_{2}(t-h) \\
& 0=i_{L 3}(t)-\frac{h}{6} z_{3}(t)-\frac{2 h}{3} z_{3}\left(t_{m}\right)-i_{L 3}(t-h)-\frac{h}{6} z_{3}(t-h) \\
& 0=i_{L 4}(t)-\frac{h}{6} z_{4}(t)-\frac{2 h}{3} z_{4}\left(t_{m}\right)-i_{L 4}(t-h)-\frac{h}{6} z_{4}(t-h) \\
& 0=\lambda(t)-\frac{h}{6} z_{5}(t)-\frac{2 h}{3} z_{5}\left(t_{m}\right)-\lambda(t-h)-\frac{h}{6} z_{5}(t-h) \\
& 0=v_{1}(t)-v_{5}(t)-\alpha r_{1}\left(i_{L 1}(t)+g_{s 1} \alpha L_{1} z_{1}(t)\right)-\alpha L_{1} z_{1}(t)-e_{c 1}(t) \\
& 0=v_{2}(t)-v_{5}(t)-(1-\alpha) r_{1}\left(i_{L 2}(t)+g_{s 2}(1-\alpha) L_{1} z_{2}(t)\right) \\
& -(1-\alpha) L_{1} z_{2}(t)+e_{c 2}(t) \\
& 0=v_{3}(t)-v_{6}(t)-\beta r_{2}\left(i_{L 3}(t)+g_{s 3} \beta L_{2} z_{3}(t)\right)-\beta L_{2} z_{3}(t)-e_{c 3}(t) \\
& 0=v_{4}(t)-v_{6}(t)-(1-\beta) r_{2}\left(i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t)\right) \\
& -(1-\beta) L_{2} z_{4}(t)+e_{c 4}(t) \\
& 0=\alpha N_{1} i_{c 1}(t)-(1-\alpha) N_{1} i_{c 2}(t)+\beta N_{2}\left(i_{L 3}(t)+g_{s 3} \beta L_{2} Z_{3}(t)\right)- \\
& (1-\beta) N_{2}\left(i_{L 4}(t)+g_{s 4}(1-\beta) L_{2} z_{4}(t)\right) \\
& 0=e_{c 1}(t)-\alpha Z_{5}(t) \\
& 0=e_{c 2}(t)-(1-\alpha) z_{5}(t) \\
& 0=e_{c 3}(t)-\beta \frac{N_{2}}{N_{1}} Z_{5}(t) \\
& 0=e_{c 4}(t)-(1-\beta) \frac{N_{2}}{N_{1}} z_{5}(t) \\
& 0=-i_{L 1}(t)-g_{s 1} \alpha L_{1} z_{1}(t)+i_{c 1}(t)+i_{m}(t)+g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=-i_{L 2}(t)-g_{s 2}(1-\alpha) L_{1} z_{2}(t)+i_{c 2}(t)-i_{m}(t) \\
& -g_{c}\left(e_{c 1}(t)+e_{c 2}(t)\right) \\
& 0=i_{m}(t)-i_{0} \cdot y_{m}(t) \cdot[\operatorname{sign}(\lambda(t))]^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& 0=y_{1}(t)-\frac{\lambda(t)^{2}}{\lambda_{0}^{2}} \\
& 0=y_{2}(t)-y_{1}(t)^{2} \\
& \ldots \cdots
\end{aligned}
$$

......
$0=y_{m 1}(t)-y_{m 1-1}(t)^{2}$
$0=y_{m 1+1}(t)-y_{i 1}(t) \cdot y_{j 1}(t)$
$0=y_{m 1+2}(t)-y_{m 1+1}(t) \cdot y_{j 2}(t)$
......
......
$\begin{cases}0=y_{m}(t)-y_{m-1}(t) \cdot y_{j m 2}(t) & , \text { if } n \text { even } \\ 0=y_{m}(t)-y_{m-1}(t) \cdot \frac{\lambda(t)}{\lambda_{0}} & \text {, if } n \text { odd }\end{cases}$
$0.9<t(t)<1.1$

At Time \boldsymbol{t}_{m}

$$
\begin{aligned}
& v_{12}\left(t_{m}\right)=v_{1}\left(t_{m}\right)-v_{2}\left(t_{m}\right) \\
& 0=v_{2}\left(t_{m}\right) \\
& v_{34}\left(t_{m}\right)=v_{3}\left(t_{m}\right)-v_{4}\left(t_{m}\right) \\
& 0=v_{4}\left(t_{m}\right) \\
& i_{1}\left(t_{m}\right)=i_{L 1}\left(t_{m}\right)+g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right) \\
& i_{2}\left(t_{m}\right)=i_{L 2}\left(t_{m}\right)+g_{s 2}(1-\alpha) L_{1} z_{2}\left(t_{m}\right) \\
& i_{3}\left(t_{m}\right)=i_{L 3}\left(t_{m}\right)+g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right) \\
& i_{4}\left(t_{m}\right)=i_{L 4}\left(t_{m}\right)+g_{s 4}(1-\beta) L_{2} z_{4}\left(t_{m}\right) \\
& i_{5}\left(t_{m}\right)=-i_{L 1}\left(t_{m}\right)-i_{L 2}\left(t_{m}\right)-g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right)-g_{s 2}(1 \\
& \quad-\alpha) L_{1} z_{2}\left(t_{m}\right) \\
& i_{6}\left(t_{m}\right)=-i_{L 3}\left(t_{m}\right)-i_{L 4}\left(t_{m}\right)-g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right)-g_{s 4}(1 \\
& \quad-\beta) L_{2} z_{4}\left(t_{m}\right)
\end{aligned}
$$

$$
0=i_{L 1}\left(t_{m}\right)+\frac{h}{24} z_{1}(t)-\frac{h}{3} z_{1}\left(t_{m}\right)-i_{L 1}(t-h)-\frac{5 h}{24} z_{1}(t-h)
$$

