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Executive Summary

The final report has six chapters. The content of the chapters is summarized below.

1. Chapter 1 develops a robust optimization framework for demand response management.
In particular, our model considers the realization uncertainty in demand reduction by a
DR resource, which depends on the dispatch decision of the DR resource. This type of
intrin-sic decision-dependent uncertainty has not been fully recognized and modeled in
the DR resource management software. Our work provides a first work in this direction.

2. Chapter 2 proposes a distributed algorithmic framework for solving AC optimal power
flow (AC OPF). AC OPF is at the core of power system operations. As the number of
distributed generation units and flexible low increases, it is becoming more and more
important for the system operators to have the ability to solve AC OPF in a decentralized
way. This chapter proposes a rigorous distributed algorithm for solving AC OPF based on
the recent progress in convexficiation of power flow equations. The proposed algorithm
shows promising per-formance in solving real-world sized systems in distributed fashion.

3. Chapter 3 studies the voltage stability issues in the distribution systems. We propose a
novel voltage stability-constrained optimal power flow (VSC-OPF) model utilizing a
recently pro-posed sufficient condition on power flow Jacobian nonsingularity. We show
that this con-dition is second-order conic representable when load powers are fixed.
Through the incor-poration of the convex sufficient condition and thanks to the recent
development of convex relaxation of OPF models, we cast a VSC-OPF formulation as a
second-order cone program (SOCP). An approximate model is introduced to improve the
scalability of the formulation to larger systems. Extensive computation results on
MATPOWER and NESTA instances con-firm the effectiveness and efficiency of the
formulation.

4. Chapter 4 constructs an analytic tool based on a model that captures the interaction
between pricing and investment. In contrast to previous approaches, this technique
allows consis-tently comparing portfolios of rates while enabling researchers to model with
a significantly greater level of detail the supply side of the sector. A key theoretical
implication of the model that underlies this technique is that, by properly updating the
portfolio of tariffs, a regulator could induce the welfare maximizing adoption of
distributed energy resources and enrollment in rate structures. We develop an algorithm
to find globally optimal solutions of this model, which is a nonlinear mathematical
program. The results of a computational experiment show that the performance of the
algorithm dominates that of commercial non-linear solvers. In addition, to illustrate the
practical relevance of the method, we conduct a cost benefit analysis of implementing
time-variant tariffs in two electricity systems, Califor-nia and Denmark. Although
portfolios with time-varying rates create value in both systems, these improvements differ
enough to advise very different policies. While in Denmark time-varying tariffs appear
unattractive, they at least deserve further revision in California. This conclusion is beyond
the reach of previous techniques to analyze rates, as they do not capture the interplay
between an intermittent supply and a price-responsive demand.
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5. In Chapter 5, we develop a technique based on a pricing model that has as a
fundamental building block the consumer utility maximization problem. Because
researchers do not have to limit themselves to problems with unique solutions, this
approach significantly increases the flexibility of the model and, in particular, addresses
the limitations of the technique we develop in the first chapter. This gain in flexibility
decreases the practicality of our method since the underlying model becomes a Bilevel
Problem. To be able to handle realistic in-stances, we develop a decomposition method
based on a non-linear variant of the Alternating Direction Method of Multipliers, which
combines Conic and Mixed Integer Programming. A numerical experiment shows that the
performance of the solution technique is robust to instance sizes and a wide combination
of parameters. We illustrate the relevance of the new method with another applied analysis
of rate structures. Our results highlight the value of being able to model in detail
distributed energy resources. They also show that ignoring transmission constraints can
have meaningful impacts on the analysis of rate structures. In addition, we conduct a
distributional analysis, which portrays how our method permits reg-ulators and policy
makers to study impacts of a rate update on a heterogeneous population. While a switch in
rates could have a positive impact on the aggregate of households, it could benefit some
more than others, and even harm some customers. Our technique permits to anticipate
these impacts, letting regulators decide among rate structures with considerably more
information than what would be available with alternative approaches.

6. In Chapter 6, we conduct an empirical analysis of rate structures in California, which
is currently undergoing a rate reform. To contribute to the ongoing regulatory debate
about the future of rates, we analyze in depth a set of plausible tariff alternatives. In our
analysis, we focus on a scenario in which advanced metering infrastructure and home
energy man-agement systems are widely adopted. Our modeling approach allows us to
capture a wide variety of temporal and spatial demand substitution patterns without the
need of estimating a large number of parameters. We calibrate the model using data of
appliance ownership, census household counts, weather patterns, and a model of
California’s electricity network. The analysis shows that the average gains of
implementing time-varying rates with respect to a simple flat rate program are rather
mild, not greater than 2 dollars per month, even in the scenario in which volumetric
charges are allowed to vary freely from hour to hour. Our results also show that factors
such as the presence of an air conditioning system and the exterior temperature profile
can have a meaningful impact on the surplus gains that differ-ent rates generate on
households. These two results combined suggest that defaulting all residential customers
into a time-of-use rate structure, which is the current path California is following for the
residential sector, may not be an optimal strategy. Targeting different rates to households
with different appliance stocks and in different locations will likely be a superior policy.
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1. Robust Demand Response Portfolio Management with Decision-Dependent
Uncertainty

1.1 Introduction

The increasing deployment of smart grid technologies has greatly enhanced the flexibility and re-
sponsiveness of electricity demand. As the trend develops, demand response (DR) is gradually
becoming an important and valuable resource in today’s electricity markets [3, 84]. Many utilities
and energy service companies aggregate DR resources into portfolios and participate in electricity
markets’ demand response programs. Such DR portfolios can have thousands of DR resources of
various characteristics [65]. Optimal management of these large-scale DR portfolios is an impor-
tant task facing DR aggregators.

There is a rapidly growing body of literature on demand response scheduling, see [3, 64, 84,
119, 125, 126, 142, 154] for recent surveys. As a small sampling of the recent literature: Tsui
and Chan propose a deterministic optimization model to solve the automatic load management
problem in a smart home [141]. Karangelos and Bouffard in [79] develop a forward market clearing
algorithim to resolve the demand flexibility problem with the goal to co-optimize the scheduling
cost and security of the system. Rastegar and Fotuhi-Firuzabad [121] discussed a novel control
approach based on online optimization algorithm to manage the operations of responsive electrical
appliances.

DR resources are very different from conventional generation resources. In particular, they can
have significant uncertainty in their availability and operational consistency. Also, the market
environment has intrinsic uncertainty in electricity prices. To optimally manage the performance
of DR resources, these uncertain factors must be considered.

The impact of uncertainty in electricity price has been extensively studied. For example, vari-
ous robust optimization models that consider price uncertainty are proposed in [34, 37, 57, 82].
In particular, adaptive robust optimization models involving two stages have been discussed by
[5, 8, 157]. Stochastic programming models and Markov decision models are studied for price un-
certainty and residential demand management in [34, 83]. Optimal DR contract design under price
uncertainty is also studied, e.g. see [26]. DR resources scheduling is also studied in the context of
unit commitment from a system operator’s perspective [112, 148].

The existing literature has extensively studied the DR scheduling problem involving residential
customers under price uncertainty. In this paper, we focus on large-scale DR portfolio manage-
ment of commercial and industrial (C&I) resources and deal with another significant type of un-
certainty. In particular, our study makes contributions to the DR portfolio management problem in
the following three key aspects.

1. The first aspect is the modeling of characteristic dynamics of a DR event involving C&I
resources. In particular, each C&I resource has a specific set of operating requirements,
such as demand reduction capacity, ramping rates, schedule smoothness, etc. We propose
a deterministic MIP model for the optimal management of a DR portfolio, which properly
characterizes these complex operating characteristics of DR resources.



2. The second aspect is to consider operational uncertainty of DR resources. More specifically,
the realized demand reduction of a DR resource during a DR event can have significant, un-
certain deviation from the scheduled action. This type of operational uncertainty can depend
on the scheduled action and has a different nature from the exogenenous uncertainty such
as price uncertainty discussed in the literature. Robust optimization problem with decision-
dependent uncertainty set has been a challenging problem, as is characterized by [89] and
[106]. Both [89] and [106] investigate the uncertainty sets induced by a binary vector with fi-
nite dimension. Different from their discussion, this paper formulates a robust optimization
model for DR portfolio management together with an uncertainty set that depends on the
continuous reduction decision variables for the DR resources. Despite that the continuous
decision variables can induce uncountably many uncertainty sets, we show that exploiting
the special structure of the uncertainty set admits a mixed integer programming formulation.

3. The third aspect is on solution methodology. The proposed DR portfolio management mod-
els naturally involve discrete decisions. Although robust optimization model can also be
formulated as a MIP problem. Off-the-shelf optimization software is not sufficient to deal
with the large-scale math programming formulation. We develop a wart-start framework that
implements the improved alternating-direction algorithm for the equivalent MINLP problem,
which demonstrate numerical computation quality.

The paper is organized as follows. Section 1.2 introduces the deterministic optimization model
and discusses specific DR dynamics. Section 1.3 proposes the robust optimization extension and
introduces the new uncertainty sets that model operational uncertainty in DR resources. Section
1.4 develops an improved alternating direction algorithm. Section 1.5 reports computational ex-
periments and analysis. Section 1.6 concludes the paper.

1.2 The Deterministic Optimization Model
1.2.1 DR Aggregator’s Objective Function

There are three main players in a DR event: the system operator, the DR aggregator, and the DR
resources contracted with the DR aggregator. Details of the specific contracts may differ, but the
basic feature is that the DR aggregator gains revenue from the system operator for providing the
required demand reduction, at the same time, it offers payment to the participating DR resources
in its portfolio [65].

We take the perspective of the DR aggregator, and model its objective function as the profit ob-
tained from the market revenue minus potential penalties. In particular, we set ¢; to be the income
earned from dispatching DR resource ¢ for a unit demand reduction. If the total reduction level
from DR resources is less than the required level at time ¢, the DR aggregator suffers from an
under-commitment unit cost s; caused by refund, contractual penalty and some other invisible cost
such as severe loss of market. If the total load reduction level is above the required level, the DR
aggregator suffers from the over-commitment unit cost /; as the system operator suffers from value
loss of DR resources. The DR aggregator makes a clear statement that neither over-commitment
nor under-commitment benefits the operations of the company, which implies the relation s; > ¢;
and h; > ¢; forall 7, t.



To model the above profit structure, we propose a Newsvendor objective. Let D, be the required
total demand reduction level at time ¢, which is a deterministic parameter known to the DR ag-
gregator. Let p = (p!) be the vector where p! is the demand reduction level of resource i at the
beginning of time ¢. As a convention, we use positive value of p! for demand reduction. We define
x = (x!) as the vector of z! to denote whether resource 7 is committed at time ¢. We let w = (w)
be such that w! = 1if p! — p!~! > 0, and let v = (v}) be such that v} = 1 if p! — pi~* < 0.

We define the objective f(p) as

+ +

t

where ()" := max(x,0). This objective function can be also understood as a penalization method
to avoid infeasibility in exactly matching the required demand reduction levels at all times. Such in-
feasibility can happen as the DR scheduling problem involves complicated operational constraints,
which are shown next.

1.2.2 DR Resource Characterization

Each DR resource has a set of operational characteristics, which have to be respected during a DR
event. Figure 1.1 illustrates these key characteristics on a scheduled dispatch trajectory of a DR
resource.

The key characteristics are explained below.

max

1. Reduction constraints: each DR resource has a capacity p;

% and minimum commitment

requirement pi

2. Ramping constraints: DR resources have their ramping limits ;" and r;

3. Smoothness constraints: every time a DR resource reduces its demand, its demand level
cannot increase again before at least 7, periods. This is to respect the inertia in the DR
resource, similarly for the decreasing smoothness constraint.

These DR characteristics makes the resulting model different from a unit commitment (UC) prob-
lem for conventional generation scheduling.

DR eyent

pip !

Toommic

Figure 1.1: The Dynamics of a DR Resource and Realization Uncertainty



1.2.3 The Deterministic Optimization Model

We propose the following deterministic model for DR portfolio management.

Jmin - f(p) (1.22)
s.t. p{mn P<pl < pMaXgt it (1.2b)
— il <pitt - pb < pifalt Vit (1.2¢)
ph—pimt < Mw! Vit (1.2d)
pi—p > =M1 —w)) Vit
Vr=t,...,min(t+ 1}, — 1,7), (1.2e)
Pl —pl 1> —Mv! Vi t, (1.2)
p; — pTl<M(1—v) Vi, t,
Vr=t,...,min(t + T, —1,7T) (1.2g)
zt wt ot e {0, 1} Vi, t. (1.2h)

The objective function f(p) is defined in (2.1). In constraint (1.2b), when a DR resource is com-
mitted i.e. z! = 1, the reduction amount p! is subject to the upper and lower bounds. Constraint
(1.2c) defines the maximum up and down ramping rates for committed resource ¢ at time ¢. As
discussed earlier, the DR aggregator needs to respect smoothness characteristics in scheduling de-
mand reduction. In constraints (1.2d) and (1.2e), if resource 7 increases its dispatch at any time
t, it has to keep the non-decreasing trend for a minimum of Tgup periods. Similarly, constraints
(1.2f) and (1.2g) require that if resource 7 decreases its commitment at any time ¢, it has to keep
the non-increasing trend at least for the next 7, periods. In summary, the proposed model (1.2)
respects the DR dynamics both during a commitment cycle and between adjacent commitment
cycles of a DR resource. The objective function is a piecewise linear convex function and can be

easily linearized.

1.3 The Robust Optimization Model
1.3.1 Modeling Operational Uncertainty of DR Resources with Conservativeness Control

In a DR event, the DR aggregator schedules the reduction level for each DR resource. However,
unlike conventional generators, DR resources can have significant uncertainty in their demand
reduction performance due to unexpected factors in actual operations and market conditions. The
final realized reduction level of a DR resource may be quite different from the scheduled level.

We model the final realization of the demand reduction as p! = pt+ Apf, where Ap! can be viewed
as the “implementation error”” between the realized demand reduction p! and the scheduled amount
pt. The implementation error Ap! can be either negative or positive. To model the uncertainty for



Ap! under budget constraint, we propose an operational uncertainty set I/ represented by

N N
U(p', o, B) Z{Apt = (Aph, .. Aply) ¢ aapl < ApL< Bipl, D AP < T T, \ﬁ}-
=1 =1

(1.3)

Parameters in the definition satisfy «; < 0 and 3; > 0 for all . A key feature of this uncertainty
set is that the upper and lower bounds on Ap! are not fixed numbers. Instead, they are functions of
the scheduled reduction level pt. This dependence on decision variables distinguishes the proposed
uncertainty sets from traditional ones, and offers a way to model the situation where the magnitude
of the uncertainty range depends on the demand reduction level. Also, there is no realization
uncertainty if the scheduled demand reduction is zero, i.e. p! = 0. In this uncertainty set, we use
I'* > 0 to denote the level of aggregator’s ability to control the operations uncertainty. It depends
on factors such as budget, willingness to take risk, the market stability, etc.

1.3.2 Robust Demand Response Model

Now we introduce the following robust optimization model, which finds a robust DR schedule that
minimizes the realized operational cost in the worst-case scenario under DR operational uncertain-
ties.

' A 1.4
min Agé%)f (p, Ap) (1.4a)
st. peq, (1.4b)

where f(p, Ap) is given as

Z{ht (Sot+amm =) +s(p- S+ o) - Seot+ Apﬁ)}. 15)

t 7

7 7

The feasible set €2 is defined in the capacity and ramping constraints of the deterministic model,
ie. Q= {p:Jdz, w,usatisfies (1.2b)-(1.2h)}. We have U(p) defined in (1.3), where we suppress
the parameters «, 3, I" to save space.

The problem has a min-max structure with a nonlinear objective function f(p, Ap) defined in (1.5).
In the following result, we demonstrate a more tractable formulation for optimization problem
(1.4).

Proposition 1. In the robust optimization model, mingeq maxapeu(p) f(P, Ap) can be reformu-

lated by
glg Zt:Yt (1.6a)
N
e he = ) A, Ty = ci)p; — hi Dy, Ve 1.6b
t_Aquelgﬁpt)[;(t ;) q11]+;(t )t — haDs (1.65)
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N
= - ) Aa] = Dp; + s:Dp, Vit 1.6
b= Aqénelg}f(pt)[ ;(St +c ) qQ'L] Xi:(st +c )pz + S¢ Dy ( C)

p €0 (1.6d)

Proof. Similar to the structure in the deterministic model, we implement a news-vendor type of
objective where the decision variable p! becomes p¢ = p! + Ap! under the operations uncertainty.
The robust optimization model can be written compactly as:

+ +
Z = mi h H—A’?—D)Jr (D_ ww)_ (ot + A b
min max : { t(Z(pz p;) — D; se| Dy Z(pz p;) > alpl + Ap))

K3 (2 3

Step 1: derive an equivalent expression. We first show that the original objective is equivalent to

T

Z = min max max{(ht — i) (pl + Aph) — hy Dy, —(s¢ + ¢i)(ph + Aph) + stDt}.
peEN p— Aptel(p,I')

To prove this claim, we denote X;(Ap'), Y and Y’ as

Xi(Ap') = I (Z(pﬁ +Ap;) — Dt)++8t (Dt - i+ Ap?))+— > alpl + Ap))

_ max{<ht )0+ AR — heDyy —(s1 4+ )t + Apt) + D}

Y = max ZXt(Apt),
t

Y = Z max X;(Ap').

p Apt €U,

Using this notation, it is sufficient to prove that Y = Y’. The expression of Y and Y’ suggests
that Y < Y’. Suppose towards contradiction that Y < Y, then there exists Ap” € U, for all
7=1,...,TsuchthatY < >, X;(Ap"). However, vecotr Ap’ = (Ap', Ap?, ..., Ap") satisfies
that Ap’ € Y and Y > ", X;(Ap'), which is a contradiction to the assumption. Thus, we have
Yy =Y.

Step 2:conclude the claim In this step, we want to show that the reformulation is equivalent to

T
Z = min max max ,Agl), max JAGL) b,
min {Aqﬁeut " (p, Aq)) sl g (p q2)}

where f; (p,Aqy) = >,(he — ci)Aqy; + 32, (he — ¢i)p; — Dy and g; (p, Agy) = — 3 (st +
Cz‘)Aqu’ - Zi(st + Ci)pf + s, D;. We denote

W, = max maX{ft (p.AD') . 9 (P, AD") }

Apteld,



W/ = max max L Aq! max ,A
t {Aqfeut(p) i (p ‘h) Adbeth(p) g (p ‘h)}

It is sufficient to show that IW; = W/. The expression directly suggests that W; < W/. Suppose to-
wards contradiction that W; < W/, then there exists Ag" € U;(p) such that max { fi(p, ApY), g:(p, Apt)} <

max { fi(p, AdY), g:(p, Aqt)} for all Ap' € U,(p). However, by setting Aq" is only a feasible so-
lution in W}, which suggests that max {ft(p, Aqh), 9:(p, Aqt)} < max {ft(p, Aqgh), g:(p, Aqt)}.
The contradiction suggests that W, = W/.

To conclude the proof, we use an equivalent representation for the optimization problem
Z = min Y,
Y ,p,Aq zt: !

Y, > he — ¢;)Aqt ¢ — C)p; — hy D
= gy X0 e+ S0

Y; > A%%}Zf{t[_ Z(st + i) Agh;] — Z(St + ¢i)pi + 8¢ Dy

7

p €

O

Proposition 1 implies that our robust optimization model can be treated as a two-stage problem
where the second stage includes a total of 27" linear programs defined in (1.6b) and (1.6¢). For
example, a second-stage problem maxa gt cus, (p,) >N (hy — i) Adl,) for period t € {1,..., T} in
(1.6b) has the following linear formulation given vector p

N

max hy — i) Ad, (1.7a)
DU

st aip; < Agy; < Bip}, Vi (1.7b)

- QL' < Aqy; < gy, Vi (1.7¢)

Z g < T me‘”‘ (1.7d)

One challenge for this problem is that the uncertainty set is adaptive to decision variables, which
makes the tranditional techniques not applicable. To resolve the challenge, we redefine some
parameters in the second-stage problem in (1.6b). Let 6; = |hy — ¢;| and fy]t- = || Th,—e;<0 +
|Bj[11,—c;>0. Define a bijective ranking mapping ¢, : {1,...,N} — {1,..., N} that satisfies
éfm(i) > éfM i) if and only if ¢ < j . Similarly, we redefine the parameters in the second-stage
problems in (1.6¢): d = | — (s; + ¢;)|, 0 = o1 (se+e,)<0 T |BJ|]l (s+¢;)>0. and the bijective
ranking mapping ¢, : {1,..., N} — {1,..., N} satisfying dt )2 dt j ifandonlyif i < j. We



also denote (; = I'* ZZ P for all ¢.

We show that the optimal values of the second-stage problem in (1.6b) and (1.6¢) can be explicitly

formulated as the minimum of finite piece-wise linear functions of decision variable p.

Theorem 1. The optimal value for the maximization problems in (1.6b) and (1.6¢) satisfy

max [f:(ht - ci)Aqii]

Aqi el (ps)

N k-1

= mln{{ Z f,%tpf} { Z(Egt( i) C¢t(k))7¢t(z)p¢t( i) + C¢>t k)<t7 k= 17 BRI N}}v

i=1 =1

max [Z(_St - ci)AqQZ}

Aqi el (pe)

= min{{i tnfpﬁ} U {

k—1

i=1

t Jt t _
d¢ (i) _dwt(k))nwt( )pwt —|—d Ct? ]f— 1,,N}}

The theorem implies that the robust optimization problem can be formulated as the following MIP

with 27" sets of disjunctive constraints.

Y, > Z hfpf‘kz — hyDy — M gy, Vt

1=

1
k—1

(1.8a)

(1.8b)

}/;g Z Z(C;t(l) — Efbt( ))”}/(bt(l)pd)t( i) -+ C(f)t(k Ct + Z ht — Cl) — htDt M/,th, Vk,t

i=1

N
Zlukt = 1a vt
k=0

Y, > Zdtnzpz Z st + ¢i)pi + e Dy — Mg, Vit

k—1

(1.8¢)

(1.8d)

(1.8e)

Yo 2 (diyy = i) MouayPiy + DG — D (5¢ + c)pi + D — Mg, Wk, t

i=1 %

N
Zl/kt = 1, Vt
k=0

pEQ

(1.8f)

(1.8g2)

(1.8h)

We will show in the numerical experiment section that it takes substantial amount of time to achieve



a reasonable gap even in small problems. For warm-start purpose, we consider the MINLP formla-
tion in which we directly dualize the second-stage problems in (1.6b) and (1.6¢) with extra decision
variable q = {w}, \!, uy, 0, Vi, t}.

i Y, 1.9
nin zt: ! (1.9a)
N
st Y, > (vt by — )t + G — heDy, Y (1.9b)
=1
N
Y > (N = s — c)ph 4 G+ Dy, Yt (1.9¢)
i=1
T4 >, Vit (1.9d)
Ao+6,>dt, Vit (1.9¢)
ﬂ-fauta)‘gaet Z 0) VZ,t (19f)
p <. (1.92)

1.3.3 Algorithm Framework

To solve the robust demand response scheduling problem (1.4), we first heuristically solve the
MINLP problem (1.9) with our proposed algorithm, which converges to a feasible solution. Since
the solution p obtained from problem (1.9) is also feasible for the robust optimization’s MIP formu-
lation (1.8), we implement the warm-start solution in the MIP formulation (1.8). We demonstrate
that this will numerically speed up the process.

To evaluate the performance of this framework, we consider the following two lowerbounds. The
LP relaxation lowerbound within some time limit can serve as a benchmark for performance com-
parison(MIP gap still cannot close in large numerical examples). In MINLP formulation, we can
also consider a lowerbound derived from a convex envelope proposed by McCormick [100].

Off-the-shelf solvers have difficulty solving the MINLP problem directly. We take advantage of
the bilinear formulation of the MINLP problem and develop an improved alternating-direction
algorithm denoted as ADA to solve the problem (1.9). We will show that iteration of this alternating
direction algorithm has a theoretical guarantee of convergence. We also present an improvement
of this algorithm.

Alternating Direction Algorithm. We rewrite the MINLP model (1.9) more compactly as

min  h(p, q) (1.10a)
st. pAqt +Bp+Cq<Y, (1.10b)
qcll, (1.10c)
pEQ, (1.10d)

where decision variables are defined as p = {p} and q = {#}, \}, us, 6, }. We also have (1.10a)
is defined in (1.9a), (1.10b) corresponds to the bilinear constraints (1.9b) and (1.9¢), (1.10c) is the



polyhedron defined by the linear constraints (1.9d)-(1.9f), and (1.10d) is the same as (1.2¢)-(1.2h).

When the problem is seperable, it is possible to apply alternating direction algorithm to find heuris-
tic solutions, as discussed by [97]. The main idea of the algorithm is to iteratively fix either p or q
and search the other direction by solving the remaining problems. The algorithm can be formalized
as follows

Algorithm 1 Alternating Direction Algorithm

1: Imitialization: s = 0 and py € ()

2: repeat

3:  Solve gsy1 = argmin h(p;, q) for g € 11
4: Solve psy1 = argmin h(p, gs41) forp € Q
5 s4s+1

6: until convergence criterion is met.

In the following proposition, we summarize that convergence property

Proposition 2. The sequence of objective function values { h(ps, qs)} generated by Algorithm 2 is
convergent.

We notice that the converged solution may be suboptimal in the global scheme. The convergence
we can show via simulation that this returns a very good solution within shorter amount of time.
For the initial start point, we use the solution from the deterministic model (1.2).

Improving ADA. In solving for ps,; = arg min h(p, gs11), we find out that p, from the previous
iteration is also a feasible solution in the current iteration. Thus, we can warm start the program
with the feasible solution pg, which guarantees improvement in each iteration within any time
limit.

Meanwhile, when we solve qs;1 = argmin h(ps, q), we discover that we don’t have to solve
the entire linear programming problem characterized by objective function (1.9a) and constraints
(1.9b) - (1.9f). Instead, we are able to explicitly characterize candidate solutions characterized
in Theorem 1. This allows us to simplify the search of gs,; from solving a large-scale linear
programming problem to verifing a small set of candidates that returns the largest objective value.
We characterize this property in the following corollary.

Corollary 1. Given p,, optimal solution vector q%,, = (", 5, A5, 0%);+ obtained from g1 =

1 77s

arg min h(ps, q) can be obtained by the following enumeration procedures

Algorithm 2 Improvement in Solving g5, = arg min h(ps, q)
1: Iteration: t=1,..., T
2: Enumerate for solution (1, 7%, ..., 7%) € argmin{> N | (vixt + hy — ¢)pb + Gy © p €
{Eia R 63\77 0}, ﬂf* = (¢ — /L;)+,V’i}
3: Enumerate for solution (07, \*,....\%) € argmin{(ni\! — s; — ¢;)pt + (0, = 0; €
{537 R 53\77 0}7 /\f* = (éf - M:)+7Vi}

10



1.4 Computational Experiments

In this section, we study the computation power of the proposed ADA in a large-scale problem
environment. We numerically benchmark the heuristic solution with the lowerbound from MIP
relaxation and McCormick Envelope. We also record the time it takes for the MIP formulation and
the MINLP formulation to achieve the objective value from ADA with the number of resources
ranging from 600 to 1200 at different demand levels. In addition, we investigate the solution
performance with different reduction error distributions.

1.4.1 Experiment Setup

The DR portfolio in this computation experiments includes three types of DR resources. Type A
resource has the most unit profit and the most operational uncertainty, whereas type C resource has
the least nominal unit profit and the least operational uncertainty. The unit profit ¢; is positively
correlated with the capacity p;"** to reflect the property that DR resources with higher capacity
are valued higher by the DR aggregator [65]. Ramping rates and capacity limits are randomly
generated within a reasonable range for all DR resources. An example of the resource data is
shown in Table 1.1.

Table 1.1: Resource Property

Type ci(®) p™ p™ v v o B
A 255 18 4 7 6 -05 05
B 227 15 4 6 5 -03 03
C 185 13 5 6 6 -0.1 0.1

Based on the current industry practice [65], the over-commitment cost h; is set to be slightly higher
than the unit profit because too much supply impairs the economic value of a resource. In con-
trast, the under-commitments cost s; is substantially higher than the unit profit because a shortage
of commitment can lead to severe penalty from the system operator who suffers from potential
power outage. Such penalty includes contractual penalty, damage of reputation, and loss of cred-
itbility, which leads to loss of market to competitors and fundamentally hurts the aggregator’s DR
program. We let the rate of loss depends linearly on the percentage of commitment shortage that
the aggregator can bear. For example, we test scenarios where DR aggregator can contain 10%
and 30% of commitment shortage. We set the scheduling horizon to be eight periods and one DR
event of three periods. We test the performance when the maximum demand level respectively
reaches 30% and 80% of the resource total capacity. Table 1.2 shows an example of a DR event
with reduction demand of 6000 units.

Table 1.2: Cost Property in a DR Event

t 1 2 3 4 5 6 7 8
si($) 1482.4 1078.8 1485.3 1478.6 12427 1400.1 12109 1457.9
he(3) 34.1 34.5 30.6 33.2 31.4 32.7 34.8 35.2
D, 0 0 0 6000 6000 6000 0 0

11



The proposed algorithm is implemented using GUROBI Solver package with 5000 such randomly
generated realization samples to evaluate the real profit of the solution.

1.4.2 Computational Analysis

In this section, we discuss the computational performance of ADA in solving the robust DR model
(1.4). We record the netagive objective value of the solution obtained by our alternating direc-
tion algorithm (row ’-Obj’), the time consumption(row "Time’), the lowerbound from the linear
relaxation of MIP formulation and McCormick envelope from the MINLP formulation (row *MIP
Lowerbound’ and "McCormick Lowerbound’), and the optimality gap CMC Gap’ and "MIP Gap’).
The result for I'; = 0.01,0.04, 0.07 is displayed in table 1.3 .

Table 1.3: Algorithm Performance

I'y=0.01

N 200 400 600 800 1000 1200

-Obj 70541 137560 209530 279190 346596 409104

Time 81.9 711.2 674.4 1793.5 2189.7 3014.4

-MIPLB 74381 148040 223499 299028 372559 439205

MIP Gap 5.16% 7.08% 6.25% 6.63% 6.97% 6.85%

-McCormick LB 72417 142042 215624 287066 356735 422154

McCormick Gap 2.59%  3.16% 2.82% 2.74% 2.84%  3.09%
I'y=0.04

N 200 400 600 800 1000 1200

-Obj 60222 115771 178450 237868 294833 341655

Time  282.0 487.5 964.6 1619.5 2467.2 4011.1

-MIP LB 74483 148034 223505 299254 372668 437556

MIP Gap 19.1% 21.8% 202% 20.5% 20.9% 21.9%

-McCormick LB 69724 136477 207081 275290 342618 404896

McCormick Gap 13.6% 15.2% 13.8% 13.6% 13.9% 15.6%
ry=0.07

N 200 400 600 800 1000 1200

-Obj 50775 95631 149926 199956 246353 279929

Time 1434.5 828.1 2169.7 3657.5 3736.6 5210.8

-MIP LB 74492 148071 223522 299227 372706 445821

MIP Gap 31.8% 35.4% 32.9% 33.2% 32.9% 32.8%

-McCormick LB 67476 132300 200884 267821 329519 404341

McCormick Gap 24.7%  27.7% 25.4% 253% 252%  25.9%

We observe that for small control level I';, ADA is able to obtain solutions within at most 3%
of the optimality gap. As I'; increases, the solution quality guarantee deterioates. We notice that
the best performance of the robust model can be achieved at small I'; value(ex. I'; = 0.01) in our
experiments (see figure 1.2). In general, McCormick envelope formulation provides a better bound
for the problem within the numerical time limit. As problem size increases, it is harder to solve the
problem.

12



To make a fair comparison between ADA and solving the MIP formulation directly, we use small
problems with only N = 50 number of resources at two demand levels. We record the objective
value obtained by ADA, and then we also record the time it takes for MINLP and MIP to reach the
same objective value. The result is displayed in table 1.4 and 1.5.

Table 1.4: ADA vs MIP in Computation Time with Demand Level at 80%(N = 50)

r, 001 002 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

-Obj($) 31960 30279 28688 27096 25526 23951 22368 20781 19236 17710
ADA(seconds)  21.2  38.1 35.9 40.3 53.6 35.7 36.6 579 414 382
MIP(seconds) 154.1 886.7 8483 649.3.9 12122 1121.7 1348.7 12242 2642 3504

Table 1.5: ADA vs MIP in Computation Time with Demand Level at 30% (N = 50)

I, 0.01 0.02  0.03 0.04 0.05 0.06 007 008 0.09 0.10

-Obj($) 17634 16728 15844 15006 14184 13394 12595 11794 10993 10195
ADA(seconds) 10.3 18.4 164 249 234 302 505 69.8 62.6 101.3
MIP(seconds) 87.1 84.9 4379 486.8 2872 4323 5358 5942 2273 216.8

The computation result show that it can take 30 times longer for the branch-and-bound algorithhm
to get to a solution with the same objective as ADA even in a small problem. The tradeoff is that
the MIP formulation has a theoretical guarantee of convergence to global optimality whereas ADA
does not.

1.4.3 Profit Analysis

In this section, we study the performance of the robust DR solutions using Monte Carlo simula-
tion. Figure 1.2 shows plots of the average simulation costs of the robust solutions for two total
demand reduction levels and two under-commitment cost levels, each with simulation for different
uncertainty control levels. Note that ['; = 0 corresponds to the deterministic DR solution.
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Figure 1.2: Reduction Plot

The plots show that when there is a severe penalty from commitment shortage, the robust DR
solutions even with a small uncertainty budge I'; displays significantly better result from the deter-
ministic solution. We also notice that as the penalty cost increases, the simulated profit from the
robust solution decreases much less that from the deterministic solution. The effect comes from
the fact that the robust model not only considers the nominal profit of dispatching a resource, but
also considers the operational uncertainty from the DR resources. When we increase the demand
levels and fix the total resource capacity, the deterministic solution is not able to fully exploit the
potential income from demand increase, whereas the robust solution is able to better captitalize the
demand market with limited resources.

1.4.4 Solution Analysis

In this section, we discuss the ability of the robust optimization model to avoid high shortage
penalty cost in the following two ways
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Favoring Resource with less Uncertainty

Figure 1.3 shows the percentage of demand reduction amount for each type of resource in the sce-
nario with a total of 1000 resources and uniform distribution for operational error. We observe that
type-A resources are generally favored in the deterministic solution, because of its high nominal
unit profit. As the control level I'; increases, resources with less uncertainty become more favored
in all scenarios. The robust optimization model returns more convervative solutions by committing
type-B and type-C resources of less uncertainty. This demonstrates the ability of the robust DR
model to quantify the tradeoff between the nominal profit and operations uncertainty.
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Figure 1.3: Allocation Plot

Total Reduction Increases

Since the under-commitment cost is more severe, strategically committing resources to an amount
reasonably above the required reduction level substantially reduces the likelihood of under-commitment
in actual operations. We observe that the robust DR model is able to justify the cost of effective-
ness between under-commitment and over-commitment costs. As shown in Figure 1.4, the total
scheduled DR level of the robust solution can be about 2000 units higher in all three demand levels
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during the peak time.
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Figure 1.4: Allocation Plot

1.5 Conclusions

In this chapter, we explore several important questions on the robust optimization approach for
the UC and ED problems that have not been addressed extensively in the existing literature. This
includes the question of how to efficiently solve the second-stage problem in the robust UC model,
which is a source of significant computational challenge for fully solving these adaptive robust
optimization models. We also discuss with examples the properties of the worst case net load
scenarios produced by the budget and dynamic uncertainty sets. Many interesting questions are
still open, such as solving the multistage robust UC models, designing new dynamic uncertainty
sets for solar power and demand response resources, and applying the adaptive robust optimization
framework to medium and long term power system planning.
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2. Decentralized Algorithms for Solving AC-OPF Using SOCP Relaxation

2.1 Background

AC optimal power flow (OPF) is a basic building block in electric power grid operation. A funda-
mental question is how to solve AC OPF in a distributed and decentralized fashion; on one hand,
multiple ISOs will need to coordinate and jointly optimize generation dispatch over a large geo-
graphic area; on the other hand, distributed control of large-number of devices will prevent private
information disclosure.

Earlier work in decentralized algorithm for solving AC-OPF problem can be found in [81], in
which the authors proposed a regional decomposition approach to divide a large power system into
overlapping subsystems. Authors in [137] proposed a fully decentralized algorithm that can de-
compose the problem into each individual bus, which is one of the first papers applying alternating
direction methods of multiplier (ADMM) to the AC OPF problem; however, the algorithm must
start with somewhere close to the optimal solutions. Similarly, [50] also decomposed the network
into a few sub-regions and solved sub-problems in parallel. Since the problem is non-convex, the
proposed algorithm do not have convergence guarantees. Authors in [96] proposed an algorithm
that firstly decomposed the problem into smaller sub-problems, then for each non-convex sub-
problem, linear approximation and Taylor expansion were used to address the non-convexity issue.
[114] applied an ADMM based algorithm to the second-order cone relaxation of the branch-flow
model in radial networks. In summary, there are still some major issues remaining: some algo-
rithms may require global coordination; for non-convex problems, the convergence of proposed
algorithms in [50, 81, 137] are not guaranteed; semidefinite programming (SDP) relaxation may
provide a near-optimal solution, but it is very time-consuming; second-order conic programming
(SOCP) relaxation in [114] is only applicable to radial networks.

2.2 Research Approaches

Our objective is to develop decentralized algorithms for approximately solving the AC-OPF prob-
lem. The proposed approaches of this project are summarized below:

e Use SOCP as the workhorse for obtaining tight approximation of AC-OPF model

Use ADMM as the basic algorithmic framework for decentralization

Study efficient decomposition schemes for constraint and variable splitting

Study algorithm performance and numerical stability

Study methods to recover primal variables
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2.2.1 SOCP Relaxation of AC-OPF
What is SOCP Relaxation?

The second-order conic programming (SOCP) relaxation of AC-OPF problem is given below:

SOCP — OPF :min Y Ci(pf) 2.1)

1eEN
s.t. p‘;} — pf = G“C“ + Z (Gijcij — Bz’jsz’j) Vi S N (22)

JEI(1)
— qz B“C“ -+ Z Bijcij — Gijsij) Vi € N (23)
JE6(3)

i + s < cacy V(i,j) € L (2.4)
v} < <02 Vie N (2.5)
pl<pl <pl, ¢ <¢ <q VieN — (26)
Cij = Cj; V(i,j) € L 2.7
Sij = —Sji V(Z,]) e L. (28)
In the above formulation, N is the set of buses and £ is the set of transmission branches. Our

variables are p, ¢/, ¢;;, ¢;; and s,5, where p{ and ¢; are the real and reactive power injection at each
bus i; ¢;; = e;e; + fif; and s;; = e; f; — e; f; for each branch (i, j) € L, e; and f; are the real and
imaginary part of the voltage at each bus i, respectively. The objective (2.1) represents the total
real generation cost. Constraints (2.2)-(2.3) represent the real and reactive power flow equations;
constraint (4.1) relaxes the non-convex relation c?j + sfj = c¢;c;; to an SOCP convex constraint.
Constraint (2.5) represents the bounds on voltage magnitude, and (2.6) represents the bounds on
real and reactive power injection. In summary, we replace bilinear terms in the non-convex power
flow equations by single variables c;;, ¢;j, s;5, so that the power flow constraints become linear.
Then non-convexity of power flow equations is relaxed in constraint (4.1).

Why SOCP Relaxation?

The reason that we choose to use SOCP relaxation of AC-OPF is two-fold.

1. Firstly, SOCP relaxation of AC-OPF problem is highly accurate. As we can tell from Figure
2.1, the second column records the objective values (in dollars) for different IEEE Power
system test cases (14-bus, 118-bus, 300-bus, and 2869-bus) provided in the MATPOWER
library. The Matpower Interior Point Solver (MIPS) is used to get a near-optimal solution for
the non-convex AC-OPF problem. Therefore, column two represents feasible solutions that
provide an upper bound on the global optimal value. We also coded the SOCP relaxation of
AC-OPF problem in Python and used Gurobi solver to get the optimal solution for the convex
relaxation problem. As shown in column three, the convex relaxation provides a lower bound
on the global optimal value. The small relaxation gap in the last column indicates that our
SOCEP relaxation is very close to optimal solution and therefore highly accurate.
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Case Matpower obj.val (MIPS) SOCP obj.val Relax.Gap

14 8081.52 8074.01 0.09%
118 129660.70 129358.36 0.23%
300 719725.11 718819.59 0.13%
2869 133999.29 133866.62 0.10%

Figure 2.1: Accuracy of SOCP Relaxation for IEEE Test Instances.

2. Secondly, SOCP relaxation is usually much faster than SDP relaxation. As shown in Figure
2.2, the average running time of SOCP for IEEE test instances from 3-bus to 3375-bus is
2.62 seconds, while SDP relaxation needs 380.37 seconds on average. Although generally
SDP relaxation is able to provide a tighter lower bound, the solution of SOCP relaxation is
more accessible with acceptable quality, as indicated in the third column of Figure 2.2.

T e cap

SOCP 2.62 0.43
SDP 380.37 0.04

Figure 2.2: Comparison of SOCP and SDP Relaxations for IEEE Test Instances up to 3357-Bus
System

2.2.2 ADMM
What is ADMM?

ADMM stands for Alternating Direction Method of Multiplier, which partitions primal vari-
ables into two groups and updates each group alternatively by solving the augmented Lagrangian
problem. The problem to be solved is of the form:

(P) min  f(z) +g(z) (2.9)
st. Ar+ Bz =c. (2.10)

The augmented Lagrangian function can be formulated as
Ly(z,2,9) = f(x) +g(2) +y' (Az + Bz) + gHAa: + Bz — || (2.11)

ADMM algorithm alternatively minimizes over x and z and updates the dual variable y, using the
following iterations

x-update "' =argmin f(z) + (v*)" (Az + BzF —¢) + gHAx + B2F — ¢|]? (2.12)

x
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z-update 2! =argming(z) + (y") " (Az" + Bz —¢) + gHAxk“ + Bz —c|* (2.13)
dual-update "™ =(y")" + p(A2"T + B —¢). (2.14)

Since we partition the primal variables into two groups: z and z, (2.12) will firstly update z variable
by solving the augmented Lagrangian problem in variable x, whose solution is used in (2.13) to
update z variable in a similar way; finally, solutions from both (2.12) and (2.13) are used to update
the dual variable y.

Why ADMM?

ADMM has deep root in operator splitting and augmented Lagrangian theory. Under mild condi-
tions, the convergence of the ADMM algorithm is guaranteed in the following theorem.[17]

Theorem 2. If f and g are closed proper convex functions and (2.11) has a saddle point, then, for
any p > 0, ADMM converges with

o ||[Az* —b|| = 0ask —
o f(a*) +g(z*) = f(z*) + g(2*) as k — o0

o v wyrask — oo
where (x*, z*) are primal optimal solutions and y* is dual optimal solution.

Under proper duplication of variables, the x-update and z-update allow a decomposable structure;
in other words, the original problem can be reformulated into several subproblems, which can be
solved in parallel. Notice that any other constraints (linear, nonlinear) in variable x should be
expressed as an indicator function 1 (z) and added to f(z), while any other constraints involving
variable z should be expressed as an indicator function 1q(z) and added to g(z). An important
observation is that the indicator function cannot be coupled, i.e., we cannot have something like
1(z, z), which may cause ADMM to diverge. The only constraint that allows coupling of variable
should be in the form (10). Details about how to duplicate and split variables will be provided in
the next section. The convergence robustness and flexibility in decomposition schemes motivate
us to adopt ADMM in this project.

2.2.3 Design of Decomposition Scheme
To begin with, consider a general network flow problem on a given graph G(V, E)

(Po) : minimize Z Ci(n;) [cost occurs at nodes]
i€V

subject to  [Nodal constraints invoving nodal and edge variables:]

fi(ni, (lij)jesy) =0 VieV
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[Edge constraints involving nodal and edge variables:]
gij(niy n, lig) <0 v(i,j) € E.

Figure 2.3 shows a simple example on a 2-node graph. In the context of the above formulation,
each node has its own nodal variable n;,7 = 1,2, and the line has an edge variable /.. In addition,
we have nodal constraints at each node f;,7 = 1, 2, which involves its own nodal variable n; and the
line variable that is incident to this node /.. Finally, we have an edge constraint g., which involves
its own edge variable [, as well as nodal variables at its two endpoints. if we are given a large graph
G, we will be working with a huge number of control variables; the interaction between nodal and
line variables can be complicated and dynamic since they are coupled together in constraints.

Figure 2.3: Illustration on a 2-Node Graph

Based on our observation, in order to decompose the problem into sub-problems, constraints should
be completely separated into each sub-problem. In addition, when solving each sub-problem, we
cannot directly use variables from other problems; instead, local variables and local copies of
neighboring variables should be used. As a result, it is necessary to (1): assign constraints into
sub-problems and (2): duplicate variables so that constraints within each sub-problem do not in-
volve variables from other sub-problems.

We use the 2-node example to illustrate this idea. Consider the problem

min  Cy(ny) + Ca(ng) (2.15)
st. fi(ny,l,) =0 (2.16)
fa(na, 1) =0 (2.17)
Ge(le,n1,m9) <0. (2.18)

Each node has a nodal constraint f;, 7 = 1,2, and there is an edge constraint g, on the line connect-
ing two nodes. Assume we need to solve the problem in a decentralized manner and have node 1
and 2 to implement independent computation. Clearly, f; has to be assigned to node 1 and f, has
to be assigned to node 2. For the line constraints g., there are basically three ways to deal with it.
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Firstly we can choose to solve g. independently, meaning we can separate all three constraints and
solve them disjointly in three different smaller optimization problems. Secondly, we can assign
edge constraint g. to one of the endpoint and solve a nodal constraint and the edge constraints
together; in other words, we will need to solve two sub-problems, one will have constraints f; and
ge, While the other one will have the remaining nodal constraint. Thirdly, we can assign ¢g. to one
of the node ¢, but within the nodal problem of node 7, we can again solve f; and g. separately in
two different sub-subproblems. This situation is similar to the first one but the edge constraint is
controlled by one of the node. In terms of computation, these two constraints f;, g. can be taken
cared of in two different problems. In addition, each of the three situations can be implemented
alternatively or in parallel. A summary of the splitting schemes is provided in Figure 2.4.

X-update Z-update Num. Comments
duplicated
variables

(a) {flr ge} {fz} 6 Solve one nodal and edge
constraints jointly, then solve
(b) {le ge} {fl} the other nodal constraint
(C) {fl} {g } {fz} 5 Solve one nodal and edge
€ constraints in parallel, then
(d) {fz} {ge} {fl} solve the other nodal constraint
(e) {fl} {fz} {ge} 4 Solve two nodal problems in

parallel, then update edge
constraint

(f) {fl, ge} {fz} Projection 4 Assign edge to one node, then
solve two nodal problems in
(g) {f2, ge} {f1} Projection parallel
. . Sol Il th traints i
(h) (i} {2} {ge} Projection 7 p:r\:lelzl ree constraints in

Figure 2.4: Variable Duplication and Constraint Splitting

(e) and (h) correspond to the first case; (a), (b), (f) and (g) correspond to the second case; (c) and (d)
represent the third case. The implementation of each method is summarized in the last column. We
adopt (e) for our formulation in the next section since it only requires compact variable duplication
and two nodal problems can be solved in parallel.

2.2.4 Decentralized Algorithm
Decomposed SOCP Model

The principles mentioned in previous section lead us to the following variable splitting technique.
Each node requires information of its connecting lines, and each line also requires information of
its two endpoints. Therefore, we duplicate nodal and line variables so that each node keeps a copy
of line variables connected to itself, and each line keeps a copy of its endpoints’ variables. One
can understand such duplication as the following: each node has some estimation of its adjacent
line parameters and, similarly, each line has its own estimation of status of the two endpoints.
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Figure 2.5: Decoupling of Variables

In the context of AC-OPF SOCP formulation, at each node, n; = [c;;, (p?), (¢7)] and at each branch,
lij = [cij, $i;5]. Upon duplicating variable, constraints (2.2), (2.3), (2.5)-(2.8) only use = variables
and constraint (4.1) only uses z variables. Now constraints can be separated into two groups, and
we are ready to implement ADMM to our formulation (SOCP-OPF). We adopt the following
indices and variables:

e Bus:i=1,.... N

e Edge: (i,7) € E (Assume each line is uniquely represented as (i, j) where i < j)

e TieLine: TL={(i,j)]i < j} C FE

e Partition: R, : k = 1, .../ (Assume we have a predetermined partition of the whole network)
° cfj, f’] region £’s estimation of the line parameters c;; and s;;

e ¢7: branch (4, j)’s estimation of the variables c;;

e §(i): neighbors of bus i

e [teration index: r =1, ..., 00

Using the technique mentioned, (SOCP-OPF) can be reformulated as

> ) (2.19)

k=1 i€Ry

st. V k=1..K:

= v =

Giicii + Z Gijcij — Bz'jSij) + Z <GU i BZ]SZJ> Vi € Ry, (2.20)
JEI(I)NRy JES()\ Ry,

q; — ‘Ji =
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B”C“ + Z Bijcij — Gijé’ij) + Z ( ij z] GUS ) Vi € Rk (221)

JES(I)NRy, j€6(1)\ Ry

<ep <l pl<pl<pl, d<¢<q VieR (2.22)
cij + 85 < ciic V(i,j) € Ey,i,j € Ry (2.23)
Cij = Cji,  Sij = —Sji V(i,j) € Bk, i,j € Ry, (2.24)
=k, sh=—st  V(i,j)eTLicR,®je R, (2.25)
V (i,j)€TL:

2 2 27 1

Ci; T 83 < ZJCJJ (2.26)
Y (i,5) € TL:

ZERk, JE Ry 1<j:

ci=c7, c¢y=c (07,6) (2.27)
Cij = iy Oy = ¢ (A, AF) (2.28)
S5 = Sijs Sty = Sij (i, p1s)). (2.29)

Notice that constraints (2.20)-(2.25) can be separated to each sub-region k; each region is going to
solve a AC OPF problem of smaller sizes including these constraints. Since the information about
¢;; and s;; on tie-lines are not available, each region k will use its estimation ¢}; and sf;. Constraint
(2.26) can be separated to each tie-line; similarly, since nodal variable c;; and c;j are not available
at each tie-line, czj and céj are used instead. In addition, the only coupling constraints(2.27)-(2.29)
are linear, which are necessary to enforce consistency between variables and their copies. 6, A, and
v are the corresponding dual variables for the coupling constraints.

ADMM on Decomposed SOCP Model

Now we can split the variables and constraints for ADMM. The z* variable for each region R
includes all the generation variables p!, ¢/ for all generators 7 in reglon Ry, all ¢;; for bus 7 in Ry,
all ¢;;, s;; for internal line (7, j) in Ry, and all duplicated variables c};, fj for tie line (4, j) between
Ry, and its neighbor reglons The z variable for each tie line (7, j) between two regions includes

¢ij, S;; for this line and ¢’ ] 7 the copy of ¢;; and c;; kept by the tie line.

In the x-update, we ignore constraint (2.26) on each tie-line. The SOCP model decouples into
regional subproblems (we do not include the superscript  of dual variables for simplicity purpose).
In particular, each region Rj’s subproblem involves the following variable

2 = ((p), qpy cid)ierer (Cijy 8i) (1 yeBr (Ch, S5) G yerin, ),

and is given below

S C)+

1€Ry,
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S.t.

Yo 0 (e = (@)) F N (el = (e)") + pd (s = (s505))+

(4,7)ETLie Ry

Z 05 (cji — (V) + M (cfy — (ca)") + ps (55, — (s35)")+

g > e = (@) + (e = (ei))® + (sf = (si)))*+

(i,J)ETL,i€ Ry,

Do (o= () + (= (c))* + (st — (si)")] (2.30)
(i,J)€ETL,jERy,
] =i =
Giicii + Z (Gijcij — Bijsij) + Z (Gijcfj — Biijj) Vi € Ry
Jed(i)NRy JEI()\ Ry,
(2.31)
¢ —ql =
— Biicii + Z (=Bijcij — Gijsij) + Z (—Bijci-“j — G,;jsfj) Vi € Ry
JES()NRy JES()\ Ry,
(2.32)
v <ep <o pl<pl <pl, ¢ <qf <! Vi € Ry (2.33)
¢ + st < ciicyj V(i,5) € B i,j € Ry (2.34)
Cij = Cjiy,  Sij Sji V(i,j) € Ey,i,j € Ry, (2.35)
i=d, o =—sh Y(i,j) € TL,i € R, ®j € Ry. (2.36)

The x-update is decomposable to each sub-region and they can implement parallel computing.
Each sub-region receives dual information (6, \, 12) and tie-line’s information ()", (c;;)", (si;)"),
and then solves its own problem. Upon finishing this step, each sub-region can pass its solution to
connecting tie-lines and start z-update.

K
min) Y 67 ((ew)” — &)+ A () — i)+ ((s5)" = sig)+

k=1 (i,j)€TLi€Ry

D 0 e) =) AT () — i) + i ((s5) — i)+

g > ) =)+ () =) + ((s5) = siy)*+

S0 e =P () =)+ ((s5) = si)”) (2.37)

k=1 (i,7)€TL,jERy



(
((s5)" = si)* 4 ((sp)" — s55)°} (2.38)

st. V (i,5) €eTL:
C?j + s?j < cjjcé-j. (2.39)

Notice that z-update is decomposable to each tie-line. There is only one constraint on each tie-line,
which is second-order cone representable. Actually, z-update is equivalent to solving a projection
problem onto a rotated second-order cone in R*, which should be easy and fast to solve. After each
tie-line solve its own problem using information from x-update ((c;;)", (cf;)", (s};)"), the solution
is again passed back to the two neighboring sub-regions.

Finally, the dual update can be decomposed to each tie-line using information from both x-update

and z-update. In reality, the dual update can be assigned to either one of the two endpoints of that
tie-line.

V(i,j) € TL,i € Ry,j € Ry, :

(67)7" = (67)" + pl(ca)™" = (&)™) (2.40)
(05)1 = (05)" + p((ej)™ = (¢ )™) (2.41)
AV = () + p((ef)™ = (ei)™) (2.42)
A= )+ p((e)™ = (ey)™) (2.43)

() = Y+ Lty = (s ™) @44
(1 = G+ ()~ (5™ 245

ij
After each tie-line finishes its dual update, dual information is passed to connecting sub-regions
to start the next iterations. Therefore, in our proposed algorithm, only local communication is
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required.

2.3 Numerical Experiments
2.3.1 Effect of Different Partitions on ADMM Convergence

We ran experiments on the proposed algorithm using data from IEEE Power System Test Archive.
Cases 14, 30, 118, 300, 1354pegasus, 2869pegasus are used. We firstly used an Integer Program-
ming model to partition the graph into several sub-regions that have approximately same size;
meanwhile, we minimized the total number of tie-lines. The reasoning is that we believe number
of tie-lines connecting two different regions shoule be controlled. Here we summarized some of
them.

Case Num. of Partitions Num. of Tie-lines rho Num. Iter Obj. Gap Serial Time (sec) Est. Parallel Time (sec)
14 2 3 100 96 0.0390% 32.7624 16.3812
3 5 400 50 0.0675% 27.1084 9.0361
4 6 600 50 0.0342% 33.5219 8.3805
118 2 4 200 28 0.4286% 13.1334 6.5667
3 7 600 34 1.3969% 24.1909 8.0636
4 11 1600 52 0.6356% 62.3426 15.5856
300 2 4 1600 93 0.0002% 60.3942 30.1971
3 1600 94 0.0458% 93.1572 31.0524
4 8 1000 134 0.4199% 127.5870 31.8967
2869 2 6 100 158 0.0006% 340.1150 170.0575
3 12 100 148 0.0015% 344.4219 114.8073
4 19 300 103 0.0044% 238.3519 59.5880

Figure 2.6: Numerical Result of Proposed Algorithm

We partitioned the network into 2,3 and 4 sub-regions of similar sizes, and the total number of
tie-lines are in the third column. Then we tried different values of penalty parameter p to compare
convergence speed in terms of number of iterations needed, as shown in column 4 and 5. Column
6 records the objective gap with the centralized SOCP relaxation solution. As we can tell from
the table, with properly chosen p, the algorithm can converge in a few tens of iterations and the
objective is acceptable. In addition, the behavior of the algorithm is consistent for both small and
large systems, so we conclude the algorithm is highly scalable. Since we implemented the ADMM
update in serial, we expect the running time should be efficiently reduced assuming each sub-
region is able to conduct independent and concurrent computation. The last two columns represent
the time in serial and in parallel.
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3. A New Voltage Stability-Constrained Optimal Power Flow Model: Suffi-
cient Condition, SOCP Representation, and Relaxation

3.1 Introduction

The need to ensure steady-state voltage stability and maintain sufficient loading margin in optimal
power flow (OPF) models has led to the development of voltage stability-constrained OPF (VSC-
OPF) models, which solves OPF problems while accounting for voltage stability limits at the same
time. Traditionally, to avoid system instability, security constraints such as voltage magnitude
limits and line flow limits are enforced in normal OPF models. However, the effectiveness of these
security constraints alone in safeguarding system stability may be insufficient in modern power
systems with adequate reactive power support, which is demonstrated by a two-bus example in
[140]. Another motivation for the inclusion of steady-state stability limit in an OPF formulation is
the increasing trend to operate power systems ever closer to their operational limits due to increased
demand and competitive electricity market. Without stability constraints, the robustness of the OPF
solution against voltage instability is not ensured.

To formulate a VSC-OPF problem, the model in [22] uses two sets of power flow equations repre-
senting base loading and critical loading conditions, the power injections of which are related by
the loading factor to be optimized. The model is extended to a multi-objective one in [102] in which
voltage stability and social welfare are simultaneously taken care of. An extension to incorporate
N — 1 contingencies has been reported in [103] where a heuristic contingency ranking technique
is applied for computation tractability. An alternative method to account for contingencies in a
VSC-OPF model based on iterative CPF-OPF computation is presented in [101]. However, the
loading margin is only quantified along one direction of power variation in these models. Dy-
namic voltage stability has been considered in security-constrained OPF such that systems subject
to contingencies will settle down to stable operating points. Dynamic simulation with scenario fil-
tering techniques have been employed to this end in [23, 24]. These methods are highly dependent
on the choice of contingencies and suffer from scalability issue. A different strategy to represent
proximity to voltage instability is through the use of minimum singular value (MSV) of the power
flow Jacobian, which can be used as a stability constraint in a VSC-OPF model. The main draw-
backs of the method are that 1) the physical meaning of MSV is unclear; 2) MSV is not an explicit
function of the optimization variables. Linearization and iterative algorithms have been proposed
trying to address the second issue [6, 86]. However, the computational cost is prohibitively high
for large-scale systems.

To circumvent the weaknesses of the aforementioned VSC-OPF models and achieve a better trade-
off between robustness and computational tractability, several heuristic voltage stability indicators
have been embedded in VSC-OPF formulations. For instance, the L-index originally proposed in
[80] has been used as an indicator for voltage stability improvement in [88]. Leveraging semidefi-
nite programming (SDP) relaxation of OPF, this problem can be formulated as an SDP with quasi-
convex objective [113]. Polyhedron approximation of security boundaries has been applied in a
DC-OPF model in [33]. However, the approach does not scale well with the dimension of feasible
region. The sufficient voltage stability condition for reactive power flow equations in [132] has
been used for voltage stress minimization in [140]. A voltage stability index based on branch flow
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is integrated in VSC-OPF formulation in [156]. Major concerns of these indices are their conser-
vativeness and computational properties. Hence, the main motivation of this paper is to apply a
novel and tight voltage stability index in the VSC-OPF model which enjoys nice computational
properties under very mild approximation.

We first introduce a sufficient condition for power flow Jacobian nonsingularity that we proposed
recently in [150]. We then formulate a VSC-OPF problem in which the voltage stability margin
is quantified by the condition. We show that when load powers are fixed, this voltage stability
condition describes a second-order conic representable set in a transformed voltage space. Thus
second-order cone program (SOCP) reformulation can naturally incorporate the condition. Notice
that the formulation does not require the DC or decoupled power flow assumptions. To improve
computation time, we sparsify the dense stability constraints while preserving very high accuracy.

The rest of the paper is organized as follows. Section 3.2 provides background on power system
modeling. The sufficient condition for power flow Jacobian nonsingularity is introduced in Section
3.3. We discuss the VSC-OPF formulation, its convex reformulation, and sparse approximation in
Section 3.4. Section 3.5 presents results of extensive computational experiments and comparative
studies. Section 3.6 concludes.

3.2 Background
3.2.1 Notations

The cardinality of a set or the absolute value of a (possibly) complex number is denoted by | - |.
i = \/—1 is the imaginary unit. R and C are the set of real and complex numbers, respectively. For
vector © € C", ||z||, denotes the p-norm of = where p > 1 and diag(z) € C™*" is the associated
diagonal matrix. The n-dimensional identity matrix is denoted by I,,. 0,,, denotes an n X m
matrix of all 0’s. For A € C"*", A~! is the inverse of A. For B € C™*", BT, B¥ are respectively
the transpose and conjugate transpose of I3, and B* is the matrix with complex conjugate entries.
The real and imaginary parts of B are denoted as Re B and Im B. b; denotes the vector formed by
the ¢th row of B.