$$
\begin{aligned}
& 0=i_{L 2}\left(t_{m}\right)+\frac{h}{24} z_{2}(t)-\frac{h}{3} z_{2}\left(t_{m}\right)-i_{L 2}(t-h)-\frac{5 h}{24} z_{2}(t-h) \\
& 0=i_{L 3}\left(t_{m}\right)+\frac{h}{24} z_{3}(t)-\frac{h}{3} z_{3}\left(t_{m}\right)-i_{L 3}(t-h)-\frac{5 h}{24} z_{3}(t-h) \\
& 0=i_{L 4}\left(t_{m}\right)+\frac{h}{24} z_{4}(t)-\frac{h}{3} z_{4}\left(t_{m}\right)-i_{L 4}(t-h)-\frac{5 h}{24} z_{4}(t-h) \\
& 0=\lambda\left(t_{m}\right)+\frac{h}{24} z_{5}(t)-\frac{h}{3} z_{5}\left(t_{m}\right)-\lambda(t-h)-\frac{5 h}{24} z_{5}(t-h) \\
& 0=v_{1}\left(t_{m}\right)-v_{5}\left(t_{m}\right)-\alpha r_{1}\left(i_{L 1}\left(t_{m}\right)+g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right)\right)-\alpha L_{1} z_{1}\left(t_{m}\right) \\
& -e_{c 1}\left(t_{m}\right) \\
& 0=v_{2}\left(t_{m}\right)-v_{5}\left(t_{m}\right)-(1-\alpha) r_{1}\left(i_{L 2}\left(t_{m}\right)+g_{s 2}(1-\alpha) L_{1} z_{2}\left(t_{m}\right)\right) \\
& -(1-\alpha) L_{1} z_{2}\left(t_{m}\right)+e_{c 2}\left(t_{m}\right) \\
& 0=v_{3}\left(t_{m}\right)-v_{6}\left(t_{m}\right)-\beta r_{2}\left(i_{L 3}\left(t_{m}\right)+g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right)\right)-\beta L_{2} z_{3}\left(t_{m}\right) \\
& -e_{c 3}\left(t_{m}\right) \\
& 0=v_{4}\left(t_{m}\right)-v_{6}\left(t_{m}\right)-(1-\beta) r_{2}\left(i_{L 4}\left(t_{m}\right)+g_{s 4}(1-\beta) L_{2} z_{4}\left(t_{m}\right)\right) \\
& -(1-\beta) L_{2} z_{4}\left(t_{m}\right)+e_{c 4}\left(t_{m}\right) \\
& 0=\alpha N_{1} i_{c 1}\left(t_{m}\right)-(1-\alpha) N_{1} i_{c 2}\left(t_{m}\right) \\
& +\beta N_{2}\left(i_{L 3}\left(t_{m}\right)+g_{s 3} \beta L_{2} z_{3}\left(t_{m}\right)\right)-(1 \\
& -\beta) N_{2}\left(i_{L 4}\left(t_{m}\right)+g_{s 4}(1-\beta) L_{2} z_{4}\left(t_{m}\right)\right) \\
& 0=e_{c 1}\left(t_{m}\right)-\alpha z_{5}\left(t_{m}\right) \\
& 0=e_{c 2}\left(t_{m}\right)-(1-\alpha) z_{5}\left(t_{m}\right) \\
& 0=e_{c 3}\left(t_{m}\right)-\beta \frac{N_{2}}{N_{1}} z_{5}\left(t_{m}\right) \\
& 0=e_{c 4}\left(t_{m}\right)-(1-\beta) \frac{N_{2}}{N_{1}} z_{5}\left(t_{m}\right) \\
& 0=-i_{L 1}\left(t_{m}\right)-g_{s 1} \alpha L_{1} z_{1}\left(t_{m}\right)+i_{c 1}\left(t_{m}\right)+i_{m}\left(t_{m}\right) \\
& +g_{c}\left(e_{c 1}\left(t_{m}\right)+e_{c 2}\left(t_{m}\right)\right) \\
& 0=-i_{L 2}\left(t_{m}\right)-g_{s 2}(1-\alpha) L_{1} z_{2}\left(t_{m}\right)+i_{c 2}\left(t_{m}\right)-i_{m}\left(t_{m}\right) \\
& -g_{c}\left(e_{c 1}\left(t_{m}\right)+e_{c 2}\left(t_{m}\right)\right) \\
& 0=i_{m}\left(t_{m}\right)-i_{0} \cdot y_{m}\left(t_{m}\right) \cdot\left[\operatorname{sign}\left(\lambda\left(t_{m}\right)\right)\right]^{n+1} \\
& 0=y_{1}\left(t_{m}\right)-\frac{\lambda\left(t_{m}\right)^{2}}{\lambda_{0}^{2}}
\end{aligned}
$$

$$
0=y_{2}\left(t_{m}\right)-y_{1}\left(t_{m}\right)^{2}
$$

\qquad
......
$0=y_{m 1}\left(t_{m}\right)-y_{m 1-1}\left(t_{m}\right)^{2}$
$0=y_{m 1+1}\left(t_{m}\right)-y_{i 1}\left(t_{m}\right) \cdot y_{j 1}\left(t_{m}\right)$
$0=y_{m 1+2}\left(t_{m}\right)-y_{m 1+1}\left(t_{m}\right) \cdot y_{j 2}\left(t_{m}\right)$
......
......
$\begin{cases}0=y_{m}\left(t_{m}\right)-y_{m-1}\left(t_{m}\right) \cdot y_{j m 2}\left(t_{m}\right) & , \text { if } n \text { even } \\ 0=y_{m}\left(t_{m}\right)-y_{m-1}\left(t_{m}\right) \cdot \frac{\lambda\left(t_{m}\right)}{\lambda_{0}} & \text {, if nodd }\end{cases}$
$0.9<t\left(t_{m}\right)<1.1$

There are $46+2 \mathrm{~m}$ states

$$
\left.X(t)=\left[\begin{array}{c}
X=\left[X(t) \quad X\left(t_{m}\right)\right]
\end{array}\right] \begin{array}{c}
v_{1}(t), v_{2}(t), v_{3}(t), v_{4}(t), v_{5}(t), v_{6}(t), \\
i_{L 1}(t), i_{L 2}(t), i_{L 3}(t), i_{L 4}(t), \lambda(t), \\
z_{1}(t), z_{2}(t), z_{3}(t), z_{4}(t), z_{5}(t), \\
e_{c 1}(t), e_{c 2}(t), e_{c 3}(t), e_{c 4}(t), i_{c 1}(t), i_{c 2}(t), \\
i_{m}(t), y_{1}(t), y_{2}(t), \cdots \cdots, y_{m}(t)
\end{array}\right] .
$$

And 12 though variables

$$
I=\left[\begin{array}{c}
i_{1}(t), i_{2}(t), i_{3}(t), i_{4}(t), i_{5}(t), i_{6}(t) \\
i_{1}\left(t_{m}\right), i_{2}\left(t_{m}\right), i_{3}\left(t_{m}\right), i_{4}\left(t_{m}\right), i_{5}\left(t_{m}\right), i_{6}\left(t_{m}\right)
\end{array}\right]
$$

And 2 control variable

$$
U=\left[\begin{array}{ll}
t(t) & t\left(t_{m}\right)
\end{array}\right]
$$

Based on the above formulation, the number of additional internal states and equations m is computed as follows:
$m=m_{1}+m_{2}$
where:
$m_{1}=\operatorname{int}\left(\log _{2}(n)\right)$
$m_{2}=(\#$ of ones in the binary representation of $n)-1$
The sets of indices i and j in the last set of equations are provided by positions of ones in the binary representation of n. The values of these indices are equal to the values of the power of 2
corresponding to that position, meaning that the right most positions is indexed 0 and the left most indexed $\operatorname{int}\left(\log _{2}(n)\right)$. The variable y_{0} is by definition equal to λ, so it is not used and appears as λ in the equations. If the symbol y_{0} was used instead of λ then only the first case in equation (M4.23+m1+m2) would have been necessary, since this would include the second when the index becomes 0 . However, since λ is physically related to flux, for the time being the use of this symbol is preferred instead.

The input matrices of the single phase saturable core transformer SCAQCF device model for the setting-less protection algorithm are shown below:

It is very easy to write the above equations in the standard SCAQCF format:

$$
\mathbf{y}(\mathbf{x}, \mathbf{u})=Y_{m, \mathbf{x}} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{m, \mathbf{x}}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{m, u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{m, u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{m, x u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+N_{m, x} \mathbf{x}(t-h)+N_{m, u} \mathbf{u}(t-h)+M_{m} I(t-h)+K_{m}
$$

where the matrices are:

$$
F_{m x}=\left[\begin{array}{ll}
F_{m x_{_} 11} & F_{m x_{-} 12} \\
F_{m x_{-} 21} & F_{m x_{-} 22}
\end{array}\right]_{56 \times 52}
$$