3.2.2 Power System Modeling

We consider a connected single-phase power system with n + m buses operating in steady-state.
The underlying topology of the system can be described by an undirected connected graph G =
(N, E), where N = Nz U N7, is the set of buses equipped with (V) and without (N7,) generators
(or generator buses and load buses), and that |[Ng| = m and |N;| = n. We number the buses
such that the set of load buses are N = {1,...,n} and the set of generator buses are Ng =
{n+1,...,n+m}. Generally, for a complex matrix A € C"*™** define A; = (A;;)ic,. That
is, Ay, is the first n rows of the matrix A. Similarly, define A¢ = (A;;)icn,. Every bus ¢ in the
system is associated with a voltage phasor V; = |V;|e! where |V;| and 6; are the magnitude and
phase angle of the voltage. We will find it convenient to adopt rectangular coordinates for voltages
sometimes, so we also define V; = e; + if;. The generator buses are modeled as PV buses, while
load buses are modeled as PQ buses. For bus 4, the injected power is given as S; = P; + iQ);.
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The line section between buses ¢ and j in the system is weighted by its complex admittance y;; =
1/zj = gi; + iby;. The nodal admittance matrix Y = G + iB € C"™*(+™) hag components
Yij = —yij and Yy, = vy + Z;L;m y;; where y;; is the shunt admittance at bus <.

The nodal admittance matrix relates system voltages and currents as

Ip| _\Yir Yie| |V 3.1)
I Yor Yec| Vo] '
We obtain from (3.1) that
Vi =Y YieVe + Y L. (3.2)
Define the vector of equivalent voltage to be E = —Y;;'Y;V¢ and the impedance matrix to be

7 = Y;; (we assume the invertibility of Y7, and note that this is almost always the case for
practical systems). With the definitions, (3.2) can be rewritten as

Vi=E+ZI. (3.3)

For practical power systems, the generator buses have regulated voltage magnitudes and small
phase angles. It is common in voltage stability analysis to assume that the generator buses have
constant voltage phasor V; [80, 150]. The assumption can be partially justified by the fact that
voltage instability are mostly caused by system overloading due to excess demand at load side,
irrelevant of generator voltage variations.

Assumption 1. The vector of generator bus voltages V¢ is constant.

Note that Assumption 1 is always satisfied for uni-directional distribution systems where the only
source is modeled as a slack bus with fixed voltage phasor. The voltage stability constraint in
the paper is based on our recent result on the nonsingularity of power flow Jacobian [150]. The
derivation of the result takes advantage of the special characteristics of systems with constant
generator voltage vector /. With Assumption 1, £ is fixed and the result in [150] can be applied.

The power flow equations in the rectangular form relate voltages and power injections at each bus
i € N via
n—+m

Py= Y [Gilee; + fuf;) + Bylesfi = eify)l, (3.4a)
j=1

n+m

Qi =Y [Gijlejfi — eif;) — Bijeie; + fify)] (3.4b)

Jj=1

Remark 1. The power flow Jacobian with Assumption 1 is given by

P, 0Py
Jpp = gQi g(g_; . (3.5)
der,  OfL
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Figure 3.1: MSVs of Full and Reduced Power Flow Jacobian with Respect to System Loading for
9-Bus System

Note that .J; ;, is in fact a submatrix of the full Jacobian considering generator real power equations:

Jaa Jar
J = ) 3.6
[JLG JLJ (3:6)

As we know, voltage stability studies are primarily concerned with the singularity of power flow
Jacobian J. Of course, for generic matrix ./, the singularity of its principal submatrices are not
necessarily related to that of the full matrix. Then the assumption of constant generator voltage
phasors seems to be questionable since the stability analysis based on a submatrix may not be
relevant. However, we note this is not the case in voltage stability analysis. First of all, the
validity of using power flow Jacobian as a voltage stability indicator is based on the assumption
that det J;, # 0. In this case the system stability is determined by the reduced Jacobian J..q =
Joa — Jar J;Ll Jra, whose determinant is singular if and only if the determinant of the power flow
Jacobian

det J = det Jpp, det(Joe — JarJ;} Jic) (3.7)

is singular [143, Chap. 5]. However, the singularity of .J; 1, is itself one of the mechanisms of volt-
age collapse, which is called singularity-induced bifurcation and has been demonstrated through a
rudimentary dynamic power system model in [144]. Second, the singularity of .J is often associated
with the ill-conditioning of the matrix J; and the MSV of J;; tends to decrease monotonically
with increased loading levels, which are demonstrated by IEEE 9-bus system in Fig. 3.1. There-
fore we believe the study of .J;;, for voltage stability purposes can be justified from both physical
and numerical perspective.

Remark 2. After the overexcitation limiter of a generator takes effect, the terminal voltage of
the generator can no longer be regulated, and a common modeling practice is to switch the bus
type from PV to PQ. We note that the generator can also be modeled as a constant excitation emf
behind synchronous impedance based on [143, Sect. 3.4.2], the validity of which has been justified
in [149]. The synchronous impedance can be absorbed by the system admittance matrix and the
model reduces to the one with constant voltage sources and constant power load buses. This can be
done iteratively every time generators reaches their reactive power limits after OPF computation.
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3.2.3 AC-OPF Formulation

Using the power flow equations (3.4a)-(3.4b), a standard AC-OPF model can be written as

min > fi(Pg,) (3.8a)
ieENg

st. Fie, f) = Pa, — Pp,, ieN (3.8b)
Qi(e, f) = Qa, — @p,, ieN (3.8¢)
P, < Pg < Pg,, i € Ng (3.8d)
Q. < Qc, < Qg i€ Ng (3.8¢)
Vi< 2LV ieN (3.80)
|Pij(e> .f)| SFUW (Zaj) €& (38g)
L (e, f)| < T, (i,7) € &, (3.8h)

where f;(Pg,) in (3.8a) is the variable production cost of generator ¢, assuming to be a convex
quadratic function; P, and Pp, in (3.8b)-(3.8c) are the real power generation and load at bus
i, respectively; Q¢, and @)p, are the reactive power generation and load at bus i; P;(e, f) and
Qi(e, f) are given by the power flow equations (3.4); constraints (3.8d)-(3.8e) represent the real
and reactive power generation capability of generator ¢. F;; and I;; in (3.8g)-(3.8h) are the real
power and current magnitude flowing from bus i to j for line (7, j) € &, respectively.

3.3 A Sufficient Condition for Nonsingularity of Power flow Jacobian

A sufficient condition for the nonsingularity of power flow Jacobian is recently proposed in [150]
as stated in the following theorem. We will use this result to derive a voltage stability index which
is to be embedded in an OPF model to form a VSC-OPF formulation.

Theorem 3. The power flow Jacobian of (3.4) is nonsingular if

\Vi| — ||z diag(I)|j, >0, i€ N (3.9)

The proof is based on similarity transformation of the power flow Jacobian. We have shown that the
transformed matrix is strictly diagonally dominant as long as (3.9) holds. Since strictly diagonally
dominant matrices are nonsingular and similarity transformation preserves eigenvalues, the power
flow Jacobian is nonsingular when (3.9) holds. The proof takes advantage of the special structure
of the matrix J; ;. Under Assumption 1, the power flow Jacobian and J;;, coincide. For proof of
the theorem, see [150].

The term ||2] diag(/)||; in Theorem 1 can be thought of as the generalized voltage drop between
the equivalent source with voltage F; to the load. Then the theorem states that the system is voltage
stable if the generalized voltage drop is less than the corresponding load voltage magnitude for all
load buses. It has been shown in [150] that the result is strong, meaning that the violation of the
condition is often immediately followed by the loss of voltage stability.
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It is suggested in [80] that the following condition is satisfied at the point of voltage instability
under certain simplifying assumptions (proportional load current variations, etc.)

z”: Zjil;
i=1

It is seen from (3.3) that the left hand side is the voltage drop between the equivalent source with
voltage F; and the load. The result implies that under certain assumptions, the voltage stability
of a multi-bus system resembles that of a two-bus system where the voltage stability boundary
is achieved when the magnitude of voltage drop and load voltage are identical. Due to various
assumptions, the condition works relatively well under proportional load variations, but becomes
less effective as load variation deviates from the assumed proportional pattern.

= |Vjl. (3.10)

We note the similarity between the condition (3.10) and (3.9) used in the paper. The condition (3.9)
is weaker in the sense that the generalized voltage drop ||z diag(I)||; is larger than the actual
voltage drop in (3.10), but it nevertheless generalizes the latter condition and does not require the
proportional current injection assumption. For a more thorough comparison of the two conditions,
see [150].

3.4 A New Model for VSC-OPF

The standard AC-OPF formulation embeds system security constraints as line real power and cur-
rent limits in (3.8g) and (3.8h). However, the parameters in these security-related constraints, such
as ﬁij and Yij, are calculated off-line using possible dispatch scenarios that do not necessarily rep-
resent the actual system conditions [102]. This motivates the formulation of VSC-OPF models. In
this section, we propose a new model for VSC-OPF using the voltage condition derived in (3.9)
and show that it has nice convex properties amenable for efficient computation.

3.4.1 New Formulation

We propose the following new VSC-OPF model,

min > fi(Pe,) (3.11a)
ieNg
s.t. (3.8b) —(3.8f)
Vil =3 >, e N (3.11b)
241V,
where A;; := |Z;;S;|. The key constraint is (3.11b), which reformulates the left-hand side of

(3.9) by writing line currents as the ratio of apparent powers that satisfy the power flow equations
(3.4) and voltages, and ¢, is a preset positive parameter to control the level of voltage stability.
We note that line flow constraints are not included in the VSC-OPF formulation (3.11). We have
deliberately chosen not to include them since 1) we would like to demonstrate the capability of the
proposed voltage stability constraint in restraining system margins to voltage instability, and 2) we
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believe the proposed constraint is better suited for stability constraining purposes. To guarantee the
same level of voltage stability, line flow constraints come at a price of higher level of conservative-
ness compared to the proposed stability constraint since the line flow constraints are not intrinsic
voltage stability measures. It then follows that to ensure similar level of voltage stability, the in-
clusion of line flow constraints shrinks the feasibility region of the problem. Of course, there are
no technical difficulties in the inclusion of line flow constraints in our formulation and we agree
that for lines with low thermal ratings or low line flow margins, the inclusion of corresponding
constraints are necessary and beneficial. To ensure that (3.11) is a proper formulation with good
computational property, we first show that the set of voltages satisfying condition (3.11b) is volt-
age stable, and then we show that (3.11b) is second-order cone (SOC) representable, thus convex,
when S, is constant. The condition of constant .Sy, is always met in OPF problems.

Connectedness

A necessary condition for voltage instability is the singularity of power flow Jacobian [143, Sect.
7.1.2]. Assume that the zero injection solution of power flow equations (3.4) is voltage stable
with a nonsingular Jacobian (which always holds for any physically meaningful system). We
know from (3.4) that every entry of .J is a continuous function of voltages, so the eigenvalues of
J are also continuous in voltages. Since a continuous function maps a connected set to another
connected set, if a given connected set of power flow solutions contains the zero injection solution
(which is voltage stable) and the corresponding power flow Jacobian of every point in the set is
nonsingular, then the set characterizes a subset of voltage stable solutions. Define the set Sy :=
{VL] 3.9) holds} and Sy O S; := {V.| (3.11b) holds}. We know from Theorem 3 that the power
flow Jacobian is nonsingular for V;, € Sy, we also know the zero injection solution is in Sy.
Therefore, in order to show the set S; is voltage stable, we show the more general case that S
is voltage stable, which amounts to showing the connectedness of Sy. We give the proof of this
property below.

Theorem 4. The set S, is connected.

Proof. To show the set is connected, we fix a point in the set and show that for any other point in
the set, the line segment between the two points lies in the set.

When load currents are all zero, it follows from (3.3) that the nodal load voltages are simply F£.
We denote the zero injection voltage solution by vy, that is, vy := E. Then vy € Sy follows
immediately since ||z} diag(Iy)|; = 0 for all i € N;. Take v; € Sy and define V;, parametrized
by t € [0,1] as V(t) = vy + (v1 — vo)t. We will show V(t) is in Sp. It is clear that current
injections are linear functions of ¢, since we know from (3.3) that

IL(t) = Y (Vi(t) — E) (3.12a)
= YLL (UO + (1)1 - Uo) t— ’Uo) (312b)
= Y1 (v — vo) L. (3.12¢)

We claim that for any ¢ € [0, 1] the derivative of > 7, |Z;;1;] is larger than or equal to the magni-
tude of that of |V;| for all i € N. Since current injections are linear in ¢, let Z;;1; be denoted by
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a;;t + ib;;t for real numbers a;; and b;; for all (i, j) € N x N, and denote a := Z?Zl a;; and
b:= ", b for brevity, then for each i € N, we have

m (Zy ” j|> pr <Z a§j+b§j)t (3.13a)

= Z aZ; + b, (3.13b)
=1
> Va? + 12, (3.13c)

where the inequality is due to successive application of trigonometric inequality. On the other
hand, the voltage magnitude |V;| is

|Vi| = |Uo,z' + ZZ-T[L|

2 2
\/(Re(vo 1) + Z 1 Aij ) + (Im(vo,i) + Z?:l bz]t> y (314)
and the derivative of |V;| with respect to ¢ is

d“/;| . CL(RG(U()’Z) + Clt) + b(Im(Uo,i) + bt)

. 1
dt v (Re(vo;) + at)? + (Im(vy ;) + bt)? (3.15)

Then, by Cauchy-Schwarz inequality we have |d|V;|/dt| < v/a? + b?. Comparing with (3.13), we
see the claim holds.

Suppose > 7, | Zi;1(t1)| > |Vi(t1)| for some ¢, € (0,1) and i € N, then based on the funda-
mental theorem of calculus we have

n 1 n 4
> 1Zy101 ZI Ii(ty |+/ <Z|Zijlj\> dt (3.16a)
7j=1 t1 j=1
> Z | Zi; ()] + Va2 + 02(1 — 1), (3.16b)
j=1

and
1
Vi(1)] = [Vi(t)| + / Vi)l dt (3.178)
t1
< Vi(ty)] + Va2 + 02(1 — ty). (3.17b)

The two inequalities imply that » " [Z;;1;(1)] > [V;(1)], which is a contradiction since v; € Sp.
We conclude the line segment between vy and vy lies in Sy. O
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SOC Representation of Voltage Stability Constraint

The voltage stability constraint (3.11b) is not directly a convex constraint in the voltage variable
Vi, however, we show that it can be reformulated as a convex constraint, more specifically, an SOC
constraint in squared voltage magnitude |V;|? providing Sy, is fixed. This SOC reformulation will
be utilized in the following section for SOCP relaxation of VSC-OPF.

Proposition 3. Constraint (3.11b) is SOC representable in the squared voltage magnitude |V;|?’s,
i.e. (3.11b) can be reformulated using SOC constraints in |V;|*’s.
Proof. First of all, introduce variable c;; := |V;|?, and z;, 2; for each bus i € N, such that

Note that z;2; = (£4%)2 — (252%)% and ¢; = (%52)% — (9%2)2, then we see both (3.18) and
(3.19) can be rewritten as the following SOC constraints

i — 1)? i+ 1
\/m$+<c : Foe = (3.:20)
1 3.21
+ 1 <= (3.21)

Therefore, by defining A;; = |Z;;5;/, (3.11b) can be equivalently represented as

t— ) Ayz > L, (3.222)
j=1
[, (ci — 1) /27|, < (e +1)/2, (3.22b)
1L, (s = z) /27|, < (@i + 20) /2, (3.22¢)
r; >0, (3.22d)
for every bus 7 € N7, which are SOCP constraints. O]

3.4.2 SOCP Relaxation of VSC-OPF

By Proposition 3, the voltage stability condition (3.9) is reformulated as SOCP constraints (3.22).
However, the power flow equations (3.8b)-(3.8c) are still nonconvex. In the following, we propose
an SOCP relaxation of the proposed VSC-OPF model (3.11) by combining the SOC reformula-
tion of the voltage stability constraint (3.22) with the recent development of SOCP relaxation of
standard AC-OPF [85]. In particular, for each line (7, j) € &, define

Cij = €i€; + flf] (3233)
Sij = Gifj - ejfi. (323b)
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An implied constraint of (3.23a)-(3.23b) is the following:
¢+ 53 = Cucjy. (3.24)

Now we can introduce the following SOCP relaxation of the VSC-OPF model (3.11) in the new
variables c;;, ¢;;, and s;; as follows

min Z fi(Ps,)

ieENg

st. Pg,—Pp,=Giuci+ » Py ieN (3.25a)

JEN(3)
(g, — @p, = —Biicii + Z Qij,i €N (3.25b)
JEN(3)

Vi<ey <Vi, Q€N (3.25¢)
Cij = Cjiy Sij = —Sji, (i,j) €E (3.25d)
C?j + S?j < cicy; (i,5) €E (3.25¢)

(3.8d),(3.8e),(3.22)

where the power flow equations (3.8b)-(3.8¢c) are rewritten in the ¢, s variables as (3.25a) and
(3.25b). N (i) denotes the set of buses adjacent to bus 7. The line real and reactive powers are Pj; =
Gijcij — Bijsij and Q;; = —G5s:; — Bijci;. The nonconvex constraint (3.24) is relaxed as (3.25e),
which can be easily written as an SOCP constraint as ||[ci, Sij, (cii — ¢;;)/2)7 |2 < (cii + ¢45) /2.
(3.25¢) is a linear constraint in the square voltage magnitude c;;. Notice that the SOCP formulation
of the voltage stability constraint (3.22) is not a relaxation, but an exact formulation of the original
voltage stability condition (3.11b), and it fits nicely into the overall SOCP relaxation of the VSC-
OPF model (3.25). We have employed the basic SOCP relaxation of the AC-OPF in (3.25). There
are many ways to strengthen the relaxation, see [85] for a few formulations. The main advantage of
the adopted formulation lies in its speed, which may proven crucial for certain online applications.
On the other hand, the main point we try to convey in the paper regarding the convex formulation
is that the proposed voltage stability constraint is in fact second-order cone representable. This
simple fact means that the constraint can be integrated in any other SOCP relaxation as well.

3.4.3 Sparse Approximation of SOCP Relaxation

Due to the density of stability condition (3.22a), the computation times of the VSC-OPF formu-
lation (3.25) are significantly longer than normal OPF especially for larger power systems. The
differences in computation time can be observed from Table I, where it is seen that for large IEEE
instances, VSC-OPF is much slower than AC-OPF. The term ‘density’ refers to the fact that each
voltage stability constraint in (3.22a) is coupled with almost all load buses since the matrix A in
(3.22a) 1s dense. This is to be contrasted with the power flow equations or line flow constraints
where the admittance matrices are sparse and power injection of a bus is only a function of its
voltage phasor as well as those of its neighboring buses. Fig. 3.2 shows the sparsity pattern of the
matrix A for IEEE 300-bus system, it can be seen from Fig. 3.2a that almost all entries are nonzero
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Figure 3.2: Sparsity Pattern of Matrix A for IEEE 300-Bus System

even though most of them are very small. To better discern the relative magnitude of the entries,
we set entries less than 5 x 107* to zero in Fig. 3.2b, now the heat map becomes much sparser
which suggests that a majority of entries are indeed small (< 5 x 10~%). Therefore, in order to
speed up computation, we can approximate most of the entries by constants without sacrificing too
much accuracy.

The first step of the approximation is to approximate the coeffcient matrix A of the stability con-
straints by a sparse matrix A. To illustrate our approach of sparse approximation, we rewrite the
linear constraint (3.22a) in matrix-vector form as

r— Ay > t. (3.26)

Then the approach to construct the sparse approximate matrix A can be summarized as in Algo-
rithm 3.

Simply put, for each row of matrix A, Algorithm 3 constructs the corresponding row of the ap-
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Algorithm 3 Sparse approximation of A

I: ¥ < {initialize tunable sparsity parameter }
2: A < 0,x, {initialize A}
3: for1 <3 <ndo

4 RS« ), Aij {compute ith row sum of matrix A}
5. while ), A;; < yRS do

6: Jmax $— arg max a;

7 Ai;jmax — Ai,jmax

8: A joae <0

9:  end while
10: end for

proximate matrix A by ignoring all elements except the largest ones whose sum amounts to more
than +y of the total row sum. We notice that the element Z;; of the impedance matrix can be under-
stood as the coupling intensity measure between buses 7 and j. Thanks to the sparsity of practical
power systems, each bus is only strongly coupled with its neighboring buses and weakly coupled
with most other buses. Therefore, the matrix A is generally sparse. We notice a similar approxi-
mation has been applied to the L-index in the context of PMU allocation [117]. The connection
between L-index and the proposed stability condition has been discussed in Section 3.3 and more
extensively in [150].

Then (3.26) can be approximated by
- Ay >t+ Aa)V, (3.27)

where Aa € R” is the row sum difference between A and A that is defined as Aa; = > (a; — @;)
and V = max{V; | i € N.}. We have thus obtained the sparse VSC-OPF formulation which is
identical to (3.25) except the stability constraint (3.22a) is replaced by (3.27). The new formulation
is presented as

min Z fi(Ps,)

iENG

st. Po, —Pp, =Guci+ Y Py i€N (3.28a)

JEN(3)
Qc, — Qp, = —Bicii+ Y Qij,i €N (3.28b)
JEN()

V2<ey<Vi, ieN (3.28¢)
Cij = Cji, Sij = —Sji, (1,j) €E (3.28d)
C?j + S?j <cucy; (i,j) €E (3.28¢)

(3.8d), (3.8e), (3.22b)—(3.22d), (3.27)

We notice that feasibility of problem (3.28) is implied by the feasibility of the original problem
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Table 3.1: Results Summary for Standard IEEE Instances.

Cost ($/h)

AC AC AC
Test Case AC ‘ SOCP OG (%) t t ANCS (%) | Aol (%) | DS (%)
case24_ieee_rts 64059.32 63344.99 1.12 0.86 | 0.86 0.12 0.16 0.08
case30 577.16 574.90 0.39 0.97 | 0.97 5.02 0.00 0.07
case_ieee30 9985.41 9220.51 7.66 0.88 | 0.88 7.92 3.75 0.60
case39 43667.91 42552.76 2.55 0.83 | 0.83 6.49 0.32 0.48
case57 41737.79 41710.91 0.06 0.66 | 0.66 0.02 0.02 0.31
case89pegase 5849.28 5810.12 0.67 0.72 | 0.72 2.22 0.21 2.61
casel18 130009.61 | 129385.66 0.48 0.98 | 0.98 —0.21 0.33 0.44
case300 724935.75 | 718655.31 0.87 0.29 | 0.29 —0.30 1.13 1.03
casel354pegase || 74062.27 74000.28 0.08 0.64 | 0.64 0.87 0.00 0.93
case2383wp 1857927.67 | 1846897.40 0.59 0.77 1 0.77 0.00 0.00 1.64
average 1.45 | 0.76 | 0.76 1.99 0.59 0.82
101 — 0 Ao i (%)
sl I A pax (%)
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Figure 3.3: Results Summary for NESTA Instances From Congested Operating Conditions.

(3.25). To see this we only need to focus on (3.27) and (3.22a), from which we have

where the last inequality comes from (3.18), (3.19), (3.25c¢).

x— Ay <o — Ay — (A)Yuin

<z —Ay—Aa)V,

3.5 Computational Experiments

In this section, we present extensive computational results on the proposed VSC-OPF model (3.11),
its SOCP relaxation (3.25), and the sparse approximation (3.28) tested on standard IEEE instances
available from MATPOWER [158] and instances from the NESTA 0.6.0 archive [36]. The code
is written in MATLAB. For all experiments, we used a 64-bit computer with Intel Core i7 CPU
2.60GHz processor and 4 GB RAM. We study the effectiveness of the proposed VSC-OPF on
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achieving voltage stability, the tightness of the SOCP relaxation for the VSC-OPEF, as well as the
speed-up and accuracy of the sparse approximation.

Two different solvers are used for VSC-OPF:

e Nonlinear interior point solver [IPOPT [147] is used to find local optimal solutions to VSC-
OPFE.

e Conic interior point solver MOSEK 7.1 [1] is used to solve the SOCP relaxation of VSC-
OPFE.

3.5.1 Method

Below we briefly describe the methodologies used in this section to evaluate and demonstrate the
effectiveness of the proposed VSC-OPF formulation.

Evaluating the Performance of the Proposed VSC-OPF

During normal operating conditions, the voltage stability condition (3.9) is normally satisfied. That
is, at least for lightly loaded IEEE test cases in MATPOWER, the constraint (3.11b) with small ¢
will not be binding. This is to be expected, since the stability margins of systems under normal
operating conditions are relatively high. To evaluate the formulation in a more meaningful way,
we set the margin threshold ¢ as follows.

To determine the voltage stability threshold in (3.11) for each test instance, we first solve a mini-
mum threshold maximization problem. That is, we maximize the minimum value of the left hand
side of (3.11b) among all load buses subject to power flow, nodal voltage, and generation con-
straints (3.8b) — (3.8f). The threshold ¢, in (3.11b) is set as the slightly decreased maximum thresh-
old from the optimal objective value. In this way, we try to force the voltage stability constraint
(3.11b) to be binding and examine the effect of restraining a high ¢, on system voltage stability
improvement.

For comparison, we also solve a relaxed OPF problem for each test instance, which is the same
as (3.11) except that the voltage stability constraint (3.11b) is unbounded. Two votlage stability
indices, 1.e. the MSV of the reduced power flow Jacobian J;;, and the loading margins to voltage
instability of the VSC-OPF formulation (3.11) and the relaxed OPF problem are compared. It
is expected that constraint (3.11b) restrains system stability level such that level of stability is
improved and voltage stability indices for the VSC-OPF formulation are superior to that of the
relaxed OPF problem.

Recovering Bus Voltage Phasors from SOCP Relaxation
To evaluate the SOCP relaxation (3.25), in addition to examine the optimality gap, we compare the

MSYV obtained by solving (3.25) with the one obtained from the original problem (3.11), which
requires the recovery of nodal voltages. We know the variables c;; are simply the squared bus
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voltage magnitudes, so bus voltage magnitudes can be directly recovered from SOCP results. To
recover voltage phase angles, we use the following relationship:

Al =0 (3.29)
where A;,. is the bus incidence matrix and b is the vector of phase angle differences which can
be calculated from SOCP results as by = atan2(s;;, ;)" if (4, 7) is the kth branch in €. Denote
the number of buses by n, := n + m and number of branches by n,, then n, > n, for almost all
meshed networks, and the system (3.29) is overdetermined. We find the least squares solution of
(3.29) through pseudoinverse of the bus incidence matrix:

6 = (AL )b (3.30)
Therefore the phase angle of bus voltages can be recovered and the voltage at bus 7 is given as

V; = \/c;;e%. The recovered voltages will be used to calculate the MSVs of the SOCP-VSC-OPF
results.

3.5.2 Results and Discussions

The results of our computational experiments on VSC-OPF and its SOCP relaxation are presented
in Table 3.1 and Fig. 3.3 for standard IEEE and NESTA instances, respectively. The “Cost”
columns in Table 3.1 shows the objective values of the VSC-OPF model (3.11) and its SOCP
relaxation (3.25). In addition, six sets of information are provided in Table 3.1:

e OG(%) is the percentage optimality gap between the lower bound L B of the objective value
obtained from the SOCP relaxation of VSC-OPF (3.25) and an upper bound U B obtained
from (3.11) by IPOPT. It is calculated as 100% x (1 — LB/UB).

e tis the fixed voltage stability threshold used in the optimization problem (right hand side of
(3.11b)).

t4¢ is the minimum value of |V;| — > i1 Aij/|V;| for all load bus i calculated after solving

VSC-OPF (3.11).

o ANIC (%) is the percentage increase of loading margins of VSC-OPF (3.11) ()\;) and that
of its relaxed OPF counterpart (\2) calculated as 100% x (A1/A2 — 1). The loading margin
is the maximum loading multiplier such that the power flow Jacobian remains nonsingular
under proportional load and generation increase. They are calculated using the Continuation

Power Flow tool in MATPOWER.

arctan £ x>0

arctan £ 7y > 0,2 <0
arctan £ —7  y < 0,2 <0
+3 y>0,z=0
-3 y<0,z=0
undefined y=0,z=0

latan2(y, z) =
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o AcA9(%) is the percentage increase of MSV of the reduced power flow Jacobian of VSC-

min

OPF (3.11) (07) and that of its relaxed OPF counterpart (05) calculated as 100% x (o1 /o3—1).

e DS(%) is the percentage difference between the MSV o4¢ obtained from AC-OPF (3.11)

min

and the MSV 059" from the SOCP relaxation. calculated as 100% x |o59°F /aAC 1],

min min min

Stability Margin Improvement

As shown by Table 3.1, on average, the proposed VSC-OPF model improves the loading margin by
about 2% for the IEEE instances over the relaxed OPF problem with unbounded voltage stability
constraint. We also see than several instances have significantly larger improvements. For example,
case30, case_ieee30 of 30-bus system and case39 of 39-bus system all have more than 5% improved
loading margins; it is seen from Fig. 3.3 that several instances in the NESTA archive have more
than 5% loading margin increase as well, for instance 24-bus, 73-bus, and 189-bus systems. It is
worth noting that there are two IEEE instances (118-bus and 300-bus systems) where the loading
margins decrease. This does not necessarily mean the system voltage stability level is worsen as
the loading marin is only measured along a specific ray of loading variation. In fact, the MSVs of
the two instances both increase, suggesting the overall stability condition may be improved.

As for the MSV, we see from Table 3.1 that for IEEE instances the increase are all nonnegative, with
an average value of 0.59%. This is consistent with our discussion in Section 3.3 that the voltage
stability constraint (3.11b) helps preserve the diagonal dominance of the transformed power flow
Jacobian. In fact, the increase of MSVs for NESTA instances are all nonnegative as well. In
addtion, we see from Fig. 3.3 that there are a few instances that experience large MSV increase,
notably 189-bus and 2383-bus systems. We also see that there are instances for which both Ao,
and A\« are small, which may indicate that the relaxed OPF problems already yield solutions
that have high voltage stability levels.

Tightness of SOCP Relaxation

Table 3.1 shows the average optimality gap between the SOCP relaxation (3.25) and a local solution
of the non-convex VSC-OPF (3.11) is about 1.45%. The optimality gap is quite small, but still
larger compared with the standard OPF. This can be attributed to the fact that the flow limits for
IEEE instances are high and most of them are not binding in standard OPF, while the voltage
stability constraints for VSC-OPF are binding in our experiment.

Effect of Sparse Approximation

The result summary of our computational experiments on the sparse approximation of VSC-OPF
for large NESTA instances are presented in Table 3.2. The sparsity parameter in Algorithm 3 is
chosen to be 0.98. The “Time” columns in the table show the computation time of the VSC-OPF
model (3.25) and the sparse approximation (3.28). In addition, the table reports two sets of data as
described below:
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Figure 3.4: Sparse Approximation of NESTA 2737-Bus Test System

e DCT(%) is the percentage time difference between the computation time ct,, of (3.25) and
cts of (3.28). It is calculated as 100% x (1 — cts/ct,).

e DC(%) is the percentage difference between the objective value c*©“* of the model (3.25)
and ¢* of (3.28) calculated as 100% x |c®/c59CF —1].