	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	$\frac{h}{5}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1	0	0	0	0	$\frac{h}{5}$	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0	0	$\frac{h}{5}$	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	$\frac{h}{5}$	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	$-\frac{h}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1	0	0	0	0	$-\frac{h}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0	0	$-\frac{h}{6}$	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	$-\frac{h}{6}$	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	$-\frac{h}{6}$	0	0	0	0	0	0	0	0	0	0
$F_{m \times _11}=$	1	0	0	0	-1	0	$-\alpha r_{1}$	0	0	0	0	$-\alpha L_{1}-\frac{\alpha r_{1} h}{5}$	0	0	0	0	-1	0	0	0	0	0	0	0	0	0
	0	1	0	0	-1	0	0	$(1-\alpha) r_{1}$	0	0	0	0	$(1-\alpha)\left(L_{1}+\frac{r_{1} h}{5}\right)$	0	0	0	0	1	0	0	0	0	0	0	0	0
	0	0	1	0	0	-1	0	0	$-\beta r_{2}$	0	0	0	0	$-\beta L_{2}-\frac{\beta r_{2} h}{5}$	0	0	0	0	-1	0	0	0	0	0	0	0
	0	0	0	1	0	-1	0	0	0	$(1-\beta) r_{2}$	0	0	0	0	$(1-\beta)\left(L_{2}+\frac{r_{2} h}{5}\right)$	0	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	βN_{2}	$(\beta-1) N_{2}$	0	0	0	$\frac{\beta N_{2} h}{5}$	$\frac{(\beta-1) N_{2} h}{5}$	0	0	0	0	0	αN_{1}	$(\alpha-1) N_{1}$	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- α	1	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\alpha-1$	0	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$-\frac{\beta N_{2}}{N_{1}}$	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{(\beta-1) N_{2}}{N_{1}}$	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	-1	0	0	0	0	$-\frac{h}{5}$	0	0	0	0	g_{c}	$g_{\text {c }}$	0	0	1	0	1	0	0	0
	0	0	0	0	0	0	0	-1	0	0	0	0	$-\frac{h}{5}$	0	0	0	$-g_{c}$	$-g_{c}$	0	0	0	1	-1	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	$-i_{0}$
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
						0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

$$
F_{m \times}-12=\left[\begin{array}{lllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2 h}{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0
\end{array}\right]
$$

$$
F_{m \times \sim} 21=\left[\begin{array}{lllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{h}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& F_{m 0}=\cdots=F_{m 24}=0_{52 \times 52} \\
& F_{m 25}: f_{m[10 \times 10]}=-\frac{1}{\lambda_{0}^{2}}, \quad \text { other elements are } 0 \\
& F_{m 26}: f_{m[23 \times 23]}=-1, \quad \text { other elements are } 0 \\
& F_{m 27}: f_{m[24 \times 20]}=-1, \quad \text { other elements are } 0 \\
& F_{m 28}=\cdots=F_{m 52}=0_{52 \times 52} \\
& F_{m 53}: f_{m[36 \times 36]}=-\frac{1}{\lambda_{0}^{2}}, \quad \text { other elements are } 0 \\
& F_{m 54}: f_{m[49 \times 49]}=-1, \quad \text { other elements are } 0 \\
& F_{m 55}: f_{m[50 \times 36]}=-1, \quad \text { other elements are } 0 \\
& N_{m x}=\left[\begin{array}{l}
N_{m x}{ }_{-1} \\
N_{m x _2}
\end{array}\right]_{56 \times 26}
\end{aligned}
$$

$$
N_{m x}=\left[\begin{array}{lllllllllllllllllllllllll}
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -\frac{h}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 \\
0 & 0 \\
0 & 0 \\
0
\end{array}\right]
$$

Appendix G: Time Domain SCAQCF Model - Three Phase Saturable Core Reactor Protection

This section describes the three phase saturable reactor model for the state estimation based settingless protection. The SCAQCF model is derived in 4 parts: (a) the reactor compact model, (b) the saturable core reactor quadratized model, (c) the SCAQCF device model and (d) the SCAQCF measurement model

G1. Three Phase Saturable Core Three Phase Reactor Compact Model Description

The circuit model of the three phase reactor is shown in Figure 1. Note that in Figure 1, g_{L} is the conductance that models the core losses. In this section, "numerical stabilizers" have been included to eliminate possible numerical problems caused by the numerical integration rule. In Figure G1, g_{c} is the conductance of the "stabilizer".

Figure G.1: Three Phase Reactor Model
In compact form the model becomes:

$$
\begin{aligned}
& i_{a}(t)=i_{0} \cdot\left|\frac{\lambda_{a}(t)}{\lambda_{0}}\right|^{n} \cdot \operatorname{sign}\left(\lambda_{a}(t)\right)+\left(g_{L}+g_{C}\right) \cdot\left(v_{a}(t)-v_{n}(t)\right) \\
& i_{b}(t)=i_{0} \cdot\left|\frac{\lambda_{b}(t)}{\lambda_{0}}\right|^{n} \cdot \operatorname{sign}\left(\lambda_{b}(t)\right)+\left(g_{L}+g_{C}\right) \cdot\left(v_{b}(t)-v_{n}(t)\right) \\
& i_{c}(t)=i_{0} \cdot\left|\frac{\lambda_{c}(t)}{\lambda_{0}}\right|^{n} \cdot \operatorname{sign}\left(\lambda_{c}(t)\right)+\left(g_{L}+g_{C}\right) \cdot\left(v_{c}(t)-v_{n}(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& i_{n}(t)=-i_{0} \cdot\left|\frac{\lambda_{a}(t)}{\lambda_{0}}\right|^{n} \cdot \operatorname{sign}\left(\lambda_{a}(t)\right)-i_{0} \cdot\left|\frac{\lambda_{b}(t)}{\lambda_{0}}\right|^{n} \cdot \operatorname{sign}\left(\lambda_{b}(t)\right)-i_{0} \cdot\left|\frac{\lambda_{c}(t)}{\lambda_{0}}\right|^{n} \\
& \cdot \operatorname{sign}\left(\lambda_{c}(t)\right)-\left(g_{L}+g_{C}\right) \cdot\left(v_{a}(t)-v_{n}(t)\right)-\left(g_{L}+g_{c}\right) \cdot\left(v_{b}(t)-v_{n}(t)\right) \\
&-\left(g_{L}+g_{C}\right) \cdot\left(v_{c}(t)-v_{n}(t)\right) \\
& 0=\frac{d \lambda_{a}(t)}{d t}-v_{a}(t)+v_{n}(t) \\
& 0=\frac{d \lambda_{b}(t)}{d t}-v_{b}(t)+v_{n}(t) \\
& 0=\frac{d \lambda_{c}(t)}{d t}-v_{c}(t)+v_{n}(t)
\end{aligned}
$$

where the i_{0} is the current constant and λ_{0} is the flux constant.

G2. Three Phase Saturable Core Three Phase Reactor Quadratized Model Description

In this proposed formulation there are no nonlinearities in the dynamic part of the model. That is, all nonlinearities can be moved to the algebraic part of the model by the introduction of additional appropriate state variables. Also note that the nonlinear equations are of degree no more than two (at most quadratic equations) which is also achieved by the introduction of additional appropriate state variables. Assumption (just for now): n is odd. (It will be removed in the future).

The model is quadratized by introducing additional internal state variables, so that the $\mathrm{n}^{\text {th }}$ exponent is replaced by equations of at most quadratic degree. Since the exact degree of nonlinearity is not known until the user specifies it, the model performs automatic quadratization of the equations. A special procedure is used, so that the model is quadratized using the minimum number of additional internal states. The methodology is based on expressing the exponent in binary form. The binary representation provides all the information about the number of new variables and equations that need to be introduced and about the form of the equations (products of new variables). As an example, the exponent n is defined to be 11 so that the $\mathrm{n}+1$-th exponent is even, which makes the term $[\operatorname{sign}(\lambda(\mathrm{t}))]^{\mathrm{n}+1}$ to be 1 . Following this procedure the model is converted into the standard quadratized form:

$$
\begin{aligned}
& i_{a}(t)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{a 5}(t)+\left(g_{L}+g_{C}\right) \cdot\left(v_{a}(t)-v_{n}(t)\right) \\
& i_{b}(t)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}(t)+\left(g_{L}+g_{C}\right) \cdot\left(v_{b}(t)-v_{n}(t)\right) \\
& i_{c}(t)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{c 5}(t)+\left(g_{L}+g_{C}\right) \cdot\left(v_{c}(t)-v_{n}(t)\right)
\end{aligned}
$$

$$
\begin{gathered}
i_{n}(t)=-\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{a 5}(t)-\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}(t)-\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{c 5}(t)-\left(g_{L}+g_{C}\right) \cdot\left(v_{a}(t)-v_{n}(t)\right) \\
-\left(g_{L}+g_{c}\right) \cdot\left(v_{b}(t)-v_{n}(t)\right)-\left(g_{L}+g_{c}\right) \cdot\left(v_{c}(t)-v_{n}(t)\right) \\
0=\frac{d \lambda_{a}(t)}{d t}-v_{a}(t)+v_{n}(t) \\
0=\frac{d \lambda_{b}(t)}{d t}-v_{b}(t)+v_{n}(t) \\
0=\frac{d \lambda_{c}(t)}{d t}-v_{c}(t)+v_{n}(t) \\
0=y_{a 1}(t)-\lambda_{a}(t)^{2} \\
0=y_{a 2}(t)-y_{a 1}(t)^{2} \\
0=y_{a 3}(t)-y_{a 2}(t)^{2} \\
0=y_{a 4}(t)-y_{a 3}(t) \cdot y_{a 1}(t) \\
0=y_{a 5}(t)-y_{a 4}(t) \cdot \lambda a(t) \\
0=y_{b 1}(t)-\lambda_{b}(t)^{2} \\
0=y_{b 2}(t)-y_{b 1}(t)^{2} \\
0=y_{b 3}(t)-y_{b 2}(t)^{2} \\
0=y_{b 4}(t)-y_{b 3}(t) \cdot y_{b 1}(t) \\
0=y_{b 5}(t)-y_{b 4}(t) \cdot \lambda \lambda_{b}(t) \\
0=y_{c 1}(t)-\lambda_{c}(t)^{2} \\
0=y_{c 2}(t)-y_{c 1}(t)^{2} \\
0=y_{c 3}(t)-y_{c 2}(t)^{2} \\
0=y_{c 4}(t)-y_{c 3}(t) \cdot y_{c 1}(t) \\
0=y_{c 5}(t)-y_{c 4}(t) \cdot \lambda{ }_{c}(t)
\end{gathered}
$$

Above equations are written in compact matrix form as:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\lambda_{a}(t) \\
\lambda_{b}(t) \\
\lambda_{c}(t) \\
y_{a 1}(t) \\
y_{a 2}(t) \\
y_{a 3}(t) \\
y_{a 4}(t) \\
y_{a 5}(t) \\
y_{b 1}(t) \\
y_{b 2}(t) \\
y_{b 3}(t) \\
y_{b 4}(t) \\
y_{b 5}(t) \\
y_{c 1}(t) \\
y_{c 2}(t) \\
y_{c 3}(t) \\
y_{c 4}(t) \\
y_{c 5}(t)
\end{array}\right]} \\
& Y_{e q}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \\
& A_{11(7 \times 7)}=\left[\begin{array}{ccccccc}
g_{L}+g_{C} & 0 & 0 & -g_{L}-g_{C} & 0 & 0 & 0 \\
0 & g_{L}+g_{C} & 0 & -g_{L}-g_{C} & 0 & 0 & 0 \\
0 & 0 & g_{L}+g_{C} & -g_{L}-g_{C} & 0 & 0 & 0 \\
-g_{L}-g_{C} & -g_{L}-g_{C} & -g_{L}-g_{C} & 3 g_{L}+3 g_{C} & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
A_{12(7 \times 15)}=\left[\begin{array}{cccccccccccccccccc}
0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

G3. Three Phase Saturable Core Three Phase Reactor SCAQCF Device Model Description

At time t,

$$
\begin{aligned}
& i_{a}(t)=\frac{i_{0}}{\left|\lambda_{{ }_{0}}\right|^{11}} \cdot y_{a 5}(t)+g_{L} \cdot\left(v_{a}(t)-v_{n}(t)\right) \\
& i_{b}(t)=\frac{i_{0}}{\left|\lambda_{{ }_{0}}\right|^{11}} \cdot y_{b 5}(t)+g_{L} \cdot\left(v_{b}(t)-v_{n}(t)\right) \\
& i_{c}(t)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{c 5}(t)+g_{L} \cdot\left(v_{c}(t)-v_{n}(t)\right) \\
& i_{n}(t)=-\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{a 5}(t)-g_{L} \cdot\left(v_{a}(t)-v_{n}(t)\right)-\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}(t)-g_{L} \cdot\left(v_{b}(t)-v_{n}(t)\right) \\
& -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{c 5}(t)-g_{L} \cdot\left(v_{c}(t)-v_{n}(t)\right) \\
& 0=\lambda_{a}(t)-\lambda_{a}(t-h)-\frac{h}{6}\left(v_{a}(t)-v_{n}(t)\right)-\frac{2 h}{3}\left(v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
& -\frac{h}{6}\left(v_{a}(t-h)-v_{n}(t-h)\right) \\
& 0=\lambda_{b}(t)-\lambda_{b}(t-h)-\frac{h}{6}\left(v_{b}(t)-v_{n}(t)\right)-\frac{2 h}{3}\left(v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
& -\frac{h}{6}\left(v_{b}(t-h)-v_{n}(t-h)\right) \\
& 0=\lambda_{c}(t)-\lambda_{c}(t-h)-\frac{h}{6}\left(v_{c}(t)-v_{n}(t)\right)-\frac{2 h}{3}\left(v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
& -\frac{h}{6}\left(v_{c}(t-h)-v_{n}(t-h)\right) \\
& 0=y_{a 1}(t)-\lambda_{a}(t)^{2} \\
& 0=y_{a 2}(t)-y_{a 1}(t)^{2} \\
& 0=y_{a 3}(t)-y_{a 2}(t)^{2} \\
& 0=y_{a 4}(t)-y_{a 3}(t) \cdot y_{a 1}(t) \\
& 0=y_{a 5}(t)-y_{a 4}(t) \cdot \lambda_{a}(t) \\
& 0=y_{b 1}(t)-\lambda_{b}(t)^{2} \\
& 0=y_{b 2}(t)-y_{b 1}(t)^{2} \\
& 0=y_{b 3}(t)-y_{b 2}(t)^{2} \\
& 0=y_{b 4}(t)-y_{b 3}(t) \cdot y_{b 1}(t) \\
& 0=y_{b 5}(t)-y_{b 4}(t) \cdot \lambda_{b}(t) \\
& 0=y_{c 1}(t)-\lambda_{c}(t)^{2} \\
& 0=y_{c 2}(t)-y_{c 1}(t)^{2} \\
& 0=y_{c 3}(t)-y_{c 2}(t)^{2} \\
& 0=y_{c 4}(t)-y_{c 3}(t) \cdot y_{c 1}(t)
\end{aligned}
$$