For NESTA systems with less than five buses, the sparse approximation (3.28) and the original
SOCP relaxation model (3.25) are exactly the same. For system sizes ranging between 6 buses
and 300 buses, the computation times of model (3.25) are sufficiently short (less than 2 seconds),
which render the sparse approximation unnecessary. However, for systems with more than 1000
buses, the sparse approximation brings about significant speed-up. In fact, the speed-ups are above
90% for all instances with more than 2000 buses and the optimal solutions are obtained in less
than 30 seconds for all instances. Our simulation experiments suggest that the solution accuracies
are extremely high. For larger systems with more than 1000 buses, the differences of cost between
(3.25) and (3.28) are all less than 0.01%.

Fig. 3.4 presents the results of our computational experiments on the sparse approximation of
VSC-OPF for NESTA 2737-bus test instance with varying «. This specific test instance is chosen
since it is the largest instance we have experimented with and also the one that takes the longest
computation time. In fact, it takes almost 1200 seconds to compute the optimal solution for the
test instance. In the figure, blue cross shows the computation time and red dot shows the relative
error of the MSV results. The relative error is calculated as |0y — 0,|/|01 — 0¢| where oy, 0 and
0., are the MSVs given by SOCP relaxation (3.25) (v = 1), relaxed OPF problem (y = 0), and
sparse approximation with tuning paramter . For this test instance, o7 ~ 0.451 and oy ~ 0.439,
it can be seen from Fig. 3.3 that there is an approximately 3% increase from oy to o;. We see from
Fig. 3.4 that the computation time sees a drastic decrease with a very small deviation of the tuning
parameter from 1. Even with «y as high as 0.98, the computation time can be reduced to within 30
seconds, while further decrease in 7 reduces the computation time but to a lesser extent, and the
computation time gradually stabilizes at around 10 seconds. The relative error increases almost
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Table 3.2: Results Summary of Sparse Approximation for Large NESTA Instances From Con-
gested Operating Conditions.

Time (sec)
Normal | Sparse
nesta_case1354 pegase || 25.04 4.24 83.05 0.00
nesta_case1394sop_eir 39.44 9.75 75.27 0.00
nesta_case1397sp_eir 40.42 10.34 74.42 0.00
nesta_case1460wp_eir 39.95 10.54 73.61 0.00
nesta_case2224 edin 274.68 | 22.23 91.91 0.00
nesta_case2383wp_mp 90.54 6.92 92.35 0.00
nesta_case2736sp_mp 496.59 | 14.92 97.00 0.00
nesta_case2737sop_mp || 1190.98 | 25.24 97.04 0.00

average 274.71 | 13.02 85.58 0.00

Test Case DCT (%) | DC (%)

linearly with the decrease of . For v = 0.98, the relative error is only around 3%.

3.5.3 Comparison with Alternative VSC-OPF Formulation

In this section, we compare the proposed VSC-OPF formulation with an alternative formulation
proposed in [156]. The VSC-OPF employed in [156] is based on Voltage Collapse Proximity Index
(VCPI), a voltage stability index quantifying power transfer margins of individual branches. The
VCPI index for a branch is defined as

B,

)
Pr,max

VCPI = (3.31)

where P, is the real power transferred to the receiving end, P, .y is the maximum real power that
can be transferred to the receiving end assuming the voltage at the sending end is fixed. It is known
from the definition that 0 < VCPI < 1 and high VCPI signifies a system that is more stressed. Let
the sending and receiving end bus voltages be |V;|el’ and |V, |e!, and let V := |V,|e!% — |V}.|e!,
then the index can be represented by the two voltages as

2(Vol[Val , Vil cos(s —6) |Vil”

VCPI =
|Vsl? |Vl Vil

(3.32)

The resulting VSC-OPF formulation is the same as (3.11) except that the constraint (3.11b) is
replaced with VCPI,,,, < VCPIy,;e where VCPI,, .,y is the maximum VCPI among all branches
and VCPIy;,,,;; is a preset threshold. We would like to point out that the VCPI index is heuristic in
nature since it has been shown in [62] that maximum branch flows are generally encountered well

before the onset of voltage instability.

The results of (3.11) as well as that of the above formulation based on VCPI depend on the preset
threshold. It is difficult to choose comparable thresholds for the two indices that represent similar
system stress levels, since after all the effect of the indices in reflecting system stress level is what
we want to investigate. Therefore, we propose to compare the two indices by formulating the

45



Table 3.3: Comparison of the Effect of Voltage Stability Improvement of Different VSC-OPF
Formulations.

A>\max (%) AO—min (%)
TestCase BT (Pyerr) || (Pe) | (Pyerr)
case24 ieee rts || 9.87 5.21 0.32 | —0.32
case30 15.06 | —0.59 || 0.01 | —5.13
case_ieee30 9.02 6.02 4.05 3.38
case39 8.96 1.39 0.51 | —4.01
case57 0.52 | —1.66 0.52 | —0.76
case89pegase 1.39 0.99 1.27 | —5.99
casel18 38.43 | 27.57 1.58 | —4.70
case300 3.33 1.63 3.43 | —2.37
casel354pegase | 0.92 | —4.08 || 0.05 | —4.69
case2383 2.64 —f 0.80 | —1.63
average 9.01 | 4.05% | 1.25 | —2.62

TPower flow based on optimization solution does not converge

iAV(J,rage over the first nine cases

‘voltage stability improvement’ problem in [156]. That is, instead of using the voltage stability
index as a constraint, we directly optimize the sum of stability indices, subject to power flow
equations, nodal voltage and power generation constraints (3.8b) — (3.8f). We then denote the two
optimization problems as (Pycpr) and (P¢), since they optimize the sum of VCPI and C-index
([150]), respectively.

One thing we notice with (Pycpr) is that for almost all instances, the problems experience very
slow convergence: they do not converge after 1,000 iterations in [POPT. This is probably due to the
poor numerical properties of the VCPI index (3.32), since the gradient and hessian of the constraint
involve the reciprocal of V;;, which is almost zero when V; and V. are close. We end up with the
MATLAB function fmincon with interior-point solver as was used in [156] for (Pycpr) with the
default maximum number of iterations of 3,000. The program terminates with a feasible solution
that is best possible, to which we compare with (P¢) solved with IPOPT. The results are shown in
Table 3.3. It is seen that the proposed approach outperforms the one in [156].

3.6 Conclusions

We have presented a sufficient condition for power flow Jacobian nonsingularity and shown that the
condition characterizes a set of voltage stable solutions. A new VSC-OPF model has been proposed
based on the sufficient condition. By using the fact that the load powers are constant in an OPF
problem, we reformulate the voltage stability condition to a set of second-order conic constraints
in a transformed variable space. Furthermore, in the new variable space, we have formulated an
SOCP relaxation of the VSC-OPF problem as well as its sparse approximation. Simulation results
show that the proposed VSC-OPF and its SOCP relaxation can effectively restrain the stability
stress of the system; the optimality gap of the SOCP relaxation is slightly larger than that of
the standard OPF problem on IEEE instances due to tightness of the constraints; and the sparse
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approximation yields significant speed-up on larger instances with small accuracy compromise. It
has also been shown that the proposed method outperforms existing one in terms of effectiveness
and computational properties.
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4. Optimal Rate Design in Modern Electricity Sectors

4.1 Introduction

Electricity sectors are experiencing two major shifts: accelerating deployment of intermittent re-
newable generation' and pervasive information and communications technologies (ICT) [71]. The
management of the demand, or demand response, is broadly seen as an important resource in the
presence of intermittent renewables, and ICT has a clear role to play in providing information or
control signals to end-use devices to enable this resource [77]. There are two types of demand
response programs. One includes programs in which a utility can directly alter the demand level of
a customer.? The other encompasses programs where price signals are the means the utility uses to
influence its demand [56]. In this paper we focus on the latter type of programs, commonly known
as rates or tariffs.

In many jurisdictions, a regulated utility distributes the electricity to most end customers. In
these instances, this agent collects its revenue through a set of rates or tariffs, which are under
the oversight of the regulatory body. A central element defining these tariffs is their structure
or design, which specifies what charges compose these instruments [76]. Given the new reality
of the electricity industry, where renewable generation and distributed energy resources (DERs)
play an increasingly important role, regulators are exploring more sophisticated tariff structures
[134]. Advanced rate designs that align better with marginal costs (e.g., time-varying rates) can
reduce generation fuel costs and decrease investment in distribution, transmission and generation
infrastructure [77]. However, when other public goals—such as carbon emission reductions—are
at stake and the presence of intermittent renewables is significant, the case for advanced rates is
less clear-cut. Depending on the characteristic of the system, these rate designs may or may not
decrease emissions [67]; simpler tariffs structures, such as a flat rate (FR), may produce greater
environmental benefits and even improve consumer surplus [87].

The emergence of distributed energy resources further complicates the analysis of rate structures.
Advanced metering infrastructure (AMI), a set of technologies allowing utilities to collect and
transmit granular consumption information, and home energy management systems (HEMS) en-
able the implementation of sophisticated rate designs, and can boost consumer price-responsiveness [53].
However, these DERs are not necessarily cost-effective. While AMI comes along with operational
savings, including a decrease in meter reading or fault detection expenditures, these are insufficient
to cover its capital costs ([52], [53]). Improved tariff designs in combination with HEMS could fill
this gap. But they are not exempt of costs either. Implementing complex rate structures requires
at least creating awareness in the population and educating retail customers on the benefits these
rates; home energy management systems, that can enlarge the benefits of advanced rates, such as
smart thermostats or in-home displays (see [55]), require meaningful capital outlays as well.

Given these benefits and costs, to what extent it is beneficial for a system to implement more so-
phisticated rate structures? While this policy-relevant question has been traditionally approached
by economists, we believe that the OR community has an important role to play in improving

Intermittent renewables include wind and solar power plants.
%In the US, an example of this type of program is direct load control. Utilities can remotely control some of the
devices of a customer under this program.
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past answers, specially in the face of the complexities unfolding in the electricity industry. [133]
gives a step in this direction. The paper investigates the impacts of different tariff structures on
the efficient operation of Plug-In Hybrid Electric Vehicles (PHEVs). Using a Unit Commitment
and Vehicle-Charging models, the paper finds that a simple flat rate can outperform time-varying
rate designs. [133] detailed model illuminates the inefficiencies that can emerge at the retail level
when using time-varying structures in sectors with non-convex costs—where production technolo-
gies have costs with terms independent of the level of production [107]. This finding contradicts
economists common wisdom, which asserts that rate designs that reflect marginal costs better are
more desirable (see, e.g., [77]).

[87] is another example showing that capturing new complexities, characteristic of modern elec-
tricity sectors, can challenge intuition. The paper investigates the interaction between two rate
designs, a flat and a time-varying structure, and investment in the presence of renewable genera-
tion. Using a model that captures the intermittentcy of renewables and the pricing behavior of the
utility, the paper finds that the flat rate design leaves consumers always better-off relative to the
time-varying structure. Although this conclusion rests upon the characteristics of the setting that
[87] analyze, the result does provide additional evidence of the importance of detailed modeling
when evaluating tariff structures.

The present work adds to the contributions by developing a general technique to evaluate rate
structures. We take as a starting point empirical methods which have been used to conduct welfare
analysis of rate changes (e.g., [2], [30], [60], [69], [91], [111], [12], [15], [139] and [4]). We add
layers of detail that capture salient aspects of modern electricity sectors. Specifically, we extend
previous techniques in four significant ways. First, our method improves the consistency of the
comparison among rates. Existing approaches compare tariff structures either specifying ex-ante
rate levels (the specific values of each of the charges composing the rate structure), or imposing
unnecessary constraints on them (e.g., [2], [12], [133]). In contrast, our technique computes rate
levels following an optimality criterion. Researchers compare the best case of a rate structure
against the best case of another (see Subsection 4.3.1 for more details).

In addition, we improve the supply cost representation of previous methods. With the exception
of [133], past work either represents these costs with stylized models (e.g., [12], [87]) or omits
the supply side, only assessing welfare impacts on end customers (e.g., [91], [4]). The present
technique permits researchers to include complex representations of the supply side. The main
difference with the approach of [133] is that we consider long term costs while this author focuses
on the short-run.

A third extension allows comparing multiple rate structures simultaneously. Except for [12] and
[15],

The last element that distinguish our method from others is the endogenous computation of an
optimal demand mix. That is, the model we use for comparing rates finds the socially optimal
fraction of customers enrolled in different programs. [15] explores the welfare implications of
alternative demand mixes. Specifically, the paper studies the impacts of exogenously varying the
fraction of customers under an advanced tariff. It shows that while the marginal benefit of increas-
ing this fraction decreases, the marginal cost remains constant. Consequently, the authors observe
that the optimal fraction ultimately depends upon the specific characteristics of the system under
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study. The endogenous computation of an optimal demand mix simplifies the analysis in [15].
More importantly, in combination with the other improvements we introduce, it allows comparing
portfolios of rate structures making far less assumptions than one would have to if using other
approaches.

Our technique uses a nonlinear optimization model that we build based on the Peak-Load Pricing
theory. This strand of utility pricing was developed in the seventies and eighties with the work of
[135], [9], [46], [39], [109], [75], [25] and [31], and more recently was revisited by [159] and [32].
While it originally intended to provide theoretical guidelines for the optimal pricing of public utility
services [38], other authors have used this theory as a framework to analyze a range of regulatory
issues. [73] uses Peak-Load Pricing to construct a benchmark to understand the implications of
competition at the retail level in the electricity industry; [159] explores the incentives to invest of
strategic firms participating in markets where demand is fluctuating and storage is prohibitively
expensive; and [32] uses the theory to explore the interaction between time-varying rates and
intermittent renewables. Following the approach of these papers, we use Peak-Load Pricing as a
basis for our model which we modify to meet our purposes.

4.2 Peak-Load Pricing: An Overview

The problem that this theory addresses is how to price the set of commodities that a regulated
monopoly provides. It answers this question taking the perspective of a regulator. Optimal prices
are such that the societal welfare is maximized subject to the revenue sufficiency and technical con-
straints of the regulated monopoly [38]. We formalize the Peak-Load Pricing problem following
[38] and [73].

Before starting, we introduce some notation. Let €2 be a discrete sample space, g, the probability
that w € Q occurs, and E|-| the associated expectation operator. We refer to an element in € as
outcome or state of nature, and distinguish a random from a deterministic variable placing a bar on
top of the former. Given a random variable ¢, we denote y,, the realization of this variable when w
occurs. The symbol T indicates the transpose of a vector.

The theory considers a monopolist offering a set {1,...,7"} of goods. Customers are of different
types ¢« € I, and distribute according to a frequency function ¢;, denoting the number of types
i. A quasi-linear utility U (d) + m,, characterizes the preferences of the customers of type i
over consumption bundles d € RZ. The scalar m,, is her expenditure in all other goods. For
a vector of prices p, € R%, a customer with an income }M; consumes according to the demand
function D, (p,,) = argmaz, {U}(d) + M; — p,d}.? It is customary to assume that UZ(-) is
strictly concave and, thus, D’ (p) is a singleton. The gross surplus of this customer is S’ (p,,) ==
Uss (D (po))-

We define D”'(p) as the aggregated consumption of types i € I', where I' C I. That is, D" (p) =
[, D'(p)d;di. Defined similarly, S!'(p,,) represents the aggregated gross surplus.

The monopolist offers a two-part rate structure. That is, a contract which has a fixed charge [
and a vector of volumetric charges p. In this arrangement, the monopolist charges p;,, per unit of

3The problem the customer solves is {Uj) (d)+my : M; >pld+ mw}. Because peak-load pricing assumes
m,, > 0 in any optimum, one can simplify the problem.
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consumption of good ¢ under w. The corresponding consumer surplus is
CS(l,p) = E[S'(p) —p" D'(p)] — - v1, 4.1)

where v == [}, ;di forany I' C I.

The monopolist produces with a set of technologies that we index with the letter £ € K. Each
technology differs from others on its variable costs per unit of production, ¢, € R, its fixed
costs 7', and its availability factor, p,) € RZ, capturing the variability in the technology’s availa-
bility—e.g., due to the intermittent output of some renewables or the occurrence of outages. Before
uncertainty realizes, the monopolist decides the installed capacity of each technology, ;. After,
the firm determines a production vector for each technology, v+ € RJTF. For a consumption vector
d, the monopolist’s cost function satisfies

C (d) = min Y E [y e + iy (4.2)
@) ek
subject to
d<> (4.3)
keK
0 <y <zppg, k€K (4.4)
and the firm’s profit is
(l,p) = E[p' D'(p)] + 1 - vi — C (D' (p)) — Iy, 4.5)

where II captures transmission and distribution costs, overhead expenses and the opportunity cost
of the monopolist.

The welfare maximization problem or, as it is referred to in Peak-Load Pricing (e.g., [38], [73]),
the Ramsey problem is

max {CS(,p): U(l,p) >0,(,p) € L x P}. (4.6)
P

Henceforth, we refer to £ x P as rate structure, and to an element of this set as rate level.

The literature theoretically explores optimal pricing rules for alternative structures. For instance,
[73] consider the case where £ = R, and compare a real-time pricing structure (RTP), in which

P = R?m, with a flat rate structure, where P = {ﬁ € RZ"Q‘ : Pro = Prwr V(E, w)}; [38], on the

other hand, focus on the case where £ = {0}, and also review the real-time and flat rate cases.

4.3 A Method to Compare Rate Structures
We propose using the model of Peak-Load Pricing as a framework to compare rate structures. For

a set of tariffs under analysis, the comparison requires solving the Ramsey problem for each of the
corresponding structures, and then comparing the optimal values of the problem.
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This method is closely related to the approaches used by [2], [30], [60], [69], [91], [111], [139]
and [4]. For a change in rates, these studies compute a change in welfare (1) using that AW =
AIl — Ar + AY, where All is the change in producer surplus, Ar the variation in demand side
infrastructure costs, and AY is the compensating variation—the money that when taken away
from an individual leaves him with the same level of welfare he had before the price change [98].
Researchers can use the optimal value of the Ramsey problem to quantify AW. With the following
Lemma, we formalize this claim.

Lemma 1. Suppose prices change from (11, p') to (I3, p*), and let vy and v, be the optimal value
of the Ramsey problem for the rates 1 and 2, respectively. Then,

AW = vy — vy — Ar. 4.7)

4.3.1 Consistently Comparing Rate Structures

One advantage of using (4.7) is that it offers a consistent criterion to compare rate structures. The
solution of the Ramsey problem corresponds to the optimal rate levels. Thus, researchers compute
the change in welfare associated to the best case of each structure.

This criterion offers an alternative to previous approaches. [4], [69], [91], [111] and [139] compute
the welfare changes using predefined rates. [2] compare two time-of-use (TOU)* with a flat rate
structure. The authors determine the TOU assuming a difference between the peak and off-peak
charges and imposing revenue neutrality. [30] follows a similar approach except that the authors
search for an optimal TOU rate evaluating various peak to off-peak ratios. The method that is
closest to ours is the one that [60] use. This work computes welfare changes from a flat rate to
a TOU and to an RTP structures. As in our method, the paper numerically finds optimal rate
levels for each structure. The key difference is that the authors use a simplified representation
of the production costs. While a simplification, the function do captures an important trade-off
present in electricity industries: a more capital intensive production mix, commonly associated to
an increased average cost of capital, will tend to have lower short-run marginal costs at all levels
of production.

4.3.2 A Flexible Cost Function

The difficulty of using the approach of [60] is that the cost function cannot be easily customized.
It is not possible to use this function, for instance, in systems with potentially high penetrations
of intermittent renewables. A crucial determinant of the value of these technologies is how their
output correlates with consumption. This aspect is missing in the cost representation of [60]. Using
the cost function of Peak-Load Pricing, on the other hand, avoids this problem, without missing
the trade-off between capital and short-run marginal costs.

Furthermore, a researcher can easily modify (4.2)-(4.4) to increase the realism and suitability of
this cost representation depending on the data available. Indeed, the technical results of Subsec-
tions 4.3.5 and 4.3.6 hold if the objective function is convex, and (4.4) is a general convex set. In

4A TOU structure charges differently depending on the hour of the day, day of the weak and possibly season.
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particular this allows modeling a transmission system, rationing and disruption costs,’ and tech-
nologies with storage and ramping constraints.

4.3.3 Comparing Portfolios of Rate Structures

An element characteristic of previous tariff analyses is the pairwise comparison of rate structures.
With the exception of [12] and [15], past work assesses welfare changes resulting from the whole
population being in one rate and then switching to another.

In practice, a utility recovers its costs offering a portfolio of tariffs. Each rate in the portfolio applies
to an specific class—a fraction of the customer base with particular cost characteristics [120].
It is not uncommon for utilities to distinguish various classes (e.g., industrial, commercial and
residential customers) and, thus, offer portfolios with several rates [120]. It seems then appropriate
to have methods that allow measuring welfare changes when changing more than one rate at a
time.

These approaches can also help improving analyses focusing on just one rate structure. Changing
the tariff of one class can impact other classes as well. For instance, if a new rate reduces the
contribution of the class to the aggregated peak consumption, this will cause a reduction in the
overall production costs.® If this effect is systematic, in the medium to long term, it will translate
into lower bills for all customers, not just those in the class with the new rate.

To the best of our knowledge, only [12] and [15] explore welfare changes while simultaneously
adjusting multiple rates. These papers study a setting with two type of customers, those enrolling in
a flat rate structure and those in an RTP tariff. The studies analyze various scenarios in terms of the
fraction of the population under each rate. For each scenario they compute rate levels that satisfy
market equilibrium conditions, and calculate the corresponding welfare metric. Our method builds
upon the idea of comparing multiple rates which are adjusted simultaneously to new systems’
conditions. We expand the approach of [15] with a model that allows comparing general portfolios
of rate structures.

In order to achieve this goal, we introduce a slight modification to the Ramsey problem. Let
L=Lyx...xL,,P:=P;x...xP,and L x P be the constraint set for the rate revels, that we
call portfolio of rate structures. We consider P being a convex set. Besides, weletl = (Iy,...,1,)"
be a vector of fixed charges and p = ((p')",...,(p")")" a block vector of volumetric charges.
Now the duple (I, p) corresponds to a portfolio of rate levels. The subindex h identifies a particular
rate and the partition of population under this tariff (for instance, a class). The set [}, contains the
types under partition h, and «;, is the number of customer under this partition. We focus on the
case where I, N I, = (), Yh # h'. This is the relevant case since classes distinguish customers
with different characteristics. We modify the consumer surplus function of Peak-Load Pricing as
follows

CS(l,p) =) E[S"p") - D"(@")'p"] —1"a, (4.8)
h=1

SFollowing the technique of [39].
®In the electricity sector more efficient units have priority. This implies that during peak periods the more inefficient
plants are used, which increases the marginal cost of production.
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and similarly update the profit function
(,p) =Y E[D"@") "] +(1+r)a-C (Z Dh(ﬁh)) —~ I, (4.9)
h=1 h=1

where, for simplicity, we replaced S’ (p") and D' (p") by S"(p") and D"(p"), respectively. In
(4.9) the vector r = (rq, ... ,rn)T has in its components fixed costs which are directly associated
with each rate. For example, if a utility decides to implement a time-varying rate for customers in
h, it needs to upgrade its metering equipment. The parameter 1, is the cost of the new capital, and
may also account for program implementation and marketing costs (all expressed as annuities).

Observe that (4.8) and (4.9) do not alter the structure of the Ramsey problem, only increase its
dimensionality. If it is possible to solve (4.6) efficiently, then the same applies for the new problem.

4.3.4 Optimal Demand Mix

Distributed energy resources change the way in which customers interact with the electricity grid.
Households and businesses become more responsive to complex price signals [55], and they may
even sell energy and provide reliability services to the grid [72]. In an effort to adapt to this
emerging reality, regulators are rethinking the design of existing rates [134]. The challenge in-
volves developing tariffs that (i) provide the right long term incentives, so that DERs are adopted
efficiently [105],” and (ii) uncover the operational value of these resources [90]. To enable re-
searchers to explore the extent in which a given rate structure meets these goals, we introduce a
final modification to the Peak-Load Pricing framework.

This modification builds upon the observations of [15] and [73]. These papers analyze the value
of advanced metering infrastructure (AMI) as enabler of real-time pricing. They observe that,
depending on the capital cost of this distributed energy resource, it is optimal to deploy AMI in
only a fraction of the customer base. The reason is that the marginal benefit of an increasing
number of customers enrolled in RTP decreases [15], while the marginal cost (the capital cost
of AMI) remains constant. This result suggests treating the number of customers with the same
rate structure and DER in a similar fashion as one treats the installed capacity of a production
technology. Making an analogy with the supply side, one can think the distribution of customers
across tariffs and DERs as a demand mix. The final modification we introduce to the Peak-Load
Pricing model, allows comparing tariff structures under optimal supply and demand mixes.

Beyond improving the internal consistency of the rate evaluation method we propose, this sym-
metrical treatment improves the accuracy of the technique. Comparing rates assuming arbitrary
long-run configurations for the demand can produce misleading results. Past rate analyses, such
as [30] or [60], concluded that time-of-use rates were not cost-effective for residential customers.
Metering costs would have outweighed efficiency gains if the program would have been imple-
mented for the whole customer base. The observations of [15] and [73] weaken the conclusions of
these studies. Time-varying rates could have passed the cost-benefit test if the authors would have

"In this context, the word adoption refers to households and businesses acquiring a resource relevant for the grid
operation, for instance, a solar photovoltaic panel or an electric vehicle. Efficient adoption refers to the deployment of
these resources at the right place and time.
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focused on the optimal subset of the population. In addition, computing a demand mix is important
for a reason not directly related with rate analysis. An optimal supply and demand mix provides
regulators and policymakers with a snapshot of the long term configuration of the system, given a
portfolio of rate structures. This perspective can be used as a benchmark and also to set targets for
DERs adoption or rate enrollment.

To model a demand mix, we now assume that / is a discrete set, with v; being the number of cus-
tomers under type i € I (e.g., I = {industrial, commercial, residential}). For customers that adopt
a technology h the rate that applies is (I, p"); and «y, continues to be the number of customers in
h. Defining the matrix I" such that [I'];;, = 1 if a type ¢ can enroll in & and 0 otherwise, the feasible
region for «, henceforth the demand mix, is A := {a eR}:Ta< u}.

As in the setting of [15], we focus on the case where > . [I';;] = 1. That is, we consider that
one rate applies to only one customer type. In our setting the type ¢ is a representative customer.
Though interesting, we postpone the development of the general case, in which different customer
types can enroll in the same rate, for future work.

The new consumer surplus function is now
Z anE [S — D) TP — 1Ty, (4.10)

and the utility surplus

ZahE [D"(")Tp"] + (1 +7)T (ZahD ) (4.11)

where r;, not only includes the costs associated to the implementation of the rate but also those
related to the technology of the customers enrolled in h. For simplicity, henceforth we consider
that r, includes the costs ITy/ Y, 1.8

We simplify the Ramsey problem noting that I1(/,p) = 0 in the optimum. Using this condition,
and equations (4.10) and (4.11), the version of the Ramsey problem we propose for rate analysis is

h nh(=h
m%(ZahE [S"(p") =] = C | Y anD"(p") (4.12)
subject to
pEP, (4.13)
a € A (4.14)

Researchers evaluating portfolios of rate structures can solve (4.12)-(4.14) for alternative defini-
tions of P and compare the optimal value of this problem. Note that it is no longer necessary to
add exogenously the variation in demand side capital costs (Ar) to the variation in optimal values

81n practice utilities and customers share technology costs, for instance, utilities may own metering infrastructure
and customers rooftop solar panels. However, ownership is not relevant from a social planning perspective when the
focus is efficiency. Besides, utilities can always pass along this cost with the fixed charge [j,.
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of the Ramsey problem, as in (4.7). These costs are part of the objective of (4.12)—(4.14).

4.3.5 Enhancing the Applicability of the Framework

The Ramsey problem is nonlinear, and non-convex. This poses two important challenges to ana-
lysts using this model. First, in general it is not possible to guarantee that a solution of (4.12)-(4.14)
is globally optimal. Thus, despite finding solutions for two competing portfolios of rate structures
their comparison could be inconsistent. The analyst could benchmark a sub-optimal against an op-
timal solution. Second, the non-convexity of the problem limits its scalability as the problem size
greatly decreases the performance of non-convex solvers. To enhance the practical applicability of
the method, we make the following assumption:

Assumption 2. The gross surplus function S"(-) is strictly concave and the demand function D" (-)
; 9
is convex.

Under Assumption 2 (4.12)—(4.14) remains nonlinear and not necessarily convex or concave. How-
ever, its specific structure allows us to develop an efficient solution method. The following propo-
sition suggests a suitable approach.

Proposition 4. Let P, refer to the problem (4.12)—(4.14) with « entering as a fixed parameter, and
let g(«) be the optimal value of P,. Under Assumption 2, for any o € A, g(«) is concave.

Indeed, even though ¢(-) does not have an explicit functional form, we can leverage an iterative
procedure solving
max {g(a): a € A} (4.15)

to find a solution to the Ramsey problem. Because (4.15) is a convex problem, such an approach
could potentially outperform non-convex solvers. In Section 4.4 we present evidence suggesting
that this is in fact the case.

4.3.6 Optimal Long Term Incentives

An implicit assumption of the Ramsey problem is that regulators can control the demand mix «,
1.e., the adoption of technologies and rate enrollment. While these authorities could have certain
influence on the roll-out of distribution equipment, for many demand side technologies and rates
customers are the agents making the adoption and enrollment decisions. At best, regulators could
design long term incentives consistent with a desired demand configuration. Thus, the solution of
(4.12)—(4.14) should be interpreted as the demand mix given optimal long term incentives.

For concreteness, we now propose one approach for setting these incentives. Let p(«) be the
optimal solution of P,. Define, in addition, X(oz) as the dual variable of (4.3) when the demand pa-
rameter is the aggregated demand (the argument of C'(-) in (4.11)) evaluated at («, p(«v)). Further,
define the vector of fixed charges /(«) as follows,

In(a) = E [(Ma) = p"(a)) " D" (" ()] + 7. (4.16)

Convex demand functions are mappings whose components are all convex.
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The incentive rule we propose is set the rate levels at (I(«), p(cv)) when the demand mix is .

This rule has appealing theoretical properties. It replicates the incentive structure of an industry
with a distribution utility and a competitive wholesale market (see e.g., [73]). More importantly,
one can show that that these incentives align customers’ individual choices with the maximization
of societal welfare. The three results that follow formalize this property.

First, we observe that if the system is at a socially optimal configuration, under the rule we propose
no customer has incentives to switch.