$$
0=y_{c 5}(t)-y_{c 4}(t) \cdot \lambda_{c}(t)
$$

At time t_{m},

$$
\left.\begin{array}{c}
i_{a}\left(t_{m}\right)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{a 5}\left(t_{m}\right)+g_{L} \cdot\left(v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
i_{b}\left(t_{m}\right)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}\left(t_{m}\right)+g_{L} \cdot\left(v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
i_{c}\left(t_{m}\right)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}\left(t_{m}\right)+g_{L} \cdot\left(v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
i_{n}\left(t_{m}\right)=-i_{a L}\left(t_{m}\right)-g_{L} \cdot\left(v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right)-i_{b L}\left(t_{m}\right)-g_{L} \cdot\left(v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-i_{c L}\left(t_{m}\right)-g_{L} \cdot\left(v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
0=\lambda_{a}\left(t_{m}\right)-\lambda_{a}(t-h)+\frac{h}{24}\left(v_{a}(t)-v_{n}(t)\right)-\frac{h}{3}\left(v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{5 h}{24}\left(v_{a}(t-h)-v_{n}(t-h)\right) \\
0=\lambda_{b}\left(t_{m}\right)-\lambda_{b}(t-h)+\frac{h}{24}\left(v_{b}(t)-v_{n}(t)\right)-\frac{h}{3}\left(v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{5 h}{24}\left(v_{b}(t-h)-v_{n}(t-h)\right) \\
0=\lambda_{c}\left(t_{m}\right)-\lambda_{c}(t-h)+\frac{h}{24}\left(v_{c}(t)-v_{n}(t)\right)-\frac{h}{3}\left(v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{5 h}{24}\left(v_{c}(t-h)-v_{n}(t-h)\right) \\
0=y_{a 1}\left(t_{m}\right)-\lambda_{a}\left(t_{m}\right)^{2} \\
0=y_{a 2}\left(t_{m}\right)-y_{a 1}\left(t_{m}\right)^{2} \\
0=y_{a 3}\left(t_{m}\right)-y_{a 2}\left(t_{m}\right)^{2}
\end{array}\right\} \begin{array}{r}
0=y_{a 4}\left(t_{m}\right)-y_{a 3}\left(t_{m}\right) \cdot y_{a 1}\left(t_{m}\right) \\
0=y_{a 5}\left(t_{m}\right)-y_{a 4}\left(t_{m}\right) \cdot \lambda \lambda_{a}\left(t_{m}\right) \\
0=y_{b 1}\left(t_{m}\right)-\lambda_{b}\left(t_{m}\right)^{2} \\
0=y_{b 2}\left(t_{m}\right)-y_{b 1}\left(t_{m}\right)^{2} \\
0=y_{b 3}\left(t_{m}\right)-y_{b 2}\left(t_{m}\right)^{2} \\
0=y_{b 4}\left(t_{m}\right)-y_{b 3}\left(t_{m}\right) \cdot y_{b 1}\left(t_{m}\right) \\
0=y_{b 5}\left(t_{m}\right)-y_{b 4}\left(t_{m}\right) \cdot \lambda_{b}\left(t_{m}\right) \\
0=y_{c 1}\left(t_{m}\right)-\lambda_{c}\left(t_{m}\right)^{2} \\
0=y_{c 2}\left(t_{m}\right)-y_{c 1}\left(t_{m}\right)^{2} \\
0=y_{c 3}\left(t_{m}\right)-y_{c 2}\left(t_{m}\right)^{2} \\
0=y_{c 4}\left(t_{m}\right)-y_{c 3}\left(t_{m}\right) \cdot y_{c 1}\left(t_{m}\right) \\
0=y_{c 5}\left(t_{m}\right)-y_{c 4}\left(t_{m}\right) \cdot \lambda_{c}\left(t_{m}\right)
\end{array}
$$

The SCAQCF device model is shown below:

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
I(\mathbf{x}, \mathbf{u}) \\
\vdots \\
0 \\
\vdots
\end{array}\right\}=Y_{e q x} \mathbf{x}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{e q x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+Y_{e q u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{e q u}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\left.\mathbf{x}^{T} F_{e q x u}^{i} \mathbf{u}\right\}-B_{e q} \\
\vdots
\end{array}\right\} \\
B_{e q}=-N_{e q x} \mathbf{x}(t-h)-N_{e q u} \mathbf{u}(t-h)-M_{e q} I(t-h)-K_{e q} \\
\mathbf{h}(\mathbf{x}, \mathbf{u})=Y_{o p x} \mathbf{x}+Y_{o p u} \mathbf{u}+\left\{\begin{array}{c}
\vdots \\
\mathbf{x}^{T} F_{o p x}^{i} \mathbf{x} \\
\vdots
\end{array}\right\}+\left\{\begin{array}{c}
\vdots \\
\mathbf{u}^{T} F_{\text {opu }}^{i} \mathbf{u} \\
\vdots
\end{array}\right\}+\left\{\mathbf{x}^{T} F_{\text {opxu }}^{i} \mathbf{u}\right\}-B_{o p} \\
\vdots
\end{array}\right\}
$$

Scaling factors: Iscale, Xscale and Uscale
Connectivity: TerminalNodeName
subject to: $\mathbf{h}_{\text {min }} \leq \mathbf{h}(\mathbf{x}, \mathbf{u}) \leq \mathbf{h}_{\text {max }}$

$$
\mathbf{u}_{\min } \leq \mathbf{u} \leq \mathbf{u}_{\max }
$$

where the matrices are:

$$
Y_{e q x_{44 \times 44}}=\left[\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]
$$

$A_{11(7 \times 7)}=\left[\begin{array}{ccccccc}g_{L} & 0 & 0 & -g_{L} & 0 & 0 & 0 \\ 0 & g_{L} & 0 & -g_{L} & 0 & 0 & 0 \\ 0 & 0 & g_{L} & -g_{L} & 0 & 0 & 0 \\ -g_{L} & -g_{L} & -g_{L} & 3 g_{L} & 0 & 0 & 0 \\ -\frac{h}{6} & 0 & 0 & \frac{h}{6} & 1 & 0 & 0 \\ 0 & -\frac{h}{6} & 0 & \frac{h}{6} & 0 & 1 & 0 \\ 0 & 0 & -\frac{h}{6} & \frac{h}{6} & 0 & 0 & 1\end{array}\right]$

$$
A_{12(7 \times 15)}=\left[\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
A_{13(7 \times 7)}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{2 h}{3} & 0 & 0 & \frac{2 h}{3} & 0 & 0 & 0 \\
0 & -\frac{2 h}{3} & 0 & \frac{2 h}{3} & 0 & 0 & 0 \\
0 & 0 & -\frac{2 h}{3} & \frac{2 h}{3} & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
A_{14} & =[0]_{7 \times 15} \\
A & =[0]
\end{aligned}
$$

$$
A_{21}=[0]_{15 \times 7}
$$

$$
A_{22}=I_{15 \times 15}
$$

$$
A_{23}=[0]_{15 \times 7}
$$

$$
A_{31(7 \times 7)}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{h}{24} & 0 & 0 & -\frac{h}{24} & 0 & 0 & 0 \\
0 & \frac{h}{24} & 0 & -\frac{h}{24} & 0 & 0 & 0 \\
0 & 0 & \frac{h}{24} & -\frac{h}{24} & 0 & 0 & 0
\end{array}\right]
$$