Proposition 5. Let (a*,p(a*)) be an optimal solution of (4.12)-(4.14), and l(a*) the vector of
fixed charges. Then, the portfolio of rate levels (I(a*),p(a*)) is such that no customer has an
incentive to switch to an alternative rate.

Assuming that the utility updates rates relatively fast compared with how customers switch, it is
possible to show a result akin to Theorem 5 in [15]. The result provides an intuition about the
welfare effects of customers switching, including effects on these customers and on the population
as a whole.

Proposition 6. If immediately after a rate update the first group of customers switching leave hl
to enroll in h2, then (i) the surplus of switchers increases, (ii) the difference between surplus of
customers in h1l and h2 decreases, (iii) the aggregated welfare increases, and (iv) the marginal
benefit of the switch decreases.

The final proposition shows that a regulator could induce the optimum of the Ramsey problem
instructing an incentive rule such as the one we propose. Interestingly, this incentive rule does not
require the regulator knowing the optimal demand mix in advance. The current conditions fully
determine the incentive.

Proposition 7. The incentive rule that sets rate levels at (I(«), p(«)), when « describes the demand
mix, induces the Ramsey optimum in the long-run.

Beyond being compelling from a theoretical perspective, this result enhances the consistency of
the method introduced in this paper. When using (4.12)—(4.14) to compare structures, a researcher
compares among best cases which could be implemented. The result also improves the value of
the Ramsey problem as a benchmark case for planning studies.

4.4 Solution Method

In principle, one could solve (4.12)—(4.14) with a non-convex optimization package. Here we
describe an alternative approach that exploits Proposition 4. We propose solving (4.15), thereby
solving implicitly the Ramsey problem. Because g(«) does not have an explicit functional form,
we use an iterative procedure comprising an inner and outer routines. The inner routine solves
P,, a task that, in general, a convex optimization solver can handle. The outer routine searches an
optimum for (4.15). At each iteration it uses information of the optimal solution of P, in order to
compute a search direction and a step size. The outer routine can be implemented with a variety of
nonlinear optimization algorithms; in this paper we implement it with a Barrier method [18].
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The barrier method works by dropping the problem’s inequality constraints and augmenting the
objective with a barrier function ¢(-). The new objective is z;(«) = tg(a) + ¢(a), where ¢ is a
weighting parameter that changes across iterations. We define ¢(-) as ¢(a) := Y .., In(v;—Ljea) +
> 1 In(a), where T';, is the ith row of the matrix I'. The new problem is an unconstrained
nonlinear program, thus, it can be handled with a Newton-like method. Algorithm 4 describes the
outer routine.

Algorithm 4 Outer routine solved via Barrier method

Initialization: Given a strictly feasible o, <+ t° > 0, x> land e > 0
while (|| +n)/t > edo

tet4p

Find with Newton method o* := arg maz,, z;(«)

at) + o
end while

In practice, one cannot use a standard Newton method in order to maximize z(-). Because this
function does not have an analytic formula, there is no analytic expression for its inverse Hessian.
A suitable approach is using a quasi-Newton algorithm [94]. These methods use an approximation
of the inverse Hessian when computing a Newton step. The more sophisticated versions calculate
improved approximations of this matrix using first order information gathered as the optimiza-
tion procedure progresses. In this paper we use the Limited Memory Broyden-Fletcher-Goldfard-
Shanno method (L-BFGS), which guarantees R-linear convergence for uniformly concave prob-
lems. The performance of this algorithm improves considerably if V|[z;(«)] = tVg(a) + V(o)
is available analytically. While deriving an analytic expression for the second term is straightfor-
ward, for the first we use a result from sensitivity analysis for nonlinear programs.'? Its explicit
formula is

Vg(a)l,=F [S‘h (ﬁh(oz)) — XMa)"D" (ﬁh(a))] — 7. 4.17)

Performance To test the performance of our approach, we constructed a simple experiment that
is similar to the one described in Section 4.5 with two key differences. First, we used only two tar-
iffs: (1) real-time pricing (RTP), for which the volumetric charge varies freely, and (i1) flat rate, for
which the volumetric charge is constant across all time steps and outcomes. Second, in addition to
examining a scenario with a sample spaces composed of 365 outcomes (as in Section 4.5), we also
examined a smaller case with 50 outcomes. For each scenario, we implemented the preceding al-
gorithm, which we will refer to as parametric, as well as a first order and second order procedures.
The latter two methods solve the Ramsey problem directly with a nonlinear solver. While the first
order passes to the solver the analytic formula of the gradients, the second order provides the an-
alytic Hessian as well. We tested each algorithm-scenario combination for 20 different parameter
choices corresponding to a range of technology costs and demand price-responsiveness parame-
ters. The stopping criterion for all algorithms was the same: the lesser of the time to converge
within a 1075 duality gap, or 14, 400 seconds.

10For details see the proof of Proposition 2.
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Figure 4.1: Structure of Analysis

Overall, we found that the parametric method converged in 13+5s (for 50 states of nature, + de-
notes standard deviation) and 2264-79s (365 states of nature). The second order method converged
in 49425s and 3,13241,762s (50 and 365 outcomes, respectively) and the first order method con-
verged (or reached the maximum compute time) in 2,865+2,568s and 11,40545,050s.

4.5 An Application: The Value of Real-Time Pricing
4.5.1 Analysis Design and Data Assumptions

We compared two portfolios of rate structures: (i) a portfolio that includes a flat rate and a time-
of-use tariff'! and (ii) a portfolio that adds an RTP tariff to the first portfolio. As Figure 4.1 shows,
for each portfolio we considered a range of scenarios for demand-side technology costs, a range of
Renewable Portfolio Standard (RPS)'? targets, and load and renewable production data from two
systems (Denmark and California; for simplicity we restrict renewable production to wind).

Table 4.1 shows the supply-side technologies we considered and their economic parameters. The
only relevant supply-side technical parameter is the availability factor, which we set to 85% for
all states of nature for non-wind technologies.!> For wind, we use historical system-wide hourly
capacity factors for 2014, available from California’s Open Access Same-time Information System
(OASIS) and the website of the Danish transmission system operator.

On the demand side, we consider one customer type'* and three arrays of technologies, denoted
as Tech 1, 2 or 3: (1) a standard meter, (2) advanced metering infrastructure (AMI) or (3) AMI

""Here we consider a TOU with different volumetric charges for each hour of the day.
12An RPS target mandates the utility to produce a fraction of its energy with renewables.
13The availability factor from NERC’s Generating Availability Data System website.
“We chose one type due to data availability and to simplify the analysis.
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Table 4.1: Economic Parameters of Supply-Side Technologies

Base-load Mid-merit Peak High-peak Wind

Capital cost 207 85 27 16 225
Fixed O&M kg /MW-yr 69 21 16 11 40
Total fixed 227 106 43 27 265
Fuel 11 27 43 66 0
Variable O&M  ¢/Mwh 5 11 11 11 0
Total variable 16 38 54 77 0

Notes: Non-wind parameters taken from [40]. Wind costs are the average of those from [47]
for California and from [145] for Denmark.

plus automation technology. AMI enables customers to participate in TOU or RTP tariffs, whereas
automation technology enables customers to automate the price response of their appliances. We
model the latter phenomenon assuming different price elasticities for customers with and without
automation. Table 4.2 shows these elasticities whose range is taken from empirical estimates
in [55].

Table 4.2: Demand Elasticities

No automation Automation
Low increase = Medium increase High increase
own? cross® own cross own Cross Oown  Cross

(0.02) 0.07 (0.04) 0.14 (0.05) 0.20 (0.07) 0.27
(0.04) 0.14 (0.05) 0.20 (0.07) 0.27 (0.08) 0.33
(0.05) 020 (0.07) 0.27 (0.08) 0.33 (0.10) 0.40

& Own-price elasticity.
b Cross-price elasticity.
Note: Rows provide a range of own- and cross-price elasticities.

Tech 1 costs are normalized to zero; the costs to move to Tech 2 or 3 are incremental. AMI costs are
based on U.S. DOE data [42, 44].' For automation technology we base costs on currently available
advanced programmable controllable thermostats. The highest x-axis values in Fig. 4.1 agree with
these incremental cost data; the two additional costs correspond to 25% and 50% reductions.

The baseline levels of consumption correspond to the hourly, system-wide load profile for the
year 2014 for both, California and Denmark. While for California this data is publicly available
in OASIS, the Danish transmission system operator makes the hourly, system-wide load profile
available in its web page.

SThese estimates are for capital and installation costs, net of any benefits to utility operations (e.g. meter reading
and back-office staffing). The estimates do not include hypothetical reductions in energy or capacity expansion costs.
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4.5.2 Results

As Figure 4.2 shows, welfare in Portfolio (ii) exceeds Portfolio (i) across the range of factors we
explored. Additionally, higher elasticity levels increase the positive impact of adding RTP to (i).
These findings are not surprising in light of previous work (e.g. [15], [40], [38] and [73]). However,
our framework allows a more comprehensive analysis.

200 1.0
150 0.75
/i
100 / 0.5
50 0.25

California
0 0.0
15 35 55 75
15 0.6

11.2 \ 0.45

Average absolute difference [M$/year]
Average relative difference [%]

7.5 0.3
3.7 0.15
Denmark
0 0.0
15 35 55 75
RPS target [%]

Figure 4.2: Average Welfare Differences Between Portfolios ((i1) - (1)) by RPS Target. Absolute
Differences in Black. Relative Differences in Gray. Line Thickness Represents Different Elasticity
Levels. Thicker Lines Correspond to Lower Own- and Cross-Price Elasticities.

In terms of relative welfare differences, Portfolio (i1) does not seem particularly attractive. Con-
sidering additional rate design factors such as simplicity or public acceptance, a regulator could
conclude that neither in California nor in Denmark real-time pricing is valuable enough to justify

its deployment. However, a significantly different picture emerges when one observes the results
in Table 4.3.

The demand mix provides a complementary perspective on the relevance of demand alternatives
for a system. While in California between 13 to 23 percent of the population would enroll in
real-time pricing were it present, only a 4 to 5 percent would in Denmark. In equilibrium these
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Table 4.3: Demand Mix by RPS Target

California Denmark
RPS [%]
Portfolio Tech Tariff 15 35 55 75 15 35 55 175

1 FR 97 97 9% 97 96 97 99 99
TOou 2 2 3 2 3 2 1 1
TOU 1 1 1 1 1 1

FR &8 82 79 77 96 95 95 95
RTP 9 11 13 14 2 3 3 3
3 RTP 4 7 8 9 2 2 2 2

@

NS IR VS I \S ]

@D

Note: Values are percentages of population under each category.

differences appear not relevant because welfare results are similar, in relative terms. But, in view of
Proposition 6, the roll-out of RTP will certainly accrue more benefits across time for customers in
systems like California’s than for those in systems like Denmark’s. This policy-relevant perspective
cannot be achieved without a modeling framework such as that developed in this paper.

An alternative way of inferring differences in the demand mix would be analyzing net-load duration
curves.!'® Since demand responsiveness competes with peaking plants [15, 40], differences during
peak-hours should translate into differences in the demand mix. Figure 4.3 shows, however, that
small variations in the shape of the curves can imply significantly different demand mixes. Thus,
using net-load duration curves in order to anticipate possible differences does not seem a suitable
approach.

Finally, we point out two additional conclusions an analyst can derive from the demand mix. First,
it allows simplifying portfolios of rate structures. For instance, Table 4.3 shows that when faced
with Portfolio (ii) no customer enrolls in the time-of-use program, which indicates that a simpler
portfolio achieves the same benefits. Second, the demand mix establishes targets for rolling-out de-
mand technologies and rate structures. These targets are not trivial as they correspond to fractions
of the population and are contingent on the many factors we explored. In particular, considering
that the AMI costs we used are net of any benefits to utility operations (e.g. meter reading and
back-office staffing), our results suggest that 100% smart meter rollouts are not cost-effective in
the regions we investigated.

4.6 Conclusions

This work introduces an analytic method for helping planners and regulators in the design of rates
in the electricity sector. It develops a nonlinear program that serves as tool to compare portfolios
of rate structures, and proposes a suitable approach to find an optimal solution of this model.

16Net load-duration curves are analysis tools used in the electricity sector to estimate the long term value of different
production technologies. They plot hourly net loads (system demand minus the renewable production) for each hour
of a period, say a year. Hours are sorted from left to right with the highest net load hour to the extreme left and the
lowest to the extreme right. A point in this curve indicates the fraction of the time (z—coordinate) the net load is
greater or equal to the net load in the curve (the ordinate). For more details, we refer the reader to [136].
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Figure 4.3: Net-Load Duration Curves by RPS Target. California Net-Load in Black. Denmark
Net-Load in Gray. All Curves Reach a Maximum of 100%.

The flexibility of our method allows consistently comparing tariff structures, and it enables re-
searchers to model a richer set of trade-offs influencing the production costs in the sector. It also
allows the comparison of portfolios of tariffs under optimal demand mixes. A theoretical explo-
ration of the properties of the nonlinear program suggests that our method compares rates which are
not only socially optimal but could also be implemented. Besides, the demand mix that the model
computes offers a valuable perspective on the potential of competing demand alternatives. It helps
planners and regulators to prioritize demand technologies and rates, and to establish appropriate
levels of deployment for each demand option.

The application of the framework to the comparison of portfolios of rate structures in California
and Denmark shows its practical value. As the theory predicts, real-time pricing increases welfare
in both systems. But these benefits may not be enough to deploy it in either. The systems have,
however, different demand mixes which indicate different policy prescriptions. While in Denmark
RTP appears unattractive, it at least deserves further revision in California.
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5. A Mathematical Programming Approach to Utility Pricing

5.1 Introduction

The distribution segment of the supply chain of commodities such as gas or electricity has charac-
teristics of natural monopoly. In these instances one firm, a distribution utility, serves all customers
and maintains the entire distribution infrastructure. Absent competition, a regulator supervises the
pricing, or rate design, of the utility’s services. The resulting regulated prices serve two main
purposes. They guarantee that the firm recovers its costs, and thereby sustains its operations, and
sends proper economic signals to retail customers [78].

Changes in the landscape of the utility industry are challenging prevailing rate designs. In some
sectors, such as in the electricity industry, innovations in information and automation technologies
enable utilities to implement more complex tariffs. For instance, advanced metering infrastruc-
ture (AMI) allows measuring and recording electricity consumption at the hourly timescale. With
this technology utilities can implement time-varying rate structures, designs in which volumetric
charges can change across time [77].

The increasing penetration of distributed energy resources (DERs) and intermittent generation also
incentivize innovation in rate design. The massive adoption of DERs, such as rooftop solar pho-
tovoltaic (PV) panels, home energy management systems (HEMS) or electric vehicles (EVs), has
pushed regulators to rethink the way in which utilities should collect their revenue [105]. In a
world of pervasive DERs, innovative tariffs design are expected to improve the efficiency of the
sector, decreasing short- and long-run systems costs, and tackling distortions such as the cross-
subsidization between customers with and without DERs [105].

On the other hand, high-voltage grid-connected intermittent generation technologies, such as wind-
mills or solar photovoltaic systems, bring new challenges to the grid operations. The output of
these technologies is driven mainly by weather conditions, such as wind speed, wind direction,
cloud cover or haze, which change considerably across time. As a result, systems operators cannot
dispatch these resources at will. In absence of economically feasible storage, the intermittentcy of
wind or solar requires additional reserves to ensure reliability and more capacity to meet demand.
These requisites could translate into higher production costs and even undermine carbon emission
reductions [59]. Rate structures that reflect closely system conditions could work in sync with
renewable resources, incentivizing consumption when these resources are available, and bringing
demand down when they are scarce.

In theory, there is one type of rate that could materialize all these benefits: a two-part real-time
pricing (RTP). This variant of a time-varying rate, in which volumetric charges can differ from
hour to hour, outperforms all other structures from an efficiency perspective [73]. Despite of this
fact, at the time of this writing, only a small number of jurisdictions have implemented this struc-
ture [131]. Part of the reason is that designing rates not only involves economic considerations.
Regulators must balance other objectives such as the simplicity, distributional impacts and sta-
bility of competing tariff designs [10]. Having techniques that allow consistently quantifying the
economic differences of various rates brings more clarity to the overall analysis. Regulators can
balance economic gains of more efficient rates, such as a real-time pricing, versus other objectives.
Even though RTP could maximize efficiency, the economic gains with respect to a more simple or
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stable rate could be small enough to advice against its implementation.

This paper contributes with a quantitative technique to evaluate rate structures. In contrast to pre-
vious approaches, our method allows comparing within a unified framework a large class of tariff
designs. This includes time-varying structures, rates with demand charges, or charges for peak-
consumption, and block rates—tariff with volumetric charges contingent on total consumption. A
second distinctive characteristic of the present technique is that it enables modeling in a transpar-
ent manner important aspects emerging in the utility industry. Our framework allows representing
in detail distributed energy resources, such as PV panels or battery storage systems, and flexible
appliances, such as heating and cooling systems. This realistic representation of the demand side is
embedded within a traditional capacity expansion setting (e.g., [104]). This allows researchers to
explore the long-run implications of different rate structures, taking into account their interaction
with the full supply chain. More importantly, it enables to model the time-variant and stochastic
nature of intermittent technologies, resources which are increasingly important in modern utility
sectors.

Our model builds upon the theory of Peak-Load Pricing, a framework that captures the interaction
between rate structures and investment decisions in the utility sector, and can be used to compare
rate designs. In this setting, a regulator chooses the pricing of a monopolistic utility in order to
maximize societal welfare, solving what is called the Ramsey-Boiteux problem [76]. In doing so,
the regulator, or Ramsey planner, internalizes the consumer responses to different prices and the
cost function of the monopolist, which together determine the optimal allocation [38]. One can use
this framework to compare rate structures. By solving the model with different constraints sets for
the prices, researchers can compare the characteristics of the resulting equilibria.

The Ramsey-Boiteux problem is an instance of a Bilevel Model, a type of mathematical program-
ming problem in which group of variables is constrained to be in the solution sets of subordinate,
or lower level, problems [41]. One way of approaching a Bilevel Problem is replacing these solu-
tion sets by the first order necessary conditions of the lower level problems. The resulting model
is a Mathematical Program with Equilibrium Constraints (MPEC), which can be handled with
specialized nonlinear algorithms.

Because of dimension of the type of problems we attempt to tackle with the present technique, we
develop a decomposition approach for the MPEC version of the Ramsey-Boiteux problem (RM-
PEC). The algorithm is a nonlinear variation of the Alternating Directions Methods of Multipliers
(ADMM), a distributed computation technique which blends the decomposabilty of dual subgradi-
ent methods and the convergence properties of the method of multipliers. ADMM algorithms solve
optimization problems via successive iterations, each of which optimizes an augmented problem
along two blocks of variables. Typically, the resolution of one block can be distributed, and the
other uses as input parameters the distributed solutions. In our implementation, the distributed
step involves solving low-dimensional MPECs, that we tackle using the mixed integer program-
ing representation of [58]. To handle the problem of the other block of variables we use conic
programming. While inexact, our variant of ADMM allows tackling large-scale instances of the
Ramsey-Boiteux problem, greatly enhancing the applicability of our approach.

With a computational experiment, we explore the performance of the present technique. We test
the algorithm on 200 hundred instances, which we construct varying the number of variables and
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parameters of the model. We find that the algorithm has desirable properties for practical ap-
plications. It vastly outperforms a popular commercial solver for Mathematical Programs with
Equilibrium Constrains: Knitro. While this package is not able to find a solution within 24 hours
even for instances of small size, our algorithm converges within 2 hours in 94% of the instances
tested. Furthermore, the results suggest that the algorithm is suitable for distributed computation.
The distributed step of our variant of ADMM increases close to linear with the size of the problem
while the centralized step grows at a rate lower than linear.

In order to illustrate the value of the technique as a tool to compare rates in the the utility sector, we
conduct an analysis of tariffs structures in a simplified setting. The analysis highlights the value of
the modeling flexibility that the present technique provides. It shows how abstracting from network
constraints can introduce significant distortions in the analysis of rates. In our exercise, omitting
the existence of a network leads to underestimating the benefits of time-varying rate structures by
close to 31 times. In addition, the analysis shows that DERs could potentially complement time-
varying rates, increasing the value of this structures while at the same time these type of rates could
incentivize greater adoption of distributed resources. Finally, the exercise highlights the value of
being able to explore impacts of rate design on a population of heterogeneous customers. While
in all cases switching from a flat rate to a more sophisticated rate structure improves the welfare
of the aggregate of households, some rates benefit wealthier customers more. Moreover, there are
time-varying structures that can even harm customers with low levels of wealth, being these worse
off after the switch.

5.2 Pricing Utility Services

The pricing of utility services involves the determination of a revenue requirement and rate struc-
tures. While the former corresponds to the total compensation utilities receive from its customers,
the latter are the instruments they use to collect such compensation.' To the extent that rate struc-
tures have an impact on consumption behavior which affects operational and capital expenses,
determining the revenue requirement and the structure of the rates are not independent efforts.
However, it has been the industry and academic practice to consider these steps independently,
understanding the complexities involved in one task while simplifying the other (see, e.g., [76],
[120]). In this work we adhere to this strategy, focusing on the determination of rate structures.

One can further divide the definition of a rate structure into selecting the set of charges that the
tariff will include—what we call its design—and setting the actual values of these charges. The
technique we contribute with allows regulators and policy makers to discern among competing rate
designs. For simplicity and because it is the focus of this paper, we refer to the design of a rate as
rate structure or tariff structure as well.

5.2.1 Quantitative Methods for Evaluating Rate Structures

Applied analyses of rate structures in the utility sector have sought measuring welfare changes
resulting from modifications in the design of the prevailing rates. The techniques developed in

"For a more complete discussion on the subject of rate design, see [76]
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these studies differ in how they quantify a change on welfare, AWW. All make use of the following
identity,
AW =AY + AIl — Ar, (5.1)

where Ar correspond to a change in customer related costs (e.g., capital cost of AMI), AIl change
in production costs and AY is the compensating variation—the money that when taken away from
individuals leaves them with the same level of welfare they had before the price change [98]. Based
on how the studies treat AY, we distinguish two groups. [30], [60], [69], [91] and [111] start as-
suming a functional form for the indirect utility function—the optimal value of the consumer utility
maximization problem, estimate the parameters of a theoretically consistent demand model, and
use these estimates plus the relationship between the indirect utility and compensating variation
to derive the latter.> A second group uses the consumer surplus to approximate AY. [2], [12],
[15], [139] and [4] start by assuming a functional form for a system of demand equations, estimate
or calibrate its parameters, and integrate the system in order to compute the consumer surplus.
[153] shows that when focusing on goods with an associated expenditure relatively small with re-
spect to the customer’s budget—such as the consumption of utility services, consumer surplus and
compensating variation are equivalent.

The method that we propose in this paper falls within the second strand of approaches and extends
previous techniques in significant ways. It allows the consistent comparison of a wide range of
rate designs, including time-varying rate structures, rates with demand charges and increasing or
decreasing block rates. With the exception of [60], previous studies have developed techniques
to measure welfare differences between variations of time-varying rate designs, such as a flat rate
(FR), a time-of-use rate (TOU) or a real-time pricing structure (RTP). These approaches have ei-
ther compared tariff structures specifying ex-ante the value of the volumetric charges, or imposing
unnecessary constraints on them (see, e.g., [2] or [12]). [60], on the other hand, develops a tech-
nique that permits researchers to compare time-varying rate structures with designs of the same
kind supplemented with demand charges. In their setting volumetric charges are endogenous. This
approach, however, does not permit to model other important groups of rate design such as block
rate structures.

A second limitation of [60], which is shared by all other techniques with the exception of [30], is a
simplified representation of the supply side. Previous work has either ignored the supply side (e.g.
[4], [69] and [139]), or has simplified its representation with a cost function (e.g. [15] and [60]).
Even though, [30] take a more comprehensive approach, using a detailed economic dispatch model,
they use this model only to estimate a marginal production cost function. Our technique, on the
other hand, finds rates while simultaneously optimizing short- and long-run production decisions
for a wide variety of production technologies and in the presence of key infrastructure such as a
transmission network.

While we believe these contributions are valuable, the most salient aspect of the present technique
is that it allows researchers to construct a bottom up model of customer behavior. In our setting,
the demand of a customer is the solution of a utility maximization problem subject to a set of
constraints. This constraints can be defined by the researcher providing the flexibility to model a

%For an individual with an income I, the relationship between the compensating variation and the indirect utility
function when prices change from p° to p! is v(p°, I) = v(p',I — AY), where v(-,-) is the indirect utility func-
tion [98].
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wide variety of devices, such as HVACs systems or refrigerators, or distributed energy resources,
such as rooftop solar PV or battery storage systems. This modeling flexibility is fully unique to
our method; all previous techniques use a top-down, aggregated representation of the demand.
A bottom up model overcomes three important limitations of past approaches. One is that these
implicitly consider a population of homogeneous customers. While heterogeneity may not be
crucial in determining the aggregated benefits of a change in the design of rates, it will certainly
help to understand the implications for different types of customers. One cannot use a model with
a representative customer to study distributional impacts. A second drawback is that a top down
approach precludes researchers from including in a transparent manner important determinants of
consumption behavior, such as weather patterns. The third limitation, which is specially relevant
today, is the impossibility of using top down approaches to study distributed energy resources. By
their very nature, these technologies are sources of heterogeneity in the population, geographically,
and in terms of consumption patterns. Given that rate design can not only influence how households
use these resources but also how they adopt them, it is important to have tools that permit anticipate
plausible outcomes.

We build our model considering as starting point the model we developed in the previous chapter,
which is based on the theory of Peak-Load Pricing. For completeness and to introduce the notation
that we will use throughout the chapter, we now succinctly review this theory.

5.2.2 Peak-Load Pricing: A Theoretical Framework to Compare Rate Structures

Let 2 be a discrete sample space, ¢, the probability that w € 2 occurs, and E|-] the associated
expectation operator. We refer to an element in {2 as outcome or state of nature, and distinguish a
random from a deterministic variable writing the former in boldface. Given a random variable v,
we denote y,, the realization of this variable when w occurs. The symbol T indicates the transpose
of a vector.

The theory of Peak-Load Pricing has as objective to provide guidelines for the pricing of public
utility services [38]. Its starting point is the problem faced by a regulator that set prices with the
aim of maximizing societal welfare. At the same time, the regulatory body must guarantee that the
regulated monopolist is able to cover its costs.

The monopolist serves a population of customers with different types « € I. These distribute in the
population according to the frequency function d(+), such that §(7) is the number of customers with
type i. The monopolist offers a set {1,...,7"} of commodities and the customers decide among
consumption bundles d € R%. A quasi-linear utility U(d; 6.,) + m,, characterizes the preferences
of types i over these bundles, with U : RT — R and ¢, a set of exogenous parameters. A type
1 has limited budget M;. The customer’s demand for each commodity results from her choosing
optimally among bundles, i.e.,

D (pw; 9}0) ‘= argmax {U(d; 01) + M; — pzd}. (5.2)

d>0

The theory assumes that U is strictly concave so that D (p,,; 6°) is a singleton; and the gross surplus
of this customer is S(p,;60.) = U (D(p.;0)). In addition for I’ C I, we denote D' (p) :=
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[, D(p; 0")6(i)di the aggregated demand of the types in I, define S''(p) in a similar fashion, and
call vy == [}, 6(i)di the total number of customers with types in I”.

The monopolist collects its revenue with a two-part rate structure, a contract (I, p) where [ is a
fixed (or customer) charge and p a vector of charges per unit of consumption. The corresponding
consumer surplus is

CS(l,p) = E[S'(p) —p'D'(p)] —1-v1. (5.3)

There is a set of production technologies that we index with the letter & € K. Each technology
differs from others on its variable costs per unit of production, c,; € Ri, its fixed costs 7, and
its availability factor, p,x € R%. The latter captures the variability in the technology’s availability
due to, for instance, the intermittent output of some renewables or the occurrence of outages. The
installed capacity of technology k is x; and y,,. € Rf is its production vector. Wit this definitions,
the production cost for a bundle d is

C(d) =min Y FE [y, cp + xxfy] (5.4)
@) ek
subject to
d<> uy (5.5)
keK
0<yp <appp, kEK (5.6)
The profit of the monopolist is
(l,p)=E [p'D'(p)] +1-v; — C (D'(p)) — Iy, (5.7)

where 11, captures transmission and distribution costs, overhead expenses and the opportunity cost
of the monopolist. We note that this profit function can also represent the aggregated profits of a
sector in which there is perfect competition at the wholesale level, and there is a regulated utility
at the retail level (see [73], [32]).

The welfare maximization problem or simply the Ramsey problem is

rg;a§<{05(l7p):ﬂ(l,p) >0,(l,p) € LxP}. (5.8)
7p
Henceforth we refer to £ x P as rate structure, and to an element of this set as rate level.

5.3 An Alternative Quantitative Technique

The model we developed in the previous chapter extends the basic setting Peak-Load Pricing. We
now briefly review this model and discuss its limitations.

Let h € {1,...,H} index the rates in the portfolio, and redefine P := P; x --- x Py, and
L = Ly x --- x Ly such that Py, is the feasible region for the volumetric charges of rate h
and £, constraints the fixed charges of the same rate. In this setting h also indicates the DER
a customer adopts. The letter oy, denotes the number of customers enrolled in h, and the vector
a € Rf represents the distribution of the population across rates, which we call demand mix. In
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this context [ is a discrete set indexed by ¢, with v; being the number of customers with type <.
Defining the matrix I" such that [I'];;, = 1 if a type i can enroll in & and 0 otherwise, the feasible
region for o is A = {a eR}: Ta< 1/}. As in the basic Peak-Load Pricing framework, the
functions U, D, S correspond to the direct utility, demand and gross surplus, respectively; and a set
of endogenous parameters 8" determines them for each h.

The consumer surplus function in this model is
CS(l,p) =Y _ayE[S(p";0") — D(p";6")"p"] —1"a, (5.9)
h=1
and the surplus of the regulated utility

(l,p)=> aE[D(p" 6" p"] +(1+r)a-C (i aD(p"; eh)) . (5.10)
h=1

Because I1(l, p) = 0 in the optimum, we can write the Ramsey problem as follows

n

maxZahE [S(ph; ") — rh} - C (Z o D(p"; Oh)> (5.11)
h=1

(p) 1=
subject to
pEP, (5.12)
ae A (5.13)

5.3.1 Limitations of the Model

The Ramsey problem has some limitations as a model to compare rate structures. The main two
relate to the realism of the demand representation and the type of rates that could be modeled with
this framework. The demand representation in (5.11)—(5.13) is similar to that of the basic Peak-
Load Pricing model in that it is the solution of a utility maximization problem akin to (5.2). The
theory makes the assumptions needed so the solution set of this problem is a singleton. While this
simplification makes the Ramsey problem amenable to mathematical analysis, it comes along with
two mayor drawbacks. First, in many cases of interest, the solution set of the utility maximiza-
tion problem may not be a singleton. Example 5.3.1 shows a case of great relevance in modern
electricity systems.