$$
A_{24}=[0]_{15 \times 15}
$$

$$
\begin{aligned}
& A_{33(7 \times 7)}=\left[\begin{array}{ccccccc}
g_{L} & 0 & 0 & -g_{L} & 0 & 0 & 0 \\
0 & g_{L} & 0 & -g_{L} & 0 & 0 & 0 \\
0 & 0 & g_{L} & -g_{L} & 0 & 0 & 0 \\
-g_{L} & -g_{L} & -g_{L} & 3 g_{L} & 0 & 0 & 0 \\
-\frac{h}{3} & 0 & 0 & \frac{h}{3} & 1 & 0 & 0 \\
0 & -\frac{h}{3} & 0 & \frac{h}{3} & 0 & 1 & 0 \\
0 & 0 & -\frac{h}{3} & \frac{h}{3} & 0 & 0 & 1
\end{array}\right] \\
& A_{34(7 \times 15)}=\left[\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& A_{41}=[0]_{15 \times 7} \\
& A_{42}=[0]_{15 \times 15} \\
& A_{43}=[0]_{15 \times 7} \\
& A_{44}=I_{15 \times 15} \\
& F_{e q x 0}=\cdots=F_{\text {eqx } 6}=0_{44 \times 44} \\
& F_{\text {eqx } 7}: f_{\text {eqx }[5 \times 5]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx8 }}: f_{\text {eqx } x 8 \times 8]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 9}: f_{\text {eqx }[9 \times 9]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 10}: f_{\text {eqx }[10 \times 8]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 11}: f_{e q \times[11 \times 5]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } \times 12}: f_{\text {eqx }[6 \times 6]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } \times 13}: f_{\text {eqx }[13 \times 13]}=-1, \quad \text { other elements are } 0
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {eqx14 }}: f_{\text {eqx[14×14] }}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 15}: f_{\text {eqx }[15 \times 13]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 16}: f_{\text {eqx }[16 \times 6]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 17}: f_{\text {eqx }[7 \times 7]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 18}: f_{\text {eqx }[18 \times 18]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx19 }}: f_{\text {eqx[19×19] }}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx20 }}: f_{\text {eqx }[20 \times 18]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 21}: f_{\text {eqx }[21 \times 7]}=-1, \quad \text { other elements are } 0 \\
& F_{e q \times 22}=\cdots=F_{e q \times 28}=0_{44 \times 44} \\
& F_{\text {eq } x 29}: f_{\text {eqx }[27 \times 27]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 30}: f_{\text {eqx }[30 \times 30]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx31 }}: f_{e q x[31 \times 31]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 32}: f_{\text {eqx }[32 \times 30]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 33}: f_{\text {eqx }[33 \times 27]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 34}: f_{\text {eqx }[28 \times 28]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 35}: f_{\text {eqx }[35 \times 35]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eq } x 36}: f_{\text {eqx }[36 \times 36]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx37 }}: f_{\text {eqx }[37 \times 35]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx38 }}: f_{\text {eqx }[38 \times 28]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx39 }}: f_{\text {eqx }[29 \times 29]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 40}: f_{\text {eqx }[40 \times 40]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 41}: f_{\text {eqx }[41 \times 41]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx } 42}: f_{\text {eqx }[42 \times 40]}=-1, \quad \text { other elements are } 0 \\
& F_{\text {eqx43 }}: f_{\text {eqx }[43 \times 29]}=-1, \quad \text { other elements are } 0 \\
& N_{\text {eqx } 44 X 7}=\left[\begin{array}{c}
0_{4 X 7} \\
B_{1(3 X 7)} \\
0_{19 X 7} \\
B_{2(3 X 7)} \\
0_{15 X 7}
\end{array}\right] \\
& B_{1}=\left[\begin{array}{ccccccc}
-\frac{h}{6} & 0 & 0 & \frac{h}{6} & -1 & 0 & 0 \\
0 & -\frac{h}{6} & 0 & \frac{h}{6} & 0 & -1 & 0 \\
0 & 0 & -\frac{h}{6} & \frac{h}{6} & 0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

$$
B_{2}=\left[\begin{array}{ccccccc}
-\frac{5 h}{24} & 0 & 0 & \frac{5 h}{24} & -1 & 0 & 0 \\
0 & -\frac{5 h}{24} & 0 & \frac{5 h}{24} & 0 & -1 & 0 \\
0 & 0 & -\frac{5 h}{24} & \frac{5 h}{24} & 0 & 0 & -1
\end{array}\right]
$$

The input matrices of the three phase reactor SCAQCF device model for the setting-less protection algorithm are shown below:

TerminalNodeName
LINE_A
LINE_B
LINE_C
NEUTRAL_N
-1
Iscale
0,50.0
1,50.0
2,50.0
3,50.0
4,1
5,1
6,1
7,1
8,1
9,1
10,1
11,1
12,1
13,1
14,1
15,1
16,1
17,1
18,1
19,1
20,1
21,1
22,50.0
23,50.0
24,50.0
25,50.0
26,1

```
27,1
28,1
29,1
30,1
31,1
32,1
33,1
34,1
35,1
36,1
37,1
38,1
39,1
40,1
41,1
42,1
43,1
-1
```

Xscale
0,250.0e3
1,250.0e3
2,250.0e3
3,250.0e3
4,500
5,1
6,1
7,1
8,1
9,1
10,1
11,1
12,1
13,1
14,1
15,1
16,1
17,1
18,1
19,1
20,1
21,1
22,250.0e3
23,250.0e3

24,250.0e3
25,250.0e3
26,500
27,1
28,1
29,1
30,1
31,1
32,1
33,1
34,1
35,1
36,1
37,1
38,1
39,1
40,1
41,1
42,1
43,1
-1
Yeqx
0,0,0.00005
0,3,-0.00005
0,11,0.5
1,1,0.00005
1,3,-0.00005
1,16,0.5
2,2,0.00005
2,3,-0.00005
2,21,0.5
3,0,-0.00005
3,1,-0.00005
3,2,-0.00005
3,3,0.00015
3,11,-0.5
3,16,-0.5
3,21,-0.5
4,0,-1.6666666667e-5
4,3,1.6666666667e-5
4,4,305.047
4,22,-6.6666666667e-5
4,25,6.6666666667e-5

```
5,1,-1.66666666667e-5
5,3,1.6666666667e-5
5,5,305.047
5,23,-6.6666666667e-5
5,25,6.6666666667e-5
6,2,-1.6666666667e-5
6,3,1.6666666667e-5
6,6,305.047
6,24,-6.6666666667e-5
6,25,6.6666666667e-5
7,7,1
8,8,1
9,9,1
10,10,1
11,11,1
12,12,1
13,13,1
14,14,1
15,15,1
16,16,1
17,17,1
18,18,1
19,19,1
20,20,1
21,21,1
22,22,0.00005
22,25,-0.00005
22,33,0.5
23,23,0.00005
23,25,-0.00005
23,38,0.5
24,24,0.00005
24,25,-0.00005
24,43,0.5
25,22,-0.00005
25,23,-0.00005
25,24,-0.00005
25,25,0.00015
25,33,-0.5
25,38,-0.5
25,43,-0.5
26,0,4.16666666667e-6
26,3,-4.16666666667e-6
26,22,-3.33333333333e-5
```

```
26,25,3.33333333333e-5
26,26,305.047
27,1,4.16666666667e-6
27,3,-4.166666666667e-6
27,23,-3.33333333333e-5
27,25,3.33333333333e-5
27,27,305.047
28,2,4.16666666667e-6
28,3,-4.16666666667e-6
28,24,-3.33333333333e-5
28,25,3.33333333333e-5
28,28,305.047
29,29,1
30,30,1
31,31,1
32,32,1
33,33,1
34,34,1
35,35,1
36,36,1
37,37,1
38,38,1
39,39,1
40,40,1
41,41,1
42,42,1
43,43,1
-1
```

Feqx
7,4,4,-1
8,7,7,-1
9,8,8,-1
10,9,7,-1
11,10,4,-1
12,5,5,-1
13,12,12,-1
14,13,13,-1
15,14,12,-1
16,15,5,-1
17,6,6,-1
18,17,17,-1
19,18,18,-1
20,19,17,-1

21,20,6,-1
29,26,26,-1
30,29,29,-1
31,30,30,-1
32,31,29,-1
33,32,26,-1
34,27,27,-1
35,34,34,-1
36,35,35,-1
37,36,34,-1
38,37,27,-1
39,28,28,-1
40,39,39,-1
41,40,40,-1
42,41,39,-1
43,42,28,-1
-1

Neqx
4,0,-1.6666666667e-5
4,3,1.6666666667e-5
4,4,-305.047
5,1,-1.6666666667e-5
5,3,1.6666666667e-5
5,5,-305.047
6,2,-1.6666666667e-5
6,3,1.6666666667e-5
6,6,-305.047
26,0,-2.083333333333e-5
26,3,2.083333333333e-5
26,4,-305.047
27,1,-2.083333333333e-5
27,3,2.083333333333e-5
27,5,-305.047
28,2,-2.08333333333e-5
28,3,2.083333333333e-5
28,6,-305.047
-1

Meq
-1

Keq
-1

G4. Three Phase Saturable Core Three Phase Reactor SCAQCF Measurement Model

Specifically, the actual measurements are:
Three currents at time t (phase A, phase B, and phase C);
Three voltages at time t (phase AN, phase BN, phase CN);
Three currents at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$ (phase A, phase B, and phase C);
Three voltages at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$ (phase AN, phase BN, phase CN);
The virtual measurements are:
18 measurements with zero value at the left side of the equations at time t;
18 measurements with zero value at the left side of the equations at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2$;
The pseudo measurements are
One measurement for voltage at time $\mathrm{t}(\mathrm{Vn})$
One measurement for voltage at time $\mathrm{tm}=\mathrm{t}-\mathrm{h} / 2(\mathrm{Vn})$
The measurement channel list:

[^0]MeasTerminal, 3
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 4
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 5
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 6
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 7
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 8
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 9
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 10
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 11
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 12
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 13
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000

MeasTerminal, 14
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 15
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 16
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 17
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 18
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 19
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 20
MeasurementEnd
MeasurementType, 24
MeasStdDev, 0.0010000
MeasTerminal, 21
MeasurementEnd
Based on the device model and the measurement channel list, the equations for the measurement model are given below:

At time t,

$$
\begin{gathered}
v_{a n}(t)=v_{a}(t)-v_{n}(t) \\
v_{b n}(t)=v_{b}(t)-v_{n}(t) \\
v_{c n}(t)=v_{c}(t)-v_{n}(t) \\
i_{a}(t)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{a 5}(t)+g_{L} \cdot\left(v_{a}(t)-v_{n}(t)\right) \\
i_{b}(t)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}(t)+g_{L} \cdot\left(v_{b}(t)-v_{n}(t)\right)
\end{gathered}
$$

$$
\begin{gathered}
i_{c}(t)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{c 5}(t)+g_{L} \cdot\left(v_{c}(t)-v_{n}(t)\right) \\
0=v_{n}(t) \\
0=\lambda_{a}(t)-\lambda_{a}(t-h)-\frac{h}{6}\left(v_{a}(t)-v_{n}(t)\right)-\frac{2 h}{3}\left(v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{h}{6}\left(v_{a}(t-h)-v_{n}(t-h)\right) \\
0=\lambda_{b}(t)-\lambda_{b}(t-h)-\frac{h}{6}\left(v_{b}(t)-v_{n}(t)\right)-\frac{2 h}{3}\left(v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{h}{6}\left(v_{b}(t-h)-v_{n}(t-h)\right) \\
0=\lambda_{c}(t)-\lambda_{c}(t-h)-\frac{h}{6}\left(v_{c}(t)-v_{n}(t)\right)-\frac{2 h}{3}\left(v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{h}{6}\left(v_{c}(t-h)-v_{n}(t-h)\right) \\
0=y_{a 1}(t)-\lambda \lambda_{a}(t)^{2} \\
0=y_{a 2}(t)-y_{a 1}(t)^{2} \\
0=y_{a 3}(t)-y_{a 2}(t)^{2} \\
0=y_{a 4}(t)-y_{a 3}(t) \cdot y_{a 1}(t) \\
0=y_{a 5}(t)-y_{a 4}(t) \cdot \lambda_{a}(t) \\
0=y_{b 1}(t)-\lambda_{b}(t)^{2} \\
0=y_{b 2}(t)-y_{b 1}(t)^{2} \\
0=y_{b 3}(t)-y_{b 2}(t)^{2} \\
0=y_{b 4}(t)-y_{b 3}(t) \cdot y_{b 1}(t) \\
0=y_{b 5}(t)-y_{b 4}(t) \cdot \lambda \lambda_{b}(t) \\
0=y_{c 1}(t)-\lambda \lambda_{c}(t)^{2} \\
0=y_{c 2}(t)-y_{c 1}(t)^{2} \\
0=y_{c 3}(t)-y_{c 2}(t)^{2} \\
0=y_{c 4}(t)-y_{c 3}(t) \cdot y_{c 1}(t) \\
0=y_{c 5}(t)-y_{c 4}(t) \cdot \lambda{ }_{c}(t)
\end{gathered}
$$

At time t_{m},

$$
\begin{gathered}
v_{a n}\left(t_{m}\right)=v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right) \\
v_{b n}\left(t_{m}\right)=v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right) \\
v_{c n}\left(t_{m}\right)=v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right) \\
i_{a}\left(t_{m}\right)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{a 5}\left(t_{m}\right)+g_{L} \cdot\left(v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
i_{b}\left(t_{m}\right)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}\left(t_{m}\right)+g_{L} \cdot\left(v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
i_{c}\left(t_{m}\right)=\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \cdot y_{b 5}\left(t_{m}\right)+g_{L} \cdot\left(v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
0=v_{n}\left(t_{m}\right) \\
0=\lambda_{a}\left(t_{m}\right)-\lambda_{a}(t-h)+\frac{h}{24}\left(v_{a}(t)-v_{n}(t)\right)-\frac{h}{3}\left(v_{a}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{5 h}{24}\left(v_{a}(t-h)-v_{n}(t-h)\right) \\
0=\lambda_{b}\left(t_{m}\right)-\lambda_{b}(t-h)+\frac{h}{24}\left(v_{b}(t)-v_{n}(t)\right)-\frac{h}{3}\left(v_{b}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{5 h}{24}\left(v_{b}(t-h)-v_{n}(t-h)\right) \\
0=\lambda_{c}\left(t_{m}\right)-\lambda_{c}(t-h)+\frac{h}{24}\left(v_{c}(t)-v_{n}(t)\right)-\frac{h}{3}\left(v_{c}\left(t_{m}\right)-v_{n}\left(t_{m}\right)\right) \\
-\frac{5 h}{24}\left(v_{c}(t-h)-v_{n}(t-h)\right) \\
0=y_{a 1}\left(t_{m}\right)-\lambda_{a}\left(t_{m}\right)^{2} \\
0=y_{a 2}\left(t_{m}\right)-y_{a 1}\left(t_{m}\right)^{2} \\
0=y_{a 3}\left(t_{m}\right)-y_{a 2}\left(t_{m}\right)^{2} \\
0=y_{a 4}\left(t_{m}\right)-y_{a 3}\left(t_{m}\right) \cdot y_{a 1}\left(t_{m}\right) \\
0=y_{a 5}\left(t_{m}\right)-y_{a 4}\left(t_{m}\right) \cdot \lambda_{a}\left(t_{m}\right) \\
0=y_{b 1}\left(t_{m}\right)-\lambda_{b}\left(t_{m}\right)^{2} \\
0=y_{b 2}\left(t_{m}\right)-y_{b 1}\left(t_{m}\right)^{2} \\
0=y_{b 3}\left(t_{m}\right)-y_{b 2}\left(t_{m}\right)^{2} \\
0=y_{b 4}\left(t_{m}\right)-y_{b 3}\left(t_{m}\right) \cdot y_{b 1}\left(t_{m}\right) \\
0=y_{b 5}\left(t_{m}\right)-y_{b 4}\left(t_{m}\right) \cdot \lambda_{b}\left(t_{m}\right) \\
0=y_{c 1}\left(t_{m}\right)-\lambda_{c}\left(t_{m}\right)^{2} \\
0=y_{c 2}\left(t_{m}\right)-y_{c 1}\left(t_{m}\right)^{2} \\
0=y_{c 3}\left(t_{m}\right)-y_{c 2}\left(t_{m}\right)^{2} \\
0=y_{c 4}\left(t_{m}\right)-y_{c 3}\left(t_{m}\right) \cdot y_{c 1}\left(t_{m}\right) \\
0=y_{c 5}\left(t_{m}\right)-y_{c 4}\left(t_{m}\right) \cdot \lambda_{c}\left(t_{m}\right)
\end{gathered}
$$