Example 5.3.1. Consider a household with an electric vehicle (EV) enrolled in a flat rate with vol-
umetric charge p € R,. For simplicity, we consider that the round-trip efficiency of the vehicle’s
battery is 1. While implausible, the reader can verify that this assumption does not alter the point
we make with this example. The aggregated demand of the household is d + s, where d is the elec-
tricity consumption of the household and s that of the EV. The battery of the electrical vehicle has
a maximum and minimum charge and discharge rates R* > R~, and a maximum and minimum
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state of charge £ > E~. Consistently, the feasible region for s is

T=1

t
S = {5 €R": 50+ s, € [E,EY|As € [R7,RY] w} , (5.14)
with s0 the initial state of charge. The utility maximization problem is

T
max < U(d;0) + M — di+s): d>0, seS 5.15
(d75¥{ ( ) pt21<t t) } ( )

Let s* be optimal for (5.15), suppose that there is a pair of consecutive periods where s; < 57, and
define A := (s;,,—s;)-1. Forany ¢ € (0, 1), we have that s** = (s7,...,s;+A,s;  —A, ..., s})
is also optimal for optimal for (5.15). U

A second problem with the demand representation of the Ramsey problems relates to the calibra-
tion of this function. Researchers have estimated price elasticities for electricity demand. One can
classify the approaches in two groups. One group focuses on estimating own-price elasticties and
peak-to-off-peak elasticities (e.g., [30], [69] and [91]). While these have been useful for analysis of
time-off-use rate structures, they impose limits in terms of the range of rates that a researcher can
analyze. To evaluate rate structures such as a real-time pricing, the approaches used in these papers
fall short, as peak-to-off peak substitution is not a relevant concept in the case of RTP. To over-
come these limitations other researchers have used techniques that permit to compute a full matrix
of elasticities (e.g., [60] and [139]). While this approach brings more flexibility to the analysis of
rates, it has three limitations. One is that the demand system must be a linear function of the price,
which limits the range of utility maximization problems one can consider in an analysis. A second
drawback is the lack of transparency when introducing heterogeneity. In principle, one can capture
heterogeneity estimating various elasticity matrices. Having these inputs, however, makes it hard
to understand the role of fundamentals, such as weather patterns or new technological conditions,
on the results of an analysis. A third limitation is range of rates that researchers can model. This
framework permit analyzing any variations of a time-varying rate structures. However, other tar-
iffs such as increasing block rates or rate structures supplemented with demand charges cannot be
modeled.

5.3.2 A Realistic Demand Model

We believe that a bottom up approach can tackle these limitations. It can simplify and make more
transparent the calibration of the demand model. Further, a bottom up approach can enable the
analysis of more sophisticated rate structures. We slightly modify the framework of the previ-
ous chapter to allow the bottom up modeling of the demand. Instead of considering the demand
function as a primitive, we consider as fundamental inputs the elements defining the consumer
maximization problem. In the present extension, the demand is simply some optimizer of this
problem. The new version of the Ramsey problem follows
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max ZahE dh Oh (Z apVyd ) (5.16)

(a,d,p)
subject to
d" € argmax {E [U(d; ") + M, — dTAhph] b — Ald > 0} , Vh (5.17)
d
peP, (5.18)
a € A, (5.19)

where for simplicity we have added the parameter 7, to the set of parameters 8”. In this formula-
tion, A", b" A" permit modeling customers with a wide array of DERs as well as more complex
rate structures. The parameter ¥, is a demand aggregation matrix. For concreteness, we now
provide illustrative examples.

5.3.3 Examples

We start showing how to set the parameters A", b, A" and U}, to model a customer having DERs
and enrolled in a simple flat rate structure. Next, we show how the parameters change to model
the same customer under more complex rates. In both examples, we drop the subindex A since we
focus on one customer.

Example 5.3.2. Consider a household with a photovoltaic solar panel (PV), a battery storage sys-
tems (BS), and a thermostatically controlled load (TCL)—the latter regulates the temperature in-
side the customer premises (e.g., an AC system). Define J = {TCL,PV,BS, 0D} as the of de-
vices the household owns, with OD representing all other devices of this customer. The demand
vector of the household is d = (drcr,dpy,dps,dop), and the customer’s consumption choices
are consistent with an additively separable utility function U(d) = }_._;U;(d;). Neither the
electricity consumption of the PV nor that of the BS produce any benefit for the household so
Upy(dpy) = Ups(dps) = 0. We leave the utility function associated to other devices (OD) as
generic and concentrate in specifying the one corresponding to the TCL. The inside temperature
of the household w can be modeled as a linear function of the power consumption of the TCL

w(drer; §,w) = Wi(&)drer + wa (€, W), (5.20)

where ¢ is the set of thermal characteristics of the dwelling and w is the outdoor temperature;
W7 and w, are a matrix and a vector depending on these parameters. We specify the utility func-
tion associated to the TCL as the negative of the disutility that deviations from a desired indoor
temperature, W,,qet, produce on the customer. That is,

UTCL(dTC’L) - _B”w(dTC’La 67 ?,ZJ) - wtarget||27 (521)

where [ is a parameter characterizing how the household trades comfort for savings.

Let §; be the constraint associated to the end use j. We have already defined Spg in (5.14).
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Since this set is a polyhedron, we can write Spg = {d eRT: bgg — Apggd > 0}. The con-
straint set for the photovoltaic system is simply Spy = {d € R : d; € [0,zp¢] Vt}, with z
and p the nameplate capacity and availability factor of the PV, respectively. Again, Spy is a
polyhedron so it can be written as the intersection of halfspaces bpy — Apyd > 0. The final
group of technological constraints corresponds to those imposing power limits one the TCL. Let
Srcr = {d eRT: d; € [0, dpaz) Vt]}; the corresponding inequality is brcrp — Arcrdrer > 0.
The full set of constraints for the household demand follows

brcr Arcr 7 Z Z drcr
bpv Z Apy Z Z dpy
b BS A A A BS A d BS -7
z Z

(5.22)

>4

b

where Z and z are, respectively, a matrix and a vector of zeros of the proper dimensions and [, is
an identity matrix. The corresponding demand aggregation matrix is W = [I; —I; I; 1,].

Given that the household is under a flat rate, P = {p eERT: put = puw V(W' 1 )} and A = U,
[

In the example that follows, we consider the same household enrolled in a flat rate structure sup-
plemented with a demand charge—a charge per unit of peak consumption.

Example 5.3.3. Redefine the households demand as follows d < (d, dp¢), where dpc € R is the
consumption on peak. We also update the parameters of the constraint (5.22) assigning

(5.23)

be[g} and A<—[A Z],

U —e

with e a vector of ones of dimension 7. The price-demand multiplication matrix A < [A z; 2" 1]
and the new demand aggregation matrix is now W «— [U z|. Finally, the constraint for the prices
updates as follows P <— P x R,. U

In our last example we also consider as starting point the definition of the parameters and variables
in Example 5.3.2. We show how to update such parameters and variables in order to model a
customer enrolled in a increasing block (IB) structure.

Example 5.3.4. In the case of an IB design a customer pays a volumetric charge which differs
depending on the level of her total consumption over a certain horizon. Here we consider that
the relevant horizon is {1,...,T}. There are N consumption blocks with upper bounds {g,}"_,,
corresponding to the components of the vector ¢ € RY. In an increasing block structure if the total
consumption is within block n, i.e., if it falls in the interval [g,_1, ¢,], then the per unit charge is at

least as high as that of the block 7/, for any n’ < n.

We start redefining the household demand d < (d,d;g), where d;p € RY has in its n-th com-
ponent the total consumption if it falls in the n-th block. The new parameters of the constraints

73



follow

b A Z
T T

b 2 and A ‘3?1’ IfVN : (5.24)
ZN Z' —IN

with Z, Z' matrices of zeros of the proper dimensions, zy an N-dimensional zeros vector, ez and
ey vectors of ones with 7" and N components, respectively, and / the identity of dimension N.
The price-demand multiplication matrix changes to A < [Z’ Iy]', and the demand aggregation
matrix becomes W <— [¥ [y - 0]. Finally, we redefine the constraint set for the price vector as

P+ {peRY: p,>p,1Vne{2,....N}}. (5.25)

O

5.4 Solution Method

The solution method that we describe here is well suited for the class of problems (5.16)—(5.19)
where U is quadratic. We leave the more general case for future research. Even with this sim-
plification, we believe that the development of a solution technique for (5.16)—(5.19) is a valuable
endeavor.

The mathematical program (5.16)—(5.19) is an instance of a Bilevel Programming problem. The
first problem of this class, introduced by [146], modeled the interaction of two firms. The leader
firm, which moves first, selects its production quantity knowing that the follower will observe its
decision and respond accordingly. That is, in defining its strategy the leader takes into account
the reaction of the follower, which in turn depends on the leader’s decision. Bilevel optimization
problems generalize this setting. A program in this class has an upper level (leader’s problem) that
has a set of constraints which are the solution set of subordinate (follower) problems.

When a solution set has more than one element, one can take two approaches. One, called pes-
simistic, assumes that followers do not cooperate with the leader; the other, often referred to as
optimistic, assumes the opposite. Under this approach, the leader can select any element of the
solution set of a follower. In this paper, we take the optimistic approach.

Because in our setting the subordinate problems (which (5.17) describes) are convex, their first
order necessary conditions are also sufficient. Thus, we can use these conditions to express the
solution sets of the subordinate problems analytically. In doing so we are effectively casting the
Bilevel Problem (5.16)—(5.19) as a Mathematical Program with Equilibrium Constraints (MPEC).

5.4.1 Formulating the Ramsey Problem as an MPEC

Let " be the Lagrange multiplier of the constraint of problem (5.17). For those customers under
rate h, the Lagrangean of this problem is

L=E[U(d";0") + M, — (d")"A"p" + (" — A"d") V"], (5.26)
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and the first order necessary conditions are

VU (d; 05) — Apl, — (A" Tl =0, (5.27)
0<u Lb— A >0=0 (5.28)

forallw € Qand h = 1,...,n, with the symbol L indicating that the vectors must be orthogonal.
We reformulate the Bilevel Model (5.16)—(5.19) replacing (5.17) with conditions (5.27)—(5.28).
Henceforth we refer to this reformulation as RMPEC. The new problem falls within a class of
non-linear programs which are particularly difficult to solve: MPEC. Because these problems
fail to satisfy the Mangasarian-Fromovitz constraint qualifications at every feasible point, there
are no convergence guarantees for standard non-linear methods. As a consequence, researchers
have developed specialized algorithms to find stationary points for these programs [61]. While
these algorithms may work well for small- to middle-sized instances, due to the combinatorial
nature of MPECs [95], finding an exact solution for large-scale instances becomes impractical.
Because the instances that we are interested to tackle are large-scale, in what follows we develop a
specialized approximation method to find stationary points for large-scale instances of the RMPEC.
Our technique is based upon the Alternating Direction Method of Multipliers (ADMM).

5.4.2 Decomposing the Problem

The key idea behind the ADMM algorithm is to combine the decomposability of the dual ascent
or dual subgradient methods with the superior convergence of the method of multipliers. The
former group of methods aims to find a solution to the original (primal) problem by solving its
dual with an iterative procedure. This is often useful when the dual problem has a structure that
permits simplifying its resolution. One important example is when the primal has coupling con-
straints—constraints that link a group of variables together. One can construct a dual relaxing
these constraints. By doing so, the computation of a dual step can be decoupled and distributed,
improving the scalability of the problem. A dual step is the multiplication of a step direction by
a step size. In the case of the dual ascent method the step direction is the gradient of the dual
function at the current point. Its computation requires the Lagrangian having a unique optimum
at such a point. While this holds in many problems in some important cases, such as for mixed
integer programs, the condition does not hold. A researcher can overcome this difficulty with a
dual subgradient method. These use subgradients as steps directions. While consecutive iterations
may not improve the objective function of the dual problem, provided that the step size is selected
properly, the subgradient method reduces the distance between the current dual solution and the
dual optimum at each iteration. One problem when using this method is that the computation of the
step size is not straightforward. The correct magnitude depends on the optimal value, which is not
known. As a result, the performance of this method is highly dependent on the specific structure
of the problem at hand, being very effective in some cases and showing very slow convergence or
an oscillating behavior in others.

A notable approach that overcomes the limitations of the dual ascent or subgradient methods is
the method of multipliers. The crucial idea behind this technique is to strengthen the convexity of
the objective function of the original problem to facilitate the search of an optimal solution. One
way of achieving this is by adding a term to the objective which penalizes the violation of a set of
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constraints. Since what is penalized are constraint violations, the original and the problem with the
penalty—henceforth the augmented problem—are equivalent. However, under mild conditions the
latter’s structure permits the application of a dual ascent method, with good global convergence
properties. The main drawback of this technique is that the penalty term makes it impossible to
decouple and distribute the computation of the dual steps, which hinders the practical use of this
approach for large-scale problems.

The alternating direction method of multipliers seeks to combine the best properties of the dual
ascent (or subgradient) method and the method of multipliers. It does so by introducing a slight
modification to the dual step computation of the associated augmented problem. For concreteness
and because we will use it later, we now provide a description of the algorithm ADMM for a class
of problems that, as we show in the next subsection, contains the RMPEC.

Let F' and G; be multivariate smooth functions, with j € {0,1,...,J} and J possibly large. Let
Z = Zy X Z1 X ...x Zjbe the domain of F', with Z; a convex set contained in R™7. The domain
of each G is Z; x W, also a convex set, and we denote (z;, @, ) a generic element of this set. The
range of F'is Rp C R and that of G is jo C R, with ¢; some positive integer. The problem of
interest is

min _ {F(2): Gj(zj,w;) <0 Vj=1,...,J}, (5.29)

(z,W)EZXW
where W =W, x --- x W,.

Suppose we need to decouple this problem, for instance, because the constraints that the functions
G define make the problem hard to solve. To this end, consider the equivalent program

min F(z) (5.30)

subject to
Gj(w;,w;) <0 Vj=1,...,J, (5.31)
zi=w; Vi=1,...,J, (5.32)
(z,0) € Z x W, (5.33)

We could use a dual subgradient method relaxing the constraints (5.32) to decouple this problem.
But, as we discussed before, this approach can have poor performance. Instead, we use the ADMM
algorithm. As the method of multipliers, this technique also defines an Augmented Lagrangean

J
N P N
Ly(w, z7) = F(2) + Y 7 (2 — ;) + Sl — s, (534)
=1
where w = (], ,w),w{, -, 0;)", v = (v, ,7;)" is the block vector of the dual

variables of (5.32) and p > 0 a penalty. The key difference between ADMM and the method of
multipliers is that the former do not minimizes at each iteration L,(w, z;y). Instead, it decreases
this function in two steps, a w- and z-minimization step. Before presenting this algorithm, we
define the matrices By, B such that (5.32) is equivalent to

Blw + B2Z =0. (535)
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Algorithm 5 describes ADMM applied to problem (5.29).

Algorithm 5 Alternating Direction Method of Multipliers

1: Initialization: Given 2° € Z, 4° = 0, two tolerances e”"* > 0 and e®®

a dual residual r°, s°, such that ||7°|| > e?" and ||s°|| > edual

2: while (||7*]| > eP™) A (||s*]] > e®™al) do

3. w-minimization: w**t! < argmin,, {Lp(w,zk;fyk) o G(wj,w;) <0, w; €W, Vj}
4 z-minimization: z* < argmin, {L,(w*™, z;4%) 1 2 € Z

5 ’7k+1 — ’Yk +p(B1wk+1 + BQZkJrl)
6
7
8:

> (0, and a primal and

,r,k+1 — Blwk+1 _|_BQZk+1
. ML pB By(2F T — 2F)
end while

The w-minimization step can be distributed noting that if z is fixed then the Augmented Lagrangian
can be decoupled. Thus, another way of obtaining w**! is by assigning to

(W YY) — argmin {—7;“ -y + gHZf —w;|I*: Gy, w;) <0, w; € Wj} (5.36)

’ ’ (w;,w;)
forevery j =1,...,J.

It is possible to show that when the functions F, GG; are convex (possibly nonsmooth) and if strong
duality holds then the algorithm converges to a global optimum [16]. Even if F' is nonconvex
but smooth, it can still converge to stationary solutions [68]. When the constraints G(w;, w;) <
0 define nonconvex regions then one can use the algorithm as a heuristic. [138] show that for
problems with quadratic objectives and nonconvex separable constraints, the algorithm can rapidly
converge to approximated solutions, and in many cases to the global optimum.

A closely related method, extensively used in large-scale stochastic optimization, is Progressive
Hedging (PH). As the alternating direction method of multipliers, this algorithm—introduced by
[123]—is a specialization of the Proximal Point algorithm [123]. While PH converges to stationary
points for a large class of stochastic optimization problems, for models involving discrete variables
the method becomes a heuristic. In practice, it has proven to be a very effective technique to tackle
large-scale, stochastic mixed integer programs (see, e.g., [93]; [92]), and more recently to solve
stochastic MPEC:s (see, e.g., [51]; [63]).

We propose using using ADMM as a heuristic for the particular stochastic MPEC that we introduce
in this paper. The experience of [51], [63] and [138] suggests that this is a suitable approach, and
Subsection 5.4.4 provides additional evidence.

5.4.3 Implementing ADMM
Before showing how we implement the alternating direction method of multipliers, we make some

clarifications that ease the understanding of our approach. Henceforth we treat a random vector
¢ also as a block vector, i.e., & = (&, ... ,§|g|)T is an alternative representation. If & is a block
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vector of random vectors, that is & = (&,...,&])T, another way of expressing this object is
€= (s E s G E) T

We start our description showing that the problem RMPEC is an instance of (5.29). To see this,
define z == (aT,d",p")T, the constraint set Z := A x D x P, where D = RI251 x ... x R
and li}ll is the number of columns of A;,. In addition, define the functions

—C <Z ah\llhdh> =Y aE[U(d"6")], (5.37)
h=1 h=1

and

VU(d"; 0" — (Ah)T

—VU(d}; 05) + Ah + (A" Ty,
Gwh(zwh, wwh) = (bh AhdZ)T g YweQ, h=1,...,n, (5.38)
—(bh — Ahgh)Tyh
—b" + Atdl

— 2
where z, = (d", p), Wy = v/, and W,;, = R, with k? the number of rows of Aj,.

In order to decouple the problem, we duplicate the vectors z,;, introducing the variables w,,;, =
(dwh, Pwr) and the coupling constraints

ap(d’ —d") =0 YweQ, h=1,...,n and (5.39)

ph—ph =0 YweQ, h=1....,n, (5.40)

Because we will use it later, we now define Q)(w, z) as a block vector function that has in each
block (w, h) the left hand side of (5.39) and (5.40). In addition, we call SMPEC the stochastic
MPEC that results from replacing (5.32) with (5.39) and (5.40) in (5.30)—(5.33). Note that, while
(5.32) defines a set of linear constraints, those in (5.39) are nonlinear. This does not alter the

structure of Algorithm 5, however, it does changes the update of s*!. We will describe this update
in detail later in this subsection. In what follows, we concentrate in the optimization steps.

The Augmented Lagrangean of the reformulated problem is

Ly(w, %) zahE[ (d'560") — (d" — d") ") — Lanld" — "]
(5.41)

n

+Y E [(ph _ 5Ty _Hp | } +C (Zah\lfhd )

where v = (v, ’yg) corresponds to the block vector of Lagrange multipliers of the constraints
(5.39) and (5.40), and w == (d",p",v7)T.
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The w-minimization step

In order to update w**1, we solve for every w € Qand h € {1,--- , H} the MPEC that follows

Cmin oy [(dh = d) Tl Sanlldl = dLIP] (o~ BT+ Sl - BLIE (5.42)
(dwhvﬁwhvl’wh) 2 2
subject to (5.27) and (5.28), (5.43)

Lo : 1 skl k1
and assign its solution to (d.; =, Py s Vg ).

There are various approaches to solve this optimization problem. We refer the reader to [61] for a
comprehensive review. Here we describe the approach we take, which casts the MPEC as a Mixed-
Integer Quadratic Program (MIQP). The technique, proposed by [58], introduces integer vari-
ables and new constraints to reformulate the complementarity conditions. Letting 0" € {0, 1}”%3
M" M" > 0 scalars, and e a vector of ones of dimension «7, in our setting the procedure involves
replacing (5.28) with the following constraints

Mbol > b — Atdl, (5.44)
M(e—olt) > VL, (5.45)
v — At >0, (5.46)
v >0, (5.47)

ol e 0,1} (5.48)

Researchers can solve the reformulated problem (5.42), (5.27), (5.44)—(5.48), which we refer to as
w-MPEC, using standard MIQP techniques.

In principle, the approach of [58] can be inaccurate and inefficient. Inaccurate because if M", ]\;[o’j
are too small, b* — Ahdfj or Vf may be far from the optimum of (5.42)-(5.43). On the other
hand, increasing these scalars too much can lead to inefficiencies because the problem could be
ill-conditioned. Besides, even if they are selected properly, since MIQP is in NP-complete [116],
it can take a long time for a solver to reach a solution of acceptable quality. In practice, for the
class of problems that we focus on, non of these concerns posed significant difficulties to use this
approach. Based on the physical nature of the constraints of the customer problem (5.46), one can
find adequate values for ]\qu’} and, with some additional work, for MZ}; and while the complexity of
the problem translated into slow performance, we were able to overcome this issue by providing
the MIQP solver with good starting points.

A good starting point decreases the solution time of w-MPEC by pruning several suboptimal
branches of the Branch and Bound tree, and by providing an adequate range for Mb’j The pro-
cedure we used to construct a good starting point exploits that, in general, solutions across itera-
tions do not differ as much, and that depending on the magnitude of «y, the first two terms of (5.42)
might be irrelevant. Then, one way of constructing a starting point is using the price of the previous
iteration and solve the customer problem to find the associated demand and dual variables. In addi-
tion, assuming the first two terms of (5.42) are irrelevant (because «, is relatively small) then, one
can construct another starting point finding (p[*)* = arg ming, {(pl — pl) "L, + §llpl — pLI1%}
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and solving the customer problem for this price. A third technique is to simply use p” as input
to the customer problem. Then, the starting point is the one with the smallest objective value for
w-MPEC.

The z-minimization step

Note that the z-minimization problem can be separated into two subproblems. One that finds the
optimal (o, d) and another that optimizes p. This is possible because there are no constraints
coupling these block of variables. The problem that optimizes p is

mln{ZE[ 7p +g|\Ph—ﬁh||2] . pep}7 (5.49)

which depending on the structure of P (a convex set), can be solved either analytically or using a
standard convex optimization solver. To find the optimal («, d), we solve

. v,.d | — E h.gh\ _ (gh _ Tk _ P h_ g2l
{2}3{0 (;ah nd > ;ah [U(d ;0%) —(d" —d") vy 204h||d d’|| ] a€cA
(5.50)

We could use a standard nonlinear solver to handle this problem. However, specially for problems
of large size, this approach is less attractive than using specialized convex optimization algorithms.
We are able to take this approach by casting the problem (5.50) as a conic program. In order to do
so, we first rewrite the term inside the expectation in the objective function as follows

N N N 1 A a o
U(d";6") + (d" —d") (VU(d";0") — ;) + 5(d" —d")" |V°U(d";0") - pahlh] (d" —d"),
R (5.51)
where we replaced U (d"; 8") by its taylor expansion about d", and I}, is an identity of dimension
k}. Next, we introduce variables d" = a;,d", v}, v}, and write the following reformulation of the
problem

min C (Z \Ifhdh> - Z E [ahU(cih; 0") + (d" — a,d™)T(VU(d";0") — 4h) — vl — o
(c.d) h=1
(5.52)

subject to
200l > (d" — apd®)T [—WU(dh; oM (d" — apd"), YVh=1,....,n  (5.53)

20l > p(d" — o, d")T(d" — apd®), YVh=1,...,n (5.54)
ac A (5.55)

To obtain a conic program, we introduce the variables qbo, 1, 02, replace (5.53) with the condi-
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tions

20,00 > () ph, YVh=1,....n (5.56)
l ~ A
o = [—VQU(cih; eh)] “(d — apd"), Yh=1,...,n, (5.57)
and (5.54) with
vl > ()Tl Yh=1,....n (5.58)
& = pi(d' — apd"), YVh=1,...,n, (5.59)
vi =1, YVh=1,...,n. (5.60)

While constraints (5.56) and (5.58) define two rotated quadratic cones, the others are simply linear
constraints. The problem that (5.52), (5.56)—(5.60) and (5.55) define is a conic program. Re-
searchers can solve it using an off-the-shelf conic optimization package.

Updates

After the two optimization steps Algorithm 5 updates the dual variable v**1, and residuals 7**!

and s**1. We now show how we adapt these steps for SMPEC. The dual variable and (primal)
residual 7+ t! update in a similar fashion. That is,
,yk-i-l s ,Yk-l-l —I—pQ(wk+1,2k+1), (561)
PRl Qw2 (5.62)

However, the update of the (dual) residual s**! is different. In order to derive an update rule for this

vector, we follow a line of reasoning similar to that used in the standard ADMM algorithm. In this
technique, if the norms of 7**! and s**! are small then, provided that the problem is convex, the
algorithm converged to an optimal solution [16]. We now discuss why this is the case considering
(5.30)—(5.33), and then show how we can adapt this reasoning to construct a residual update for
SMPEC.

Let X' be a convex set. We denote Lv() the indicator function, which is 0 when x € & and
oo otherwise. In addition, define the set W = {(&,w) : G;(w;,w;) <0, Vj, w € W}. The
Lagrangian of (5.30)—(5.33) is

L(w, z; 11,7) = F(2) + 7" (Biw + Byz) + Ly(w) +14(2). (5.63)

Assuming that the Slater constraint qualification holds then, the necessary and sufficient condition
for (w*, z*) to be optimal is 0 € O ) L(w*, 2*; it,7y), where 0., denotes the subdifferential
with respect to (z,w) [129]. Using subdifferential calculus rules (e.g., [124]), we can write this
condition as follows

0 € B} v+ Ny(w), (5.64)
0€ VE(2) + By v+ Nz (2), (5.65)
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with Ny (x) denoting the normal cone of X at z.

On the other hand, we have that the z-minimization step of Algorithm 5 is such that z*** satisfies
0 € O, Ly(wth, 2M A%y 4 Ny (251 (5.66)

= VE(Z"Y) + By " + pBy v + Nz (2F) (5.67)

= VF(Z"™) + By A" + N (2MH, (5.68)

where the last equality follows from the update rule for ~. In other words, the points that Algorithm
5 generates always satisfy (5.65). The same does not hold for condition (5.64). Indeed, w"*!
satisfies

0 € QL (W™, 2F;9%) + Nyy(w ) (5.69)
= B + pB[ (Biw*" + Byz¥) + Ny (w**) (5.70)
= B 4" + pB] ¥ 4 Ny (™) + pB[ By(2F — 251, (5.71)
= By /M 4+ Nyy(wht) + sF11, (5.72)

which differs from (5.64). However, if s**! vanishes at some iteration & + 1 then, (5.72) becomes
(5.64). If in addition, 7**! = 0 then (w**!, 25*1) is optimal for (5.30)—(5.33).

We can follow a similar strategy to define the update of s* in the context of SMPEC. However, we
need to address two properties that distinguish this problem from (5.30)—(5.33). One is that in our
setting the coupling constraints (5.39) and (5.40) are nonlinear, the other that G, (W, W,,) are
nonconvex functions. Because of these, we cannot use techniques from convex analysis in order to
derive an update rule for s*. However, if F, G, and ) were locally Lipchitz-continuous,® and the
sets Z and WV were closed, we could leverage classic results from nonsmooth analysis. It easy to
see that Z and WV are closed sets. We now show that I, GG, and () are locally Lipchitz-continuous
functions.

First, note that convex or smooth functions are locally Lipchitz-continuous [35], and that the sum-
mation and composition preserve this property. The function F'(z), defined in (5.37), is locally
Lipchitz-continuous because it is the summation of two locally Lipchitz-continuous functions. The
first term in the right hand side of (5.37) has this property since it is the composition of a convex
with a smooth function, both locally Lipchitz-continuous; the second term is a smooth function
of (c,d), and thus locally Lipchitz-continuous. In addition, G, (W, W,y) are smooth vector
functions since all their components are smooth, which is also the case for Q(w, z).

To write in a simple manner necessary conditions for optimality, we first introduce the block di-
agonal matrices 11; and II, such that the block (w, h) is equal to Gl for the former and g, /7
for the latter, with g, the probability that w occurs. In addition, we define the two-block diagonal
matrix II, having in its first block I and I, in the second. It is direct to verify that for any pair of

3For a definition of local Lipchitz-continuity, we refer the reader to [35].
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vectors, (d',p’) and (d”, p”), with the dimensions of (d, p), we have

(d,p)) 1(d"p") = E | Y () d} + (p),) P} (5.73)

h=1
We now define the following Lagrangian for the problem SMPEC

L(w7 <3 “77777) = MF(Z) + ,YTHQ@U’ 2) + 77||(M1,M2)||dWxZ(w> Z)a (574)

where 7 is some positive scalar and dy(x) = inf {||z — 2'|| : 2’ € X'}. Then, in virtue of Theorem
6.1.1 in [35], also known as the Lagrange multiplier rule, we have that if (w*, z*) solves globally
or locally SMPEC

Ju > 0 and v not all zero, such that 0 € O, ) L(w™, 2*; i1, v, 1), (5.75)

for every n > 1), with 7 the Lipchitz constant of the function [F), ()] in a neighborhood of (w*, z*),
and O,y denoting the Clarke subdifferential (see Definition 7.3.4 in [129]). Using calculus rules
for this type of subdifferentials (see, e.g., [35]), we can rewrite the expression 0 € 8(w7z)L(w, 2z 1,7, k)
as follows

0 € uVF(z*) + J.Q(w*, 2*) "IIy + N, (2*) (5.76)
0 € J,Qw*, z*) "Iy + Ny (w*), (5.77)

with J the standard Jacobian, and Ny (x) denoting the normal cone of X" at z, defined in [35].

As in the convex case, we now analyze what first order conditions w**! and 2**+! satisfy. Before,
we note that one can write the augmented Lagrangean of SMPEC, defined in (5.41), as follows

Ly(w,z;7) = F(2) + 7 1Q(w, 2) + gQ(w, 2)TIQ(w, 2). (5.78)

As we showed before, the problem of the z-minimization step is convex. Thus, we have z**!

satisfies

= VF(Zk—I—l) + JZQ(wk+1,Zk+1)TH’)/k +szQ(wk—H,Zk+1)THQ(wk+1,Zk+1) + NZ(Zk—H)

(5.79)

— VF(Zk+1> + JZQ(wk+l,Zk+l)TH”)/k+1 T NZ(ZkJrl)’ (580)

which is exactly (5.76), with i = 1. Before, analyzing the case of w**!, we introduce the following

notation Qy = Q(w", z*). In this case, using the Lagrange multiplier rule, we have that w"*!
satisfies

0 € JuQp1 10" + pJuQpir 1 HQkr1se + Nw(w) (5.81)

= LQu 1 IV 4 Ny () 4 5, (5.82)
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with
s = JwQ;—f—l,kﬂhk + PQrt1k] — JwQ;——i-l,k:+1H’7k+1' (5.83)

In (5.81) we use that the Linear Independence constraint qualification for MPECs (MPEC LICQ)
holds for the problem of the w-minimization step. In virtue of Theorem 2 in [128], and the fact that
MPEC LICQ implies the MPEC Mangasarian-Fromovitz constraint qualification,* we have that
the multiplier of the objective function of the w-minimization problem is equal to 1.