It is very easy to write the above equations in the standard SCAQCF format:
$\mathbf{y}(\mathbf{x}, \mathbf{u})=Y_{m, x} \mathbf{x}+\left\{\begin{array}{c}\vdots \\ \mathbf{x}^{T} F_{m, x}^{i} \mathbf{X} \\ \vdots\end{array}\right\}+Y_{m, u} \mathbf{u}+\left\{\begin{array}{c}\vdots \\ \mathbf{u}^{T} F_{m, u}^{i} \mathbf{u} \\ \vdots\end{array}\right\}+\left\{\begin{array}{c}\vdots \\ \mathbf{x}^{T} F_{m, x u}^{i} \mathbf{u} \\ \vdots\end{array}\right\}+N_{m, \mathbf{x}} \mathbf{x}(t-h)+N_{m, u} \mathbf{u}(t-h)+M_{m} I(t-h)+K_{m}$
where the matrices are:

$$
F_{m x_{50 \times 44}}=\left[\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]
$$

$$
\begin{aligned}
& A_{11(10 \times 7)}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 \\
g_{L} & 0 & 0 & -g_{L} & 0 & 0 & 0 \\
0 & g_{L} & 0 & -g_{L} & 0 & 0 & 0 \\
0 & 0 & g_{L} & -g_{L} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-\frac{h}{6} & 0 & 0 & \frac{h}{6} & 1 & 0 & 0 \\
0 & -\frac{h}{6} & 0 & \frac{h}{6} & 0 & 1 & 0 \\
0 & 0 & -\frac{h}{6} & \frac{h}{6} & 0 & 0 & 1
\end{array}\right] \\
& A_{12(10 \times 15)}=\left[\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{i_{0}}{} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left|\lambda_{0}\right|^{11}}{} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
A_{13(10 \times 7)}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{2 h}{3} & 0 & 0 & \frac{2 h}{3} & 0 & 0 & 0 \\
0 & -\frac{2 h}{3} & 0 & \frac{2 h}{3} & 0 & 0 & 0 \\
0 & 0 & -\frac{2 h}{3} & \frac{2 h}{3} & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
A_{14}=[0]_{10 \times 15} \\
A_{21}=[0]_{15 \times 7} \\
A_{22}=I_{15 \times 15} \\
A_{23}=[0]_{15 \times 7} \\
A_{24}=[0]_{15 \times 15}
\end{gathered}
$$

$$
A_{31(10 \times 7)}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{h}{24} & 0 & 0 & -\frac{h}{24} & 0 & 0 & 0 \\
0 & \frac{h}{24} & 0 & -\frac{h}{24} & 0 & 0 & 0 \\
0 & 0 & \frac{h}{24} & -\frac{h}{24} & 0 & 0 & 0
\end{array}\right]
$$

$$
A_{32}=[0]_{7 \times 15}
$$

$$
\begin{aligned}
& A_{33(10 \times 7)}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 \\
g_{L} & 0 & 0 & -g_{L} & 0 & 0 & 0 \\
0 & g_{L} & 0 & -g_{L} & 0 & 0 & 0 \\
0 & 0 & g_{L} & -g_{L} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-\frac{h}{3} & 0 & 0 & \frac{h}{3} & 1 & 0 & 0 \\
0 & -\frac{h}{3} & 0 & \frac{h}{3} & 0 & 1 & 0 \\
0 & 0 & -\frac{h}{3} & \frac{h}{3} & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & i_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & 0
\end{array}\right. \\
& A_{34(10 \times 15)}=\left\{\begin{array}{ccccccccccccccc}
i_{0} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{i_{0}}{\left|\lambda_{0}\right|^{11}}
\end{array}\right. \\
& \left.\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0 & 0 & -\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} & 0 & 0 & 0
\end{array}\right) 0-\frac{i_{0}}{\left|\lambda_{0}\right|^{11}} \\
& {\left[\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& A_{41}=[0]_{15 \times 7} \\
& A_{42}=[0]_{15 \times 15} \\
& A_{43}=[0]_{15 \times 7} \\
& A_{44}=I_{15 \times 15} \\
& F_{m x 0}=\cdots=F_{m x 9}=0_{44 \times 44} \\
& F_{m \times 10}: f_{m x[5 \times 5]}=-1, \quad \text { other elements are } 0 \\
& F_{m x 11}: f_{m x[8 \times 8]}=-1, \quad \text { other elements are } 0 \\
& F_{m x 12}: f_{m x[9 \times 9]}=-1, \quad \text { other elements are } 0
\end{aligned}
$$

mx[10x8]	0
$f_{m x[11 \times 5]}=-1$,	s are 0
${ }_{15}: f_{m x[6 \times 6]}=-1$,	0
$F_{m \times 16}: f_{m x[13 \times 13]}=-1$,	re 0
$F_{m x 17}: f_{m x[14 \times 14]}=-1$,	her elements are 0
$F_{m \times 18}: f_{m x[15 \times 13]}=-1$,	ther elements are 0
$f \times 15 \times 13]$	0
$f_{m x}[7 \times 7]$	0
$F_{m x 21}: f_{m x[18 \times 18]}=-1$,	ments are 0
$F_{m x 22}: f_{m x[19 \times 19]}=-1$,	other elements are 0
$F_{m x 23}: f_{m x[20 \times 18]}=-1$,	other elements are 0
$F_{m x 24}: f_{m x[21 \times 7]}=-1$,	other elements are 0
$F_{m \times 35}: f_{m x[27 \times 27]}=-1$,	ments are 0
$F_{m x 36}: f_{m x[30 \times 30]}=-1$,	ments are 0
$F_{m x 37}: f_{m x[31 \times 31]}=-1$,	her elements are 0
$F_{m x 38}: f_{m x[32 \times 30]}=-1$,	her elements are 0
$F_{m x 39}: f_{m x[33 \times 27]}=-1$,	ther elements are 0
$F_{m \times 40}: f_{m x[28 \times 28]}=-1$,	her elements are 0
$F_{m \times 41}: f_{m x[35 \times 35]}=-1$,	0
$F_{m \times 42}: f_{m x[36 \times 36]}=-1$,	0
$F_{m x 43}: f_{m x[37 \times 35]}=-1$,	ments are 0
$F_{m \times 44}: f_{m x[38 \times 28]}=-1$,	her elements are 0
$F_{m \times 45}: f_{m x[29 \times 29]}=-1$,	other elements are 0
$F_{m x 46}: f_{m x[40 \times 40]}=-1$,	other elements are 0
$F_{m x 47}: f_{m x[41 \times 41]}=-1$,	other elements are 0
$f_{m x[42 \times 40]}=-1$,	other elements are 0
$F_{m x 49}: f_{m x[43 \times 29]}=-1$,	other elements are 0

$$
\begin{gathered}
N_{m x 50 X 7}=\left[\begin{array}{c}
0_{7 X 7} \\
B_{1(3 X 7)} \\
0_{22 X 7} \\
B_{2(3 X 7)} \\
0_{15 X 7}
\end{array}\right] \\
B_{1}=\left[\begin{array}{ccccccc}
-\frac{h}{6} & 0 & 0 & \frac{h}{6} & -1 & 0 & 0 \\
0 & -\frac{h}{6} & 0 & \frac{h}{6} & 0 & -1 & 0 \\
0 & 0 & -\frac{h}{6} & \frac{h}{6} & 0 & 0 & -1
\end{array}\right]
\end{gathered}
$$

$$
B_{2}=\left[\begin{array}{ccccccc}
-\frac{5 h}{24} & 0 & 0 & \frac{5 h}{24} & -1 & 0 & 0 \\
0 & -\frac{5 h}{24} & 0 & \frac{5 h}{24} & 0 & -1 & 0 \\
0 & 0 & -\frac{5 h}{24} & \frac{5 h}{24} & 0 & 0 & -1
\end{array}\right]
$$

[^0]: MeasurementType, 16
 MeasStdDev, 400
 MeasTerminal, 0, 3
 MeasurementEnd
 MeasurementType, 16
 MeasStdDev, 0400
 MeasTerminal, 1, 3
 MeasurementEnd
 MeasurementType, 16
 MeasStdDev, 400
 MeasTerminal, 2, 3
 MeasurementEnd
 MeasurementType, 17
 MeasStdDev, 05
 MeasTerminal, 0
 MeasurementEnd
 MeasurementType, 17
 MeasStdDev, 5
 MeasTerminal, 1
 MeasurementEnd
 MeasurementType, 17
 MeasStdDev, 5
 MeasTerminal, 2
 MeasurementEnd
 MeasurementType, 25
 MeasStdDev, 0.10000