The definition of dual residual in (5.83) is such that that our variation of the ADMM algorithm ap-
plied to the SMPEC stops at stationary point for this problem. While we do not prove convergence,
Subsection 5.4.4 shows that the algorithm converges in most instances.

To gain a some intuition on when this residual becomes zero, we consider the case when « does
not change between consecutive iterations. Before doing so, we note that

Qw, ) = H() {Z B ;ﬂ — H()A, (5.84)

where H(«) is a block diagonal matrix such that the block corresponding to d, is equal to ay, 1, KL
and that corresponding to p is an identity matrix. In addition, we observe that (5.83) can be
expressed as follows

s = Qe I 4 p(Qregrk — Qrirign)] — Jw@py o IV (5.85)
= [Ju@rs1k — JuQrsr 1] TV + p Qi1 pQrs1 e — Qitthrn]s (5.86)

which in view of (5.84) is equal to
H(a" — oMY — pH (@M I[H (0®) A1 — H(@™) Apii ). (5.87)

If o does not vary between k and k + 1

sPT = —pH(o)1H (o d'—d™ 5.88
= —pH(a”) (Q)pk_pkﬂ (5.83)
dk . korl
= _PH<04k>H |:pk _ pk+1} (5.89)
= —pE |> ap(dy —d;™) + (pf —pp™) | (5.90)
h=1

a residual akin to that of Algorithm 5.

5.4.4 Testing the Performance of the Approach

We now focus on the computational performance of the method. In order to explore this, we
work with moderately sized instances which we describe in detail in the next section. Here we

4See [155] for various definitions of constraint qualifications, including MPEC LICQ and MPEC Magasarian—
Fromovitz CQ.
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concentrate on the convergence properties and the resolution times of the algorithm we propose
for various sizes and parameter configurations. We change the size of the instances by varying the
number of scenarios (or states of nature); the number of variables and complementarity constraints
are affine transformations of this parameter. We consider 5 instance sizes, corresponding to 2, 3, 10,
25 and 50 scenarios, 2462, 3686, 12254, 30614 and 61 214 variables, or 1200, 1800, 6000, 15000
and 30 000 complementarity constraints. For a given instance size, we run the algorithm for 40
different parameter configurations which corresponds to combinations of different rate structures,
network constraints, and costs for the intermittent and distributed technologies.

We ran our experiment in an ASUS M51AC PC, with a 4 core processor Intel 17-4770 of 3.40 GHz,
16 GB of RAM, and a 64-bit Windows operating system. Of a total of 200 instances, we considered
convergent the instances that meet the stopping criterion before 400 iterations. These corresponded
to 188 or 94% of the total. The results we report in this subsection are those associated to the
convergent instances. For convergence, we required the primal residual to be lower than or equal
to 0.25% and a dual residual being lower than or equal to 2.5%. Intuitively, this criterion places
more emphasis on the feasibility than the stationarity of the solution.

Before discussing the results, we note that in order to have a benchmark we attempted to run this
experiment with an alternative algorithm. Specifically, we tried solving RMPEC with Knitro, a
nonlinear optimization package which has specialized routines to solve MPECs (see [21]). We
could not obtain results within 24 hours, even for the smallest instances we considered in this test.
In contrast, with the same machine and using the technique we present in this paper, we were able
to obtain results within a few hours for the majority of the instances.

Figure 5.1 shows the evolution of the average primal and dual residuals across iterations, for the
instance sizes we tested. For most instances, after a few tens of iterations the algorithm finds a so-
lution of reasonable quality, with small primal and dual residuals. The iterations that follow, while
improving the solution quality, do this in a relatively slow fashion when compared with the im-
provement achieved in the first 50 iterations. Interestingly, this convergence behavior seems not to
depend on the size, at least for the instances with 10 or more scenarios. We see a different behavior
for the instances with 2 and 3 scenarios. While all instances of these sizes converged, the conver-
gence metrics oscillate much more across iterations than the other instances. We only observe this
oscillating behavior in the resolution of instances where the transmission is constrained.

In order to have an idea on the potential scalability of the algorithm, we plot in the Panel A of Figure
5.2 the resolution and average iteration times, and number of iterations for different instances sizes.
We note that while the graph shows that there is an increase in total resolution times, the median
is always below 2000 seconds. In fact, for more than 75% of the instances that converged, the
algorithm found a stationary point in less than one hour. This result stands in sharp contrast to the
more than 24 hours it took to the off—the—shelf solver to find a solution for instances with just 2
scenarios.

In addition, Panel A shows that the main driver of the rise in resolution times as the size of the
instances increases is the average iteration time. As the number of states of nature rises, the dis-
tribution of the average time per iteration shifts upwards. This does not happen for the number of
iterations. While its variance increases for instances with larger sizes, its median is always below
75. This suggests that if the time per iteration does not grows exponentially with the size of the
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Figure 5.1: Primal and Dual Residual Evolution Across Iterations

problem, then it is unlikely that the total resolution time will grow at an exponential rate.

The plots in Panel B provide additional evidence supporting that this is the case. These plots graph
the logarithm of the number scenarios versus the logarithm of the average iteration times and the
number of iterations. The upper plot shows that a line of slope 0.94 and intercept —0.3 fits well the
data. That is, for every additional scenario the average time per iteration increases on average by
about a half of a second. On the other hand, the number of iterations increases in proportion to the
square root of the number of scenarios.

These results highlight the potential of the algorithm to scale. The increase in the average time per
iteration can be handled with more computing nodes, keeping approximately constant the duration
of the w-minimization step. While the resolution time of the z-minimization step increases, it does
so at a slower rate than linear.

5.5 A Simple Application

We conduct an analysis of rate structures using the method we develop in this paper. Our ob-
jective here is to show with an exercise the type of analysis a researcher can conduct using the
technique. To keep the analysis simple, we perform this exercise with small sized instances, all
with 3 representative scenarios. We explain bellow how we select this scenarios.
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Figure 5.3: Structure of Analysis. An Instance Corresponds to the Combination of a Rate Structure,
Network Parameter and the Renewable and DER Costs. There Are 30 Instances in Total

5.5.1 Designing the Analysis

In this analysis, we compare rate structures that have been proposed as possible alternatives for
future electricity systems. We explore five tariffs, ranging from the simplest one, a flat-rate (FR),
to the most complex, a real-time price (RTP). In addition, we study how the results change when
changing the parameters of the transmission system, and the economics of the renewable gen-
erating technologies and distributed energy resources. Figure 5.3 describes the structure of the
analysis.

As Figure 5.4 depicts, the network we consider has five buses, two load and three generation
buses. In the base case scenario all branches have unlimited capacity; we change only the capac-
ity of branch 14 to introduce congestion. In this network, there are five different technologies
distributed as depicted in Figure 5.4. The economic parameters of the generation technologies
are standard for capacity expansion studies (see, for instance, [40]). Table 5.1 summarizes these
parameters.

Table 5.1: Economic Parameters of Supply-Side Technologies

Base-load Mid-merit Peak High-peak Wind

Capital cost 207 85 27 16 225
Fixed O&M  kg$/MW-yr 69 21 16 11 40
Total fixed 227 106 43 27 265
Fuel 11 27 43 66 0
Variable O&M  ¢/MWh 5 11 11 11 0
Total variable 16 38 54 77 0

Besides the network includes two load buses—1 and 2 in Figure 5.4, where a set of representative
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Figure 5.4: Network Model. The Letter X Denotes the Reactance of the Branch, and the Arrow the
Default Direction of the Flows. Buses 1 and 2 Correspond to Loads, and 3, 4 and 5 to Generating
Technologies

household are located. These households can differ in terms of their appliances and the DER
they can adopt (for instance, because of differences in income). For this exercise, we consider
two representative households per location. One can adopt DER, the other cannot. In addition,
households located at bus 1 do not have air conditioning while those at bus 2 do. Figure 5.5
summarizes this configuration. As in Example 5.3.2, we model the consumption preferences for
each household, assuming the utility function is additively separable. For the purposes of this
exercise, we refer to the demand of all other appliances as baseline.

Another relevant input are the time series we use in this exercise. We model weather and con-
sumption patterns with six time series, including temperature profiles and rooftop solar availability
factors at each bus. We also include the baseline consumption of the households—which we as-
sume is the same for both buses, and the availability factors of the wind power generator. All
time series correspond to one year of hourly data, and we define a scenario as one day, or a 24
hour period. We sample from the data three representative scenarios using the imortance sampling
technique described in [110], which minimizes the distortions introduced by the sampling. Figure
5.6 depicts the time series we use and the scenarios we selected.

To the best of our knowledge, an analysis of these characteristics has not been undertaken before.
The paper of [60] presents the closest attempt. The authors develop a model that allows them to
estimate the parameters of a demand system with own and cross-price elasticities, and conduct
a welfare comparison of time-varying rates and combinations with demand charges. The key
difference between the analysis of [60] and the present is the representation of the supply side.
These authors consider a simple supply cost function, which does not permit including renewable
generation nor it allows modeling a network, or distributed energy resources. As we see below,
different configurations of theses factors can drastically impact the results.
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Figure 5.5: Household Configuration per Bus. There Are in Total 6 Different Households Types.
The Final Number per Type, «, Is an Outcome of the Model, and is Constrained by the Number of
Representative Households, v.

5.5.2 Results
Welfare Analysis

We first analyze welfare differences with respect to the theoretically inferior rate, the flat rate. Table
5.2 shows these differences for all the parameter combinations and rates. We see that across all
these configurations RTP is the structure that improves welfare the most; on the opposite extreme
is the flat rate supplemented with a demand charge. The other two tariffs are close in the middle.
On average, across all parameters configurations, the time of use and the combination of this
structure with a demand charge obtain close to 90% of the welfare gains that RTP achieves, while
the other structure only approximately 50%. These results suggests that while adding a demand
charge to a flat rate structure can improve welfare (on average 1.93%), adding a demand charge
does not have an effect when complementing a TOU structure. In addition, we see that the TOU
outperforms the FR + DC structure, producing almost the same welfare improving effects as the
RTP. We observe, however, that the relatively small differences between TOU and RTP are due to
our definition of time-windows for the former tariff. This structure has 24 time-windows, 1 per
hour; the main difference with respect to the RTP rate is that in the case of the TOU the price for a
given hour cannot vary across scenarios. As the number of representative scenarios increases, we
should observe a widening in the welfare gains that these two structures can achieve.

Table 5.2 shows, in addition, the affect of the other factors we explore in this exercise in the rate
comparison. The network status has the most pronounced effect. When the network is constrained
the welfare gains of switching from FR to any other rate are much higher, on average 31 times the
gains that occur when the network is unconstrained. A model that does not account for a network
implicitly assumes that there are no network constraints. This simple example shows that this
assumption can have meaningful impacts on the rate comparison. A policy maker could conclude
that given that the economic benefits of switching to a more complex rate are small, it is better to
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Table 5.2: Welfare Gains with Respect to FR in Percentages

Tariff
Network Cost DER Cost RTP TOU TOU+ FR+DC
Status! Renewable DC
low 8.43 8.23 8.22 4.39
low high 8.01 7.81 7.71 4.70
const ' low 7.52 6.76 6.18 3.07
high high 7.52 6.78 6.49 3.08
low 0.63 0.47 0.40 0.03
low high 0.63 0.41 0.40 -0.05
unconst. . low 0.49 0.32 0.30 0.11
high high 0.48 0.32 0.31 0.12

I const. = constrained, unconst. = unconstrained.

leave households enrolled in a FR tariff. The same conclusion would be hardly sustainable in the
presence of the results of the constrained case.

The other factor that has an effect—though smaller—is the cost of the DER. When this technology
is less expensive, the gain of switching from FR to a more complex rate is greater than when it
has a higher cost. This happens because when the DER is less expensive more households adopt
this technology, which increases the value of a flexible demand side. Households enrolled in more
complex rates alter their loads to consume electricity when it is less expensive, which is when
rooftop PV systems produce it. This in turn increases the utilization of the overall fleet of (supply
and demand side) generating technologies, allowing households to get more energy per unit of
capacity installed. Table 5.3 shows an increase in adoption and capacity utilization when the cost
of the DER is low with respect to the case when it is high.

This table also highlights the potential complementarity between DERs and time-varying rates. In
this application, when the cost of the DER is low, not only dynamic rates become more valuable.
The adoption of rooftop solar PV increases as rates become more dynamic. This indicates an
increase in the relative value of the DER with respect to other generation alternatives. That is,
time-varying rates may improve the economics of DERs.

Distributional Analysis

We explore now the results from a distributional perspective. As Figure 5.5 shows, a group of
households cannot adopt the DER. This element of our setting seeks to reflect that in a population
there will be some households which cannot afford adopting a distributed energy resource, such
as a rooftop PV system. Now we ask the question of how the switching from a simple flat rate to
a more complex structure benefits customers with different financial means—in our setting those
who can and cannot adopt DERs.

Table 5.4 shows the surplus increase as a result of the switch in rate structures, for the case where
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Table 5.3: Rooftop Solar PV Adoption and Generation Fleet Utilization

Tariff
Network Cost DER Cost Re- RTP TOU TOU+ FR +DC FR
Status! newable DC

population with rooftop solar PV [%]

low 24 23 23 19 16

low high 24 23 22 20 16

const. . low 7 11 15 16 7
high high 7 10 12 15 7

low 24 23 23 22 21

low high 24 23 22 22 21

unconst. . low 0 0 0 0 0
high high 0 0 0 0 0

capacity utilization [%]

low 59 56 56 49 44

low high 59 56 54 51 45

const. . low 55 54 54 47 41
high high 56 52 52 47 41

low 59 56 55 47 46

low high 59 56 55 45 46

unconst. . low 49 48 48 43 41
high high 49 48 48 43 41

I const. = constrained, unconst. = unconstrained.
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Table 5.4: Net Surplus Increase per Household with Respect to FR [%)]

Household Type Tariff
Network Cost Bus Can Adopt RTP TOU TOU+ FR+DC
Status? Renewable DER DC
yes 7.28 7.26 7.24 2.48
1 no 7.29 7.26 7.25 2.44
low yes 10.98 10.72 10.46 4.53
2 no 6.60 6.55 6.80 3.48
const. yes 6.60 6.55 6.80 3.48
. ! no 6.60 6.55 6.51 3.48
high yes 10.46 10.06 9.81 5.92
2 no 6.94 6.75 6.50 5.8
yes 0.28 0.20 0.21 (0.00)
1 no 0.28 0.20 0.21 (0.00)
low yes 1.47 1.50 1.32 (0.02)
2 no 0.06) (072  (0.74) 0.20
unconst. yes 0.22 0.22 0.24 (0.05)
_ ! no 0.22 0.21 021  (0.05)
high yes 1.59 1.58 1.28 (0.19)
2 no 0.14) (115 (0.74) 0.19

"'A 10 % increase is between $100 and $250 per year.
2 const. = constrained, unconst. = unconstrained.
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the cost of the DER is low. When the switch improves welfare the most, which is when the network
is constrained, the disparities are more significant. In one of the buses, for those household that
can afford the DER, the increase in surplus is approximately 1.5 times that of the households that
cannot afford a PV system. It is interesting to notice that this is not always the case, as there
no differences in the surplus increase between the households located in bus 1. When weather
patterns and network conditions are favorable, wealthier households can take more advantage of
sophisticated rates by adopting distributed energy resources. Additionally, the model indicates
that the flexibility of the structures across time and states of nature makes this phenomenon more
pronounced. In fact, the switch to RTP translates into surplus increases for households that can
adopt the DER being 1.6 times that of households with less financial means. On the other hand,
when the switch is to the FR + DC structure, the surplus increase of wealthier households is only
1.2 times that of those that cannot afford the DERs.

In Table 5.4 we can also see that in the constrained case the switch to a more complex rate is
always Pareto improving. All type of households are better off after the switch. This does not
happen when the network is unconstrained. In most cases all households increase or maintain their
net surpluses. However, when the cost of the renewable generating technology is high and the
switch is to a time of use rate, households that cannot adopt DERs and are located at Bus 2 are
worse off after switching. While the absolute harm is small, approximately $31 per year, since it
happens to household with comparatively less financial resources, it potentially has more negative
consequences than if it were borne by those that can afford adopting DERs. In addition, we see that
in the unconstrained case time-varying rates continue to accentuate disparities. While the switch
to a FR + DC rate practically has no effect on consumer surplus, it does has an affect when it is
to a time-varying rate. As in the constrained case, households that can afford rooftop PV systems
take advantage of this technology to increase their surpluses under the time-varying rate.

5.6 Conclusions

This study develops a technique to compare rate structures. It allows researchers to transparently
model a wide range of tariffs, distributed energy resources and supply side configurations. The
specific values of the tariffs, as well as the demand and supply side consumption, production and
investment decisions result from solving the problem of a Ramsey-Boiteux planner. This is the
problem of a regulator that anticipates the impacts of it choice of rates on demand and supply side
short- and long-run decisions.

We cast this Bilevel Model as a Mathematical Program with Equilibrium Constrains, and solve it
using a variant of the alternating direction method of multipliers. This variant handles the com-
plementary constraints in a distributed manner. It solves the MPEC iteratively, at each iteration
solving independently several small MPECs and one nonlinear program. Using the technique of
[58] we cast the small MPECs as MIPs and develop heuristics to find reasonable starting points;
we handle the nonlinear program via a conic reformulation. A computational exercise demon-
strates that our solution approach has several desirable properties for practical applications. First,
it vastly outperforms Knitro, a popular commercial solver for MPECs. Second, the method shows
good convergence behavior, reaching solutions of reasonable quality after a few tens of iterations.
Third, the algorithm scales well with size as part of the resolution of the problem can be distributed
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to various computing nodes and the solution time of the centralized step increases at a rate lower
than linear.

With a numerical analysis, we demonstrate the importance of the modeling flexibility of the present
technique to compare rate structures. In contrast to previous approaches, our method allows cap-
turing complex supply side configurations. In particular, researchers can model a network. Our
exercise shows that abstracting away this element can have meaningful impacts on the analysis
of rate structures. In the example, the presence of network constraints translates into significantly
higher welfare gains when switching from a flat rate to more sophisticated structures. Omitting this
element underestimates the benefits by about 3000 times. In addition, the analysis highlights the
value of being able to model DERs. It shows how the economics of rooftop PV systems impact the
rate comparison, and that time-varying rates and inexpensive DERs could complement each other;
the former can improve the relative value of the latter while DERs being inexpensive increases the
gains of switching from a time invariant rate. Finally, the distributional analysis portrays how our
method permits regulators and policy makers to study impacts of a rate update on a heterogeneous
population. While a switch in rates could have a positive impact on the aggregate of households,
it could benefit some more than others. It could even harm some customers, which can be par-
ticularly problematic if those harmed were low income households. A technique such as the one
introduced in this paper permits to anticipate these impacts, letting regulators and policy makers
to decide among rates structures with considerably more information that what would be available
with alternative techniques.
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6. Ultility Pricing in the Prosumer Era: An Analysis of Residential Electri-
city Pricing in California

6.1 Introduction

The increasing penetration of distributed energy resources (DER) including advanced metering
infrastructure (AMI), energy management systems (HEMS), solar photovoltaic and battery stor-
age systems are enabling residential consumers, or “prosumers”, to interact bidirectionally with
electricity systems. Customers can not only purchase electricity from the grid but also provide
the system with energy and reliability services [130]. In regulated retail sectors, residential rate
structures greatly influence this interaction. Rates can impact adoption decisions, by changing the
economic value of the technology, and can influence the usage of this resource. Rates may also in-
crease distributional disparities, creating cross subsidies between those who can and cannot adopt
the distributed technology [49]. Despite this crucial role, no consensus exists with respect to the
ideal rate structure. Factors explaining this reality include limitations of the theory and the focus
of the empirical work. While the theory asserts that real-time pricing (RTP) is optimal from an
economic efficiency perspective [73], regulators must balance efficiency with other public goals,
such as rate simplicity, equity or meeting environmental directives [134]. Absent a comprehen-
sive quantification of the impacts associated with implementing RTP, it is difficult for regulators to
judge the value of this alternative, especially when it may compromise other regulatory goals. The
empirical literature has tried to quantify impacts, however, the scope has been somewhat limited.
Researchers have focused on estimating price responsiveness to quantify changes in efficiency in
the short-run.! Other relevant metrics such as long-run welfare effects, equity or environmental
implications have been explored either in isolation or with stylized analyses, but never with an
applied approach, within a unified framework.?

This work contributes to rate regulation policy with an applied study in the context of California’s
residential electricity sector. Our focus is the comparison of the long-run welfare effects as well
as the equity and environmental implications of a set rate structures. The analysis considers the
hypothetical scenario in which HEMS is widely adopted. Under this circumstance the household
responses to price signals are likely to be fully rational, driven by an algorithm optimizing the
consumption of the appliances [7].

A second contribution is the development of a framework that permits comparing rate structures
along each of the metrics we consider in our analysis. We develop a model of optimal pricing
that accommodates a wide variety of tariffs. Our framework builds upon peak-load pricing?, and
borrows some elements from the literature of generating capacity expansion.* We embed a detailed
model of household behavior in this setting, expanding the basic model of peak-load pricing to
include heterogeneous households and the adoption of DERs. Our approach allows us to capture a
wide variety of temporal and spatial demand substitution patterns, without needing to use a large
number of estimates.

1Examples include the work of [4], [29], [53], [54] and [66].

2See, for instance, [13], [11], [38] and [73].

3For a comprehensive survey of the literature we refer the reader to [38].
4[127] provide a good example of these models.
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Our analysis is particularly relevant to the current regulatory situation in California, in which the
default increasing block pricing program is gradually being retired and time-of-use becomes the
default rate. We compare this prospective structure with two variants of this program, a TOU
combined with demand charges (TOU&DC) and a TOU combined with a critical peak pricing
program (TOU&CPP). We also include in the comparison the cases in which households enroll in
a flat rate (FR) and in a real-time pricing program.

Considering all households under the FR rate as a reference case, our analysis shows that imple-
menting any other pricing alternative produces gains for the average household that are mild at
best. When implementing time-of-use pricing, or any of its variants, the average gain is not greater
than 1.2 dollars per month. Even though real-time pricing performs better than the other rate struc-
tures, the improvement over the FR tariff seems mild. The average household increases its net
surplus by 2 dollars per month under this rate scenario.

In addition, our analysis shows that the net surplus gain varies considerably across households.
Factors such as the presence of an air conditioning system or the temperature outside the dwelling
are major drivers of this variation. For all rates, households with air conditioners experience higher
average gains than household without these appliances. However, the gains in net surplus vary
more across the former group of households. The exterior temperature profile is a key factor. Its
relationship with the net surplus gains, however, is not simple, and depends on the specific rate.
For instance, under the RTP case customers experience greater gains in areas with higher average
temperature. But this statistic has no correlation with gains under the TOU&DC program.

These two results combined suggest that defaulting all residential customers into a time-of-use rate
structure, which is the current path California is following for the residential sector, may not be
the best strategy. Targeting different rates to households with different appliance stocks and in
different locations will likely be a superior policy.

6.2 California Electricity Sector and the Emergence of Prosumers
6.2.1 An Overview of the Sector

The California electricity sector serves approximately 30 million people across the state. With 59
GW of power plant capacity, the sector delivers near 309 TWh of electricity annually. Its market
size is close to $8 billion per year and its transmission system, spanning 25, 627 circuit-miles, is
part of the Western Interconnection. In terms of market regulation and oversight, there are three
institutions involved, each with different roles. The first, the Federal Energy Regulatory Commis-
sion (FERC), has jurisdiction over the interstate transmission of electricity. Its responsibilities in-
clude the oversight of important merger and acquisitions, reviewing applications for transmission
projects, as well as licensing and inspecting private, municipal and state hydroelectric projects.
The commission also sets mandatory reliability standards and monitors energy markets across the
US. The other two regulatory agencies have jurisdiction in the sate of California. One is the Cal-
ifornia Energy Commission which is the primary energy policy and planning agency of the state.
The other is the California Public Utilities Commission (CPUC). Its main role is regulating the
three investor-owned electric utilities of California, including Pacific Gas and Electric Company
(PG&E), Southern California Edison (SCE) and San Diego Gas and Electric Company (SDG&E),
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which collectively serve two thirds of the electricity demand throughout California. Among other
functions, the CPUC sets and approves the retail rates, is responsible for ensuring that utilities meet
state environmental policies and ensures electricity safety at the distribution level.

In terms of system and market operations, the California’s Independent System Operator (CAISO)
is responsible for maintaining a reliable transmission of power as well as the comprehensive long-
term planning of grid infrastructure. This entity also coordinates forward and spot markets for
energy and ancillary services. In addition, CAISO complies with the reliability standards set by
the North American Electric Reliability Corporation (NERC) and the Western Electricity Coordi-
nating Council (WECC). While the former is a non-profit organization developing and enforcing
reliability standards for the continental United States, Canada and Baja California, Mexico, the
latter is a regional entity promoting bulk electric system reliability in the Western Interconnection.

6.2.2 Residential Rates in California

The distinctive characteristic of residential electricity rates in California is its increasing block
structure. They have had this form since 1976, when the Miller-Warren Energy Lifeline Act was
enacted. This legislation sought to provide California’s residential customers with a minimum
necessary quantity of gas and electricity at a fair price, and also to encourage conservation. The
legislation set a precedent, providing a conceptual justification for implementing increasing block
rates. Since 1976 rates did not change meaningfully until California’s electricity crisis.

Beginning in the summer of 2000, tight supply margins, weak federal oversight, lack of an elastic
demand and flaws in the market design yielded a period of highly volatile electricity prices, known
as California’s Electricity Crisis. As a result of the crisis the sector underwent a period of drastic
reforms. At the retail level, a first response to the high wholesale prices was to lift the retail price
cap. This triggered notorious increases in electricity bills, which were then mitigated by freezing
the charges of the lower two tiers. The result of this legislation was the replacement of a two
tier system by a five tier structure, with prices of Tiers 3 to 5 considerably higher than those of
the remaining lower tiers. From 2000 to 2009 differences among tiers increased. However, the
enactment of SB695 in 2009 began to allow limited annual increases for Tiers 1 and 2.

At the time of this writing, decision D.15— 07 — 001 is the main piece of regulation laying the path
for the future of residential electricity rates in California. Key elements of this regulation include
the promotion of the consolidation of the tiers and the development of rates that reflect better cost
causation. In particular, the decision approves transitioning all residential customers to a default
time-of-use tariff by 2019.

6.2.3 The Emergence of Prosumers

There are two main forces pushing the emergence of prosumers in California: Environmental pol-
icy directives and distributed technologies reaching maturity. The relevant environmental policy
is the renewable portfolio standard which established, among others, targets for distributed gen-
eration. The policy has triggered the development of an array of incentives for generation at the
customer’s premises which has caused the massive deployment of distributed energy resources,
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such as solar photovoltaic panels. As for technological evolution, California has taken major steps
towards modernizing its distribution grid, having the largest installation of AMI in the US. This
technology constitutes a vital element for implementing time-varying-rates. By enabling two way
communication between customer and utility on time intervals of an hour or less, AMI allows util-
ities measuring consumption on an hourly basis as well as sending price signals on a consistent
time scale.

6.3 A Modeling Framework to Compare Rate Structures
6.3.1 Utility Pricing: An Overview of the Theory

An important function of regulators is determining the rates that a regulated utility can charge for
the provision of its services. This process, also known as rate regulation, includes the determina-
tion of the rate rate level and the design of rate structures [115, pp. 176 - 180]. Establishing the
rate level entails specifying the total compensation that the utility, or load serving entity (LSE),
receives for its services. The design of rate structures, which is the focus of this work, defines how
the LSE collects its compensation. Designing rate structures is far from trivial. So it is not sur-
prising that a myriad of methodologies have been suggested and adopted in different jurisdictions.
[20] divide the approaches according to how they assign common or non-attributable costs across
different services and consumer classes. There are two broad categories: the cost-based pricing
and pricing based on the concept of marginal cost. The first group of approaches allocate costs
based on criteria other than efficiency. One example is the fully distributed costs method, in which
common costs are assigned according to the relative shares of magnitudes that can be attributed to
a service or group of customers, such as peak-demand, output or revenue.’ On the other hand, in
pricing based on the concept of marginal cost efficiency has a prominent position. How common
costs are attributed to the different groups of customers is a byproduct of a welfare maximization
process. Our framework falls into the second category of approaches. The model that this work
introduces produces a set of rates and allocations of costs that emerge from the welfare maximiza-
tion of the system under study. This is the approach to rate design that the literature of peak-load
pricing studies.

Peak-load pricing develops a normative theory of efficient or welfare maximizing pricing for in-
dustries with limited storage capability and time-varying demand. The modern version of the
theory originates with the contributions of [9] and [135], and intended to provide guidelines in
the context of price regulation of natural monopolies, such as vertically integrated electric utilities
[38]. The basic model considers the problem of a social planner choosing prices that maximize
welfare, i.e., the surplus of customers and the public utility’s profits. Prices coordinate production
and consumption decisions over a time horizon. The monopolist invests in production capacity at
the beginning of the horizon and prices are such that the utilization and the level of the installed
capacity are optimal [46]. Studies including [25], [31], [39] and [109] further refine the model to
include a stochastic demand, supply-side uncertainties and multiple technologies.

3Other approaches seek to minimize cross subsidies across services and consumer classes and others build a set of
axioms and derive rate structures consistent with them. For more details on the subject of cost-based pricing, see [20,
pp. 44 - 60].
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[15] and [73], in examining the merits of retail competition in the electricity industry, show that
the theory also applies to restructured electricity sectors. In these models, a competitive wholesale
market replaces the production side of the vertically integrated utility. At the retail level, both
papers distinguish the cases of a regulated distribution company and competitive retailers. While
[15] consider a setting with linear or uniform prices, [73] contemplate the case of a two-part,
non-linear price. Further, [15] explore the long-run effects of different pricing policies, analyzing
the equilibria that emerge at the wholesale and retail levels. More recently, [159] investigates a
setting in which there is imperfect competition at the wholesale level, and [32] updates earlier
work exploring the interaction of different pricing policies and renewable technologies.

Our model departs from previous work first by generalizing the type of rate structures present in
peak-load pricing. In addition, we introduce a mechanism linking pricing and technology adoption
decisions. Finally, our model accommodates household heterogeneity beyond a scale factor.

6.3.2 The Regulator’s Problem

The regulator’s problem combines elements of the peak-load pricing and capacity expansion liter-
ature. The key element from capacity expansion not present in peak-load pricing is a transmission
network. For simplicity, we do not detail this element of the model in this section. As in peak-
load pricing, our model falls into the broad category of two-stage stochastic optimization models.
Agents in these models make long-run decisions at the beginning of the horizon before uncertainty
is realized and define state contingent strategies for the short-run stage. These are static models
that can describe systems in steady state. Our framework, therefore, is not suitable for studying
system dynamics. In terms of the institutional setting, at the retail level we consider a distribution
utility as the load serving entity. In general, however, one can consider settings within two polar
cases. While the utility could be fully integrated with the supply side in one case, in the opposite, it
could be just a distribution company. Under the assumption of perfect competition at the wholesale
level, both cases are equivalent [74], however.

Let w index a finite and countable set 2 of states of nature, 7 the corresponding probability vector,
E [-] the expectation operator, and a time horizon of ¢ € T time steps. Given a random vector
of consumption d, the household pays [ + 7n(d, p) to the utility, where [ is a fixed charge, p € P
a vector of rate parameters and 7)(-) a fee contingent on consumption and the rate parameters.
We call the triple (,7(-), p) a rate structure. Our setting is similar to the one in [73] insofar we
focus on two-part structures with a state and time contingent demands and prices. However, we
generalize this model to accommodate more complex rate structures. In our setting the vectors
d do not only have one component for every time and state of nature but also may include other
relevant metrics associated to the demand profile, such as peak or total consumption across the time
horizon. Similarly, price parameters may include charges for peak or total demand. Specifically,
we focus on the case in which 7(-) is bilinear on the demand vector and price parameters. The
following assumption formalizes this specification.

Assumption 3. The demand contingent charge n(d,p) = d" Mp+ Ind {5 — Ad } where Ind{z}
is 0if v > 0, and oo otherwise.

As subsection 6.3.5 shows, this specification is fairly general, allowing researchers to model a wide
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range of the rate structures used in practice.

As in peak-load pricing, we consider homogeneous households, with a mapping D,,(p) : P — R!7!
and a real valued function U, (d,,) representing their demand and gross surplus metric, respectively.
Given a set of wholesale prices {),}, the planner problem optimizes the household net surplus,
E U, (Dy(p)) —n(Dy(p),p)] — I, and guarantees that the utility meets its revenue requirement,
E [n(Du(p),p) — Du(p)"Au] + 1 — II, with II an exogenous fixed cost. As [73] shows, this
amounts to find (I*, p*) such that

(d*,p*) € argmazx {E [Uw(dw) — dz)\w} :d, = D,(p) Vw € Q} , 6.1)
(d,p)
" =FE [Ad5] —n(d*,p*) + 1L (6.2)

6.3.3 A Competitive Wholesale Electricity Market

The wholesale market representation in this model is a variant of the supply-side model studied in
the peak-load pricing and capacity expansion literature. More specifically, we follow closely the
representation in [32]. In this model, infinitesimal competitive firms interact in a spot market for
electricity. Each decides on their long-run installed capacity and short-run generation profiles. We
denote the total installed capacity of technology k € K as xj and its cost of carrying capacity as 7.
The aggregated production profile of this technology in state of nature w is ¥, € R, and variable
costs per unit of power production is ¢, € RE. We capture variability in a technology’s availability
—e.g. due to outages — with an availability factor per technology contingent on the states of nature,
por € RT. In a perfectly competitive market firms are price takers, thus, production and capacity
for technology k are the solution of the problem

max {E (A = o) "yur] — 217k 0 < ok < Thpuk } - (6.3)

(ywkvxk

The market equilibrium is a tuple (d*, p*, y*, *, \*) such that (d*, p*) solves the regulator’s prob-
lem at \*, (y*, x*) solves the problem of the producer at that price, and supply equals demand. It
is easy to verify that the market equilibrium is the solution of

max F |U,(d,) — Lok | — 6.4
o |- ol 64
€K
subject to
do =) Yokt Ao, (6.5)
keK
0 < Yrut < TrPusks (6.6)
peP, (6.7)
d, = D,(p). (6.8)
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6.3.4 The Household Behavior

Except for our specification of the demand contingent fee, 7(-), (6.4)—(6.7) is the classic peak-load
pricing problem. Researchers can use the model to analyze theoretically and numerically impli-
cations of different constraint sets for the vector of retail prices. A key assumption that facilitates
the study of these models is a demand system with analytic expression. Our framework drops
this assumption because our specification of 7(-) implies, in general, demands with no analytic
definition. Consistently, our model updates the peak-load pricing problem replacing (6.8) with the
following condition,

d € argmax {E [Uw (dy,) — dTwaw] by — Ayd, >0, Yw € Q} , (6.9)
d

where (b, A) contain the parameters of the rate structure, (b, A), and possibly others. Henceforth
we refer to (6.9) as the household problem, and to (6.4) — (6.7), (6.9) as the pricing problem.

6.3.5 Illustrative Examples

Our specification of the household demand allows to model the influence on demand of several
rate structures and, also, represent demand-side technologies of interest. Here we show how to
implement the models that we use in our analysis. Some notation will prove useful. The matrix
1,,, corresponds to the identity of m by m. The vectors e,, and z,, are, correspondingly, vectors of
ones and zeros of m dimension.

Modeling rate structures. Our analysis compares time-varying pricing (TVP) and a TVP com-
bined with a demand charge (DC). A time varying pricing is the simplest type of rate to model.
Set M, = 17, let the vectors p,, € Ri and d, € RT, and define define P as follows,

pE RLTMQ‘ D Pt = P V(w, 1), (w’,t’)} for FR,
P =L dpeRI b = powV(w,t), (W, 1) e TW(w,t)} for TOU, (6.10)
pe RE"X'“‘} for RTP,

where TW (w, t) is the set of time windows (w’, ') in the same time window as (w, t).

Adding a demand charge to any of these structures requires redefining d := [d, cZ] and p == [p, p|,
where d,p € RE'XM, and Jw, Pw correspond to the maximum consumption and demand charges
under w, respectively. The matrix M, is now equal to /;741, and the analyst may add additional
conditions to the set P to model demand charges constant across some scenarios. A final ele-
ment of this structure is the constraint linking the hourly consumption profile d and the maximum
consumption J, which we model via the following definitions

bi=zayr, A= [laxr —lo @ em). (6.11)

Household as composite of devices. Following the approach of [122], we consider that house-
holds are composite of devices and assume their utility functions are additively separable. For
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reasons we explain later, we consider in our analysis two devices, a central air conditioning unit
and a rooftop solar panel, and the household baseline. Central air conditioning falls in the more
general category of thermostatically controlled loads (TCL’s), whose behavior follows the laws of
thermodynamics. [99] presents a model describing the behavior of these appliances, which links
the household’s inside temperature, #, with the outdoor temperature é the thermal characteristics
of the dwelling, £, and the electricity consumption of this appliance, d. It is possible to show that
the inside temperature profile has the following form

0(d; £,0) = ©1(€)d + 05(¢,0), (6.12)

where ©; and 6, are a matrix and a vector, functions of the thermal parameters and temperature
outside the dwelling. Here we close the model of the TCL behavior introducing a mechanism cap-
turing household’s preferences for thermal comfort. The simplest approach involves a penalty for
deviating from an ideal inside temperature, 0. Equation (6.13) shows a utility function consistent
with this approach, which we use in our analysis.

U(d) = —B6(d; ,0) — 0] (6.13)

For modeling the household baseline, we assume a linear demand system and compute the as-
sociated utility function using a standard procedure. For the rooftop solar panel we add to the
household problem a constraint limiting its hourly production given the hourly availability of the
solar resource. A final element of the household model links the demands of each device with the
net demand of the customer,

J = dbalme + dac - dsola'r' (614)

6.3.6 Household Heterogeneity and DER Adoption

The pricing problem contemplates one representative customer and there is no mechanism mod-
eling customer adoption. In our analysis, however, we consider heterogeneous customers and
analyze impacts of pricing on adoption. We incorporate these two elements using the framework
that [27] develop. The paper distinguishes different customer types ¢ € I,° each of which decides
a set of technologies to adopt j € J. 7 Calling the combination h := (i, j) a segment and defining
ay, and 1y, respectively, as the number of households and cost associated to a segment,® the pa-
per shows how modifying the pricing problem permits modeling adoption decisions. Specifically,
equation (6.4) becomes

max F Z ap [th(dhw) — Th] — Z y,;rwckw — fo (615)
h

,d,p,,
(a,d,p,z,y) beK

®In order to fix ideas consider the following two examples: I = {with central AC, without central AC} or I =
{live in hot weather, live in cold weather} .

7 An instance of this set is J = {{solar PV, battery storage} , {solar PV}, {battery storage} }.

8The cost associated to a segment (i, 5) is the annualized capital cost of the set of technologies j.
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and (6.5) updates to

Z ahdhw = Z Yok >\w- (616)
h

keK

A final element to include for modeling adoption is the feasible region for «, which ensures that
the number of households per segment is consistent with the number of households per customer

type.

6.3.7 Comparing Rate Structures

Subsections 6.3.2 to 6.3.6 develop an analytic tool to compare rate structures. Researchers can
explore the effects of different structures on welfare and other metrics by changing the specification
of the consumption contingent fee, 7(+), solving the pricing problem and comparing the metrics
of interest. While the method is not intended to predict what would happen were the tariff under
analysis in place, it provides a consistent assessment of the potential differences between them.

Solving the pricing problem is not straightforward. The problem falls into the broad category of
Bilevel Problems, in which a leader — in our setting, the regulator — indirectly controls the actions of
the follower — the household — changing one or more parameters of her problem. Bilevel problems
are hard to solve in general, and state of the art solvers can only handle problems of moderate
size. For large instances, researchers have to devise specialized algorithms. Given the size of the
instance we explore in this study, we had to develop a specialized algorithm as well. However,
the development of the algorithm is beyond the scope of this work. It constitutes a completely
separate research effort, which [28] describes in detail. The basic idea is to decompose the pricing
problem into one problem per household and state of nature, and one problem that coordinates
the demands of the households. The algorithm iterates solving all problems at each repetition and
stops when consecutive solutions do not change. The key aspect of the algorithm is its distributed
nature which, by enabling its implementation in cluster computing facilities, makes our modeling
framework practical.

6.4 Modeling California’s Electricity Sector

We construct our model of the California electricity sector supplementing the network model that
[118] developed for market analysis. The model consists of a network with 240 nodes, or buses,
which corresponds to a topological reduction of the transmission system encompassing the Western
Interconnection.’ This reduced system also provides generation technologies and demands at each
node, and the physical characteristics of the network, including transmission constraints. The
generating power plants correspond to aggregations per type of fuel. Non-dispatchable generating
technologies'” such as solar or wind generation, and reservoirs such a geothermal or hydro power
plants come with a year of hourly energy production. Fossil fuel technologies, on the other hand,
only include physical and short-run economic parameters, such as heat rates and fuel costs. As

9We refer the reader to the Western Electric Coordinating Council website for detailed information on the inter-
connection.
19Plants with outputs that are determined to great extent by exogenous factors such as weather conditions.
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for the demands, the network model includes a year of hourly energy consumption at nodes of the
network corresponding to demand centers.

Before describing how we complete this data set, we make two clarifications. At first sight, the
network model has more information than this analysis requires, because the Western Intercon-
nection includes more states than just California. Using the full interconnection model, however,
allows us to produce realistic import and export flows and provides the opportunity to study the im-
pacts of residential pricing policy outside California. Because the main computational difficulties
emerge from our detailed modeling of the demand, and because we do not model in detail demand
at nodes outside California, the full network model did not increase significantly the computational
complexity of our analysis.

A second clarification relates to our treatment of the Western Interconnection as an integrated mar-
ket. That is, in our model the physics of the transmission lines is the unique factor limiting the
flow of electricity through the interconnection. In practice, the administration of this system is
divided among 38 balancing authorities, each controlling one portion of the network, and whose
central role is to guarantee the reliable operation of their respective sub regions. This adds addi-
tional limitations to the flows of electricity which our model does not capture. At the time of this
writing, however, California is leading the efforts to assess the impacts of a multistate regional
market for the Western Interconnection.!! Thus, an integrated market is plausible for the future of
the interconnection.

6.4.1 Generating Technologies

Because we are interested in studying long-run impacts, we replace the cost functions in the net-
work model with the functions we described in subsection 6.3.3. A fixed and variable cost imple-
ment these functions. The fixed cost includes the annuity associated with developing and installing
the generating technology and the fixed O&M costs. The variable cost, on the other hand, encom-
passes fuel and variable O&M costs.

In addition to these economic parameters, technologies have associated emissions and availability
factors. While the former captures the fact that different fuels have different GHG emissions, the
latter reflects the fact that power plants experience unplanned outages. Emissions factors as well as
the economic parameters of the generating technologies come from [48], and table 6.1 summarizes
the specific values we use in this study. As for availability factors, we use the magnitudes that
NERC makes publicly available through its Generating Availability Data System (GADS).

We include in the model the existing plants, by technology, for each node. As mentioned, invest-
ment decisions to expand this fleet are endogenous to the model. We treat hydro power generation
as exogenous because a correct treatment of this technology, which involves the stochastic dynamic
optimization of reservoirs, is beyond the scope of our model. Even though solar and wind are non-
dispatchable generators, we use the time series in the data set only to compute hourly availability
factors.!? The actual hourly production for these technologies is ultimately determined by their

11See [19] for further detail.
2Hourly availability factors are the ratio between the hourly production and the nameplate capacity of the technol-
ogy in the data set.
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Table 6.1: Generating Technologies Costs and GHG Emissions

technology variable cost fixed cost emissions factor
[2015 $/MWh] [2015 k$/MW-year] [tCO2eq/MWh]

nuclear 11 448 -

biomass 35 424 1.93

coal 32 361 0.65

geothermal - 341 -

solar - 192 -

wind - 184 -

gas adv CC 39 84 0.33

gas conv CC 42 77 0.35

gas adv CT 63 52 0.52

installed capacity, an outcome of our model.

6.4.2 Developing a Model of California’s Residential Demand

We construct a model of the residential sector of California calibrating our model of household
behavior at each node of the network. Households can consume and produce electricity on an
hourly basis, and impact the system via their net demands. In terms of consumption, we consider
two major categories of household end uses: cooling and non-cooling. We take this approach for
two reasons. In California central air conditioning is a major source of electricity consumption,
and approximately one out of every two households has this type of appliance [108]. In addition,
studies at the appliance level report air conditioning to be a major source of demand responsiveness
[99, 122].

The second reason relates to the hourly demand data available for this study. In our framework the
baseline of a household is the fraction of its demand not modeled as any particular device. In order
to calibrate this function one needs an intercept, i.e., a time series of electricity consumption and
the prices in effect when this happened. For the demand part of the intercept we use the load shapes
developed by Itron Inc., described in [151]. This data set disaggregates residential consumption
into space conditioning and other loads.

Utility functions summarize household preferences for each end use. We calibrate them using
the appliance level elasticities and marginal effects estimates that [122] report. We model the
baseline consumption as a linear demand system and use an elasticity of —0.08, corresponding
to the estimate for households with no space conditioning. For the price intercept, we follow the
procedure that [15] describe, assuming the rate structure of the intercept to be a flat rate.

The model for cooling corresponds to the TCL model developed in subsection 6.3.5. This has
three groups of parameters which can be categorized as technical, behavioral and weather related.
Technical parameters include the thermal resistance and capacitance of the household, and the
efficiency of the air conditioner. [99] provide ranges for these parameters in California, and we
use the midpoint of those ranges in their study. The behavioral parameters are the ideal interior
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temperature, which we set to 22°C (or 72°F), and the discomfort penalty, 5. Using our model
of the TCL, we link this latter parameter with the estimate of the marginal effect for central air
conditioning of [122]. The expression linking the two magnitudes is

__4n©1)701 e

(6.17)
dipE[e\TT\dw]

The weather related parameter corresponds to the outside temperature. The National Renewable
Energy Laboratory (NREL) develops the Typical Meteorological Year (TMY)) data set for modeling
energy conversion systems.!? This data set contains 12 months of hourly data at selected locations
across the US. The data for each month typifies conditions for the location over a longer period of
time, such as 30 years. There are 73 locations corresponding to California. Based on distance we
assign each of these locations to one of the buses with demand within the California portion of the
network model. The TMY data set also comes with hourly values for solar radiation. We use them
for our model of rooftop solar panels.

Another input for the analysis is the count of households types per bus. We distinguish four types
of households in our analysis, corresponding to the combinations of tenure status and the presence
of central air conditioning. While section 6.5 discusses this categorization further, here we focus
on the calibration of the household counts. The sources of data for this task are the 2010 census
and the Residential Appliance Saturation Survey 2010 (RASS), described by [108]. The General
Housing Characteristic data set of the 2010 census contains counts of occupied households by
tenure. Based on distance we assign census counts at the tract level to each bus in order to calibrate
the total number of renter and owner occupied households. Similarly, we use the distance between
the zip code centroid and the bus to assign the RASS responses to each bus. The survey, besides
recording appliance ownership per survey participant, includes their tenure status. We assume that
the fraction of household under each of the household types is that of the RASS survey and we
multiply this fraction by the census counts per bus to estimate the final number of households under
each of the categories that we analyze.

A final piece of the demand side is that corresponding to commercial and industrial customers.
The test system comes with total load profiles per bus. The commercial and industrial load at each
node of the network model is the difference between the total and aggregated residential demand
at each node. We assume the latter quantity to be equal to the baseline profiles multiplied by the
households counts.

6.5 An Analysis of Residential Rate Structures in California

This analysis explores efficiency, as well as the distributional and environmental impacts of res-
idential electricity rate structures. We use our model to quantify these metrics for five different
tariffs that constitute plausible future residential rates in the Californian electricity sector.

Because our analysis focuses on long-run impacts, ideally one would have to compare net surplus
distributions with respect to wealth levels under the different pricing regimes in our study. This

BFor a detailed description of the data we refer the reader to [152].

108



approach is impractical, however, for at least two reasons. First, to the best of our knowledge
information on households wealth for California is not publicly available. Thus, having this in-
put would require an indirect calculation, which is an effort beyond the scope of this research.
A second reason is that our model does not directly account for household wealth. There is no
explicit mechanism linking this metric with either short- or long-run decisions. We assume, alter-
natively, that the level of wealth of a household translates into differences in its technology options.
Wealthier customers have access to a wider variety of technologies.

Consistently, we split the population according to whether they can or cannot adopt distributed
energy resources. The splitting criteria is household tenure status. That is, we assume homeowners
have enough resources to purchase DERs while renters do not. Even though this criteria reflects
the reality in California in the past decade [14], with better financing alternatives and new business
models such as community solar!'* our assumption may not be adequate for future analyses.

An additional clarification relates to the specific rate structures we use in our analysis. An impor-
tant element determining the final definition of the time-of-use schedules are the time windows
associated with the different charges. Commonly, these rate structures distinguish valley and peak
periods and also seasons in order to set the volumetric charges. The traditional approach is to con-
sider existing time windows as inputs. In this analysis we take a different path which avoids two
difficulties involved with the traditional approach. One is that existing time windows are likely in-
adequate for future system conditions. In California only a small fraction of households have been
enrolled in TOU’s programs. As TOU becomes the default rate for residential customers and the
net load" shape changes due to the increasing penetration of renewable generation, the existing
time windows will likely be obsolete. Furthermore, a TOU with a demand charge rate has not yet
been implemented at the residential level in California. A second difficulty is the sub-optimality of
setting time windows exogenously. This makes the comparison among rates inconsistent because
our framework computes optimal retail prices for the RTP and FR programs.

In order to avoid these shortcomings, we consider the most flexible type of TOU possible. That is,
tariffs in which the energy charge can vary hourly and across seasons but not for days occurring in
the same season. Similarly, we assume a demand charge that changes across seasons. Our prelim-
inary analysis indicates that four to five time-windows, depending on the season, can approximate
with no meaningful efficiency loss the hourly windows. The results we report in this analysis,
however, correspond to the hourly energy charges.

A final clarification relates to the DERs we include in our exercise. Besides considering all residen-
tial customers having AMI and HEMS, originally, homeowners were able to adopt either rooftop
solar PV systems or battery storage units. Preliminary results indicated that the latter two DERs
were not cost-effective alternatives. No customer under any of the rates we study, nor under current
or projected economic parameters for these technologies, adopted these DERs. In the case of the
solar PV systems, this result indicates that the factors driving the current adoption levels of this
DER are policies specially designed to promote this technology. These include the California Solar
Initiative (CSI), federal subsidies and the increasing block rate structure for residential customers.
Because the CSI is not effective anymore, and the future of federal subsidies is uncertain, we do
not include these policies in our analysis. On the other hand, even though increasing block struc-

14We refer the reader to [70] for further discussion.
5Net load is the net of the aggregated demand, or system load, and the non-dispatchable generating technologies.
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tures are being phased out, a surcharge for high monthly consumption will remain. This makes the
study of this structure relevant. Future versions of this analysis will include this rate.

In the case of battery storage systems, our preliminary results do not make a case against this
technology. It simply reflects the fact that our model only accounts for the energy arbitrage value
that a battery storage unit can create. In addition, however, this technology can provide ancillary
services for the distribution grid and serve as a mean of transportation when being part of an electric
vehicle. Because our model does not capture any of these value streams, we do not include this
technology in the final analysis.

6.5.1 Aggregated Efficiency Gains

Table 6.2 shows efficiency gains of four tariffs with respect to the base case scenario: the flat
rate structure. At the level of the Western Interconnection, the RTP rate achieves greater effi-
ciency gains followed by the time-of-use combined with a critical peak pricing program. The TOU
combined with a demand charge produces similar gains but the time-of-use program alone only
increases the net benefit by one half of the value when combined with another program. All pro-
grams reduce the aggregated benefit - or gross surplus - of the residential sector. However, the
reductions in costs more than compensate the reductions in gross surplus.

In terms of efficiency increases, the same ranking does not hold when focusing on the residential
sector in California. The main difference is that the TOU&DC rate structure increases the net
benefit the least. This is the result of differences in bill reductions for customers inside and outside
California. The presence of a transmission network explains this outcome. In our framework, the
bill of a customer is equal to the multiplication of the locational marginal prices (LMPs)'® by her
consumption profile. The topology of the network significantly influences the magnitude of the
LMPs at different nodes and, thus, the household bill at different locations. Differences in LMPs
then explain differences in the distribution of bill reductions, in and outside California. In the
case of the TOU&CPP rate, customers outside California capture an important fraction of the cost
reductions with respect to the FR case. In all the other cases, on the other hand, the Californian
residential sector captures most of the reductions in costs.

The average efficiency gains per household are mild at best, being not greater than 2 dollars per
month. Importantly, in all cases, with the exception of the RTP program, the gains appear insuffi-
cient to justify the implementation of time-varying rate structures. Implementing any time-varying
rate requires the deployment of AMI. Estimates of the cost of this infrastructure vary. However,
one can construct a reasonable range using the documentation of pilot projects conducted under
the American Recovery and Reinvestment Act of 2009 in [43, 45]. Considering the cost of AMI,
the net of the average expenditure per household on advanced metering infrastructure and the op-
erational savings, plus the cost of a standard meter, a reasonable approximation of this cost lays
between 1 and 2.5 dollars per month. The lower bound at least doubles the gains of TOU and
TOU&CPP, warning against the deployment of AMI if these tariffs are the pricing alternatives.
Even tough in California AMI is already deployed, unless the cost of AMI decreases, in the long

16In many jurisdiction, in particular in California, the wholesale electricity prices differ at different nodes of the
transmission network, reflecting network congestion and transmission losses. These nodal prices are called locational
marginal prices.
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Table 6.2: Benefits and Costs: Changes with Respect to Flat Rate Structure

Net benefit as

Level Tariff Net benefit Benefit Cost a percentage
of the cost
[millions $/year] [%]
RTP 340 -100  -440 1.50
Western TOU & CPP 155 -38 -193 0.68
Interconnection 10U & DC 137 22 -159 0.61
TOU 77 -22 -99 0.34
_ . RTP 274 -100  -374 5.18
California’s 1oy & CPP 46 38 -84 0.87
residential TOU & DC 176 22 -198 3.28
sector TOU 82 -22 -104 1.53
[$/year]

RTP 22 -8 -30 5.18
Average TOU & CPP 4 -3 -7 0.87
per hO}lsehf)ld TOU & DC 14 -2 -16 3.28
in California 1oy 6 -2 -8 1.53

run the state might do as well with simpler rates and a simpler infrastructure.

6.5.2 Implications for Different Households

Figure 6.1 shows the distribution of households across net surplus gains with respect to the flat rate
tariff. The figure has four panels, one per each type of household we distinguish in this analysis.
In terms of the average gain, the ranking that we observe at the household level in Table 6.2 also
holds when disaggregating per type of household. While RTP remains the most beneficial rate
structure, the combination of a TOU and critical peak pricing program is the least favorable. Even
some household types would be better off with a simple flat rate tariff than with the TOU&DC
structure.

For all rates, the average net surplus gain is different for different households. Those with central
air conditioning have a greater average surplus gain when compared to households without this
appliance. This difference translates in turn into homeowners having a greater average surplus
gain than renters. This happens simply because the proportion of homeowners with central AC is
greater than 50%, and the opposite is true for renters. If one consider home-ownership as a proxy
for wealth, wealthier customers benefit more from the rate structures we explored in this analysis.

Customers with no AC systems experience small average net surplus gains and this metric has
small variance across households. The small increase in net surplus is driven by the elasticity we
assume for the baseline consumption. The demands of households with no AC system are inelastic.
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This small elasticity helps to explain the small variance as well. In addition, other two elements
influence the variance. One is the fact that we use one baseline profile for all households. Another
is that the LMPs show small variation in the demand nodes of the California portion of the network.

The net surplus gains vary more across households with central AC systems. The variance is
driven by differences in the temperature profiles at the different locations. Interestingly, the order
in terms of net surplus gains induced by the different temperature profiles is different for each
rate we explore. For instance, in the case of real-time pricing locations with higher within-day
temperature variance and higher average temperature tend to have greater net surplus gains. One
observes a similar pattern when households are enrolled in the TOU&CPP and TOU programs.
However, this correlation disappears when the time-of-use rate is combined with demand charges.
In this latter case, households located in places where the between-day variance of temperatures is
lower tend to benefit the most.

The variance in net surplus for household with AC systems suggest targeting as a strategy for
implementing time-varying rates. In particular, the TOU&DC and the RTP program appear to be
the most attractive alternatives. However, the non-trivial relationship between surplus gains and
temperature profiles suggests that regulators should analyze carefully where to implement these
structures.

6.5.3 On Carbon Emissions

A final element we explore in this analysis is how the different rate structures impact carbon emis-
sions. A first observation is that not all technologies we consider are economical. Neither coal,
nor biomass or nuclear are profitable. Perhaps one could have anticipated this outcome in light of
the figures in table 6.1, which shows that geothermal, solar and wind dominate nuclear, biomass
and coal. This is not a fair comparison, however, because these resources are of a different na-
ture. While geothermal power plants have important geographic limitations, wind and solar are
intermittent resources. Thus, one cannot discard a priori technologies with dominated economic
characteristics.

A second observation is that some technologies do not change their total production profile or
capacities across the rate scenarios. Consistently, those technologies do not alter their carbon
emissions. This technologies include hydro and wind generating power plants. We expected hydro
power generation to be invariant because it was exogenous in this analysis. The invariance of wind
generation, on the other hand, is a outcome of the model.

Table 6.3 shows changes in capacity production and emissions with respect to the reference case.
In addition, the table shows total change as a percentage of the Western Interconnection total for
the FR scenario. We do not include unprofitable technologies nor technologies that do not vary
across rate scenarios.

Agreeing with the basic insight of peak-load pricing, the total installed capacity decreases the most
under real-time pricing, followed by TOU&CPP, TOU&DC and TOU. The order in terms of total
installed capacity is not the same for total production. Indeed, the figures in Table 6.3 show that the
order is somewhat reversed, with RTP increasing production the most. These changes, however,
are a minor fraction of the total production of the Western Interconnection.
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Table 6.3: Capacity, Production and Emissions Changes with Respect to FR Scenario

Change
) ) Gas Gas Gas .
Metric Tariff adv. CC  adv. CT cony. CC Solar  Total relative to
FR total
[MW-year] Y%
RTP 315 (8,561) 177 439  (7,984) (6.09)

_ TOUKCPP (715) (3,609)  (754) 2449 (2,629) (2.01)
Capacity  TOU&DC  (598)  (3,043)  (142) 1,463 (2,320) (1.77)

TOU 300 (1,600)  (642) 15  (1,918)  (1.46)
[GWh/year] %
RTP 2,197 (2,900) 156 1,620 1,074 0.17
~ TOU&CPP (6,932) (610)  (1,177) 9268 549 0.09
Production Tou&DC  (4,356)  (793) (33) 5536 352 0.06
TOU 1,693  (216)  (1,135) 55 398 0.06
[kt of CO2eq/year] %
RTP 725  (1,508) 55 ; (728)  (0.62)

~ TOU&CPP (2,288) (317)  (412) (3,017)  (2.56)
Emissions - Tou&DC  (1,438)  (412)  (12) (1,861)  (1.58)
TOU 559 (112)  (397) . 49 0.04

Even though production always changes positively, emissions do not. This is true for all rate
scenarios with the exception of the TOU case. What happens is that solar production increases
considerably in all but the TOU scenario. This suggests long-run complementarities between the
demand responsiveness of the residential sector in California and solar generating plants in the
Western Interconnection. Interestingly, RTP is not the rate that increases this complementarity the
most. The combination between a TOU and a CPP program is the rate alternative that increases
solar production and reduces emissions more notoriously.

6.6 Conclusions

We conduct an analysis of rate design in California’s residential electricity sector. Beyond the
applied insights, we contribute with a modeling framework to evaluate rate structures. The frame-
work gives an important step towards bridging top down models of pricing and investment with
bottom up models of household behavior. Building upon the theory of peak-load pricing, we il-
lustrate how to modify the basic model to accommodate household heterogeneity, as well as the
adoption of distributed energy resources and more general types of rate structures.

Our analysis seeks to quantify efficiency, distributional and environmental implications of rate
structures that are plausible alternatives for California’s future residential sector. The analysis
shows that the average gains of implementing time-varying rates with respect to a simple flat rate
program are rather mild, even in the real-time pricing scenario. Our results also show that factors
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such as the presence of an air conditioning system and the exterior temperature profile can have
a meaningful impact on the surplus gains that different rates generate on households. These two
results combined suggest that defaulting all residential customers into a time-of-use rate structure,
which is the current path California is following for the residential sector, may not be an ideal
strategy. Targeting different rates to households with different appliance stocks and in different
locations will likely be a superior policy.
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